# source:palm/trunk/TUTORIAL/SOURCE/exercise_neutral.tex@1657

Last change on this file since 1657 was 1657, checked in by knoop, 9 years ago

split .mrun.config.default into version for ifort and gfortran + Bugfix: Seminar lectures

• Property svn:keywords set to Id
File size: 11.1 KB
Line
1% $Id: exercise_neutral.tex 1657 2015-09-17 18:31:36Z knoop$
4
5\usepackage[utf8]{inputenc}
6\usepackage{ngerman}
7\usepackage{pgf}
8\usepackage{subfigure}
9\usepackage{units}
10\usepackage{tabto}
11\usepackage{multimedia}
12\usepackage{hyperref}
13\newcommand{\event}[1]{\newcommand{\eventname}{#1}}
14\usepackage{xmpmulti}
15\usepackage{tikz}
16\usetikzlibrary{shapes,arrows,positioning}
17\usetikzlibrary{decorations.markings}             %neues paket
18\usetikzlibrary{decorations.pathreplacing}        %neues paket
19\def\Tiny{\fontsize{4pt}{4pt}\selectfont}
20\usepackage{amsmath}
21\usepackage{amssymb}
22\usepackage{multicol}
23\usepackage{pdfcomment}
24\usepackage{graphicx}
25\usepackage{listings}
26\lstset{showspaces=false,language=fortran,basicstyle=
27        \ttfamily,showstringspaces=false,captionpos=b}
28
29\institute{Institute of Meteorology and Climatology, Leibniz UniversitÃ€t Hannover}
30\selectlanguage{english}
31\date{last update: \today}
32\event{PALM Seminar}
34
35\setbeamertemplate{footline}
36  {
37    \begin{beamercolorbox}[rightskip=-0.1cm]&
38     {\includegraphics[height=0.65cm]{imuk_logo.pdf}\hfill \includegraphics[height=0.65cm]{luh_logo.pdf}}
39    \end{beamercolorbox}
40    \begin{beamercolorbox}[ht=2.5ex,dp=1.125ex,
43    \end{beamercolorbox}
44    \begin{beamercolorbox}[colsep=1.5pt]{lower separation line foot}
45    \end{beamercolorbox}
46  }
47%\logo{\includegraphics[width=0.3\textwidth]{luhimuk_logo.pdf}}
48
49\title[Exercise 2: Neutrally Stratified  Boundary Layer]{Exercise 2: Neutrally Stratified  Boundary Layer}
50\author{PALM group}
51
52\setbeamersize{text margin left=.2cm,text margin right=.2cm}
53
54\begin{document}
55\footnotesize
56% Folie 1
57\begin{frame}
58\titlepage
59\end{frame}
60
61\section{Exercise}
62\subsection{Exercise}
63
64% Folie 2
65\begin{frame}
66   \frametitle{Exercise 2: Neutrally Stratified  Atmospheric Boundary Layer}
67   \begin{itemize}
68      \item A neutrally stratified atmospheric boundary layer shall be simulated.
69      \item<2-> The flow shall be driven by a constant large-scale pressure gradient, i.e., a geostrophic wind.
70      \item<3-> At the end of the simulation, turbulence as well as the mean flow should be in a stationary state.
71   \end{itemize}
72   \onslide<4->\textbf{Simulation features:}
73    \begin{itemize}
74          \item<4-> geostrophic wind:  \tabto{3cm} $u_\mathrm{g} = \unit[5]{m\ s^{-1}}, v_\mathrm{g} = \unit[0]{m\ s^{-1}}$
75          \item<5-> initial velocity:  \tabto{3cm} try constant velocity ($u = u_\mathrm{g}, v = v_\mathrm{g}$, everywhere)\\
76                    \tabto{3cm} or a mean vertical profile created by the 1D-model
77          \item<6-> roughness length:  \tabto{3cm} $z_0 = \unit[0.1]{m}$
78    \end{itemize}
79\onslide<7->Please choose domain size, grid size and time to be simulated appropriately.
80\end{frame}
81
82% Folie 3
83\begin{frame}
85    \begin{itemize}
86       \item<1-> How long do you have to simulate until turbulence / mean flow become stationary?
87       \vspace{1em}
88       \item<2-> How do the horizontally and temporally averaged vertical velocity and momentum flux profiles look like?
89       \vspace{1em}
90       \item<3-> Is it really a large-eddy simulation, i.e., are the subgrid-scale fluxes much smaller than the resolved-scale fluxes?
91       \vspace{1em}
92       \item<4-> How do the turbulence spectra of $u$, $v$, $w$ along $x$ and along $y$ look like?\\
93                 Can you identify the inertial subrange?
94    \end{itemize}
95\end{frame}
96
97% Folie 4
98 \begin{frame}
99    \frametitle{Hints (I)}
100     \begin{itemize}
101        \item<1-> Please remember hints given for the previous exercise!
102        \item<2-> \textbf{Initial profiles:}
103        \begin{itemize}
104           \tiny
105           \item<3-> The 1D-model (\texttt{\textcolor{blue}{initializing\_actions} = 'set\_1d-model\_profiles'}) is mainly controlled by parameters \texttt{\textcolor{blue}{end\_time\_1d}} and \texttt{\textcolor{blue}{damp\_level\_1d}}. Please keep in mind that the profiles from the 1D-model should also be in a stationary state.
106           \vspace{0.5em}
107            \item<3-> Output of vertical profile data generated by the 1D-model is controlled by parameter \texttt{\textcolor{blue}{dt\_pr\_1d}}. It is in ASCII-format and it is written into a separate file. You can include the profiles of the 1D-model, which are used to initialize the 3D-model, in the standard profile data output of the 3D-model (which is controlled by parameter \texttt{\textcolor{blue}{data\_output\_pr}}) by adding a \texttt{'\#'} sign to the respective output quantity, e.g. \texttt{\textcolor{blue}{data\_output\_pr} = '\#u'}.
108           \vspace{0.5em}
109            \item<3-> For the 1D-model, please set \texttt{\textcolor{blue}{mixing\_length\_1d} = 'blackadar'} and \texttt{\textcolor{blue}{dissipation\_1d} = 'detering'} in order to get a correct mean boundary layer wind profile. The default settings of these parameters would switch the turbulence parameterization of the 1D-model to the SGS-parameterization of the 3D-LES-model, which represents only the SGS-parts of turbulence. However, for this exercise the 1D-model has to parameterize all scales of turbulence (i.e., it should be used as a RANS-model).
110        \end{itemize}
111
112        \item<4-> \textbf{Stationary state:}
113        \begin{itemize}
114           \tiny
115           \item<4-> You probably will find it difficult to get the mean flow to a stationary state (for the 1D-model as well as for the 3D-model. Can you identify the mechanism responsible for this? Try parameters \texttt{\textcolor{blue}{damp\_level\_1d}} (for the 1D-model) and \texttt{\textcolor{blue}{rayleigh\_damping\_factor}} (for the 3D-model; this is a \texttt{inipar}-parameter!) to overcome this problem.
116           \vspace{0.5em}
117           \item<5-> You can switch on a Galilei-transformation in order to save CPU-time (see parameter \texttt{\textcolor{blue}{galilei\_transformation}}).
118        \end{itemize}
119
120     \end{itemize}
121 \end{frame}
122
123% Folie 5
124 \begin{frame}
125    \frametitle{Hints (II)}
126     \begin{itemize}
127        \item<1-> \textbf{Spectra:}
128        \begin{itemize}
129           \scriptsize
130           \item<2-> Output of spectra requires to switch on the spectra-package using \textbf{mrun}-option \texttt{-p}:\\
131                     \texttt{mrun ... -p spectra -r \dq d3\# sp\# ...\dq}
132           \vspace{0.5em}
133           \item<3-> Spectra output is controlled by parameters \texttt{\textcolor{blue}{data\_output\_sp}}, \texttt{\textcolor{blue}{dt\_dosp}}, etc. These package-parameters have to be given     in a separate NAMELIST-block which has to follow the \texttt{d3par}-block:\\
134                     \texttt{\&d3par end\_time = ... /}\\
135                     \texttt{\&spectra\_par data\_output\_sp = ... /}\\
136        \end{itemize}
137     \end{itemize}
138 \end{frame}
139
140\bgroup
141\setbeamercolor{background canvas}{bg=white}
143\end{frame}
144\egroup
145
146% Folie 6
147\section{Results}
148\subsection{Results}
149
150% Folie 7
151\begin{frame}
152   \frametitle{Time series of TKE, umax and wmax}
153   \begin{center}
154      \includegraphics[width=0.62\textwidth]{exercise_neutral_figures/ts_tke_umax_wmax.eps}
155   \end{center}
156\end{frame}
157
158% Folie 8
159\begin{frame}
160   \frametitle{Vertical profiles of $\overline{w}$, $\overline{wu}$, $\overline{wv}$}
161   \begin{center}
162      \includegraphics[width=1.0\textwidth]{exercise_neutral_figures/pr_w_wu_wv.eps}
163   \end{center}
164\end{frame}
165
166% Folie 9
167\begin{frame}
168   \frametitle{Vertical profiles of $\overline{w'u'}$, $\overline{w'v'}$,
169               $\overline{wu''}$ and $\overline{wv''}$}
170   \begin{center}
171      \includegraphics[width=0.55\textwidth]{exercise_neutral_figures/pr_wu_wv_sgs_res.eps}
172   \end{center}
173\end{frame}
174
175% Folie 10
176\begin{frame}
177   \frametitle{Spectra of $u$, $v$ and $w$}
178   \begin{center}
179      \includegraphics[angle=90,width=0.7\textwidth]{exercise_neutral_figures/sp_u_v_w.eps}
180   \end{center}
181\end{frame}
182
183
185% Folie 11
186\begin{frame}
188   \footnotesize
189   How long do you have to simulate until turbulence / mean flow become stationary?
190   \begin{itemize}
191    \item As can be seen in frame 6, a simulation time of about 48~h should at least be taken to obtain a roughly constant kinetic energy.
192    \item The time series of E shows an oscillation with a period of roughly 14~h. This can be attributed to the inertial oscillation
193          affecting the air parcels due to the Coriolis force. This oscillation is damped with time.
194    \item umax and wmax do not change much in time after the spin-up time of roughly 6~h.
195   \end{itemize}
196\end{frame}
197
198% Folie 12
199\begin{frame}
201   \footnotesize
202   How do the horizontally and temporally averaged vertical velocity and momentum flux profiles look like?
203   \begin{itemize}
204    \item The profiles are shown in frame 7. The horizontally averaged vertical velocity is practically zero as the usage of incompressible
205          equations together with cyclic boundary conditions (horizontal homogeneity) suggest.
206    \item wu an wv decrease with height since friction decelerates the flow at the surface. Due to the turning of the wind vector
207          with height (Ekman spiral),
208          the meridional velocity component is non-zero evoking also a non-zero vertical momentum flux of the v-velocity component.
209    \item The non-convergence of the single profiles can be attributed to the inertial oscillation.
210   \end{itemize}
211\end{frame}
212
213% Folie 13
214\begin{frame}
216   \footnotesize
217   Is it really a large-eddy simulation?
218   \begin{itemize}
219    \item Frame 8 shows sub-grid and resolved momentum flux profiles.
220    \item The simulation is an LES since resolved momentum fluxes are the dominant components to the total flux except for the near
221          vicinity of the surface where the unresolved, sub-grid fluxes dominate.
222   \end{itemize}
223\end{frame}
224
225
226% Folie 14
227\begin{frame}
229   \footnotesize
230   Can you identify the inertial subrange?
231   \begin{itemize}
232    \item In PALM, the spectral density is normalized by means of the variance and additionally multiplied by the wave number. Thus, the spectral density appearing
233          on the ordinate of the plots in frame 9 is dimensionless.
234    \item The spectra show a maximum spectral density for small wave numbers. Thus, the largest eddies contain the highest variance
235          (or turbulence kinetic energy, TKE). For higher wave numbers the inertial subrange follows where the spectra follow a -2/3
236          slope in the plot (indicated by a black line). There, the variance follows the energy cascade where larger eddies break-up
237          into smaller eddies. For the highest wave numbers, the spectra depart from the -2/3 slope indicating that dissipation takes place.
238    \item The spectra also show that the production range is not well developed (very flat maxima). This suggests that the modeling domain
239          might be too small to capture relevant larger scales.
240   \end{itemize}
241\end{frame}
242
243\end{document}
Note: See TracBrowser for help on using the repository browser.