1 | % $Id: exercise_interface.tex 973 2012-08-07 16:03:47Z boeske $ |
---|
2 | \input{header_tmp.tex} |
---|
3 | %\input{../header_lectures.tex} |
---|
4 | |
---|
5 | \usepackage[utf8]{inputenc} |
---|
6 | \usepackage{ngerman} |
---|
7 | \usepackage{pgf} |
---|
8 | \usetheme{Dresden} |
---|
9 | \usepackage{subfigure} |
---|
10 | \usepackage{units} |
---|
11 | \usepackage{tabto} |
---|
12 | \usepackage{multimedia} |
---|
13 | \usepackage{hyperref} |
---|
14 | \newcommand{\event}[1]{\newcommand{\eventname}{#1}} |
---|
15 | \usepackage{xmpmulti} |
---|
16 | \usepackage{tikz} |
---|
17 | \usetikzlibrary{shapes,arrows,positioning} |
---|
18 | \usetikzlibrary{decorations.markings} %neues paket |
---|
19 | \usetikzlibrary{decorations.pathreplacing} %neues paket |
---|
20 | \def\Tiny{\fontsize{4pt}{4pt}\selectfont} |
---|
21 | \usepackage{amsmath} |
---|
22 | \usepackage{amssymb} |
---|
23 | \usepackage{multicol} |
---|
24 | \usepackage{pdfcomment} |
---|
25 | \usepackage{graphicx} |
---|
26 | \usepackage{listings} |
---|
27 | \lstset{language=[90]Fortran, |
---|
28 | basicstyle=\ttfamily \tiny, |
---|
29 | keywordstyle=\color{black}, |
---|
30 | commentstyle=\color{black}, |
---|
31 | morecomment=[l]{!\ }% Comment only with space after ! |
---|
32 | } |
---|
33 | |
---|
34 | |
---|
35 | \institute{Institut fÌr Meteorologie und Klimatologie, Leibniz UniversitÀt Hannover} |
---|
36 | \date{last update: \today} |
---|
37 | \event{PALM Seminar} |
---|
38 | \setbeamertemplate{navigation symbols}{} |
---|
39 | |
---|
40 | \setbeamertemplate{footline} |
---|
41 | { |
---|
42 | \begin{beamercolorbox}[rightskip=-0.1cm]& |
---|
43 | {\includegraphics[height=0.65cm]{imuk_logo.pdf}\hfill \includegraphics[height=0.65cm]{luh_logo.pdf}} |
---|
44 | \end{beamercolorbox} |
---|
45 | \begin{beamercolorbox}[ht=2.5ex,dp=1.125ex, |
---|
46 | leftskip=.3cm,rightskip=0.3cm plus1fil]{title in head/foot} |
---|
47 | {\leavevmode{\usebeamerfont{author in head/foot}\insertshortauthor} \hfill \eventname \hfill \insertframenumber \; / \inserttotalframenumber} |
---|
48 | \end{beamercolorbox} |
---|
49 | \begin{beamercolorbox}[colsep=1.5pt]{lower separation line foot} |
---|
50 | \end{beamercolorbox} |
---|
51 | } |
---|
52 | %\logo{\includegraphics[width=0.3\textwidth]{luhimuk_logo.pdf}} |
---|
53 | |
---|
54 | \title[Exercise 3: User Interface]{Exercise 3: User Interface} |
---|
55 | \author{Siegfried Raasch} |
---|
56 | |
---|
57 | \setbeamersize{text margin left=.2cm,text margin right=.2cm} |
---|
58 | |
---|
59 | \begin{document} |
---|
60 | \footnotesize |
---|
61 | % Folie 1 |
---|
62 | \begin{frame} |
---|
63 | \titlepage |
---|
64 | \end{frame} |
---|
65 | |
---|
66 | \section{Exercise} |
---|
67 | \subsection{Exercise} |
---|
68 | |
---|
69 | % Folie 2 |
---|
70 | \begin{frame} |
---|
71 | \frametitle{Exercise 3: User Interface} |
---|
72 | \begin{itemize} |
---|
73 | \item Carry out a run for a convective boundary layer where the surface heat flux is applied for a limited rectangular area only. |
---|
74 | |
---|
75 | \tikzstyle{green} = [rectangle, draw, fill=green!70, minimum size=51pt, font=\tiny] |
---|
76 | \tikzstyle{red} = [rectangle, draw, fill=red!90, text width=44.77pt, minimum size=20pt, font=\tiny] |
---|
77 | \tikzstyle{textd} = [rectangle, font=\normalsize] |
---|
78 | \tikzstyle{line} = [draw, -] |
---|
79 | \begin{center} |
---|
80 | \begin{tikzpicture}[auto, node distance=0] |
---|
81 | \uncover<2->{\node [green] (green) {};} |
---|
82 | \uncover<3->{\node [red, rotate=90] (red) {};} |
---|
83 | \uncover<4->{\node [textd] (textd) {d};} |
---|
84 | \uncover<4->{\draw [latex-,line width=0.8pt] (red.south) -- (textd.east);} |
---|
85 | \uncover<4->{\draw [latex-,line width=0.8pt] (red.north) -- (textd.west);} |
---|
86 | \end{tikzpicture} |
---|
87 | \end{center} |
---|
88 | |
---|
89 | \item<5-> It should be possible to control the area width d by a user-defined parameter in the parameter file. All other parameters should be chosen as in the example run ({\texttt{\scriptsize example\_cbl}}). |
---|
90 | \item<6-> Create horizontal and vertical cross sections of variables in order to analyze the flow field. |
---|
91 | \item<7-> Create mean vertical profiles of temperature and resolved/subgrid-scale heatflux for the total domain but also for the limited rectangular area and the total domain without the limited area. Also create time series for these three domains.\\ |
---|
92 | This can be done by using the \textbf{statistic region concept} already implemented in PALM. |
---|
93 | |
---|
94 | \end{itemize} |
---|
95 | |
---|
96 | \end{frame} |
---|
97 | |
---|
98 | % Folie 3 |
---|
99 | \begin{frame} |
---|
100 | \frametitle{The statistic region concept} |
---|
101 | \begin{itemize} |
---|
102 | \item<1-> By default, mean horizontal profiles are calculated and written on file for the total domain. |
---|
103 | \item<2-> The user can define up to nine so-called statistic regions, which can be arbitrary subsets of the total domain and PALM will calculate and output mean profiles for these regions also. |
---|
104 | \end{itemize} |
---|
105 | \vspace{1em} |
---|
106 | \onslide<3->\textbf{Procedure:} |
---|
107 | \begin{enumerate} |
---|
108 | \item<3-> Set the number of statistic regions you additionally want to define by assigning a value to the {\texttt{\scriptsize {\&}inipar}}-parameter {\texttt{\scriptsize statistic\_regions}}. |
---|
109 | \item<4-> Within the user-interface ({\texttt{\scriptsize user\_init}}), set the masking array {\texttt{\scriptsize rmask}}. It is an {\texttt{\scriptsize INTEGER}} array with array-bounds |
---|
110 | \begin{center} |
---|
111 | {\texttt{\scriptsize rmask(nysg:nyng,nxlg:nxrg,0:9)}} |
---|
112 | \end{center} |
---|
113 | The last index represents the respective statistic region (index {\texttt{\scriptsize 0}} stands for total domain). Assign a 1 to each array element (grid point) which shall belong to the respective statistic region.\\ |
---|
114 | {\texttt{\scriptsize rmask}} is pre-set as: |
---|
115 | \begin{center} |
---|
116 | {\texttt{\scriptsize rmask(:,:,0:9) = 1}} |
---|
117 | \end{center} |
---|
118 | \end{enumerate} |
---|
119 | \end{frame} |
---|
120 | |
---|
121 | |
---|
122 | % Folie 4 |
---|
123 | \begin{frame} |
---|
124 | \frametitle{Additional hints} |
---|
125 | \begin{itemize} |
---|
126 | \item<1-> Keep in mind that every PE calculates for a different subset of the total domain. Array bounds of the total domain are {\texttt{\scriptsize (0:ny,0:nx)}}, those of the subdomains {\texttt{\scriptsize (nys:nyn,nxl:nxr)}}, where {\texttt{\scriptsize nys, nyn, nxl, nxr}} vary for each subdomain. |
---|
127 | \item<2-> {\texttt{\scriptsize rmask}} can also be used to modify the array which is used for the surface heatflux ({\texttt{\scriptsize shf}}): |
---|
128 | \begin{center} |
---|
129 | {\texttt{\scriptsize shf $=$ shf * rmask(:,:,1)}} |
---|
130 | \end{center} |
---|
131 | sets the surface heatflux to zero at all those array elements (grid points), where {\texttt{\scriptsize rmask(...,1)}} is zero. |
---|
132 | \item<3-> In case of using the default netCDF format, the profile data for the additional statistic regions are added to the default local file {\texttt{\scriptsize DATA\_1D\_PR\_NETCDF}}. |
---|
133 | \item<4-> The developing mean flow is quasi two-dimensional (in the xz-plane). You can easily get plots of the mean flow by averaging results along the y-axis. The standard output provides such averages. See description of parameter {\texttt{\scriptsize \textcolor{blue}{section\_xz}}} on how to get averages along y. |
---|
134 | \end{itemize} |
---|
135 | \end{frame} |
---|
136 | |
---|
137 | % Folie 5 |
---|
138 | \begin{frame} |
---|
139 | \frametitle{If You Finished the Exercise Very Fast:} |
---|
140 | \begin{itemize} |
---|
141 | \item<1-> Repeat the simulation, but now for a geostrophic wind of 0.5 m/s |
---|
142 | \item<2-> The resulting flow will be (should be) quite similar to the flow over an arctic lead. |
---|
143 | \end{itemize} |
---|
144 | \end{frame} |
---|
145 | |
---|
146 | % Folie 6 |
---|
147 | \section{Results \quad \, } |
---|
148 | \subsection{Results} |
---|
149 | |
---|
150 | % Folie 7 |
---|
151 | \begin{frame} |
---|
152 | \frametitle{XY cross-sections} |
---|
153 | \begin{center} |
---|
154 | \includegraphics[width=0.415\textwidth]{exercise_interface_figures/xy_shf.eps} |
---|
155 | \includegraphics[width=0.50\textwidth]{exercise_interface_figures/xy_w.eps}\\ |
---|
156 | \end{center} |
---|
157 | \end{frame} |
---|
158 | |
---|
159 | % Folie 8 |
---|
160 | \begin{frame} |
---|
161 | \frametitle{vertical profiles (I)} |
---|
162 | \begin{center} |
---|
163 | \includegraphics[width=0.32\textwidth]{exercise_interface_figures/pr_pt0.eps} |
---|
164 | \includegraphics[width=0.32\textwidth]{exercise_interface_figures/pr_pt1.eps} |
---|
165 | \includegraphics[width=0.32\textwidth]{exercise_interface_figures/pr_pt2.eps} |
---|
166 | \end{center} |
---|
167 | \end{frame} |
---|
168 | |
---|
169 | % Folie 9 |
---|
170 | \begin{frame} |
---|
171 | \frametitle{XZ cross-sections after 1h} |
---|
172 | \begin{center} |
---|
173 | \includegraphics[width=0.50\textwidth]{exercise_interface_figures/xz_w_avg.eps} |
---|
174 | \includegraphics[width=0.50\textwidth]{exercise_interface_figures/xz_w_y1000.eps}\\ |
---|
175 | \end{center} |
---|
176 | \end{frame} |
---|
177 | |
---|
178 | % Folie 10 |
---|
179 | \begin{frame} |
---|
180 | \frametitle{vertical profiles (II)} |
---|
181 | \begin{center} |
---|
182 | \includegraphics[width=0.30\textwidth]{exercise_interface_figures/pr_wpt_resolved.eps} |
---|
183 | \includegraphics[width=0.30\textwidth]{exercise_interface_figures/pr_wpt_resolved1.eps} |
---|
184 | \includegraphics[width=0.30\textwidth]{exercise_interface_figures/pr_wpt_resolved2.eps}\\ |
---|
185 | \includegraphics[width=0.30\textwidth]{exercise_interface_figures/pr_wpt_sgs.eps} |
---|
186 | \includegraphics[width=0.30\textwidth]{exercise_interface_figures/pr_wpt_sgs1.eps} |
---|
187 | \includegraphics[width=0.30\textwidth]{exercise_interface_figures/pr_wpt_sgs2.eps}\\ |
---|
188 | \end{center} |
---|
189 | \end{frame} |
---|
190 | |
---|
191 | % Folie 11 |
---|
192 | \begin{frame} |
---|
193 | \frametitle{time series (I)} |
---|
194 | \begin{center} |
---|
195 | \hspace{-1.15em} \includegraphics[width=0.66\textwidth]{exercise_interface_figures/ts_pt0.eps}\\ |
---|
196 | \includegraphics[width=0.66\textwidth]{exercise_interface_figures/ts_pt1.eps}\\ |
---|
197 | \hspace{-0.75em} \includegraphics[width=0.66\textwidth]{exercise_interface_figures/ts_pt2.eps}\\ |
---|
198 | \end{center} |
---|
199 | \end{frame} |
---|
200 | |
---|
201 | % Folie 12 |
---|
202 | \begin{frame} |
---|
203 | \frametitle{time series (II)} |
---|
204 | \begin{center} |
---|
205 | \hspace{-0.15em} \includegraphics[width=0.65\textwidth]{exercise_interface_figures/ts_wpt0.eps}\\ |
---|
206 | \includegraphics[width=0.65\textwidth]{exercise_interface_figures/ts_wpt1.eps}\\ |
---|
207 | \includegraphics[width=0.65\textwidth]{exercise_interface_figures/ts_wpt2.eps}\\ |
---|
208 | \end{center} |
---|
209 | \end{frame} |
---|
210 | |
---|
211 | % Folie 13 |
---|
212 | \begin{frame} |
---|
213 | \frametitle{time series (III)} |
---|
214 | \begin{center} |
---|
215 | \hspace{0.25em} \includegraphics[width=0.65\textwidth]{exercise_interface_figures/ts_wpt0_sgs.eps}\\ |
---|
216 | \includegraphics[width=0.65\textwidth]{exercise_interface_figures/ts_wpt1_sgs.eps}\\ |
---|
217 | \hspace{-0.75em} \includegraphics[width=0.675\textwidth]{exercise_interface_figures/ts_wpt2_sgs.eps}\\ |
---|
218 | \end{center} |
---|
219 | \end{frame} |
---|
220 | |
---|
221 | % Folie 14 |
---|
222 | \begin{frame} |
---|
223 | \frametitle{XY cross-sections (b)} |
---|
224 | \begin{center} |
---|
225 | \includegraphics[width=0.50\textwidth]{exercise_interface_figures/xz_w_avg_wind.eps} |
---|
226 | \includegraphics[width=0.50\textwidth]{exercise_interface_figures/xz_w_y250_wind.eps}\\ |
---|
227 | \end{center} |
---|
228 | \end{frame} |
---|
229 | |
---|
230 | |
---|
231 | \end{document} |
---|