source: palm/trunk/TUTORIAL/SOURCE/exercise_cbl.tex @ 1492

Last change on this file since 1492 was 1198, checked in by kanani, 11 years ago

typos removed

  • Property svn:executable set to *
  • Property svn:keywords set to Id
File size: 10.4 KB
Line 
1% $Id: exercise_cbl.tex 1198 2013-07-04 12:38:18Z heinze $
2\input{header_tmp.tex}
3%\input{../header_lectures.tex}
4
5\usepackage[utf8]{inputenc}
6\usepackage{ngerman}
7\usepackage{pgf}
8\usetheme{Dresden}
9\usepackage{subfigure}
10\usepackage{units}
11\usepackage{multimedia}
12\usepackage{hyperref}
13\newcommand{\event}[1]{\newcommand{\eventname}{#1}}
14\usepackage{xmpmulti}
15\usepackage{tikz}
16\usetikzlibrary{shapes,arrows,positioning}
17\usetikzlibrary{decorations.markings}             %neues paket
18\usetikzlibrary{decorations.pathreplacing}        %neues paket
19\def\Tiny{\fontsize{4pt}{4pt}\selectfont}
20\usepackage{amsmath}
21\usepackage{amssymb}
22\usepackage{multicol}
23\usepackage{pdfcomment}
24\usepackage{graphicx}
25\usepackage{listings}
26\lstset{showspaces=false,language=fortran,basicstyle=
27        \ttfamily,showstringspaces=false,captionpos=b}
28
29\institute{Institut fÌr Meteorologie und Klimatologie, Leibniz UniversitÀt Hannover}
30\date{last update: \today}
31\event{PALM Seminar}
32\setbeamertemplate{navigation symbols}{}
33
34\setbeamertemplate{footline}
35  {
36    \begin{beamercolorbox}[rightskip=-0.1cm]&
37     {\includegraphics[height=0.65cm]{imuk_logo.pdf}\hfill \includegraphics[height=0.65cm]{luh_logo.pdf}}
38    \end{beamercolorbox}
39    \begin{beamercolorbox}[ht=2.5ex,dp=1.125ex,
40      leftskip=.3cm,rightskip=0.3cm plus1fil]{title in head/foot}
41      {\leavevmode{\usebeamerfont{author in head/foot}\insertshortauthor} \hfill \eventname \hfill \insertframenumber \; / \inserttotalframenumber}
42    \end{beamercolorbox}
43    \begin{beamercolorbox}[colsep=1.5pt]{lower separation line foot}
44    \end{beamercolorbox}
45  }
46%\logo{\includegraphics[width=0.3\textwidth]{luhimuk_logo.pdf}}
47
48\title[Exercise 1: Convection Between Plates]{Exercise 1: Convection Between Plates}
49\author{Siegfried Raasch}
50
51\begin{document}
52
53% Folie 1
54\begin{frame}
55\titlepage
56\end{frame}
57
58\section{Exercise}
59\subsection{Exercise}
60
61% Folie 2
62\begin{frame}
63   \frametitle{Exercise 1: Convection Between Plates}
64   
65   Please try to carry out a run with following initial and boundary conditions and create the required output.
66   \begin{itemize}
67      \scriptsize
68           \item<2-> The simulation should represent a stationary convective boundary layer between two uniformly heated/cooled plates with zero mean flow.
69           \item<3-> A free-slip condition for velocity shall be used at the bottom and top boundary.
70           \item<4-> The sensible heat flux at the bottom and top boundary shall be constant throughout the simulation.
71   \end{itemize}   
72   \onslide<5-> Simulation features:
73   \begin{itemize}
74      \scriptsize
75           \item<6-> domain size: about $\unit[2000 \times 2000 \times 1000]{m^3}$ ($x$/$y$/$z$)
76           \item<7-> grid size: $\unit[50]{m}$ equidistant
77           \item<8-> simulated time:    $\unit[3600]{s}$
78           \item<9-> surface heatflux: $\unit[0.1]{K\ m\ s^{-1}}$
79           \item<10-> heatflux at top: $\unit[0.1]{K\ m\ s^{-1}}$
80           \item<11-> initial temperature: $\unit[300]{K}$ everywhere
81           \item<12-> initial velocity: zero everywhere
82   \end{itemize} 
83\end{frame}
84
85% Folie 3
86\begin{frame}
87   \frametitle{Questions to be Answered:}
88   
89   \begin{itemize}
90   \item<1-> How does the flow field look like after 60 minutes of simulated time? (What kind of output do you need to answer this?)
91   \item<2-> How do the horizontally and temporally averaged vertical temperature and heat flux profiles look like?
92   \item<3-> Is it really a large-eddy simulation, i.e. are the subgrid-scale fluxes much smaller than the resolved-scale fluxes? (How long should the averaging time interval be?)
93   \item<4-> How do the total kinetic energy and the maximum velocity components change in time? Has the flow become stationary?
94   \item<5-> Has the domain size and grid size been chosen appropriately?
95   \end{itemize}
96
97\end{frame}
98       
99% Folie 4
100\begin{frame}
101   \frametitle{Hints (I)}
102   \scriptsize
103   
104   PALM parameter names are displayed by courier style, e.g. \textcolor{blue}{\texttt{end\_time}}.\\
105
106   \begin{itemize}
107      \item<2-> Domain size
108      \begin{itemize}
109         \scriptsize
110         \item[-]<2-> Is controlled by grid size (\textcolor{blue}{\texttt{dx}}, \textcolor{blue}{\texttt{dy}}, \textcolor{blue}{\texttt{dz}}) and number of grid points (\textcolor{blue}{\texttt{nx}}, \textcolor{blue}{\texttt{ny}}, \textcolor{blue}{\texttt{nz}}). Since the first grid point along each of the directions has index 0, the total number of grid points used are \textcolor{blue}{\texttt{nx}}+1, \textcolor{blue}{\texttt{ny}}+1, \textcolor{blue}{\texttt{nz}}+1. The total domain size in case of cyclic horizontal boundary conditions is (\textcolor{blue}{\texttt{nx}}+1)*\textcolor{blue}{\texttt{dx}}, (\textcolor{blue}{\texttt{ny}}+1)*\textcolor{blue}{\texttt{dy}}.
111      \end{itemize}
112     
113      \item<3-> Initial profiles
114      \begin{itemize}
115         \scriptsize
116         \item[-]<3-> Constant with height. See parameter \textcolor{blue}{\texttt{initializing\_actions}} for available initialization methods. See \textcolor{blue}{\texttt{ug\_surface}}, \textcolor{blue}{\texttt{vg\_surface}} and \textcolor{blue}{\texttt{pt\_surface}} for initial values of velocity and potential temperature.
117      \end{itemize}
118     
119      \item<4-> Boundary conditions
120       \begin{itemize}
121         \scriptsize
122         \item[-]<4-> For velocity, see \textcolor{blue}{\texttt{bc\_uv\_b}} and \textcolor{blue}{\texttt{bc\_uv\_t}}. See also \textcolor{blue}{\texttt{prandtl\_layer}}, because Neumann conditions don’t allow to use a Prandtl-layer.
123         \item[-]<5-> For temperature / heat flux, see \textcolor{blue}{\texttt{surface\_heatflux}} and \textcolor{blue}{\texttt{top\_heatflux}}. Prescribing of heat flux at the boundary requires a Neumann boundary condition for temperature, see \textcolor{blue}{\texttt{bc\_pt\_b}} and \textcolor{blue}{\texttt{bc\_pt\_t}}.
124         \item[-]<6-> Use a Neumann condition also for the perturbation pressure both at the bottom and the top (\textcolor{blue}{\texttt{bc\_p\_b}}, \textcolor{blue}{\texttt{bc\_p\_t}}).
125      \end{itemize}     
126     
127      \item<7-> Simulation time
128      \begin{itemize}
129         \scriptsize
130         \item[-]<7-> See parameter \textcolor{blue}{\texttt{end\_time}}.
131      \end{itemize}
132     
133   \end{itemize}
134
135\end{frame}
136
137% Folie 5
138\begin{frame}
139   \frametitle{Hints (II)}
140   \footnotesize
141   
142   Hints for data output.
143   
144   \begin{itemize}
145   
146      \item<2-> Variables
147      \begin{itemize}
148         \footnotesize
149         \item[-]<2-> Output variables are chosen with parameters \textcolor{blue}{\texttt{data\_output}} (3d-data or 2d-cross-sections) and \textcolor{blue}{\texttt{data\_output\_pr}} (profiles).
150      \end{itemize}
151
152      \item<3-> Output intervals
153      \begin{itemize}
154         \footnotesize
155         \item[-]<3-> Output intervals are set with parameter \textcolor{blue}{\texttt{dt\_data\_output}}. This parameter affects all output (cross-sections, profiles, etc.). Individual temporal intervals for the different output quantities can be assigned using parameters \textcolor{blue}{\texttt{dt\_do3d}}, \textcolor{blue}{\texttt{dt\_do2d\_xy}}, \textcolor{blue}{\texttt{dt\_do2d\_xz}}, \textcolor{blue}{\texttt{dt\_do2d\_yz}}, \textcolor{blue}{\texttt{dt\_dopr}}, etc.
156      \end{itemize}
157     
158      \item<4-> Time averaging
159      \begin{itemize}
160         \footnotesize
161         \item[-]<4-> Time averaging is controlled with parameters  \textcolor{blue}{\texttt{averaging\_interval}}\textcolor{blue}{\texttt{averaging\_interval\_pr}}\textcolor{blue}{\texttt{dt\_averaging\_input}}\textcolor{blue}{\texttt{dt\_averaging\_input\_pr}}.
162      \end{itemize}
163
164   \end{itemize}
165
166\end{frame}
167
168% Folie 6
169\begin{frame}
170   \frametitle{Further Hints}
171
172   \onslide<2-> You will find some more detailed information to solve this exercise in the PALM-online-documentation under:\\
173   \ \\
174   \small\url{http://palm.muk.uni-hannover.de/wiki/doc/app/examples/cbl}\\
175   \ \\
176   \normalsize (Attention: This documentation is for atmospheric convection with free upper lid.)
177   \ \\
178   \ \\
179   \normalsize Please also see under\\
180   \ \\
181   \small\url{http://palm.muk.uni-hannover.de/wiki/doc/app/netcdf}\\
182   \ \\
183   \normalsize where the complete PALM netCDF-data-output and the respective steering parameters are described.
184
185\end{frame}
186
187% Folie 7
188\begin{frame}
189   \frametitle{How to Start?}
190
191   \begin{itemize}
192      \item<2-> Create a data directory for a new run:\\
193           \quad \texttt{cd \~{}/palm/current\_version}\\
194           \quad \texttt{mkdir -p JOBS/uniform\_plates/INPUT}
195           
196           \item<3-> Create the parameter file and set the required parameters in\\
197           \quad \texttt{JOBS/uniform\_plates/INPUT/uniform\_plates\_p3d}
198           
199           \item<4-> Start the run with \texttt{mrun-command}\\
200           \quad \texttt{mrun -d uniform\_plates -h <hi> -K parallel ...}\\
201           and analyze the output files.
202
203   \end{itemize}
204   
205   \ \\
206   
207   \onslide<5-> \huge \centering \textcolor{blue}{Good Luck!}
208
209\end{frame}
210
211% Folie 8
212\section{Results}
213\subsection{Results}
214
215\begin{frame}
216   \frametitle{$xy$-cross sections (instantaneous)}
217   \begin{center}
218      \includegraphics[width=0.42\textwidth]{exercise_cbl_figures/xy_w_100.eps}
219      \includegraphics[width=0.42\textwidth]{exercise_cbl_figures/xy_w_500.eps}\\
220      \includegraphics[width=0.42\textwidth]{exercise_cbl_figures/xy_w_750.eps}
221   \end{center}
222\end{frame}
223
224% Folie 9
225\begin{frame}
226   \frametitle{$xz$-cross sections ($\unit[900]{s}$ average)}
227   \begin{center}
228      \includegraphics[width=0.55\textwidth]{exercise_cbl_figures/xz_w_y250m.eps}
229      \includegraphics[width=0.55\textwidth]{exercise_cbl_figures/xz_w_y500m.eps}\\
230      \includegraphics[width=0.55\textwidth]{exercise_cbl_figures/xz_w_y750m.eps}
231      \includegraphics[width=0.55\textwidth]{exercise_cbl_figures/xz_w_y1000m.eps}
232   \end{center}
233\end{frame}
234
235% Folie 10
236\begin{frame}
237   \frametitle{Vertical profiles (I)}
238   \begin{center}
239      \includegraphics[width=0.55\textwidth]{exercise_cbl_figures/pr_pt.eps}
240      \includegraphics[width=0.55\textwidth]{exercise_cbl_figures/pr_wpt.eps}
241   \end{center}
242\end{frame}
243
244% Folie 11
245\begin{frame}
246   \frametitle{LES?}
247   \begin{center}
248      \includegraphics[width=0.55\textwidth]{exercise_cbl_figures/pr_wpt2.eps}
249      \includegraphics[width=0.55\textwidth]{exercise_cbl_figures/pr_wpt_resolved.eps}
250   \end{center}
251\end{frame}
252
253% Folie 12
254\begin{frame}
255   \frametitle{Time series (I)}
256   \begin{center}
257      \includegraphics[width=1.0\textwidth]{exercise_cbl_figures/ts.eps}
258   \end{center}
259\end{frame}
260
261% Folie 13
262\begin{frame}
263   \frametitle{Time series (II)}
264   \begin{center}
265      \includegraphics[width=1.0\textwidth]{exercise_cbl_figures/ts2.eps}
266   \end{center}
267\end{frame}
268\end{document}
Note: See TracBrowser for help on using the repository browser.