[949] | 1 | % $Id: exercise_cbl.tex 1198 2013-07-04 12:38:18Z heinze $ |
---|
| 2 | \input{header_tmp.tex} |
---|
| 3 | %\input{../header_lectures.tex} |
---|
| 4 | |
---|
| 5 | \usepackage[utf8]{inputenc} |
---|
| 6 | \usepackage{ngerman} |
---|
| 7 | \usepackage{pgf} |
---|
| 8 | \usetheme{Dresden} |
---|
| 9 | \usepackage{subfigure} |
---|
| 10 | \usepackage{units} |
---|
| 11 | \usepackage{multimedia} |
---|
| 12 | \usepackage{hyperref} |
---|
| 13 | \newcommand{\event}[1]{\newcommand{\eventname}{#1}} |
---|
| 14 | \usepackage{xmpmulti} |
---|
| 15 | \usepackage{tikz} |
---|
| 16 | \usetikzlibrary{shapes,arrows,positioning} |
---|
| 17 | \usetikzlibrary{decorations.markings} %neues paket |
---|
| 18 | \usetikzlibrary{decorations.pathreplacing} %neues paket |
---|
| 19 | \def\Tiny{\fontsize{4pt}{4pt}\selectfont} |
---|
| 20 | \usepackage{amsmath} |
---|
| 21 | \usepackage{amssymb} |
---|
| 22 | \usepackage{multicol} |
---|
| 23 | \usepackage{pdfcomment} |
---|
| 24 | \usepackage{graphicx} |
---|
| 25 | \usepackage{listings} |
---|
| 26 | \lstset{showspaces=false,language=fortran,basicstyle= |
---|
| 27 | \ttfamily,showstringspaces=false,captionpos=b} |
---|
| 28 | |
---|
| 29 | \institute{Institut fÌr Meteorologie und Klimatologie, Leibniz UniversitÀt Hannover} |
---|
| 30 | \date{last update: \today} |
---|
| 31 | \event{PALM Seminar} |
---|
| 32 | \setbeamertemplate{navigation symbols}{} |
---|
| 33 | |
---|
| 34 | \setbeamertemplate{footline} |
---|
| 35 | { |
---|
| 36 | \begin{beamercolorbox}[rightskip=-0.1cm]& |
---|
| 37 | {\includegraphics[height=0.65cm]{imuk_logo.pdf}\hfill \includegraphics[height=0.65cm]{luh_logo.pdf}} |
---|
| 38 | \end{beamercolorbox} |
---|
| 39 | \begin{beamercolorbox}[ht=2.5ex,dp=1.125ex, |
---|
| 40 | leftskip=.3cm,rightskip=0.3cm plus1fil]{title in head/foot} |
---|
| 41 | {\leavevmode{\usebeamerfont{author in head/foot}\insertshortauthor} \hfill \eventname \hfill \insertframenumber \; / \inserttotalframenumber} |
---|
| 42 | \end{beamercolorbox} |
---|
| 43 | \begin{beamercolorbox}[colsep=1.5pt]{lower separation line foot} |
---|
| 44 | \end{beamercolorbox} |
---|
| 45 | } |
---|
| 46 | %\logo{\includegraphics[width=0.3\textwidth]{luhimuk_logo.pdf}} |
---|
| 47 | |
---|
| 48 | \title[Exercise 1: Convection Between Plates]{Exercise 1: Convection Between Plates} |
---|
| 49 | \author{Siegfried Raasch} |
---|
| 50 | |
---|
| 51 | \begin{document} |
---|
| 52 | |
---|
| 53 | % Folie 1 |
---|
| 54 | \begin{frame} |
---|
| 55 | \titlepage |
---|
| 56 | \end{frame} |
---|
| 57 | |
---|
[954] | 58 | \section{Exercise} |
---|
| 59 | \subsection{Exercise} |
---|
[949] | 60 | |
---|
| 61 | % Folie 2 |
---|
| 62 | \begin{frame} |
---|
| 63 | \frametitle{Exercise 1: Convection Between Plates} |
---|
| 64 | |
---|
| 65 | Please try to carry out a run with following initial and boundary conditions and create the required output. |
---|
| 66 | \begin{itemize} |
---|
| 67 | \scriptsize |
---|
| 68 | \item<2-> The simulation should represent a stationary convective boundary layer between two uniformly heated/cooled plates with zero mean flow. |
---|
| 69 | \item<3-> A free-slip condition for velocity shall be used at the bottom and top boundary. |
---|
| 70 | \item<4-> The sensible heat flux at the bottom and top boundary shall be constant throughout the simulation. |
---|
| 71 | \end{itemize} |
---|
| 72 | \onslide<5-> Simulation features: |
---|
| 73 | \begin{itemize} |
---|
| 74 | \scriptsize |
---|
[1198] | 75 | \item<6-> domain size: about $\unit[2000 \times 2000 \times 1000]{m^3}$ ($x$/$y$/$z$) |
---|
[949] | 76 | \item<7-> grid size: $\unit[50]{m}$ equidistant |
---|
| 77 | \item<8-> simulated time: $\unit[3600]{s}$ |
---|
| 78 | \item<9-> surface heatflux: $\unit[0.1]{K\ m\ s^{-1}}$ |
---|
| 79 | \item<10-> heatflux at top: $\unit[0.1]{K\ m\ s^{-1}}$ |
---|
| 80 | \item<11-> initial temperature: $\unit[300]{K}$ everywhere |
---|
[1198] | 81 | \item<12-> initial velocity: zero everywhere |
---|
[949] | 82 | \end{itemize} |
---|
| 83 | \end{frame} |
---|
| 84 | |
---|
| 85 | % Folie 3 |
---|
| 86 | \begin{frame} |
---|
| 87 | \frametitle{Questions to be Answered:} |
---|
| 88 | |
---|
| 89 | \begin{itemize} |
---|
[1198] | 90 | \item<1-> How does the flow field look like after 60 minutes of simulated time? (What kind of output do you need to answer this?) |
---|
| 91 | \item<2-> How do the horizontally and temporally averaged vertical temperature and heat flux profiles look like? |
---|
[949] | 92 | \item<3-> Is it really a large-eddy simulation, i.e. are the subgrid-scale fluxes much smaller than the resolved-scale fluxes? (How long should the averaging time interval be?) |
---|
| 93 | \item<4-> How do the total kinetic energy and the maximum velocity components change in time? Has the flow become stationary? |
---|
| 94 | \item<5-> Has the domain size and grid size been chosen appropriately? |
---|
| 95 | \end{itemize} |
---|
| 96 | |
---|
| 97 | \end{frame} |
---|
| 98 | |
---|
| 99 | % Folie 4 |
---|
| 100 | \begin{frame} |
---|
| 101 | \frametitle{Hints (I)} |
---|
| 102 | \scriptsize |
---|
| 103 | |
---|
| 104 | PALM parameter names are displayed by courier style, e.g. \textcolor{blue}{\texttt{end\_time}}.\\ |
---|
| 105 | |
---|
| 106 | \begin{itemize} |
---|
| 107 | \item<2-> Domain size |
---|
| 108 | \begin{itemize} |
---|
| 109 | \scriptsize |
---|
[1198] | 110 | \item[-]<2-> Is controlled by grid size (\textcolor{blue}{\texttt{dx}}, \textcolor{blue}{\texttt{dy}}, \textcolor{blue}{\texttt{dz}}) and number of grid points (\textcolor{blue}{\texttt{nx}}, \textcolor{blue}{\texttt{ny}}, \textcolor{blue}{\texttt{nz}}). Since the first grid point along each of the directions has index 0, the total number of grid points used are \textcolor{blue}{\texttt{nx}}+1, \textcolor{blue}{\texttt{ny}}+1, \textcolor{blue}{\texttt{nz}}+1. The total domain size in case of cyclic horizontal boundary conditions is (\textcolor{blue}{\texttt{nx}}+1)*\textcolor{blue}{\texttt{dx}}, (\textcolor{blue}{\texttt{ny}}+1)*\textcolor{blue}{\texttt{dy}}. |
---|
[949] | 111 | \end{itemize} |
---|
| 112 | |
---|
| 113 | \item<3-> Initial profiles |
---|
| 114 | \begin{itemize} |
---|
| 115 | \scriptsize |
---|
| 116 | \item[-]<3-> Constant with height. See parameter \textcolor{blue}{\texttt{initializing\_actions}} for available initialization methods. See \textcolor{blue}{\texttt{ug\_surface}}, \textcolor{blue}{\texttt{vg\_surface}} and \textcolor{blue}{\texttt{pt\_surface}} for initial values of velocity and potential temperature. |
---|
| 117 | \end{itemize} |
---|
| 118 | |
---|
| 119 | \item<4-> Boundary conditions |
---|
| 120 | \begin{itemize} |
---|
| 121 | \scriptsize |
---|
| 122 | \item[-]<4-> For velocity, see \textcolor{blue}{\texttt{bc\_uv\_b}} and \textcolor{blue}{\texttt{bc\_uv\_t}}. See also \textcolor{blue}{\texttt{prandtl\_layer}}, because Neumann conditions donât allow to use a Prandtl-layer. |
---|
| 123 | \item[-]<5-> For temperature / heat flux, see \textcolor{blue}{\texttt{surface\_heatflux}} and \textcolor{blue}{\texttt{top\_heatflux}}. Prescribing of heat flux at the boundary requires a Neumann boundary condition for temperature, see \textcolor{blue}{\texttt{bc\_pt\_b}} and \textcolor{blue}{\texttt{bc\_pt\_t}}. |
---|
| 124 | \item[-]<6-> Use a Neumann condition also for the perturbation pressure both at the bottom and the top (\textcolor{blue}{\texttt{bc\_p\_b}}, \textcolor{blue}{\texttt{bc\_p\_t}}). |
---|
| 125 | \end{itemize} |
---|
| 126 | |
---|
| 127 | \item<7-> Simulation time |
---|
| 128 | \begin{itemize} |
---|
| 129 | \scriptsize |
---|
| 130 | \item[-]<7-> See parameter \textcolor{blue}{\texttt{end\_time}}. |
---|
| 131 | \end{itemize} |
---|
| 132 | |
---|
| 133 | \end{itemize} |
---|
| 134 | |
---|
| 135 | \end{frame} |
---|
| 136 | |
---|
| 137 | % Folie 5 |
---|
| 138 | \begin{frame} |
---|
| 139 | \frametitle{Hints (II)} |
---|
| 140 | \footnotesize |
---|
| 141 | |
---|
| 142 | Hints for data output. |
---|
| 143 | |
---|
| 144 | \begin{itemize} |
---|
| 145 | |
---|
| 146 | \item<2-> Variables |
---|
| 147 | \begin{itemize} |
---|
| 148 | \footnotesize |
---|
| 149 | \item[-]<2-> Output variables are chosen with parameters \textcolor{blue}{\texttt{data\_output}} (3d-data or 2d-cross-sections) and \textcolor{blue}{\texttt{data\_output\_pr}} (profiles). |
---|
| 150 | \end{itemize} |
---|
| 151 | |
---|
| 152 | \item<3-> Output intervals |
---|
| 153 | \begin{itemize} |
---|
| 154 | \footnotesize |
---|
| 155 | \item[-]<3-> Output intervals are set with parameter \textcolor{blue}{\texttt{dt\_data\_output}}. This parameter affects all output (cross-sections, profiles, etc.). Individual temporal intervals for the different output quantities can be assigned using parameters \textcolor{blue}{\texttt{dt\_do3d}}, \textcolor{blue}{\texttt{dt\_do2d\_xy}}, \textcolor{blue}{\texttt{dt\_do2d\_xz}}, \textcolor{blue}{\texttt{dt\_do2d\_yz}}, \textcolor{blue}{\texttt{dt\_dopr}}, etc. |
---|
| 156 | \end{itemize} |
---|
| 157 | |
---|
| 158 | \item<4-> Time averaging |
---|
| 159 | \begin{itemize} |
---|
| 160 | \footnotesize |
---|
| 161 | \item[-]<4-> Time averaging is controlled with parameters \textcolor{blue}{\texttt{averaging\_interval}}, \textcolor{blue}{\texttt{averaging\_interval\_pr}}, \textcolor{blue}{\texttt{dt\_averaging\_input}}, \textcolor{blue}{\texttt{dt\_averaging\_input\_pr}}. |
---|
| 162 | \end{itemize} |
---|
| 163 | |
---|
| 164 | \end{itemize} |
---|
| 165 | |
---|
| 166 | \end{frame} |
---|
| 167 | |
---|
| 168 | % Folie 6 |
---|
| 169 | \begin{frame} |
---|
| 170 | \frametitle{Further Hints} |
---|
| 171 | |
---|
[1198] | 172 | \onslide<2-> You will find some more detailed information to solve this exercise in the PALM-online-documentation under:\\ |
---|
[949] | 173 | \ \\ |
---|
| 174 | \small\url{http://palm.muk.uni-hannover.de/wiki/doc/app/examples/cbl}\\ |
---|
| 175 | \ \\ |
---|
[1198] | 176 | \normalsize (Attention: This documentation is for atmospheric convection with free upper lid.) |
---|
[949] | 177 | \ \\ |
---|
[1198] | 178 | \ \\ |
---|
[949] | 179 | \normalsize Please also see under\\ |
---|
| 180 | \ \\ |
---|
| 181 | \small\url{http://palm.muk.uni-hannover.de/wiki/doc/app/netcdf}\\ |
---|
| 182 | \ \\ |
---|
| 183 | \normalsize where the complete PALM netCDF-data-output and the respective steering parameters are described. |
---|
| 184 | |
---|
| 185 | \end{frame} |
---|
| 186 | |
---|
| 187 | % Folie 7 |
---|
| 188 | \begin{frame} |
---|
| 189 | \frametitle{How to Start?} |
---|
| 190 | |
---|
| 191 | \begin{itemize} |
---|
| 192 | \item<2-> Create a data directory for a new run:\\ |
---|
| 193 | \quad \texttt{cd \~{}/palm/current\_version}\\ |
---|
| 194 | \quad \texttt{mkdir -p JOBS/uniform\_plates/INPUT} |
---|
| 195 | |
---|
| 196 | \item<3-> Create the parameter file and set the required parameters in\\ |
---|
| 197 | \quad \texttt{JOBS/uniform\_plates/INPUT/uniform\_plates\_p3d} |
---|
| 198 | |
---|
| 199 | \item<4-> Start the run with \texttt{mrun-command}\\ |
---|
| 200 | \quad \texttt{mrun -d uniform\_plates -h <hi> -K parallel ...}\\ |
---|
| 201 | and analyze the output files. |
---|
| 202 | |
---|
| 203 | \end{itemize} |
---|
| 204 | |
---|
| 205 | \ \\ |
---|
| 206 | |
---|
| 207 | \onslide<5-> \huge \centering \textcolor{blue}{Good Luck!} |
---|
| 208 | |
---|
| 209 | \end{frame} |
---|
| 210 | |
---|
[954] | 211 | % Folie 8 |
---|
| 212 | \section{Results} |
---|
| 213 | \subsection{Results} |
---|
[949] | 214 | |
---|
[954] | 215 | \begin{frame} |
---|
| 216 | \frametitle{$xy$-cross sections (instantaneous)} |
---|
| 217 | \begin{center} |
---|
| 218 | \includegraphics[width=0.42\textwidth]{exercise_cbl_figures/xy_w_100.eps} |
---|
| 219 | \includegraphics[width=0.42\textwidth]{exercise_cbl_figures/xy_w_500.eps}\\ |
---|
| 220 | \includegraphics[width=0.42\textwidth]{exercise_cbl_figures/xy_w_750.eps} |
---|
| 221 | \end{center} |
---|
| 222 | \end{frame} |
---|
[949] | 223 | |
---|
[954] | 224 | % Folie 9 |
---|
| 225 | \begin{frame} |
---|
| 226 | \frametitle{$xz$-cross sections ($\unit[900]{s}$ average)} |
---|
| 227 | \begin{center} |
---|
| 228 | \includegraphics[width=0.55\textwidth]{exercise_cbl_figures/xz_w_y250m.eps} |
---|
| 229 | \includegraphics[width=0.55\textwidth]{exercise_cbl_figures/xz_w_y500m.eps}\\ |
---|
| 230 | \includegraphics[width=0.55\textwidth]{exercise_cbl_figures/xz_w_y750m.eps} |
---|
| 231 | \includegraphics[width=0.55\textwidth]{exercise_cbl_figures/xz_w_y1000m.eps} |
---|
| 232 | \end{center} |
---|
| 233 | \end{frame} |
---|
| 234 | |
---|
| 235 | % Folie 10 |
---|
| 236 | \begin{frame} |
---|
| 237 | \frametitle{Vertical profiles (I)} |
---|
| 238 | \begin{center} |
---|
| 239 | \includegraphics[width=0.55\textwidth]{exercise_cbl_figures/pr_pt.eps} |
---|
| 240 | \includegraphics[width=0.55\textwidth]{exercise_cbl_figures/pr_wpt.eps} |
---|
| 241 | \end{center} |
---|
| 242 | \end{frame} |
---|
| 243 | |
---|
| 244 | % Folie 11 |
---|
| 245 | \begin{frame} |
---|
| 246 | \frametitle{LES?} |
---|
| 247 | \begin{center} |
---|
| 248 | \includegraphics[width=0.55\textwidth]{exercise_cbl_figures/pr_wpt2.eps} |
---|
| 249 | \includegraphics[width=0.55\textwidth]{exercise_cbl_figures/pr_wpt_resolved.eps} |
---|
| 250 | \end{center} |
---|
| 251 | \end{frame} |
---|
| 252 | |
---|
| 253 | % Folie 12 |
---|
| 254 | \begin{frame} |
---|
| 255 | \frametitle{Time series (I)} |
---|
| 256 | \begin{center} |
---|
| 257 | \includegraphics[width=1.0\textwidth]{exercise_cbl_figures/ts.eps} |
---|
| 258 | \end{center} |
---|
| 259 | \end{frame} |
---|
| 260 | |
---|
| 261 | % Folie 13 |
---|
| 262 | \begin{frame} |
---|
| 263 | \frametitle{Time series (II)} |
---|
| 264 | \begin{center} |
---|
| 265 | \includegraphics[width=1.0\textwidth]{exercise_cbl_figures/ts2.eps} |
---|
| 266 | \end{center} |
---|
| 267 | \end{frame} |
---|
[949] | 268 | \end{document} |
---|