[915] | 1 | % $Id: basic_equations.tex 1531 2015-01-26 13:58:29Z knoop $ |
---|
| 2 | \input{header_tmp.tex} |
---|
[1531] | 3 | %\input{../header_LECTURE.tex} |
---|
[915] | 4 | |
---|
| 5 | \usepackage[utf8]{inputenc} |
---|
[945] | 6 | \usepackage{ngerman} |
---|
[915] | 7 | \usepackage{pgf} |
---|
| 8 | \usepackage{subfigure} |
---|
| 9 | \usepackage{units} |
---|
| 10 | \usepackage{multimedia} |
---|
| 11 | \usepackage{hyperref} |
---|
| 12 | \newcommand{\event}[1]{\newcommand{\eventname}{#1}} |
---|
| 13 | \usepackage{xmpmulti} |
---|
| 14 | \usepackage{tikz} |
---|
[1531] | 15 | \usetikzlibrary{shapes,arrows,positioning,decorations.pathreplacing} |
---|
[915] | 16 | \def\Tiny{\fontsize{4pt}{4pt}\selectfont} |
---|
[1531] | 17 | |
---|
| 18 | %---------- neue Pakete |
---|
[915] | 19 | \usepackage{amsmath} |
---|
| 20 | \usepackage{amssymb} |
---|
| 21 | \usepackage{multicol} |
---|
[1531] | 22 | \usepackage{pdfcomment} |
---|
| 23 | \usepackage{xcolor} |
---|
[915] | 24 | |
---|
[1531] | 25 | \institute{Institute of Meteorology and Climatology, Leibniz UniversitÀt Hannover} |
---|
| 26 | \selectlanguage{english} |
---|
[915] | 27 | \date{last update: \today} |
---|
| 28 | \event{PALM Seminar} |
---|
| 29 | \setbeamertemplate{navigation symbols}{} |
---|
[1531] | 30 | \setbeamersize{text margin left=.5cm,text margin right=.2cm} |
---|
[915] | 31 | \setbeamertemplate{footline} |
---|
[1531] | 32 | {% |
---|
[915] | 33 | \begin{beamercolorbox}[rightskip=-0.1cm]& |
---|
| 34 | {\includegraphics[height=0.65cm]{imuk_logo.pdf}\hfill \includegraphics[height=0.65cm]{luh_logo.pdf}} |
---|
| 35 | \end{beamercolorbox} |
---|
[1531] | 36 | \begin{beamercolorbox}[ht=2.5ex,dp=1.125ex,% |
---|
| 37 | leftskip=.3cm,rightskip=0.3cm plus1fil]{title in head/foot}% |
---|
| 38 | {\leavevmode{\usebeamerfont{author in head/foot}\insertshortauthor} \hfill \eventname \hfill \insertframenumber \; / \inserttotalframenumber}% |
---|
| 39 | \end{beamercolorbox}% |
---|
| 40 | % \begin{beamercolorbox}[colsep=1.5pt]{lower separation line foot}% |
---|
| 41 | % \end{beamercolorbox} |
---|
| 42 | }%\logo{\includegraphics[width=0.3\textwidth]{luhimuk_logo.eps}} |
---|
[915] | 43 | |
---|
| 44 | \title[Basic Equations]{Basic Equations} |
---|
[1531] | 45 | \author{PALM group} |
---|
[915] | 46 | |
---|
| 47 | \begin{document} |
---|
| 48 | |
---|
| 49 | %Folie 1 |
---|
| 50 | \begin{frame} |
---|
| 51 | \titlepage |
---|
| 52 | \end{frame} |
---|
| 53 | |
---|
| 54 | |
---|
| 55 | \section{Basic equations} |
---|
| 56 | \subsection{Basic equations, Unfiltered} |
---|
| 57 | |
---|
| 58 | % Folie 2 |
---|
| 59 | \begin{frame} |
---|
| 60 | \frametitle{Basic equations, Unfiltered} |
---|
[1413] | 61 | \setlength{\leftmargini}{0.3cm} |
---|
[915] | 62 | \begin{itemize} |
---|
| 63 | \item<2->Navier-Stokes equations |
---|
| 64 | \begin{equation*} |
---|
| 65 | \rho \frac{\partial u_i}{\partial t} + \rho u_k |
---|
| 66 | \frac{\partial u_i}{\partial x_k} = |
---|
| 67 | - \frac{\partial p}{\partial x_i} - \rho \varepsilon_{ijk} |
---|
[1408] | 68 | f_j u_k - \rho \frac{\partial \phi}{\partial x_i} + \mu |
---|
[915] | 69 | \left\{ \frac{\partial^2 u_i}{\partial x_k^2} + \frac{1}{3} |
---|
| 70 | \frac{\partial}{\partial x_i} \left( |
---|
| 71 | \frac{\partial u_k}{\partial x_k} \right) \right\} |
---|
| 72 | \end{equation*} |
---|
| 73 | \item \onslide<3->First principle |
---|
| 74 | \begin{equation*} |
---|
| 75 | \rho \frac{\partial T}{\partial t} + \rho u_k \frac{\partial T}{\partial x_k} = \mu_\mathrm{h} \frac{\partial^2 T}{\partial x_k^2} + Q |
---|
| 76 | \end{equation*} |
---|
| 77 | \item \onslide<4->Equation for passive scalar |
---|
| 78 | \begin{equation*} |
---|
| 79 | \rho \frac{\partial \psi}{\partial t} + \rho u_k \frac{\partial \psi}{\partial x_k} = \mu_{\psi} \frac{\partial^2 \psi}{\partial x_k^2} + Q_{\psi} |
---|
| 80 | \end{equation*} |
---|
| 81 | \item \onslide<5->Continuity equation |
---|
| 82 | \begin{equation*} |
---|
[945] | 83 | \frac{\partial \rho}{\partial t} = - \frac{\partial \rho u_k}{\partial x_k} |
---|
[915] | 84 | \end{equation*} |
---|
| 85 | \end{itemize} |
---|
| 86 | \end{frame} |
---|
| 87 | |
---|
| 88 | % Folie 3 |
---|
| 89 | \begin{frame} |
---|
| 90 | \frametitle{Boussinesq Approximation} |
---|
[945] | 91 | \footnotesize |
---|
[915] | 92 | \begin{itemize} |
---|
| 93 | \item \onslide<2->Splitting thermodynamic variables into a basic state $\psi_0$ and a variation $\psi^{*}$ |
---|
[945] | 94 | \begin{align*} |
---|
| 95 | T(x,y,z,t) &= T_0(x,y,z) &+& T^{*}(x,y,z,t)&&\\ |
---|
| 96 | p(x,y,z,t) &= p_0(x,y,z) &+& p^{*}(x,y,z,t)&&\\ |
---|
| 97 | \rho(x,y,z,t) &= \rho_0(z) &+& \rho^{*}(x,y,z,t);& & |
---|
| 98 | &\psi^{*} << \psi_0& |
---|
| 99 | \end{align*} |
---|
[915] | 100 | \item \onslide<3->Hydrostatic equilibrium, geostrophic wind (not included in Boussinesq) |
---|
| 101 | \begin{equation*} |
---|
| 102 | \frac{\partial p_0}{\partial z} = -g \rho_0 \hspace{10mm} |
---|
| 103 | \frac{1}{\rho_0} \frac{\partial p_0}{\partial x} = -f v_\mathrm{g}, |
---|
| 104 | \hspace{5mm} \frac{1}{\rho_0} \frac{\partial p_0}{\partial y} = f u_\mathrm{g} |
---|
| 105 | \end{equation*} |
---|
| 106 | \item \onslide<4->Equation of state |
---|
| 107 | \begin{equation*} |
---|
[945] | 108 | p = \rho R T \rightarrow \ln{p} = \ln{\rho} + \ln{R} + \ln{T} \rightarrow \frac{d p}{p} = \frac{d \rho}{\rho} + \frac{d T}{T} |
---|
[915] | 109 | \end{equation*} |
---|
| 110 | \begin{equation*} |
---|
[945] | 111 | \frac{\Delta p}{p_0} \approx \frac{\Delta \rho}{\rho_0} + |
---|
| 112 | \frac{\Delta T}{T_0} \rightarrow \frac{p^{*}}{p_0} \approx |
---|
[915] | 113 | \frac{\rho^{*}}{\rho_0} + \frac{T^{*}}{T_0} \hspace{10mm} |
---|
| 114 | \frac{\rho^{*}}{\rho_0} \approx - \frac{T^{*}}{T_0} \hspace{10mm} |
---|
| 115 | \end{equation*} |
---|
| 116 | \end{itemize} |
---|
| 117 | \end{frame} |
---|
| 118 | |
---|
| 119 | % Folie 4 |
---|
| 120 | \begin{frame} |
---|
| 121 | \frametitle{Continuity Equation} |
---|
| 122 | \begin{eqnarray*} |
---|
| 123 | \onslide<2-> \dfrac{\partial \rho_0(z)}{\partial t} = |
---|
| 124 | - \dfrac{\partial \rho_0(z) u_k}{\partial x_k} & |
---|
| 125 | \hspace{10mm} \dfrac{\partial \rho_0 u_k}{\partial x_k} = 0 |
---|
| 126 | \hspace{5mm} & \text{anelastic approximation}\\ |
---|
| 127 | \\ |
---|
| 128 | \onslide<3-> \rho_0 = const. & \hspace{10mm} |
---|
| 129 | \dfrac{\partial u_k}{\partial x_k} = 0 \hspace{5mm} & |
---|
| 130 | \text{incompressible flow} |
---|
| 131 | \end{eqnarray*} |
---|
| 132 | \end{frame} |
---|
| 133 | |
---|
| 134 | % Folie 5 |
---|
| 135 | \begin{frame} |
---|
| 136 | \frametitle{Boussinesq Approximated Equations} |
---|
| 137 | \begin{itemize} |
---|
| 138 | \item \onslide<2->Navier-Stokes equations |
---|
| 139 | \begin{equation*} |
---|
| 140 | \frac{\partial u_i}{\partial t} |
---|
| 141 | + \frac{\partial u_k u_i}{\partial x_k} = |
---|
| 142 | - \frac{1}{\rho_0}\frac{\partial p^{*}}{\partial x_i} |
---|
| 143 | - \varepsilon_{ijk} f_j u_k + \varepsilon_{i3k} f_3 u_{k_\mathrm{g}} |
---|
| 144 | + g \frac{T - T_0}{T_0} \delta_{i3} + \nu |
---|
| 145 | \frac{\partial^2 u_i}{\partial x_k^2} |
---|
| 146 | \end{equation*} |
---|
| 147 | \item \onslide<3->First principle |
---|
| 148 | \begin{equation*} |
---|
| 149 | \frac{\partial T}{\partial t} + u_k \frac{\partial T}{\partial x_k} = |
---|
| 150 | \nu_\mathrm{h} \frac{\partial^2 T}{\partial x_k^2} + Q |
---|
| 151 | \end{equation*} |
---|
| 152 | \item \onslide<4->Equation for passive scalar |
---|
| 153 | \begin{equation*} |
---|
| 154 | \frac{\partial \psi}{\partial t} + u_k |
---|
| 155 | \frac{\partial \psi}{\partial x_k} = \nu_{\psi} |
---|
| 156 | \frac{\partial^2 \psi}{\partial x_k^2} + Q_{\psi} |
---|
| 157 | \end{equation*} |
---|
| 158 | \item \onslide<5->Continuity equation |
---|
| 159 | \begin{equation*} |
---|
| 160 | \frac{\partial u_k}{\partial x_k} = 0 |
---|
| 161 | \end{equation*} |
---|
| 162 | \end{itemize} |
---|
[1531] | 163 | \onslide<6-> \tikzstyle{plain} = [rectangle, draw, text width=0.255\textwidth, font=\small] |
---|
[915] | 164 | |
---|
| 165 | \begin{tikzpicture}[remember picture, overlay] |
---|
| 166 | \node at (current page.north west){% |
---|
| 167 | \begin{tikzpicture}[overlay] |
---|
| 168 | \node[plain, draw,anchor=west] at (94mm,-55mm) {\noindent This set of equations is valid for almost all kind of CFD models!}; |
---|
| 169 | \end{tikzpicture} |
---|
| 170 | }; |
---|
| 171 | \end{tikzpicture} |
---|
| 172 | \end{frame} |
---|
| 173 | |
---|
| 174 | |
---|
| 175 | \section{Scale Separation} |
---|
| 176 | \subsection{Scale Separation by Spatial Filtering} |
---|
| 177 | |
---|
| 178 | % Folie 6 |
---|
| 179 | \begin{frame} |
---|
| 180 | \frametitle{LES - Scale Separation by Spatial Filtering (I)} |
---|
| 181 | \footnotesize |
---|
| 182 | \begin{itemize} |
---|
| 183 | \item<1->{LES technique is based on scale separation, in order to reduce the number of degrees of freedom of the solution. \begin{math} \boxed{\Psi(x_i , t) = \overline{\Psi}(x_i , t) + \Psi'(x_i , t)} \end{math}} |
---|
| 184 | \item<2->{Large / low-frequency modes $\Psi$ are calculated directly (resolved scales).} |
---|
| 185 | \item<3->{Small / high-frequency modes $\Psi'$ are parameterized using a statistical model (subgrid / subfilter scales, SGS model).} |
---|
| 186 | \item<4->{These two categories of scales are seperated by defining a cutoff length $\Delta$.} |
---|
| 187 | \end{itemize} |
---|
| 188 | \normalsize |
---|
| 189 | \includegraphics[width=\textwidth]{basic_equations_figures/Spatial_Filtering_I.png} |
---|
| 190 | \end{frame} |
---|
| 191 | |
---|
| 192 | |
---|
| 193 | |
---|
| 194 | % Folie 7 |
---|
| 195 | \begin{frame} |
---|
| 196 | \frametitle{LES - Scale Separation by Spatial Filtering (II)} |
---|
| 197 | \begin{columns}[T] |
---|
| 198 | \begin{column}{0.8\textwidth} |
---|
| 199 | \footnotesize |
---|
| 200 | \begin{itemize} |
---|
| 201 | \item<1->The Filter applied is a spatial filter: |
---|
| 202 | \begin{equation*} |
---|
| 203 | \overline{\Psi}(x_i) = \int_D G(x_i - x_i') \Psi(x_i')dx_i' |
---|
| 204 | \end{equation*} |
---|
| 205 | \begin{equation*} |
---|
| 206 | \overline{\Psi}'(x_i) = 0 \qquad but \qquad \overline{\overline{\Psi}} \neq \overline{\Psi}(x_i) |
---|
| 207 | \end{equation*} |
---|
| 208 | \item<2->Filter applied to the nonlinear advection term: |
---|
| 209 | \begin{equation*} |
---|
| 210 | \overline{u_k u_i} = \overline{(\overline{u_k} + u_k')(\overline{u_i} + u_i')} = \overline{\overline{u_k}\,\overline{u_i}} + \underbrace{\overline{\overline{u_k} u_i'} + \overline{u_k' \overline{u_i}}}_{C_{ki}} + \underbrace{\overline{u_k' u_i'}}_{R_{ki}} |
---|
| 211 | \end{equation*} |
---|
| 212 | \item<5->Leonard proposes a further decomposition: |
---|
| 213 | \begin{equation*} |
---|
| 214 | \overline{\overline{u_k}\,\overline{u_i}} = \overline{u_k}\,\overline{u_i} + \underbrace{\left( \overline{\overline{u_k}\,\overline{u_i}} - \overline{u_k}\,\overline{u_i} \right)}_{L_{ki}} |
---|
| 215 | \end{equation*} |
---|
| 216 | \begin{equation*} |
---|
| 217 | \overline{u_k u_i} = \overline{u_k}\,\overline{u_i} + L_{ki} + C_{ki} + R_{ki} = \overline{u_k}\,\overline{u_i} + \tau_{ki} |
---|
| 218 | \end{equation*} |
---|
| 219 | \end{itemize} |
---|
| 220 | \end{column} |
---|
| 221 | \begin{column}{0.32\textwidth} |
---|
[1531] | 222 | \vspace{45mm} |
---|
| 223 | \hspace{-1.75cm} |
---|
[915] | 224 | \begin{footnotesize} |
---|
| 225 | \onslide<3->$R_{ki}$: \textbf{Reynolds-stress} \\ |
---|
[1531] | 226 | \hspace*{-1.5cm}$C_{ki}$: \textbf{cross-stress} \\ |
---|
| 227 | \hspace*{-1.5cm}$L_{ki}$: \textbf{Leonard-stress} \\ |
---|
| 228 | \hspace*{-1.5cm}$\tau_{ki}$: \textbf{total stress-tensor}\\ |
---|
| 229 | \hspace*{-1.05cm} \textbf{generalized Reynolds stress}\\ |
---|
[915] | 230 | \end{footnotesize} |
---|
| 231 | \end{column} |
---|
| 232 | \end{columns} |
---|
[1531] | 233 | \onslide<4->\tikzstyle{plain} = [rectangle, draw, text width=0.25\textwidth, font=\small] |
---|
[915] | 234 | \begin{tikzpicture}[remember picture, overlay] |
---|
| 235 | \node at (current page.north west){ |
---|
| 236 | \begin{tikzpicture}[overlay] |
---|
| 237 | \node[plain, draw,anchor=west] at (94mm,-30mm) { |
---|
| 238 | \begin{footnotesize} |
---|
| 239 | \noindent \textbf{Ensemble average:} \\ |
---|
| 240 | \end{footnotesize} |
---|
| 241 | $\overline{\overline{\Psi}}(x_i) = \overline{\Psi}(x_i)$\\ |
---|
| 242 | \vspace{5mm} |
---|
| 243 | $\overline{u_k u_i} = \overline{u_k}\,\overline{u_i} + \overline{u_k' u_i'}$ |
---|
| 244 | }; |
---|
| 245 | \end{tikzpicture} |
---|
| 246 | }; |
---|
| 247 | \end{tikzpicture} |
---|
| 248 | \end{frame} |
---|
| 249 | |
---|
| 250 | % Folie 8 |
---|
| 251 | \begin{frame} |
---|
| 252 | \frametitle{LES - Scale Separation by Spatial Filtering (III)} |
---|
| 253 | \small |
---|
| 254 | \begin{itemize} |
---|
| 255 | \item<2-> Volume-balance approach (Schumann, 1975)\\ advantage: numerical discretization acts as a\\ Reynolds operator |
---|
| 256 | \begin{flalign*} |
---|
| 257 | &\Psi(V,t)=\frac{1}{\Delta x \cdot \Delta y \cdot \Delta z} = \int \int \int_V \Psi(V',t) dV'&\\ |
---|
| 258 | &\overline{\Psi'}(x_i)=0 \hspace{5mm} \text{and} \hspace{5mm} \overline{\overline{\Psi}} = \overline{\Psi}\\ |
---|
| 259 | &V=\left[ x - \frac{\Delta x}{2}, x + \frac{\Delta x}{2} \right] \times \left[ y - \frac{\Delta y}{2}, y + \frac{\Delta y}{2} \right] \times \left[ z - \frac{\Delta z}{2}, z + \frac{\Delta z}{2} \right] |
---|
| 260 | \end{flalign*} |
---|
| 261 | \item<3-> Filter applied to the nonlinear advection term: |
---|
| 262 | \begin{equation*} |
---|
| 263 | \overline{u_k u_i} = \overline{(\overline{u_k}+u'_k)(\overline{u_i}+u'_i)}= |
---|
| 264 | \overline{u_k}\,\overline{u_i}+\overline{u'_k u'_i} |
---|
| 265 | \end{equation*} |
---|
| 266 | \end{itemize} |
---|
[1531] | 267 | \onslide<1->\tikzstyle{plain} = [rectangle, draw, text width=0.25\textwidth, font=\small] |
---|
[915] | 268 | \begin{tikzpicture}[remember picture, overlay] |
---|
| 269 | \node at (current page.north west){ |
---|
| 270 | \begin{tikzpicture}[overlay] |
---|
| 271 | \node[plain, draw,anchor=west] at (94mm,-30mm) { |
---|
| 272 | \begin{footnotesize} |
---|
| 273 | \noindent \textbf{Ensemble average:} \\ |
---|
| 274 | \end{footnotesize} |
---|
| 275 | $\overline{\overline{\Psi}}(x_i) = \overline{\Psi}(x_i)$\\ |
---|
| 276 | \vspace{5mm} |
---|
| 277 | $\overline{u_k u_i} = \overline{u_k}\,\overline{u_i} + \overline{u_k' u_i'}$ |
---|
| 278 | }; |
---|
| 279 | \end{tikzpicture} |
---|
| 280 | }; |
---|
| 281 | \end{tikzpicture} |
---|
| 282 | \end{frame} |
---|
| 283 | |
---|
| 284 | |
---|
| 285 | \section{Filtered equations} |
---|
| 286 | \subsection{The Filtered Equations} |
---|
| 287 | |
---|
| 288 | % Folie 9 |
---|
| 289 | \begin{frame} |
---|
| 290 | \frametitle{The Filtered Equations} |
---|
| 291 | \onslide<2-> |
---|
| 292 | \begin{equation*} |
---|
| 293 | \frac{\partial \overline{u_i}}{\partial t} |
---|
| 294 | + \frac{\partial \overline{u_k}\,\overline{u_i}}{\partial x_k} = |
---|
| 295 | - \frac{1}{\rho_0} \frac{\partial \overline{p}^*}{\partial x_i} |
---|
| 296 | - \varepsilon_{ijk}f_j \overline{u_k} + \varepsilon_{i3k} f_3 \overline{u}_{k_\mathrm{g}} |
---|
| 297 | + g \frac{\overline{T}-T_0}{T_0} \delta_{i3} |
---|
| 298 | + \nu \frac{\partial^2 \overline{u_i}}{\partial x_k^2} |
---|
| 299 | - \frac{\partial \tau_{ki}}{\partial x_k} |
---|
| 300 | \end{equation*} |
---|
| 301 | |
---|
| 302 | \begin{footnotesize} |
---|
| 303 | \begin{itemize} |
---|
| 304 | \item<3->The previous derivation completely ignores the existance of the computational grid. |
---|
| 305 | \item<4->The computational grid introduces another space scale: the discretization step $\Delta x_i$. |
---|
| 306 | \item<5->$\Delta x_i$ has to be small enough to be able to apply the filtering process correctly: $\Delta x_i \le \Delta$ |
---|
| 307 | \item<6-> Two possibilities:\\ |
---|
| 308 | 1. Pre-filtering technique\\ |
---|
| 309 | ($\Delta x < \Delta$, explicit filtering)\\ |
---|
| 310 | 2. Linking the analytical filter\\ |
---|
| 311 | to the computational grid\\ |
---|
| 312 | ($\Delta x = \Delta$, implicit filtering) |
---|
| 313 | \end{itemize} |
---|
| 314 | \end{footnotesize} |
---|
| 315 | |
---|
| 316 | \begin{picture}(0.0,0.0) |
---|
[1531] | 317 | \put(140,0){\uncover<6->{\includegraphics[width=0.6\textwidth]{basic_equations_figures/explicit_implicit.png}}} |
---|
[915] | 318 | \end{picture} |
---|
| 319 | \end{frame} |
---|
| 320 | |
---|
| 321 | %% Folie 10 |
---|
| 322 | \begin{frame} |
---|
| 323 | \frametitle{Explicit Versus Implicit Filtering} |
---|
| 324 | \begin{itemize} |
---|
| 325 | \item<2-> Explicit filtering: |
---|
| 326 | \begin{itemize} |
---|
| 327 | \small |
---|
| 328 | \item<2-> Requires that the analytical filter is applied explicitly. |
---|
| 329 | \item<3-> Rarely used in practice, due to additional computational costs. |
---|
| 330 | \end{itemize} |
---|
| 331 | \item<4-> Implicit filtering: |
---|
| 332 | \begin{itemize} |
---|
| 333 | \small |
---|
| 334 | \item<4-> The analytical cutoff length is associated with the grid spacing. |
---|
| 335 | \item<5-> This method does not require the use of an analytical filter. |
---|
| 336 | \item<6-> The filter characteristic cannot really be controlled. |
---|
| 337 | \item<7-> Because of its simplicity, this method is used by nearly all LES models. |
---|
| 338 | \end{itemize} |
---|
| 339 | \end{itemize} |
---|
| 340 | |
---|
| 341 | \onslide<8-> |
---|
| 342 | \begin{scriptsize} |
---|
| 343 | \textbf{Literature:}\\ |
---|
| 344 | \textbf{Sagaut, P., 2001:} Large eddy simulation for incompressible flows: An introduction. Springer Verlag, Berlin/Heidelberg/New York, 319 pp.\\ |
---|
[945] | 345 | \textbf{Schumann, U., 1975:} Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comp. Phys., \textbf{18}, 376-404.\\ |
---|
[915] | 346 | \end{scriptsize} |
---|
| 347 | \end{frame} |
---|
| 348 | |
---|
| 349 | % Folie 11 |
---|
| 350 | \begin{frame} |
---|
| 351 | \frametitle{The Final Set of Equations (PALM)} |
---|
| 352 | \footnotesize |
---|
| 353 | \begin{itemize} |
---|
| 354 | \item<2-> Navier-Stokes equations: |
---|
| 355 | \onslide<2-> |
---|
| 356 | \begin{flalign*} |
---|
[1531] | 357 | &\frac{\partial \overline{u_i}}{\partial t} = - \frac{\partial \overline{u_k}\,\overline{u_i}}{\partial x_k} - \frac{1}{\rho_0} \frac{\partial \overline{\pi}^*}{\partial x_i} - \varepsilon_{ijk}f_j \overline{u_k} + \varepsilon_{i3k} f_3 \overline{u}_{k_\mathrm{g}} + g \frac{\overline{\theta}-\theta_0}{\theta_0} \delta_{i3} + \nu \frac{\partial^2 \overline{u_i}}{\partial x_k^2} - \frac{\partial \tau_{ki}^r}{\partial x_k}& |
---|
[915] | 358 | \end{flalign*} |
---|
| 359 | \item<4-> First principle (using potential\\ temperature): |
---|
| 360 | \onslide<4-> |
---|
| 361 | \begin{flalign*} |
---|
| 362 | &\frac{\partial \overline{\theta}}{\partial t} = - \frac{\partial \overline{u_k}\,\overline{\theta}}{\partial x_k} - \frac{\partial H_k}{\partial x_k} + Q_{\theta}& |
---|
| 363 | \end{flalign*} |
---|
| 364 | \item<5-> Equation for specific humidity\\ (passive scalar) |
---|
| 365 | \onslide<5-> |
---|
| 366 | \begin{flalign*} |
---|
[945] | 367 | &\frac{\partial \overline{q}}{\partial t} = - \frac{\partial \overline{u_k}\,\overline{q}}{\partial x_k} - \frac{\partial W_k}{\partial x_k} + Q_{w}& |
---|
[915] | 368 | \end{flalign*} |
---|
| 369 | \item<6-> |
---|
| 370 | Continuity equation |
---|
| 371 | \onslide<6-> |
---|
| 372 | \begin{flalign*} |
---|
| 373 | &\frac{\partial \overline{u_k}}{\partial x_k} = 0& |
---|
| 374 | \end{flalign*} |
---|
| 375 | \end{itemize} |
---|
| 376 | |
---|
| 377 | \onslide<3->\tikzstyle{plain} = [rectangle, draw, text width=0.40\textwidth, font=\small] |
---|
| 378 | \begin{tikzpicture}[remember picture, overlay] |
---|
| 379 | \node at (current page.north west){ |
---|
| 380 | \begin{tikzpicture}[overlay] |
---|
| 381 | \node[plain, draw,anchor=west] at (75mm,-45mm) { |
---|
| 382 | \begin{tiny} |
---|
| 383 | \noindent normal stresses included in the stress tensor are now included in a modified dynamic pressure:\\ |
---|
| 384 | \end{tiny} |
---|
| 385 | $\tau_{ki}^r = \tau_{ki} - \frac{1}{3} \tau_{jj} \delta_{ki}$\\ |
---|
| 386 | \vspace{1mm} |
---|
| 387 | $\overline{\pi}^* = \overline{p}^* + \frac{1}{3} \tau_{jj} \delta_{ki}$ |
---|
| 388 | }; |
---|
| 389 | \end{tikzpicture} |
---|
| 390 | }; |
---|
| 391 | \end{tikzpicture} |
---|
| 392 | |
---|
| 393 | \onslide<7->\tikzstyle{plain} = [rectangle, draw, text width=0.40\textwidth, font=\small] |
---|
| 394 | \begin{tikzpicture}[remember picture, overlay] |
---|
| 395 | \node at (current page.north west){ |
---|
| 396 | \begin{tikzpicture}[overlay] |
---|
| 397 | \node[plain, draw,anchor=west] at (75mm,-70mm) { |
---|
| 398 | \begin{tiny} |
---|
| 399 | \noindent subgrid-scale stresses (fluxes) to be parameterized in the SGS model:\\ |
---|
| 400 | \end{tiny} |
---|
| 401 | $\tau_{ki} = \overline{u_k u_i} - \overline{u_k}\,\overline{u_i}$\\ |
---|
[945] | 402 | $H_{k} = \overline{u_k \theta} - \overline{u_k}\,\overline{\theta}$\\ |
---|
| 403 | $W_{k} = \overline{u_k q} - \overline{u_k}\,\overline{q}$ |
---|
[915] | 404 | }; |
---|
| 405 | \end{tikzpicture} |
---|
| 406 | }; |
---|
| 407 | \end{tikzpicture} |
---|
| 408 | \end{frame} |
---|
| 409 | |
---|
| 410 | |
---|
[945] | 411 | \end{document} |
---|