[1682] | 1 | !> @file transpose.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[4360] | 17 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1321] | 22 | ! |
---|
[2119] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: transpose.f90 4370 2020-01-10 14:00:44Z knoop $ |
---|
[4370] | 27 | ! vector array renamed |
---|
| 28 | ! |
---|
| 29 | ! 4366 2020-01-09 08:12:43Z raasch |
---|
[4366] | 30 | ! modifications for NEC vectorization |
---|
| 31 | ! |
---|
| 32 | ! 4360 2020-01-07 11:25:50Z suehring |
---|
[4236] | 33 | ! Added missing OpenMP directives |
---|
| 34 | ! |
---|
| 35 | ! 4182 2019-08-22 15:20:23Z scharf |
---|
[4182] | 36 | ! Corrected "Former revisions" section |
---|
[4181] | 37 | ! |
---|
[4182] | 38 | ! 4171 2019-08-19 17:44:09Z gronemeier |
---|
[3832] | 39 | ! loop reordering for performance optimization |
---|
[4171] | 40 | ! |
---|
| 41 | ! 3832 2019-03-28 13:16:58Z raasch |
---|
| 42 | ! loop reordering for performance optimization |
---|
| 43 | ! |
---|
[3832] | 44 | ! 3694 2019-01-23 17:01:49Z knoop |
---|
[3634] | 45 | ! OpenACC port for SPEC |
---|
[4171] | 46 | ! |
---|
[4182] | 47 | ! Revision 1.1 1997/07/24 11:25:18 raasch |
---|
| 48 | ! Initial revision |
---|
| 49 | ! |
---|
| 50 | ! |
---|
[1216] | 51 | ! Description: |
---|
| 52 | ! ------------ |
---|
[1682] | 53 | !> Resorting data for the transposition from x to y. The transposition itself |
---|
| 54 | !> is carried out in transpose_xy |
---|
[1216] | 55 | !------------------------------------------------------------------------------! |
---|
[4181] | 56 | |
---|
| 57 | #define __acc_fft_device ( defined( _OPENACC ) && ( defined ( __cuda_fft ) ) ) |
---|
| 58 | |
---|
[1682] | 59 | SUBROUTINE resort_for_xy( f_in, f_inv ) |
---|
[1216] | 60 | |
---|
[4171] | 61 | |
---|
[1320] | 62 | USE indices, & |
---|
| 63 | ONLY: nx |
---|
[1216] | 64 | |
---|
[1320] | 65 | USE kinds |
---|
| 66 | |
---|
| 67 | USE transpose_indices, & |
---|
[3241] | 68 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
[1320] | 69 | |
---|
[1216] | 70 | IMPLICIT NONE |
---|
| 71 | |
---|
[4171] | 72 | REAL(wp) :: f_in(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
| 73 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
[1216] | 74 | |
---|
| 75 | |
---|
[4171] | 76 | INTEGER(iwp) :: i !< |
---|
| 77 | INTEGER(iwp) :: j !< |
---|
| 78 | INTEGER(iwp) :: k !< |
---|
[1] | 79 | ! |
---|
[1216] | 80 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 81 | !-- by MPI contiguous |
---|
| 82 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 83 | !$OMP DO |
---|
[3690] | 84 | #if __acc_fft_device |
---|
[3634] | 85 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 86 | !$ACC PRESENT(f_inv, f_in) |
---|
[3690] | 87 | #endif |
---|
[3832] | 88 | DO k = nzb_x, nzt_x |
---|
[4171] | 89 | DO j = nys_x, nyn_x |
---|
| 90 | DO i = 0, nx |
---|
[1216] | 91 | f_inv(j,k,i) = f_in(i,j,k) |
---|
| 92 | ENDDO |
---|
| 93 | ENDDO |
---|
| 94 | ENDDO |
---|
| 95 | !$OMP END PARALLEL |
---|
| 96 | |
---|
| 97 | END SUBROUTINE resort_for_xy |
---|
| 98 | |
---|
| 99 | |
---|
| 100 | !------------------------------------------------------------------------------! |
---|
[1] | 101 | ! Description: |
---|
| 102 | ! ------------ |
---|
[1682] | 103 | !> Transposition of input array (f_in) from x to y. For the input array, all |
---|
| 104 | !> elements along x reside on the same PE, while after transposition, all |
---|
| 105 | !> elements along y reside on the same PE. |
---|
[1] | 106 | !------------------------------------------------------------------------------! |
---|
[1682] | 107 | SUBROUTINE transpose_xy( f_inv, f_out ) |
---|
[1] | 108 | |
---|
[1682] | 109 | |
---|
[1320] | 110 | USE cpulog, & |
---|
| 111 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
| 112 | |
---|
| 113 | USE indices, & |
---|
| 114 | ONLY: nx, ny |
---|
[4171] | 115 | |
---|
[1320] | 116 | USE kinds |
---|
| 117 | |
---|
[1] | 118 | USE pegrid |
---|
| 119 | |
---|
[1320] | 120 | USE transpose_indices, & |
---|
| 121 | ONLY: nxl_y, nxr_y, nyn_x, nys_x, nzb_x, nzb_y, nzt_x, nzt_y |
---|
| 122 | |
---|
[1] | 123 | IMPLICIT NONE |
---|
| 124 | |
---|
[4171] | 125 | INTEGER(iwp) :: i !< |
---|
| 126 | INTEGER(iwp) :: j !< |
---|
| 127 | INTEGER(iwp) :: k !< |
---|
| 128 | INTEGER(iwp) :: l !< |
---|
| 129 | INTEGER(iwp) :: ys !< |
---|
[1] | 130 | |
---|
[4171] | 131 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
| 132 | REAL(wp) :: f_out(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
| 133 | |
---|
| 134 | REAL(wp), DIMENSION(nyn_x-nys_x+1,nzb_y:nzt_y,nxl_y:nxr_y,0:pdims(2)-1) :: work !< |
---|
[3690] | 135 | #if __acc_fft_device |
---|
[3634] | 136 | !$ACC DECLARE CREATE(work) |
---|
[3690] | 137 | #endif |
---|
[1111] | 138 | |
---|
| 139 | |
---|
[1106] | 140 | IF ( numprocs /= 1 ) THEN |
---|
| 141 | |
---|
| 142 | #if defined( __parallel ) |
---|
[1] | 143 | ! |
---|
[1106] | 144 | !-- Transpose array |
---|
[1318] | 145 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[3690] | 146 | |
---|
| 147 | #if __acc_fft_device |
---|
[3657] | 148 | #ifndef __cuda_aware_mpi |
---|
[3634] | 149 | !$ACC UPDATE HOST(f_inv) |
---|
[3657] | 150 | #else |
---|
| 151 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
| 152 | #endif |
---|
[3690] | 153 | #endif |
---|
| 154 | |
---|
[1106] | 155 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 156 | CALL MPI_ALLTOALL( f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 157 | work(1,nzb_y,nxl_y,0), sendrecvcount_xy, MPI_REAL, & |
---|
[1106] | 158 | comm1dy, ierr ) |
---|
[3690] | 159 | |
---|
| 160 | #if __acc_fft_device |
---|
[3657] | 161 | #ifndef __cuda_aware_mpi |
---|
[3634] | 162 | !$ACC UPDATE DEVICE(work) |
---|
[3657] | 163 | #else |
---|
| 164 | !$ACC END HOST_DATA |
---|
| 165 | #endif |
---|
[3690] | 166 | #endif |
---|
| 167 | |
---|
[1106] | 168 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1] | 169 | |
---|
| 170 | ! |
---|
[1106] | 171 | !-- Reorder transposed array |
---|
[1111] | 172 | !$OMP PARALLEL PRIVATE ( i, j, k, l, ys ) |
---|
[1106] | 173 | DO l = 0, pdims(2) - 1 |
---|
| 174 | ys = 0 + l * ( nyn_x - nys_x + 1 ) |
---|
[3690] | 175 | #if __acc_fft_device |
---|
[3634] | 176 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 177 | !$ACC PRESENT(f_out, work) |
---|
[3690] | 178 | #endif |
---|
[4236] | 179 | !$OMP DO |
---|
[1106] | 180 | DO i = nxl_y, nxr_y |
---|
| 181 | DO k = nzb_y, nzt_y |
---|
| 182 | DO j = ys, ys + nyn_x - nys_x |
---|
[1111] | 183 | f_out(j,i,k) = work(j-ys+1,k,i,l) |
---|
[1106] | 184 | ENDDO |
---|
[1] | 185 | ENDDO |
---|
| 186 | ENDDO |
---|
[4236] | 187 | !$OMP END DO NOWAIT |
---|
[1] | 188 | ENDDO |
---|
[683] | 189 | !$OMP END PARALLEL |
---|
[1] | 190 | #endif |
---|
| 191 | |
---|
[1106] | 192 | ELSE |
---|
| 193 | |
---|
| 194 | ! |
---|
| 195 | !-- Reorder transposed array |
---|
| 196 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 197 | !$OMP DO |
---|
[3690] | 198 | #if __acc_fft_device |
---|
[3634] | 199 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 200 | !$ACC PRESENT(f_out, f_inv) |
---|
[3690] | 201 | #endif |
---|
[1106] | 202 | DO k = nzb_y, nzt_y |
---|
| 203 | DO i = nxl_y, nxr_y |
---|
| 204 | DO j = 0, ny |
---|
| 205 | f_out(j,i,k) = f_inv(j,k,i) |
---|
| 206 | ENDDO |
---|
| 207 | ENDDO |
---|
| 208 | ENDDO |
---|
| 209 | !$OMP END PARALLEL |
---|
| 210 | |
---|
| 211 | ENDIF |
---|
| 212 | |
---|
[1] | 213 | END SUBROUTINE transpose_xy |
---|
| 214 | |
---|
| 215 | |
---|
| 216 | !------------------------------------------------------------------------------! |
---|
| 217 | ! Description: |
---|
| 218 | ! ------------ |
---|
[1682] | 219 | !> Resorting data after the transposition from x to z. The transposition itself |
---|
| 220 | !> is carried out in transpose_xz |
---|
[1216] | 221 | !------------------------------------------------------------------------------! |
---|
[1682] | 222 | SUBROUTINE resort_for_xz( f_inv, f_out ) |
---|
[1216] | 223 | |
---|
[1682] | 224 | |
---|
[1320] | 225 | USE indices, & |
---|
| 226 | ONLY: nxl, nxr, nyn, nys, nz |
---|
[1216] | 227 | |
---|
[1320] | 228 | USE kinds |
---|
| 229 | |
---|
[1216] | 230 | IMPLICIT NONE |
---|
| 231 | |
---|
[4171] | 232 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
| 233 | REAL(wp) :: f_out(1:nz,nys:nyn,nxl:nxr) !< |
---|
[1216] | 234 | |
---|
[4171] | 235 | INTEGER(iwp) :: i !< |
---|
| 236 | INTEGER(iwp) :: j !< |
---|
| 237 | INTEGER(iwp) :: k !< |
---|
[1216] | 238 | ! |
---|
| 239 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 240 | !-- by MPI contiguous. |
---|
| 241 | !-- In case of parallel fft/transposition, scattered store is faster in |
---|
| 242 | !-- backward direction!!! |
---|
| 243 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 244 | !$OMP DO |
---|
[3690] | 245 | #if __acc_fft_device |
---|
[3634] | 246 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 247 | !$ACC PRESENT(f_out, f_inv) |
---|
[3690] | 248 | #endif |
---|
[4171] | 249 | DO i = nxl, nxr |
---|
| 250 | DO j = nys, nyn |
---|
| 251 | DO k = 1, nz |
---|
[1216] | 252 | f_out(k,j,i) = f_inv(j,i,k) |
---|
| 253 | ENDDO |
---|
| 254 | ENDDO |
---|
| 255 | ENDDO |
---|
| 256 | !$OMP END PARALLEL |
---|
| 257 | |
---|
| 258 | END SUBROUTINE resort_for_xz |
---|
| 259 | |
---|
| 260 | |
---|
| 261 | !------------------------------------------------------------------------------! |
---|
| 262 | ! Description: |
---|
| 263 | ! ------------ |
---|
[1682] | 264 | !> Transposition of input array (f_in) from x to z. For the input array, all |
---|
| 265 | !> elements along x reside on the same PE, while after transposition, all |
---|
| 266 | !> elements along z reside on the same PE. |
---|
[1] | 267 | !------------------------------------------------------------------------------! |
---|
[1682] | 268 | SUBROUTINE transpose_xz( f_in, f_inv ) |
---|
[1] | 269 | |
---|
[1682] | 270 | |
---|
[1320] | 271 | USE cpulog, & |
---|
| 272 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 273 | |
---|
[4366] | 274 | USE fft_xy, & |
---|
[4370] | 275 | ONLY: f_vec_x, temperton_fft_vec |
---|
[4366] | 276 | |
---|
[1320] | 277 | USE indices, & |
---|
[3241] | 278 | ONLY: nnx, nx, nxl, nxr, nyn, nys, nz |
---|
[1320] | 279 | |
---|
| 280 | USE kinds |
---|
| 281 | |
---|
[1324] | 282 | USE pegrid |
---|
[1320] | 283 | |
---|
| 284 | USE transpose_indices, & |
---|
| 285 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
| 286 | |
---|
[1] | 287 | IMPLICIT NONE |
---|
| 288 | |
---|
[4171] | 289 | INTEGER(iwp) :: i !< |
---|
| 290 | INTEGER(iwp) :: j !< |
---|
| 291 | INTEGER(iwp) :: k !< |
---|
| 292 | INTEGER(iwp) :: l !< |
---|
[4366] | 293 | INTEGER(iwp) :: mm !< |
---|
[4171] | 294 | INTEGER(iwp) :: xs !< |
---|
[1] | 295 | |
---|
[4171] | 296 | REAL(wp) :: f_in(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
| 297 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
[1] | 298 | |
---|
[4171] | 299 | REAL(wp), DIMENSION(nys_x:nyn_x,nnx,nzb_x:nzt_x,0:pdims(1)-1) :: work !< |
---|
[3690] | 300 | #if __acc_fft_device |
---|
[3634] | 301 | !$ACC DECLARE CREATE(work) |
---|
[3690] | 302 | #endif |
---|
[1111] | 303 | |
---|
[4366] | 304 | ! |
---|
| 305 | !-- If the PE grid is one-dimensional along y, the array has only to be |
---|
| 306 | !-- reordered locally and therefore no transposition has to be done. |
---|
[1] | 307 | IF ( pdims(1) /= 1 ) THEN |
---|
[1106] | 308 | |
---|
| 309 | #if defined( __parallel ) |
---|
[1] | 310 | ! |
---|
[4366] | 311 | !-- Reorder input array for transposition. Data from the vectorized Temperton-fft is stored in |
---|
[4370] | 312 | !-- different array format (f_vec_x). |
---|
[4366] | 313 | IF ( temperton_fft_vec ) THEN |
---|
| 314 | |
---|
| 315 | DO l = 0, pdims(1) - 1 |
---|
| 316 | xs = 0 + l * nnx |
---|
| 317 | DO k = nzb_x, nzt_x |
---|
| 318 | DO i = xs, xs + nnx - 1 |
---|
| 319 | DO j = nys_x, nyn_x |
---|
| 320 | mm = j-nys_x+1+(k-nzb_x)*(nyn_x-nys_x+1) |
---|
[4370] | 321 | work(j,i-xs+1,k,l) = f_vec_x(mm,i) |
---|
[4366] | 322 | ENDDO |
---|
| 323 | ENDDO |
---|
| 324 | ENDDO |
---|
| 325 | ENDDO |
---|
| 326 | |
---|
| 327 | ELSE |
---|
| 328 | |
---|
| 329 | !$OMP PARALLEL PRIVATE ( i, j, k, l, xs ) |
---|
| 330 | DO l = 0, pdims(1) - 1 |
---|
| 331 | xs = 0 + l * nnx |
---|
[3690] | 332 | #if __acc_fft_device |
---|
[4366] | 333 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 334 | !$ACC PRESENT(work, f_in) |
---|
[3690] | 335 | #endif |
---|
[4366] | 336 | !$OMP DO |
---|
| 337 | DO k = nzb_x, nzt_x |
---|
| 338 | DO i = xs, xs + nnx - 1 |
---|
| 339 | DO j = nys_x, nyn_x |
---|
| 340 | work(j,i-xs+1,k,l) = f_in(i,j,k) |
---|
| 341 | ENDDO |
---|
[1] | 342 | ENDDO |
---|
| 343 | ENDDO |
---|
[4366] | 344 | !$OMP END DO NOWAIT |
---|
[1] | 345 | ENDDO |
---|
[4366] | 346 | !$OMP END PARALLEL |
---|
[1] | 347 | |
---|
[4366] | 348 | ENDIF |
---|
| 349 | |
---|
[1] | 350 | ! |
---|
| 351 | !-- Transpose array |
---|
[1318] | 352 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[3690] | 353 | |
---|
| 354 | #if __acc_fft_device |
---|
[3657] | 355 | #ifndef __cuda_aware_mpi |
---|
[3634] | 356 | !$ACC UPDATE HOST(work) |
---|
[3657] | 357 | #else |
---|
| 358 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
| 359 | #endif |
---|
[3690] | 360 | #endif |
---|
| 361 | |
---|
[622] | 362 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 363 | CALL MPI_ALLTOALL( work(nys_x,1,nzb_x,0), sendrecvcount_zx, MPI_REAL, & |
---|
| 364 | f_inv(nys,nxl,1), sendrecvcount_zx, MPI_REAL, & |
---|
[1] | 365 | comm1dx, ierr ) |
---|
[3690] | 366 | |
---|
| 367 | #if __acc_fft_device |
---|
[3657] | 368 | #ifndef __cuda_aware_mpi |
---|
[3634] | 369 | !$ACC UPDATE DEVICE(f_inv) |
---|
[3657] | 370 | #else |
---|
| 371 | !$ACC END HOST_DATA |
---|
| 372 | #endif |
---|
[3694] | 373 | #endif |
---|
| 374 | |
---|
[1] | 375 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1106] | 376 | #endif |
---|
| 377 | |
---|
[1] | 378 | ELSE |
---|
[1106] | 379 | |
---|
[1] | 380 | ! |
---|
| 381 | !-- Reorder the array in a way that the z index is in first position |
---|
[683] | 382 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 383 | !$OMP DO |
---|
[3690] | 384 | #if __acc_fft_device |
---|
[3634] | 385 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 386 | !$ACC PRESENT(f_inv, f_in) |
---|
[3690] | 387 | #endif |
---|
[1003] | 388 | DO i = nxl, nxr |
---|
| 389 | DO j = nys, nyn |
---|
| 390 | DO k = 1, nz |
---|
[164] | 391 | f_inv(j,i,k) = f_in(i,j,k) |
---|
[1] | 392 | ENDDO |
---|
| 393 | ENDDO |
---|
| 394 | ENDDO |
---|
[683] | 395 | !$OMP END PARALLEL |
---|
[1] | 396 | |
---|
[164] | 397 | ENDIF |
---|
| 398 | |
---|
[1] | 399 | END SUBROUTINE transpose_xz |
---|
| 400 | |
---|
| 401 | |
---|
| 402 | !------------------------------------------------------------------------------! |
---|
| 403 | ! Description: |
---|
| 404 | ! ------------ |
---|
[1682] | 405 | !> Resorting data after the transposition from y to x. The transposition itself |
---|
| 406 | !> is carried out in transpose_yx |
---|
[1216] | 407 | !------------------------------------------------------------------------------! |
---|
[1682] | 408 | SUBROUTINE resort_for_yx( f_inv, f_out ) |
---|
[1216] | 409 | |
---|
[1682] | 410 | |
---|
[1320] | 411 | USE indices, & |
---|
| 412 | ONLY: nx |
---|
[1216] | 413 | |
---|
[1320] | 414 | USE kinds |
---|
| 415 | |
---|
| 416 | USE transpose_indices, & |
---|
| 417 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
| 418 | |
---|
[1216] | 419 | IMPLICIT NONE |
---|
| 420 | |
---|
[4171] | 421 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
| 422 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
[1216] | 423 | |
---|
| 424 | |
---|
[4171] | 425 | INTEGER(iwp) :: i !< |
---|
| 426 | INTEGER(iwp) :: j !< |
---|
| 427 | INTEGER(iwp) :: k !< |
---|
[1216] | 428 | ! |
---|
| 429 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 430 | !-- by MPI contiguous |
---|
| 431 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 432 | !$OMP DO |
---|
[3690] | 433 | #if __acc_fft_device |
---|
[3634] | 434 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 435 | !$ACC PRESENT(f_out, f_inv) |
---|
[3690] | 436 | #endif |
---|
[4171] | 437 | DO k = nzb_x, nzt_x |
---|
| 438 | DO j = nys_x, nyn_x |
---|
| 439 | DO i = 0, nx |
---|
[1216] | 440 | f_out(i,j,k) = f_inv(j,k,i) |
---|
| 441 | ENDDO |
---|
| 442 | ENDDO |
---|
| 443 | ENDDO |
---|
| 444 | !$OMP END PARALLEL |
---|
| 445 | |
---|
| 446 | END SUBROUTINE resort_for_yx |
---|
| 447 | |
---|
| 448 | |
---|
| 449 | !------------------------------------------------------------------------------! |
---|
| 450 | ! Description: |
---|
| 451 | ! ------------ |
---|
[1682] | 452 | !> Transposition of input array (f_in) from y to x. For the input array, all |
---|
| 453 | !> elements along y reside on the same PE, while after transposition, all |
---|
| 454 | !> elements along x reside on the same PE. |
---|
[1] | 455 | !------------------------------------------------------------------------------! |
---|
[1682] | 456 | SUBROUTINE transpose_yx( f_in, f_inv ) |
---|
[1] | 457 | |
---|
[1682] | 458 | |
---|
[1320] | 459 | USE cpulog, & |
---|
| 460 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 461 | |
---|
[1320] | 462 | USE indices, & |
---|
| 463 | ONLY: nx, ny |
---|
| 464 | |
---|
| 465 | USE kinds |
---|
| 466 | |
---|
[1324] | 467 | USE pegrid |
---|
[1320] | 468 | |
---|
| 469 | USE transpose_indices, & |
---|
| 470 | ONLY: nxl_y, nxr_y, nyn_x, nys_x, nzb_x, nzb_y, nzt_x, nzt_y |
---|
| 471 | |
---|
[1] | 472 | IMPLICIT NONE |
---|
| 473 | |
---|
[4171] | 474 | INTEGER(iwp) :: i !< |
---|
| 475 | INTEGER(iwp) :: j !< |
---|
| 476 | INTEGER(iwp) :: k !< |
---|
| 477 | INTEGER(iwp) :: l !< |
---|
| 478 | INTEGER(iwp) :: ys !< |
---|
[1] | 479 | |
---|
[4171] | 480 | REAL(wp) :: f_in(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
| 481 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
[1111] | 482 | |
---|
[4171] | 483 | REAL(wp), DIMENSION(nyn_x-nys_x+1,nzb_y:nzt_y,nxl_y:nxr_y,0:pdims(2)-1) :: work !< |
---|
[3690] | 484 | #if __acc_fft_device |
---|
[3634] | 485 | !$ACC DECLARE CREATE(work) |
---|
[3690] | 486 | #endif |
---|
[1111] | 487 | |
---|
[1320] | 488 | |
---|
[1106] | 489 | IF ( numprocs /= 1 ) THEN |
---|
| 490 | |
---|
[1] | 491 | #if defined( __parallel ) |
---|
| 492 | ! |
---|
[1106] | 493 | !-- Reorder input array for transposition |
---|
[1111] | 494 | !$OMP PARALLEL PRIVATE ( i, j, k, l, ys ) |
---|
[1106] | 495 | DO l = 0, pdims(2) - 1 |
---|
| 496 | ys = 0 + l * ( nyn_x - nys_x + 1 ) |
---|
[3690] | 497 | #if __acc_fft_device |
---|
[3634] | 498 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 499 | !$ACC PRESENT(work, f_in) |
---|
[3690] | 500 | #endif |
---|
[4236] | 501 | !$OMP DO |
---|
[1106] | 502 | DO i = nxl_y, nxr_y |
---|
| 503 | DO k = nzb_y, nzt_y |
---|
| 504 | DO j = ys, ys + nyn_x - nys_x |
---|
[1111] | 505 | work(j-ys+1,k,i,l) = f_in(j,i,k) |
---|
[1106] | 506 | ENDDO |
---|
| 507 | ENDDO |
---|
| 508 | ENDDO |
---|
[4236] | 509 | !$OMP END DO NOWAIT |
---|
[1106] | 510 | ENDDO |
---|
| 511 | !$OMP END PARALLEL |
---|
| 512 | |
---|
| 513 | ! |
---|
| 514 | !-- Transpose array |
---|
[1318] | 515 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[3690] | 516 | |
---|
| 517 | #if __acc_fft_device |
---|
[3657] | 518 | #ifndef __cuda_aware_mpi |
---|
[3634] | 519 | !$ACC UPDATE HOST(work) |
---|
[3657] | 520 | #else |
---|
| 521 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
| 522 | #endif |
---|
[3690] | 523 | #endif |
---|
| 524 | |
---|
[1106] | 525 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 526 | CALL MPI_ALLTOALL( work(1,nzb_y,nxl_y,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 527 | f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, & |
---|
[1106] | 528 | comm1dy, ierr ) |
---|
[3690] | 529 | |
---|
| 530 | #if __acc_fft_device |
---|
[3657] | 531 | #ifndef __cuda_aware_mpi |
---|
[3634] | 532 | !$ACC UPDATE DEVICE(f_inv) |
---|
[3657] | 533 | #else |
---|
| 534 | !$ACC END HOST_DATA |
---|
| 535 | #endif |
---|
[3690] | 536 | #endif |
---|
| 537 | |
---|
[1106] | 538 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 539 | #endif |
---|
| 540 | |
---|
| 541 | ELSE |
---|
| 542 | |
---|
| 543 | ! |
---|
| 544 | !-- Reorder array f_in the same way as ALLTOALL did it |
---|
| 545 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 546 | !$OMP DO |
---|
[3690] | 547 | #if __acc_fft_device |
---|
[3634] | 548 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 549 | !$ACC PRESENT(f_inv, f_in) |
---|
[3690] | 550 | #endif |
---|
[1003] | 551 | DO i = nxl_y, nxr_y |
---|
| 552 | DO k = nzb_y, nzt_y |
---|
[1106] | 553 | DO j = 0, ny |
---|
| 554 | f_inv(j,k,i) = f_in(j,i,k) |
---|
[1] | 555 | ENDDO |
---|
| 556 | ENDDO |
---|
| 557 | ENDDO |
---|
[683] | 558 | !$OMP END PARALLEL |
---|
[1] | 559 | |
---|
[1106] | 560 | ENDIF |
---|
[1] | 561 | |
---|
| 562 | END SUBROUTINE transpose_yx |
---|
| 563 | |
---|
| 564 | |
---|
| 565 | !------------------------------------------------------------------------------! |
---|
| 566 | ! Description: |
---|
| 567 | ! ------------ |
---|
[1682] | 568 | !> Transposition of input array (f_in) from y to x. For the input array, all |
---|
| 569 | !> elements along y reside on the same PE, while after transposition, all |
---|
| 570 | !> elements along x reside on the same PE. |
---|
| 571 | !> This is a direct transposition for arrays with indices in regular order |
---|
| 572 | !> (k,j,i) (cf. transpose_yx). |
---|
[1] | 573 | !------------------------------------------------------------------------------! |
---|
[1682] | 574 | SUBROUTINE transpose_yxd( f_in, f_out ) |
---|
[1] | 575 | |
---|
[1682] | 576 | |
---|
[1320] | 577 | USE cpulog, & |
---|
[3241] | 578 | ONLY: cpu_log, log_point_s |
---|
[1] | 579 | |
---|
[1320] | 580 | USE indices, & |
---|
| 581 | ONLY: nnx, nny, nnz, nx, nxl, nxr, nyn, nys, nz |
---|
| 582 | |
---|
| 583 | USE kinds |
---|
| 584 | |
---|
[1324] | 585 | USE pegrid |
---|
[1320] | 586 | |
---|
| 587 | USE transpose_indices, & |
---|
| 588 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
| 589 | |
---|
[1] | 590 | IMPLICIT NONE |
---|
| 591 | |
---|
[4171] | 592 | INTEGER(iwp) :: i !< |
---|
| 593 | INTEGER(iwp) :: j !< |
---|
| 594 | INTEGER(iwp) :: k !< |
---|
| 595 | INTEGER(iwp) :: l !< |
---|
| 596 | INTEGER(iwp) :: m !< |
---|
| 597 | INTEGER(iwp) :: xs !< |
---|
[1] | 598 | |
---|
[4171] | 599 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !< |
---|
| 600 | REAL(wp) :: f_inv(nxl:nxr,1:nz,nys:nyn) !< |
---|
| 601 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
| 602 | REAL(wp) :: work(nnx*nny*nnz) !< |
---|
[1] | 603 | #if defined( __parallel ) |
---|
| 604 | |
---|
| 605 | ! |
---|
| 606 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 607 | !-- by MPI contiguous |
---|
[1003] | 608 | DO k = 1, nz |
---|
| 609 | DO j = nys, nyn |
---|
| 610 | DO i = nxl, nxr |
---|
[164] | 611 | f_inv(i,k,j) = f_in(k,j,i) |
---|
[1] | 612 | ENDDO |
---|
| 613 | ENDDO |
---|
| 614 | ENDDO |
---|
| 615 | |
---|
| 616 | ! |
---|
| 617 | !-- Transpose array |
---|
| 618 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 619 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 620 | CALL MPI_ALLTOALL( f_inv(nxl,1,nys), sendrecvcount_xy, MPI_REAL, & |
---|
[164] | 621 | work(1), sendrecvcount_xy, MPI_REAL, & |
---|
[1] | 622 | comm1dx, ierr ) |
---|
| 623 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 624 | |
---|
| 625 | ! |
---|
| 626 | !-- Reorder transposed array |
---|
| 627 | m = 0 |
---|
| 628 | DO l = 0, pdims(1) - 1 |
---|
| 629 | xs = 0 + l * nnx |
---|
[1003] | 630 | DO j = nys_x, nyn_x |
---|
| 631 | DO k = 1, nz |
---|
[1] | 632 | DO i = xs, xs + nnx - 1 |
---|
| 633 | m = m + 1 |
---|
[164] | 634 | f_out(i,j,k) = work(m) |
---|
[1] | 635 | ENDDO |
---|
| 636 | ENDDO |
---|
| 637 | ENDDO |
---|
| 638 | ENDDO |
---|
| 639 | |
---|
| 640 | #endif |
---|
| 641 | |
---|
| 642 | END SUBROUTINE transpose_yxd |
---|
| 643 | |
---|
| 644 | |
---|
| 645 | !------------------------------------------------------------------------------! |
---|
| 646 | ! Description: |
---|
| 647 | ! ------------ |
---|
[1682] | 648 | !> Resorting data for the transposition from y to z. The transposition itself |
---|
| 649 | !> is carried out in transpose_yz |
---|
[1216] | 650 | !------------------------------------------------------------------------------! |
---|
[1682] | 651 | SUBROUTINE resort_for_yz( f_in, f_inv ) |
---|
[1216] | 652 | |
---|
[1682] | 653 | |
---|
[1320] | 654 | USE indices, & |
---|
| 655 | ONLY: ny |
---|
[1216] | 656 | |
---|
[1320] | 657 | USE kinds |
---|
| 658 | |
---|
| 659 | USE transpose_indices, & |
---|
| 660 | ONLY: nxl_y, nxr_y, nzb_y, nzt_y |
---|
| 661 | |
---|
[1216] | 662 | IMPLICIT NONE |
---|
| 663 | |
---|
[4171] | 664 | REAL(wp) :: f_in(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
| 665 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
[1216] | 666 | |
---|
[4171] | 667 | INTEGER(iwp) :: i !< |
---|
| 668 | INTEGER(iwp) :: j !< |
---|
| 669 | INTEGER(iwp) :: k !< |
---|
[1216] | 670 | |
---|
| 671 | ! |
---|
| 672 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 673 | !-- by MPI contiguous |
---|
| 674 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 675 | !$OMP DO |
---|
[3690] | 676 | #if __acc_fft_device |
---|
[3634] | 677 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 678 | !$ACC PRESENT(f_inv, f_in) |
---|
[3690] | 679 | #endif |
---|
[4171] | 680 | DO k = nzb_y, nzt_y |
---|
| 681 | DO i = nxl_y, nxr_y |
---|
| 682 | DO j = 0, ny |
---|
[1216] | 683 | f_inv(i,k,j) = f_in(j,i,k) |
---|
| 684 | ENDDO |
---|
| 685 | ENDDO |
---|
| 686 | ENDDO |
---|
| 687 | !$OMP END PARALLEL |
---|
| 688 | |
---|
| 689 | END SUBROUTINE resort_for_yz |
---|
| 690 | |
---|
| 691 | |
---|
| 692 | !------------------------------------------------------------------------------! |
---|
| 693 | ! Description: |
---|
| 694 | ! ------------ |
---|
[1682] | 695 | !> Transposition of input array (f_in) from y to z. For the input array, all |
---|
| 696 | !> elements along y reside on the same PE, while after transposition, all |
---|
| 697 | !> elements along z reside on the same PE. |
---|
[1] | 698 | !------------------------------------------------------------------------------! |
---|
[1682] | 699 | SUBROUTINE transpose_yz( f_inv, f_out ) |
---|
[1] | 700 | |
---|
[1682] | 701 | |
---|
[1320] | 702 | USE cpulog, & |
---|
| 703 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 704 | |
---|
[1320] | 705 | USE indices, & |
---|
| 706 | ONLY: ny, nz |
---|
| 707 | |
---|
| 708 | USE kinds |
---|
| 709 | |
---|
[1324] | 710 | USE pegrid |
---|
[1320] | 711 | |
---|
| 712 | USE transpose_indices, & |
---|
| 713 | ONLY: nxl_y, nxl_z, nxr_y, nxr_z, nyn_z, nys_z, nzb_y, nzt_y |
---|
| 714 | |
---|
[1] | 715 | IMPLICIT NONE |
---|
| 716 | |
---|
[4171] | 717 | INTEGER(iwp) :: i !< |
---|
| 718 | INTEGER(iwp) :: j !< |
---|
| 719 | INTEGER(iwp) :: k !< |
---|
| 720 | INTEGER(iwp) :: l !< |
---|
| 721 | INTEGER(iwp) :: zs !< |
---|
[1] | 722 | |
---|
[4171] | 723 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
| 724 | REAL(wp) :: f_out(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !< |
---|
[1111] | 725 | |
---|
[4171] | 726 | REAL(wp), DIMENSION(nxl_z:nxr_z,nzt_y-nzb_y+1,nys_z:nyn_z,0:pdims(1)-1) :: work !< |
---|
[3690] | 727 | #if __acc_fft_device |
---|
[3634] | 728 | !$ACC DECLARE CREATE(work) |
---|
[3690] | 729 | #endif |
---|
[1111] | 730 | |
---|
[1320] | 731 | |
---|
[1] | 732 | ! |
---|
| 733 | !-- If the PE grid is one-dimensional along y, only local reordering |
---|
| 734 | !-- of the data is necessary and no transposition has to be done. |
---|
| 735 | IF ( pdims(1) == 1 ) THEN |
---|
[1106] | 736 | |
---|
[683] | 737 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 738 | !$OMP DO |
---|
[3690] | 739 | #if __acc_fft_device |
---|
[3634] | 740 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 741 | !$ACC PRESENT(f_out, f_inv) |
---|
[3690] | 742 | #endif |
---|
[1003] | 743 | DO j = 0, ny |
---|
| 744 | DO k = nzb_y, nzt_y |
---|
| 745 | DO i = nxl_y, nxr_y |
---|
[164] | 746 | f_out(i,j,k) = f_inv(i,k,j) |
---|
[1] | 747 | ENDDO |
---|
| 748 | ENDDO |
---|
| 749 | ENDDO |
---|
[683] | 750 | !$OMP END PARALLEL |
---|
[1] | 751 | |
---|
[1106] | 752 | ELSE |
---|
| 753 | |
---|
| 754 | #if defined( __parallel ) |
---|
[1] | 755 | ! |
---|
[1106] | 756 | !-- Transpose array |
---|
[1318] | 757 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[3690] | 758 | |
---|
| 759 | #if __acc_fft_device |
---|
[3657] | 760 | #ifndef __cuda_aware_mpi |
---|
[3634] | 761 | !$ACC UPDATE HOST(f_inv) |
---|
[3657] | 762 | #else |
---|
| 763 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
| 764 | #endif |
---|
[3690] | 765 | #endif |
---|
| 766 | |
---|
[1106] | 767 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 768 | CALL MPI_ALLTOALL( f_inv(nxl_y,nzb_y,0), sendrecvcount_yz, MPI_REAL, & |
---|
| 769 | work(nxl_z,1,nys_z,0), sendrecvcount_yz, MPI_REAL, & |
---|
[1106] | 770 | comm1dx, ierr ) |
---|
[3690] | 771 | |
---|
| 772 | #if __acc_fft_device |
---|
[3657] | 773 | #ifndef __cuda_aware_mpi |
---|
[3634] | 774 | !$ACC UPDATE DEVICE(work) |
---|
[3657] | 775 | #else |
---|
| 776 | !$ACC END HOST_DATA |
---|
| 777 | #endif |
---|
[3690] | 778 | #endif |
---|
| 779 | |
---|
[1106] | 780 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1] | 781 | |
---|
| 782 | ! |
---|
[1106] | 783 | !-- Reorder transposed array |
---|
[1111] | 784 | !$OMP PARALLEL PRIVATE ( i, j, k, l, zs ) |
---|
[1106] | 785 | DO l = 0, pdims(1) - 1 |
---|
| 786 | zs = 1 + l * ( nzt_y - nzb_y + 1 ) |
---|
[3690] | 787 | #if __acc_fft_device |
---|
[3634] | 788 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 789 | !$ACC PRESENT(f_out, work) |
---|
[3690] | 790 | #endif |
---|
[4236] | 791 | !$OMP DO |
---|
[1106] | 792 | DO j = nys_z, nyn_z |
---|
| 793 | DO k = zs, zs + nzt_y - nzb_y |
---|
| 794 | DO i = nxl_z, nxr_z |
---|
[1111] | 795 | f_out(i,j,k) = work(i,k-zs+1,j,l) |
---|
[1106] | 796 | ENDDO |
---|
[1] | 797 | ENDDO |
---|
| 798 | ENDDO |
---|
[4236] | 799 | !$OMP END DO NOWAIT |
---|
[1] | 800 | ENDDO |
---|
[683] | 801 | !$OMP END PARALLEL |
---|
[1] | 802 | #endif |
---|
| 803 | |
---|
[1106] | 804 | ENDIF |
---|
| 805 | |
---|
[1] | 806 | END SUBROUTINE transpose_yz |
---|
| 807 | |
---|
| 808 | |
---|
| 809 | !------------------------------------------------------------------------------! |
---|
| 810 | ! Description: |
---|
| 811 | ! ------------ |
---|
[1682] | 812 | !> Resorting data for the transposition from z to x. The transposition itself |
---|
| 813 | !> is carried out in transpose_zx |
---|
[1216] | 814 | !------------------------------------------------------------------------------! |
---|
[1682] | 815 | SUBROUTINE resort_for_zx( f_in, f_inv ) |
---|
[1216] | 816 | |
---|
[1682] | 817 | |
---|
[1320] | 818 | USE indices, & |
---|
| 819 | ONLY: nxl, nxr, nyn, nys, nz |
---|
[1216] | 820 | |
---|
[1320] | 821 | USE kinds |
---|
| 822 | |
---|
[1216] | 823 | IMPLICIT NONE |
---|
| 824 | |
---|
[4171] | 825 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !< |
---|
| 826 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
[1216] | 827 | |
---|
[4171] | 828 | INTEGER(iwp) :: i !< |
---|
| 829 | INTEGER(iwp) :: j !< |
---|
| 830 | INTEGER(iwp) :: k !< |
---|
[1216] | 831 | |
---|
| 832 | ! |
---|
| 833 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 834 | !-- by MPI contiguous |
---|
| 835 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 836 | !$OMP DO |
---|
[3690] | 837 | #if __acc_fft_device |
---|
[3634] | 838 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 839 | !$ACC PRESENT(f_in, f_inv) |
---|
[3690] | 840 | #endif |
---|
[3832] | 841 | DO i = nxl, nxr |
---|
[4171] | 842 | DO j = nys, nyn |
---|
| 843 | DO k = 1,nz |
---|
[1216] | 844 | f_inv(j,i,k) = f_in(k,j,i) |
---|
| 845 | ENDDO |
---|
| 846 | ENDDO |
---|
| 847 | ENDDO |
---|
| 848 | !$OMP END PARALLEL |
---|
| 849 | |
---|
| 850 | END SUBROUTINE resort_for_zx |
---|
| 851 | |
---|
| 852 | |
---|
| 853 | !------------------------------------------------------------------------------! |
---|
| 854 | ! Description: |
---|
| 855 | ! ------------ |
---|
[1682] | 856 | !> Transposition of input array (f_in) from z to x. For the input array, all |
---|
| 857 | !> elements along z reside on the same PE, while after transposition, all |
---|
| 858 | !> elements along x reside on the same PE. |
---|
[1] | 859 | !------------------------------------------------------------------------------! |
---|
[1682] | 860 | SUBROUTINE transpose_zx( f_inv, f_out ) |
---|
[1] | 861 | |
---|
[1682] | 862 | |
---|
[1320] | 863 | USE cpulog, & |
---|
| 864 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 865 | |
---|
[4366] | 866 | USE fft_xy, & |
---|
[4370] | 867 | ONLY: f_vec_x, temperton_fft_vec |
---|
[4366] | 868 | |
---|
[1320] | 869 | USE indices, & |
---|
| 870 | ONLY: nnx, nx, nxl, nxr, nyn, nys, nz |
---|
| 871 | |
---|
| 872 | USE kinds |
---|
| 873 | |
---|
[1324] | 874 | USE pegrid |
---|
[1320] | 875 | |
---|
| 876 | USE transpose_indices, & |
---|
| 877 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
| 878 | |
---|
[1] | 879 | IMPLICIT NONE |
---|
| 880 | |
---|
[4171] | 881 | INTEGER(iwp) :: i !< |
---|
| 882 | INTEGER(iwp) :: j !< |
---|
| 883 | INTEGER(iwp) :: k !< |
---|
| 884 | INTEGER(iwp) :: l !< |
---|
[4366] | 885 | INTEGER(iwp) :: mm !< |
---|
[4171] | 886 | INTEGER(iwp) :: xs !< |
---|
[1] | 887 | |
---|
[4171] | 888 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
| 889 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
[1111] | 890 | |
---|
[4171] | 891 | REAL(wp), DIMENSION(nys_x:nyn_x,nnx,nzb_x:nzt_x,0:pdims(1)-1) :: work !< |
---|
[3690] | 892 | #if __acc_fft_device |
---|
[3634] | 893 | !$ACC DECLARE CREATE(work) |
---|
[3690] | 894 | #endif |
---|
[1] | 895 | |
---|
[1320] | 896 | |
---|
[1] | 897 | ! |
---|
| 898 | !-- If the PE grid is one-dimensional along y, only local reordering |
---|
| 899 | !-- of the data is necessary and no transposition has to be done. |
---|
| 900 | IF ( pdims(1) == 1 ) THEN |
---|
[1106] | 901 | |
---|
[683] | 902 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 903 | !$OMP DO |
---|
[3690] | 904 | #if __acc_fft_device |
---|
[3634] | 905 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 906 | !$ACC PRESENT(f_out, f_inv) |
---|
[3690] | 907 | #endif |
---|
[1003] | 908 | DO k = 1, nz |
---|
| 909 | DO i = nxl, nxr |
---|
| 910 | DO j = nys, nyn |
---|
[164] | 911 | f_out(i,j,k) = f_inv(j,i,k) |
---|
[1] | 912 | ENDDO |
---|
| 913 | ENDDO |
---|
| 914 | ENDDO |
---|
[683] | 915 | !$OMP END PARALLEL |
---|
[1] | 916 | |
---|
[1106] | 917 | ELSE |
---|
| 918 | |
---|
| 919 | #if defined( __parallel ) |
---|
[1] | 920 | ! |
---|
[1106] | 921 | !-- Transpose array |
---|
[1318] | 922 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[3690] | 923 | |
---|
| 924 | #if __acc_fft_device |
---|
[3657] | 925 | #ifndef __cuda_aware_mpi |
---|
[3634] | 926 | !$ACC UPDATE HOST(f_inv) |
---|
[3657] | 927 | #else |
---|
| 928 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
| 929 | #endif |
---|
[3690] | 930 | #endif |
---|
| 931 | |
---|
[1106] | 932 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 933 | CALL MPI_ALLTOALL( f_inv(nys,nxl,1), sendrecvcount_zx, MPI_REAL, & |
---|
| 934 | work(nys_x,1,nzb_x,0), sendrecvcount_zx, MPI_REAL, & |
---|
[1106] | 935 | comm1dx, ierr ) |
---|
[3690] | 936 | |
---|
| 937 | #if __acc_fft_device |
---|
[3657] | 938 | #ifndef __cuda_aware_mpi |
---|
[3634] | 939 | !$ACC UPDATE DEVICE(work) |
---|
[3657] | 940 | #else |
---|
| 941 | !$ACC END HOST_DATA |
---|
| 942 | #endif |
---|
[3690] | 943 | #endif |
---|
| 944 | |
---|
[1106] | 945 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1] | 946 | |
---|
| 947 | ! |
---|
[4366] | 948 | !-- Reorder transposed array. |
---|
[4370] | 949 | !-- Data for the vectorized Temperton-fft is stored in different array format (f_vec_x) which |
---|
| 950 | !-- saves additional data copy in fft_x. |
---|
[4366] | 951 | IF ( temperton_fft_vec ) THEN |
---|
| 952 | |
---|
| 953 | DO l = 0, pdims(1) - 1 |
---|
| 954 | xs = 0 + l * nnx |
---|
| 955 | DO k = nzb_x, nzt_x |
---|
| 956 | DO i = xs, xs + nnx - 1 |
---|
| 957 | DO j = nys_x, nyn_x |
---|
| 958 | mm = j-nys_x+1+(k-nzb_x)*(nyn_x-nys_x+1) |
---|
[4370] | 959 | f_vec_x(mm,i) = work(j,i-xs+1,k,l) |
---|
[4366] | 960 | ENDDO |
---|
| 961 | ENDDO |
---|
| 962 | ENDDO |
---|
| 963 | ENDDO |
---|
| 964 | |
---|
| 965 | ELSE |
---|
| 966 | |
---|
| 967 | !$OMP PARALLEL PRIVATE ( i, j, k, l, xs ) |
---|
| 968 | DO l = 0, pdims(1) - 1 |
---|
| 969 | xs = 0 + l * nnx |
---|
[3690] | 970 | #if __acc_fft_device |
---|
[4366] | 971 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 972 | !$ACC PRESENT(f_out, work) |
---|
[3690] | 973 | #endif |
---|
[4366] | 974 | !$OMP DO |
---|
| 975 | DO k = nzb_x, nzt_x |
---|
| 976 | DO i = xs, xs + nnx - 1 |
---|
| 977 | DO j = nys_x, nyn_x |
---|
| 978 | f_out(i,j,k) = work(j,i-xs+1,k,l) |
---|
| 979 | ENDDO |
---|
[1106] | 980 | ENDDO |
---|
[1] | 981 | ENDDO |
---|
[4366] | 982 | !$OMP END DO NOWAIT |
---|
[1] | 983 | ENDDO |
---|
[4366] | 984 | !$OMP END PARALLEL |
---|
[1] | 985 | #endif |
---|
| 986 | |
---|
[4366] | 987 | ENDIF |
---|
| 988 | |
---|
[1106] | 989 | ENDIF |
---|
| 990 | |
---|
[1] | 991 | END SUBROUTINE transpose_zx |
---|
| 992 | |
---|
| 993 | |
---|
| 994 | !------------------------------------------------------------------------------! |
---|
| 995 | ! Description: |
---|
| 996 | ! ------------ |
---|
[1682] | 997 | !> Resorting data after the transposition from z to y. The transposition itself |
---|
| 998 | !> is carried out in transpose_zy |
---|
[1216] | 999 | !------------------------------------------------------------------------------! |
---|
[1682] | 1000 | SUBROUTINE resort_for_zy( f_inv, f_out ) |
---|
[1216] | 1001 | |
---|
[1682] | 1002 | |
---|
[1320] | 1003 | USE indices, & |
---|
| 1004 | ONLY: ny |
---|
[1216] | 1005 | |
---|
[1320] | 1006 | USE kinds |
---|
| 1007 | |
---|
| 1008 | USE transpose_indices, & |
---|
| 1009 | ONLY: nxl_y, nxr_y, nzb_y, nzt_y |
---|
| 1010 | |
---|
[1216] | 1011 | IMPLICIT NONE |
---|
| 1012 | |
---|
[4171] | 1013 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
| 1014 | REAL(wp) :: f_out(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
[1216] | 1015 | |
---|
| 1016 | |
---|
[4171] | 1017 | INTEGER(iwp) :: i !< |
---|
| 1018 | INTEGER(iwp) :: j !< |
---|
| 1019 | INTEGER(iwp) :: k !< |
---|
[1216] | 1020 | |
---|
| 1021 | ! |
---|
| 1022 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 1023 | !-- by MPI contiguous |
---|
| 1024 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 1025 | !$OMP DO |
---|
[3690] | 1026 | #if __acc_fft_device |
---|
[3634] | 1027 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 1028 | !$ACC PRESENT(f_out, f_inv) |
---|
[3690] | 1029 | #endif |
---|
[4171] | 1030 | DO k = nzb_y, nzt_y |
---|
| 1031 | DO i = nxl_y, nxr_y |
---|
| 1032 | DO j = 0, ny |
---|
[1216] | 1033 | f_out(j,i,k) = f_inv(i,k,j) |
---|
| 1034 | ENDDO |
---|
| 1035 | ENDDO |
---|
| 1036 | ENDDO |
---|
| 1037 | !$OMP END PARALLEL |
---|
| 1038 | |
---|
| 1039 | END SUBROUTINE resort_for_zy |
---|
| 1040 | |
---|
| 1041 | |
---|
| 1042 | !------------------------------------------------------------------------------! |
---|
[3241] | 1043 | ! Description:cpu_log_nowait |
---|
[1216] | 1044 | ! ------------ |
---|
[1682] | 1045 | !> Transposition of input array (f_in) from z to y. For the input array, all |
---|
| 1046 | !> elements along z reside on the same PE, while after transposition, all |
---|
| 1047 | !> elements along y reside on the same PE. |
---|
[1] | 1048 | !------------------------------------------------------------------------------! |
---|
[1682] | 1049 | SUBROUTINE transpose_zy( f_in, f_inv ) |
---|
[1] | 1050 | |
---|
[1682] | 1051 | |
---|
[1320] | 1052 | USE cpulog, & |
---|
| 1053 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 1054 | |
---|
[1320] | 1055 | USE indices, & |
---|
| 1056 | ONLY: ny, nz |
---|
| 1057 | |
---|
| 1058 | USE kinds |
---|
| 1059 | |
---|
[1324] | 1060 | USE pegrid |
---|
[1320] | 1061 | |
---|
| 1062 | USE transpose_indices, & |
---|
| 1063 | ONLY: nxl_y, nxl_z, nxr_y, nxr_z, nyn_z, nys_z, nzb_y, nzt_y |
---|
| 1064 | |
---|
[1] | 1065 | IMPLICIT NONE |
---|
| 1066 | |
---|
[4171] | 1067 | INTEGER(iwp) :: i !< |
---|
| 1068 | INTEGER(iwp) :: j !< |
---|
| 1069 | INTEGER(iwp) :: k !< |
---|
| 1070 | INTEGER(iwp) :: l !< |
---|
| 1071 | INTEGER(iwp) :: zs !< |
---|
[1] | 1072 | |
---|
[4171] | 1073 | REAL(wp) :: f_in(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !< |
---|
| 1074 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
[1111] | 1075 | |
---|
[1682] | 1076 | REAL(wp), DIMENSION(nxl_z:nxr_z,nzt_y-nzb_y+1,nys_z:nyn_z,0:pdims(1)-1) :: work !< |
---|
[3690] | 1077 | #if __acc_fft_device |
---|
[3634] | 1078 | !$ACC DECLARE CREATE(work) |
---|
[3690] | 1079 | #endif |
---|
[1111] | 1080 | |
---|
[1] | 1081 | ! |
---|
| 1082 | !-- If the PE grid is one-dimensional along y, the array has only to be |
---|
| 1083 | !-- reordered locally and therefore no transposition has to be done. |
---|
| 1084 | IF ( pdims(1) /= 1 ) THEN |
---|
[1106] | 1085 | |
---|
| 1086 | #if defined( __parallel ) |
---|
[1] | 1087 | ! |
---|
| 1088 | !-- Reorder input array for transposition |
---|
[1111] | 1089 | !$OMP PARALLEL PRIVATE ( i, j, k, l, zs ) |
---|
[1] | 1090 | DO l = 0, pdims(1) - 1 |
---|
[1003] | 1091 | zs = 1 + l * ( nzt_y - nzb_y + 1 ) |
---|
[3690] | 1092 | #if __acc_fft_device |
---|
[3634] | 1093 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 1094 | !$ACC PRESENT(work, f_in) |
---|
[3690] | 1095 | #endif |
---|
[4236] | 1096 | !$OMP DO |
---|
[1003] | 1097 | DO j = nys_z, nyn_z |
---|
| 1098 | DO k = zs, zs + nzt_y - nzb_y |
---|
| 1099 | DO i = nxl_z, nxr_z |
---|
[1111] | 1100 | work(i,k-zs+1,j,l) = f_in(i,j,k) |
---|
[1] | 1101 | ENDDO |
---|
| 1102 | ENDDO |
---|
| 1103 | ENDDO |
---|
[4236] | 1104 | !$OMP END DO NOWAIT |
---|
[1] | 1105 | ENDDO |
---|
[683] | 1106 | !$OMP END PARALLEL |
---|
[1] | 1107 | |
---|
| 1108 | ! |
---|
| 1109 | !-- Transpose array |
---|
[1318] | 1110 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[3690] | 1111 | |
---|
| 1112 | #if __acc_fft_device |
---|
[3657] | 1113 | #ifndef __cuda_aware_mpi |
---|
[3634] | 1114 | !$ACC UPDATE HOST(work) |
---|
[3657] | 1115 | #else |
---|
| 1116 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
| 1117 | #endif |
---|
[3690] | 1118 | #endif |
---|
| 1119 | |
---|
[622] | 1120 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 1121 | CALL MPI_ALLTOALL( work(nxl_z,1,nys_z,0), sendrecvcount_yz, MPI_REAL, & |
---|
| 1122 | f_inv(nxl_y,nzb_y,0), sendrecvcount_yz, MPI_REAL, & |
---|
[1] | 1123 | comm1dx, ierr ) |
---|
[3690] | 1124 | |
---|
| 1125 | #if __acc_fft_device |
---|
[3657] | 1126 | #ifndef __cuda_aware_mpi |
---|
[3634] | 1127 | !$ACC UPDATE DEVICE(f_inv) |
---|
[3657] | 1128 | #else |
---|
| 1129 | !$ACC END HOST_DATA |
---|
| 1130 | #endif |
---|
[3690] | 1131 | #endif |
---|
| 1132 | |
---|
[1] | 1133 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1106] | 1134 | #endif |
---|
[1] | 1135 | |
---|
| 1136 | ELSE |
---|
| 1137 | ! |
---|
[1106] | 1138 | !-- Reorder the array in the same way like ALLTOALL did it |
---|
[683] | 1139 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 1140 | !$OMP DO |
---|
[3690] | 1141 | #if __acc_fft_device |
---|
[3634] | 1142 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 1143 | !$ACC PRESENT(f_inv, f_in) |
---|
[3690] | 1144 | #endif |
---|
[1003] | 1145 | DO k = nzb_y, nzt_y |
---|
| 1146 | DO j = 0, ny |
---|
| 1147 | DO i = nxl_y, nxr_y |
---|
[164] | 1148 | f_inv(i,k,j) = f_in(i,j,k) |
---|
| 1149 | ENDDO |
---|
| 1150 | ENDDO |
---|
| 1151 | ENDDO |
---|
[683] | 1152 | !$OMP END PARALLEL |
---|
[1106] | 1153 | |
---|
| 1154 | ENDIF |
---|
| 1155 | |
---|
[1] | 1156 | END SUBROUTINE transpose_zy |
---|
| 1157 | |
---|
| 1158 | |
---|
| 1159 | !------------------------------------------------------------------------------! |
---|
| 1160 | ! Description: |
---|
| 1161 | ! ------------ |
---|
[1682] | 1162 | !> Transposition of input array (f_in) from z to y. For the input array, all |
---|
| 1163 | !> elements along z reside on the same PE, while after transposition, all |
---|
| 1164 | !> elements along y reside on the same PE. |
---|
| 1165 | !> This is a direct transposition for arrays with indices in regular order |
---|
| 1166 | !> (k,j,i) (cf. transpose_zy). |
---|
[1] | 1167 | !------------------------------------------------------------------------------! |
---|
[1682] | 1168 | SUBROUTINE transpose_zyd( f_in, f_out ) |
---|
[1] | 1169 | |
---|
[1682] | 1170 | |
---|
[1320] | 1171 | USE cpulog, & |
---|
[3241] | 1172 | ONLY: cpu_log, log_point_s |
---|
[1] | 1173 | |
---|
[1320] | 1174 | USE indices, & |
---|
| 1175 | ONLY: nnx, nny, nnz, nxl, nxr, nyn, nys, ny, nz |
---|
| 1176 | |
---|
| 1177 | USE kinds |
---|
| 1178 | |
---|
[1324] | 1179 | USE pegrid |
---|
[1320] | 1180 | |
---|
| 1181 | USE transpose_indices, & |
---|
[3241] | 1182 | ONLY: nxl_yd, nxr_yd, nzb_yd, nzt_yd |
---|
[1320] | 1183 | |
---|
[1] | 1184 | IMPLICIT NONE |
---|
| 1185 | |
---|
[4171] | 1186 | INTEGER(iwp) :: i !< |
---|
| 1187 | INTEGER(iwp) :: j !< |
---|
| 1188 | INTEGER(iwp) :: k !< |
---|
| 1189 | INTEGER(iwp) :: l !< |
---|
| 1190 | INTEGER(iwp) :: m !< |
---|
| 1191 | INTEGER(iwp) :: ys !< |
---|
[1] | 1192 | |
---|
[4171] | 1193 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !< |
---|
| 1194 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
| 1195 | REAL(wp) :: f_out(0:ny,nxl_yd:nxr_yd,nzb_yd:nzt_yd) !< |
---|
| 1196 | REAL(wp) :: work(nnx*nny*nnz) !< |
---|
[1320] | 1197 | |
---|
[1] | 1198 | #if defined( __parallel ) |
---|
| 1199 | |
---|
| 1200 | ! |
---|
| 1201 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 1202 | !-- by MPI contiguous |
---|
[1003] | 1203 | DO i = nxl, nxr |
---|
| 1204 | DO j = nys, nyn |
---|
| 1205 | DO k = 1, nz |
---|
[164] | 1206 | f_inv(j,i,k) = f_in(k,j,i) |
---|
[1] | 1207 | ENDDO |
---|
| 1208 | ENDDO |
---|
| 1209 | ENDDO |
---|
| 1210 | |
---|
| 1211 | ! |
---|
| 1212 | !-- Move data to different array, because memory location of work1 is |
---|
| 1213 | !-- needed further below (work1 = work2). |
---|
| 1214 | !-- If the PE grid is one-dimensional along x, only local reordering |
---|
| 1215 | !-- of the data is necessary and no transposition has to be done. |
---|
| 1216 | IF ( pdims(2) == 1 ) THEN |
---|
[1003] | 1217 | DO k = 1, nz |
---|
| 1218 | DO i = nxl, nxr |
---|
| 1219 | DO j = nys, nyn |
---|
[164] | 1220 | f_out(j,i,k) = f_inv(j,i,k) |
---|
[1] | 1221 | ENDDO |
---|
| 1222 | ENDDO |
---|
| 1223 | ENDDO |
---|
| 1224 | RETURN |
---|
| 1225 | ENDIF |
---|
| 1226 | |
---|
| 1227 | ! |
---|
| 1228 | !-- Transpose array |
---|
| 1229 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 1230 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 1231 | CALL MPI_ALLTOALL( f_inv(nys,nxl,1), sendrecvcount_zyd, MPI_REAL, & |
---|
[164] | 1232 | work(1), sendrecvcount_zyd, MPI_REAL, & |
---|
[1] | 1233 | comm1dy, ierr ) |
---|
| 1234 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 1235 | |
---|
| 1236 | ! |
---|
| 1237 | !-- Reorder transposed array |
---|
| 1238 | m = 0 |
---|
| 1239 | DO l = 0, pdims(2) - 1 |
---|
| 1240 | ys = 0 + l * nny |
---|
[1003] | 1241 | DO k = nzb_yd, nzt_yd |
---|
| 1242 | DO i = nxl_yd, nxr_yd |
---|
[1] | 1243 | DO j = ys, ys + nny - 1 |
---|
| 1244 | m = m + 1 |
---|
[164] | 1245 | f_out(j,i,k) = work(m) |
---|
[1] | 1246 | ENDDO |
---|
| 1247 | ENDDO |
---|
| 1248 | ENDDO |
---|
| 1249 | ENDDO |
---|
| 1250 | |
---|
| 1251 | #endif |
---|
| 1252 | |
---|
| 1253 | END SUBROUTINE transpose_zyd |
---|