1 | !> @file transpose.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
18 | !------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ----------------- |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: transpose.f90 4366 2020-01-09 08:12:43Z raasch $ |
---|
27 | ! modifications for NEC vectorization |
---|
28 | ! |
---|
29 | ! 4360 2020-01-07 11:25:50Z suehring |
---|
30 | ! Added missing OpenMP directives |
---|
31 | ! |
---|
32 | ! 4182 2019-08-22 15:20:23Z scharf |
---|
33 | ! Corrected "Former revisions" section |
---|
34 | ! |
---|
35 | ! 4171 2019-08-19 17:44:09Z gronemeier |
---|
36 | ! loop reordering for performance optimization |
---|
37 | ! |
---|
38 | ! 3832 2019-03-28 13:16:58Z raasch |
---|
39 | ! loop reordering for performance optimization |
---|
40 | ! |
---|
41 | ! 3694 2019-01-23 17:01:49Z knoop |
---|
42 | ! OpenACC port for SPEC |
---|
43 | ! |
---|
44 | ! Revision 1.1 1997/07/24 11:25:18 raasch |
---|
45 | ! Initial revision |
---|
46 | ! |
---|
47 | ! |
---|
48 | ! Description: |
---|
49 | ! ------------ |
---|
50 | !> Resorting data for the transposition from x to y. The transposition itself |
---|
51 | !> is carried out in transpose_xy |
---|
52 | !------------------------------------------------------------------------------! |
---|
53 | |
---|
54 | #define __acc_fft_device ( defined( _OPENACC ) && ( defined ( __cuda_fft ) ) ) |
---|
55 | |
---|
56 | SUBROUTINE resort_for_xy( f_in, f_inv ) |
---|
57 | |
---|
58 | |
---|
59 | USE indices, & |
---|
60 | ONLY: nx |
---|
61 | |
---|
62 | USE kinds |
---|
63 | |
---|
64 | USE transpose_indices, & |
---|
65 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
66 | |
---|
67 | IMPLICIT NONE |
---|
68 | |
---|
69 | REAL(wp) :: f_in(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
70 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
71 | |
---|
72 | |
---|
73 | INTEGER(iwp) :: i !< |
---|
74 | INTEGER(iwp) :: j !< |
---|
75 | INTEGER(iwp) :: k !< |
---|
76 | ! |
---|
77 | !-- Rearrange indices of input array in order to make data to be send |
---|
78 | !-- by MPI contiguous |
---|
79 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
80 | !$OMP DO |
---|
81 | #if __acc_fft_device |
---|
82 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
83 | !$ACC PRESENT(f_inv, f_in) |
---|
84 | #endif |
---|
85 | DO k = nzb_x, nzt_x |
---|
86 | DO j = nys_x, nyn_x |
---|
87 | DO i = 0, nx |
---|
88 | f_inv(j,k,i) = f_in(i,j,k) |
---|
89 | ENDDO |
---|
90 | ENDDO |
---|
91 | ENDDO |
---|
92 | !$OMP END PARALLEL |
---|
93 | |
---|
94 | END SUBROUTINE resort_for_xy |
---|
95 | |
---|
96 | |
---|
97 | !------------------------------------------------------------------------------! |
---|
98 | ! Description: |
---|
99 | ! ------------ |
---|
100 | !> Transposition of input array (f_in) from x to y. For the input array, all |
---|
101 | !> elements along x reside on the same PE, while after transposition, all |
---|
102 | !> elements along y reside on the same PE. |
---|
103 | !------------------------------------------------------------------------------! |
---|
104 | SUBROUTINE transpose_xy( f_inv, f_out ) |
---|
105 | |
---|
106 | |
---|
107 | USE cpulog, & |
---|
108 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
109 | |
---|
110 | USE indices, & |
---|
111 | ONLY: nx, ny |
---|
112 | |
---|
113 | USE kinds |
---|
114 | |
---|
115 | USE pegrid |
---|
116 | |
---|
117 | USE transpose_indices, & |
---|
118 | ONLY: nxl_y, nxr_y, nyn_x, nys_x, nzb_x, nzb_y, nzt_x, nzt_y |
---|
119 | |
---|
120 | IMPLICIT NONE |
---|
121 | |
---|
122 | INTEGER(iwp) :: i !< |
---|
123 | INTEGER(iwp) :: j !< |
---|
124 | INTEGER(iwp) :: k !< |
---|
125 | INTEGER(iwp) :: l !< |
---|
126 | INTEGER(iwp) :: ys !< |
---|
127 | |
---|
128 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
129 | REAL(wp) :: f_out(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
130 | |
---|
131 | REAL(wp), DIMENSION(nyn_x-nys_x+1,nzb_y:nzt_y,nxl_y:nxr_y,0:pdims(2)-1) :: work !< |
---|
132 | #if __acc_fft_device |
---|
133 | !$ACC DECLARE CREATE(work) |
---|
134 | #endif |
---|
135 | |
---|
136 | |
---|
137 | IF ( numprocs /= 1 ) THEN |
---|
138 | |
---|
139 | #if defined( __parallel ) |
---|
140 | ! |
---|
141 | !-- Transpose array |
---|
142 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
143 | |
---|
144 | #if __acc_fft_device |
---|
145 | #ifndef __cuda_aware_mpi |
---|
146 | !$ACC UPDATE HOST(f_inv) |
---|
147 | #else |
---|
148 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
149 | #endif |
---|
150 | #endif |
---|
151 | |
---|
152 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
153 | CALL MPI_ALLTOALL( f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, & |
---|
154 | work(1,nzb_y,nxl_y,0), sendrecvcount_xy, MPI_REAL, & |
---|
155 | comm1dy, ierr ) |
---|
156 | |
---|
157 | #if __acc_fft_device |
---|
158 | #ifndef __cuda_aware_mpi |
---|
159 | !$ACC UPDATE DEVICE(work) |
---|
160 | #else |
---|
161 | !$ACC END HOST_DATA |
---|
162 | #endif |
---|
163 | #endif |
---|
164 | |
---|
165 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
166 | |
---|
167 | ! |
---|
168 | !-- Reorder transposed array |
---|
169 | !$OMP PARALLEL PRIVATE ( i, j, k, l, ys ) |
---|
170 | DO l = 0, pdims(2) - 1 |
---|
171 | ys = 0 + l * ( nyn_x - nys_x + 1 ) |
---|
172 | #if __acc_fft_device |
---|
173 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
174 | !$ACC PRESENT(f_out, work) |
---|
175 | #endif |
---|
176 | !$OMP DO |
---|
177 | DO i = nxl_y, nxr_y |
---|
178 | DO k = nzb_y, nzt_y |
---|
179 | DO j = ys, ys + nyn_x - nys_x |
---|
180 | f_out(j,i,k) = work(j-ys+1,k,i,l) |
---|
181 | ENDDO |
---|
182 | ENDDO |
---|
183 | ENDDO |
---|
184 | !$OMP END DO NOWAIT |
---|
185 | ENDDO |
---|
186 | !$OMP END PARALLEL |
---|
187 | #endif |
---|
188 | |
---|
189 | ELSE |
---|
190 | |
---|
191 | ! |
---|
192 | !-- Reorder transposed array |
---|
193 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
194 | !$OMP DO |
---|
195 | #if __acc_fft_device |
---|
196 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
197 | !$ACC PRESENT(f_out, f_inv) |
---|
198 | #endif |
---|
199 | DO k = nzb_y, nzt_y |
---|
200 | DO i = nxl_y, nxr_y |
---|
201 | DO j = 0, ny |
---|
202 | f_out(j,i,k) = f_inv(j,k,i) |
---|
203 | ENDDO |
---|
204 | ENDDO |
---|
205 | ENDDO |
---|
206 | !$OMP END PARALLEL |
---|
207 | |
---|
208 | ENDIF |
---|
209 | |
---|
210 | END SUBROUTINE transpose_xy |
---|
211 | |
---|
212 | |
---|
213 | !------------------------------------------------------------------------------! |
---|
214 | ! Description: |
---|
215 | ! ------------ |
---|
216 | !> Resorting data after the transposition from x to z. The transposition itself |
---|
217 | !> is carried out in transpose_xz |
---|
218 | !------------------------------------------------------------------------------! |
---|
219 | SUBROUTINE resort_for_xz( f_inv, f_out ) |
---|
220 | |
---|
221 | |
---|
222 | USE indices, & |
---|
223 | ONLY: nxl, nxr, nyn, nys, nz |
---|
224 | |
---|
225 | USE kinds |
---|
226 | |
---|
227 | IMPLICIT NONE |
---|
228 | |
---|
229 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
230 | REAL(wp) :: f_out(1:nz,nys:nyn,nxl:nxr) !< |
---|
231 | |
---|
232 | INTEGER(iwp) :: i !< |
---|
233 | INTEGER(iwp) :: j !< |
---|
234 | INTEGER(iwp) :: k !< |
---|
235 | ! |
---|
236 | !-- Rearrange indices of input array in order to make data to be send |
---|
237 | !-- by MPI contiguous. |
---|
238 | !-- In case of parallel fft/transposition, scattered store is faster in |
---|
239 | !-- backward direction!!! |
---|
240 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
241 | !$OMP DO |
---|
242 | #if __acc_fft_device |
---|
243 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
244 | !$ACC PRESENT(f_out, f_inv) |
---|
245 | #endif |
---|
246 | DO i = nxl, nxr |
---|
247 | DO j = nys, nyn |
---|
248 | DO k = 1, nz |
---|
249 | f_out(k,j,i) = f_inv(j,i,k) |
---|
250 | ENDDO |
---|
251 | ENDDO |
---|
252 | ENDDO |
---|
253 | !$OMP END PARALLEL |
---|
254 | |
---|
255 | END SUBROUTINE resort_for_xz |
---|
256 | |
---|
257 | |
---|
258 | !------------------------------------------------------------------------------! |
---|
259 | ! Description: |
---|
260 | ! ------------ |
---|
261 | !> Transposition of input array (f_in) from x to z. For the input array, all |
---|
262 | !> elements along x reside on the same PE, while after transposition, all |
---|
263 | !> elements along z reside on the same PE. |
---|
264 | !------------------------------------------------------------------------------! |
---|
265 | SUBROUTINE transpose_xz( f_in, f_inv ) |
---|
266 | |
---|
267 | |
---|
268 | USE cpulog, & |
---|
269 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
270 | |
---|
271 | USE fft_xy, & |
---|
272 | ONLY: f_vec, temperton_fft_vec |
---|
273 | |
---|
274 | USE indices, & |
---|
275 | ONLY: nnx, nx, nxl, nxr, nyn, nys, nz |
---|
276 | |
---|
277 | USE kinds |
---|
278 | |
---|
279 | USE pegrid |
---|
280 | |
---|
281 | USE transpose_indices, & |
---|
282 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
283 | |
---|
284 | IMPLICIT NONE |
---|
285 | |
---|
286 | INTEGER(iwp) :: i !< |
---|
287 | INTEGER(iwp) :: j !< |
---|
288 | INTEGER(iwp) :: k !< |
---|
289 | INTEGER(iwp) :: l !< |
---|
290 | INTEGER(iwp) :: mm !< |
---|
291 | INTEGER(iwp) :: xs !< |
---|
292 | |
---|
293 | REAL(wp) :: f_in(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
294 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
295 | |
---|
296 | REAL(wp), DIMENSION(nys_x:nyn_x,nnx,nzb_x:nzt_x,0:pdims(1)-1) :: work !< |
---|
297 | #if __acc_fft_device |
---|
298 | !$ACC DECLARE CREATE(work) |
---|
299 | #endif |
---|
300 | |
---|
301 | ! |
---|
302 | !-- If the PE grid is one-dimensional along y, the array has only to be |
---|
303 | !-- reordered locally and therefore no transposition has to be done. |
---|
304 | IF ( pdims(1) /= 1 ) THEN |
---|
305 | |
---|
306 | #if defined( __parallel ) |
---|
307 | ! |
---|
308 | !-- Reorder input array for transposition. Data from the vectorized Temperton-fft is stored in |
---|
309 | !-- different array format (f_vec). |
---|
310 | IF ( temperton_fft_vec ) THEN |
---|
311 | |
---|
312 | DO l = 0, pdims(1) - 1 |
---|
313 | xs = 0 + l * nnx |
---|
314 | DO k = nzb_x, nzt_x |
---|
315 | DO i = xs, xs + nnx - 1 |
---|
316 | DO j = nys_x, nyn_x |
---|
317 | mm = j-nys_x+1+(k-nzb_x)*(nyn_x-nys_x+1) |
---|
318 | work(j,i-xs+1,k,l) = f_vec(mm,i) |
---|
319 | ENDDO |
---|
320 | ENDDO |
---|
321 | ENDDO |
---|
322 | ENDDO |
---|
323 | |
---|
324 | ELSE |
---|
325 | |
---|
326 | !$OMP PARALLEL PRIVATE ( i, j, k, l, xs ) |
---|
327 | DO l = 0, pdims(1) - 1 |
---|
328 | xs = 0 + l * nnx |
---|
329 | #if __acc_fft_device |
---|
330 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
331 | !$ACC PRESENT(work, f_in) |
---|
332 | #endif |
---|
333 | !$OMP DO |
---|
334 | DO k = nzb_x, nzt_x |
---|
335 | DO i = xs, xs + nnx - 1 |
---|
336 | DO j = nys_x, nyn_x |
---|
337 | work(j,i-xs+1,k,l) = f_in(i,j,k) |
---|
338 | ENDDO |
---|
339 | ENDDO |
---|
340 | ENDDO |
---|
341 | !$OMP END DO NOWAIT |
---|
342 | ENDDO |
---|
343 | !$OMP END PARALLEL |
---|
344 | |
---|
345 | ENDIF |
---|
346 | |
---|
347 | ! |
---|
348 | !-- Transpose array |
---|
349 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
350 | |
---|
351 | #if __acc_fft_device |
---|
352 | #ifndef __cuda_aware_mpi |
---|
353 | !$ACC UPDATE HOST(work) |
---|
354 | #else |
---|
355 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
356 | #endif |
---|
357 | #endif |
---|
358 | |
---|
359 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
360 | CALL MPI_ALLTOALL( work(nys_x,1,nzb_x,0), sendrecvcount_zx, MPI_REAL, & |
---|
361 | f_inv(nys,nxl,1), sendrecvcount_zx, MPI_REAL, & |
---|
362 | comm1dx, ierr ) |
---|
363 | |
---|
364 | #if __acc_fft_device |
---|
365 | #ifndef __cuda_aware_mpi |
---|
366 | !$ACC UPDATE DEVICE(f_inv) |
---|
367 | #else |
---|
368 | !$ACC END HOST_DATA |
---|
369 | #endif |
---|
370 | #endif |
---|
371 | |
---|
372 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
373 | #endif |
---|
374 | |
---|
375 | ELSE |
---|
376 | |
---|
377 | ! |
---|
378 | !-- Reorder the array in a way that the z index is in first position |
---|
379 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
380 | !$OMP DO |
---|
381 | #if __acc_fft_device |
---|
382 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
383 | !$ACC PRESENT(f_inv, f_in) |
---|
384 | #endif |
---|
385 | DO i = nxl, nxr |
---|
386 | DO j = nys, nyn |
---|
387 | DO k = 1, nz |
---|
388 | f_inv(j,i,k) = f_in(i,j,k) |
---|
389 | ENDDO |
---|
390 | ENDDO |
---|
391 | ENDDO |
---|
392 | !$OMP END PARALLEL |
---|
393 | |
---|
394 | ENDIF |
---|
395 | |
---|
396 | END SUBROUTINE transpose_xz |
---|
397 | |
---|
398 | |
---|
399 | !------------------------------------------------------------------------------! |
---|
400 | ! Description: |
---|
401 | ! ------------ |
---|
402 | !> Resorting data after the transposition from y to x. The transposition itself |
---|
403 | !> is carried out in transpose_yx |
---|
404 | !------------------------------------------------------------------------------! |
---|
405 | SUBROUTINE resort_for_yx( f_inv, f_out ) |
---|
406 | |
---|
407 | |
---|
408 | USE indices, & |
---|
409 | ONLY: nx |
---|
410 | |
---|
411 | USE kinds |
---|
412 | |
---|
413 | USE transpose_indices, & |
---|
414 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
415 | |
---|
416 | IMPLICIT NONE |
---|
417 | |
---|
418 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
419 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
420 | |
---|
421 | |
---|
422 | INTEGER(iwp) :: i !< |
---|
423 | INTEGER(iwp) :: j !< |
---|
424 | INTEGER(iwp) :: k !< |
---|
425 | ! |
---|
426 | !-- Rearrange indices of input array in order to make data to be send |
---|
427 | !-- by MPI contiguous |
---|
428 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
429 | !$OMP DO |
---|
430 | #if __acc_fft_device |
---|
431 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
432 | !$ACC PRESENT(f_out, f_inv) |
---|
433 | #endif |
---|
434 | DO k = nzb_x, nzt_x |
---|
435 | DO j = nys_x, nyn_x |
---|
436 | DO i = 0, nx |
---|
437 | f_out(i,j,k) = f_inv(j,k,i) |
---|
438 | ENDDO |
---|
439 | ENDDO |
---|
440 | ENDDO |
---|
441 | !$OMP END PARALLEL |
---|
442 | |
---|
443 | END SUBROUTINE resort_for_yx |
---|
444 | |
---|
445 | |
---|
446 | !------------------------------------------------------------------------------! |
---|
447 | ! Description: |
---|
448 | ! ------------ |
---|
449 | !> Transposition of input array (f_in) from y to x. For the input array, all |
---|
450 | !> elements along y reside on the same PE, while after transposition, all |
---|
451 | !> elements along x reside on the same PE. |
---|
452 | !------------------------------------------------------------------------------! |
---|
453 | SUBROUTINE transpose_yx( f_in, f_inv ) |
---|
454 | |
---|
455 | |
---|
456 | USE cpulog, & |
---|
457 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
458 | |
---|
459 | USE indices, & |
---|
460 | ONLY: nx, ny |
---|
461 | |
---|
462 | USE kinds |
---|
463 | |
---|
464 | USE pegrid |
---|
465 | |
---|
466 | USE transpose_indices, & |
---|
467 | ONLY: nxl_y, nxr_y, nyn_x, nys_x, nzb_x, nzb_y, nzt_x, nzt_y |
---|
468 | |
---|
469 | IMPLICIT NONE |
---|
470 | |
---|
471 | INTEGER(iwp) :: i !< |
---|
472 | INTEGER(iwp) :: j !< |
---|
473 | INTEGER(iwp) :: k !< |
---|
474 | INTEGER(iwp) :: l !< |
---|
475 | INTEGER(iwp) :: ys !< |
---|
476 | |
---|
477 | REAL(wp) :: f_in(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
478 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
479 | |
---|
480 | REAL(wp), DIMENSION(nyn_x-nys_x+1,nzb_y:nzt_y,nxl_y:nxr_y,0:pdims(2)-1) :: work !< |
---|
481 | #if __acc_fft_device |
---|
482 | !$ACC DECLARE CREATE(work) |
---|
483 | #endif |
---|
484 | |
---|
485 | |
---|
486 | IF ( numprocs /= 1 ) THEN |
---|
487 | |
---|
488 | #if defined( __parallel ) |
---|
489 | ! |
---|
490 | !-- Reorder input array for transposition |
---|
491 | !$OMP PARALLEL PRIVATE ( i, j, k, l, ys ) |
---|
492 | DO l = 0, pdims(2) - 1 |
---|
493 | ys = 0 + l * ( nyn_x - nys_x + 1 ) |
---|
494 | #if __acc_fft_device |
---|
495 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
496 | !$ACC PRESENT(work, f_in) |
---|
497 | #endif |
---|
498 | !$OMP DO |
---|
499 | DO i = nxl_y, nxr_y |
---|
500 | DO k = nzb_y, nzt_y |
---|
501 | DO j = ys, ys + nyn_x - nys_x |
---|
502 | work(j-ys+1,k,i,l) = f_in(j,i,k) |
---|
503 | ENDDO |
---|
504 | ENDDO |
---|
505 | ENDDO |
---|
506 | !$OMP END DO NOWAIT |
---|
507 | ENDDO |
---|
508 | !$OMP END PARALLEL |
---|
509 | |
---|
510 | ! |
---|
511 | !-- Transpose array |
---|
512 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
513 | |
---|
514 | #if __acc_fft_device |
---|
515 | #ifndef __cuda_aware_mpi |
---|
516 | !$ACC UPDATE HOST(work) |
---|
517 | #else |
---|
518 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
519 | #endif |
---|
520 | #endif |
---|
521 | |
---|
522 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
523 | CALL MPI_ALLTOALL( work(1,nzb_y,nxl_y,0), sendrecvcount_xy, MPI_REAL, & |
---|
524 | f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, & |
---|
525 | comm1dy, ierr ) |
---|
526 | |
---|
527 | #if __acc_fft_device |
---|
528 | #ifndef __cuda_aware_mpi |
---|
529 | !$ACC UPDATE DEVICE(f_inv) |
---|
530 | #else |
---|
531 | !$ACC END HOST_DATA |
---|
532 | #endif |
---|
533 | #endif |
---|
534 | |
---|
535 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
536 | #endif |
---|
537 | |
---|
538 | ELSE |
---|
539 | |
---|
540 | ! |
---|
541 | !-- Reorder array f_in the same way as ALLTOALL did it |
---|
542 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
543 | !$OMP DO |
---|
544 | #if __acc_fft_device |
---|
545 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
546 | !$ACC PRESENT(f_inv, f_in) |
---|
547 | #endif |
---|
548 | DO i = nxl_y, nxr_y |
---|
549 | DO k = nzb_y, nzt_y |
---|
550 | DO j = 0, ny |
---|
551 | f_inv(j,k,i) = f_in(j,i,k) |
---|
552 | ENDDO |
---|
553 | ENDDO |
---|
554 | ENDDO |
---|
555 | !$OMP END PARALLEL |
---|
556 | |
---|
557 | ENDIF |
---|
558 | |
---|
559 | END SUBROUTINE transpose_yx |
---|
560 | |
---|
561 | |
---|
562 | !------------------------------------------------------------------------------! |
---|
563 | ! Description: |
---|
564 | ! ------------ |
---|
565 | !> Transposition of input array (f_in) from y to x. For the input array, all |
---|
566 | !> elements along y reside on the same PE, while after transposition, all |
---|
567 | !> elements along x reside on the same PE. |
---|
568 | !> This is a direct transposition for arrays with indices in regular order |
---|
569 | !> (k,j,i) (cf. transpose_yx). |
---|
570 | !------------------------------------------------------------------------------! |
---|
571 | SUBROUTINE transpose_yxd( f_in, f_out ) |
---|
572 | |
---|
573 | |
---|
574 | USE cpulog, & |
---|
575 | ONLY: cpu_log, log_point_s |
---|
576 | |
---|
577 | USE indices, & |
---|
578 | ONLY: nnx, nny, nnz, nx, nxl, nxr, nyn, nys, nz |
---|
579 | |
---|
580 | USE kinds |
---|
581 | |
---|
582 | USE pegrid |
---|
583 | |
---|
584 | USE transpose_indices, & |
---|
585 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
586 | |
---|
587 | IMPLICIT NONE |
---|
588 | |
---|
589 | INTEGER(iwp) :: i !< |
---|
590 | INTEGER(iwp) :: j !< |
---|
591 | INTEGER(iwp) :: k !< |
---|
592 | INTEGER(iwp) :: l !< |
---|
593 | INTEGER(iwp) :: m !< |
---|
594 | INTEGER(iwp) :: xs !< |
---|
595 | |
---|
596 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !< |
---|
597 | REAL(wp) :: f_inv(nxl:nxr,1:nz,nys:nyn) !< |
---|
598 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
599 | REAL(wp) :: work(nnx*nny*nnz) !< |
---|
600 | #if defined( __parallel ) |
---|
601 | |
---|
602 | ! |
---|
603 | !-- Rearrange indices of input array in order to make data to be send |
---|
604 | !-- by MPI contiguous |
---|
605 | DO k = 1, nz |
---|
606 | DO j = nys, nyn |
---|
607 | DO i = nxl, nxr |
---|
608 | f_inv(i,k,j) = f_in(k,j,i) |
---|
609 | ENDDO |
---|
610 | ENDDO |
---|
611 | ENDDO |
---|
612 | |
---|
613 | ! |
---|
614 | !-- Transpose array |
---|
615 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
616 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
617 | CALL MPI_ALLTOALL( f_inv(nxl,1,nys), sendrecvcount_xy, MPI_REAL, & |
---|
618 | work(1), sendrecvcount_xy, MPI_REAL, & |
---|
619 | comm1dx, ierr ) |
---|
620 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
621 | |
---|
622 | ! |
---|
623 | !-- Reorder transposed array |
---|
624 | m = 0 |
---|
625 | DO l = 0, pdims(1) - 1 |
---|
626 | xs = 0 + l * nnx |
---|
627 | DO j = nys_x, nyn_x |
---|
628 | DO k = 1, nz |
---|
629 | DO i = xs, xs + nnx - 1 |
---|
630 | m = m + 1 |
---|
631 | f_out(i,j,k) = work(m) |
---|
632 | ENDDO |
---|
633 | ENDDO |
---|
634 | ENDDO |
---|
635 | ENDDO |
---|
636 | |
---|
637 | #endif |
---|
638 | |
---|
639 | END SUBROUTINE transpose_yxd |
---|
640 | |
---|
641 | |
---|
642 | !------------------------------------------------------------------------------! |
---|
643 | ! Description: |
---|
644 | ! ------------ |
---|
645 | !> Resorting data for the transposition from y to z. The transposition itself |
---|
646 | !> is carried out in transpose_yz |
---|
647 | !------------------------------------------------------------------------------! |
---|
648 | SUBROUTINE resort_for_yz( f_in, f_inv ) |
---|
649 | |
---|
650 | |
---|
651 | USE indices, & |
---|
652 | ONLY: ny |
---|
653 | |
---|
654 | USE kinds |
---|
655 | |
---|
656 | USE transpose_indices, & |
---|
657 | ONLY: nxl_y, nxr_y, nzb_y, nzt_y |
---|
658 | |
---|
659 | IMPLICIT NONE |
---|
660 | |
---|
661 | REAL(wp) :: f_in(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
662 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
663 | |
---|
664 | INTEGER(iwp) :: i !< |
---|
665 | INTEGER(iwp) :: j !< |
---|
666 | INTEGER(iwp) :: k !< |
---|
667 | |
---|
668 | ! |
---|
669 | !-- Rearrange indices of input array in order to make data to be send |
---|
670 | !-- by MPI contiguous |
---|
671 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
672 | !$OMP DO |
---|
673 | #if __acc_fft_device |
---|
674 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
675 | !$ACC PRESENT(f_inv, f_in) |
---|
676 | #endif |
---|
677 | DO k = nzb_y, nzt_y |
---|
678 | DO i = nxl_y, nxr_y |
---|
679 | DO j = 0, ny |
---|
680 | f_inv(i,k,j) = f_in(j,i,k) |
---|
681 | ENDDO |
---|
682 | ENDDO |
---|
683 | ENDDO |
---|
684 | !$OMP END PARALLEL |
---|
685 | |
---|
686 | END SUBROUTINE resort_for_yz |
---|
687 | |
---|
688 | |
---|
689 | !------------------------------------------------------------------------------! |
---|
690 | ! Description: |
---|
691 | ! ------------ |
---|
692 | !> Transposition of input array (f_in) from y to z. For the input array, all |
---|
693 | !> elements along y reside on the same PE, while after transposition, all |
---|
694 | !> elements along z reside on the same PE. |
---|
695 | !------------------------------------------------------------------------------! |
---|
696 | SUBROUTINE transpose_yz( f_inv, f_out ) |
---|
697 | |
---|
698 | |
---|
699 | USE cpulog, & |
---|
700 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
701 | |
---|
702 | USE indices, & |
---|
703 | ONLY: ny, nz |
---|
704 | |
---|
705 | USE kinds |
---|
706 | |
---|
707 | USE pegrid |
---|
708 | |
---|
709 | USE transpose_indices, & |
---|
710 | ONLY: nxl_y, nxl_z, nxr_y, nxr_z, nyn_z, nys_z, nzb_y, nzt_y |
---|
711 | |
---|
712 | IMPLICIT NONE |
---|
713 | |
---|
714 | INTEGER(iwp) :: i !< |
---|
715 | INTEGER(iwp) :: j !< |
---|
716 | INTEGER(iwp) :: k !< |
---|
717 | INTEGER(iwp) :: l !< |
---|
718 | INTEGER(iwp) :: zs !< |
---|
719 | |
---|
720 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
721 | REAL(wp) :: f_out(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !< |
---|
722 | |
---|
723 | REAL(wp), DIMENSION(nxl_z:nxr_z,nzt_y-nzb_y+1,nys_z:nyn_z,0:pdims(1)-1) :: work !< |
---|
724 | #if __acc_fft_device |
---|
725 | !$ACC DECLARE CREATE(work) |
---|
726 | #endif |
---|
727 | |
---|
728 | |
---|
729 | ! |
---|
730 | !-- If the PE grid is one-dimensional along y, only local reordering |
---|
731 | !-- of the data is necessary and no transposition has to be done. |
---|
732 | IF ( pdims(1) == 1 ) THEN |
---|
733 | |
---|
734 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
735 | !$OMP DO |
---|
736 | #if __acc_fft_device |
---|
737 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
738 | !$ACC PRESENT(f_out, f_inv) |
---|
739 | #endif |
---|
740 | DO j = 0, ny |
---|
741 | DO k = nzb_y, nzt_y |
---|
742 | DO i = nxl_y, nxr_y |
---|
743 | f_out(i,j,k) = f_inv(i,k,j) |
---|
744 | ENDDO |
---|
745 | ENDDO |
---|
746 | ENDDO |
---|
747 | !$OMP END PARALLEL |
---|
748 | |
---|
749 | ELSE |
---|
750 | |
---|
751 | #if defined( __parallel ) |
---|
752 | ! |
---|
753 | !-- Transpose array |
---|
754 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
755 | |
---|
756 | #if __acc_fft_device |
---|
757 | #ifndef __cuda_aware_mpi |
---|
758 | !$ACC UPDATE HOST(f_inv) |
---|
759 | #else |
---|
760 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
761 | #endif |
---|
762 | #endif |
---|
763 | |
---|
764 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
765 | CALL MPI_ALLTOALL( f_inv(nxl_y,nzb_y,0), sendrecvcount_yz, MPI_REAL, & |
---|
766 | work(nxl_z,1,nys_z,0), sendrecvcount_yz, MPI_REAL, & |
---|
767 | comm1dx, ierr ) |
---|
768 | |
---|
769 | #if __acc_fft_device |
---|
770 | #ifndef __cuda_aware_mpi |
---|
771 | !$ACC UPDATE DEVICE(work) |
---|
772 | #else |
---|
773 | !$ACC END HOST_DATA |
---|
774 | #endif |
---|
775 | #endif |
---|
776 | |
---|
777 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
778 | |
---|
779 | ! |
---|
780 | !-- Reorder transposed array |
---|
781 | !$OMP PARALLEL PRIVATE ( i, j, k, l, zs ) |
---|
782 | DO l = 0, pdims(1) - 1 |
---|
783 | zs = 1 + l * ( nzt_y - nzb_y + 1 ) |
---|
784 | #if __acc_fft_device |
---|
785 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
786 | !$ACC PRESENT(f_out, work) |
---|
787 | #endif |
---|
788 | !$OMP DO |
---|
789 | DO j = nys_z, nyn_z |
---|
790 | DO k = zs, zs + nzt_y - nzb_y |
---|
791 | DO i = nxl_z, nxr_z |
---|
792 | f_out(i,j,k) = work(i,k-zs+1,j,l) |
---|
793 | ENDDO |
---|
794 | ENDDO |
---|
795 | ENDDO |
---|
796 | !$OMP END DO NOWAIT |
---|
797 | ENDDO |
---|
798 | !$OMP END PARALLEL |
---|
799 | #endif |
---|
800 | |
---|
801 | ENDIF |
---|
802 | |
---|
803 | END SUBROUTINE transpose_yz |
---|
804 | |
---|
805 | |
---|
806 | !------------------------------------------------------------------------------! |
---|
807 | ! Description: |
---|
808 | ! ------------ |
---|
809 | !> Resorting data for the transposition from z to x. The transposition itself |
---|
810 | !> is carried out in transpose_zx |
---|
811 | !------------------------------------------------------------------------------! |
---|
812 | SUBROUTINE resort_for_zx( f_in, f_inv ) |
---|
813 | |
---|
814 | |
---|
815 | USE indices, & |
---|
816 | ONLY: nxl, nxr, nyn, nys, nz |
---|
817 | |
---|
818 | USE kinds |
---|
819 | |
---|
820 | IMPLICIT NONE |
---|
821 | |
---|
822 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !< |
---|
823 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
824 | |
---|
825 | INTEGER(iwp) :: i !< |
---|
826 | INTEGER(iwp) :: j !< |
---|
827 | INTEGER(iwp) :: k !< |
---|
828 | |
---|
829 | ! |
---|
830 | !-- Rearrange indices of input array in order to make data to be send |
---|
831 | !-- by MPI contiguous |
---|
832 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
833 | !$OMP DO |
---|
834 | #if __acc_fft_device |
---|
835 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
836 | !$ACC PRESENT(f_in, f_inv) |
---|
837 | #endif |
---|
838 | DO i = nxl, nxr |
---|
839 | DO j = nys, nyn |
---|
840 | DO k = 1,nz |
---|
841 | f_inv(j,i,k) = f_in(k,j,i) |
---|
842 | ENDDO |
---|
843 | ENDDO |
---|
844 | ENDDO |
---|
845 | !$OMP END PARALLEL |
---|
846 | |
---|
847 | END SUBROUTINE resort_for_zx |
---|
848 | |
---|
849 | |
---|
850 | !------------------------------------------------------------------------------! |
---|
851 | ! Description: |
---|
852 | ! ------------ |
---|
853 | !> Transposition of input array (f_in) from z to x. For the input array, all |
---|
854 | !> elements along z reside on the same PE, while after transposition, all |
---|
855 | !> elements along x reside on the same PE. |
---|
856 | !------------------------------------------------------------------------------! |
---|
857 | SUBROUTINE transpose_zx( f_inv, f_out ) |
---|
858 | |
---|
859 | |
---|
860 | USE cpulog, & |
---|
861 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
862 | |
---|
863 | USE fft_xy, & |
---|
864 | ONLY: f_vec, temperton_fft_vec |
---|
865 | |
---|
866 | USE indices, & |
---|
867 | ONLY: nnx, nx, nxl, nxr, nyn, nys, nz |
---|
868 | |
---|
869 | USE kinds |
---|
870 | |
---|
871 | USE pegrid |
---|
872 | |
---|
873 | USE transpose_indices, & |
---|
874 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
875 | |
---|
876 | IMPLICIT NONE |
---|
877 | |
---|
878 | INTEGER(iwp) :: i !< |
---|
879 | INTEGER(iwp) :: j !< |
---|
880 | INTEGER(iwp) :: k !< |
---|
881 | INTEGER(iwp) :: l !< |
---|
882 | INTEGER(iwp) :: mm !< |
---|
883 | INTEGER(iwp) :: xs !< |
---|
884 | |
---|
885 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
886 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
887 | |
---|
888 | REAL(wp), DIMENSION(nys_x:nyn_x,nnx,nzb_x:nzt_x,0:pdims(1)-1) :: work !< |
---|
889 | #if __acc_fft_device |
---|
890 | !$ACC DECLARE CREATE(work) |
---|
891 | #endif |
---|
892 | |
---|
893 | |
---|
894 | ! |
---|
895 | !-- If the PE grid is one-dimensional along y, only local reordering |
---|
896 | !-- of the data is necessary and no transposition has to be done. |
---|
897 | IF ( pdims(1) == 1 ) THEN |
---|
898 | |
---|
899 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
900 | !$OMP DO |
---|
901 | #if __acc_fft_device |
---|
902 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
903 | !$ACC PRESENT(f_out, f_inv) |
---|
904 | #endif |
---|
905 | DO k = 1, nz |
---|
906 | DO i = nxl, nxr |
---|
907 | DO j = nys, nyn |
---|
908 | f_out(i,j,k) = f_inv(j,i,k) |
---|
909 | ENDDO |
---|
910 | ENDDO |
---|
911 | ENDDO |
---|
912 | !$OMP END PARALLEL |
---|
913 | |
---|
914 | ELSE |
---|
915 | |
---|
916 | #if defined( __parallel ) |
---|
917 | ! |
---|
918 | !-- Transpose array |
---|
919 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
920 | |
---|
921 | #if __acc_fft_device |
---|
922 | #ifndef __cuda_aware_mpi |
---|
923 | !$ACC UPDATE HOST(f_inv) |
---|
924 | #else |
---|
925 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
926 | #endif |
---|
927 | #endif |
---|
928 | |
---|
929 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
930 | CALL MPI_ALLTOALL( f_inv(nys,nxl,1), sendrecvcount_zx, MPI_REAL, & |
---|
931 | work(nys_x,1,nzb_x,0), sendrecvcount_zx, MPI_REAL, & |
---|
932 | comm1dx, ierr ) |
---|
933 | |
---|
934 | #if __acc_fft_device |
---|
935 | #ifndef __cuda_aware_mpi |
---|
936 | !$ACC UPDATE DEVICE(work) |
---|
937 | #else |
---|
938 | !$ACC END HOST_DATA |
---|
939 | #endif |
---|
940 | #endif |
---|
941 | |
---|
942 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
943 | |
---|
944 | ! |
---|
945 | !-- Reorder transposed array. |
---|
946 | !-- Data for the vectorized Temperton-fft is stored in different array format (f_vec) which saves |
---|
947 | !-- additional data copy in fft_x. |
---|
948 | IF ( temperton_fft_vec ) THEN |
---|
949 | |
---|
950 | DO l = 0, pdims(1) - 1 |
---|
951 | xs = 0 + l * nnx |
---|
952 | DO k = nzb_x, nzt_x |
---|
953 | DO i = xs, xs + nnx - 1 |
---|
954 | DO j = nys_x, nyn_x |
---|
955 | mm = j-nys_x+1+(k-nzb_x)*(nyn_x-nys_x+1) |
---|
956 | f_vec(mm,i) = work(j,i-xs+1,k,l) |
---|
957 | ENDDO |
---|
958 | ENDDO |
---|
959 | ENDDO |
---|
960 | ENDDO |
---|
961 | |
---|
962 | ELSE |
---|
963 | |
---|
964 | !$OMP PARALLEL PRIVATE ( i, j, k, l, xs ) |
---|
965 | DO l = 0, pdims(1) - 1 |
---|
966 | xs = 0 + l * nnx |
---|
967 | #if __acc_fft_device |
---|
968 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
969 | !$ACC PRESENT(f_out, work) |
---|
970 | #endif |
---|
971 | !$OMP DO |
---|
972 | DO k = nzb_x, nzt_x |
---|
973 | DO i = xs, xs + nnx - 1 |
---|
974 | DO j = nys_x, nyn_x |
---|
975 | f_out(i,j,k) = work(j,i-xs+1,k,l) |
---|
976 | ENDDO |
---|
977 | ENDDO |
---|
978 | ENDDO |
---|
979 | !$OMP END DO NOWAIT |
---|
980 | ENDDO |
---|
981 | !$OMP END PARALLEL |
---|
982 | #endif |
---|
983 | |
---|
984 | ENDIF |
---|
985 | |
---|
986 | ENDIF |
---|
987 | |
---|
988 | END SUBROUTINE transpose_zx |
---|
989 | |
---|
990 | |
---|
991 | !------------------------------------------------------------------------------! |
---|
992 | ! Description: |
---|
993 | ! ------------ |
---|
994 | !> Resorting data after the transposition from z to y. The transposition itself |
---|
995 | !> is carried out in transpose_zy |
---|
996 | !------------------------------------------------------------------------------! |
---|
997 | SUBROUTINE resort_for_zy( f_inv, f_out ) |
---|
998 | |
---|
999 | |
---|
1000 | USE indices, & |
---|
1001 | ONLY: ny |
---|
1002 | |
---|
1003 | USE kinds |
---|
1004 | |
---|
1005 | USE transpose_indices, & |
---|
1006 | ONLY: nxl_y, nxr_y, nzb_y, nzt_y |
---|
1007 | |
---|
1008 | IMPLICIT NONE |
---|
1009 | |
---|
1010 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
1011 | REAL(wp) :: f_out(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
1012 | |
---|
1013 | |
---|
1014 | INTEGER(iwp) :: i !< |
---|
1015 | INTEGER(iwp) :: j !< |
---|
1016 | INTEGER(iwp) :: k !< |
---|
1017 | |
---|
1018 | ! |
---|
1019 | !-- Rearrange indices of input array in order to make data to be send |
---|
1020 | !-- by MPI contiguous |
---|
1021 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
1022 | !$OMP DO |
---|
1023 | #if __acc_fft_device |
---|
1024 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
1025 | !$ACC PRESENT(f_out, f_inv) |
---|
1026 | #endif |
---|
1027 | DO k = nzb_y, nzt_y |
---|
1028 | DO i = nxl_y, nxr_y |
---|
1029 | DO j = 0, ny |
---|
1030 | f_out(j,i,k) = f_inv(i,k,j) |
---|
1031 | ENDDO |
---|
1032 | ENDDO |
---|
1033 | ENDDO |
---|
1034 | !$OMP END PARALLEL |
---|
1035 | |
---|
1036 | END SUBROUTINE resort_for_zy |
---|
1037 | |
---|
1038 | |
---|
1039 | !------------------------------------------------------------------------------! |
---|
1040 | ! Description:cpu_log_nowait |
---|
1041 | ! ------------ |
---|
1042 | !> Transposition of input array (f_in) from z to y. For the input array, all |
---|
1043 | !> elements along z reside on the same PE, while after transposition, all |
---|
1044 | !> elements along y reside on the same PE. |
---|
1045 | !------------------------------------------------------------------------------! |
---|
1046 | SUBROUTINE transpose_zy( f_in, f_inv ) |
---|
1047 | |
---|
1048 | |
---|
1049 | USE cpulog, & |
---|
1050 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
1051 | |
---|
1052 | USE indices, & |
---|
1053 | ONLY: ny, nz |
---|
1054 | |
---|
1055 | USE kinds |
---|
1056 | |
---|
1057 | USE pegrid |
---|
1058 | |
---|
1059 | USE transpose_indices, & |
---|
1060 | ONLY: nxl_y, nxl_z, nxr_y, nxr_z, nyn_z, nys_z, nzb_y, nzt_y |
---|
1061 | |
---|
1062 | IMPLICIT NONE |
---|
1063 | |
---|
1064 | INTEGER(iwp) :: i !< |
---|
1065 | INTEGER(iwp) :: j !< |
---|
1066 | INTEGER(iwp) :: k !< |
---|
1067 | INTEGER(iwp) :: l !< |
---|
1068 | INTEGER(iwp) :: zs !< |
---|
1069 | |
---|
1070 | REAL(wp) :: f_in(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !< |
---|
1071 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
1072 | |
---|
1073 | REAL(wp), DIMENSION(nxl_z:nxr_z,nzt_y-nzb_y+1,nys_z:nyn_z,0:pdims(1)-1) :: work !< |
---|
1074 | #if __acc_fft_device |
---|
1075 | !$ACC DECLARE CREATE(work) |
---|
1076 | #endif |
---|
1077 | |
---|
1078 | ! |
---|
1079 | !-- If the PE grid is one-dimensional along y, the array has only to be |
---|
1080 | !-- reordered locally and therefore no transposition has to be done. |
---|
1081 | IF ( pdims(1) /= 1 ) THEN |
---|
1082 | |
---|
1083 | #if defined( __parallel ) |
---|
1084 | ! |
---|
1085 | !-- Reorder input array for transposition |
---|
1086 | !$OMP PARALLEL PRIVATE ( i, j, k, l, zs ) |
---|
1087 | DO l = 0, pdims(1) - 1 |
---|
1088 | zs = 1 + l * ( nzt_y - nzb_y + 1 ) |
---|
1089 | #if __acc_fft_device |
---|
1090 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
1091 | !$ACC PRESENT(work, f_in) |
---|
1092 | #endif |
---|
1093 | !$OMP DO |
---|
1094 | DO j = nys_z, nyn_z |
---|
1095 | DO k = zs, zs + nzt_y - nzb_y |
---|
1096 | DO i = nxl_z, nxr_z |
---|
1097 | work(i,k-zs+1,j,l) = f_in(i,j,k) |
---|
1098 | ENDDO |
---|
1099 | ENDDO |
---|
1100 | ENDDO |
---|
1101 | !$OMP END DO NOWAIT |
---|
1102 | ENDDO |
---|
1103 | !$OMP END PARALLEL |
---|
1104 | |
---|
1105 | ! |
---|
1106 | !-- Transpose array |
---|
1107 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
1108 | |
---|
1109 | #if __acc_fft_device |
---|
1110 | #ifndef __cuda_aware_mpi |
---|
1111 | !$ACC UPDATE HOST(work) |
---|
1112 | #else |
---|
1113 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
1114 | #endif |
---|
1115 | #endif |
---|
1116 | |
---|
1117 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1118 | CALL MPI_ALLTOALL( work(nxl_z,1,nys_z,0), sendrecvcount_yz, MPI_REAL, & |
---|
1119 | f_inv(nxl_y,nzb_y,0), sendrecvcount_yz, MPI_REAL, & |
---|
1120 | comm1dx, ierr ) |
---|
1121 | |
---|
1122 | #if __acc_fft_device |
---|
1123 | #ifndef __cuda_aware_mpi |
---|
1124 | !$ACC UPDATE DEVICE(f_inv) |
---|
1125 | #else |
---|
1126 | !$ACC END HOST_DATA |
---|
1127 | #endif |
---|
1128 | #endif |
---|
1129 | |
---|
1130 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
1131 | #endif |
---|
1132 | |
---|
1133 | ELSE |
---|
1134 | ! |
---|
1135 | !-- Reorder the array in the same way like ALLTOALL did it |
---|
1136 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
1137 | !$OMP DO |
---|
1138 | #if __acc_fft_device |
---|
1139 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
1140 | !$ACC PRESENT(f_inv, f_in) |
---|
1141 | #endif |
---|
1142 | DO k = nzb_y, nzt_y |
---|
1143 | DO j = 0, ny |
---|
1144 | DO i = nxl_y, nxr_y |
---|
1145 | f_inv(i,k,j) = f_in(i,j,k) |
---|
1146 | ENDDO |
---|
1147 | ENDDO |
---|
1148 | ENDDO |
---|
1149 | !$OMP END PARALLEL |
---|
1150 | |
---|
1151 | ENDIF |
---|
1152 | |
---|
1153 | END SUBROUTINE transpose_zy |
---|
1154 | |
---|
1155 | |
---|
1156 | !------------------------------------------------------------------------------! |
---|
1157 | ! Description: |
---|
1158 | ! ------------ |
---|
1159 | !> Transposition of input array (f_in) from z to y. For the input array, all |
---|
1160 | !> elements along z reside on the same PE, while after transposition, all |
---|
1161 | !> elements along y reside on the same PE. |
---|
1162 | !> This is a direct transposition for arrays with indices in regular order |
---|
1163 | !> (k,j,i) (cf. transpose_zy). |
---|
1164 | !------------------------------------------------------------------------------! |
---|
1165 | SUBROUTINE transpose_zyd( f_in, f_out ) |
---|
1166 | |
---|
1167 | |
---|
1168 | USE cpulog, & |
---|
1169 | ONLY: cpu_log, log_point_s |
---|
1170 | |
---|
1171 | USE indices, & |
---|
1172 | ONLY: nnx, nny, nnz, nxl, nxr, nyn, nys, ny, nz |
---|
1173 | |
---|
1174 | USE kinds |
---|
1175 | |
---|
1176 | USE pegrid |
---|
1177 | |
---|
1178 | USE transpose_indices, & |
---|
1179 | ONLY: nxl_yd, nxr_yd, nzb_yd, nzt_yd |
---|
1180 | |
---|
1181 | IMPLICIT NONE |
---|
1182 | |
---|
1183 | INTEGER(iwp) :: i !< |
---|
1184 | INTEGER(iwp) :: j !< |
---|
1185 | INTEGER(iwp) :: k !< |
---|
1186 | INTEGER(iwp) :: l !< |
---|
1187 | INTEGER(iwp) :: m !< |
---|
1188 | INTEGER(iwp) :: ys !< |
---|
1189 | |
---|
1190 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !< |
---|
1191 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
1192 | REAL(wp) :: f_out(0:ny,nxl_yd:nxr_yd,nzb_yd:nzt_yd) !< |
---|
1193 | REAL(wp) :: work(nnx*nny*nnz) !< |
---|
1194 | |
---|
1195 | #if defined( __parallel ) |
---|
1196 | |
---|
1197 | ! |
---|
1198 | !-- Rearrange indices of input array in order to make data to be send |
---|
1199 | !-- by MPI contiguous |
---|
1200 | DO i = nxl, nxr |
---|
1201 | DO j = nys, nyn |
---|
1202 | DO k = 1, nz |
---|
1203 | f_inv(j,i,k) = f_in(k,j,i) |
---|
1204 | ENDDO |
---|
1205 | ENDDO |
---|
1206 | ENDDO |
---|
1207 | |
---|
1208 | ! |
---|
1209 | !-- Move data to different array, because memory location of work1 is |
---|
1210 | !-- needed further below (work1 = work2). |
---|
1211 | !-- If the PE grid is one-dimensional along x, only local reordering |
---|
1212 | !-- of the data is necessary and no transposition has to be done. |
---|
1213 | IF ( pdims(2) == 1 ) THEN |
---|
1214 | DO k = 1, nz |
---|
1215 | DO i = nxl, nxr |
---|
1216 | DO j = nys, nyn |
---|
1217 | f_out(j,i,k) = f_inv(j,i,k) |
---|
1218 | ENDDO |
---|
1219 | ENDDO |
---|
1220 | ENDDO |
---|
1221 | RETURN |
---|
1222 | ENDIF |
---|
1223 | |
---|
1224 | ! |
---|
1225 | !-- Transpose array |
---|
1226 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
1227 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1228 | CALL MPI_ALLTOALL( f_inv(nys,nxl,1), sendrecvcount_zyd, MPI_REAL, & |
---|
1229 | work(1), sendrecvcount_zyd, MPI_REAL, & |
---|
1230 | comm1dy, ierr ) |
---|
1231 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
1232 | |
---|
1233 | ! |
---|
1234 | !-- Reorder transposed array |
---|
1235 | m = 0 |
---|
1236 | DO l = 0, pdims(2) - 1 |
---|
1237 | ys = 0 + l * nny |
---|
1238 | DO k = nzb_yd, nzt_yd |
---|
1239 | DO i = nxl_yd, nxr_yd |
---|
1240 | DO j = ys, ys + nny - 1 |
---|
1241 | m = m + 1 |
---|
1242 | f_out(j,i,k) = work(m) |
---|
1243 | ENDDO |
---|
1244 | ENDDO |
---|
1245 | ENDDO |
---|
1246 | ENDDO |
---|
1247 | |
---|
1248 | #endif |
---|
1249 | |
---|
1250 | END SUBROUTINE transpose_zyd |
---|