source: palm/trunk/SOURCE/time_integration.f90 @ 4069

Last change on this file since 4069 was 4069, checked in by Giersch, 2 years ago

Bugfix for masked output, compiler warning removed, test case for wind turbine model revised

  • Property svn:keywords set to Id
File size: 80.5 KB
Line 
1!> @file time_integration.f90
2!------------------------------------------------------------------------------!
3! This file is part of the PALM model system.
4!
5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2019 Leibniz Universitaet Hannover
18!------------------------------------------------------------------------------!
19!
20! Current revisions:
21! ------------------
22!
23!
24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 4069 2019-07-01 14:05:51Z Giersch $
27! Masked output running index mid has been introduced as a local variable to
28! avoid runtime error (Loop variable has been modified) in time_integration
29!
30! 4064 2019-07-01 05:33:33Z gronemeier
31! Moved call to radiation module out of intermediate time loop
32!
33! 4048 2019-06-21 21:00:21Z knoop
34! Moved production_e_init call into turbulence_closure_mod
35!
36! 4047 2019-06-21 18:58:09Z knoop
37! Added remainings of swap_timelevel upon its dissolution
38!
39! 4043 2019-06-18 16:59:00Z schwenkel
40! Further LPM modularization
41!
42! 4039 2019-06-18 10:32:41Z suehring
43! Rename subroutines in module for diagnostic quantities
44!
45! 4029 2019-06-14 14:04:35Z raasch
46! exchange of ghost points and boundary conditions separated for chemical species and SALSA module,
47! bugfix: decycling of chemistry species after nesting data transfer
48!
49! 4022 2019-06-12 11:52:39Z suehring
50! Call synthetic turbulence generator at last RK3 substep right after boundary
51! conditions are updated in offline nesting in order to assure that
52! perturbations are always imposed
53!
54! 4017 2019-06-06 12:16:46Z schwenkel
55! Mass (volume) flux correction included to ensure global mass conservation for child domains.
56!
57! 3994 2019-05-22 18:08:09Z suehring
58! output of turbulence intensity added
59!
60! 3988 2019-05-22 11:32:37Z kanani
61! Implement steerable output interval for virtual measurements
62!
63! 3968 2019-05-13 11:04:01Z suehring
64! replace nspec_out with n_matched_vars
65!
66! 3929 2019-04-24 12:52:08Z banzhafs
67! Reverse changes back from revision 3878: use chem_boundary_conds instead of
68! chem_boundary_conds_decycle
69!
70!
71! 3885 2019-04-11 11:29:34Z kanani
72! Changes related to global restructuring of location messages and introduction
73! of additional debug messages
74!
75! 3879 2019-04-08 20:25:23Z knoop
76! Moved wtm_forces to module_interface_actions
77!
78! 3872 2019-04-08 15:03:06Z knoop
79! Modifications made for salsa:
80! - Call salsa_emission_update at each time step but do the checks within
81!   salsa_emission_update (i.e. skip_time_do_salsa >= time_since_reference_point
82!   and next_aero_emission_update <= time_since_reference_point ).
83! - Renamed nbins --> nbins_aerosol, ncc_tot --> ncomponents_mass and
84!   ngast --> ngases_salsa and loop indices b, c and sg to ib, ic and ig
85! - Apply nesting for salsa variables
86! - Removed cpu_log calls speciffic for salsa.
87!
88! 3833 2019-03-28 15:04:04Z forkel
89! added USE chem_gasphase_mod, replaced nspec by nspec since fixed compounds are not integrated
90!
91! 3820 2019-03-27 11:53:41Z forkel
92! renamed do_emiss to emissions_anthropogenic (ecc)
93!
94!
95! 3774 2019-03-04 10:52:49Z moh.hefny
96! rephrase if statement to avoid unallocated array in case of
97! nesting_offline is false (crashing during debug mode)
98!
99! 3761 2019-02-25 15:31:42Z raasch $
100! module section re-formatted and openacc required variables moved to separate section,
101! re-formatting to 100 char line width
102!
103! 3745 2019-02-15 18:57:56Z suehring
104! Call indoor model after first timestep
105!
106! 3744 2019-02-15 18:38:58Z suehring
107! - Moved call of bio_calculate_thermal_index_maps from biometeorology module to
108! time_integration to make sure averaged input is updated before calculating.
109!
110! 3739 2019-02-13 08:05:17Z dom_dwd_user
111! Removed everything related to "time_bio_results" as this is never used.
112!
113! 3724 2019-02-06 16:28:23Z kanani
114! Correct double-used log_point_s unit
115!
116! 3719 2019-02-06 13:10:18Z kanani
117! - removed wind_turbine cpu measurement, since same time is measured inside
118!   wtm_forces subroutine as special measures
119! - moved the numerous vnest cpulog to special measures
120! - extended radiation cpulog over entire radiation part,
121!   moved radiation_interactions cpulog to special measures
122! - moved some cpu_log calls to this routine for better overview
123!
124! 3705 2019-01-29 19:56:39Z suehring
125! Data output for virtual measurements added
126!
127! 3704 2019-01-29 19:51:41Z suehring
128! Rename subroutines for surface-data output
129!
130! 3647 2019-01-02 14:10:44Z kanani
131! Bugfix: add time_since_reference_point to IF clause for data_output calls
132! (otherwise skip_time_* values don't come into affect with dt_do* = 0.0).
133! Clean up indoor_model and biometeorology model call.
134!
135! 3646 2018-12-28 17:58:49Z kanani
136! Bugfix: use time_since_reference_point instead of simulated_time where
137! required (relevant when using wall/soil spinup)
138!
139! 3634 2018-12-18 12:31:28Z knoop
140! OpenACC port for SPEC
141!
142! 3597 2018-12-04 08:40:18Z maronga
143! Removed call to calculation of near air (10 cm) potential temperature (now in
144! surface layer fluxes)
145!
146! 3589 2018-11-30 15:09:51Z suehring
147! Move the control parameter "salsa" from salsa_mod to control_parameters
148! (M. Kurppa)
149!
150! 3582 2018-11-29 19:16:36Z suehring
151! dom_dwd_user, Schrempf:
152! Changes due to merge of uv exposure model into biometeorology_mod.
153!
154! 3525 2018-11-14 16:06:14Z kanani
155! Changes related to clean-up of biometeorology (dom_dwd_user)
156!
157! 3524 2018-11-14 13:36:44Z raasch
158! unused variables removed
159!
160! 3484 2018-11-02 14:41:25Z hellstea
161! pmci_ensure_nest_mass_conservation is premanently removed
162!
163! 3473 2018-10-30 20:50:15Z suehring
164! new module for virtual measurements introduced
165!
166! 3472 2018-10-30 20:43:50Z suehring
167! Add indoor model (kanani, srissman, tlang)
168!
169! 3467 2018-10-30 19:05:21Z suehring
170! Implementation of a new aerosol module salsa.
171!
172! 3448 2018-10-29 18:14:31Z kanani
173! Add biometeorology
174!
175! 3421 2018-10-24 18:39:32Z gronemeier
176! Surface data output
177!
178! 3418 2018-10-24 16:07:39Z kanani
179! call to material_heat_model now with check if spinup runs (rvtils)
180!
181! 3378 2018-10-19 12:34:59Z kanani
182! merge from radiation branch (r3362) into trunk
183! (moh.hefny):
184! Bugfix in the if statement to call radiation_interaction
185!
186! 3347 2018-10-15 14:21:08Z suehring
187! - offline nesting separated from large-scale forcing module
188! - changes for synthetic turbulence generator
189!
190! 3343 2018-10-15 10:38:52Z suehring
191! - Formatting, clean-up, comments (kanani)
192! - Added CALL to chem_emissions_setup (Russo)
193! - Code added for decycling chemistry (basit)
194!
195! 3294 2018-10-01 02:37:10Z raasch
196! changes concerning modularization of ocean option
197!
198! 3274 2018-09-24 15:42:55Z knoop
199! Modularization of all bulk cloud physics code components
200!
201! 3241 2018-09-12 15:02:00Z raasch
202! unused variables removed
203!
204! 3198 2018-08-15 09:23:10Z sward
205! Added multi_agent_system_end; defined start time for MAS relative to
206! time_since_reference_point
207!
208! 3183 2018-07-27 14:25:55Z suehring
209! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
210! Rename subroutines and variables in COSMO nesting mode
211!
212! 3182 2018-07-27 13:36:03Z suehring
213! Added multi agent system
214!
215! 3042 2018-05-25 10:44:37Z schwenkel
216! Changed the name specific humidity to mixing ratio
217!
218! 3040 2018-05-25 10:22:08Z schwenkel
219! Fixed bug in IF statement
220! Ensure that the time when calling the radiation to be the time step of the
221! pre-calculated time when first calculate the positions of the sun
222!
223! 3004 2018-04-27 12:33:25Z Giersch
224! First call of flow_statistics has been removed. It is already called in
225! run_control itself
226!
227! 2984 2018-04-18 11:51:30Z hellstea
228! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
229! as seemingly unnecessary.
230!
231! 2941 2018-04-03 11:54:58Z kanani
232! Deduct spinup_time from RUN_CONTROL output of main 3d run
233! (use time_since_reference_point instead of simulated_time)
234!
235! 2938 2018-03-27 15:52:42Z suehring
236! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
237!
238! 2936 2018-03-27 14:49:27Z suehring
239! Little formatting adjustment.
240!
241! 2817 2018-02-19 16:32:21Z knoop
242! Preliminary gust module interface implemented
243!
244! 2801 2018-02-14 16:01:55Z thiele
245! Changed lpm from subroutine to module.
246! Introduce particle transfer in nested models.
247!
248! 2776 2018-01-31 10:44:42Z Giersch
249! Variable use_synthetic_turbulence_generator has been abbreviated
250!
251! 2773 2018-01-30 14:12:54Z suehring
252! - Nesting for chemical species
253!
254! 2766 2018-01-22 17:17:47Z kanani
255! Removed preprocessor directive __chem
256!
257! 2718 2018-01-02 08:49:38Z maronga
258! Corrected "Former revisions" section
259!
260! 2696 2017-12-14 17:12:51Z kanani
261! - Change in file header (GPL part)
262! - Implementation of uv exposure model (FK)
263! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
264! - renamed diffusivities to tcm_diffusivities (TG)
265! - implement prognostic equation for diss (TG)
266! - Moved/commented CALL to chem_emissions (FK)
267! - Added CALL to chem_emissions (FK)
268! - Implementation of chemistry module (FK)
269! - Calls for setting boundary conditions in USM and LSM (MS)
270! - Large-scale forcing with larger-scale models implemented (MS)
271! - Rename usm_radiation into radiation_interactions; merge with branch
272!   radiation (MS)
273! - added call for usm_green_heat_model for green building surfaces (RvT)
274! - added call for usm_temperature_near_surface for use in indoor model (RvT)
275!
276! 2617 2017-11-16 12:47:24Z suehring
277! Bugfix, assure that the reference state does not become zero.
278!
279! 2563 2017-10-19 15:36:10Z Giersch
280! Variable wind_turbine moved to module control_parameters
281!
282! 2365 2017-08-21 14:59:59Z kanani
283! Vertical grid nesting implemented (SadiqHuq)
284!
285! 2320 2017-07-21 12:47:43Z suehring
286! Set bottom boundary conditions after nesting interpolation and anterpolation
287!
288! 2299 2017-06-29 10:14:38Z maronga
289! Call of soil model adjusted
290!
291! 2292 2017-06-20 09:51:42Z schwenkel
292! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
293! includes two more prognostic equations for cloud drop concentration (nc) 
294! and cloud water content (qc).
295!
296! 2271 2017-06-09 12:34:55Z sward
297! Start timestep message changed
298!
299! 2259 2017-06-08 09:09:11Z gronemeier
300! Implemented synthetic turbulence generator
301!
302! 2233 2017-05-30 18:08:54Z suehring
303!
304! 2232 2017-05-30 17:47:52Z suehring
305! Adjustments to new topography and surface concept
306! Modify passed parameters for disturb_field
307!
308! 2178 2017-03-17 11:07:39Z hellstea
309! Setting perturbations at all times near inflow boundary is removed
310! in case of nested boundaries
311!
312! 2174 2017-03-13 08:18:57Z maronga
313! Added support for nesting with cloud microphysics
314!
315! 2118 2017-01-17 16:38:49Z raasch
316! OpenACC directives and related code removed
317!
318! 2050 2016-11-08 15:00:55Z gronemeier
319! Implement turbulent outflow condition
320!
321! 2031 2016-10-21 15:11:58Z knoop
322! renamed variable rho to rho_ocean
323!
324! 2011 2016-09-19 17:29:57Z kanani
325! Flag urban_surface is now defined in module control_parameters,
326! removed commented CALLs of global_min_max.
327!
328! 2007 2016-08-24 15:47:17Z kanani
329! Added CALLs for new urban surface model
330!
331! 2000 2016-08-20 18:09:15Z knoop
332! Forced header and separation lines into 80 columns
333!
334! 1976 2016-07-27 13:28:04Z maronga
335! Simplified calls to radiation model
336!
337! 1960 2016-07-12 16:34:24Z suehring
338! Separate humidity and passive scalar
339!
340! 1957 2016-07-07 10:43:48Z suehring
341! flight module added
342!
343! 1919 2016-05-27 14:51:23Z raasch
344! Initial version of purely vertical nesting introduced.
345!
346! 1918 2016-05-27 14:35:57Z raasch
347! determination of time step moved to the end of the time step loop,
348! the first time step is now always calculated before the time step loop (i.e.
349! also in case of restart runs)
350!
351! 1914 2016-05-26 14:44:07Z witha
352! Added call for wind turbine model
353!
354! 1878 2016-04-19 12:30:36Z hellstea
355! Synchronization for nested runs rewritten
356!
357! 1853 2016-04-11 09:00:35Z maronga
358! Adjusted for use with radiation_scheme = constant
359!
360! 1849 2016-04-08 11:33:18Z hoffmann
361! Adapted for modularization of microphysics
362!
363! 1833 2016-04-07 14:23:03Z raasch
364! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
365!
366! 1831 2016-04-07 13:15:51Z hoffmann
367! turbulence renamed collision_turbulence
368!
369! 1822 2016-04-07 07:49:42Z hoffmann
370! icloud_scheme replaced by microphysics_*
371!
372! 1808 2016-04-05 19:44:00Z raasch
373! output message in case unscheduled radiation calls removed
374!
375! 1797 2016-03-21 16:50:28Z raasch
376! introduction of different datatransfer modes
377!
378! 1791 2016-03-11 10:41:25Z raasch
379! call of pmci_update_new removed
380!
381! 1786 2016-03-08 05:49:27Z raasch
382! +module spectrum
383!
384! 1783 2016-03-06 18:36:17Z raasch
385! switch back of netcdf data format for mask output moved to the mask output
386! routine
387!
388! 1781 2016-03-03 15:12:23Z raasch
389! some pmc calls removed at the beginning (before timeloop),
390! pmc initialization moved to the main program
391!
392! 1764 2016-02-28 12:45:19Z raasch
393! PMC_ACTIVE flags removed,
394! bugfix: nest synchronization after first call of timestep
395!
396! 1762 2016-02-25 12:31:13Z hellstea
397! Introduction of nested domain feature
398!
399! 1736 2015-12-04 08:56:33Z raasch
400! no perturbations added to total domain if energy limit has been set zero
401!
402! 1691 2015-10-26 16:17:44Z maronga
403! Added option for spin-ups without land surface and radiation models. Moved calls
404! for radiation and lan surface schemes.
405!
406! 1682 2015-10-07 23:56:08Z knoop
407! Code annotations made doxygen readable
408!
409! 1671 2015-09-25 03:29:37Z raasch
410! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
411! for particles
412!
413! 1585 2015-04-30 07:05:52Z maronga
414! Moved call of radiation scheme. Added support for RRTM
415!
416! 1551 2015-03-03 14:18:16Z maronga
417! Added interface for different radiation schemes.
418!
419! 1496 2014-12-02 17:25:50Z maronga
420! Added calls for the land surface model and radiation scheme
421!
422! 1402 2014-05-09 14:25:13Z raasch
423! location messages modified
424!
425! 1384 2014-05-02 14:31:06Z raasch
426! location messages added
427!
428! 1380 2014-04-28 12:40:45Z heinze
429! CALL of nudge_ref added
430! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
431!
432! 1365 2014-04-22 15:03:56Z boeske
433! Reset sums_ls_l to zero at each timestep
434! +sums_ls_l
435! Calculation of reference state (previously in subroutine calc_mean_profile)
436
437! 1342 2014-03-26 17:04:47Z kanani
438! REAL constants defined as wp-kind
439!
440! 1320 2014-03-20 08:40:49Z raasch
441! ONLY-attribute added to USE-statements,
442! kind-parameters added to all INTEGER and REAL declaration statements,
443! kinds are defined in new module kinds,
444! old module precision_kind is removed,
445! revision history before 2012 removed,
446! comment fields (!:) to be used for variable explanations added to
447! all variable declaration statements
448! 1318 2014-03-17 13:35:16Z raasch
449! module interfaces removed
450!
451! 1308 2014-03-13 14:58:42Z fricke
452! +netcdf_data_format_save
453! For masked data, parallel netcdf output is not tested so far, hence
454! netcdf_data_format is switched back to non-paralell output.
455!
456! 1276 2014-01-15 13:40:41Z heinze
457! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
458!
459! 1257 2013-11-08 15:18:40Z raasch
460! acc-update-host directive for timestep removed
461!
462! 1241 2013-10-30 11:36:58Z heinze
463! Generalize calc_mean_profile for wider use
464! Determine shf and qsws in dependence on data from LSF_DATA
465! Determine ug and vg in dependence on data from LSF_DATA
466! 1221 2013-09-10 08:59:13Z raasch
467! host update of arrays before timestep is called
468!
469! 1179 2013-06-14 05:57:58Z raasch
470! mean profiles for reference state are only calculated if required,
471! small bugfix for background communication
472!
473! 1171 2013-05-30 11:27:45Z raasch
474! split of prognostic_equations deactivated (comment lines), for the time being
475!
476! 1128 2013-04-12 06:19:32Z raasch
477! asynchronous transfer of ghost point data realized for acc-optimized version:
478! prognostic_equations are first called two times for those points required for
479! the left-right and north-south exchange, respectively, and then for the
480! remaining points,
481! those parts requiring global communication moved from prognostic_equations to
482! here
483!
484! 1115 2013-03-26 18:16:16Z hoffmann
485! calculation of qr and nr is restricted to precipitation
486!
487! 1113 2013-03-10 02:48:14Z raasch
488! GPU-porting of boundary conditions,
489! openACC directives updated
490! formal parameter removed from routine boundary_conds
491!
492! 1111 2013-03-08 23:54:10Z raasch
493! +internal timestep counter for cpu statistics added,
494! openACC directives updated
495!
496! 1092 2013-02-02 11:24:22Z raasch
497! unused variables removed
498!
499! 1065 2012-11-22 17:42:36Z hoffmann
500! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
501!
502! 1053 2012-11-13 17:11:03Z hoffmann
503! exchange of ghost points for nr, qr added
504!
505! 1036 2012-10-22 13:43:42Z raasch
506! code put under GPL (PALM 3.9)
507!
508! 1019 2012-09-28 06:46:45Z raasch
509! non-optimized version of prognostic_equations removed
510!
511! 1015 2012-09-27 09:23:24Z raasch
512! +call of prognostic_equations_acc
513!
514! 1001 2012-09-13 14:08:46Z raasch
515! all actions concerning leapfrog- and upstream-spline-scheme removed
516!
517! 849 2012-03-15 10:35:09Z raasch
518! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
519!
520! 825 2012-02-19 03:03:44Z raasch
521! wang_collision_kernel renamed wang_kernel
522!
523! Revision 1.1  1997/08/11 06:19:04  raasch
524! Initial revision
525!
526!
527! Description:
528! ------------
529!> Integration in time of the model equations, statistical analysis and graphic
530!> output
531!------------------------------------------------------------------------------!
532 SUBROUTINE time_integration
533 
534
535    USE advec_ws,                                                                                  &
536        ONLY:  ws_statistics
537
538    USE arrays_3d,                                                                                 &
539        ONLY:  diss, diss_p, dzu, e, e_p, nc, nc_p, nr, nr_p, prho, pt, pt_p, pt_init, q_init, q,  &
540               qc, qc_p, ql, ql_c, ql_v, ql_vp, qr, qr_p, q_p, ref_state, rho_ocean, s, s_p, sa_p, &
541               tend, u, u_p, v, vpt, v_p, w, w_p
542
543    USE biometeorology_mod,                                                                        &
544        ONLY:  bio_calculate_thermal_index_maps, thermal_comfort, uvem_calc_exposure, uv_exposure
545
546    USE bulk_cloud_model_mod,                                                                      &
547        ONLY: bulk_cloud_model, calc_liquid_water_content, collision_turbulence,                   &
548              microphysics_morrison, microphysics_seifert
549
550    USE calc_mean_profile_mod,                                                                     &
551        ONLY:  calc_mean_profile
552
553    USE chem_emissions_mod,                                                                        &
554        ONLY:  chem_emissions_setup
555
556    USE chem_gasphase_mod,                                                                         &
557        ONLY:  nvar
558
559    USE chem_modules,                                                                              &
560        ONLY:  bc_cs_t_val, chem_species, cs_name, emissions_anthropogenic, n_matched_vars
561
562    USE chemistry_model_mod,                                                                       &
563        ONLY:  chem_boundary_conds
564
565    USE control_parameters,                                                                        &
566        ONLY:  advected_distance_x, advected_distance_y, air_chemistry, average_count_3d,          &
567               averaging_interval, averaging_interval_pr, bc_lr_cyc, bc_ns_cyc, bc_pt_t_val,       &
568               bc_q_t_val, biometeorology, call_psolver_at_all_substeps,  child_domain,            &
569               cloud_droplets, constant_flux_layer, constant_heatflux, create_disturbances,        &
570               dopr_n, constant_diffusion, coupling_mode, coupling_start_time,                     &
571               current_timestep_number, disturbance_created, disturbance_energy_limit, dist_range, &
572               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr, dt_coupling,              &
573               dt_data_output_av, dt_disturb, dt_do2d_xy, dt_do2d_xz, dt_do2d_yz, dt_do3d,         &
574               dt_domask,dt_dopts, dt_dopr, dt_dopr_listing, dt_dots, dt_run_control,              &
575               end_time, first_call_lpm, first_call_mas, galilei_transformation, humidity,         &
576               indoor_model, intermediate_timestep_count, intermediate_timestep_count_max,         &
577               land_surface, large_scale_forcing, loop_optimization, lsf_surf, lsf_vert, masks,    &
578               multi_agent_system_end, multi_agent_system_start, nesting_offline, neutral,         &
579               nr_timesteps_this_run, nudging, ocean_mode, passive_scalar, pt_reference,           &
580               pt_slope_offset, random_heatflux, rans_mode, rans_tke_e, run_coupled, salsa,        &
581               simulated_time, simulated_time_chr, skip_time_do2d_xy, skip_time_do2d_xz,           &
582               skip_time_do2d_yz, skip_time_do3d, skip_time_domask, skip_time_dopr,                &
583               skip_time_data_output_av, sloping_surface, stop_dt, surface_output,                 &
584               terminate_coupled, terminate_run, timestep_scheme, time_coupling, time_do2d_xy,     &
585               time_do2d_xz, time_do2d_yz, time_do3d, time_domask, time_dopr, time_dopr_av,        &
586               time_dopr_listing, time_dopts, time_dosp, time_dosp_av, time_dots, time_do_av,      &
587               time_do_sla, time_disturb, time_run_control, time_since_reference_point,            &
588               turbulent_inflow, turbulent_outflow, urban_surface,                                 &
589               use_initial_profile_as_reference, use_single_reference_value, u_gtrans, v_gtrans,   &
590               virtual_flight, virtual_measurement, ws_scheme_mom, ws_scheme_sca, timestep_count
591
592    USE cpulog,                                                                                    &
593        ONLY:  cpu_log, log_point, log_point_s
594
595    USE date_and_time_mod,                                                                         &
596        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
597
598    USE diagnostic_output_quantities_mod,                                                          &
599        ONLY:  doq_calculate,                                                                      &
600               timestep_number_at_prev_calc
601
602    USE flight_mod,                                                                                &
603        ONLY:  flight_measurement
604
605    USE indices,                                                                                   &
606        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nzb, nzt
607
608    USE indoor_model_mod,                                                                          &
609        ONLY:  dt_indoor, im_main_heatcool, time_indoor
610
611    USE interfaces
612
613    USE kinds
614
615    USE land_surface_model_mod,                                                                    &
616        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model, skip_time_do_lsm
617
618    USE lagrangian_particle_model_mod,                                                             &
619        ONLY:  lpm_data_output_ptseries, lpm_interaction_droplets_ptq
620
621    USE lsf_nudging_mod,                                                                           &
622        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
623
624    USE module_interface,                                                                          &
625        ONLY:  module_interface_actions, module_interface_swap_timelevel
626
627    USE multi_agent_system_mod,                                                                    &
628        ONLY:  agents_active, multi_agent_system
629
630    USE nesting_offl_mod,                                                                          &
631        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
632
633    USE netcdf_data_input_mod,                                                                     &
634        ONLY:  chem_emis, chem_emis_att, nest_offl, netcdf_data_input_offline_nesting
635
636    USE ocean_mod,                                                                                 &
637        ONLY:  prho_reference
638
639    USE particle_attributes,                                                                       &
640        ONLY:  particle_advection, particle_advection_start, use_sgs_for_particles, wang_kernel
641
642    USE pegrid
643
644    USE pmc_interface,                                                                             &
645        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans, pmci_synchronize,    &
646        pmci_ensure_nest_mass_conservation, pmci_ensure_nest_mass_conservation_vertical,           &
647        pmci_set_swaplevel
648
649    USE progress_bar,                                                                              &
650        ONLY:  finish_progress_bar, output_progress_bar
651
652    USE prognostic_equations_mod,                                                                  &
653        ONLY:  prognostic_equations_cache, prognostic_equations_vector
654
655    USE radiation_model_mod,                                                                       &
656        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,                    &
657              radiation_interaction, radiation_interactions, skip_time_do_radiation, time_radiation
658
659    USE salsa_mod,                                                                                 &
660        ONLY: aerosol_number, aerosol_mass, bc_am_t_val, bc_an_t_val, bc_gt_t_val,                 &
661              nbins_aerosol, ncomponents_mass, ngases_salsa, salsa_boundary_conds,                 &
662              salsa_emission_update, salsa_gas, salsa_gases_from_chem, skip_time_do_salsa
663
664    USE spectra_mod,                                                                               &
665        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp, skip_time_dosp
666
667    USE statistics,                                                                                &
668        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l
669
670
671    USE surface_layer_fluxes_mod,                                                                  &
672        ONLY:  surface_layer_fluxes
673
674    USE surface_data_output_mod,                                                                   &
675        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf, dt_dosurf_av,               &
676               surface_data_output, surface_data_output_averaging, skip_time_dosurf,               &
677               skip_time_dosurf_av, time_dosurf, time_dosurf_av
678
679    USE surface_mod,                                                                               &
680        ONLY:  surf_def_h, surf_lsm_h, surf_usm_h
681
682    USE synthetic_turbulence_generator_mod,                                                        &
683        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence, stg_adjust, stg_main,    &
684               time_stg_adjust, time_stg_call, use_syn_turb_gen
685
686    USE turbulence_closure_mod,                                                                    &
687        ONLY:  tcm_diffusivities
688
689    USE urban_surface_mod,                                                                         &
690        ONLY:  usm_boundary_condition, usm_material_heat_model, usm_material_model,                &
691               usm_surface_energy_balance, usm_green_heat_model
692
693    USE vertical_nesting_mod,                                                                      &
694        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e, vnest_boundary_conds,              &
695               vnest_boundary_conds_khkm, vnest_deallocate, vnest_init, vnest_init_fine,           &
696               vnest_start_time
697
698    USE virtual_measurement_mod,                                                                   &
699        ONLY:  dt_virtual_measurement,                                                             &
700               time_virtual_measurement,                                                           &
701               vm_data_output,                                                                     &
702               vm_sampling,                                                                        &
703               vm_time_start
704
705
706#if defined( _OPENACC )
707    USE arrays_3d,                                                             &
708        ONLY:  d, dd2zu, ddzu, ddzw, drho_air, drho_air_zw, dzw, heatflux_output_conversion, kh,   &
709               km, momentumflux_output_conversion, p, ptdf_x, ptdf_y, rdf, rdf_sc, rho_air,        &
710               rho_air_zw, te_m, tpt_m, tu_m, tv_m, tw_m, ug, u_init, u_stokes_zu, vg, v_init,     &
711               v_stokes_zu, zu
712
713    USE control_parameters,                                                                        &
714        ONLY:  tsc
715
716    USE indices,                                                                                   &
717        ONLY:  advc_flags_1, advc_flags_2, nyn, nyng, nys, nysg, nz, nzb_max, wall_flags_0
718
719    USE statistics,                                                                                &
720        ONLY:  rmask, statistic_regions, sums_l, sums_l_l, sums_us2_ws_l,                          &
721               sums_wsus_ws_l, sums_vs2_ws_l, sums_wsvs_ws_l, sums_ws2_ws_l, sums_wspts_ws_l,      &
722               sums_wsqs_ws_l, sums_wssas_ws_l, sums_wsqcs_ws_l, sums_wsqrs_ws_l, sums_wsncs_ws_l, &
723               sums_wsnrs_ws_l, sums_wsss_ws_l, weight_substep, sums_salsa_ws_l
724
725    USE surface_mod,                                                                               &
726        ONLY:  bc_h, enter_surface_arrays, exit_surface_arrays
727#endif
728
729
730    IMPLICIT NONE
731
732    CHARACTER (LEN=9) ::  time_to_string   !<
733
734    INTEGER(iwp) ::  ib        !< index for aerosol size bins
735    INTEGER(iwp) ::  ic        !< index for aerosol mass bins
736    INTEGER(iwp) ::  icc       !< additional index for aerosol mass bins
737    INTEGER(iwp) ::  ig        !< index for salsa gases
738    INTEGER(iwp) ::  lsp
739    INTEGER(iwp) ::  lsp_usr   !<
740    INTEGER(iwp) ::  mid       !< masked output running index
741    INTEGER(iwp) ::  n         !< loop counter for chemistry species
742
743    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
744                            !< steering of run control output interval
745    REAL(wp) ::  time_since_reference_point_save  !< original value of
746                                                  !< time_since_reference_point
747
748
749!
750!-- Copy data from arrays_3d
751!$ACC DATA &
752!$ACC COPY(d(nzb+1:nzt,nys:nyn,nxl:nxr)) &
753!$ACC COPY(e(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
754!$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
755!$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
756!$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
757!$ACC COPY(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
758!$ACC COPY(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
759!$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
760!$ACC COPY(pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
761
762!$ACC DATA &
763!$ACC COPY(e_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
764!$ACC COPY(u_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
765!$ACC COPY(v_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
766!$ACC COPY(w_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
767!$ACC COPY(pt_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
768!$ACC COPY(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
769!$ACC COPY(te_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
770!$ACC COPY(tu_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
771!$ACC COPY(tv_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
772!$ACC COPY(tw_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
773!$ACC COPY(tpt_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
774
775!$ACC DATA &
776!$ACC COPYIN(rho_air(nzb:nzt+1), drho_air(nzb:nzt+1)) &
777!$ACC COPYIN(rho_air_zw(nzb:nzt+1), drho_air_zw(nzb:nzt+1)) &
778!$ACC COPYIN(zu(nzb:nzt+1)) &
779!$ACC COPYIN(dzu(1:nzt+1), dzw(1:nzt+1)) &
780!$ACC COPYIN(ddzu(1:nzt+1), dd2zu(1:nzt)) &
781!$ACC COPYIN(ddzw(1:nzt+1)) &
782!$ACC COPYIN(heatflux_output_conversion(nzb:nzt+1)) &
783!$ACC COPYIN(momentumflux_output_conversion(nzb:nzt+1)) &
784!$ACC COPYIN(rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt)) &
785!$ACC COPYIN(ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng)) &
786!$ACC COPYIN(ref_state(0:nz+1)) &
787!$ACC COPYIN(u_init(0:nz+1), v_init(0:nz+1)) &
788!$ACC COPYIN(u_stokes_zu(nzb:nzt+1), v_stokes_zu(nzb:nzt+1)) &
789!$ACC COPYIN(pt_init(0:nz+1)) &
790!$ACC COPYIN(ug(0:nz+1), vg(0:nz+1))
791
792!
793!-- Copy data from control_parameters
794!$ACC DATA &
795!$ACC COPYIN(tsc(1:5))
796
797!
798!-- Copy data from indices
799!$ACC DATA &
800!$ACC COPYIN(advc_flags_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
801!$ACC COPYIN(advc_flags_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
802!$ACC COPYIN(wall_flags_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
803
804!
805!-- Copy data from surface_mod
806!$ACC DATA &
807!$ACC COPYIN(bc_h(0:1)) &
808!$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) &
809!$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) &
810!$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) &
811!$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) &
812!$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) &
813!$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns))
814
815!
816!-- Copy data from statistics
817!$ACC DATA &
818!$ACC COPYIN(hom(0:nz+1,1:2,1:4,0)) &
819!$ACC COPYIN(rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions)) &
820!$ACC COPYIN(weight_substep(1:intermediate_timestep_count_max)) &
821!$ACC COPY(sums_l(nzb:nzt+1,1:pr_palm,0)) &
822!$ACC COPY(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
823!$ACC COPY(sums_us2_ws_l(nzb:nzt+1,0)) &
824!$ACC COPY(sums_wsus_ws_l(nzb:nzt+1,0)) &
825!$ACC COPY(sums_vs2_ws_l(nzb:nzt+1,0)) &
826!$ACC COPY(sums_wsvs_ws_l(nzb:nzt+1,0)) &
827!$ACC COPY(sums_ws2_ws_l(nzb:nzt+1,0)) &
828!$ACC COPY(sums_wspts_ws_l(nzb:nzt+1,0)) &
829!$ACC COPY(sums_wssas_ws_l(nzb:nzt+1,0)) &
830!$ACC COPY(sums_wsqs_ws_l(nzb:nzt+1,0)) &
831!$ACC COPY(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
832!$ACC COPY(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
833!$ACC COPY(sums_wsncs_ws_l(nzb:nzt+1,0)) &
834!$ACC COPY(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
835!$ACC COPY(sums_wsss_ws_l(nzb:nzt+1,0)) &
836!$ACC COPY(sums_salsa_ws_l(nzb:nzt+1,0))
837
838#if defined( _OPENACC )
839    CALL enter_surface_arrays
840#endif
841
842!
843!-- At beginning determine the first time step
844    CALL timestep
845!
846!-- Synchronize the timestep in case of nested run.
847    IF ( nested_run )  THEN
848!
849!--    Synchronization by unifying the time step.
850!--    Global minimum of all time-steps is used for all.
851       CALL pmci_synchronize
852    ENDIF
853
854!
855!-- Determine and print out the run control quantities before the first time
856!-- step of this run. For the initial run, some statistics (e.g. divergence)
857!-- need to be determined first --> CALL flow_statistics at the beginning of
858!-- run_control
859    CALL run_control
860!
861!-- Data exchange between coupled models in case that a call has been omitted
862!-- at the end of the previous run of a job chain.
863    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND. .NOT. vnested )  THEN
864!
865!--    In case of model termination initiated by the local model the coupler
866!--    must not be called because this would again cause an MPI hang.
867       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
868          CALL surface_coupler
869          time_coupling = time_coupling - dt_coupling
870       ENDDO
871       IF (time_coupling == 0.0_wp  .AND.  time_since_reference_point < dt_coupling )  THEN
872          time_coupling = time_since_reference_point
873       ENDIF
874    ENDIF
875
876    CALL location_message( 'atmosphere (and/or ocean) time-stepping', 'start' )
877
878!
879!-- Start of the time loop
880    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. .NOT. terminate_run )
881
882       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
883!
884!--    Vertical nesting: initialize fine grid
885       IF ( vnested ) THEN
886          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
887             CALL cpu_log( log_point_s(22), 'vnest_init', 'start' )
888             CALL vnest_init_fine
889             vnest_init = .TRUE.
890             CALL cpu_log( log_point_s(22), 'vnest_init', 'stop' )
891          ENDIF
892       ENDIF
893!
894!--    Determine ug, vg and w_subs in dependence on data from external file
895!--    LSF_DATA
896       IF ( large_scale_forcing .AND. lsf_vert )  THEN
897           CALL ls_forcing_vert ( simulated_time )
898           sums_ls_l = 0.0_wp
899       ENDIF
900
901!
902!--    Set pt_init and q_init to the current profiles taken from
903!--    NUDGING_DATA
904       IF ( nudging )  THEN
905           CALL nudge_ref ( simulated_time )
906!
907!--        Store temperature gradient at the top boundary for possible Neumann
908!--        boundary condition
909           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
910           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
911           IF ( air_chemistry )  THEN
912              DO  lsp = 1, nvar
913                 bc_cs_t_val = (  chem_species(lsp)%conc_pr_init(nzt+1)                            &
914                                - chem_species(lsp)%conc_pr_init(nzt) )                            &
915                               / dzu(nzt+1)
916              ENDDO
917           ENDIF
918           IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
919              DO  ib = 1, nbins_aerosol
920                 bc_an_t_val = ( aerosol_number(ib)%init(nzt+1) - aerosol_number(ib)%init(nzt) ) / &
921                               dzu(nzt+1)
922                 DO  ic = 1, ncomponents_mass
923                    icc = ( ic - 1 ) * nbins_aerosol + ib
924                    bc_am_t_val = ( aerosol_mass(icc)%init(nzt+1) - aerosol_mass(icc)%init(nzt) ) /&
925                                  dzu(nzt+1)
926                 ENDDO
927              ENDDO
928              IF ( .NOT. salsa_gases_from_chem )  THEN
929                 DO  ig = 1, ngases_salsa
930                    bc_gt_t_val = ( salsa_gas(ig)%init(nzt+1) - salsa_gas(ig)%init(nzt) ) /        &
931                                  dzu(nzt+1)
932                 ENDDO
933              ENDIF
934           ENDIF
935       ENDIF
936!
937!--    If forcing by larger-scale models is applied, check if new data
938!--    at domain boundaries need to be read.
939       IF ( nesting_offline ) THEN
940          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point ) &
941               CALL netcdf_data_input_offline_nesting
942       ENDIF
943
944!
945!--    Execute all other module actions routunes
946       CALL module_interface_actions( 'before_timestep' )
947       
948!
949!--    Start of intermediate step loop
950       intermediate_timestep_count = 0
951       DO  WHILE ( intermediate_timestep_count < intermediate_timestep_count_max )
952
953          intermediate_timestep_count = intermediate_timestep_count + 1
954
955!
956!--       Set the steering factors for the prognostic equations which depend
957!--       on the timestep scheme
958          CALL timestep_scheme_steering
959
960!
961!--       Calculate those variables needed in the tendency terms which need
962!--       global communication
963          IF ( .NOT. use_single_reference_value  .AND.  .NOT. use_initial_profile_as_reference )   &
964          THEN
965!
966!--          Horizontally averaged profiles to be used as reference state in
967!--          buoyancy terms (WARNING: only the respective last call of
968!--          calc_mean_profile defines the reference state!)
969             IF ( .NOT. neutral )  THEN
970                CALL calc_mean_profile( pt, 4 )
971                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
972             ENDIF
973             IF ( ocean_mode )  THEN
974                CALL calc_mean_profile( rho_ocean, 64 )
975                ref_state(:)  = hom(:,1,64,0)
976             ENDIF
977             IF ( humidity )  THEN
978                CALL calc_mean_profile( vpt, 44 )
979                ref_state(:)  = hom(:,1,44,0)
980             ENDIF
981!
982!--          Assure that ref_state does not become zero at any level
983!--          ( might be the case if a vertical level is completely occupied
984!--            with topography ).
985             ref_state = MERGE( MAXVAL(ref_state), ref_state, ref_state == 0.0_wp )
986          ENDIF
987
988          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  intermediate_timestep_count == 1 )     &
989          THEN
990             CALL ws_statistics
991          ENDIF
992!
993!--       In case of nudging calculate current nudging time scale and horizontal
994!--       means of u, v, pt and q
995          IF ( nudging )  THEN
996             CALL calc_tnudge( simulated_time )
997             CALL calc_mean_profile( u, 1 )
998             CALL calc_mean_profile( v, 2 )
999             CALL calc_mean_profile( pt, 4 )
1000             CALL calc_mean_profile( q, 41 )
1001          ENDIF
1002!
1003!--       Execute all other module actions routunes
1004          CALL module_interface_actions( 'before_prognostic_equations' )
1005!
1006!--       Solve the prognostic equations. A fast cache optimized version with
1007!--       only one single loop is used in case of Piascek-Williams advection
1008!--       scheme. NEC vector machines use a different version, because
1009!--       in the other versions a good vectorization is prohibited due to
1010!--       inlining problems.
1011          IF ( loop_optimization == 'cache' )  THEN
1012             CALL prognostic_equations_cache
1013          ELSEIF ( loop_optimization == 'vector' )  THEN
1014             CALL prognostic_equations_vector
1015          ENDIF
1016
1017!
1018!--       Particle transport/physics with the Lagrangian particle model
1019!--       (only once during intermediate steps, because it uses an Euler-step)
1020!--       ### particle model should be moved before prognostic_equations, in order
1021!--       to regard droplet interactions directly
1022          IF ( particle_advection  .AND.  time_since_reference_point >= particle_advection_start   &
1023               .AND.  intermediate_timestep_count == 1 )                                           &
1024          THEN
1025             CALL module_interface_actions( 'after_prognostic_equations' )
1026             first_call_lpm = .FALSE.
1027          ENDIF
1028
1029!
1030!--       Interaction of droplets with temperature and mixing ratio.
1031!--       Droplet condensation and evaporation is calculated within
1032!--       advec_particles.
1033          IF ( cloud_droplets  .AND.  intermediate_timestep_count == intermediate_timestep_count_max ) &
1034          THEN
1035             CALL lpm_interaction_droplets_ptq
1036          ENDIF
1037
1038!
1039!--       Movement of agents in multi agent system
1040          IF ( agents_active  .AND.  time_since_reference_point >= multi_agent_system_start  .AND. &
1041               time_since_reference_point <= multi_agent_system_end  .AND.                         &
1042               intermediate_timestep_count == 1 )                                                  &
1043          THEN
1044             CALL multi_agent_system
1045             first_call_mas = .FALSE.
1046          ENDIF
1047
1048!
1049!--       Exchange of ghost points (lateral boundary conditions)
1050          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
1051
1052          CALL exchange_horiz( u_p, nbgp )
1053          CALL exchange_horiz( v_p, nbgp )
1054          CALL exchange_horiz( w_p, nbgp )
1055          CALL exchange_horiz( pt_p, nbgp )
1056          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
1057          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence                           &
1058               .OR.  use_sgs_for_particles )  THEN
1059             IF ( rans_tke_e )  THEN
1060                CALL exchange_horiz( diss_p, nbgp )
1061             ELSE
1062                CALL exchange_horiz( diss, nbgp )
1063             ENDIF
1064          ENDIF
1065          IF ( ocean_mode )  THEN
1066             CALL exchange_horiz( sa_p, nbgp )
1067             CALL exchange_horiz( rho_ocean, nbgp )
1068             CALL exchange_horiz( prho, nbgp )
1069          ENDIF
1070          IF ( humidity )  THEN
1071             CALL exchange_horiz( q_p, nbgp )
1072             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
1073                CALL exchange_horiz( qc_p, nbgp )
1074                CALL exchange_horiz( nc_p, nbgp )
1075             ENDIF
1076             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
1077                CALL exchange_horiz( qr_p, nbgp )
1078                CALL exchange_horiz( nr_p, nbgp )
1079             ENDIF
1080          ENDIF
1081          IF ( cloud_droplets )  THEN
1082             CALL exchange_horiz( ql, nbgp )
1083             CALL exchange_horiz( ql_c, nbgp )
1084             CALL exchange_horiz( ql_v, nbgp )
1085             CALL exchange_horiz( ql_vp, nbgp )
1086          ENDIF
1087          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
1088          IF ( air_chemistry )  THEN
1089             DO  lsp = 1, nvar
1090                CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp )
1091             ENDDO
1092          ENDIF
1093
1094          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
1095             DO  ib = 1, nbins_aerosol
1096                CALL exchange_horiz( aerosol_number(ib)%conc_p, nbgp )
1097                DO  ic = 1, ncomponents_mass
1098                   icc = ( ic - 1 ) * nbins_aerosol + ib
1099                   CALL exchange_horiz( aerosol_mass(icc)%conc_p, nbgp )
1100                ENDDO
1101             ENDDO
1102             IF ( .NOT. salsa_gases_from_chem )  THEN
1103                DO  ig = 1, ngases_salsa
1104                   CALL exchange_horiz( salsa_gas(ig)%conc_p, nbgp )
1105                ENDDO
1106             ENDIF
1107          ENDIF
1108          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1109
1110!
1111!--       Boundary conditions for the prognostic quantities (except of the
1112!--       velocities at the outflow in case of a non-cyclic lateral wall)
1113          CALL boundary_conds
1114
1115!
1116!--       Boundary conditions for prognostic quantitites of other modules:
1117!--       Here, only decycling is carried out
1118          IF ( air_chemistry )  THEN
1119
1120             DO  lsp = 1, nvar
1121                lsp_usr = 1
1122                DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
1123                   IF ( TRIM( chem_species(lsp)%name ) == TRIM( cs_name(lsp_usr) ) )  THEN
1124                      CALL chem_boundary_conds( chem_species(lsp)%conc_p,                          &
1125                                                chem_species(lsp)%conc_pr_init )
1126                   ENDIF
1127                   lsp_usr = lsp_usr + 1
1128                ENDDO
1129             ENDDO
1130
1131          ENDIF
1132
1133          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
1134
1135             DO  ib = 1, nbins_aerosol
1136                CALL salsa_boundary_conds( aerosol_number(ib)%conc_p, aerosol_number(ib)%init )
1137                DO  ic = 1, ncomponents_mass
1138                   icc = ( ic - 1 ) * nbins_aerosol + ib
1139                   CALL salsa_boundary_conds( aerosol_mass(icc)%conc_p, aerosol_mass(icc)%init )
1140                ENDDO
1141             ENDDO
1142             IF ( .NOT. salsa_gases_from_chem )  THEN
1143                DO  ig = 1, ngases_salsa
1144                   CALL salsa_boundary_conds( salsa_gas(ig)%conc_p, salsa_gas(ig)%init )
1145                ENDDO
1146             ENDIF
1147
1148          ENDIF
1149
1150!
1151!--       Incrementing timestep counter
1152          timestep_count = timestep_count + 1
1153
1154          CALL cpu_log( log_point(28), 'swap_timelevel', 'start' )
1155!
1156!--       Set the swap level for all modules
1157          CALL module_interface_swap_timelevel( MOD( timestep_count, 2) )
1158!
1159!--       Set the swap level for steering the pmc data transfer
1160          IF ( nested_run )  CALL pmci_set_swaplevel( MOD( timestep_count, 2) + 1 )  !> @todo: why the +1 ?
1161
1162          CALL cpu_log( log_point(28), 'swap_timelevel', 'stop' )
1163
1164!
1165!--       Vertical nesting: Interpolate fine grid data to the coarse grid
1166          IF ( vnest_init ) THEN
1167             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'start' )
1168             CALL vnest_anterpolate
1169             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'stop' )
1170          ENDIF
1171
1172          IF ( nested_run )  THEN
1173
1174             CALL cpu_log( log_point(60), 'nesting', 'start' )
1175!
1176!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
1177!--          and pmci_child_datatrans are called inside the wrapper
1178!--          subroutine pmci_datatrans according to the control parameters
1179!--          nesting_mode and nesting_datatransfer_mode.
1180!--          TO_DO: why is nesting_mode given as a parameter here?
1181             CALL pmci_datatrans( nesting_mode )
1182
1183             IF ( TRIM( nesting_mode ) == 'two-way' .OR.  nesting_mode == 'vertical' )  THEN
1184
1185                CALL cpu_log( log_point_s(92), 'exchange-horiz-nest', 'start' )
1186!
1187!--             Exchange_horiz is needed for all parent-domains after the
1188!--             anterpolation
1189                CALL exchange_horiz( u, nbgp )
1190                CALL exchange_horiz( v, nbgp )
1191                CALL exchange_horiz( w, nbgp )
1192                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
1193
1194                IF ( humidity )  THEN
1195
1196                   CALL exchange_horiz( q, nbgp )
1197
1198                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
1199                       CALL exchange_horiz( qc, nbgp )
1200                       CALL exchange_horiz( nc, nbgp )
1201                   ENDIF
1202                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
1203                       CALL exchange_horiz( qr, nbgp )
1204                       CALL exchange_horiz( nr, nbgp )
1205                   ENDIF
1206
1207                ENDIF
1208
1209                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
1210
1211                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
1212
1213                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.  rans_tke_e )  THEN
1214                   CALL exchange_horiz( diss, nbgp )
1215                ENDIF
1216
1217                IF ( air_chemistry )  THEN
1218                   DO  n = 1, nvar
1219                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
1220                   ENDDO
1221                ENDIF
1222
1223                IF ( salsa  .AND. time_since_reference_point >= skip_time_do_salsa )  THEN
1224                   DO  ib = 1, nbins_aerosol
1225                      CALL exchange_horiz( aerosol_number(ib)%conc, nbgp )
1226                      DO  ic = 1, ncomponents_mass
1227                         icc = ( ic - 1 ) * nbins_aerosol + ib
1228                         CALL exchange_horiz( aerosol_mass(icc)%conc, nbgp )
1229                      ENDDO
1230                   ENDDO
1231                   IF ( .NOT. salsa_gases_from_chem )  THEN
1232                      DO  ig = 1, ngases_salsa
1233                         CALL exchange_horiz( salsa_gas(ig)%conc, nbgp )
1234                      ENDDO
1235                   ENDIF
1236                ENDIF
1237                CALL cpu_log( log_point_s(92), 'exchange-horiz-nest', 'stop' )
1238
1239             ENDIF
1240
1241!
1242!--          Set boundary conditions again after interpolation and anterpolation.
1243             CALL pmci_boundary_conds
1244
1245!
1246!--          Set chemistry boundary conditions (decycling)
1247             IF ( air_chemistry )  THEN
1248                DO  lsp = 1, nvar
1249                   lsp_usr = 1
1250                   DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
1251                      IF ( TRIM( chem_species(lsp)%name ) == TRIM( cs_name(lsp_usr) ) )  THEN
1252                         CALL chem_boundary_conds( chem_species(lsp)%conc,                         &
1253                                                   chem_species(lsp)%conc_pr_init )
1254                      ENDIF
1255                      lsp_usr = lsp_usr + 1
1256                   ENDDO
1257                ENDDO
1258             ENDIF
1259
1260!
1261!--          Set SALSA boundary conditions (decycling)
1262             IF ( salsa  .AND. time_since_reference_point >= skip_time_do_salsa )  THEN
1263                DO  ib = 1, nbins_aerosol
1264                   CALL salsa_boundary_conds( aerosol_number(ib)%conc, aerosol_number(ib)%init )
1265                   DO  ic = 1, ncomponents_mass
1266                      icc = ( ic - 1 ) * nbins_aerosol + ib
1267                      CALL salsa_boundary_conds( aerosol_mass(icc)%conc, aerosol_mass(icc)%init )
1268                   ENDDO
1269                ENDDO
1270                IF ( .NOT. salsa_gases_from_chem )  THEN
1271                   DO  ig = 1, ngases_salsa
1272                      CALL salsa_boundary_conds( salsa_gas(ig)%conc, salsa_gas(ig)%init )
1273                   ENDDO
1274                ENDIF
1275             ENDIF
1276
1277             CALL cpu_log( log_point(60), 'nesting', 'stop' )
1278
1279          ENDIF
1280
1281!
1282!--       Temperature offset must be imposed at cyclic boundaries in x-direction
1283!--       when a sloping surface is used
1284          IF ( sloping_surface )  THEN
1285             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - pt_slope_offset
1286             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + pt_slope_offset
1287          ENDIF
1288
1289!
1290!--       Impose a turbulent inflow using the recycling method
1291          IF ( turbulent_inflow )  CALL inflow_turbulence
1292
1293!
1294!--       Set values at outflow boundary using the special outflow condition
1295          IF ( turbulent_outflow )  CALL outflow_turbulence
1296
1297!
1298!--       Impose a random perturbation on the horizontal velocity field
1299          IF ( create_disturbances  .AND.  ( call_psolver_at_all_substeps  .AND.                   &
1300               intermediate_timestep_count == intermediate_timestep_count_max )                    &
1301               .OR. ( .NOT. call_psolver_at_all_substeps  .AND.  intermediate_timestep_count == 1 ) ) &
1302          THEN
1303             time_disturb = time_disturb + dt_3d
1304             IF ( time_disturb >= dt_disturb )  THEN
1305                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                                     &
1306                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
1307                   CALL disturb_field( 'u', tend, u )
1308                   CALL disturb_field( 'v', tend, v )
1309                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )                                &
1310                         .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )                 &
1311                THEN
1312!
1313!--                Runs with a non-cyclic lateral wall need perturbations
1314!--                near the inflow throughout the whole simulation
1315                   dist_range = 1
1316                   CALL disturb_field( 'u', tend, u )
1317                   CALL disturb_field( 'v', tend, v )
1318                   dist_range = 0
1319                ENDIF
1320                time_disturb = time_disturb - dt_disturb
1321             ENDIF
1322          ENDIF
1323
1324!
1325!--       Map forcing data derived from larger scale model onto domain
1326!--       boundaries.
1327          IF ( nesting_offline  .AND.  intermediate_timestep_count ==                              &
1328                                       intermediate_timestep_count_max  )                          &
1329             CALL nesting_offl_bc
1330!
1331!--       Impose a turbulent inflow using synthetic generated turbulence.
1332          IF ( use_syn_turb_gen  .AND.                                                             &
1333               intermediate_timestep_count == intermediate_timestep_count_max )  THEN
1334             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1335             CALL stg_main
1336             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1337          ENDIF
1338!
1339!--       Ensure mass conservation. This need to be done after imposing
1340!--       synthetic turbulence and top boundary condition for pressure is set to
1341!--       Neumann conditions.
1342!--       Is this also required in case of Dirichlet?
1343          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1344!
1345!--       Reduce the velocity divergence via the equation for perturbation
1346!--       pressure.
1347          IF ( intermediate_timestep_count == 1  .OR. &
1348                call_psolver_at_all_substeps )  THEN
1349
1350             IF (  vnest_init ) THEN
1351!
1352!--             Compute pressure in the CG, interpolate top boundary conditions
1353!--             to the FG and then compute pressure in the FG
1354                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1355
1356                CALL cpu_log( log_point_s(30), 'vnest_bc', 'start' )
1357                CALL vnest_boundary_conds
1358                CALL cpu_log( log_point_s(30), 'vnest_bc', 'stop' )
1359 
1360                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1361
1362!--             Anterpolate TKE, satisfy Germano Identity
1363                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'start' )
1364                CALL vnest_anterpolate_e
1365                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'stop' )
1366
1367             ELSE
1368!               
1369!--             Mass (volume) flux correction to ensure global mass conservation for child domains.
1370                IF ( child_domain )  THEN
1371                   IF ( nesting_mode == 'vertical' )  THEN
1372                      CALL pmci_ensure_nest_mass_conservation_vertical
1373                   ELSE
1374                      CALL pmci_ensure_nest_mass_conservation
1375                   ENDIF
1376                ENDIF
1377               
1378                CALL pres
1379
1380             ENDIF
1381
1382          ENDIF
1383
1384!
1385!--       If required, compute liquid water content
1386          IF ( bulk_cloud_model )  THEN
1387             CALL calc_liquid_water_content
1388          ENDIF
1389!
1390!--       If required, compute virtual potential temperature
1391          IF ( humidity )  THEN
1392             CALL compute_vpt
1393          ENDIF
1394
1395!
1396!--       Compute the diffusion quantities
1397          IF ( .NOT. constant_diffusion )  THEN
1398
1399!
1400!--          Determine surface fluxes shf and qsws and surface values
1401!--          pt_surface and q_surface in dependence on data from external
1402!--          file LSF_DATA respectively
1403             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND.                                     &
1404                 intermediate_timestep_count == intermediate_timestep_count_max )                  &
1405             THEN
1406                CALL ls_forcing_surf( simulated_time )
1407             ENDIF
1408
1409!
1410!--          First the vertical (and horizontal) fluxes in the surface
1411!--          (constant flux) layer are computed
1412             IF ( constant_flux_layer )  THEN
1413                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1414                CALL surface_layer_fluxes
1415                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
1416             ENDIF
1417!
1418!--          If required, solve the energy balance for the surface and run soil
1419!--          model. Call for horizontal as well as vertical surfaces
1420             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
1421
1422                CALL cpu_log( log_point(54), 'land_surface', 'start' )
1423!
1424!--             Call for horizontal upward-facing surfaces
1425                CALL lsm_energy_balance( .TRUE., -1 )
1426                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
1427!
1428!--             Call for northward-facing surfaces
1429                CALL lsm_energy_balance( .FALSE., 0 )
1430                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
1431!
1432!--             Call for southward-facing surfaces
1433                CALL lsm_energy_balance( .FALSE., 1 )
1434                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
1435!
1436!--             Call for eastward-facing surfaces
1437                CALL lsm_energy_balance( .FALSE., 2 )
1438                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
1439!
1440!--             Call for westward-facing surfaces
1441                CALL lsm_energy_balance( .FALSE., 3 )
1442                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
1443               
1444!
1445!--             At the end, set boundary conditons for potential temperature
1446!--             and humidity after running the land-surface model. This
1447!--             might be important for the nesting, where arrays are transfered.
1448                CALL lsm_boundary_condition
1449
1450               
1451                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1452             ENDIF
1453!
1454!--          If required, solve the energy balance for urban surfaces and run
1455!--          the material heat model
1456             IF (urban_surface) THEN
1457                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
1458               
1459                CALL usm_surface_energy_balance( .FALSE. )
1460                IF ( usm_material_model )  THEN
1461                   CALL usm_green_heat_model
1462                   CALL usm_material_heat_model ( .FALSE. )
1463                ENDIF
1464
1465!
1466!--             At the end, set boundary conditons for potential temperature
1467!--             and humidity after running the urban-surface model. This
1468!--             might be important for the nesting, where arrays are transfered.
1469                CALL usm_boundary_condition
1470
1471                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1472             ENDIF
1473!
1474!--          Compute the diffusion coefficients
1475             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
1476             IF ( .NOT. humidity ) THEN
1477                IF ( ocean_mode )  THEN
1478                   CALL tcm_diffusivities( prho, prho_reference )
1479                ELSE
1480                   CALL tcm_diffusivities( pt, pt_reference )
1481                ENDIF
1482             ELSE
1483                CALL tcm_diffusivities( vpt, pt_reference )
1484             ENDIF
1485             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
1486!
1487!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1488             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
1489
1490          ENDIF
1491
1492       ENDDO   ! Intermediate step loop
1493
1494!
1495!--    Will be used at some point by flow_statistics.
1496       !$ACC UPDATE &
1497       !$ACC HOST(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
1498       !$ACC HOST(sums_us2_ws_l(nzb:nzt+1,0)) &
1499       !$ACC HOST(sums_wsus_ws_l(nzb:nzt+1,0)) &
1500       !$ACC HOST(sums_vs2_ws_l(nzb:nzt+1,0)) &
1501       !$ACC HOST(sums_wsvs_ws_l(nzb:nzt+1,0)) &
1502       !$ACC HOST(sums_ws2_ws_l(nzb:nzt+1,0)) &
1503       !$ACC HOST(sums_wspts_ws_l(nzb:nzt+1,0)) &
1504       !$ACC HOST(sums_wssas_ws_l(nzb:nzt+1,0)) &
1505       !$ACC HOST(sums_wsqs_ws_l(nzb:nzt+1,0)) &
1506       !$ACC HOST(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
1507       !$ACC HOST(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
1508       !$ACC HOST(sums_wsncs_ws_l(nzb:nzt+1,0)) &
1509       !$ACC HOST(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
1510       !$ACC HOST(sums_wsss_ws_l(nzb:nzt+1,0)) &
1511       !$ACC HOST(sums_salsa_ws_l(nzb:nzt+1,0))
1512
1513!
1514!--    If required, calculate radiative fluxes and heating rates
1515       IF ( radiation  .AND.  time_since_reference_point > skip_time_do_radiation )  THEN
1516
1517          time_radiation = time_radiation + dt_3d
1518
1519          IF ( time_radiation >= dt_radiation  .OR.  force_radiation_call )  THEN
1520
1521             CALL cpu_log( log_point(50), 'radiation', 'start' )
1522
1523             IF ( .NOT. force_radiation_call )  THEN
1524                time_radiation = time_radiation - dt_radiation
1525             ENDIF
1526
1527!
1528!--          Adjust the current time to the time step of the radiation model.
1529!--          Needed since radiation is pre-calculated and stored only on apparent
1530!--          solar positions
1531             time_since_reference_point_save = time_since_reference_point
1532             time_since_reference_point = REAL( FLOOR( time_since_reference_point /             &
1533                                                       dt_radiation ), wp ) * dt_radiation
1534
1535             CALL radiation_control
1536
1537             IF ( ( urban_surface  .OR.  land_surface )  .AND.  radiation_interactions )  THEN
1538                CALL cpu_log( log_point_s(46), 'radiation_interaction', 'start' )
1539                CALL radiation_interaction
1540                CALL cpu_log( log_point_s(46), 'radiation_interaction', 'stop' )
1541             ENDIF
1542 
1543!
1544!--          Return the current time to its original value
1545             time_since_reference_point = time_since_reference_point_save
1546
1547             CALL cpu_log( log_point(50), 'radiation', 'stop' )
1548
1549          ENDIF
1550       ENDIF
1551
1552!
1553!--    If required, consider chemical emissions
1554       IF ( air_chemistry  .AND.  emissions_anthropogenic )  THEN
1555!
1556!--       Update the time --> kanani: revise location of this CALL
1557          CALL calc_date_and_time
1558!
1559!--       Call emission routine only once an hour
1560          IF (hour_of_year  .GT.  hour_call_emis )  THEN
1561             CALL chem_emissions_setup( chem_emis_att, chem_emis, n_matched_vars )
1562             hour_call_emis = hour_of_year
1563          ENDIF
1564       ENDIF
1565!
1566!--    If required, consider aerosol emissions for the salsa model
1567       IF ( salsa )  THEN
1568!
1569!--       Call emission routine to update emissions if needed
1570          CALL salsa_emission_update
1571
1572       ENDIF
1573!
1574!--    If required, calculate indoor temperature, waste heat, heat flux
1575!--    through wall, etc.
1576!--    dt_indoor steers the frequency of the indoor model calculations.
1577!--    Note, at first timestep indoor model is called, in order to provide
1578!--    a waste heat flux.
1579       IF ( indoor_model )  THEN
1580
1581          time_indoor = time_indoor + dt_3d
1582
1583          IF ( time_indoor >= dt_indoor  .OR.  current_timestep_number == 0 )  THEN
1584
1585             time_indoor = time_indoor - dt_indoor
1586
1587             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1588             CALL im_main_heatcool
1589             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1590
1591          ENDIF
1592       ENDIF
1593!
1594!--    Increase simulation time and output times
1595       nr_timesteps_this_run      = nr_timesteps_this_run + 1
1596       current_timestep_number    = current_timestep_number + 1
1597       simulated_time             = simulated_time   + dt_3d
1598       time_since_reference_point = simulated_time - coupling_start_time
1599       simulated_time_chr         = time_to_string( time_since_reference_point )
1600
1601
1602
1603
1604       IF ( time_since_reference_point >= skip_time_data_output_av )  THEN
1605          time_do_av         = time_do_av       + dt_3d
1606       ENDIF
1607       IF ( time_since_reference_point >= skip_time_do2d_xy )  THEN
1608          time_do2d_xy       = time_do2d_xy     + dt_3d
1609       ENDIF
1610       IF ( time_since_reference_point >= skip_time_do2d_xz )  THEN
1611          time_do2d_xz       = time_do2d_xz     + dt_3d
1612       ENDIF
1613       IF ( time_since_reference_point >= skip_time_do2d_yz )  THEN
1614          time_do2d_yz       = time_do2d_yz     + dt_3d
1615       ENDIF
1616       IF ( time_since_reference_point >= skip_time_do3d    )  THEN
1617          time_do3d          = time_do3d        + dt_3d
1618       ENDIF
1619       DO  mid = 1, masks
1620          IF ( time_since_reference_point >= skip_time_domask(mid) )  THEN
1621             time_domask(mid)= time_domask(mid) + dt_3d
1622          ENDIF
1623       ENDDO
1624       IF ( time_since_reference_point >= skip_time_dosp )  THEN
1625          time_dosp       = time_dosp        + dt_3d
1626       ENDIF
1627       time_dots          = time_dots        + dt_3d
1628       IF ( .NOT. first_call_lpm )  THEN
1629          time_dopts      = time_dopts       + dt_3d
1630       ENDIF
1631       IF ( time_since_reference_point >= skip_time_dopr )  THEN
1632          time_dopr       = time_dopr        + dt_3d
1633       ENDIF
1634       time_dopr_listing  = time_dopr_listing + dt_3d
1635       time_run_control   = time_run_control + dt_3d
1636!
1637!--    Increment time-counter for surface output
1638       IF ( surface_output )  THEN
1639          IF ( time_since_reference_point >= skip_time_dosurf )  THEN
1640             time_dosurf    = time_dosurf + dt_3d
1641          ENDIF
1642          IF ( time_since_reference_point >= skip_time_dosurf_av )  THEN
1643             time_dosurf_av = time_dosurf_av + dt_3d
1644          ENDIF
1645       ENDIF
1646!
1647!--    Increment time-counter for virtual measurements
1648       IF ( virtual_measurement  .AND.  vm_time_start <= time_since_reference_point )  THEN
1649          time_virtual_measurement = time_virtual_measurement + dt_3d
1650       ENDIF
1651!
1652!--    In case of synthetic turbulence generation and parametrized turbulence
1653!--    information, update the time counter and if required, adjust the
1654!--    STG to new atmospheric conditions.
1655       IF ( use_syn_turb_gen  )  THEN
1656          IF ( parametrize_inflow_turbulence )  THEN
1657             time_stg_adjust = time_stg_adjust + dt_3d
1658             IF ( time_stg_adjust >= dt_stg_adjust )  THEN
1659                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1660                CALL stg_adjust
1661                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1662             ENDIF
1663          ENDIF
1664          time_stg_call = time_stg_call + dt_3d
1665       ENDIF
1666
1667!
1668!--    Data exchange between coupled models
1669       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND.  .NOT. vnested )  THEN
1670          time_coupling = time_coupling + dt_3d
1671
1672!
1673!--       In case of model termination initiated by the local model
1674!--       (terminate_coupled > 0), the coupler must be skipped because it would
1675!--       cause an MPI intercomminucation hang.
1676!--       If necessary, the coupler will be called at the beginning of the
1677!--       next restart run.
1678          DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
1679             CALL surface_coupler
1680             time_coupling = time_coupling - dt_coupling
1681          ENDDO
1682       ENDIF
1683
1684!
1685!--    Biometeorology calculation of stationary thermal indices
1686!--    Todo (kanani): biometeorology needs own time_... treatment.
1687!--                   It might be that time_do2d_xy differs from time_do3d,
1688!--                   and then we might get trouble with the biomet output,
1689!--                   because we can have 2d and/or 3d biomet output!!
1690       IF ( biometeorology                                                                         &
1691            .AND. ( ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  &
1692                  .OR.                                                                             &
1693            ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy ) &
1694                    ) )  THEN
1695!
1696!--       If required, do thermal comfort calculations
1697          IF ( thermal_comfort )  THEN
1698             CALL bio_calculate_thermal_index_maps ( .FALSE. )
1699          ENDIF
1700!
1701!--       If required, do UV exposure calculations
1702          IF ( uv_exposure )  THEN
1703             CALL uvem_calc_exposure
1704          ENDIF
1705       ENDIF
1706
1707!
1708!--    Execute alle other module actions routunes
1709       CALL module_interface_actions( 'after_integration' )
1710
1711!
1712!--    If Galilei transformation is used, determine the distance that the
1713!--    model has moved so far
1714       IF ( galilei_transformation )  THEN
1715          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1716          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1717       ENDIF
1718
1719!
1720!--    Check, if restart is necessary (because cpu-time is expiring or
1721!--    because it is forced by user) and set stop flag
1722!--    This call is skipped if the remote model has already initiated a restart.
1723       IF ( .NOT. terminate_run )  CALL check_for_restart
1724
1725!
1726!--    Carry out statistical analysis and output at the requested output times.
1727!--    The MOD function is used for calculating the output time counters (like
1728!--    time_dopr) in order to regard a possible decrease of the output time
1729!--    interval in case of restart runs
1730
1731!
1732!--    Set a flag indicating that so far no statistics have been created
1733!--    for this time step
1734       flow_statistics_called = .FALSE.
1735
1736!
1737!--    If required, call flow_statistics for averaging in time
1738       IF ( averaging_interval_pr /= 0.0_wp  .AND.                                                 &
1739            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.                                &
1740            time_since_reference_point >= skip_time_dopr )  THEN
1741          time_dopr_av = time_dopr_av + dt_3d
1742          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1743             do_sum = .TRUE.
1744             time_dopr_av = MOD( time_dopr_av, MAX( dt_averaging_input_pr, dt_3d ) )
1745          ENDIF
1746       ENDIF
1747       IF ( do_sum )  CALL flow_statistics
1748
1749!
1750!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
1751       IF ( averaging_interval /= 0.0_wp  .AND.                                                    &
1752            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND.                        &
1753            time_since_reference_point >= skip_time_data_output_av )                               &
1754       THEN
1755          time_do_sla = time_do_sla + dt_3d
1756          IF ( time_do_sla >= dt_averaging_input )  THEN
1757             IF ( current_timestep_number > timestep_number_at_prev_calc )                         &
1758                CALL doq_calculate
1759
1760             CALL sum_up_3d_data
1761             average_count_3d = average_count_3d + 1
1762             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1763          ENDIF
1764       ENDIF
1765!
1766!--    Average surface data
1767       IF ( surface_output )  THEN
1768          IF ( averaging_interval_surf /= 0.0_wp                                                   &
1769                .AND.  ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf                &
1770                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1771             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
1772                CALL surface_data_output_averaging
1773                average_count_surf = average_count_surf + 1
1774             ENDIF
1775          ENDIF
1776       ENDIF
1777
1778!
1779!--    Calculate spectra for time averaging
1780       IF ( averaging_interval_sp /= 0.0_wp  .AND. ( dt_dosp - time_dosp ) <= averaging_interval_sp&
1781            .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1782          time_dosp_av = time_dosp_av + dt_3d
1783          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1784             CALL calc_spectra
1785             time_dosp_av = MOD( time_dosp_av, MAX( dt_averaging_input_pr, dt_3d ) )
1786          ENDIF
1787       ENDIF
1788
1789!
1790!--    Call flight module and output data
1791       IF ( virtual_flight )  THEN
1792          CALL flight_measurement
1793          CALL data_output_flight
1794       ENDIF
1795!
1796!--    Take virtual measurements
1797       IF ( virtual_measurement  .AND.  time_virtual_measurement >= dt_virtual_measurement         &
1798                                 .AND.  vm_time_start <= time_since_reference_point )  THEN
1799          CALL vm_sampling
1800          CALL vm_data_output
1801          time_virtual_measurement = MOD(      time_virtual_measurement,                           &
1802                                          MAX( dt_virtual_measurement, dt_3d ) )
1803       ENDIF
1804!
1805!--    Profile output (ASCII) on file
1806       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1807          CALL print_1d
1808          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, dt_3d ) )
1809       ENDIF
1810
1811!
1812!--    Graphic output for PROFIL
1813       IF ( time_dopr >= dt_dopr  .AND.  time_since_reference_point >= skip_time_dopr )  THEN
1814          IF ( dopr_n /= 0 )  CALL data_output_profiles
1815          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
1816          time_dopr_av = 0.0_wp    ! due to averaging (see above)
1817       ENDIF
1818
1819!
1820!--    Graphic output for time series
1821       IF ( time_dots >= dt_dots )  THEN
1822          CALL data_output_tseries
1823          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1824       ENDIF
1825
1826!
1827!--    Output of spectra (formatted for use with PROFIL), in case of no
1828!--    time averaging, spectra has to be calculated before
1829       IF ( time_dosp >= dt_dosp  .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1830          IF ( average_count_sp == 0 )  CALL calc_spectra
1831          CALL data_output_spectra
1832          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1833       ENDIF
1834
1835!
1836!--    2d-data output (cross-sections)
1837       IF ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy )  THEN
1838          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1839             CALL doq_calculate
1840
1841          CALL data_output_2d( 'xy', 0 )
1842          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1843       ENDIF
1844       IF ( time_do2d_xz >= dt_do2d_xz  .AND.  time_since_reference_point >= skip_time_do2d_xz )  THEN
1845          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1846
1847             CALL doq_calculate
1848          CALL data_output_2d( 'xz', 0 )
1849          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1850       ENDIF
1851       IF ( time_do2d_yz >= dt_do2d_yz  .AND.  time_since_reference_point >= skip_time_do2d_yz )  THEN
1852          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1853             CALL doq_calculate
1854
1855          CALL data_output_2d( 'yz', 0 )
1856          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1857       ENDIF
1858
1859!
1860!--    3d-data output (volume data)
1861       IF ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  THEN
1862          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1863             CALL doq_calculate
1864
1865          CALL data_output_3d( 0 )
1866          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1867       ENDIF
1868
1869!
1870!--    Masked data output
1871       DO  mid = 1, masks
1872          IF ( time_domask(mid) >= dt_domask(mid)                                                  &
1873               .AND.  time_since_reference_point >= skip_time_domask(mid) )  THEN
1874             IF ( current_timestep_number > timestep_number_at_prev_calc )                         &
1875                CALL doq_calculate
1876
1877             CALL data_output_mask( 0, mid )
1878             time_domask(mid) = MOD( time_domask(mid), MAX( dt_domask(mid), dt_3d ) )
1879          ENDIF
1880       ENDDO
1881
1882!
1883!--    Output of time-averaged 2d/3d/masked data
1884       IF ( time_do_av >= dt_data_output_av                                                        &
1885            .AND.  time_since_reference_point >= skip_time_data_output_av )  THEN
1886          CALL average_3d_data
1887!
1888!--       Udate thermal comfort indices based on updated averaged input
1889          IF ( biometeorology  .AND.  thermal_comfort )  THEN
1890             CALL bio_calculate_thermal_index_maps ( .TRUE. )
1891          ENDIF
1892          CALL data_output_2d( 'xy', 1 )
1893          CALL data_output_2d( 'xz', 1 )
1894          CALL data_output_2d( 'yz', 1 )
1895          CALL data_output_3d( 1 )
1896          DO  mid = 1, masks
1897             CALL data_output_mask( 1, mid )
1898          ENDDO
1899          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1900       ENDIF
1901!
1902!--    Output of surface data, instantaneous and averaged data
1903       IF ( surface_output )  THEN
1904          IF ( time_dosurf >= dt_dosurf  .AND.  time_since_reference_point >= skip_time_dosurf )  THEN
1905             CALL surface_data_output( 0 )
1906             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1907          ENDIF
1908          IF ( time_dosurf_av >= dt_dosurf_av  .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1909             CALL surface_data_output( 1 )
1910             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1911          ENDIF
1912       ENDIF
1913
1914!
1915!--    Output of particle time series
1916       IF ( particle_advection )  THEN
1917          IF ( time_dopts >= dt_dopts  .OR.                                                        &
1918               ( time_since_reference_point >= particle_advection_start  .AND.                     &
1919                 first_call_lpm ) )  THEN
1920             CALL lpm_data_output_ptseries
1921             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1922          ENDIF
1923       ENDIF
1924
1925!
1926!--    If required, set the heat flux for the next time step to a random value
1927       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
1928          IF ( surf_def_h(0)%ns >= 1 )  THEN
1929             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1930             CALL disturb_heatflux( surf_def_h(0) )
1931             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1932          ENDIF
1933          IF ( surf_lsm_h%ns    >= 1 )  THEN
1934             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1935             CALL disturb_heatflux( surf_lsm_h    )
1936             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1937          ENDIF
1938          IF ( surf_usm_h%ns    >= 1 )  THEN
1939             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1940             CALL disturb_heatflux( surf_usm_h    )
1941             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1942          ENDIF
1943       ENDIF
1944
1945!
1946!--    Execute alle other module actions routunes
1947       CALL module_interface_actions( 'after_timestep' )
1948
1949!
1950!--    Determine size of next time step. Save timestep dt_3d because it is
1951!--    newly calculated in routine timestep, but required further below for
1952!--    steering the run control output interval
1953       dt_3d_old = dt_3d
1954       CALL timestep
1955
1956!
1957!--    Synchronize the timestep in case of nested run.
1958       IF ( nested_run )  THEN
1959!
1960!--       Synchronize by unifying the time step.
1961!--       Global minimum of all time-steps is used for all.
1962          CALL pmci_synchronize
1963       ENDIF
1964
1965!
1966!--    Computation and output of run control parameters.
1967!--    This is also done whenever perturbations have been imposed
1968       IF ( time_run_control >= dt_run_control  .OR.                                               &
1969            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created )                           &
1970       THEN
1971          CALL run_control
1972          IF ( time_run_control >= dt_run_control )  THEN
1973             time_run_control = MOD( time_run_control, MAX( dt_run_control, dt_3d_old ) )
1974          ENDIF
1975       ENDIF
1976
1977!
1978!--    Output elapsed simulated time in form of a progress bar on stdout
1979       IF ( myid == 0 )  CALL output_progress_bar
1980
1981       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1982
1983
1984    ENDDO   ! time loop
1985
1986#if defined( _OPENACC )
1987    CALL exit_surface_arrays
1988#endif
1989!$ACC END DATA
1990!$ACC END DATA
1991!$ACC END DATA
1992!$ACC END DATA
1993!$ACC END DATA
1994!$ACC END DATA
1995!$ACC END DATA
1996
1997!
1998!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
1999    IF ( vnest_init )  CALL vnest_deallocate
2000
2001    IF ( myid == 0 )  CALL finish_progress_bar
2002
2003    CALL location_message( 'atmosphere (and/or ocean) time-stepping', 'finished' )
2004
2005 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.