source: palm/trunk/SOURCE/time_integration.f90 @ 4064

Last change on this file since 4064 was 4064, checked in by gronemeier, 2 years ago

Moved call to radiation module out of intermediate time loop (time_integration, time_integration_spinup)

  • Property svn:keywords set to Id
File size: 80.2 KB
Line 
1!> @file time_integration.f90
2!------------------------------------------------------------------------------!
3! This file is part of the PALM model system.
4!
5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2019 Leibniz Universitaet Hannover
18!------------------------------------------------------------------------------!
19!
20! Current revisions:
21! ------------------
22!
23!
24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 4064 2019-07-01 05:33:33Z gronemeier $
27! Moved call to radiation module out of intermediate time loop
28!
29! 4048 2019-06-21 21:00:21Z knoop
30! Moved production_e_init call into turbulence_closure_mod
31!
32! 4047 2019-06-21 18:58:09Z knoop
33! Added remainings of swap_timelevel upon its dissolution
34!
35! 4043 2019-06-18 16:59:00Z schwenkel
36! Further LPM modularization
37!
38! 4039 2019-06-18 10:32:41Z suehring
39! Rename subroutines in module for diagnostic quantities
40!
41! 4029 2019-06-14 14:04:35Z raasch
42! exchange of ghost points and boundary conditions separated for chemical species and SALSA module,
43! bugfix: decycling of chemistry species after nesting data transfer
44!
45! 4022 2019-06-12 11:52:39Z suehring
46! Call synthetic turbulence generator at last RK3 substep right after boundary
47! conditions are updated in offline nesting in order to assure that
48! perturbations are always imposed
49!
50! 4017 2019-06-06 12:16:46Z schwenkel
51! Mass (volume) flux correction included to ensure global mass conservation for child domains.
52!
53! 3994 2019-05-22 18:08:09Z suehring
54! output of turbulence intensity added
55!
56! 3988 2019-05-22 11:32:37Z kanani
57! Implement steerable output interval for virtual measurements
58!
59! 3968 2019-05-13 11:04:01Z suehring
60! replace nspec_out with n_matched_vars
61!
62! 3929 2019-04-24 12:52:08Z banzhafs
63! Reverse changes back from revision 3878: use chem_boundary_conds instead of
64! chem_boundary_conds_decycle
65!
66!
67! 3885 2019-04-11 11:29:34Z kanani
68! Changes related to global restructuring of location messages and introduction
69! of additional debug messages
70!
71! 3879 2019-04-08 20:25:23Z knoop
72! Moved wtm_forces to module_interface_actions
73!
74! 3872 2019-04-08 15:03:06Z knoop
75! Modifications made for salsa:
76! - Call salsa_emission_update at each time step but do the checks within
77!   salsa_emission_update (i.e. skip_time_do_salsa >= time_since_reference_point
78!   and next_aero_emission_update <= time_since_reference_point ).
79! - Renamed nbins --> nbins_aerosol, ncc_tot --> ncomponents_mass and
80!   ngast --> ngases_salsa and loop indices b, c and sg to ib, ic and ig
81! - Apply nesting for salsa variables
82! - Removed cpu_log calls speciffic for salsa.
83!
84! 3833 2019-03-28 15:04:04Z forkel
85! added USE chem_gasphase_mod, replaced nspec by nspec since fixed compounds are not integrated
86!
87! 3820 2019-03-27 11:53:41Z forkel
88! renamed do_emiss to emissions_anthropogenic (ecc)
89!
90!
91! 3774 2019-03-04 10:52:49Z moh.hefny
92! rephrase if statement to avoid unallocated array in case of
93! nesting_offline is false (crashing during debug mode)
94!
95! 3761 2019-02-25 15:31:42Z raasch $
96! module section re-formatted and openacc required variables moved to separate section,
97! re-formatting to 100 char line width
98!
99! 3745 2019-02-15 18:57:56Z suehring
100! Call indoor model after first timestep
101!
102! 3744 2019-02-15 18:38:58Z suehring
103! - Moved call of bio_calculate_thermal_index_maps from biometeorology module to
104! time_integration to make sure averaged input is updated before calculating.
105!
106! 3739 2019-02-13 08:05:17Z dom_dwd_user
107! Removed everything related to "time_bio_results" as this is never used.
108!
109! 3724 2019-02-06 16:28:23Z kanani
110! Correct double-used log_point_s unit
111!
112! 3719 2019-02-06 13:10:18Z kanani
113! - removed wind_turbine cpu measurement, since same time is measured inside
114!   wtm_forces subroutine as special measures
115! - moved the numerous vnest cpulog to special measures
116! - extended radiation cpulog over entire radiation part,
117!   moved radiation_interactions cpulog to special measures
118! - moved some cpu_log calls to this routine for better overview
119!
120! 3705 2019-01-29 19:56:39Z suehring
121! Data output for virtual measurements added
122!
123! 3704 2019-01-29 19:51:41Z suehring
124! Rename subroutines for surface-data output
125!
126! 3647 2019-01-02 14:10:44Z kanani
127! Bugfix: add time_since_reference_point to IF clause for data_output calls
128! (otherwise skip_time_* values don't come into affect with dt_do* = 0.0).
129! Clean up indoor_model and biometeorology model call.
130!
131! 3646 2018-12-28 17:58:49Z kanani
132! Bugfix: use time_since_reference_point instead of simulated_time where
133! required (relevant when using wall/soil spinup)
134!
135! 3634 2018-12-18 12:31:28Z knoop
136! OpenACC port for SPEC
137!
138! 3597 2018-12-04 08:40:18Z maronga
139! Removed call to calculation of near air (10 cm) potential temperature (now in
140! surface layer fluxes)
141!
142! 3589 2018-11-30 15:09:51Z suehring
143! Move the control parameter "salsa" from salsa_mod to control_parameters
144! (M. Kurppa)
145!
146! 3582 2018-11-29 19:16:36Z suehring
147! dom_dwd_user, Schrempf:
148! Changes due to merge of uv exposure model into biometeorology_mod.
149!
150! 3525 2018-11-14 16:06:14Z kanani
151! Changes related to clean-up of biometeorology (dom_dwd_user)
152!
153! 3524 2018-11-14 13:36:44Z raasch
154! unused variables removed
155!
156! 3484 2018-11-02 14:41:25Z hellstea
157! pmci_ensure_nest_mass_conservation is premanently removed
158!
159! 3473 2018-10-30 20:50:15Z suehring
160! new module for virtual measurements introduced
161!
162! 3472 2018-10-30 20:43:50Z suehring
163! Add indoor model (kanani, srissman, tlang)
164!
165! 3467 2018-10-30 19:05:21Z suehring
166! Implementation of a new aerosol module salsa.
167!
168! 3448 2018-10-29 18:14:31Z kanani
169! Add biometeorology
170!
171! 3421 2018-10-24 18:39:32Z gronemeier
172! Surface data output
173!
174! 3418 2018-10-24 16:07:39Z kanani
175! call to material_heat_model now with check if spinup runs (rvtils)
176!
177! 3378 2018-10-19 12:34:59Z kanani
178! merge from radiation branch (r3362) into trunk
179! (moh.hefny):
180! Bugfix in the if statement to call radiation_interaction
181!
182! 3347 2018-10-15 14:21:08Z suehring
183! - offline nesting separated from large-scale forcing module
184! - changes for synthetic turbulence generator
185!
186! 3343 2018-10-15 10:38:52Z suehring
187! - Formatting, clean-up, comments (kanani)
188! - Added CALL to chem_emissions_setup (Russo)
189! - Code added for decycling chemistry (basit)
190!
191! 3294 2018-10-01 02:37:10Z raasch
192! changes concerning modularization of ocean option
193!
194! 3274 2018-09-24 15:42:55Z knoop
195! Modularization of all bulk cloud physics code components
196!
197! 3241 2018-09-12 15:02:00Z raasch
198! unused variables removed
199!
200! 3198 2018-08-15 09:23:10Z sward
201! Added multi_agent_system_end; defined start time for MAS relative to
202! time_since_reference_point
203!
204! 3183 2018-07-27 14:25:55Z suehring
205! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
206! Rename subroutines and variables in COSMO nesting mode
207!
208! 3182 2018-07-27 13:36:03Z suehring
209! Added multi agent system
210!
211! 3042 2018-05-25 10:44:37Z schwenkel
212! Changed the name specific humidity to mixing ratio
213!
214! 3040 2018-05-25 10:22:08Z schwenkel
215! Fixed bug in IF statement
216! Ensure that the time when calling the radiation to be the time step of the
217! pre-calculated time when first calculate the positions of the sun
218!
219! 3004 2018-04-27 12:33:25Z Giersch
220! First call of flow_statistics has been removed. It is already called in
221! run_control itself
222!
223! 2984 2018-04-18 11:51:30Z hellstea
224! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
225! as seemingly unnecessary.
226!
227! 2941 2018-04-03 11:54:58Z kanani
228! Deduct spinup_time from RUN_CONTROL output of main 3d run
229! (use time_since_reference_point instead of simulated_time)
230!
231! 2938 2018-03-27 15:52:42Z suehring
232! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
233!
234! 2936 2018-03-27 14:49:27Z suehring
235! Little formatting adjustment.
236!
237! 2817 2018-02-19 16:32:21Z knoop
238! Preliminary gust module interface implemented
239!
240! 2801 2018-02-14 16:01:55Z thiele
241! Changed lpm from subroutine to module.
242! Introduce particle transfer in nested models.
243!
244! 2776 2018-01-31 10:44:42Z Giersch
245! Variable use_synthetic_turbulence_generator has been abbreviated
246!
247! 2773 2018-01-30 14:12:54Z suehring
248! - Nesting for chemical species
249!
250! 2766 2018-01-22 17:17:47Z kanani
251! Removed preprocessor directive __chem
252!
253! 2718 2018-01-02 08:49:38Z maronga
254! Corrected "Former revisions" section
255!
256! 2696 2017-12-14 17:12:51Z kanani
257! - Change in file header (GPL part)
258! - Implementation of uv exposure model (FK)
259! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
260! - renamed diffusivities to tcm_diffusivities (TG)
261! - implement prognostic equation for diss (TG)
262! - Moved/commented CALL to chem_emissions (FK)
263! - Added CALL to chem_emissions (FK)
264! - Implementation of chemistry module (FK)
265! - Calls for setting boundary conditions in USM and LSM (MS)
266! - Large-scale forcing with larger-scale models implemented (MS)
267! - Rename usm_radiation into radiation_interactions; merge with branch
268!   radiation (MS)
269! - added call for usm_green_heat_model for green building surfaces (RvT)
270! - added call for usm_temperature_near_surface for use in indoor model (RvT)
271!
272! 2617 2017-11-16 12:47:24Z suehring
273! Bugfix, assure that the reference state does not become zero.
274!
275! 2563 2017-10-19 15:36:10Z Giersch
276! Variable wind_turbine moved to module control_parameters
277!
278! 2365 2017-08-21 14:59:59Z kanani
279! Vertical grid nesting implemented (SadiqHuq)
280!
281! 2320 2017-07-21 12:47:43Z suehring
282! Set bottom boundary conditions after nesting interpolation and anterpolation
283!
284! 2299 2017-06-29 10:14:38Z maronga
285! Call of soil model adjusted
286!
287! 2292 2017-06-20 09:51:42Z schwenkel
288! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
289! includes two more prognostic equations for cloud drop concentration (nc) 
290! and cloud water content (qc).
291!
292! 2271 2017-06-09 12:34:55Z sward
293! Start timestep message changed
294!
295! 2259 2017-06-08 09:09:11Z gronemeier
296! Implemented synthetic turbulence generator
297!
298! 2233 2017-05-30 18:08:54Z suehring
299!
300! 2232 2017-05-30 17:47:52Z suehring
301! Adjustments to new topography and surface concept
302! Modify passed parameters for disturb_field
303!
304! 2178 2017-03-17 11:07:39Z hellstea
305! Setting perturbations at all times near inflow boundary is removed
306! in case of nested boundaries
307!
308! 2174 2017-03-13 08:18:57Z maronga
309! Added support for nesting with cloud microphysics
310!
311! 2118 2017-01-17 16:38:49Z raasch
312! OpenACC directives and related code removed
313!
314! 2050 2016-11-08 15:00:55Z gronemeier
315! Implement turbulent outflow condition
316!
317! 2031 2016-10-21 15:11:58Z knoop
318! renamed variable rho to rho_ocean
319!
320! 2011 2016-09-19 17:29:57Z kanani
321! Flag urban_surface is now defined in module control_parameters,
322! removed commented CALLs of global_min_max.
323!
324! 2007 2016-08-24 15:47:17Z kanani
325! Added CALLs for new urban surface model
326!
327! 2000 2016-08-20 18:09:15Z knoop
328! Forced header and separation lines into 80 columns
329!
330! 1976 2016-07-27 13:28:04Z maronga
331! Simplified calls to radiation model
332!
333! 1960 2016-07-12 16:34:24Z suehring
334! Separate humidity and passive scalar
335!
336! 1957 2016-07-07 10:43:48Z suehring
337! flight module added
338!
339! 1919 2016-05-27 14:51:23Z raasch
340! Initial version of purely vertical nesting introduced.
341!
342! 1918 2016-05-27 14:35:57Z raasch
343! determination of time step moved to the end of the time step loop,
344! the first time step is now always calculated before the time step loop (i.e.
345! also in case of restart runs)
346!
347! 1914 2016-05-26 14:44:07Z witha
348! Added call for wind turbine model
349!
350! 1878 2016-04-19 12:30:36Z hellstea
351! Synchronization for nested runs rewritten
352!
353! 1853 2016-04-11 09:00:35Z maronga
354! Adjusted for use with radiation_scheme = constant
355!
356! 1849 2016-04-08 11:33:18Z hoffmann
357! Adapted for modularization of microphysics
358!
359! 1833 2016-04-07 14:23:03Z raasch
360! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
361!
362! 1831 2016-04-07 13:15:51Z hoffmann
363! turbulence renamed collision_turbulence
364!
365! 1822 2016-04-07 07:49:42Z hoffmann
366! icloud_scheme replaced by microphysics_*
367!
368! 1808 2016-04-05 19:44:00Z raasch
369! output message in case unscheduled radiation calls removed
370!
371! 1797 2016-03-21 16:50:28Z raasch
372! introduction of different datatransfer modes
373!
374! 1791 2016-03-11 10:41:25Z raasch
375! call of pmci_update_new removed
376!
377! 1786 2016-03-08 05:49:27Z raasch
378! +module spectrum
379!
380! 1783 2016-03-06 18:36:17Z raasch
381! switch back of netcdf data format for mask output moved to the mask output
382! routine
383!
384! 1781 2016-03-03 15:12:23Z raasch
385! some pmc calls removed at the beginning (before timeloop),
386! pmc initialization moved to the main program
387!
388! 1764 2016-02-28 12:45:19Z raasch
389! PMC_ACTIVE flags removed,
390! bugfix: nest synchronization after first call of timestep
391!
392! 1762 2016-02-25 12:31:13Z hellstea
393! Introduction of nested domain feature
394!
395! 1736 2015-12-04 08:56:33Z raasch
396! no perturbations added to total domain if energy limit has been set zero
397!
398! 1691 2015-10-26 16:17:44Z maronga
399! Added option for spin-ups without land surface and radiation models. Moved calls
400! for radiation and lan surface schemes.
401!
402! 1682 2015-10-07 23:56:08Z knoop
403! Code annotations made doxygen readable
404!
405! 1671 2015-09-25 03:29:37Z raasch
406! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
407! for particles
408!
409! 1585 2015-04-30 07:05:52Z maronga
410! Moved call of radiation scheme. Added support for RRTM
411!
412! 1551 2015-03-03 14:18:16Z maronga
413! Added interface for different radiation schemes.
414!
415! 1496 2014-12-02 17:25:50Z maronga
416! Added calls for the land surface model and radiation scheme
417!
418! 1402 2014-05-09 14:25:13Z raasch
419! location messages modified
420!
421! 1384 2014-05-02 14:31:06Z raasch
422! location messages added
423!
424! 1380 2014-04-28 12:40:45Z heinze
425! CALL of nudge_ref added
426! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
427!
428! 1365 2014-04-22 15:03:56Z boeske
429! Reset sums_ls_l to zero at each timestep
430! +sums_ls_l
431! Calculation of reference state (previously in subroutine calc_mean_profile)
432
433! 1342 2014-03-26 17:04:47Z kanani
434! REAL constants defined as wp-kind
435!
436! 1320 2014-03-20 08:40:49Z raasch
437! ONLY-attribute added to USE-statements,
438! kind-parameters added to all INTEGER and REAL declaration statements,
439! kinds are defined in new module kinds,
440! old module precision_kind is removed,
441! revision history before 2012 removed,
442! comment fields (!:) to be used for variable explanations added to
443! all variable declaration statements
444! 1318 2014-03-17 13:35:16Z raasch
445! module interfaces removed
446!
447! 1308 2014-03-13 14:58:42Z fricke
448! +netcdf_data_format_save
449! For masked data, parallel netcdf output is not tested so far, hence
450! netcdf_data_format is switched back to non-paralell output.
451!
452! 1276 2014-01-15 13:40:41Z heinze
453! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
454!
455! 1257 2013-11-08 15:18:40Z raasch
456! acc-update-host directive for timestep removed
457!
458! 1241 2013-10-30 11:36:58Z heinze
459! Generalize calc_mean_profile for wider use
460! Determine shf and qsws in dependence on data from LSF_DATA
461! Determine ug and vg in dependence on data from LSF_DATA
462! 1221 2013-09-10 08:59:13Z raasch
463! host update of arrays before timestep is called
464!
465! 1179 2013-06-14 05:57:58Z raasch
466! mean profiles for reference state are only calculated if required,
467! small bugfix for background communication
468!
469! 1171 2013-05-30 11:27:45Z raasch
470! split of prognostic_equations deactivated (comment lines), for the time being
471!
472! 1128 2013-04-12 06:19:32Z raasch
473! asynchronous transfer of ghost point data realized for acc-optimized version:
474! prognostic_equations are first called two times for those points required for
475! the left-right and north-south exchange, respectively, and then for the
476! remaining points,
477! those parts requiring global communication moved from prognostic_equations to
478! here
479!
480! 1115 2013-03-26 18:16:16Z hoffmann
481! calculation of qr and nr is restricted to precipitation
482!
483! 1113 2013-03-10 02:48:14Z raasch
484! GPU-porting of boundary conditions,
485! openACC directives updated
486! formal parameter removed from routine boundary_conds
487!
488! 1111 2013-03-08 23:54:10Z raasch
489! +internal timestep counter for cpu statistics added,
490! openACC directives updated
491!
492! 1092 2013-02-02 11:24:22Z raasch
493! unused variables removed
494!
495! 1065 2012-11-22 17:42:36Z hoffmann
496! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
497!
498! 1053 2012-11-13 17:11:03Z hoffmann
499! exchange of ghost points for nr, qr added
500!
501! 1036 2012-10-22 13:43:42Z raasch
502! code put under GPL (PALM 3.9)
503!
504! 1019 2012-09-28 06:46:45Z raasch
505! non-optimized version of prognostic_equations removed
506!
507! 1015 2012-09-27 09:23:24Z raasch
508! +call of prognostic_equations_acc
509!
510! 1001 2012-09-13 14:08:46Z raasch
511! all actions concerning leapfrog- and upstream-spline-scheme removed
512!
513! 849 2012-03-15 10:35:09Z raasch
514! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
515!
516! 825 2012-02-19 03:03:44Z raasch
517! wang_collision_kernel renamed wang_kernel
518!
519! Revision 1.1  1997/08/11 06:19:04  raasch
520! Initial revision
521!
522!
523! Description:
524! ------------
525!> Integration in time of the model equations, statistical analysis and graphic
526!> output
527!------------------------------------------------------------------------------!
528 SUBROUTINE time_integration
529 
530
531    USE advec_ws,                                                                                  &
532        ONLY:  ws_statistics
533
534    USE arrays_3d,                                                                                 &
535        ONLY:  diss, diss_p, dzu, e, e_p, nc, nc_p, nr, nr_p, prho, pt, pt_p, pt_init, q_init, q,  &
536               qc, qc_p, ql, ql_c, ql_v, ql_vp, qr, qr_p, q_p, ref_state, rho_ocean, s, s_p, sa_p, &
537               tend, u, u_p, v, vpt, v_p, w, w_p
538
539    USE biometeorology_mod,                                                                        &
540        ONLY:  bio_calculate_thermal_index_maps, thermal_comfort, uvem_calc_exposure, uv_exposure
541
542    USE bulk_cloud_model_mod,                                                                      &
543        ONLY: bulk_cloud_model, calc_liquid_water_content, collision_turbulence,                   &
544              microphysics_morrison, microphysics_seifert
545
546    USE calc_mean_profile_mod,                                                                     &
547        ONLY:  calc_mean_profile
548
549    USE chem_emissions_mod,                                                                        &
550        ONLY:  chem_emissions_setup
551
552    USE chem_gasphase_mod,                                                                         &
553        ONLY:  nvar
554
555    USE chem_modules,                                                                              &
556        ONLY:  bc_cs_t_val, chem_species, cs_name, emissions_anthropogenic, n_matched_vars
557
558    USE chemistry_model_mod,                                                                       &
559        ONLY:  chem_boundary_conds
560
561    USE control_parameters,                                                                        &
562        ONLY:  advected_distance_x, advected_distance_y, air_chemistry, average_count_3d,          &
563               averaging_interval, averaging_interval_pr, bc_lr_cyc, bc_ns_cyc, bc_pt_t_val,       &
564               bc_q_t_val, biometeorology, call_psolver_at_all_substeps,  child_domain,            &
565               cloud_droplets, constant_flux_layer, constant_heatflux, create_disturbances,        &
566               dopr_n, constant_diffusion, coupling_mode, coupling_start_time,                     &
567               current_timestep_number, disturbance_created, disturbance_energy_limit, dist_range, &
568               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr, dt_coupling,              &
569               dt_data_output_av, dt_disturb, dt_do2d_xy, dt_do2d_xz, dt_do2d_yz, dt_do3d,         &
570               dt_domask,dt_dopts, dt_dopr, dt_dopr_listing, dt_dots, dt_run_control,              &
571               end_time, first_call_lpm, first_call_mas, galilei_transformation, humidity,         &
572               indoor_model, intermediate_timestep_count, intermediate_timestep_count_max,         &
573               land_surface, large_scale_forcing, loop_optimization, lsf_surf, lsf_vert, masks,    &
574               mid, multi_agent_system_end, multi_agent_system_start, nesting_offline, neutral,    &
575               nr_timesteps_this_run, nudging, ocean_mode, passive_scalar, pt_reference,           &
576               pt_slope_offset, random_heatflux, rans_mode, rans_tke_e, run_coupled, salsa,        &
577               simulated_time, simulated_time_chr, skip_time_do2d_xy, skip_time_do2d_xz,           &
578               skip_time_do2d_yz, skip_time_do3d, skip_time_domask, skip_time_dopr,                &
579               skip_time_data_output_av, sloping_surface, stop_dt, surface_output,                 &
580               terminate_coupled, terminate_run, timestep_scheme, time_coupling, time_do2d_xy,     &
581               time_do2d_xz, time_do2d_yz, time_do3d, time_domask, time_dopr, time_dopr_av,        &
582               time_dopr_listing, time_dopts, time_dosp, time_dosp_av, time_dots, time_do_av,      &
583               time_do_sla, time_disturb, time_run_control, time_since_reference_point,            &
584               turbulent_inflow, turbulent_outflow, urban_surface,                                 &
585               use_initial_profile_as_reference, use_single_reference_value, u_gtrans, v_gtrans,   &
586               virtual_flight, virtual_measurement, ws_scheme_mom, ws_scheme_sca, timestep_count
587
588    USE cpulog,                                                                                    &
589        ONLY:  cpu_log, log_point, log_point_s
590
591    USE date_and_time_mod,                                                                         &
592        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
593
594    USE diagnostic_output_quantities_mod,                                                          &
595        ONLY:  doq_calculate,                                                                      &
596               timestep_number_at_prev_calc
597
598    USE flight_mod,                                                                                &
599        ONLY:  flight_measurement
600
601    USE indices,                                                                                   &
602        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nzb, nzt
603
604    USE indoor_model_mod,                                                                          &
605        ONLY:  dt_indoor, im_main_heatcool, time_indoor
606
607    USE interfaces
608
609    USE kinds
610
611    USE land_surface_model_mod,                                                                    &
612        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model, skip_time_do_lsm
613
614    USE lagrangian_particle_model_mod,                                                             &
615        ONLY:  lpm_data_output_ptseries, lpm_interaction_droplets_ptq
616
617    USE lsf_nudging_mod,                                                                           &
618        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
619
620    USE module_interface,                                                                          &
621        ONLY:  module_interface_actions, module_interface_swap_timelevel
622
623    USE multi_agent_system_mod,                                                                    &
624        ONLY:  agents_active, multi_agent_system
625
626    USE nesting_offl_mod,                                                                          &
627        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
628
629    USE netcdf_data_input_mod,                                                                     &
630        ONLY:  chem_emis, chem_emis_att, nest_offl, netcdf_data_input_offline_nesting
631
632    USE ocean_mod,                                                                                 &
633        ONLY:  prho_reference
634
635    USE particle_attributes,                                                                       &
636        ONLY:  particle_advection, particle_advection_start, use_sgs_for_particles, wang_kernel
637
638    USE pegrid
639
640    USE pmc_interface,                                                                             &
641        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans, pmci_synchronize,    &
642        pmci_ensure_nest_mass_conservation, pmci_ensure_nest_mass_conservation_vertical,           &
643        pmci_set_swaplevel
644
645    USE progress_bar,                                                                              &
646        ONLY:  finish_progress_bar, output_progress_bar
647
648    USE prognostic_equations_mod,                                                                  &
649        ONLY:  prognostic_equations_cache, prognostic_equations_vector
650
651    USE radiation_model_mod,                                                                       &
652        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,                    &
653              radiation_interaction, radiation_interactions, skip_time_do_radiation, time_radiation
654
655    USE salsa_mod,                                                                                 &
656        ONLY: aerosol_number, aerosol_mass, bc_am_t_val, bc_an_t_val, bc_gt_t_val,                 &
657              nbins_aerosol, ncomponents_mass, ngases_salsa, salsa_boundary_conds,                 &
658              salsa_emission_update, salsa_gas, salsa_gases_from_chem, skip_time_do_salsa
659
660    USE spectra_mod,                                                                               &
661        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp, skip_time_dosp
662
663    USE statistics,                                                                                &
664        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l
665
666
667    USE surface_layer_fluxes_mod,                                                                  &
668        ONLY:  surface_layer_fluxes
669
670    USE surface_data_output_mod,                                                                   &
671        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf, dt_dosurf_av,               &
672               surface_data_output, surface_data_output_averaging, skip_time_dosurf,               &
673               skip_time_dosurf_av, time_dosurf, time_dosurf_av
674
675    USE surface_mod,                                                                               &
676        ONLY:  surf_def_h, surf_lsm_h, surf_usm_h
677
678    USE synthetic_turbulence_generator_mod,                                                        &
679        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence, stg_adjust, stg_main,    &
680               time_stg_adjust, time_stg_call, use_syn_turb_gen
681
682    USE turbulence_closure_mod,                                                                    &
683        ONLY:  tcm_diffusivities
684
685    USE urban_surface_mod,                                                                         &
686        ONLY:  usm_boundary_condition, usm_material_heat_model, usm_material_model,                &
687               usm_surface_energy_balance, usm_green_heat_model
688
689    USE vertical_nesting_mod,                                                                      &
690        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e, vnest_boundary_conds,              &
691               vnest_boundary_conds_khkm, vnest_deallocate, vnest_init, vnest_init_fine,           &
692               vnest_start_time
693
694    USE virtual_measurement_mod,                                                                   &
695        ONLY:  dt_virtual_measurement,                                                             &
696               time_virtual_measurement,                                                           &
697               vm_data_output,                                                                     &
698               vm_sampling,                                                                        &
699               vm_time_start
700
701
702#if defined( _OPENACC )
703    USE arrays_3d,                                                             &
704        ONLY:  d, dd2zu, ddzu, ddzw, drho_air, drho_air_zw, dzw, heatflux_output_conversion, kh,   &
705               km, momentumflux_output_conversion, p, ptdf_x, ptdf_y, rdf, rdf_sc, rho_air,        &
706               rho_air_zw, te_m, tpt_m, tu_m, tv_m, tw_m, ug, u_init, u_stokes_zu, vg, v_init,     &
707               v_stokes_zu, zu
708
709    USE control_parameters,                                                                        &
710        ONLY:  tsc
711
712    USE indices,                                                                                   &
713        ONLY:  advc_flags_1, advc_flags_2, nyn, nyng, nys, nysg, nz, nzb_max, wall_flags_0
714
715    USE statistics,                                                                                &
716        ONLY:  rmask, statistic_regions, sums_l, sums_l_l, sums_us2_ws_l,                          &
717               sums_wsus_ws_l, sums_vs2_ws_l, sums_wsvs_ws_l, sums_ws2_ws_l, sums_wspts_ws_l,      &
718               sums_wsqs_ws_l, sums_wssas_ws_l, sums_wsqcs_ws_l, sums_wsqrs_ws_l, sums_wsncs_ws_l, &
719               sums_wsnrs_ws_l, sums_wsss_ws_l, weight_substep, sums_salsa_ws_l
720
721    USE surface_mod,                                                                               &
722        ONLY:  bc_h, enter_surface_arrays, exit_surface_arrays
723#endif
724
725
726    IMPLICIT NONE
727
728    CHARACTER (LEN=9) ::  time_to_string   !<
729
730    INTEGER(iwp)      ::  ib        !< index for aerosol size bins
731    INTEGER(iwp)      ::  ic        !< index for aerosol mass bins
732    INTEGER(iwp)      ::  icc       !< additional index for aerosol mass bins
733    INTEGER(iwp)      ::  ig        !< index for salsa gases
734    INTEGER(iwp)      ::  lsp
735    INTEGER(iwp)      ::  lsp_usr   !<
736    INTEGER(iwp)      ::  n         !< loop counter for chemistry species
737
738    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
739                            !< steering of run control output interval
740    REAL(wp) ::  time_since_reference_point_save  !< original value of
741                                                  !< time_since_reference_point
742
743
744!
745!-- Copy data from arrays_3d
746!$ACC DATA &
747!$ACC COPY(d(nzb+1:nzt,nys:nyn,nxl:nxr)) &
748!$ACC COPY(e(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
749!$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
750!$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
751!$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
752!$ACC COPY(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
753!$ACC COPY(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
754!$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
755!$ACC COPY(pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
756
757!$ACC DATA &
758!$ACC COPY(e_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
759!$ACC COPY(u_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
760!$ACC COPY(v_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
761!$ACC COPY(w_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
762!$ACC COPY(pt_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
763!$ACC COPY(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
764!$ACC COPY(te_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
765!$ACC COPY(tu_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
766!$ACC COPY(tv_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
767!$ACC COPY(tw_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
768!$ACC COPY(tpt_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
769
770!$ACC DATA &
771!$ACC COPYIN(rho_air(nzb:nzt+1), drho_air(nzb:nzt+1)) &
772!$ACC COPYIN(rho_air_zw(nzb:nzt+1), drho_air_zw(nzb:nzt+1)) &
773!$ACC COPYIN(zu(nzb:nzt+1)) &
774!$ACC COPYIN(dzu(1:nzt+1), dzw(1:nzt+1)) &
775!$ACC COPYIN(ddzu(1:nzt+1), dd2zu(1:nzt)) &
776!$ACC COPYIN(ddzw(1:nzt+1)) &
777!$ACC COPYIN(heatflux_output_conversion(nzb:nzt+1)) &
778!$ACC COPYIN(momentumflux_output_conversion(nzb:nzt+1)) &
779!$ACC COPYIN(rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt)) &
780!$ACC COPYIN(ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng)) &
781!$ACC COPYIN(ref_state(0:nz+1)) &
782!$ACC COPYIN(u_init(0:nz+1), v_init(0:nz+1)) &
783!$ACC COPYIN(u_stokes_zu(nzb:nzt+1), v_stokes_zu(nzb:nzt+1)) &
784!$ACC COPYIN(pt_init(0:nz+1)) &
785!$ACC COPYIN(ug(0:nz+1), vg(0:nz+1))
786
787!
788!-- Copy data from control_parameters
789!$ACC DATA &
790!$ACC COPYIN(tsc(1:5))
791
792!
793!-- Copy data from indices
794!$ACC DATA &
795!$ACC COPYIN(advc_flags_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
796!$ACC COPYIN(advc_flags_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
797!$ACC COPYIN(wall_flags_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
798
799!
800!-- Copy data from surface_mod
801!$ACC DATA &
802!$ACC COPYIN(bc_h(0:1)) &
803!$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) &
804!$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) &
805!$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) &
806!$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) &
807!$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) &
808!$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns))
809
810!
811!-- Copy data from statistics
812!$ACC DATA &
813!$ACC COPYIN(hom(0:nz+1,1:2,1:4,0)) &
814!$ACC COPYIN(rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions)) &
815!$ACC COPYIN(weight_substep(1:intermediate_timestep_count_max)) &
816!$ACC COPY(sums_l(nzb:nzt+1,1:pr_palm,0)) &
817!$ACC COPY(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
818!$ACC COPY(sums_us2_ws_l(nzb:nzt+1,0)) &
819!$ACC COPY(sums_wsus_ws_l(nzb:nzt+1,0)) &
820!$ACC COPY(sums_vs2_ws_l(nzb:nzt+1,0)) &
821!$ACC COPY(sums_wsvs_ws_l(nzb:nzt+1,0)) &
822!$ACC COPY(sums_ws2_ws_l(nzb:nzt+1,0)) &
823!$ACC COPY(sums_wspts_ws_l(nzb:nzt+1,0)) &
824!$ACC COPY(sums_wssas_ws_l(nzb:nzt+1,0)) &
825!$ACC COPY(sums_wsqs_ws_l(nzb:nzt+1,0)) &
826!$ACC COPY(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
827!$ACC COPY(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
828!$ACC COPY(sums_wsncs_ws_l(nzb:nzt+1,0)) &
829!$ACC COPY(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
830!$ACC COPY(sums_wsss_ws_l(nzb:nzt+1,0)) &
831!$ACC COPY(sums_salsa_ws_l(nzb:nzt+1,0))
832
833#if defined( _OPENACC )
834    CALL enter_surface_arrays
835#endif
836
837!
838!-- At beginning determine the first time step
839    CALL timestep
840!
841!-- Synchronize the timestep in case of nested run.
842    IF ( nested_run )  THEN
843!
844!--    Synchronization by unifying the time step.
845!--    Global minimum of all time-steps is used for all.
846       CALL pmci_synchronize
847    ENDIF
848
849!
850!-- Determine and print out the run control quantities before the first time
851!-- step of this run. For the initial run, some statistics (e.g. divergence)
852!-- need to be determined first --> CALL flow_statistics at the beginning of
853!-- run_control
854    CALL run_control
855!
856!-- Data exchange between coupled models in case that a call has been omitted
857!-- at the end of the previous run of a job chain.
858    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND. .NOT. vnested )  THEN
859!
860!--    In case of model termination initiated by the local model the coupler
861!--    must not be called because this would again cause an MPI hang.
862       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
863          CALL surface_coupler
864          time_coupling = time_coupling - dt_coupling
865       ENDDO
866       IF (time_coupling == 0.0_wp  .AND.  time_since_reference_point < dt_coupling )  THEN
867          time_coupling = time_since_reference_point
868       ENDIF
869    ENDIF
870
871    CALL location_message( 'atmosphere (and/or ocean) time-stepping', 'start' )
872
873!
874!-- Start of the time loop
875    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. .NOT. terminate_run )
876
877       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
878!
879!--    Vertical nesting: initialize fine grid
880       IF ( vnested ) THEN
881          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
882             CALL cpu_log( log_point_s(22), 'vnest_init', 'start' )
883             CALL vnest_init_fine
884             vnest_init = .TRUE.
885             CALL cpu_log( log_point_s(22), 'vnest_init', 'stop' )
886          ENDIF
887       ENDIF
888!
889!--    Determine ug, vg and w_subs in dependence on data from external file
890!--    LSF_DATA
891       IF ( large_scale_forcing .AND. lsf_vert )  THEN
892           CALL ls_forcing_vert ( simulated_time )
893           sums_ls_l = 0.0_wp
894       ENDIF
895
896!
897!--    Set pt_init and q_init to the current profiles taken from
898!--    NUDGING_DATA
899       IF ( nudging )  THEN
900           CALL nudge_ref ( simulated_time )
901!
902!--        Store temperature gradient at the top boundary for possible Neumann
903!--        boundary condition
904           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
905           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
906           IF ( air_chemistry )  THEN
907              DO  lsp = 1, nvar
908                 bc_cs_t_val = (  chem_species(lsp)%conc_pr_init(nzt+1)                            &
909                                - chem_species(lsp)%conc_pr_init(nzt) )                            &
910                               / dzu(nzt+1)
911              ENDDO
912           ENDIF
913           IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
914              DO  ib = 1, nbins_aerosol
915                 bc_an_t_val = ( aerosol_number(ib)%init(nzt+1) - aerosol_number(ib)%init(nzt) ) / &
916                               dzu(nzt+1)
917                 DO  ic = 1, ncomponents_mass
918                    icc = ( ic - 1 ) * nbins_aerosol + ib
919                    bc_am_t_val = ( aerosol_mass(icc)%init(nzt+1) - aerosol_mass(icc)%init(nzt) ) /&
920                                  dzu(nzt+1)
921                 ENDDO
922              ENDDO
923              IF ( .NOT. salsa_gases_from_chem )  THEN
924                 DO  ig = 1, ngases_salsa
925                    bc_gt_t_val = ( salsa_gas(ig)%init(nzt+1) - salsa_gas(ig)%init(nzt) ) /        &
926                                  dzu(nzt+1)
927                 ENDDO
928              ENDIF
929           ENDIF
930       ENDIF
931!
932!--    If forcing by larger-scale models is applied, check if new data
933!--    at domain boundaries need to be read.
934       IF ( nesting_offline ) THEN
935          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point ) &
936               CALL netcdf_data_input_offline_nesting
937       ENDIF
938
939!
940!--    Execute all other module actions routunes
941       CALL module_interface_actions( 'before_timestep' )
942       
943!
944!--    Start of intermediate step loop
945       intermediate_timestep_count = 0
946       DO  WHILE ( intermediate_timestep_count < intermediate_timestep_count_max )
947
948          intermediate_timestep_count = intermediate_timestep_count + 1
949
950!
951!--       Set the steering factors for the prognostic equations which depend
952!--       on the timestep scheme
953          CALL timestep_scheme_steering
954
955!
956!--       Calculate those variables needed in the tendency terms which need
957!--       global communication
958          IF ( .NOT. use_single_reference_value  .AND.  .NOT. use_initial_profile_as_reference )   &
959          THEN
960!
961!--          Horizontally averaged profiles to be used as reference state in
962!--          buoyancy terms (WARNING: only the respective last call of
963!--          calc_mean_profile defines the reference state!)
964             IF ( .NOT. neutral )  THEN
965                CALL calc_mean_profile( pt, 4 )
966                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
967             ENDIF
968             IF ( ocean_mode )  THEN
969                CALL calc_mean_profile( rho_ocean, 64 )
970                ref_state(:)  = hom(:,1,64,0)
971             ENDIF
972             IF ( humidity )  THEN
973                CALL calc_mean_profile( vpt, 44 )
974                ref_state(:)  = hom(:,1,44,0)
975             ENDIF
976!
977!--          Assure that ref_state does not become zero at any level
978!--          ( might be the case if a vertical level is completely occupied
979!--            with topography ).
980             ref_state = MERGE( MAXVAL(ref_state), ref_state, ref_state == 0.0_wp )
981          ENDIF
982
983          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  intermediate_timestep_count == 1 )     &
984          THEN
985             CALL ws_statistics
986          ENDIF
987!
988!--       In case of nudging calculate current nudging time scale and horizontal
989!--       means of u, v, pt and q
990          IF ( nudging )  THEN
991             CALL calc_tnudge( simulated_time )
992             CALL calc_mean_profile( u, 1 )
993             CALL calc_mean_profile( v, 2 )
994             CALL calc_mean_profile( pt, 4 )
995             CALL calc_mean_profile( q, 41 )
996          ENDIF
997!
998!--       Execute all other module actions routunes
999          CALL module_interface_actions( 'before_prognostic_equations' )
1000!
1001!--       Solve the prognostic equations. A fast cache optimized version with
1002!--       only one single loop is used in case of Piascek-Williams advection
1003!--       scheme. NEC vector machines use a different version, because
1004!--       in the other versions a good vectorization is prohibited due to
1005!--       inlining problems.
1006          IF ( loop_optimization == 'cache' )  THEN
1007             CALL prognostic_equations_cache
1008          ELSEIF ( loop_optimization == 'vector' )  THEN
1009             CALL prognostic_equations_vector
1010          ENDIF
1011
1012!
1013!--       Particle transport/physics with the Lagrangian particle model
1014!--       (only once during intermediate steps, because it uses an Euler-step)
1015!--       ### particle model should be moved before prognostic_equations, in order
1016!--       to regard droplet interactions directly
1017          IF ( particle_advection  .AND.  time_since_reference_point >= particle_advection_start   &
1018               .AND.  intermediate_timestep_count == 1 )                                           &
1019          THEN
1020             CALL module_interface_actions( 'after_prognostic_equations' )
1021             first_call_lpm = .FALSE.
1022          ENDIF
1023
1024!
1025!--       Interaction of droplets with temperature and mixing ratio.
1026!--       Droplet condensation and evaporation is calculated within
1027!--       advec_particles.
1028          IF ( cloud_droplets  .AND.  intermediate_timestep_count == intermediate_timestep_count_max ) &
1029          THEN
1030             CALL lpm_interaction_droplets_ptq
1031          ENDIF
1032
1033!
1034!--       Movement of agents in multi agent system
1035          IF ( agents_active  .AND.  time_since_reference_point >= multi_agent_system_start  .AND. &
1036               time_since_reference_point <= multi_agent_system_end  .AND.                         &
1037               intermediate_timestep_count == 1 )                                                  &
1038          THEN
1039             CALL multi_agent_system
1040             first_call_mas = .FALSE.
1041          ENDIF
1042
1043!
1044!--       Exchange of ghost points (lateral boundary conditions)
1045          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
1046
1047          CALL exchange_horiz( u_p, nbgp )
1048          CALL exchange_horiz( v_p, nbgp )
1049          CALL exchange_horiz( w_p, nbgp )
1050          CALL exchange_horiz( pt_p, nbgp )
1051          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
1052          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence                           &
1053               .OR.  use_sgs_for_particles )  THEN
1054             IF ( rans_tke_e )  THEN
1055                CALL exchange_horiz( diss_p, nbgp )
1056             ELSE
1057                CALL exchange_horiz( diss, nbgp )
1058             ENDIF
1059          ENDIF
1060          IF ( ocean_mode )  THEN
1061             CALL exchange_horiz( sa_p, nbgp )
1062             CALL exchange_horiz( rho_ocean, nbgp )
1063             CALL exchange_horiz( prho, nbgp )
1064          ENDIF
1065          IF ( humidity )  THEN
1066             CALL exchange_horiz( q_p, nbgp )
1067             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
1068                CALL exchange_horiz( qc_p, nbgp )
1069                CALL exchange_horiz( nc_p, nbgp )
1070             ENDIF
1071             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
1072                CALL exchange_horiz( qr_p, nbgp )
1073                CALL exchange_horiz( nr_p, nbgp )
1074             ENDIF
1075          ENDIF
1076          IF ( cloud_droplets )  THEN
1077             CALL exchange_horiz( ql, nbgp )
1078             CALL exchange_horiz( ql_c, nbgp )
1079             CALL exchange_horiz( ql_v, nbgp )
1080             CALL exchange_horiz( ql_vp, nbgp )
1081          ENDIF
1082          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
1083          IF ( air_chemistry )  THEN
1084             DO  lsp = 1, nvar
1085                CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp )
1086             ENDDO
1087          ENDIF
1088
1089          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
1090             DO  ib = 1, nbins_aerosol
1091                CALL exchange_horiz( aerosol_number(ib)%conc_p, nbgp )
1092                DO  ic = 1, ncomponents_mass
1093                   icc = ( ic - 1 ) * nbins_aerosol + ib
1094                   CALL exchange_horiz( aerosol_mass(icc)%conc_p, nbgp )
1095                ENDDO
1096             ENDDO
1097             IF ( .NOT. salsa_gases_from_chem )  THEN
1098                DO  ig = 1, ngases_salsa
1099                   CALL exchange_horiz( salsa_gas(ig)%conc_p, nbgp )
1100                ENDDO
1101             ENDIF
1102          ENDIF
1103          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1104
1105!
1106!--       Boundary conditions for the prognostic quantities (except of the
1107!--       velocities at the outflow in case of a non-cyclic lateral wall)
1108          CALL boundary_conds
1109
1110!
1111!--       Boundary conditions for prognostic quantitites of other modules:
1112!--       Here, only decycling is carried out
1113          IF ( air_chemistry )  THEN
1114
1115             DO  lsp = 1, nvar
1116                lsp_usr = 1
1117                DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
1118                   IF ( TRIM( chem_species(lsp)%name ) == TRIM( cs_name(lsp_usr) ) )  THEN
1119                      CALL chem_boundary_conds( chem_species(lsp)%conc_p,                          &
1120                                                chem_species(lsp)%conc_pr_init )
1121                   ENDIF
1122                   lsp_usr = lsp_usr + 1
1123                ENDDO
1124             ENDDO
1125
1126          ENDIF
1127
1128          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
1129
1130             DO  ib = 1, nbins_aerosol
1131                CALL salsa_boundary_conds( aerosol_number(ib)%conc_p, aerosol_number(ib)%init )
1132                DO  ic = 1, ncomponents_mass
1133                   icc = ( ic - 1 ) * nbins_aerosol + ib
1134                   CALL salsa_boundary_conds( aerosol_mass(icc)%conc_p, aerosol_mass(icc)%init )
1135                ENDDO
1136             ENDDO
1137             IF ( .NOT. salsa_gases_from_chem )  THEN
1138                DO  ig = 1, ngases_salsa
1139                   CALL salsa_boundary_conds( salsa_gas(ig)%conc_p, salsa_gas(ig)%init )
1140                ENDDO
1141             ENDIF
1142
1143          ENDIF
1144
1145!
1146!--       Incrementing timestep counter
1147          timestep_count = timestep_count + 1
1148
1149          CALL cpu_log( log_point(28), 'swap_timelevel', 'start' )
1150!
1151!--       Set the swap level for all modules
1152          CALL module_interface_swap_timelevel( MOD( timestep_count, 2) )
1153!
1154!--       Set the swap level for steering the pmc data transfer
1155          IF ( nested_run )  CALL pmci_set_swaplevel( MOD( timestep_count, 2) + 1 )  !> @todo: why the +1 ?
1156
1157          CALL cpu_log( log_point(28), 'swap_timelevel', 'stop' )
1158
1159!
1160!--       Vertical nesting: Interpolate fine grid data to the coarse grid
1161          IF ( vnest_init ) THEN
1162             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'start' )
1163             CALL vnest_anterpolate
1164             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'stop' )
1165          ENDIF
1166
1167          IF ( nested_run )  THEN
1168
1169             CALL cpu_log( log_point(60), 'nesting', 'start' )
1170!
1171!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
1172!--          and pmci_child_datatrans are called inside the wrapper
1173!--          subroutine pmci_datatrans according to the control parameters
1174!--          nesting_mode and nesting_datatransfer_mode.
1175!--          TO_DO: why is nesting_mode given as a parameter here?
1176             CALL pmci_datatrans( nesting_mode )
1177
1178             IF ( TRIM( nesting_mode ) == 'two-way' .OR.  nesting_mode == 'vertical' )  THEN
1179
1180                CALL cpu_log( log_point_s(92), 'exchange-horiz-nest', 'start' )
1181!
1182!--             Exchange_horiz is needed for all parent-domains after the
1183!--             anterpolation
1184                CALL exchange_horiz( u, nbgp )
1185                CALL exchange_horiz( v, nbgp )
1186                CALL exchange_horiz( w, nbgp )
1187                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
1188
1189                IF ( humidity )  THEN
1190
1191                   CALL exchange_horiz( q, nbgp )
1192
1193                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
1194                       CALL exchange_horiz( qc, nbgp )
1195                       CALL exchange_horiz( nc, nbgp )
1196                   ENDIF
1197                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
1198                       CALL exchange_horiz( qr, nbgp )
1199                       CALL exchange_horiz( nr, nbgp )
1200                   ENDIF
1201
1202                ENDIF
1203
1204                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
1205
1206                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
1207
1208                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.  rans_tke_e )  THEN
1209                   CALL exchange_horiz( diss, nbgp )
1210                ENDIF
1211
1212                IF ( air_chemistry )  THEN
1213                   DO  n = 1, nvar
1214                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
1215                   ENDDO
1216                ENDIF
1217
1218                IF ( salsa  .AND. time_since_reference_point >= skip_time_do_salsa )  THEN
1219                   DO  ib = 1, nbins_aerosol
1220                      CALL exchange_horiz( aerosol_number(ib)%conc, nbgp )
1221                      DO  ic = 1, ncomponents_mass
1222                         icc = ( ic - 1 ) * nbins_aerosol + ib
1223                         CALL exchange_horiz( aerosol_mass(icc)%conc, nbgp )
1224                      ENDDO
1225                   ENDDO
1226                   IF ( .NOT. salsa_gases_from_chem )  THEN
1227                      DO  ig = 1, ngases_salsa
1228                         CALL exchange_horiz( salsa_gas(ig)%conc, nbgp )
1229                      ENDDO
1230                   ENDIF
1231                ENDIF
1232                CALL cpu_log( log_point_s(92), 'exchange-horiz-nest', 'stop' )
1233
1234             ENDIF
1235
1236!
1237!--          Set boundary conditions again after interpolation and anterpolation.
1238             CALL pmci_boundary_conds
1239
1240!
1241!--          Set chemistry boundary conditions (decycling)
1242             IF ( air_chemistry )  THEN
1243                DO  lsp = 1, nvar
1244                   lsp_usr = 1
1245                   DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
1246                      IF ( TRIM( chem_species(lsp)%name ) == TRIM( cs_name(lsp_usr) ) )  THEN
1247                         CALL chem_boundary_conds( chem_species(lsp)%conc,                         &
1248                                                   chem_species(lsp)%conc_pr_init )
1249                      ENDIF
1250                      lsp_usr = lsp_usr + 1
1251                   ENDDO
1252                ENDDO
1253             ENDIF
1254
1255!
1256!--          Set SALSA boundary conditions (decycling)
1257             IF ( salsa  .AND. time_since_reference_point >= skip_time_do_salsa )  THEN
1258                DO  ib = 1, nbins_aerosol
1259                   CALL salsa_boundary_conds( aerosol_number(ib)%conc, aerosol_number(ib)%init )
1260                   DO  ic = 1, ncomponents_mass
1261                      icc = ( ic - 1 ) * nbins_aerosol + ib
1262                      CALL salsa_boundary_conds( aerosol_mass(icc)%conc, aerosol_mass(icc)%init )
1263                   ENDDO
1264                ENDDO
1265                IF ( .NOT. salsa_gases_from_chem )  THEN
1266                   DO  ig = 1, ngases_salsa
1267                      CALL salsa_boundary_conds( salsa_gas(ig)%conc, salsa_gas(ig)%init )
1268                   ENDDO
1269                ENDIF
1270             ENDIF
1271
1272             CALL cpu_log( log_point(60), 'nesting', 'stop' )
1273
1274          ENDIF
1275
1276!
1277!--       Temperature offset must be imposed at cyclic boundaries in x-direction
1278!--       when a sloping surface is used
1279          IF ( sloping_surface )  THEN
1280             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - pt_slope_offset
1281             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + pt_slope_offset
1282          ENDIF
1283
1284!
1285!--       Impose a turbulent inflow using the recycling method
1286          IF ( turbulent_inflow )  CALL inflow_turbulence
1287
1288!
1289!--       Set values at outflow boundary using the special outflow condition
1290          IF ( turbulent_outflow )  CALL outflow_turbulence
1291
1292!
1293!--       Impose a random perturbation on the horizontal velocity field
1294          IF ( create_disturbances  .AND.  ( call_psolver_at_all_substeps  .AND.                   &
1295               intermediate_timestep_count == intermediate_timestep_count_max )                    &
1296               .OR. ( .NOT. call_psolver_at_all_substeps  .AND.  intermediate_timestep_count == 1 ) ) &
1297          THEN
1298             time_disturb = time_disturb + dt_3d
1299             IF ( time_disturb >= dt_disturb )  THEN
1300                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                                     &
1301                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
1302                   CALL disturb_field( 'u', tend, u )
1303                   CALL disturb_field( 'v', tend, v )
1304                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )                                &
1305                         .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )                 &
1306                THEN
1307!
1308!--                Runs with a non-cyclic lateral wall need perturbations
1309!--                near the inflow throughout the whole simulation
1310                   dist_range = 1
1311                   CALL disturb_field( 'u', tend, u )
1312                   CALL disturb_field( 'v', tend, v )
1313                   dist_range = 0
1314                ENDIF
1315                time_disturb = time_disturb - dt_disturb
1316             ENDIF
1317          ENDIF
1318
1319!
1320!--       Map forcing data derived from larger scale model onto domain
1321!--       boundaries.
1322          IF ( nesting_offline  .AND.  intermediate_timestep_count ==                              &
1323                                       intermediate_timestep_count_max  )                          &
1324             CALL nesting_offl_bc
1325!
1326!--       Impose a turbulent inflow using synthetic generated turbulence.
1327          IF ( use_syn_turb_gen  .AND.                                                             &
1328               intermediate_timestep_count == intermediate_timestep_count_max )  THEN
1329             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1330             CALL stg_main
1331             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1332          ENDIF
1333!
1334!--       Ensure mass conservation. This need to be done after imposing
1335!--       synthetic turbulence and top boundary condition for pressure is set to
1336!--       Neumann conditions.
1337!--       Is this also required in case of Dirichlet?
1338          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1339!
1340!--       Reduce the velocity divergence via the equation for perturbation
1341!--       pressure.
1342          IF ( intermediate_timestep_count == 1  .OR. &
1343                call_psolver_at_all_substeps )  THEN
1344
1345             IF (  vnest_init ) THEN
1346!
1347!--             Compute pressure in the CG, interpolate top boundary conditions
1348!--             to the FG and then compute pressure in the FG
1349                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1350
1351                CALL cpu_log( log_point_s(30), 'vnest_bc', 'start' )
1352                CALL vnest_boundary_conds
1353                CALL cpu_log( log_point_s(30), 'vnest_bc', 'stop' )
1354 
1355                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1356
1357!--             Anterpolate TKE, satisfy Germano Identity
1358                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'start' )
1359                CALL vnest_anterpolate_e
1360                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'stop' )
1361
1362             ELSE
1363!               
1364!--             Mass (volume) flux correction to ensure global mass conservation for child domains.
1365                IF ( child_domain )  THEN
1366                   IF ( nesting_mode == 'vertical' )  THEN
1367                      CALL pmci_ensure_nest_mass_conservation_vertical
1368                   ELSE
1369                      CALL pmci_ensure_nest_mass_conservation
1370                   ENDIF
1371                ENDIF
1372               
1373                CALL pres
1374
1375             ENDIF
1376
1377          ENDIF
1378
1379!
1380!--       If required, compute liquid water content
1381          IF ( bulk_cloud_model )  THEN
1382             CALL calc_liquid_water_content
1383          ENDIF
1384!
1385!--       If required, compute virtual potential temperature
1386          IF ( humidity )  THEN
1387             CALL compute_vpt
1388          ENDIF
1389
1390!
1391!--       Compute the diffusion quantities
1392          IF ( .NOT. constant_diffusion )  THEN
1393
1394!
1395!--          Determine surface fluxes shf and qsws and surface values
1396!--          pt_surface and q_surface in dependence on data from external
1397!--          file LSF_DATA respectively
1398             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND.                                     &
1399                 intermediate_timestep_count == intermediate_timestep_count_max )                  &
1400             THEN
1401                CALL ls_forcing_surf( simulated_time )
1402             ENDIF
1403
1404!
1405!--          First the vertical (and horizontal) fluxes in the surface
1406!--          (constant flux) layer are computed
1407             IF ( constant_flux_layer )  THEN
1408                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1409                CALL surface_layer_fluxes
1410                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
1411             ENDIF
1412!
1413!--          If required, solve the energy balance for the surface and run soil
1414!--          model. Call for horizontal as well as vertical surfaces
1415             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
1416
1417                CALL cpu_log( log_point(54), 'land_surface', 'start' )
1418!
1419!--             Call for horizontal upward-facing surfaces
1420                CALL lsm_energy_balance( .TRUE., -1 )
1421                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
1422!
1423!--             Call for northward-facing surfaces
1424                CALL lsm_energy_balance( .FALSE., 0 )
1425                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
1426!
1427!--             Call for southward-facing surfaces
1428                CALL lsm_energy_balance( .FALSE., 1 )
1429                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
1430!
1431!--             Call for eastward-facing surfaces
1432                CALL lsm_energy_balance( .FALSE., 2 )
1433                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
1434!
1435!--             Call for westward-facing surfaces
1436                CALL lsm_energy_balance( .FALSE., 3 )
1437                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
1438               
1439!
1440!--             At the end, set boundary conditons for potential temperature
1441!--             and humidity after running the land-surface model. This
1442!--             might be important for the nesting, where arrays are transfered.
1443                CALL lsm_boundary_condition
1444
1445               
1446                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1447             ENDIF
1448!
1449!--          If required, solve the energy balance for urban surfaces and run
1450!--          the material heat model
1451             IF (urban_surface) THEN
1452                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
1453               
1454                CALL usm_surface_energy_balance( .FALSE. )
1455                IF ( usm_material_model )  THEN
1456                   CALL usm_green_heat_model
1457                   CALL usm_material_heat_model ( .FALSE. )
1458                ENDIF
1459
1460!
1461!--             At the end, set boundary conditons for potential temperature
1462!--             and humidity after running the urban-surface model. This
1463!--             might be important for the nesting, where arrays are transfered.
1464                CALL usm_boundary_condition
1465
1466                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1467             ENDIF
1468!
1469!--          Compute the diffusion coefficients
1470             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
1471             IF ( .NOT. humidity ) THEN
1472                IF ( ocean_mode )  THEN
1473                   CALL tcm_diffusivities( prho, prho_reference )
1474                ELSE
1475                   CALL tcm_diffusivities( pt, pt_reference )
1476                ENDIF
1477             ELSE
1478                CALL tcm_diffusivities( vpt, pt_reference )
1479             ENDIF
1480             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
1481!
1482!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1483             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
1484
1485          ENDIF
1486
1487       ENDDO   ! Intermediate step loop
1488
1489!
1490!--    Will be used at some point by flow_statistics.
1491       !$ACC UPDATE &
1492       !$ACC HOST(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
1493       !$ACC HOST(sums_us2_ws_l(nzb:nzt+1,0)) &
1494       !$ACC HOST(sums_wsus_ws_l(nzb:nzt+1,0)) &
1495       !$ACC HOST(sums_vs2_ws_l(nzb:nzt+1,0)) &
1496       !$ACC HOST(sums_wsvs_ws_l(nzb:nzt+1,0)) &
1497       !$ACC HOST(sums_ws2_ws_l(nzb:nzt+1,0)) &
1498       !$ACC HOST(sums_wspts_ws_l(nzb:nzt+1,0)) &
1499       !$ACC HOST(sums_wssas_ws_l(nzb:nzt+1,0)) &
1500       !$ACC HOST(sums_wsqs_ws_l(nzb:nzt+1,0)) &
1501       !$ACC HOST(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
1502       !$ACC HOST(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
1503       !$ACC HOST(sums_wsncs_ws_l(nzb:nzt+1,0)) &
1504       !$ACC HOST(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
1505       !$ACC HOST(sums_wsss_ws_l(nzb:nzt+1,0)) &
1506       !$ACC HOST(sums_salsa_ws_l(nzb:nzt+1,0))
1507
1508!
1509!--    If required, calculate radiative fluxes and heating rates
1510       IF ( radiation  .AND.  time_since_reference_point > skip_time_do_radiation )  THEN
1511
1512          time_radiation = time_radiation + dt_3d
1513
1514          IF ( time_radiation >= dt_radiation  .OR.  force_radiation_call )  THEN
1515
1516             CALL cpu_log( log_point(50), 'radiation', 'start' )
1517
1518             IF ( .NOT. force_radiation_call )  THEN
1519                time_radiation = time_radiation - dt_radiation
1520             ENDIF
1521
1522!
1523!--          Adjust the current time to the time step of the radiation model.
1524!--          Needed since radiation is pre-calculated and stored only on apparent
1525!--          solar positions
1526             time_since_reference_point_save = time_since_reference_point
1527             time_since_reference_point = REAL( FLOOR( time_since_reference_point /             &
1528                                                       dt_radiation ), wp ) * dt_radiation
1529
1530             CALL radiation_control
1531
1532             IF ( ( urban_surface  .OR.  land_surface )  .AND.  radiation_interactions )  THEN
1533                CALL cpu_log( log_point_s(46), 'radiation_interaction', 'start' )
1534                CALL radiation_interaction
1535                CALL cpu_log( log_point_s(46), 'radiation_interaction', 'stop' )
1536             ENDIF
1537 
1538!
1539!--          Return the current time to its original value
1540             time_since_reference_point = time_since_reference_point_save
1541
1542             CALL cpu_log( log_point(50), 'radiation', 'stop' )
1543
1544          ENDIF
1545       ENDIF
1546
1547!
1548!--    If required, consider chemical emissions
1549       IF ( air_chemistry  .AND.  emissions_anthropogenic )  THEN
1550!
1551!--       Update the time --> kanani: revise location of this CALL
1552          CALL calc_date_and_time
1553!
1554!--       Call emission routine only once an hour
1555          IF (hour_of_year  .GT.  hour_call_emis )  THEN
1556             CALL chem_emissions_setup( chem_emis_att, chem_emis, n_matched_vars )
1557             hour_call_emis = hour_of_year
1558          ENDIF
1559       ENDIF
1560!
1561!--    If required, consider aerosol emissions for the salsa model
1562       IF ( salsa )  THEN
1563!
1564!--       Call emission routine to update emissions if needed
1565          CALL salsa_emission_update
1566
1567       ENDIF
1568!
1569!--    If required, calculate indoor temperature, waste heat, heat flux
1570!--    through wall, etc.
1571!--    dt_indoor steers the frequency of the indoor model calculations.
1572!--    Note, at first timestep indoor model is called, in order to provide
1573!--    a waste heat flux.
1574       IF ( indoor_model )  THEN
1575
1576          time_indoor = time_indoor + dt_3d
1577
1578          IF ( time_indoor >= dt_indoor  .OR.  current_timestep_number == 0 )  THEN
1579
1580             time_indoor = time_indoor - dt_indoor
1581
1582             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1583             CALL im_main_heatcool
1584             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1585
1586          ENDIF
1587       ENDIF
1588!
1589!--    Increase simulation time and output times
1590       nr_timesteps_this_run      = nr_timesteps_this_run + 1
1591       current_timestep_number    = current_timestep_number + 1
1592       simulated_time             = simulated_time   + dt_3d
1593       time_since_reference_point = simulated_time - coupling_start_time
1594       simulated_time_chr         = time_to_string( time_since_reference_point )
1595
1596
1597
1598
1599       IF ( time_since_reference_point >= skip_time_data_output_av )  THEN
1600          time_do_av         = time_do_av       + dt_3d
1601       ENDIF
1602       IF ( time_since_reference_point >= skip_time_do2d_xy )  THEN
1603          time_do2d_xy       = time_do2d_xy     + dt_3d
1604       ENDIF
1605       IF ( time_since_reference_point >= skip_time_do2d_xz )  THEN
1606          time_do2d_xz       = time_do2d_xz     + dt_3d
1607       ENDIF
1608       IF ( time_since_reference_point >= skip_time_do2d_yz )  THEN
1609          time_do2d_yz       = time_do2d_yz     + dt_3d
1610       ENDIF
1611       IF ( time_since_reference_point >= skip_time_do3d    )  THEN
1612          time_do3d          = time_do3d        + dt_3d
1613       ENDIF
1614       DO  mid = 1, masks
1615          IF ( time_since_reference_point >= skip_time_domask(mid) )  THEN
1616             time_domask(mid)= time_domask(mid) + dt_3d
1617          ENDIF
1618       ENDDO
1619       IF ( time_since_reference_point >= skip_time_dosp )  THEN
1620          time_dosp       = time_dosp        + dt_3d
1621       ENDIF
1622       time_dots          = time_dots        + dt_3d
1623       IF ( .NOT. first_call_lpm )  THEN
1624          time_dopts      = time_dopts       + dt_3d
1625       ENDIF
1626       IF ( time_since_reference_point >= skip_time_dopr )  THEN
1627          time_dopr       = time_dopr        + dt_3d
1628       ENDIF
1629       time_dopr_listing  = time_dopr_listing + dt_3d
1630       time_run_control   = time_run_control + dt_3d
1631!
1632!--    Increment time-counter for surface output
1633       IF ( surface_output )  THEN
1634          IF ( time_since_reference_point >= skip_time_dosurf )  THEN
1635             time_dosurf    = time_dosurf + dt_3d
1636          ENDIF
1637          IF ( time_since_reference_point >= skip_time_dosurf_av )  THEN
1638             time_dosurf_av = time_dosurf_av + dt_3d
1639          ENDIF
1640       ENDIF
1641!
1642!--    Increment time-counter for virtual measurements
1643       IF ( virtual_measurement  .AND.  vm_time_start <= time_since_reference_point )  THEN
1644          time_virtual_measurement = time_virtual_measurement + dt_3d
1645       ENDIF
1646!
1647!--    In case of synthetic turbulence generation and parametrized turbulence
1648!--    information, update the time counter and if required, adjust the
1649!--    STG to new atmospheric conditions.
1650       IF ( use_syn_turb_gen  )  THEN
1651          IF ( parametrize_inflow_turbulence )  THEN
1652             time_stg_adjust = time_stg_adjust + dt_3d
1653             IF ( time_stg_adjust >= dt_stg_adjust )  THEN
1654                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1655                CALL stg_adjust
1656                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1657             ENDIF
1658          ENDIF
1659          time_stg_call = time_stg_call + dt_3d
1660       ENDIF
1661
1662!
1663!--    Data exchange between coupled models
1664       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND.  .NOT. vnested )  THEN
1665          time_coupling = time_coupling + dt_3d
1666
1667!
1668!--       In case of model termination initiated by the local model
1669!--       (terminate_coupled > 0), the coupler must be skipped because it would
1670!--       cause an MPI intercomminucation hang.
1671!--       If necessary, the coupler will be called at the beginning of the
1672!--       next restart run.
1673          DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
1674             CALL surface_coupler
1675             time_coupling = time_coupling - dt_coupling
1676          ENDDO
1677       ENDIF
1678
1679!
1680!--    Biometeorology calculation of stationary thermal indices
1681!--    Todo (kanani): biometeorology needs own time_... treatment.
1682!--                   It might be that time_do2d_xy differs from time_do3d,
1683!--                   and then we might get trouble with the biomet output,
1684!--                   because we can have 2d and/or 3d biomet output!!
1685       IF ( biometeorology                                                                         &
1686            .AND. ( ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  &
1687                  .OR.                                                                             &
1688            ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy ) &
1689                    ) )  THEN
1690!
1691!--       If required, do thermal comfort calculations
1692          IF ( thermal_comfort )  THEN
1693             CALL bio_calculate_thermal_index_maps ( .FALSE. )
1694          ENDIF
1695!
1696!--       If required, do UV exposure calculations
1697          IF ( uv_exposure )  THEN
1698             CALL uvem_calc_exposure
1699          ENDIF
1700       ENDIF
1701
1702!
1703!--    Execute alle other module actions routunes
1704       CALL module_interface_actions( 'after_integration' )
1705
1706!
1707!--    If Galilei transformation is used, determine the distance that the
1708!--    model has moved so far
1709       IF ( galilei_transformation )  THEN
1710          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1711          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1712       ENDIF
1713
1714!
1715!--    Check, if restart is necessary (because cpu-time is expiring or
1716!--    because it is forced by user) and set stop flag
1717!--    This call is skipped if the remote model has already initiated a restart.
1718       IF ( .NOT. terminate_run )  CALL check_for_restart
1719
1720!
1721!--    Carry out statistical analysis and output at the requested output times.
1722!--    The MOD function is used for calculating the output time counters (like
1723!--    time_dopr) in order to regard a possible decrease of the output time
1724!--    interval in case of restart runs
1725
1726!
1727!--    Set a flag indicating that so far no statistics have been created
1728!--    for this time step
1729       flow_statistics_called = .FALSE.
1730
1731!
1732!--    If required, call flow_statistics for averaging in time
1733       IF ( averaging_interval_pr /= 0.0_wp  .AND.                                                 &
1734            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.                                &
1735            time_since_reference_point >= skip_time_dopr )  THEN
1736          time_dopr_av = time_dopr_av + dt_3d
1737          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1738             do_sum = .TRUE.
1739             time_dopr_av = MOD( time_dopr_av, MAX( dt_averaging_input_pr, dt_3d ) )
1740          ENDIF
1741       ENDIF
1742       IF ( do_sum )  CALL flow_statistics
1743
1744!
1745!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
1746       IF ( averaging_interval /= 0.0_wp  .AND.                                                    &
1747            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND.                        &
1748            time_since_reference_point >= skip_time_data_output_av )                               &
1749       THEN
1750          time_do_sla = time_do_sla + dt_3d
1751          IF ( time_do_sla >= dt_averaging_input )  THEN
1752             IF ( current_timestep_number > timestep_number_at_prev_calc )                         &
1753                CALL doq_calculate
1754
1755             CALL sum_up_3d_data
1756             average_count_3d = average_count_3d + 1
1757             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1758          ENDIF
1759       ENDIF
1760!
1761!--    Average surface data
1762       IF ( surface_output )  THEN
1763          IF ( averaging_interval_surf /= 0.0_wp                                                   &
1764                .AND.  ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf                &
1765                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1766             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
1767                CALL surface_data_output_averaging
1768                average_count_surf = average_count_surf + 1
1769             ENDIF
1770          ENDIF
1771       ENDIF
1772
1773!
1774!--    Calculate spectra for time averaging
1775       IF ( averaging_interval_sp /= 0.0_wp  .AND. ( dt_dosp - time_dosp ) <= averaging_interval_sp&
1776            .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1777          time_dosp_av = time_dosp_av + dt_3d
1778          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1779             CALL calc_spectra
1780             time_dosp_av = MOD( time_dosp_av, MAX( dt_averaging_input_pr, dt_3d ) )
1781          ENDIF
1782       ENDIF
1783
1784!
1785!--    Call flight module and output data
1786       IF ( virtual_flight )  THEN
1787          CALL flight_measurement
1788          CALL data_output_flight
1789       ENDIF
1790!
1791!--    Take virtual measurements
1792       IF ( virtual_measurement  .AND.  time_virtual_measurement >= dt_virtual_measurement         &
1793                                 .AND.  vm_time_start <= time_since_reference_point )  THEN
1794          CALL vm_sampling
1795          CALL vm_data_output
1796          time_virtual_measurement = MOD(      time_virtual_measurement,                           &
1797                                          MAX( dt_virtual_measurement, dt_3d ) )
1798       ENDIF
1799!
1800!--    Profile output (ASCII) on file
1801       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1802          CALL print_1d
1803          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, dt_3d ) )
1804       ENDIF
1805
1806!
1807!--    Graphic output for PROFIL
1808       IF ( time_dopr >= dt_dopr  .AND.  time_since_reference_point >= skip_time_dopr )  THEN
1809          IF ( dopr_n /= 0 )  CALL data_output_profiles
1810          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
1811          time_dopr_av = 0.0_wp    ! due to averaging (see above)
1812       ENDIF
1813
1814!
1815!--    Graphic output for time series
1816       IF ( time_dots >= dt_dots )  THEN
1817          CALL data_output_tseries
1818          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1819       ENDIF
1820
1821!
1822!--    Output of spectra (formatted for use with PROFIL), in case of no
1823!--    time averaging, spectra has to be calculated before
1824       IF ( time_dosp >= dt_dosp  .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1825          IF ( average_count_sp == 0 )  CALL calc_spectra
1826          CALL data_output_spectra
1827          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1828       ENDIF
1829
1830!
1831!--    2d-data output (cross-sections)
1832       IF ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy )  THEN
1833          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1834             CALL doq_calculate
1835
1836          CALL data_output_2d( 'xy', 0 )
1837          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1838       ENDIF
1839       IF ( time_do2d_xz >= dt_do2d_xz  .AND.  time_since_reference_point >= skip_time_do2d_xz )  THEN
1840          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1841
1842             CALL doq_calculate
1843          CALL data_output_2d( 'xz', 0 )
1844          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1845       ENDIF
1846       IF ( time_do2d_yz >= dt_do2d_yz  .AND.  time_since_reference_point >= skip_time_do2d_yz )  THEN
1847          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1848             CALL doq_calculate
1849
1850          CALL data_output_2d( 'yz', 0 )
1851          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1852       ENDIF
1853
1854!
1855!--    3d-data output (volume data)
1856       IF ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  THEN
1857          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1858             CALL doq_calculate
1859
1860          CALL data_output_3d( 0 )
1861          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1862       ENDIF
1863
1864!
1865!--    Masked data output
1866       DO  mid = 1, masks
1867          IF ( time_domask(mid) >= dt_domask(mid)                                                  &
1868               .AND.  time_since_reference_point >= skip_time_domask(mid) )  THEN
1869             IF ( current_timestep_number > timestep_number_at_prev_calc )                         &
1870                CALL doq_calculate
1871
1872             CALL data_output_mask( 0 )
1873             time_domask(mid) = MOD( time_domask(mid), MAX( dt_domask(mid), dt_3d ) )
1874          ENDIF
1875       ENDDO
1876
1877!
1878!--    Output of time-averaged 2d/3d/masked data
1879       IF ( time_do_av >= dt_data_output_av                                                        &
1880            .AND.  time_since_reference_point >= skip_time_data_output_av )  THEN
1881          CALL average_3d_data
1882!
1883!--       Udate thermal comfort indices based on updated averaged input
1884          IF ( biometeorology  .AND.  thermal_comfort )  THEN
1885             CALL bio_calculate_thermal_index_maps ( .TRUE. )
1886          ENDIF
1887          CALL data_output_2d( 'xy', 1 )
1888          CALL data_output_2d( 'xz', 1 )
1889          CALL data_output_2d( 'yz', 1 )
1890          CALL data_output_3d( 1 )
1891          DO  mid = 1, masks
1892             CALL data_output_mask( 1 )
1893          ENDDO
1894          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1895       ENDIF
1896!
1897!--    Output of surface data, instantaneous and averaged data
1898       IF ( surface_output )  THEN
1899          IF ( time_dosurf >= dt_dosurf  .AND.  time_since_reference_point >= skip_time_dosurf )  THEN
1900             CALL surface_data_output( 0 )
1901             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1902          ENDIF
1903          IF ( time_dosurf_av >= dt_dosurf_av  .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1904             CALL surface_data_output( 1 )
1905             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1906          ENDIF
1907       ENDIF
1908
1909!
1910!--    Output of particle time series
1911       IF ( particle_advection )  THEN
1912          IF ( time_dopts >= dt_dopts  .OR.                                                        &
1913               ( time_since_reference_point >= particle_advection_start  .AND.                     &
1914                 first_call_lpm ) )  THEN
1915             CALL lpm_data_output_ptseries
1916             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1917          ENDIF
1918       ENDIF
1919
1920!
1921!--    If required, set the heat flux for the next time step to a random value
1922       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
1923          IF ( surf_def_h(0)%ns >= 1 )  THEN
1924             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1925             CALL disturb_heatflux( surf_def_h(0) )
1926             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1927          ENDIF
1928          IF ( surf_lsm_h%ns    >= 1 )  THEN
1929             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1930             CALL disturb_heatflux( surf_lsm_h    )
1931             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1932          ENDIF
1933          IF ( surf_usm_h%ns    >= 1 )  THEN
1934             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1935             CALL disturb_heatflux( surf_usm_h    )
1936             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1937          ENDIF
1938       ENDIF
1939
1940!
1941!--    Execute alle other module actions routunes
1942       CALL module_interface_actions( 'after_timestep' )
1943
1944!
1945!--    Determine size of next time step. Save timestep dt_3d because it is
1946!--    newly calculated in routine timestep, but required further below for
1947!--    steering the run control output interval
1948       dt_3d_old = dt_3d
1949       CALL timestep
1950
1951!
1952!--    Synchronize the timestep in case of nested run.
1953       IF ( nested_run )  THEN
1954!
1955!--       Synchronize by unifying the time step.
1956!--       Global minimum of all time-steps is used for all.
1957          CALL pmci_synchronize
1958       ENDIF
1959
1960!
1961!--    Computation and output of run control parameters.
1962!--    This is also done whenever perturbations have been imposed
1963       IF ( time_run_control >= dt_run_control  .OR.                                               &
1964            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created )                           &
1965       THEN
1966          CALL run_control
1967          IF ( time_run_control >= dt_run_control )  THEN
1968             time_run_control = MOD( time_run_control, MAX( dt_run_control, dt_3d_old ) )
1969          ENDIF
1970       ENDIF
1971
1972!
1973!--    Output elapsed simulated time in form of a progress bar on stdout
1974       IF ( myid == 0 )  CALL output_progress_bar
1975
1976       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1977
1978
1979    ENDDO   ! time loop
1980
1981#if defined( _OPENACC )
1982    CALL exit_surface_arrays
1983#endif
1984!$ACC END DATA
1985!$ACC END DATA
1986!$ACC END DATA
1987!$ACC END DATA
1988!$ACC END DATA
1989!$ACC END DATA
1990!$ACC END DATA
1991
1992!
1993!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
1994    IF ( vnest_init )  CALL vnest_deallocate
1995
1996    IF ( myid == 0 )  CALL finish_progress_bar
1997
1998    CALL location_message( 'atmosphere (and/or ocean) time-stepping', 'finished' )
1999
2000 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.