source: palm/trunk/SOURCE/time_integration.f90 @ 4022

Last change on this file since 4022 was 4022, checked in by suehring, 2 years ago

Synthetic turbulence generator: Revise bias correction of imposed perturbations (correction via volume flow can create instabilities in case the mean volume flow is close to zero); Introduce lower limits in calculation of coefficient matrix, else the calculation may become numerically unstable; Impose perturbations every timestep, even though no new set of perturbations is generated in case dt_stg_call /= dt_3d; Implement a gradual decrease of Reynolds stress and length scales above ABL height (within 1 length scale above ABL depth to 1/10) rather than an abrupt decline; Bugfix in non-nested case: use ABL height for parametrized turbulence; Offline nesting: Rename subroutine for ABL height calculation and make it public; Change top boundary condition for pressure back to Neumann

  • Property svn:keywords set to Id
File size: 77.9 KB
Line 
1!> @file time_integration.f90
2!------------------------------------------------------------------------------!
3! This file is part of the PALM model system.
4!
5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2019 Leibniz Universitaet Hannover
18!------------------------------------------------------------------------------!
19!
20! Current revisions:
21! ------------------
22!
23!
24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 4022 2019-06-12 11:52:39Z suehring $
27! Call synthetic turbulence generator at last RK3 substep right after boundary
28! conditions are updated in offline nesting in order to assure that
29! perturbations are always imposed
30!
31! 4017 2019-06-06 12:16:46Z schwenkel
32! Mass (volume) flux correction included to ensure global mass conservation for child domains.
33!
34! 3994 2019-05-22 18:08:09Z suehring
35! output of turbulence intensity added
36!
37! 3988 2019-05-22 11:32:37Z kanani
38! Implement steerable output interval for virtual measurements
39!
40! 3968 2019-05-13 11:04:01Z suehring
41! replace nspec_out with n_matched_vars
42!
43! 3929 2019-04-24 12:52:08Z banzhafs
44! Reverse changes back from revision 3878: use chem_boundary_conds instead of
45! chem_boundary_conds_decycle
46!
47!
48! 3885 2019-04-11 11:29:34Z kanani
49! Changes related to global restructuring of location messages and introduction
50! of additional debug messages
51!
52! 3879 2019-04-08 20:25:23Z knoop
53! Moved wtm_forces to module_interface_actions
54!
55! 3872 2019-04-08 15:03:06Z knoop
56! Modifications made for salsa:
57! - Call salsa_emission_update at each time step but do the checks within
58!   salsa_emission_update (i.e. skip_time_do_salsa >= time_since_reference_point
59!   and next_aero_emission_update <= time_since_reference_point ).
60! - Renamed nbins --> nbins_aerosol, ncc_tot --> ncomponents_mass and
61!   ngast --> ngases_salsa and loop indices b, c and sg to ib, ic and ig
62! - Apply nesting for salsa variables
63! - Removed cpu_log calls speciffic for salsa.
64!
65! 3833 2019-03-28 15:04:04Z forkel
66! added USE chem_gasphase_mod, replaced nspec by nspec since fixed compounds are not integrated
67!
68! 3820 2019-03-27 11:53:41Z forkel
69! renamed do_emiss to emissions_anthropogenic (ecc)
70!
71!
72! 3774 2019-03-04 10:52:49Z moh.hefny
73! rephrase if statement to avoid unallocated array in case of
74! nesting_offline is false (crashing during debug mode)
75!
76! 3761 2019-02-25 15:31:42Z raasch $
77! module section re-formatted and openacc required variables moved to separate section,
78! re-formatting to 100 char line width
79!
80! 3745 2019-02-15 18:57:56Z suehring
81! Call indoor model after first timestep
82!
83! 3744 2019-02-15 18:38:58Z suehring
84! - Moved call of bio_calculate_thermal_index_maps from biometeorology module to
85! time_integration to make sure averaged input is updated before calculating.
86!
87! 3739 2019-02-13 08:05:17Z dom_dwd_user
88! Removed everything related to "time_bio_results" as this is never used.
89!
90! 3724 2019-02-06 16:28:23Z kanani
91! Correct double-used log_point_s unit
92!
93! 3719 2019-02-06 13:10:18Z kanani
94! - removed wind_turbine cpu measurement, since same time is measured inside
95!   wtm_forces subroutine as special measures
96! - moved the numerous vnest cpulog to special measures
97! - extended radiation cpulog over entire radiation part,
98!   moved radiation_interactions cpulog to special measures
99! - moved some cpu_log calls to this routine for better overview
100!
101! 3705 2019-01-29 19:56:39Z suehring
102! Data output for virtual measurements added
103!
104! 3704 2019-01-29 19:51:41Z suehring
105! Rename subroutines for surface-data output
106!
107! 3647 2019-01-02 14:10:44Z kanani
108! Bugfix: add time_since_reference_point to IF clause for data_output calls
109! (otherwise skip_time_* values don't come into affect with dt_do* = 0.0).
110! Clean up indoor_model and biometeorology model call.
111!
112! 3646 2018-12-28 17:58:49Z kanani
113! Bugfix: use time_since_reference_point instead of simulated_time where
114! required (relevant when using wall/soil spinup)
115!
116! 3634 2018-12-18 12:31:28Z knoop
117! OpenACC port for SPEC
118!
119! 3597 2018-12-04 08:40:18Z maronga
120! Removed call to calculation of near air (10 cm) potential temperature (now in
121! surface layer fluxes)
122!
123! 3589 2018-11-30 15:09:51Z suehring
124! Move the control parameter "salsa" from salsa_mod to control_parameters
125! (M. Kurppa)
126!
127! 3582 2018-11-29 19:16:36Z suehring
128! dom_dwd_user, Schrempf:
129! Changes due to merge of uv exposure model into biometeorology_mod.
130!
131! 3525 2018-11-14 16:06:14Z kanani
132! Changes related to clean-up of biometeorology (dom_dwd_user)
133!
134! 3524 2018-11-14 13:36:44Z raasch
135! unused variables removed
136!
137! 3484 2018-11-02 14:41:25Z hellstea
138! pmci_ensure_nest_mass_conservation is premanently removed
139!
140! 3473 2018-10-30 20:50:15Z suehring
141! new module for virtual measurements introduced
142!
143! 3472 2018-10-30 20:43:50Z suehring
144! Add indoor model (kanani, srissman, tlang)
145!
146! 3467 2018-10-30 19:05:21Z suehring
147! Implementation of a new aerosol module salsa.
148!
149! 3448 2018-10-29 18:14:31Z kanani
150! Add biometeorology
151!
152! 3421 2018-10-24 18:39:32Z gronemeier
153! Surface data output
154!
155! 3418 2018-10-24 16:07:39Z kanani
156! call to material_heat_model now with check if spinup runs (rvtils)
157!
158! 3378 2018-10-19 12:34:59Z kanani
159! merge from radiation branch (r3362) into trunk
160! (moh.hefny):
161! Bugfix in the if statement to call radiation_interaction
162!
163! 3347 2018-10-15 14:21:08Z suehring
164! - offline nesting separated from large-scale forcing module
165! - changes for synthetic turbulence generator
166!
167! 3343 2018-10-15 10:38:52Z suehring
168! - Formatting, clean-up, comments (kanani)
169! - Added CALL to chem_emissions_setup (Russo)
170! - Code added for decycling chemistry (basit)
171!
172! 3294 2018-10-01 02:37:10Z raasch
173! changes concerning modularization of ocean option
174!
175! 3274 2018-09-24 15:42:55Z knoop
176! Modularization of all bulk cloud physics code components
177!
178! 3241 2018-09-12 15:02:00Z raasch
179! unused variables removed
180!
181! 3198 2018-08-15 09:23:10Z sward
182! Added multi_agent_system_end; defined start time for MAS relative to
183! time_since_reference_point
184!
185! 3183 2018-07-27 14:25:55Z suehring
186! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
187! Rename subroutines and variables in COSMO nesting mode
188!
189! 3182 2018-07-27 13:36:03Z suehring
190! Added multi agent system
191!
192! 3042 2018-05-25 10:44:37Z schwenkel
193! Changed the name specific humidity to mixing ratio
194!
195! 3040 2018-05-25 10:22:08Z schwenkel
196! Fixed bug in IF statement
197! Ensure that the time when calling the radiation to be the time step of the
198! pre-calculated time when first calculate the positions of the sun
199!
200! 3004 2018-04-27 12:33:25Z Giersch
201! First call of flow_statistics has been removed. It is already called in
202! run_control itself
203!
204! 2984 2018-04-18 11:51:30Z hellstea
205! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
206! as seemingly unnecessary.
207!
208! 2941 2018-04-03 11:54:58Z kanani
209! Deduct spinup_time from RUN_CONTROL output of main 3d run
210! (use time_since_reference_point instead of simulated_time)
211!
212! 2938 2018-03-27 15:52:42Z suehring
213! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
214!
215! 2936 2018-03-27 14:49:27Z suehring
216! Little formatting adjustment.
217!
218! 2817 2018-02-19 16:32:21Z knoop
219! Preliminary gust module interface implemented
220!
221! 2801 2018-02-14 16:01:55Z thiele
222! Changed lpm from subroutine to module.
223! Introduce particle transfer in nested models.
224!
225! 2776 2018-01-31 10:44:42Z Giersch
226! Variable use_synthetic_turbulence_generator has been abbreviated
227!
228! 2773 2018-01-30 14:12:54Z suehring
229! - Nesting for chemical species
230!
231! 2766 2018-01-22 17:17:47Z kanani
232! Removed preprocessor directive __chem
233!
234! 2718 2018-01-02 08:49:38Z maronga
235! Corrected "Former revisions" section
236!
237! 2696 2017-12-14 17:12:51Z kanani
238! - Change in file header (GPL part)
239! - Implementation of uv exposure model (FK)
240! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
241! - renamed diffusivities to tcm_diffusivities (TG)
242! - implement prognostic equation for diss (TG)
243! - Moved/commented CALL to chem_emissions (FK)
244! - Added CALL to chem_emissions (FK)
245! - Implementation of chemistry module (FK)
246! - Calls for setting boundary conditions in USM and LSM (MS)
247! - Large-scale forcing with larger-scale models implemented (MS)
248! - Rename usm_radiation into radiation_interactions; merge with branch
249!   radiation (MS)
250! - added call for usm_green_heat_model for green building surfaces (RvT)
251! - added call for usm_temperature_near_surface for use in indoor model (RvT)
252!
253! 2617 2017-11-16 12:47:24Z suehring
254! Bugfix, assure that the reference state does not become zero.
255!
256! 2563 2017-10-19 15:36:10Z Giersch
257! Variable wind_turbine moved to module control_parameters
258!
259! 2365 2017-08-21 14:59:59Z kanani
260! Vertical grid nesting implemented (SadiqHuq)
261!
262! 2320 2017-07-21 12:47:43Z suehring
263! Set bottom boundary conditions after nesting interpolation and anterpolation
264!
265! 2299 2017-06-29 10:14:38Z maronga
266! Call of soil model adjusted
267!
268! 2292 2017-06-20 09:51:42Z schwenkel
269! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
270! includes two more prognostic equations for cloud drop concentration (nc) 
271! and cloud water content (qc).
272!
273! 2271 2017-06-09 12:34:55Z sward
274! Start timestep message changed
275!
276! 2259 2017-06-08 09:09:11Z gronemeier
277! Implemented synthetic turbulence generator
278!
279! 2233 2017-05-30 18:08:54Z suehring
280!
281! 2232 2017-05-30 17:47:52Z suehring
282! Adjustments to new topography and surface concept
283! Modify passed parameters for disturb_field
284!
285! 2178 2017-03-17 11:07:39Z hellstea
286! Setting perturbations at all times near inflow boundary is removed
287! in case of nested boundaries
288!
289! 2174 2017-03-13 08:18:57Z maronga
290! Added support for nesting with cloud microphysics
291!
292! 2118 2017-01-17 16:38:49Z raasch
293! OpenACC directives and related code removed
294!
295! 2050 2016-11-08 15:00:55Z gronemeier
296! Implement turbulent outflow condition
297!
298! 2031 2016-10-21 15:11:58Z knoop
299! renamed variable rho to rho_ocean
300!
301! 2011 2016-09-19 17:29:57Z kanani
302! Flag urban_surface is now defined in module control_parameters,
303! removed commented CALLs of global_min_max.
304!
305! 2007 2016-08-24 15:47:17Z kanani
306! Added CALLs for new urban surface model
307!
308! 2000 2016-08-20 18:09:15Z knoop
309! Forced header and separation lines into 80 columns
310!
311! 1976 2016-07-27 13:28:04Z maronga
312! Simplified calls to radiation model
313!
314! 1960 2016-07-12 16:34:24Z suehring
315! Separate humidity and passive scalar
316!
317! 1957 2016-07-07 10:43:48Z suehring
318! flight module added
319!
320! 1919 2016-05-27 14:51:23Z raasch
321! Initial version of purely vertical nesting introduced.
322!
323! 1918 2016-05-27 14:35:57Z raasch
324! determination of time step moved to the end of the time step loop,
325! the first time step is now always calculated before the time step loop (i.e.
326! also in case of restart runs)
327!
328! 1914 2016-05-26 14:44:07Z witha
329! Added call for wind turbine model
330!
331! 1878 2016-04-19 12:30:36Z hellstea
332! Synchronization for nested runs rewritten
333!
334! 1853 2016-04-11 09:00:35Z maronga
335! Adjusted for use with radiation_scheme = constant
336!
337! 1849 2016-04-08 11:33:18Z hoffmann
338! Adapted for modularization of microphysics
339!
340! 1833 2016-04-07 14:23:03Z raasch
341! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
342!
343! 1831 2016-04-07 13:15:51Z hoffmann
344! turbulence renamed collision_turbulence
345!
346! 1822 2016-04-07 07:49:42Z hoffmann
347! icloud_scheme replaced by microphysics_*
348!
349! 1808 2016-04-05 19:44:00Z raasch
350! output message in case unscheduled radiation calls removed
351!
352! 1797 2016-03-21 16:50:28Z raasch
353! introduction of different datatransfer modes
354!
355! 1791 2016-03-11 10:41:25Z raasch
356! call of pmci_update_new removed
357!
358! 1786 2016-03-08 05:49:27Z raasch
359! +module spectrum
360!
361! 1783 2016-03-06 18:36:17Z raasch
362! switch back of netcdf data format for mask output moved to the mask output
363! routine
364!
365! 1781 2016-03-03 15:12:23Z raasch
366! some pmc calls removed at the beginning (before timeloop),
367! pmc initialization moved to the main program
368!
369! 1764 2016-02-28 12:45:19Z raasch
370! PMC_ACTIVE flags removed,
371! bugfix: nest synchronization after first call of timestep
372!
373! 1762 2016-02-25 12:31:13Z hellstea
374! Introduction of nested domain feature
375!
376! 1736 2015-12-04 08:56:33Z raasch
377! no perturbations added to total domain if energy limit has been set zero
378!
379! 1691 2015-10-26 16:17:44Z maronga
380! Added option for spin-ups without land surface and radiation models. Moved calls
381! for radiation and lan surface schemes.
382!
383! 1682 2015-10-07 23:56:08Z knoop
384! Code annotations made doxygen readable
385!
386! 1671 2015-09-25 03:29:37Z raasch
387! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
388! for particles
389!
390! 1585 2015-04-30 07:05:52Z maronga
391! Moved call of radiation scheme. Added support for RRTM
392!
393! 1551 2015-03-03 14:18:16Z maronga
394! Added interface for different radiation schemes.
395!
396! 1496 2014-12-02 17:25:50Z maronga
397! Added calls for the land surface model and radiation scheme
398!
399! 1402 2014-05-09 14:25:13Z raasch
400! location messages modified
401!
402! 1384 2014-05-02 14:31:06Z raasch
403! location messages added
404!
405! 1380 2014-04-28 12:40:45Z heinze
406! CALL of nudge_ref added
407! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
408!
409! 1365 2014-04-22 15:03:56Z boeske
410! Reset sums_ls_l to zero at each timestep
411! +sums_ls_l
412! Calculation of reference state (previously in subroutine calc_mean_profile)
413
414! 1342 2014-03-26 17:04:47Z kanani
415! REAL constants defined as wp-kind
416!
417! 1320 2014-03-20 08:40:49Z raasch
418! ONLY-attribute added to USE-statements,
419! kind-parameters added to all INTEGER and REAL declaration statements,
420! kinds are defined in new module kinds,
421! old module precision_kind is removed,
422! revision history before 2012 removed,
423! comment fields (!:) to be used for variable explanations added to
424! all variable declaration statements
425! 1318 2014-03-17 13:35:16Z raasch
426! module interfaces removed
427!
428! 1308 2014-03-13 14:58:42Z fricke
429! +netcdf_data_format_save
430! For masked data, parallel netcdf output is not tested so far, hence
431! netcdf_data_format is switched back to non-paralell output.
432!
433! 1276 2014-01-15 13:40:41Z heinze
434! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
435!
436! 1257 2013-11-08 15:18:40Z raasch
437! acc-update-host directive for timestep removed
438!
439! 1241 2013-10-30 11:36:58Z heinze
440! Generalize calc_mean_profile for wider use
441! Determine shf and qsws in dependence on data from LSF_DATA
442! Determine ug and vg in dependence on data from LSF_DATA
443! 1221 2013-09-10 08:59:13Z raasch
444! host update of arrays before timestep is called
445!
446! 1179 2013-06-14 05:57:58Z raasch
447! mean profiles for reference state are only calculated if required,
448! small bugfix for background communication
449!
450! 1171 2013-05-30 11:27:45Z raasch
451! split of prognostic_equations deactivated (comment lines), for the time being
452!
453! 1128 2013-04-12 06:19:32Z raasch
454! asynchronous transfer of ghost point data realized for acc-optimized version:
455! prognostic_equations are first called two times for those points required for
456! the left-right and north-south exchange, respectively, and then for the
457! remaining points,
458! those parts requiring global communication moved from prognostic_equations to
459! here
460!
461! 1115 2013-03-26 18:16:16Z hoffmann
462! calculation of qr and nr is restricted to precipitation
463!
464! 1113 2013-03-10 02:48:14Z raasch
465! GPU-porting of boundary conditions,
466! openACC directives updated
467! formal parameter removed from routine boundary_conds
468!
469! 1111 2013-03-08 23:54:10Z raasch
470! +internal timestep counter for cpu statistics added,
471! openACC directives updated
472!
473! 1092 2013-02-02 11:24:22Z raasch
474! unused variables removed
475!
476! 1065 2012-11-22 17:42:36Z hoffmann
477! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
478!
479! 1053 2012-11-13 17:11:03Z hoffmann
480! exchange of ghost points for nr, qr added
481!
482! 1036 2012-10-22 13:43:42Z raasch
483! code put under GPL (PALM 3.9)
484!
485! 1019 2012-09-28 06:46:45Z raasch
486! non-optimized version of prognostic_equations removed
487!
488! 1015 2012-09-27 09:23:24Z raasch
489! +call of prognostic_equations_acc
490!
491! 1001 2012-09-13 14:08:46Z raasch
492! all actions concerning leapfrog- and upstream-spline-scheme removed
493!
494! 849 2012-03-15 10:35:09Z raasch
495! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
496!
497! 825 2012-02-19 03:03:44Z raasch
498! wang_collision_kernel renamed wang_kernel
499!
500! Revision 1.1  1997/08/11 06:19:04  raasch
501! Initial revision
502!
503!
504! Description:
505! ------------
506!> Integration in time of the model equations, statistical analysis and graphic
507!> output
508!------------------------------------------------------------------------------!
509 SUBROUTINE time_integration
510 
511
512    USE advec_ws,                                                                                  &
513        ONLY:  ws_statistics
514
515    USE arrays_3d,                                                                                 &
516        ONLY:  diss, diss_p, dzu, e, e_p, nc, nc_p, nr, nr_p, prho, pt, pt_p, pt_init, q_init, q,  &
517               qc, qc_p, ql, ql_c, ql_v, ql_vp, qr, qr_p, q_p, ref_state, rho_ocean, s, s_p, sa_p, &
518               tend, u, u_p, v, vpt, v_p, w, w_p
519
520    USE biometeorology_mod,                                                                        &
521        ONLY:  bio_calculate_thermal_index_maps, thermal_comfort, uvem_calc_exposure, uv_exposure
522
523    USE bulk_cloud_model_mod,                                                                      &
524        ONLY: bulk_cloud_model, calc_liquid_water_content, collision_turbulence,                   &
525              microphysics_morrison, microphysics_seifert
526
527    USE calc_mean_profile_mod,                                                                     &
528        ONLY:  calc_mean_profile
529
530    USE chem_emissions_mod,                                                                        &
531        ONLY:  chem_emissions_setup
532
533    USE chem_gasphase_mod,                                                                         &
534        ONLY:  nvar
535
536    USE chem_modules,                                                                              &
537        ONLY:  bc_cs_t_val, chem_species, cs_name, emissions_anthropogenic, n_matched_vars
538
539    USE chemistry_model_mod,                                                                       &
540        ONLY:  chem_boundary_conds
541
542    USE control_parameters,                                                                        &
543        ONLY:  advected_distance_x, advected_distance_y, air_chemistry, average_count_3d,          &
544               averaging_interval, averaging_interval_pr, bc_lr_cyc, bc_ns_cyc, bc_pt_t_val,       &
545               bc_q_t_val, biometeorology, call_psolver_at_all_substeps,  child_domain,            &
546               cloud_droplets, constant_flux_layer, constant_heatflux, create_disturbances,        &
547               dopr_n, constant_diffusion, coupling_mode, coupling_start_time,                     &
548               current_timestep_number, disturbance_created, disturbance_energy_limit, dist_range, &
549               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr, dt_coupling,              &
550               dt_data_output_av, dt_disturb, dt_do2d_xy, dt_do2d_xz, dt_do2d_yz, dt_do3d,         &
551               dt_domask,dt_dopts, dt_dopr, dt_dopr_listing, dt_dots, dt_run_control,              &
552               end_time, first_call_lpm, first_call_mas, galilei_transformation, humidity,         &
553               indoor_model, intermediate_timestep_count, intermediate_timestep_count_max,         &
554               land_surface, large_scale_forcing, loop_optimization, lsf_surf, lsf_vert, masks,    &
555               mid, multi_agent_system_end, multi_agent_system_start, nesting_offline, neutral,    &
556               nr_timesteps_this_run, nudging, ocean_mode, passive_scalar, pt_reference,           &
557               pt_slope_offset, random_heatflux, rans_mode, rans_tke_e, run_coupled, salsa,        &
558               simulated_time, simulated_time_chr, skip_time_do2d_xy, skip_time_do2d_xz,           &
559               skip_time_do2d_yz, skip_time_do3d, skip_time_domask, skip_time_dopr,                &
560               skip_time_data_output_av, sloping_surface, stop_dt, surface_output,                 &
561               terminate_coupled, terminate_run, timestep_scheme, time_coupling, time_do2d_xy,     &
562               time_do2d_xz, time_do2d_yz, time_do3d, time_domask, time_dopr, time_dopr_av,        &
563               time_dopr_listing, time_dopts, time_dosp, time_dosp_av, time_dots, time_do_av,      &
564               time_do_sla, time_disturb, time_run_control, time_since_reference_point,            &
565               turbulent_inflow, turbulent_outflow, urban_surface,                                 &
566               use_initial_profile_as_reference, use_single_reference_value, u_gtrans, v_gtrans,   &
567               virtual_flight, virtual_measurement, ws_scheme_mom, ws_scheme_sca
568
569    USE cpulog,                                                                                    &
570        ONLY:  cpu_log, log_point, log_point_s
571
572    USE date_and_time_mod,                                                                         &
573        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
574
575    USE diagnostic_output_quantities_mod,                                                          &
576        ONLY:  diagnostic_output_quantities_calculate,                                             &
577               timestep_number_at_prev_calc
578
579    USE flight_mod,                                                                                &
580        ONLY:  flight_measurement
581
582    USE indices,                                                                                   &
583        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nzb, nzt
584
585    USE indoor_model_mod,                                                                          &
586        ONLY:  dt_indoor, im_main_heatcool, time_indoor
587
588    USE interaction_droplets_ptq_mod,                                                              &
589        ONLY:  interaction_droplets_ptq
590
591    USE interfaces
592
593    USE kinds
594
595    USE land_surface_model_mod,                                                                    &
596        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model, skip_time_do_lsm
597
598    USE lagrangian_particle_model_mod,                                                             &
599        ONLY:  lpm_data_output_ptseries
600
601    USE lsf_nudging_mod,                                                                           &
602        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
603
604    USE module_interface,                                                                          &
605        ONLY:  module_interface_actions
606
607    USE multi_agent_system_mod,                                                                    &
608        ONLY:  agents_active, multi_agent_system
609
610    USE nesting_offl_mod,                                                                          &
611        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
612
613    USE netcdf_data_input_mod,                                                                     &
614        ONLY:  chem_emis, chem_emis_att, nest_offl, netcdf_data_input_offline_nesting
615
616    USE ocean_mod,                                                                                 &
617        ONLY:  prho_reference
618
619    USE particle_attributes,                                                                       &
620        ONLY:  particle_advection, particle_advection_start, use_sgs_for_particles, wang_kernel
621
622    USE pegrid
623
624    USE pmc_interface,                                                                             &
625        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans, pmci_synchronize,    &
626        pmci_ensure_nest_mass_conservation, pmci_ensure_nest_mass_conservation_vertical
627
628    USE progress_bar,                                                                              &
629        ONLY:  finish_progress_bar, output_progress_bar
630
631    USE prognostic_equations_mod,                                                                  &
632        ONLY:  prognostic_equations_cache, prognostic_equations_vector
633
634    USE radiation_model_mod,                                                                       &
635        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,                    &
636              radiation_interaction, radiation_interactions, skip_time_do_radiation, time_radiation
637
638    USE salsa_mod,                                                                                 &
639        ONLY: aerosol_number, aerosol_mass, bc_am_t_val, bc_an_t_val, bc_gt_t_val,                 &
640              nbins_aerosol, ncomponents_mass, ngases_salsa, salsa_boundary_conds,                 &
641              salsa_emission_update, salsa_gas, salsa_gases_from_chem, skip_time_do_salsa
642
643    USE spectra_mod,                                                                               &
644        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp, skip_time_dosp
645
646    USE statistics,                                                                                &
647        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l
648
649
650    USE surface_layer_fluxes_mod,                                                                  &
651        ONLY:  surface_layer_fluxes
652
653    USE surface_data_output_mod,                                                                   &
654        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf, dt_dosurf_av,               &
655               surface_data_output, surface_data_output_averaging, skip_time_dosurf,               &
656               skip_time_dosurf_av, time_dosurf, time_dosurf_av
657
658    USE surface_mod,                                                                               &
659        ONLY:  surf_def_h, surf_lsm_h, surf_usm_h
660
661    USE synthetic_turbulence_generator_mod,                                                        &
662        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence, stg_adjust, stg_main,    &
663               time_stg_adjust, time_stg_call, use_syn_turb_gen
664
665    USE turbulence_closure_mod,                                                                    &
666        ONLY:  tcm_diffusivities, production_e_init
667
668    USE urban_surface_mod,                                                                         &
669        ONLY:  usm_boundary_condition, usm_material_heat_model, usm_material_model,                &
670               usm_surface_energy_balance, usm_green_heat_model
671
672    USE vertical_nesting_mod,                                                                      &
673        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e, vnest_boundary_conds,              &
674               vnest_boundary_conds_khkm, vnest_deallocate, vnest_init, vnest_init_fine,           &
675               vnest_start_time
676
677    USE virtual_measurement_mod,                                                                   &
678        ONLY:  dt_virtual_measurement,                                                             &
679               time_virtual_measurement,                                                           &
680               vm_data_output,                                                                     &
681               vm_sampling,                                                                        &
682               vm_time_start
683
684
685#if defined( _OPENACC )
686    USE arrays_3d,                                                             &
687        ONLY:  d, dd2zu, ddzu, ddzw, drho_air, drho_air_zw, dzw, heatflux_output_conversion, kh,   &
688               km, momentumflux_output_conversion, p, ptdf_x, ptdf_y, rdf, rdf_sc, rho_air,        &
689               rho_air_zw, te_m, tpt_m, tu_m, tv_m, tw_m, ug, u_init, u_stokes_zu, vg, v_init,     &
690               v_stokes_zu, zu
691
692    USE control_parameters,                                                                        &
693        ONLY:  tsc
694
695    USE indices,                                                                                   &
696        ONLY:  advc_flags_1, advc_flags_2, nyn, nyng, nys, nysg, nz, nzb_max, wall_flags_0
697
698    USE statistics,                                                                                &
699        ONLY:  rmask, statistic_regions, sums_l, sums_l_l, sums_us2_ws_l,                          &
700               sums_wsus_ws_l, sums_vs2_ws_l, sums_wsvs_ws_l, sums_ws2_ws_l, sums_wspts_ws_l,      &
701               sums_wsqs_ws_l, sums_wssas_ws_l, sums_wsqcs_ws_l, sums_wsqrs_ws_l, sums_wsncs_ws_l, &
702               sums_wsnrs_ws_l, sums_wsss_ws_l, weight_substep, sums_salsa_ws_l
703
704    USE surface_mod,                                                                               &
705        ONLY:  bc_h, enter_surface_arrays, exit_surface_arrays
706#endif
707
708
709    IMPLICIT NONE
710
711    CHARACTER (LEN=9) ::  time_to_string   !<
712
713    INTEGER(iwp)      ::  ib        !< index for aerosol size bins
714    INTEGER(iwp)      ::  ic        !< index for aerosol mass bins
715    INTEGER(iwp)      ::  icc       !< additional index for aerosol mass bins
716    INTEGER(iwp)      ::  ig        !< index for salsa gases
717    INTEGER(iwp)      ::  lsp
718    INTEGER(iwp)      ::  lsp_usr   !<
719    INTEGER(iwp)      ::  n         !< loop counter for chemistry species
720
721    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
722                            !< steering of run control output interval
723    REAL(wp) ::  time_since_reference_point_save  !< original value of
724                                                  !< time_since_reference_point
725
726
727!
728!-- Copy data from arrays_3d
729!$ACC DATA &
730!$ACC COPY(d(nzb+1:nzt,nys:nyn,nxl:nxr)) &
731!$ACC COPY(e(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
732!$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
733!$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
734!$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
735!$ACC COPY(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
736!$ACC COPY(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
737!$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
738!$ACC COPY(pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
739
740!$ACC DATA &
741!$ACC COPY(e_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
742!$ACC COPY(u_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
743!$ACC COPY(v_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
744!$ACC COPY(w_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
745!$ACC COPY(pt_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
746!$ACC COPY(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
747!$ACC COPY(te_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
748!$ACC COPY(tu_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
749!$ACC COPY(tv_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
750!$ACC COPY(tw_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
751!$ACC COPY(tpt_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
752
753!$ACC DATA &
754!$ACC COPYIN(rho_air(nzb:nzt+1), drho_air(nzb:nzt+1)) &
755!$ACC COPYIN(rho_air_zw(nzb:nzt+1), drho_air_zw(nzb:nzt+1)) &
756!$ACC COPYIN(zu(nzb:nzt+1)) &
757!$ACC COPYIN(dzu(1:nzt+1), dzw(1:nzt+1)) &
758!$ACC COPYIN(ddzu(1:nzt+1), dd2zu(1:nzt)) &
759!$ACC COPYIN(ddzw(1:nzt+1)) &
760!$ACC COPYIN(heatflux_output_conversion(nzb:nzt+1)) &
761!$ACC COPYIN(momentumflux_output_conversion(nzb:nzt+1)) &
762!$ACC COPYIN(rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt)) &
763!$ACC COPYIN(ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng)) &
764!$ACC COPYIN(ref_state(0:nz+1)) &
765!$ACC COPYIN(u_init(0:nz+1), v_init(0:nz+1)) &
766!$ACC COPYIN(u_stokes_zu(nzb:nzt+1), v_stokes_zu(nzb:nzt+1)) &
767!$ACC COPYIN(pt_init(0:nz+1)) &
768!$ACC COPYIN(ug(0:nz+1), vg(0:nz+1))
769
770!
771!-- Copy data from control_parameters
772!$ACC DATA &
773!$ACC COPYIN(tsc(1:5))
774
775!
776!-- Copy data from indices
777!$ACC DATA &
778!$ACC COPYIN(advc_flags_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
779!$ACC COPYIN(advc_flags_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
780!$ACC COPYIN(wall_flags_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
781
782!
783!-- Copy data from surface_mod
784!$ACC DATA &
785!$ACC COPYIN(bc_h(0:1)) &
786!$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) &
787!$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) &
788!$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) &
789!$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) &
790!$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) &
791!$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns))
792
793!
794!-- Copy data from statistics
795!$ACC DATA &
796!$ACC COPYIN(hom(0:nz+1,1:2,1:4,0)) &
797!$ACC COPYIN(rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions)) &
798!$ACC COPYIN(weight_substep(1:intermediate_timestep_count_max)) &
799!$ACC COPY(sums_l(nzb:nzt+1,1:pr_palm,0)) &
800!$ACC COPY(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
801!$ACC COPY(sums_us2_ws_l(nzb:nzt+1,0)) &
802!$ACC COPY(sums_wsus_ws_l(nzb:nzt+1,0)) &
803!$ACC COPY(sums_vs2_ws_l(nzb:nzt+1,0)) &
804!$ACC COPY(sums_wsvs_ws_l(nzb:nzt+1,0)) &
805!$ACC COPY(sums_ws2_ws_l(nzb:nzt+1,0)) &
806!$ACC COPY(sums_wspts_ws_l(nzb:nzt+1,0)) &
807!$ACC COPY(sums_wssas_ws_l(nzb:nzt+1,0)) &
808!$ACC COPY(sums_wsqs_ws_l(nzb:nzt+1,0)) &
809!$ACC COPY(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
810!$ACC COPY(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
811!$ACC COPY(sums_wsncs_ws_l(nzb:nzt+1,0)) &
812!$ACC COPY(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
813!$ACC COPY(sums_wsss_ws_l(nzb:nzt+1,0)) &
814!$ACC COPY(sums_salsa_ws_l(nzb:nzt+1,0))
815
816#if defined( _OPENACC )
817    CALL enter_surface_arrays
818#endif
819
820!
821!-- At beginning determine the first time step
822    CALL timestep
823!
824!-- Synchronize the timestep in case of nested run.
825    IF ( nested_run )  THEN
826!
827!--    Synchronization by unifying the time step.
828!--    Global minimum of all time-steps is used for all.
829       CALL pmci_synchronize
830    ENDIF
831
832!
833!-- Determine and print out the run control quantities before the first time
834!-- step of this run. For the initial run, some statistics (e.g. divergence)
835!-- need to be determined first --> CALL flow_statistics at the beginning of
836!-- run_control
837    CALL run_control
838!
839!-- Data exchange between coupled models in case that a call has been omitted
840!-- at the end of the previous run of a job chain.
841    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND. .NOT. vnested )  THEN
842!
843!--    In case of model termination initiated by the local model the coupler
844!--    must not be called because this would again cause an MPI hang.
845       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
846          CALL surface_coupler
847          time_coupling = time_coupling - dt_coupling
848       ENDDO
849       IF (time_coupling == 0.0_wp  .AND.  time_since_reference_point < dt_coupling )  THEN
850          time_coupling = time_since_reference_point
851       ENDIF
852    ENDIF
853
854    CALL location_message( 'atmosphere (and/or ocean) time-stepping', 'start' )
855
856!
857!-- Start of the time loop
858    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. .NOT. terminate_run )
859
860       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
861!
862!--    Vertical nesting: initialize fine grid
863       IF ( vnested ) THEN
864          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
865             CALL cpu_log( log_point_s(22), 'vnest_init', 'start' )
866             CALL vnest_init_fine
867             vnest_init = .TRUE.
868             CALL cpu_log( log_point_s(22), 'vnest_init', 'stop' )
869          ENDIF
870       ENDIF
871!
872!--    Determine ug, vg and w_subs in dependence on data from external file
873!--    LSF_DATA
874       IF ( large_scale_forcing .AND. lsf_vert )  THEN
875           CALL ls_forcing_vert ( simulated_time )
876           sums_ls_l = 0.0_wp
877       ENDIF
878
879!
880!--    Set pt_init and q_init to the current profiles taken from
881!--    NUDGING_DATA
882       IF ( nudging )  THEN
883           CALL nudge_ref ( simulated_time )
884!
885!--        Store temperature gradient at the top boundary for possible Neumann
886!--        boundary condition
887           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
888           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
889           IF ( air_chemistry )  THEN
890              DO  lsp = 1, nvar
891                 bc_cs_t_val = (  chem_species(lsp)%conc_pr_init(nzt+1)                            &
892                                - chem_species(lsp)%conc_pr_init(nzt) )                            &
893                               / dzu(nzt+1)
894              ENDDO
895           ENDIF
896           IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
897              DO  ib = 1, nbins_aerosol
898                 bc_an_t_val = ( aerosol_number(ib)%init(nzt+1) - aerosol_number(ib)%init(nzt) ) / &
899                               dzu(nzt+1)
900                 DO  ic = 1, ncomponents_mass
901                    icc = ( ic - 1 ) * nbins_aerosol + ib
902                    bc_am_t_val = ( aerosol_mass(icc)%init(nzt+1) - aerosol_mass(icc)%init(nzt) ) /&
903                                  dzu(nzt+1)
904                 ENDDO
905              ENDDO
906              IF ( .NOT. salsa_gases_from_chem )  THEN
907                 DO  ig = 1, ngases_salsa
908                    bc_gt_t_val = ( salsa_gas(ig)%init(nzt+1) - salsa_gas(ig)%init(nzt) ) /        &
909                                  dzu(nzt+1)
910                 ENDDO
911              ENDIF
912           ENDIF
913       ENDIF
914!
915!--    If forcing by larger-scale models is applied, check if new data
916!--    at domain boundaries need to be read.
917       IF ( nesting_offline ) THEN
918          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point ) &
919               CALL netcdf_data_input_offline_nesting
920       ENDIF
921
922!
923!--    Execute all other module actions routunes
924       CALL module_interface_actions( 'before_timestep' )
925       
926!
927!--    Start of intermediate step loop
928       intermediate_timestep_count = 0
929       DO  WHILE ( intermediate_timestep_count < intermediate_timestep_count_max )
930
931          intermediate_timestep_count = intermediate_timestep_count + 1
932
933!
934!--       Set the steering factors for the prognostic equations which depend
935!--       on the timestep scheme
936          CALL timestep_scheme_steering
937
938!
939!--       Calculate those variables needed in the tendency terms which need
940!--       global communication
941          IF ( .NOT. use_single_reference_value  .AND.  .NOT. use_initial_profile_as_reference )   &
942          THEN
943!
944!--          Horizontally averaged profiles to be used as reference state in
945!--          buoyancy terms (WARNING: only the respective last call of
946!--          calc_mean_profile defines the reference state!)
947             IF ( .NOT. neutral )  THEN
948                CALL calc_mean_profile( pt, 4 )
949                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
950             ENDIF
951             IF ( ocean_mode )  THEN
952                CALL calc_mean_profile( rho_ocean, 64 )
953                ref_state(:)  = hom(:,1,64,0)
954             ENDIF
955             IF ( humidity )  THEN
956                CALL calc_mean_profile( vpt, 44 )
957                ref_state(:)  = hom(:,1,44,0)
958             ENDIF
959!
960!--          Assure that ref_state does not become zero at any level
961!--          ( might be the case if a vertical level is completely occupied
962!--            with topography ).
963             ref_state = MERGE( MAXVAL(ref_state), ref_state, ref_state == 0.0_wp )
964          ENDIF
965
966          IF ( .NOT. constant_diffusion )  CALL production_e_init
967          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  intermediate_timestep_count == 1 )     &
968          THEN
969             CALL ws_statistics
970          ENDIF
971!
972!--       In case of nudging calculate current nudging time scale and horizontal
973!--       means of u, v, pt and q
974          IF ( nudging )  THEN
975             CALL calc_tnudge( simulated_time )
976             CALL calc_mean_profile( u, 1 )
977             CALL calc_mean_profile( v, 2 )
978             CALL calc_mean_profile( pt, 4 )
979             CALL calc_mean_profile( q, 41 )
980          ENDIF
981!
982!--       Execute all other module actions routunes
983          CALL module_interface_actions( 'before_prognostic_equations' )
984!
985!--       Solve the prognostic equations. A fast cache optimized version with
986!--       only one single loop is used in case of Piascek-Williams advection
987!--       scheme. NEC vector machines use a different version, because
988!--       in the other versions a good vectorization is prohibited due to
989!--       inlining problems.
990          IF ( loop_optimization == 'cache' )  THEN
991             CALL prognostic_equations_cache
992          ELSEIF ( loop_optimization == 'vector' )  THEN
993             CALL prognostic_equations_vector
994          ENDIF
995
996!
997!--       Particle transport/physics with the Lagrangian particle model
998!--       (only once during intermediate steps, because it uses an Euler-step)
999!--       ### particle model should be moved before prognostic_equations, in order
1000!--       to regard droplet interactions directly
1001          IF ( particle_advection  .AND.  time_since_reference_point >= particle_advection_start   &
1002               .AND.  intermediate_timestep_count == 1 )                                           &
1003          THEN
1004             CALL module_interface_actions( 'after_prognostic_equations' )
1005             first_call_lpm = .FALSE.
1006          ENDIF
1007
1008!
1009!--       Interaction of droplets with temperature and mixing ratio.
1010!--       Droplet condensation and evaporation is calculated within
1011!--       advec_particles.
1012          IF ( cloud_droplets  .AND.  intermediate_timestep_count == intermediate_timestep_count_max ) &
1013          THEN
1014             CALL interaction_droplets_ptq
1015          ENDIF
1016
1017!
1018!--       Movement of agents in multi agent system
1019          IF ( agents_active  .AND.  time_since_reference_point >= multi_agent_system_start  .AND. &
1020               time_since_reference_point <= multi_agent_system_end  .AND.                         &
1021               intermediate_timestep_count == 1 )                                                  &
1022          THEN
1023             CALL multi_agent_system
1024             first_call_mas = .FALSE.
1025          ENDIF
1026
1027!
1028!--       Exchange of ghost points (lateral boundary conditions)
1029          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
1030
1031          CALL exchange_horiz( u_p, nbgp )
1032          CALL exchange_horiz( v_p, nbgp )
1033          CALL exchange_horiz( w_p, nbgp )
1034          CALL exchange_horiz( pt_p, nbgp )
1035          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
1036          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence                           &
1037               .OR.  use_sgs_for_particles )  THEN
1038             IF ( rans_tke_e )  THEN
1039                CALL exchange_horiz( diss_p, nbgp )
1040             ELSE
1041                CALL exchange_horiz( diss, nbgp )
1042             ENDIF
1043          ENDIF
1044          IF ( ocean_mode )  THEN
1045             CALL exchange_horiz( sa_p, nbgp )
1046             CALL exchange_horiz( rho_ocean, nbgp )
1047             CALL exchange_horiz( prho, nbgp )
1048          ENDIF
1049          IF ( humidity )  THEN
1050             CALL exchange_horiz( q_p, nbgp )
1051             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
1052                CALL exchange_horiz( qc_p, nbgp )
1053                CALL exchange_horiz( nc_p, nbgp )
1054             ENDIF
1055             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
1056                CALL exchange_horiz( qr_p, nbgp )
1057                CALL exchange_horiz( nr_p, nbgp )
1058             ENDIF
1059          ENDIF
1060          IF ( cloud_droplets )  THEN
1061             CALL exchange_horiz( ql, nbgp )
1062             CALL exchange_horiz( ql_c, nbgp )
1063             CALL exchange_horiz( ql_v, nbgp )
1064             CALL exchange_horiz( ql_vp, nbgp )
1065          ENDIF
1066          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
1067          IF ( air_chemistry )  THEN
1068             DO  lsp = 1, nvar
1069                CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp )
1070!
1071!--             kanani: Push chem_boundary_conds after CALL boundary_conds
1072                lsp_usr = 1
1073                DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
1074                   IF ( TRIM(chem_species(lsp)%name) == TRIM(cs_name(lsp_usr)) )  THEN
1075                      CALL chem_boundary_conds( chem_species(lsp)%conc_p,                          &
1076                                                chem_species(lsp)%conc_pr_init )
1077                   ENDIF
1078                   lsp_usr = lsp_usr + 1
1079                ENDDO
1080             ENDDO
1081          ENDIF
1082
1083          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
1084!
1085!--          Exchange ghost points and decycle boundary concentrations if needed
1086             DO  ib = 1, nbins_aerosol
1087                CALL exchange_horiz( aerosol_number(ib)%conc_p, nbgp )
1088                CALL salsa_boundary_conds( aerosol_number(ib)%conc_p, aerosol_number(ib)%init )
1089                DO  ic = 1, ncomponents_mass
1090                   icc = ( ic - 1 ) * nbins_aerosol + ib
1091                   CALL exchange_horiz( aerosol_mass(icc)%conc_p, nbgp )
1092                   CALL salsa_boundary_conds( aerosol_mass(icc)%conc_p, aerosol_mass(icc)%init )
1093                ENDDO
1094             ENDDO
1095             IF ( .NOT. salsa_gases_from_chem )  THEN
1096                DO  ig = 1, ngases_salsa
1097                   CALL exchange_horiz( salsa_gas(ig)%conc_p, nbgp )
1098                   CALL salsa_boundary_conds( salsa_gas(ig)%conc_p, salsa_gas(ig)%init )
1099                ENDDO
1100             ENDIF
1101          ENDIF
1102          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1103
1104!
1105!--       Boundary conditions for the prognostic quantities (except of the
1106!--       velocities at the outflow in case of a non-cyclic lateral wall)
1107          CALL boundary_conds
1108!
1109!--       Swap the time levels in preparation for the next time step.
1110          CALL swap_timelevel
1111
1112!
1113!--       Vertical nesting: Interpolate fine grid data to the coarse grid
1114          IF ( vnest_init ) THEN
1115             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'start' )
1116             CALL vnest_anterpolate
1117             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'stop' )
1118          ENDIF
1119
1120          IF ( nested_run )  THEN
1121
1122             CALL cpu_log( log_point(60), 'nesting', 'start' )
1123!
1124!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
1125!--          and pmci_child_datatrans are called inside the wrapper
1126!--          subroutine pmci_datatrans according to the control parameters
1127!--          nesting_mode and nesting_datatransfer_mode.
1128!--          TO_DO: why is nesting_mode given as a parameter here?
1129             CALL pmci_datatrans( nesting_mode )
1130
1131             IF ( TRIM( nesting_mode ) == 'two-way' .OR.  nesting_mode == 'vertical' )  THEN
1132!
1133!--             Exchange_horiz is needed for all parent-domains after the
1134!--             anterpolation
1135                CALL exchange_horiz( u, nbgp )
1136                CALL exchange_horiz( v, nbgp )
1137                CALL exchange_horiz( w, nbgp )
1138                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
1139
1140                IF ( humidity )  THEN
1141
1142                   CALL exchange_horiz( q, nbgp )
1143
1144                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
1145                       CALL exchange_horiz( qc, nbgp )
1146                       CALL exchange_horiz( nc, nbgp )
1147                   ENDIF
1148                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
1149                       CALL exchange_horiz( qr, nbgp )
1150                       CALL exchange_horiz( nr, nbgp )
1151                   ENDIF
1152
1153                ENDIF
1154
1155                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
1156
1157                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
1158
1159                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.  rans_tke_e )  THEN
1160                   CALL exchange_horiz( diss, nbgp )
1161                ENDIF
1162
1163                IF ( air_chemistry )  THEN
1164                   DO  n = 1, nvar
1165                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
1166                   ENDDO
1167                ENDIF
1168
1169                IF ( salsa  .AND. time_since_reference_point >= skip_time_do_salsa )  THEN
1170                   DO  ib = 1, nbins_aerosol
1171                      CALL exchange_horiz( aerosol_number(ib)%conc, nbgp )
1172                      CALL salsa_boundary_conds( aerosol_number(ib)%conc, aerosol_number(ib)%init )
1173                      DO  ic = 1, ncomponents_mass
1174                         icc = ( ic - 1 ) * nbins_aerosol + ib
1175                         CALL exchange_horiz( aerosol_mass(icc)%conc, nbgp )
1176                         CALL salsa_boundary_conds( aerosol_mass(icc)%conc, aerosol_mass(icc)%init )
1177                      ENDDO
1178                   ENDDO
1179                   IF ( .NOT. salsa_gases_from_chem )  THEN
1180                      DO  ig = 1, ngases_salsa
1181                         CALL exchange_horiz( salsa_gas(ig)%conc, nbgp )
1182                         CALL salsa_boundary_conds( salsa_gas(ig)%conc, salsa_gas(ig)%init )
1183                      ENDDO
1184                   ENDIF
1185                ENDIF
1186                CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1187
1188             ENDIF
1189!
1190!--          Set boundary conditions again after interpolation and anterpolation.
1191             CALL pmci_boundary_conds
1192
1193             CALL cpu_log( log_point(60), 'nesting', 'stop' )
1194
1195          ENDIF
1196
1197!
1198!--       Temperature offset must be imposed at cyclic boundaries in x-direction
1199!--       when a sloping surface is used
1200          IF ( sloping_surface )  THEN
1201             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - pt_slope_offset
1202             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + pt_slope_offset
1203          ENDIF
1204
1205!
1206!--       Impose a turbulent inflow using the recycling method
1207          IF ( turbulent_inflow )  CALL inflow_turbulence
1208
1209!
1210!--       Set values at outflow boundary using the special outflow condition
1211          IF ( turbulent_outflow )  CALL outflow_turbulence
1212
1213!
1214!--       Impose a random perturbation on the horizontal velocity field
1215          IF ( create_disturbances  .AND.  ( call_psolver_at_all_substeps  .AND.                   &
1216               intermediate_timestep_count == intermediate_timestep_count_max )                    &
1217               .OR. ( .NOT. call_psolver_at_all_substeps  .AND.  intermediate_timestep_count == 1 ) ) &
1218          THEN
1219             time_disturb = time_disturb + dt_3d
1220             IF ( time_disturb >= dt_disturb )  THEN
1221                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                                     &
1222                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
1223                   CALL disturb_field( 'u', tend, u )
1224                   CALL disturb_field( 'v', tend, v )
1225                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )                                &
1226                         .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )                 &
1227                THEN
1228!
1229!--                Runs with a non-cyclic lateral wall need perturbations
1230!--                near the inflow throughout the whole simulation
1231                   dist_range = 1
1232                   CALL disturb_field( 'u', tend, u )
1233                   CALL disturb_field( 'v', tend, v )
1234                   dist_range = 0
1235                ENDIF
1236                time_disturb = time_disturb - dt_disturb
1237             ENDIF
1238          ENDIF
1239
1240!
1241!--       Map forcing data derived from larger scale model onto domain
1242!--       boundaries.
1243          IF ( nesting_offline  .AND.  intermediate_timestep_count ==                              &
1244                                       intermediate_timestep_count_max  )                          &
1245             CALL nesting_offl_bc
1246!
1247!--       Impose a turbulent inflow using synthetic generated turbulence.
1248          IF ( use_syn_turb_gen  .AND.                                                             &
1249               intermediate_timestep_count == intermediate_timestep_count_max )  THEN
1250             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1251             CALL stg_main
1252             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1253          ENDIF
1254!
1255!--       Ensure mass conservation. This need to be done after imposing
1256!--       synthetic turbulence and top boundary condition for pressure is set to
1257!--       Neumann conditions.
1258!--       Is this also required in case of Dirichlet?
1259          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1260!
1261!--       Reduce the velocity divergence via the equation for perturbation
1262!--       pressure.
1263          IF ( intermediate_timestep_count == 1  .OR. &
1264                call_psolver_at_all_substeps )  THEN
1265
1266             IF (  vnest_init ) THEN
1267!
1268!--             Compute pressure in the CG, interpolate top boundary conditions
1269!--             to the FG and then compute pressure in the FG
1270                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1271
1272                CALL cpu_log( log_point_s(30), 'vnest_bc', 'start' )
1273                CALL vnest_boundary_conds
1274                CALL cpu_log( log_point_s(30), 'vnest_bc', 'stop' )
1275 
1276                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1277
1278!--             Anterpolate TKE, satisfy Germano Identity
1279                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'start' )
1280                CALL vnest_anterpolate_e
1281                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'stop' )
1282
1283             ELSE
1284!               
1285!--             Mass (volume) flux correction to ensure global mass conservation for child domains.
1286                IF ( child_domain )  THEN
1287                   IF ( nesting_mode == 'vertical' )  THEN
1288                      CALL pmci_ensure_nest_mass_conservation_vertical
1289                   ELSE
1290                      CALL pmci_ensure_nest_mass_conservation
1291                   ENDIF
1292                ENDIF
1293               
1294                CALL pres
1295
1296             ENDIF
1297
1298          ENDIF
1299
1300!
1301!--       If required, compute liquid water content
1302          IF ( bulk_cloud_model )  THEN
1303             CALL calc_liquid_water_content
1304          ENDIF
1305!
1306!--       If required, compute virtual potential temperature
1307          IF ( humidity )  THEN
1308             CALL compute_vpt
1309          ENDIF
1310
1311!
1312!--       Compute the diffusion quantities
1313          IF ( .NOT. constant_diffusion )  THEN
1314
1315!
1316!--          Determine surface fluxes shf and qsws and surface values
1317!--          pt_surface and q_surface in dependence on data from external
1318!--          file LSF_DATA respectively
1319             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND.                                     &
1320                 intermediate_timestep_count == intermediate_timestep_count_max )                  &
1321             THEN
1322                CALL ls_forcing_surf( simulated_time )
1323             ENDIF
1324
1325!
1326!--          First the vertical (and horizontal) fluxes in the surface
1327!--          (constant flux) layer are computed
1328             IF ( constant_flux_layer )  THEN
1329                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1330                CALL surface_layer_fluxes
1331                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
1332             ENDIF
1333!
1334!--          If required, solve the energy balance for the surface and run soil
1335!--          model. Call for horizontal as well as vertical surfaces
1336             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
1337
1338                CALL cpu_log( log_point(54), 'land_surface', 'start' )
1339!
1340!--             Call for horizontal upward-facing surfaces
1341                CALL lsm_energy_balance( .TRUE., -1 )
1342                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
1343!
1344!--             Call for northward-facing surfaces
1345                CALL lsm_energy_balance( .FALSE., 0 )
1346                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
1347!
1348!--             Call for southward-facing surfaces
1349                CALL lsm_energy_balance( .FALSE., 1 )
1350                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
1351!
1352!--             Call for eastward-facing surfaces
1353                CALL lsm_energy_balance( .FALSE., 2 )
1354                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
1355!
1356!--             Call for westward-facing surfaces
1357                CALL lsm_energy_balance( .FALSE., 3 )
1358                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
1359               
1360!
1361!--             At the end, set boundary conditons for potential temperature
1362!--             and humidity after running the land-surface model. This
1363!--             might be important for the nesting, where arrays are transfered.
1364                CALL lsm_boundary_condition
1365
1366               
1367                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1368             ENDIF
1369!
1370!--          If required, solve the energy balance for urban surfaces and run
1371!--          the material heat model
1372             IF (urban_surface) THEN
1373                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
1374               
1375                CALL usm_surface_energy_balance( .FALSE. )
1376                IF ( usm_material_model )  THEN
1377                   CALL usm_green_heat_model
1378                   CALL usm_material_heat_model ( .FALSE. )
1379                ENDIF
1380
1381!
1382!--             At the end, set boundary conditons for potential temperature
1383!--             and humidity after running the urban-surface model. This
1384!--             might be important for the nesting, where arrays are transfered.
1385                CALL usm_boundary_condition
1386
1387                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1388             ENDIF
1389!
1390!--          Compute the diffusion coefficients
1391             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
1392             IF ( .NOT. humidity ) THEN
1393                IF ( ocean_mode )  THEN
1394                   CALL tcm_diffusivities( prho, prho_reference )
1395                ELSE
1396                   CALL tcm_diffusivities( pt, pt_reference )
1397                ENDIF
1398             ELSE
1399                CALL tcm_diffusivities( vpt, pt_reference )
1400             ENDIF
1401             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
1402!
1403!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1404             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
1405
1406          ENDIF
1407
1408!
1409!--       If required, calculate radiative fluxes and heating rates
1410          IF ( radiation  .AND.  intermediate_timestep_count == intermediate_timestep_count_max    &
1411               .AND. time_since_reference_point > skip_time_do_radiation )  THEN
1412
1413               time_radiation = time_radiation + dt_3d
1414
1415             IF ( time_radiation >= dt_radiation  .OR.  force_radiation_call )  THEN
1416
1417                CALL cpu_log( log_point(50), 'radiation', 'start' )
1418
1419                IF ( .NOT. force_radiation_call )  THEN
1420                   time_radiation = time_radiation - dt_radiation
1421                ENDIF
1422
1423!
1424!--             Adjust the current time to the time step of the radiation model.
1425!--             Needed since radiation is pre-calculated and stored only on apparent
1426!--             solar positions
1427                time_since_reference_point_save = time_since_reference_point
1428                time_since_reference_point = REAL( FLOOR( time_since_reference_point /             &
1429                                                          dt_radiation), wp ) * dt_radiation
1430
1431                CALL radiation_control
1432
1433                IF ( ( urban_surface  .OR.  land_surface )  .AND.  radiation_interactions )  THEN
1434                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'start' )
1435                   CALL radiation_interaction
1436                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'stop' )
1437                ENDIF
1438   
1439!
1440!--             Return the current time to its original value
1441                time_since_reference_point = time_since_reference_point_save
1442
1443                CALL cpu_log( log_point(50), 'radiation', 'stop' )
1444
1445             ENDIF
1446          ENDIF
1447
1448       ENDDO   ! Intermediate step loop
1449
1450!
1451!--    Will be used at some point by flow_statistics.
1452       !$ACC UPDATE &
1453       !$ACC HOST(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
1454       !$ACC HOST(sums_us2_ws_l(nzb:nzt+1,0)) &
1455       !$ACC HOST(sums_wsus_ws_l(nzb:nzt+1,0)) &
1456       !$ACC HOST(sums_vs2_ws_l(nzb:nzt+1,0)) &
1457       !$ACC HOST(sums_wsvs_ws_l(nzb:nzt+1,0)) &
1458       !$ACC HOST(sums_ws2_ws_l(nzb:nzt+1,0)) &
1459       !$ACC HOST(sums_wspts_ws_l(nzb:nzt+1,0)) &
1460       !$ACC HOST(sums_wssas_ws_l(nzb:nzt+1,0)) &
1461       !$ACC HOST(sums_wsqs_ws_l(nzb:nzt+1,0)) &
1462       !$ACC HOST(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
1463       !$ACC HOST(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
1464       !$ACC HOST(sums_wsncs_ws_l(nzb:nzt+1,0)) &
1465       !$ACC HOST(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
1466       !$ACC HOST(sums_wsss_ws_l(nzb:nzt+1,0)) &
1467       !$ACC HOST(sums_salsa_ws_l(nzb:nzt+1,0))
1468
1469!
1470!--    If required, consider chemical emissions
1471       IF ( air_chemistry  .AND.  emissions_anthropogenic )  THEN
1472!
1473!--       Update the time --> kanani: revise location of this CALL
1474          CALL calc_date_and_time
1475!
1476!--       Call emission routine only once an hour
1477          IF (hour_of_year  .GT.  hour_call_emis )  THEN
1478             CALL chem_emissions_setup( chem_emis_att, chem_emis, n_matched_vars )
1479             hour_call_emis = hour_of_year
1480          ENDIF
1481       ENDIF
1482!
1483!--    If required, consider aerosol emissions for the salsa model
1484       IF ( salsa )  THEN
1485!
1486!--       Call emission routine to update emissions if needed
1487          CALL salsa_emission_update
1488
1489       ENDIF
1490!
1491!--    If required, calculate indoor temperature, waste heat, heat flux
1492!--    through wall, etc.
1493!--    dt_indoor steers the frequency of the indoor model calculations.
1494!--    Note, at first timestep indoor model is called, in order to provide
1495!--    a waste heat flux.
1496       IF ( indoor_model )  THEN
1497
1498          time_indoor = time_indoor + dt_3d
1499
1500          IF ( time_indoor >= dt_indoor  .OR.  current_timestep_number == 0 )  THEN
1501
1502             time_indoor = time_indoor - dt_indoor
1503
1504             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1505             CALL im_main_heatcool
1506             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1507
1508          ENDIF
1509       ENDIF
1510!
1511!--    Increase simulation time and output times
1512       nr_timesteps_this_run      = nr_timesteps_this_run + 1
1513       current_timestep_number    = current_timestep_number + 1
1514       simulated_time             = simulated_time   + dt_3d
1515       time_since_reference_point = simulated_time - coupling_start_time
1516       simulated_time_chr         = time_to_string( time_since_reference_point )
1517
1518
1519
1520
1521       IF ( time_since_reference_point >= skip_time_data_output_av )  THEN
1522          time_do_av         = time_do_av       + dt_3d
1523       ENDIF
1524       IF ( time_since_reference_point >= skip_time_do2d_xy )  THEN
1525          time_do2d_xy       = time_do2d_xy     + dt_3d
1526       ENDIF
1527       IF ( time_since_reference_point >= skip_time_do2d_xz )  THEN
1528          time_do2d_xz       = time_do2d_xz     + dt_3d
1529       ENDIF
1530       IF ( time_since_reference_point >= skip_time_do2d_yz )  THEN
1531          time_do2d_yz       = time_do2d_yz     + dt_3d
1532       ENDIF
1533       IF ( time_since_reference_point >= skip_time_do3d    )  THEN
1534          time_do3d          = time_do3d        + dt_3d
1535       ENDIF
1536       DO  mid = 1, masks
1537          IF ( time_since_reference_point >= skip_time_domask(mid) )  THEN
1538             time_domask(mid)= time_domask(mid) + dt_3d
1539          ENDIF
1540       ENDDO
1541       IF ( time_since_reference_point >= skip_time_dosp )  THEN
1542          time_dosp       = time_dosp        + dt_3d
1543       ENDIF
1544       time_dots          = time_dots        + dt_3d
1545       IF ( .NOT. first_call_lpm )  THEN
1546          time_dopts      = time_dopts       + dt_3d
1547       ENDIF
1548       IF ( time_since_reference_point >= skip_time_dopr )  THEN
1549          time_dopr       = time_dopr        + dt_3d
1550       ENDIF
1551       time_dopr_listing  = time_dopr_listing + dt_3d
1552       time_run_control   = time_run_control + dt_3d
1553!
1554!--    Increment time-counter for surface output
1555       IF ( surface_output )  THEN
1556          IF ( time_since_reference_point >= skip_time_dosurf )  THEN
1557             time_dosurf    = time_dosurf + dt_3d
1558          ENDIF
1559          IF ( time_since_reference_point >= skip_time_dosurf_av )  THEN
1560             time_dosurf_av = time_dosurf_av + dt_3d
1561          ENDIF
1562       ENDIF
1563!
1564!--    Increment time-counter for virtual measurements
1565       IF ( virtual_measurement  .AND.  vm_time_start <= time_since_reference_point )  THEN
1566          time_virtual_measurement = time_virtual_measurement + dt_3d
1567       ENDIF
1568!
1569!--    In case of synthetic turbulence generation and parametrized turbulence
1570!--    information, update the time counter and if required, adjust the
1571!--    STG to new atmospheric conditions.
1572       IF ( use_syn_turb_gen  )  THEN
1573          IF ( parametrize_inflow_turbulence )  THEN
1574             time_stg_adjust = time_stg_adjust + dt_3d
1575             IF ( time_stg_adjust >= dt_stg_adjust )  THEN
1576                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1577                CALL stg_adjust
1578                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1579             ENDIF
1580          ENDIF
1581          time_stg_call = time_stg_call + dt_3d
1582       ENDIF
1583
1584!
1585!--    Data exchange between coupled models
1586       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND.  .NOT. vnested )  THEN
1587          time_coupling = time_coupling + dt_3d
1588
1589!
1590!--       In case of model termination initiated by the local model
1591!--       (terminate_coupled > 0), the coupler must be skipped because it would
1592!--       cause an MPI intercomminucation hang.
1593!--       If necessary, the coupler will be called at the beginning of the
1594!--       next restart run.
1595          DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
1596             CALL surface_coupler
1597             time_coupling = time_coupling - dt_coupling
1598          ENDDO
1599       ENDIF
1600
1601!
1602!--    Biometeorology calculation of stationary thermal indices
1603!--    Todo (kanani): biometeorology needs own time_... treatment.
1604!--                   It might be that time_do2d_xy differs from time_do3d,
1605!--                   and then we might get trouble with the biomet output,
1606!--                   because we can have 2d and/or 3d biomet output!!
1607       IF ( biometeorology                                                                         &
1608            .AND. ( ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  &
1609                  .OR.                                                                             &
1610            ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy ) &
1611                    ) )  THEN
1612!
1613!--       If required, do thermal comfort calculations
1614          IF ( thermal_comfort )  THEN
1615             CALL bio_calculate_thermal_index_maps ( .FALSE. )
1616          ENDIF
1617!
1618!--       If required, do UV exposure calculations
1619          IF ( uv_exposure )  THEN
1620             CALL uvem_calc_exposure
1621          ENDIF
1622       ENDIF
1623
1624!
1625!--    Execute alle other module actions routunes
1626       CALL module_interface_actions( 'after_integration' )
1627
1628!
1629!--    If Galilei transformation is used, determine the distance that the
1630!--    model has moved so far
1631       IF ( galilei_transformation )  THEN
1632          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1633          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1634       ENDIF
1635
1636!
1637!--    Check, if restart is necessary (because cpu-time is expiring or
1638!--    because it is forced by user) and set stop flag
1639!--    This call is skipped if the remote model has already initiated a restart.
1640       IF ( .NOT. terminate_run )  CALL check_for_restart
1641
1642!
1643!--    Carry out statistical analysis and output at the requested output times.
1644!--    The MOD function is used for calculating the output time counters (like
1645!--    time_dopr) in order to regard a possible decrease of the output time
1646!--    interval in case of restart runs
1647
1648!
1649!--    Set a flag indicating that so far no statistics have been created
1650!--    for this time step
1651       flow_statistics_called = .FALSE.
1652
1653!
1654!--    If required, call flow_statistics for averaging in time
1655       IF ( averaging_interval_pr /= 0.0_wp  .AND.                                                 &
1656            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.                                &
1657            time_since_reference_point >= skip_time_dopr )  THEN
1658          time_dopr_av = time_dopr_av + dt_3d
1659          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1660             do_sum = .TRUE.
1661             time_dopr_av = MOD( time_dopr_av, MAX( dt_averaging_input_pr, dt_3d ) )
1662          ENDIF
1663       ENDIF
1664       IF ( do_sum )  CALL flow_statistics
1665
1666!
1667!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
1668       IF ( averaging_interval /= 0.0_wp  .AND.                                                    &
1669            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND.                        &
1670            time_since_reference_point >= skip_time_data_output_av )                               &
1671       THEN
1672          time_do_sla = time_do_sla + dt_3d
1673          IF ( time_do_sla >= dt_averaging_input )  THEN
1674             IF ( current_timestep_number > timestep_number_at_prev_calc )                         &
1675                CALL diagnostic_output_quantities_calculate
1676
1677             CALL sum_up_3d_data
1678             average_count_3d = average_count_3d + 1
1679             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1680          ENDIF
1681       ENDIF
1682!
1683!--    Average surface data
1684       IF ( surface_output )  THEN
1685          IF ( averaging_interval_surf /= 0.0_wp                                                   &
1686                .AND.  ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf                &
1687                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1688             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
1689                CALL surface_data_output_averaging
1690                average_count_surf = average_count_surf + 1
1691             ENDIF
1692          ENDIF
1693       ENDIF
1694
1695!
1696!--    Calculate spectra for time averaging
1697       IF ( averaging_interval_sp /= 0.0_wp  .AND. ( dt_dosp - time_dosp ) <= averaging_interval_sp&
1698            .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1699          time_dosp_av = time_dosp_av + dt_3d
1700          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1701             CALL calc_spectra
1702             time_dosp_av = MOD( time_dosp_av, MAX( dt_averaging_input_pr, dt_3d ) )
1703          ENDIF
1704       ENDIF
1705
1706!
1707!--    Call flight module and output data
1708       IF ( virtual_flight )  THEN
1709          CALL flight_measurement
1710          CALL data_output_flight
1711       ENDIF
1712!
1713!--    Take virtual measurements
1714       IF ( virtual_measurement  .AND.  time_virtual_measurement >= dt_virtual_measurement         &
1715                                 .AND.  vm_time_start <= time_since_reference_point )  THEN
1716          CALL vm_sampling
1717          CALL vm_data_output
1718          time_virtual_measurement = MOD(      time_virtual_measurement,                           &
1719                                          MAX( dt_virtual_measurement, dt_3d ) )
1720       ENDIF
1721!
1722!--    Profile output (ASCII) on file
1723       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1724          CALL print_1d
1725          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, dt_3d ) )
1726       ENDIF
1727
1728!
1729!--    Graphic output for PROFIL
1730       IF ( time_dopr >= dt_dopr  .AND.  time_since_reference_point >= skip_time_dopr )  THEN
1731          IF ( dopr_n /= 0 )  CALL data_output_profiles
1732          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
1733          time_dopr_av = 0.0_wp    ! due to averaging (see above)
1734       ENDIF
1735
1736!
1737!--    Graphic output for time series
1738       IF ( time_dots >= dt_dots )  THEN
1739          CALL data_output_tseries
1740          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1741       ENDIF
1742
1743!
1744!--    Output of spectra (formatted for use with PROFIL), in case of no
1745!--    time averaging, spectra has to be calculated before
1746       IF ( time_dosp >= dt_dosp  .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1747          IF ( average_count_sp == 0 )  CALL calc_spectra
1748          CALL data_output_spectra
1749          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1750       ENDIF
1751
1752!
1753!--    2d-data output (cross-sections)
1754       IF ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy )  THEN
1755          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1756             CALL diagnostic_output_quantities_calculate
1757
1758          CALL data_output_2d( 'xy', 0 )
1759          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1760       ENDIF
1761       IF ( time_do2d_xz >= dt_do2d_xz  .AND.  time_since_reference_point >= skip_time_do2d_xz )  THEN
1762          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1763
1764             CALL diagnostic_output_quantities_calculate
1765          CALL data_output_2d( 'xz', 0 )
1766          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1767       ENDIF
1768       IF ( time_do2d_yz >= dt_do2d_yz  .AND.  time_since_reference_point >= skip_time_do2d_yz )  THEN
1769          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1770             CALL diagnostic_output_quantities_calculate
1771
1772          CALL data_output_2d( 'yz', 0 )
1773          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1774       ENDIF
1775
1776!
1777!--    3d-data output (volume data)
1778       IF ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  THEN
1779          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1780             CALL diagnostic_output_quantities_calculate
1781
1782          CALL data_output_3d( 0 )
1783          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1784       ENDIF
1785
1786!
1787!--    Masked data output
1788       DO  mid = 1, masks
1789          IF ( time_domask(mid) >= dt_domask(mid)                                                  &
1790               .AND.  time_since_reference_point >= skip_time_domask(mid) )  THEN
1791             IF ( current_timestep_number > timestep_number_at_prev_calc )                         &
1792                CALL diagnostic_output_quantities_calculate
1793
1794             CALL data_output_mask( 0 )
1795             time_domask(mid) = MOD( time_domask(mid), MAX( dt_domask(mid), dt_3d ) )
1796          ENDIF
1797       ENDDO
1798
1799!
1800!--    Output of time-averaged 2d/3d/masked data
1801       IF ( time_do_av >= dt_data_output_av                                                        &
1802            .AND.  time_since_reference_point >= skip_time_data_output_av )  THEN
1803          CALL average_3d_data
1804!
1805!--       Udate thermal comfort indices based on updated averaged input
1806          IF ( biometeorology  .AND.  thermal_comfort )  THEN
1807             CALL bio_calculate_thermal_index_maps ( .TRUE. )
1808          ENDIF
1809          CALL data_output_2d( 'xy', 1 )
1810          CALL data_output_2d( 'xz', 1 )
1811          CALL data_output_2d( 'yz', 1 )
1812          CALL data_output_3d( 1 )
1813          DO  mid = 1, masks
1814             CALL data_output_mask( 1 )
1815          ENDDO
1816          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1817       ENDIF
1818!
1819!--    Output of surface data, instantaneous and averaged data
1820       IF ( surface_output )  THEN
1821          IF ( time_dosurf >= dt_dosurf  .AND.  time_since_reference_point >= skip_time_dosurf )  THEN
1822             CALL surface_data_output( 0 )
1823             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1824          ENDIF
1825          IF ( time_dosurf_av >= dt_dosurf_av  .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1826             CALL surface_data_output( 1 )
1827             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1828          ENDIF
1829       ENDIF
1830
1831!
1832!--    Output of particle time series
1833       IF ( particle_advection )  THEN
1834          IF ( time_dopts >= dt_dopts  .OR.                                                        &
1835               ( time_since_reference_point >= particle_advection_start  .AND.                     &
1836                 first_call_lpm ) )  THEN
1837             CALL lpm_data_output_ptseries
1838             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1839          ENDIF
1840       ENDIF
1841
1842!
1843!--    If required, set the heat flux for the next time step to a random value
1844       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
1845          IF ( surf_def_h(0)%ns >= 1 )  THEN
1846             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1847             CALL disturb_heatflux( surf_def_h(0) )
1848             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1849          ENDIF
1850          IF ( surf_lsm_h%ns    >= 1 )  THEN
1851             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1852             CALL disturb_heatflux( surf_lsm_h    )
1853             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1854          ENDIF
1855          IF ( surf_usm_h%ns    >= 1 )  THEN
1856             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1857             CALL disturb_heatflux( surf_usm_h    )
1858             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1859          ENDIF
1860       ENDIF
1861
1862!
1863!--    Execute alle other module actions routunes
1864       CALL module_interface_actions( 'after_timestep' )
1865
1866!
1867!--    Determine size of next time step. Save timestep dt_3d because it is
1868!--    newly calculated in routine timestep, but required further below for
1869!--    steering the run control output interval
1870       dt_3d_old = dt_3d
1871       CALL timestep
1872
1873!
1874!--    Synchronize the timestep in case of nested run.
1875       IF ( nested_run )  THEN
1876!
1877!--       Synchronize by unifying the time step.
1878!--       Global minimum of all time-steps is used for all.
1879          CALL pmci_synchronize
1880       ENDIF
1881
1882!
1883!--    Computation and output of run control parameters.
1884!--    This is also done whenever perturbations have been imposed
1885       IF ( time_run_control >= dt_run_control  .OR.                                               &
1886            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created )                           &
1887       THEN
1888          CALL run_control
1889          IF ( time_run_control >= dt_run_control )  THEN
1890             time_run_control = MOD( time_run_control, MAX( dt_run_control, dt_3d_old ) )
1891          ENDIF
1892       ENDIF
1893
1894!
1895!--    Output elapsed simulated time in form of a progress bar on stdout
1896       IF ( myid == 0 )  CALL output_progress_bar
1897
1898       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1899
1900
1901    ENDDO   ! time loop
1902
1903#if defined( _OPENACC )
1904    CALL exit_surface_arrays
1905#endif
1906!$ACC END DATA
1907!$ACC END DATA
1908!$ACC END DATA
1909!$ACC END DATA
1910!$ACC END DATA
1911!$ACC END DATA
1912!$ACC END DATA
1913
1914!
1915!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
1916    IF ( vnest_init )  CALL vnest_deallocate
1917
1918    IF ( myid == 0 )  CALL finish_progress_bar
1919
1920    CALL location_message( 'atmosphere (and/or ocean) time-stepping', 'finished' )
1921
1922 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.