source: palm/trunk/SOURCE/time_integration.f90 @ 4017

Last change on this file since 4017 was 4017, checked in by schwenkel, 2 years ago

Modularization of all lagrangian particle model code components

  • Property svn:keywords set to Id
File size: 77.7 KB
Line 
1!> @file time_integration.f90
2!------------------------------------------------------------------------------!
3! This file is part of the PALM model system.
4!
5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2019 Leibniz Universitaet Hannover
18!------------------------------------------------------------------------------!
19!
20! Current revisions:
21! ------------------
22!
23!
24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 4017 2019-06-06 12:16:46Z schwenkel $
27! Mass (volume) flux correction included to ensure global mass conservation for child domains.
28!
29! 3994 2019-05-22 18:08:09Z suehring
30! output of turbulence intensity added
31!
32! 3988 2019-05-22 11:32:37Z kanani
33! Implement steerable output interval for virtual measurements
34!
35! 3968 2019-05-13 11:04:01Z suehring
36! replace nspec_out with n_matched_vars
37!
38! 3929 2019-04-24 12:52:08Z banzhafs
39! Reverse changes back from revision 3878: use chem_boundary_conds instead of
40! chem_boundary_conds_decycle
41!
42!
43! 3885 2019-04-11 11:29:34Z kanani
44! Changes related to global restructuring of location messages and introduction
45! of additional debug messages
46!
47! 3879 2019-04-08 20:25:23Z knoop
48! Moved wtm_forces to module_interface_actions
49!
50! 3872 2019-04-08 15:03:06Z knoop
51! Modifications made for salsa:
52! - Call salsa_emission_update at each time step but do the checks within
53!   salsa_emission_update (i.e. skip_time_do_salsa >= time_since_reference_point
54!   and next_aero_emission_update <= time_since_reference_point ).
55! - Renamed nbins --> nbins_aerosol, ncc_tot --> ncomponents_mass and
56!   ngast --> ngases_salsa and loop indices b, c and sg to ib, ic and ig
57! - Apply nesting for salsa variables
58! - Removed cpu_log calls speciffic for salsa.
59!
60! 3833 2019-03-28 15:04:04Z forkel
61! added USE chem_gasphase_mod, replaced nspec by nspec since fixed compounds are not integrated
62!
63! 3820 2019-03-27 11:53:41Z forkel
64! renamed do_emiss to emissions_anthropogenic (ecc)
65!
66!
67! 3774 2019-03-04 10:52:49Z moh.hefny
68! rephrase if statement to avoid unallocated array in case of
69! nesting_offline is false (crashing during debug mode)
70!
71! 3761 2019-02-25 15:31:42Z raasch $
72! module section re-formatted and openacc required variables moved to separate section,
73! re-formatting to 100 char line width
74!
75! 3745 2019-02-15 18:57:56Z suehring
76! Call indoor model after first timestep
77!
78! 3744 2019-02-15 18:38:58Z suehring
79! - Moved call of bio_calculate_thermal_index_maps from biometeorology module to
80! time_integration to make sure averaged input is updated before calculating.
81!
82! 3739 2019-02-13 08:05:17Z dom_dwd_user
83! Removed everything related to "time_bio_results" as this is never used.
84!
85! 3724 2019-02-06 16:28:23Z kanani
86! Correct double-used log_point_s unit
87!
88! 3719 2019-02-06 13:10:18Z kanani
89! - removed wind_turbine cpu measurement, since same time is measured inside
90!   wtm_forces subroutine as special measures
91! - moved the numerous vnest cpulog to special measures
92! - extended radiation cpulog over entire radiation part,
93!   moved radiation_interactions cpulog to special measures
94! - moved some cpu_log calls to this routine for better overview
95!
96! 3705 2019-01-29 19:56:39Z suehring
97! Data output for virtual measurements added
98!
99! 3704 2019-01-29 19:51:41Z suehring
100! Rename subroutines for surface-data output
101!
102! 3647 2019-01-02 14:10:44Z kanani
103! Bugfix: add time_since_reference_point to IF clause for data_output calls
104! (otherwise skip_time_* values don't come into affect with dt_do* = 0.0).
105! Clean up indoor_model and biometeorology model call.
106!
107! 3646 2018-12-28 17:58:49Z kanani
108! Bugfix: use time_since_reference_point instead of simulated_time where
109! required (relevant when using wall/soil spinup)
110!
111! 3634 2018-12-18 12:31:28Z knoop
112! OpenACC port for SPEC
113!
114! 3597 2018-12-04 08:40:18Z maronga
115! Removed call to calculation of near air (10 cm) potential temperature (now in
116! surface layer fluxes)
117!
118! 3589 2018-11-30 15:09:51Z suehring
119! Move the control parameter "salsa" from salsa_mod to control_parameters
120! (M. Kurppa)
121!
122! 3582 2018-11-29 19:16:36Z suehring
123! dom_dwd_user, Schrempf:
124! Changes due to merge of uv exposure model into biometeorology_mod.
125!
126! 3525 2018-11-14 16:06:14Z kanani
127! Changes related to clean-up of biometeorology (dom_dwd_user)
128!
129! 3524 2018-11-14 13:36:44Z raasch
130! unused variables removed
131!
132! 3484 2018-11-02 14:41:25Z hellstea
133! pmci_ensure_nest_mass_conservation is premanently removed
134!
135! 3473 2018-10-30 20:50:15Z suehring
136! new module for virtual measurements introduced
137!
138! 3472 2018-10-30 20:43:50Z suehring
139! Add indoor model (kanani, srissman, tlang)
140!
141! 3467 2018-10-30 19:05:21Z suehring
142! Implementation of a new aerosol module salsa.
143!
144! 3448 2018-10-29 18:14:31Z kanani
145! Add biometeorology
146!
147! 3421 2018-10-24 18:39:32Z gronemeier
148! Surface data output
149!
150! 3418 2018-10-24 16:07:39Z kanani
151! call to material_heat_model now with check if spinup runs (rvtils)
152!
153! 3378 2018-10-19 12:34:59Z kanani
154! merge from radiation branch (r3362) into trunk
155! (moh.hefny):
156! Bugfix in the if statement to call radiation_interaction
157!
158! 3347 2018-10-15 14:21:08Z suehring
159! - offline nesting separated from large-scale forcing module
160! - changes for synthetic turbulence generator
161!
162! 3343 2018-10-15 10:38:52Z suehring
163! - Formatting, clean-up, comments (kanani)
164! - Added CALL to chem_emissions_setup (Russo)
165! - Code added for decycling chemistry (basit)
166!
167! 3294 2018-10-01 02:37:10Z raasch
168! changes concerning modularization of ocean option
169!
170! 3274 2018-09-24 15:42:55Z knoop
171! Modularization of all bulk cloud physics code components
172!
173! 3241 2018-09-12 15:02:00Z raasch
174! unused variables removed
175!
176! 3198 2018-08-15 09:23:10Z sward
177! Added multi_agent_system_end; defined start time for MAS relative to
178! time_since_reference_point
179!
180! 3183 2018-07-27 14:25:55Z suehring
181! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
182! Rename subroutines and variables in COSMO nesting mode
183!
184! 3182 2018-07-27 13:36:03Z suehring
185! Added multi agent system
186!
187! 3042 2018-05-25 10:44:37Z schwenkel
188! Changed the name specific humidity to mixing ratio
189!
190! 3040 2018-05-25 10:22:08Z schwenkel
191! Fixed bug in IF statement
192! Ensure that the time when calling the radiation to be the time step of the
193! pre-calculated time when first calculate the positions of the sun
194!
195! 3004 2018-04-27 12:33:25Z Giersch
196! First call of flow_statistics has been removed. It is already called in
197! run_control itself
198!
199! 2984 2018-04-18 11:51:30Z hellstea
200! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
201! as seemingly unnecessary.
202!
203! 2941 2018-04-03 11:54:58Z kanani
204! Deduct spinup_time from RUN_CONTROL output of main 3d run
205! (use time_since_reference_point instead of simulated_time)
206!
207! 2938 2018-03-27 15:52:42Z suehring
208! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
209!
210! 2936 2018-03-27 14:49:27Z suehring
211! Little formatting adjustment.
212!
213! 2817 2018-02-19 16:32:21Z knoop
214! Preliminary gust module interface implemented
215!
216! 2801 2018-02-14 16:01:55Z thiele
217! Changed lpm from subroutine to module.
218! Introduce particle transfer in nested models.
219!
220! 2776 2018-01-31 10:44:42Z Giersch
221! Variable use_synthetic_turbulence_generator has been abbreviated
222!
223! 2773 2018-01-30 14:12:54Z suehring
224! - Nesting for chemical species
225!
226! 2766 2018-01-22 17:17:47Z kanani
227! Removed preprocessor directive __chem
228!
229! 2718 2018-01-02 08:49:38Z maronga
230! Corrected "Former revisions" section
231!
232! 2696 2017-12-14 17:12:51Z kanani
233! - Change in file header (GPL part)
234! - Implementation of uv exposure model (FK)
235! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
236! - renamed diffusivities to tcm_diffusivities (TG)
237! - implement prognostic equation for diss (TG)
238! - Moved/commented CALL to chem_emissions (FK)
239! - Added CALL to chem_emissions (FK)
240! - Implementation of chemistry module (FK)
241! - Calls for setting boundary conditions in USM and LSM (MS)
242! - Large-scale forcing with larger-scale models implemented (MS)
243! - Rename usm_radiation into radiation_interactions; merge with branch
244!   radiation (MS)
245! - added call for usm_green_heat_model for green building surfaces (RvT)
246! - added call for usm_temperature_near_surface for use in indoor model (RvT)
247!
248! 2617 2017-11-16 12:47:24Z suehring
249! Bugfix, assure that the reference state does not become zero.
250!
251! 2563 2017-10-19 15:36:10Z Giersch
252! Variable wind_turbine moved to module control_parameters
253!
254! 2365 2017-08-21 14:59:59Z kanani
255! Vertical grid nesting implemented (SadiqHuq)
256!
257! 2320 2017-07-21 12:47:43Z suehring
258! Set bottom boundary conditions after nesting interpolation and anterpolation
259!
260! 2299 2017-06-29 10:14:38Z maronga
261! Call of soil model adjusted
262!
263! 2292 2017-06-20 09:51:42Z schwenkel
264! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
265! includes two more prognostic equations for cloud drop concentration (nc) 
266! and cloud water content (qc).
267!
268! 2271 2017-06-09 12:34:55Z sward
269! Start timestep message changed
270!
271! 2259 2017-06-08 09:09:11Z gronemeier
272! Implemented synthetic turbulence generator
273!
274! 2233 2017-05-30 18:08:54Z suehring
275!
276! 2232 2017-05-30 17:47:52Z suehring
277! Adjustments to new topography and surface concept
278! Modify passed parameters for disturb_field
279!
280! 2178 2017-03-17 11:07:39Z hellstea
281! Setting perturbations at all times near inflow boundary is removed
282! in case of nested boundaries
283!
284! 2174 2017-03-13 08:18:57Z maronga
285! Added support for nesting with cloud microphysics
286!
287! 2118 2017-01-17 16:38:49Z raasch
288! OpenACC directives and related code removed
289!
290! 2050 2016-11-08 15:00:55Z gronemeier
291! Implement turbulent outflow condition
292!
293! 2031 2016-10-21 15:11:58Z knoop
294! renamed variable rho to rho_ocean
295!
296! 2011 2016-09-19 17:29:57Z kanani
297! Flag urban_surface is now defined in module control_parameters,
298! removed commented CALLs of global_min_max.
299!
300! 2007 2016-08-24 15:47:17Z kanani
301! Added CALLs for new urban surface model
302!
303! 2000 2016-08-20 18:09:15Z knoop
304! Forced header and separation lines into 80 columns
305!
306! 1976 2016-07-27 13:28:04Z maronga
307! Simplified calls to radiation model
308!
309! 1960 2016-07-12 16:34:24Z suehring
310! Separate humidity and passive scalar
311!
312! 1957 2016-07-07 10:43:48Z suehring
313! flight module added
314!
315! 1919 2016-05-27 14:51:23Z raasch
316! Initial version of purely vertical nesting introduced.
317!
318! 1918 2016-05-27 14:35:57Z raasch
319! determination of time step moved to the end of the time step loop,
320! the first time step is now always calculated before the time step loop (i.e.
321! also in case of restart runs)
322!
323! 1914 2016-05-26 14:44:07Z witha
324! Added call for wind turbine model
325!
326! 1878 2016-04-19 12:30:36Z hellstea
327! Synchronization for nested runs rewritten
328!
329! 1853 2016-04-11 09:00:35Z maronga
330! Adjusted for use with radiation_scheme = constant
331!
332! 1849 2016-04-08 11:33:18Z hoffmann
333! Adapted for modularization of microphysics
334!
335! 1833 2016-04-07 14:23:03Z raasch
336! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
337!
338! 1831 2016-04-07 13:15:51Z hoffmann
339! turbulence renamed collision_turbulence
340!
341! 1822 2016-04-07 07:49:42Z hoffmann
342! icloud_scheme replaced by microphysics_*
343!
344! 1808 2016-04-05 19:44:00Z raasch
345! output message in case unscheduled radiation calls removed
346!
347! 1797 2016-03-21 16:50:28Z raasch
348! introduction of different datatransfer modes
349!
350! 1791 2016-03-11 10:41:25Z raasch
351! call of pmci_update_new removed
352!
353! 1786 2016-03-08 05:49:27Z raasch
354! +module spectrum
355!
356! 1783 2016-03-06 18:36:17Z raasch
357! switch back of netcdf data format for mask output moved to the mask output
358! routine
359!
360! 1781 2016-03-03 15:12:23Z raasch
361! some pmc calls removed at the beginning (before timeloop),
362! pmc initialization moved to the main program
363!
364! 1764 2016-02-28 12:45:19Z raasch
365! PMC_ACTIVE flags removed,
366! bugfix: nest synchronization after first call of timestep
367!
368! 1762 2016-02-25 12:31:13Z hellstea
369! Introduction of nested domain feature
370!
371! 1736 2015-12-04 08:56:33Z raasch
372! no perturbations added to total domain if energy limit has been set zero
373!
374! 1691 2015-10-26 16:17:44Z maronga
375! Added option for spin-ups without land surface and radiation models. Moved calls
376! for radiation and lan surface schemes.
377!
378! 1682 2015-10-07 23:56:08Z knoop
379! Code annotations made doxygen readable
380!
381! 1671 2015-09-25 03:29:37Z raasch
382! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
383! for particles
384!
385! 1585 2015-04-30 07:05:52Z maronga
386! Moved call of radiation scheme. Added support for RRTM
387!
388! 1551 2015-03-03 14:18:16Z maronga
389! Added interface for different radiation schemes.
390!
391! 1496 2014-12-02 17:25:50Z maronga
392! Added calls for the land surface model and radiation scheme
393!
394! 1402 2014-05-09 14:25:13Z raasch
395! location messages modified
396!
397! 1384 2014-05-02 14:31:06Z raasch
398! location messages added
399!
400! 1380 2014-04-28 12:40:45Z heinze
401! CALL of nudge_ref added
402! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
403!
404! 1365 2014-04-22 15:03:56Z boeske
405! Reset sums_ls_l to zero at each timestep
406! +sums_ls_l
407! Calculation of reference state (previously in subroutine calc_mean_profile)
408
409! 1342 2014-03-26 17:04:47Z kanani
410! REAL constants defined as wp-kind
411!
412! 1320 2014-03-20 08:40:49Z raasch
413! ONLY-attribute added to USE-statements,
414! kind-parameters added to all INTEGER and REAL declaration statements,
415! kinds are defined in new module kinds,
416! old module precision_kind is removed,
417! revision history before 2012 removed,
418! comment fields (!:) to be used for variable explanations added to
419! all variable declaration statements
420! 1318 2014-03-17 13:35:16Z raasch
421! module interfaces removed
422!
423! 1308 2014-03-13 14:58:42Z fricke
424! +netcdf_data_format_save
425! For masked data, parallel netcdf output is not tested so far, hence
426! netcdf_data_format is switched back to non-paralell output.
427!
428! 1276 2014-01-15 13:40:41Z heinze
429! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
430!
431! 1257 2013-11-08 15:18:40Z raasch
432! acc-update-host directive for timestep removed
433!
434! 1241 2013-10-30 11:36:58Z heinze
435! Generalize calc_mean_profile for wider use
436! Determine shf and qsws in dependence on data from LSF_DATA
437! Determine ug and vg in dependence on data from LSF_DATA
438! 1221 2013-09-10 08:59:13Z raasch
439! host update of arrays before timestep is called
440!
441! 1179 2013-06-14 05:57:58Z raasch
442! mean profiles for reference state are only calculated if required,
443! small bugfix for background communication
444!
445! 1171 2013-05-30 11:27:45Z raasch
446! split of prognostic_equations deactivated (comment lines), for the time being
447!
448! 1128 2013-04-12 06:19:32Z raasch
449! asynchronous transfer of ghost point data realized for acc-optimized version:
450! prognostic_equations are first called two times for those points required for
451! the left-right and north-south exchange, respectively, and then for the
452! remaining points,
453! those parts requiring global communication moved from prognostic_equations to
454! here
455!
456! 1115 2013-03-26 18:16:16Z hoffmann
457! calculation of qr and nr is restricted to precipitation
458!
459! 1113 2013-03-10 02:48:14Z raasch
460! GPU-porting of boundary conditions,
461! openACC directives updated
462! formal parameter removed from routine boundary_conds
463!
464! 1111 2013-03-08 23:54:10Z raasch
465! +internal timestep counter for cpu statistics added,
466! openACC directives updated
467!
468! 1092 2013-02-02 11:24:22Z raasch
469! unused variables removed
470!
471! 1065 2012-11-22 17:42:36Z hoffmann
472! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
473!
474! 1053 2012-11-13 17:11:03Z hoffmann
475! exchange of ghost points for nr, qr added
476!
477! 1036 2012-10-22 13:43:42Z raasch
478! code put under GPL (PALM 3.9)
479!
480! 1019 2012-09-28 06:46:45Z raasch
481! non-optimized version of prognostic_equations removed
482!
483! 1015 2012-09-27 09:23:24Z raasch
484! +call of prognostic_equations_acc
485!
486! 1001 2012-09-13 14:08:46Z raasch
487! all actions concerning leapfrog- and upstream-spline-scheme removed
488!
489! 849 2012-03-15 10:35:09Z raasch
490! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
491!
492! 825 2012-02-19 03:03:44Z raasch
493! wang_collision_kernel renamed wang_kernel
494!
495! Revision 1.1  1997/08/11 06:19:04  raasch
496! Initial revision
497!
498!
499! Description:
500! ------------
501!> Integration in time of the model equations, statistical analysis and graphic
502!> output
503!------------------------------------------------------------------------------!
504 SUBROUTINE time_integration
505 
506
507    USE advec_ws,                                                                                  &
508        ONLY:  ws_statistics
509
510    USE arrays_3d,                                                                                 &
511        ONLY:  diss, diss_p, dzu, e, e_p, nc, nc_p, nr, nr_p, prho, pt, pt_p, pt_init, q_init, q,  &
512               qc, qc_p, ql, ql_c, ql_v, ql_vp, qr, qr_p, q_p, ref_state, rho_ocean, s, s_p, sa_p, &
513               tend, u, u_p, v, vpt, v_p, w, w_p
514
515    USE biometeorology_mod,                                                                        &
516        ONLY:  bio_calculate_thermal_index_maps, thermal_comfort, uvem_calc_exposure, uv_exposure
517
518    USE bulk_cloud_model_mod,                                                                      &
519        ONLY: bulk_cloud_model, calc_liquid_water_content, collision_turbulence,                   &
520              microphysics_morrison, microphysics_seifert
521
522    USE calc_mean_profile_mod,                                                                     &
523        ONLY:  calc_mean_profile
524
525    USE chem_emissions_mod,                                                                        &
526        ONLY:  chem_emissions_setup
527
528    USE chem_gasphase_mod,                                                                         &
529        ONLY:  nvar
530
531    USE chem_modules,                                                                              &
532        ONLY:  bc_cs_t_val, chem_species, cs_name, emissions_anthropogenic, n_matched_vars
533
534    USE chemistry_model_mod,                                                                       &
535        ONLY:  chem_boundary_conds
536
537    USE control_parameters,                                                                        &
538        ONLY:  advected_distance_x, advected_distance_y, air_chemistry, average_count_3d,          &
539               averaging_interval, averaging_interval_pr, bc_lr_cyc, bc_ns_cyc, bc_pt_t_val,       &
540               bc_q_t_val, biometeorology, call_psolver_at_all_substeps,  child_domain,            &
541               cloud_droplets, constant_flux_layer, constant_heatflux, create_disturbances,        &
542               dopr_n, constant_diffusion, coupling_mode, coupling_start_time,                     &
543               current_timestep_number, disturbance_created, disturbance_energy_limit, dist_range, &
544               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr, dt_coupling,              &
545               dt_data_output_av, dt_disturb, dt_do2d_xy, dt_do2d_xz, dt_do2d_yz, dt_do3d,         &
546               dt_domask,dt_dopts, dt_dopr, dt_dopr_listing, dt_dots, dt_run_control,              &
547               end_time, first_call_lpm, first_call_mas, galilei_transformation, humidity,         &
548               indoor_model, intermediate_timestep_count, intermediate_timestep_count_max,         &
549               land_surface, large_scale_forcing, loop_optimization, lsf_surf, lsf_vert, masks,    &
550               mid, multi_agent_system_end, multi_agent_system_start, nesting_offline, neutral,    &
551               nr_timesteps_this_run, nudging, ocean_mode, passive_scalar, pt_reference,           &
552               pt_slope_offset, random_heatflux, rans_mode, rans_tke_e, run_coupled, salsa,        &
553               simulated_time, simulated_time_chr, skip_time_do2d_xy, skip_time_do2d_xz,           &
554               skip_time_do2d_yz, skip_time_do3d, skip_time_domask, skip_time_dopr,                &
555               skip_time_data_output_av, sloping_surface, stop_dt, surface_output,                 &
556               terminate_coupled, terminate_run, timestep_scheme, time_coupling, time_do2d_xy,     &
557               time_do2d_xz, time_do2d_yz, time_do3d, time_domask, time_dopr, time_dopr_av,        &
558               time_dopr_listing, time_dopts, time_dosp, time_dosp_av, time_dots, time_do_av,      &
559               time_do_sla, time_disturb, time_run_control, time_since_reference_point,            &
560               turbulent_inflow, turbulent_outflow, urban_surface,                                 &
561               use_initial_profile_as_reference, use_single_reference_value, u_gtrans, v_gtrans,   &
562               virtual_flight, virtual_measurement, ws_scheme_mom, ws_scheme_sca
563
564    USE cpulog,                                                                                    &
565        ONLY:  cpu_log, log_point, log_point_s
566
567    USE date_and_time_mod,                                                                         &
568        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
569
570    USE diagnostic_output_quantities_mod,                                                          &
571        ONLY:  diagnostic_output_quantities_calculate,                                             &
572               timestep_number_at_prev_calc
573
574    USE flight_mod,                                                                                &
575        ONLY:  flight_measurement
576
577    USE indices,                                                                                   &
578        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nzb, nzt
579
580    USE indoor_model_mod,                                                                          &
581        ONLY:  dt_indoor, im_main_heatcool, time_indoor
582
583    USE interaction_droplets_ptq_mod,                                                              &
584        ONLY:  interaction_droplets_ptq
585
586    USE interfaces
587
588    USE kinds
589
590    USE land_surface_model_mod,                                                                    &
591        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model, skip_time_do_lsm
592
593    USE lagrangian_particle_model_mod,                                                             &
594        ONLY:  lpm_data_output_ptseries
595
596    USE lsf_nudging_mod,                                                                           &
597        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
598
599    USE module_interface,                                                                          &
600        ONLY:  module_interface_actions
601
602    USE multi_agent_system_mod,                                                                    &
603        ONLY:  agents_active, multi_agent_system
604
605    USE nesting_offl_mod,                                                                          &
606        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
607
608    USE netcdf_data_input_mod,                                                                     &
609        ONLY:  chem_emis, chem_emis_att, nest_offl, netcdf_data_input_offline_nesting
610
611    USE ocean_mod,                                                                                 &
612        ONLY:  prho_reference
613
614    USE particle_attributes,                                                                       &
615        ONLY:  particle_advection, particle_advection_start, use_sgs_for_particles, wang_kernel
616
617    USE pegrid
618
619    USE pmc_interface,                                                                             &
620        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans, pmci_synchronize,    &
621        pmci_ensure_nest_mass_conservation, pmci_ensure_nest_mass_conservation_vertical
622
623    USE progress_bar,                                                                              &
624        ONLY:  finish_progress_bar, output_progress_bar
625
626    USE prognostic_equations_mod,                                                                  &
627        ONLY:  prognostic_equations_cache, prognostic_equations_vector
628
629    USE radiation_model_mod,                                                                       &
630        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,                    &
631              radiation_interaction, radiation_interactions, skip_time_do_radiation, time_radiation
632
633    USE salsa_mod,                                                                                 &
634        ONLY: aerosol_number, aerosol_mass, bc_am_t_val, bc_an_t_val, bc_gt_t_val,                 &
635              nbins_aerosol, ncomponents_mass, ngases_salsa, salsa_boundary_conds,                 &
636              salsa_emission_update, salsa_gas, salsa_gases_from_chem, skip_time_do_salsa
637
638    USE spectra_mod,                                                                               &
639        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp, skip_time_dosp
640
641    USE statistics,                                                                                &
642        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l
643
644
645    USE surface_layer_fluxes_mod,                                                                  &
646        ONLY:  surface_layer_fluxes
647
648    USE surface_data_output_mod,                                                                   &
649        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf, dt_dosurf_av,               &
650               surface_data_output, surface_data_output_averaging, skip_time_dosurf,               &
651               skip_time_dosurf_av, time_dosurf, time_dosurf_av
652
653    USE surface_mod,                                                                               &
654        ONLY:  surf_def_h, surf_lsm_h, surf_usm_h
655
656    USE synthetic_turbulence_generator_mod,                                                        &
657        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence, stg_adjust, stg_main,    &
658               time_stg_adjust, time_stg_call, use_syn_turb_gen
659
660    USE turbulence_closure_mod,                                                                    &
661        ONLY:  tcm_diffusivities, production_e_init
662
663    USE urban_surface_mod,                                                                         &
664        ONLY:  usm_boundary_condition, usm_material_heat_model, usm_material_model,                &
665               usm_surface_energy_balance, usm_green_heat_model
666
667    USE vertical_nesting_mod,                                                                      &
668        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e, vnest_boundary_conds,              &
669               vnest_boundary_conds_khkm, vnest_deallocate, vnest_init, vnest_init_fine,           &
670               vnest_start_time
671
672    USE virtual_measurement_mod,                                                                   &
673        ONLY:  dt_virtual_measurement,                                                             &
674               time_virtual_measurement,                                                           &
675               vm_data_output,                                                                     &
676               vm_sampling,                                                                        &
677               vm_time_start
678
679
680#if defined( _OPENACC )
681    USE arrays_3d,                                                             &
682        ONLY:  d, dd2zu, ddzu, ddzw, drho_air, drho_air_zw, dzw, heatflux_output_conversion, kh,   &
683               km, momentumflux_output_conversion, p, ptdf_x, ptdf_y, rdf, rdf_sc, rho_air,        &
684               rho_air_zw, te_m, tpt_m, tu_m, tv_m, tw_m, ug, u_init, u_stokes_zu, vg, v_init,     &
685               v_stokes_zu, zu
686
687    USE control_parameters,                                                                        &
688        ONLY:  tsc
689
690    USE indices,                                                                                   &
691        ONLY:  advc_flags_1, advc_flags_2, nyn, nyng, nys, nysg, nz, nzb_max, wall_flags_0
692
693    USE statistics,                                                                                &
694        ONLY:  rmask, statistic_regions, sums_l, sums_l_l, sums_us2_ws_l,                          &
695               sums_wsus_ws_l, sums_vs2_ws_l, sums_wsvs_ws_l, sums_ws2_ws_l, sums_wspts_ws_l,      &
696               sums_wsqs_ws_l, sums_wssas_ws_l, sums_wsqcs_ws_l, sums_wsqrs_ws_l, sums_wsncs_ws_l, &
697               sums_wsnrs_ws_l, sums_wsss_ws_l, weight_substep, sums_salsa_ws_l
698
699    USE surface_mod,                                                                               &
700        ONLY:  bc_h, enter_surface_arrays, exit_surface_arrays
701#endif
702
703
704    IMPLICIT NONE
705
706    CHARACTER (LEN=9) ::  time_to_string   !<
707
708    INTEGER(iwp)      ::  ib        !< index for aerosol size bins
709    INTEGER(iwp)      ::  ic        !< index for aerosol mass bins
710    INTEGER(iwp)      ::  icc       !< additional index for aerosol mass bins
711    INTEGER(iwp)      ::  ig        !< index for salsa gases
712    INTEGER(iwp)      ::  lsp
713    INTEGER(iwp)      ::  lsp_usr   !<
714    INTEGER(iwp)      ::  n         !< loop counter for chemistry species
715
716    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
717                            !< steering of run control output interval
718    REAL(wp) ::  time_since_reference_point_save  !< original value of
719                                                  !< time_since_reference_point
720
721
722!
723!-- Copy data from arrays_3d
724!$ACC DATA &
725!$ACC COPY(d(nzb+1:nzt,nys:nyn,nxl:nxr)) &
726!$ACC COPY(e(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
727!$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
728!$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
729!$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
730!$ACC COPY(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
731!$ACC COPY(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
732!$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
733!$ACC COPY(pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
734
735!$ACC DATA &
736!$ACC COPY(e_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
737!$ACC COPY(u_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
738!$ACC COPY(v_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
739!$ACC COPY(w_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
740!$ACC COPY(pt_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
741!$ACC COPY(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
742!$ACC COPY(te_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
743!$ACC COPY(tu_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
744!$ACC COPY(tv_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
745!$ACC COPY(tw_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
746!$ACC COPY(tpt_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
747
748!$ACC DATA &
749!$ACC COPYIN(rho_air(nzb:nzt+1), drho_air(nzb:nzt+1)) &
750!$ACC COPYIN(rho_air_zw(nzb:nzt+1), drho_air_zw(nzb:nzt+1)) &
751!$ACC COPYIN(zu(nzb:nzt+1)) &
752!$ACC COPYIN(dzu(1:nzt+1), dzw(1:nzt+1)) &
753!$ACC COPYIN(ddzu(1:nzt+1), dd2zu(1:nzt)) &
754!$ACC COPYIN(ddzw(1:nzt+1)) &
755!$ACC COPYIN(heatflux_output_conversion(nzb:nzt+1)) &
756!$ACC COPYIN(momentumflux_output_conversion(nzb:nzt+1)) &
757!$ACC COPYIN(rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt)) &
758!$ACC COPYIN(ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng)) &
759!$ACC COPYIN(ref_state(0:nz+1)) &
760!$ACC COPYIN(u_init(0:nz+1), v_init(0:nz+1)) &
761!$ACC COPYIN(u_stokes_zu(nzb:nzt+1), v_stokes_zu(nzb:nzt+1)) &
762!$ACC COPYIN(pt_init(0:nz+1)) &
763!$ACC COPYIN(ug(0:nz+1), vg(0:nz+1))
764
765!
766!-- Copy data from control_parameters
767!$ACC DATA &
768!$ACC COPYIN(tsc(1:5))
769
770!
771!-- Copy data from indices
772!$ACC DATA &
773!$ACC COPYIN(advc_flags_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
774!$ACC COPYIN(advc_flags_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
775!$ACC COPYIN(wall_flags_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
776
777!
778!-- Copy data from surface_mod
779!$ACC DATA &
780!$ACC COPYIN(bc_h(0:1)) &
781!$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) &
782!$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) &
783!$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) &
784!$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) &
785!$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) &
786!$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns))
787
788!
789!-- Copy data from statistics
790!$ACC DATA &
791!$ACC COPYIN(hom(0:nz+1,1:2,1:4,0)) &
792!$ACC COPYIN(rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions)) &
793!$ACC COPYIN(weight_substep(1:intermediate_timestep_count_max)) &
794!$ACC COPY(sums_l(nzb:nzt+1,1:pr_palm,0)) &
795!$ACC COPY(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
796!$ACC COPY(sums_us2_ws_l(nzb:nzt+1,0)) &
797!$ACC COPY(sums_wsus_ws_l(nzb:nzt+1,0)) &
798!$ACC COPY(sums_vs2_ws_l(nzb:nzt+1,0)) &
799!$ACC COPY(sums_wsvs_ws_l(nzb:nzt+1,0)) &
800!$ACC COPY(sums_ws2_ws_l(nzb:nzt+1,0)) &
801!$ACC COPY(sums_wspts_ws_l(nzb:nzt+1,0)) &
802!$ACC COPY(sums_wssas_ws_l(nzb:nzt+1,0)) &
803!$ACC COPY(sums_wsqs_ws_l(nzb:nzt+1,0)) &
804!$ACC COPY(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
805!$ACC COPY(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
806!$ACC COPY(sums_wsncs_ws_l(nzb:nzt+1,0)) &
807!$ACC COPY(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
808!$ACC COPY(sums_wsss_ws_l(nzb:nzt+1,0)) &
809!$ACC COPY(sums_salsa_ws_l(nzb:nzt+1,0))
810
811#if defined( _OPENACC )
812    CALL enter_surface_arrays
813#endif
814
815!
816!-- At beginning determine the first time step
817    CALL timestep
818!
819!-- Synchronize the timestep in case of nested run.
820    IF ( nested_run )  THEN
821!
822!--    Synchronization by unifying the time step.
823!--    Global minimum of all time-steps is used for all.
824       CALL pmci_synchronize
825    ENDIF
826
827!
828!-- Determine and print out the run control quantities before the first time
829!-- step of this run. For the initial run, some statistics (e.g. divergence)
830!-- need to be determined first --> CALL flow_statistics at the beginning of
831!-- run_control
832    CALL run_control
833!
834!-- Data exchange between coupled models in case that a call has been omitted
835!-- at the end of the previous run of a job chain.
836    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND. .NOT. vnested )  THEN
837!
838!--    In case of model termination initiated by the local model the coupler
839!--    must not be called because this would again cause an MPI hang.
840       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
841          CALL surface_coupler
842          time_coupling = time_coupling - dt_coupling
843       ENDDO
844       IF (time_coupling == 0.0_wp  .AND.  time_since_reference_point < dt_coupling )  THEN
845          time_coupling = time_since_reference_point
846       ENDIF
847    ENDIF
848
849    CALL location_message( 'atmosphere (and/or ocean) time-stepping', 'start' )
850
851!
852!-- Start of the time loop
853    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. .NOT. terminate_run )
854
855       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
856!
857!--    Vertical nesting: initialize fine grid
858       IF ( vnested ) THEN
859          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
860             CALL cpu_log( log_point_s(22), 'vnest_init', 'start' )
861             CALL vnest_init_fine
862             vnest_init = .TRUE.
863             CALL cpu_log( log_point_s(22), 'vnest_init', 'stop' )
864          ENDIF
865       ENDIF
866!
867!--    Determine ug, vg and w_subs in dependence on data from external file
868!--    LSF_DATA
869       IF ( large_scale_forcing .AND. lsf_vert )  THEN
870           CALL ls_forcing_vert ( simulated_time )
871           sums_ls_l = 0.0_wp
872       ENDIF
873
874!
875!--    Set pt_init and q_init to the current profiles taken from
876!--    NUDGING_DATA
877       IF ( nudging )  THEN
878           CALL nudge_ref ( simulated_time )
879!
880!--        Store temperature gradient at the top boundary for possible Neumann
881!--        boundary condition
882           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
883           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
884           IF ( air_chemistry )  THEN
885              DO  lsp = 1, nvar
886                 bc_cs_t_val = (  chem_species(lsp)%conc_pr_init(nzt+1)                            &
887                                - chem_species(lsp)%conc_pr_init(nzt) )                            &
888                               / dzu(nzt+1)
889              ENDDO
890           ENDIF
891           IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
892              DO  ib = 1, nbins_aerosol
893                 bc_an_t_val = ( aerosol_number(ib)%init(nzt+1) - aerosol_number(ib)%init(nzt) ) / &
894                               dzu(nzt+1)
895                 DO  ic = 1, ncomponents_mass
896                    icc = ( ic - 1 ) * nbins_aerosol + ib
897                    bc_am_t_val = ( aerosol_mass(icc)%init(nzt+1) - aerosol_mass(icc)%init(nzt) ) /&
898                                  dzu(nzt+1)
899                 ENDDO
900              ENDDO
901              IF ( .NOT. salsa_gases_from_chem )  THEN
902                 DO  ig = 1, ngases_salsa
903                    bc_gt_t_val = ( salsa_gas(ig)%init(nzt+1) - salsa_gas(ig)%init(nzt) ) /        &
904                                  dzu(nzt+1)
905                 ENDDO
906              ENDIF
907           ENDIF
908       ENDIF
909!
910!--    If forcing by larger-scale models is applied, check if new data
911!--    at domain boundaries need to be read.
912       IF ( nesting_offline ) THEN
913          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point ) &
914               CALL netcdf_data_input_offline_nesting
915       ENDIF
916
917!
918!--    Execute all other module actions routunes
919       CALL module_interface_actions( 'before_timestep' )
920       
921!
922!--    Start of intermediate step loop
923       intermediate_timestep_count = 0
924       DO  WHILE ( intermediate_timestep_count < intermediate_timestep_count_max )
925
926          intermediate_timestep_count = intermediate_timestep_count + 1
927
928!
929!--       Set the steering factors for the prognostic equations which depend
930!--       on the timestep scheme
931          CALL timestep_scheme_steering
932
933!
934!--       Calculate those variables needed in the tendency terms which need
935!--       global communication
936          IF ( .NOT. use_single_reference_value  .AND.  .NOT. use_initial_profile_as_reference )   &
937          THEN
938!
939!--          Horizontally averaged profiles to be used as reference state in
940!--          buoyancy terms (WARNING: only the respective last call of
941!--          calc_mean_profile defines the reference state!)
942             IF ( .NOT. neutral )  THEN
943                CALL calc_mean_profile( pt, 4 )
944                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
945             ENDIF
946             IF ( ocean_mode )  THEN
947                CALL calc_mean_profile( rho_ocean, 64 )
948                ref_state(:)  = hom(:,1,64,0)
949             ENDIF
950             IF ( humidity )  THEN
951                CALL calc_mean_profile( vpt, 44 )
952                ref_state(:)  = hom(:,1,44,0)
953             ENDIF
954!
955!--          Assure that ref_state does not become zero at any level
956!--          ( might be the case if a vertical level is completely occupied
957!--            with topography ).
958             ref_state = MERGE( MAXVAL(ref_state), ref_state, ref_state == 0.0_wp )
959          ENDIF
960
961          IF ( .NOT. constant_diffusion )  CALL production_e_init
962          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  intermediate_timestep_count == 1 )     &
963          THEN
964             CALL ws_statistics
965          ENDIF
966!
967!--       In case of nudging calculate current nudging time scale and horizontal
968!--       means of u, v, pt and q
969          IF ( nudging )  THEN
970             CALL calc_tnudge( simulated_time )
971             CALL calc_mean_profile( u, 1 )
972             CALL calc_mean_profile( v, 2 )
973             CALL calc_mean_profile( pt, 4 )
974             CALL calc_mean_profile( q, 41 )
975          ENDIF
976!
977!--       Execute all other module actions routunes
978          CALL module_interface_actions( 'before_prognostic_equations' )
979!
980!--       Solve the prognostic equations. A fast cache optimized version with
981!--       only one single loop is used in case of Piascek-Williams advection
982!--       scheme. NEC vector machines use a different version, because
983!--       in the other versions a good vectorization is prohibited due to
984!--       inlining problems.
985          IF ( loop_optimization == 'cache' )  THEN
986             CALL prognostic_equations_cache
987          ELSEIF ( loop_optimization == 'vector' )  THEN
988             CALL prognostic_equations_vector
989          ENDIF
990
991!
992!--       Particle transport/physics with the Lagrangian particle model
993!--       (only once during intermediate steps, because it uses an Euler-step)
994!--       ### particle model should be moved before prognostic_equations, in order
995!--       to regard droplet interactions directly
996          IF ( particle_advection  .AND.  time_since_reference_point >= particle_advection_start   &
997               .AND.  intermediate_timestep_count == 1 )                                           &
998          THEN
999             CALL module_interface_actions( 'after_prognostic_equations' )
1000             first_call_lpm = .FALSE.
1001          ENDIF
1002
1003!
1004!--       Interaction of droplets with temperature and mixing ratio.
1005!--       Droplet condensation and evaporation is calculated within
1006!--       advec_particles.
1007          IF ( cloud_droplets  .AND.  intermediate_timestep_count == intermediate_timestep_count_max ) &
1008          THEN
1009             CALL interaction_droplets_ptq
1010          ENDIF
1011
1012!
1013!--       Movement of agents in multi agent system
1014          IF ( agents_active  .AND.  time_since_reference_point >= multi_agent_system_start  .AND. &
1015               time_since_reference_point <= multi_agent_system_end  .AND.                         &
1016               intermediate_timestep_count == 1 )                                                  &
1017          THEN
1018             CALL multi_agent_system
1019             first_call_mas = .FALSE.
1020          ENDIF
1021
1022!
1023!--       Exchange of ghost points (lateral boundary conditions)
1024          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
1025
1026          CALL exchange_horiz( u_p, nbgp )
1027          CALL exchange_horiz( v_p, nbgp )
1028          CALL exchange_horiz( w_p, nbgp )
1029          CALL exchange_horiz( pt_p, nbgp )
1030          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
1031          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence                           &
1032               .OR.  use_sgs_for_particles )  THEN
1033             IF ( rans_tke_e )  THEN
1034                CALL exchange_horiz( diss_p, nbgp )
1035             ELSE
1036                CALL exchange_horiz( diss, nbgp )
1037             ENDIF
1038          ENDIF
1039          IF ( ocean_mode )  THEN
1040             CALL exchange_horiz( sa_p, nbgp )
1041             CALL exchange_horiz( rho_ocean, nbgp )
1042             CALL exchange_horiz( prho, nbgp )
1043          ENDIF
1044          IF ( humidity )  THEN
1045             CALL exchange_horiz( q_p, nbgp )
1046             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
1047                CALL exchange_horiz( qc_p, nbgp )
1048                CALL exchange_horiz( nc_p, nbgp )
1049             ENDIF
1050             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
1051                CALL exchange_horiz( qr_p, nbgp )
1052                CALL exchange_horiz( nr_p, nbgp )
1053             ENDIF
1054          ENDIF
1055          IF ( cloud_droplets )  THEN
1056             CALL exchange_horiz( ql, nbgp )
1057             CALL exchange_horiz( ql_c, nbgp )
1058             CALL exchange_horiz( ql_v, nbgp )
1059             CALL exchange_horiz( ql_vp, nbgp )
1060          ENDIF
1061          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
1062          IF ( air_chemistry )  THEN
1063             DO  lsp = 1, nvar
1064                CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp )
1065!
1066!--             kanani: Push chem_boundary_conds after CALL boundary_conds
1067                lsp_usr = 1
1068                DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
1069                   IF ( TRIM(chem_species(lsp)%name) == TRIM(cs_name(lsp_usr)) )  THEN
1070                      CALL chem_boundary_conds( chem_species(lsp)%conc_p,                          &
1071                                                chem_species(lsp)%conc_pr_init )
1072                   ENDIF
1073                   lsp_usr = lsp_usr + 1
1074                ENDDO
1075             ENDDO
1076          ENDIF
1077
1078          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
1079!
1080!--          Exchange ghost points and decycle boundary concentrations if needed
1081             DO  ib = 1, nbins_aerosol
1082                CALL exchange_horiz( aerosol_number(ib)%conc_p, nbgp )
1083                CALL salsa_boundary_conds( aerosol_number(ib)%conc_p, aerosol_number(ib)%init )
1084                DO  ic = 1, ncomponents_mass
1085                   icc = ( ic - 1 ) * nbins_aerosol + ib
1086                   CALL exchange_horiz( aerosol_mass(icc)%conc_p, nbgp )
1087                   CALL salsa_boundary_conds( aerosol_mass(icc)%conc_p, aerosol_mass(icc)%init )
1088                ENDDO
1089             ENDDO
1090             IF ( .NOT. salsa_gases_from_chem )  THEN
1091                DO  ig = 1, ngases_salsa
1092                   CALL exchange_horiz( salsa_gas(ig)%conc_p, nbgp )
1093                   CALL salsa_boundary_conds( salsa_gas(ig)%conc_p, salsa_gas(ig)%init )
1094                ENDDO
1095             ENDIF
1096          ENDIF
1097          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1098
1099!
1100!--       Boundary conditions for the prognostic quantities (except of the
1101!--       velocities at the outflow in case of a non-cyclic lateral wall)
1102          CALL boundary_conds
1103!
1104!--       Swap the time levels in preparation for the next time step.
1105          CALL swap_timelevel
1106
1107!
1108!--       Vertical nesting: Interpolate fine grid data to the coarse grid
1109          IF ( vnest_init ) THEN
1110             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'start' )
1111             CALL vnest_anterpolate
1112             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'stop' )
1113          ENDIF
1114
1115          IF ( nested_run )  THEN
1116
1117             CALL cpu_log( log_point(60), 'nesting', 'start' )
1118!
1119!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
1120!--          and pmci_child_datatrans are called inside the wrapper
1121!--          subroutine pmci_datatrans according to the control parameters
1122!--          nesting_mode and nesting_datatransfer_mode.
1123!--          TO_DO: why is nesting_mode given as a parameter here?
1124             CALL pmci_datatrans( nesting_mode )
1125
1126             IF ( TRIM( nesting_mode ) == 'two-way' .OR.  nesting_mode == 'vertical' )  THEN
1127!
1128!--             Exchange_horiz is needed for all parent-domains after the
1129!--             anterpolation
1130                CALL exchange_horiz( u, nbgp )
1131                CALL exchange_horiz( v, nbgp )
1132                CALL exchange_horiz( w, nbgp )
1133                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
1134
1135                IF ( humidity )  THEN
1136
1137                   CALL exchange_horiz( q, nbgp )
1138
1139                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
1140                       CALL exchange_horiz( qc, nbgp )
1141                       CALL exchange_horiz( nc, nbgp )
1142                   ENDIF
1143                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
1144                       CALL exchange_horiz( qr, nbgp )
1145                       CALL exchange_horiz( nr, nbgp )
1146                   ENDIF
1147
1148                ENDIF
1149
1150                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
1151
1152                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
1153
1154                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.  rans_tke_e )  THEN
1155                   CALL exchange_horiz( diss, nbgp )
1156                ENDIF
1157
1158                IF ( air_chemistry )  THEN
1159                   DO  n = 1, nvar
1160                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
1161                   ENDDO
1162                ENDIF
1163
1164                IF ( salsa  .AND. time_since_reference_point >= skip_time_do_salsa )  THEN
1165                   DO  ib = 1, nbins_aerosol
1166                      CALL exchange_horiz( aerosol_number(ib)%conc, nbgp )
1167                      CALL salsa_boundary_conds( aerosol_number(ib)%conc, aerosol_number(ib)%init )
1168                      DO  ic = 1, ncomponents_mass
1169                         icc = ( ic - 1 ) * nbins_aerosol + ib
1170                         CALL exchange_horiz( aerosol_mass(icc)%conc, nbgp )
1171                         CALL salsa_boundary_conds( aerosol_mass(icc)%conc, aerosol_mass(icc)%init )
1172                      ENDDO
1173                   ENDDO
1174                   IF ( .NOT. salsa_gases_from_chem )  THEN
1175                      DO  ig = 1, ngases_salsa
1176                         CALL exchange_horiz( salsa_gas(ig)%conc, nbgp )
1177                         CALL salsa_boundary_conds( salsa_gas(ig)%conc, salsa_gas(ig)%init )
1178                      ENDDO
1179                   ENDIF
1180                ENDIF
1181                CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1182
1183             ENDIF
1184!
1185!--          Set boundary conditions again after interpolation and anterpolation.
1186             CALL pmci_boundary_conds
1187
1188             CALL cpu_log( log_point(60), 'nesting', 'stop' )
1189
1190          ENDIF
1191
1192!
1193!--       Temperature offset must be imposed at cyclic boundaries in x-direction
1194!--       when a sloping surface is used
1195          IF ( sloping_surface )  THEN
1196             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - pt_slope_offset
1197             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + pt_slope_offset
1198          ENDIF
1199
1200!
1201!--       Impose a turbulent inflow using the recycling method
1202          IF ( turbulent_inflow )  CALL inflow_turbulence
1203
1204!
1205!--       Set values at outflow boundary using the special outflow condition
1206          IF ( turbulent_outflow )  CALL outflow_turbulence
1207
1208!
1209!--       Impose a random perturbation on the horizontal velocity field
1210          IF ( create_disturbances  .AND.  ( call_psolver_at_all_substeps  .AND.                   &
1211               intermediate_timestep_count == intermediate_timestep_count_max )                    &
1212               .OR. ( .NOT. call_psolver_at_all_substeps  .AND.  intermediate_timestep_count == 1 ) ) &
1213          THEN
1214             time_disturb = time_disturb + dt_3d
1215             IF ( time_disturb >= dt_disturb )  THEN
1216                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                                     &
1217                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
1218                   CALL disturb_field( 'u', tend, u )
1219                   CALL disturb_field( 'v', tend, v )
1220                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )                                &
1221                         .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )                 &
1222                THEN
1223!
1224!--                Runs with a non-cyclic lateral wall need perturbations
1225!--                near the inflow throughout the whole simulation
1226                   dist_range = 1
1227                   CALL disturb_field( 'u', tend, u )
1228                   CALL disturb_field( 'v', tend, v )
1229                   dist_range = 0
1230                ENDIF
1231                time_disturb = time_disturb - dt_disturb
1232             ENDIF
1233          ENDIF
1234
1235!
1236!--       Map forcing data derived from larger scale model onto domain
1237!--       boundaries.
1238          IF ( nesting_offline  .AND.  intermediate_timestep_count ==                              &
1239                                       intermediate_timestep_count_max  )                          &
1240             CALL nesting_offl_bc
1241!
1242!--       Impose a turbulent inflow using synthetic generated turbulence,
1243!--       only once per time step.
1244          IF ( use_syn_turb_gen  .AND.  time_stg_call >= dt_stg_call  .AND.                        &
1245             intermediate_timestep_count == intermediate_timestep_count_max )  THEN
1246             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1247             CALL stg_main
1248             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1249          ENDIF
1250!
1251!--       Ensure mass conservation. This need to be done after imposing
1252!--       synthetic turbulence and top boundary condition for pressure is set to
1253!--       Neumann conditions.
1254!--       Is this also required in case of Dirichlet?
1255          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1256!
1257!--       Reduce the velocity divergence via the equation for perturbation
1258!--       pressure.
1259          IF ( intermediate_timestep_count == 1  .OR. &
1260                call_psolver_at_all_substeps )  THEN
1261
1262             IF (  vnest_init ) THEN
1263!
1264!--             Compute pressure in the CG, interpolate top boundary conditions
1265!--             to the FG and then compute pressure in the FG
1266                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1267
1268                CALL cpu_log( log_point_s(30), 'vnest_bc', 'start' )
1269                CALL vnest_boundary_conds
1270                CALL cpu_log( log_point_s(30), 'vnest_bc', 'stop' )
1271 
1272                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1273
1274!--             Anterpolate TKE, satisfy Germano Identity
1275                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'start' )
1276                CALL vnest_anterpolate_e
1277                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'stop' )
1278
1279             ELSE
1280!               
1281!--             Mass (volume) flux correction to ensure global mass conservation for child domains.
1282                IF ( child_domain )  THEN
1283                   IF ( nesting_mode == 'vertical' )  THEN
1284                      CALL pmci_ensure_nest_mass_conservation_vertical
1285                   ELSE
1286                      CALL pmci_ensure_nest_mass_conservation
1287                   ENDIF
1288                ENDIF
1289               
1290                CALL pres
1291
1292             ENDIF
1293
1294          ENDIF
1295
1296!
1297!--       If required, compute liquid water content
1298          IF ( bulk_cloud_model )  THEN
1299             CALL calc_liquid_water_content
1300          ENDIF
1301!
1302!--       If required, compute virtual potential temperature
1303          IF ( humidity )  THEN
1304             CALL compute_vpt
1305          ENDIF
1306
1307!
1308!--       Compute the diffusion quantities
1309          IF ( .NOT. constant_diffusion )  THEN
1310
1311!
1312!--          Determine surface fluxes shf and qsws and surface values
1313!--          pt_surface and q_surface in dependence on data from external
1314!--          file LSF_DATA respectively
1315             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND.                                     &
1316                 intermediate_timestep_count == intermediate_timestep_count_max )                  &
1317             THEN
1318                CALL ls_forcing_surf( simulated_time )
1319             ENDIF
1320
1321!
1322!--          First the vertical (and horizontal) fluxes in the surface
1323!--          (constant flux) layer are computed
1324             IF ( constant_flux_layer )  THEN
1325                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1326                CALL surface_layer_fluxes
1327                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
1328             ENDIF
1329!
1330!--          If required, solve the energy balance for the surface and run soil
1331!--          model. Call for horizontal as well as vertical surfaces
1332             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
1333
1334                CALL cpu_log( log_point(54), 'land_surface', 'start' )
1335!
1336!--             Call for horizontal upward-facing surfaces
1337                CALL lsm_energy_balance( .TRUE., -1 )
1338                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
1339!
1340!--             Call for northward-facing surfaces
1341                CALL lsm_energy_balance( .FALSE., 0 )
1342                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
1343!
1344!--             Call for southward-facing surfaces
1345                CALL lsm_energy_balance( .FALSE., 1 )
1346                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
1347!
1348!--             Call for eastward-facing surfaces
1349                CALL lsm_energy_balance( .FALSE., 2 )
1350                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
1351!
1352!--             Call for westward-facing surfaces
1353                CALL lsm_energy_balance( .FALSE., 3 )
1354                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
1355               
1356!
1357!--             At the end, set boundary conditons for potential temperature
1358!--             and humidity after running the land-surface model. This
1359!--             might be important for the nesting, where arrays are transfered.
1360                CALL lsm_boundary_condition
1361
1362               
1363                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1364             ENDIF
1365!
1366!--          If required, solve the energy balance for urban surfaces and run
1367!--          the material heat model
1368             IF (urban_surface) THEN
1369                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
1370               
1371                CALL usm_surface_energy_balance( .FALSE. )
1372                IF ( usm_material_model )  THEN
1373                   CALL usm_green_heat_model
1374                   CALL usm_material_heat_model ( .FALSE. )
1375                ENDIF
1376
1377!
1378!--             At the end, set boundary conditons for potential temperature
1379!--             and humidity after running the urban-surface model. This
1380!--             might be important for the nesting, where arrays are transfered.
1381                CALL usm_boundary_condition
1382
1383                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1384             ENDIF
1385!
1386!--          Compute the diffusion coefficients
1387             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
1388             IF ( .NOT. humidity ) THEN
1389                IF ( ocean_mode )  THEN
1390                   CALL tcm_diffusivities( prho, prho_reference )
1391                ELSE
1392                   CALL tcm_diffusivities( pt, pt_reference )
1393                ENDIF
1394             ELSE
1395                CALL tcm_diffusivities( vpt, pt_reference )
1396             ENDIF
1397             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
1398!
1399!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1400             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
1401
1402          ENDIF
1403
1404!
1405!--       If required, calculate radiative fluxes and heating rates
1406          IF ( radiation  .AND.  intermediate_timestep_count == intermediate_timestep_count_max    &
1407               .AND. time_since_reference_point > skip_time_do_radiation )  THEN
1408
1409               time_radiation = time_radiation + dt_3d
1410
1411             IF ( time_radiation >= dt_radiation  .OR.  force_radiation_call )  THEN
1412
1413                CALL cpu_log( log_point(50), 'radiation', 'start' )
1414
1415                IF ( .NOT. force_radiation_call )  THEN
1416                   time_radiation = time_radiation - dt_radiation
1417                ENDIF
1418
1419!
1420!--             Adjust the current time to the time step of the radiation model.
1421!--             Needed since radiation is pre-calculated and stored only on apparent
1422!--             solar positions
1423                time_since_reference_point_save = time_since_reference_point
1424                time_since_reference_point = REAL( FLOOR( time_since_reference_point /             &
1425                                                          dt_radiation), wp ) * dt_radiation
1426
1427                CALL radiation_control
1428
1429                IF ( ( urban_surface  .OR.  land_surface )  .AND.  radiation_interactions )  THEN
1430                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'start' )
1431                   CALL radiation_interaction
1432                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'stop' )
1433                ENDIF
1434   
1435!
1436!--             Return the current time to its original value
1437                time_since_reference_point = time_since_reference_point_save
1438
1439                CALL cpu_log( log_point(50), 'radiation', 'stop' )
1440
1441             ENDIF
1442          ENDIF
1443
1444       ENDDO   ! Intermediate step loop
1445
1446!
1447!--    Will be used at some point by flow_statistics.
1448       !$ACC UPDATE &
1449       !$ACC HOST(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
1450       !$ACC HOST(sums_us2_ws_l(nzb:nzt+1,0)) &
1451       !$ACC HOST(sums_wsus_ws_l(nzb:nzt+1,0)) &
1452       !$ACC HOST(sums_vs2_ws_l(nzb:nzt+1,0)) &
1453       !$ACC HOST(sums_wsvs_ws_l(nzb:nzt+1,0)) &
1454       !$ACC HOST(sums_ws2_ws_l(nzb:nzt+1,0)) &
1455       !$ACC HOST(sums_wspts_ws_l(nzb:nzt+1,0)) &
1456       !$ACC HOST(sums_wssas_ws_l(nzb:nzt+1,0)) &
1457       !$ACC HOST(sums_wsqs_ws_l(nzb:nzt+1,0)) &
1458       !$ACC HOST(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
1459       !$ACC HOST(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
1460       !$ACC HOST(sums_wsncs_ws_l(nzb:nzt+1,0)) &
1461       !$ACC HOST(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
1462       !$ACC HOST(sums_wsss_ws_l(nzb:nzt+1,0)) &
1463       !$ACC HOST(sums_salsa_ws_l(nzb:nzt+1,0))
1464
1465!
1466!--    If required, consider chemical emissions
1467       IF ( air_chemistry  .AND.  emissions_anthropogenic )  THEN
1468!
1469!--       Update the time --> kanani: revise location of this CALL
1470          CALL calc_date_and_time
1471!
1472!--       Call emission routine only once an hour
1473          IF (hour_of_year  .GT.  hour_call_emis )  THEN
1474             CALL chem_emissions_setup( chem_emis_att, chem_emis, n_matched_vars )
1475             hour_call_emis = hour_of_year
1476          ENDIF
1477       ENDIF
1478!
1479!--    If required, consider aerosol emissions for the salsa model
1480       IF ( salsa )  THEN
1481!
1482!--       Call emission routine to update emissions if needed
1483          CALL salsa_emission_update
1484
1485       ENDIF
1486!
1487!--    If required, calculate indoor temperature, waste heat, heat flux
1488!--    through wall, etc.
1489!--    dt_indoor steers the frequency of the indoor model calculations.
1490!--    Note, at first timestep indoor model is called, in order to provide
1491!--    a waste heat flux.
1492       IF ( indoor_model )  THEN
1493
1494          time_indoor = time_indoor + dt_3d
1495
1496          IF ( time_indoor >= dt_indoor  .OR.  current_timestep_number == 0 )  THEN
1497
1498             time_indoor = time_indoor - dt_indoor
1499
1500             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1501             CALL im_main_heatcool
1502             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1503
1504          ENDIF
1505       ENDIF
1506!
1507!--    Increase simulation time and output times
1508       nr_timesteps_this_run      = nr_timesteps_this_run + 1
1509       current_timestep_number    = current_timestep_number + 1
1510       simulated_time             = simulated_time   + dt_3d
1511       time_since_reference_point = simulated_time - coupling_start_time
1512       simulated_time_chr         = time_to_string( time_since_reference_point )
1513
1514
1515
1516
1517       IF ( time_since_reference_point >= skip_time_data_output_av )  THEN
1518          time_do_av         = time_do_av       + dt_3d
1519       ENDIF
1520       IF ( time_since_reference_point >= skip_time_do2d_xy )  THEN
1521          time_do2d_xy       = time_do2d_xy     + dt_3d
1522       ENDIF
1523       IF ( time_since_reference_point >= skip_time_do2d_xz )  THEN
1524          time_do2d_xz       = time_do2d_xz     + dt_3d
1525       ENDIF
1526       IF ( time_since_reference_point >= skip_time_do2d_yz )  THEN
1527          time_do2d_yz       = time_do2d_yz     + dt_3d
1528       ENDIF
1529       IF ( time_since_reference_point >= skip_time_do3d    )  THEN
1530          time_do3d          = time_do3d        + dt_3d
1531       ENDIF
1532       DO  mid = 1, masks
1533          IF ( time_since_reference_point >= skip_time_domask(mid) )  THEN
1534             time_domask(mid)= time_domask(mid) + dt_3d
1535          ENDIF
1536       ENDDO
1537       IF ( time_since_reference_point >= skip_time_dosp )  THEN
1538          time_dosp       = time_dosp        + dt_3d
1539       ENDIF
1540       time_dots          = time_dots        + dt_3d
1541       IF ( .NOT. first_call_lpm )  THEN
1542          time_dopts      = time_dopts       + dt_3d
1543       ENDIF
1544       IF ( time_since_reference_point >= skip_time_dopr )  THEN
1545          time_dopr       = time_dopr        + dt_3d
1546       ENDIF
1547       time_dopr_listing  = time_dopr_listing + dt_3d
1548       time_run_control   = time_run_control + dt_3d
1549!
1550!--    Increment time-counter for surface output
1551       IF ( surface_output )  THEN
1552          IF ( time_since_reference_point >= skip_time_dosurf )  THEN
1553             time_dosurf    = time_dosurf + dt_3d
1554          ENDIF
1555          IF ( time_since_reference_point >= skip_time_dosurf_av )  THEN
1556             time_dosurf_av = time_dosurf_av + dt_3d
1557          ENDIF
1558       ENDIF
1559!
1560!--    Increment time-counter for virtual measurements
1561       IF ( virtual_measurement  .AND.  vm_time_start <= time_since_reference_point )  THEN
1562          time_virtual_measurement = time_virtual_measurement + dt_3d
1563       ENDIF
1564!
1565!--    In case of synthetic turbulence generation and parametrized turbulence
1566!--    information, update the time counter and if required, adjust the
1567!--    STG to new atmospheric conditions.
1568       IF ( use_syn_turb_gen  )  THEN
1569          IF ( parametrize_inflow_turbulence )  THEN
1570             time_stg_adjust = time_stg_adjust + dt_3d
1571             IF ( time_stg_adjust >= dt_stg_adjust )  THEN
1572                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1573                CALL stg_adjust
1574                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1575             ENDIF
1576          ENDIF
1577          time_stg_call = time_stg_call + dt_3d
1578       ENDIF
1579
1580!
1581!--    Data exchange between coupled models
1582       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND.  .NOT. vnested )  THEN
1583          time_coupling = time_coupling + dt_3d
1584
1585!
1586!--       In case of model termination initiated by the local model
1587!--       (terminate_coupled > 0), the coupler must be skipped because it would
1588!--       cause an MPI intercomminucation hang.
1589!--       If necessary, the coupler will be called at the beginning of the
1590!--       next restart run.
1591          DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
1592             CALL surface_coupler
1593             time_coupling = time_coupling - dt_coupling
1594          ENDDO
1595       ENDIF
1596
1597!
1598!--    Biometeorology calculation of stationary thermal indices
1599!--    Todo (kanani): biometeorology needs own time_... treatment.
1600!--                   It might be that time_do2d_xy differs from time_do3d,
1601!--                   and then we might get trouble with the biomet output,
1602!--                   because we can have 2d and/or 3d biomet output!!
1603       IF ( biometeorology                                                                         &
1604            .AND. ( ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  &
1605                  .OR.                                                                             &
1606            ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy ) &
1607                    ) )  THEN
1608!
1609!--       If required, do thermal comfort calculations
1610          IF ( thermal_comfort )  THEN
1611             CALL bio_calculate_thermal_index_maps ( .FALSE. )
1612          ENDIF
1613!
1614!--       If required, do UV exposure calculations
1615          IF ( uv_exposure )  THEN
1616             CALL uvem_calc_exposure
1617          ENDIF
1618       ENDIF
1619
1620!
1621!--    Execute alle other module actions routunes
1622       CALL module_interface_actions( 'after_integration' )
1623
1624!
1625!--    If Galilei transformation is used, determine the distance that the
1626!--    model has moved so far
1627       IF ( galilei_transformation )  THEN
1628          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1629          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1630       ENDIF
1631
1632!
1633!--    Check, if restart is necessary (because cpu-time is expiring or
1634!--    because it is forced by user) and set stop flag
1635!--    This call is skipped if the remote model has already initiated a restart.
1636       IF ( .NOT. terminate_run )  CALL check_for_restart
1637
1638!
1639!--    Carry out statistical analysis and output at the requested output times.
1640!--    The MOD function is used for calculating the output time counters (like
1641!--    time_dopr) in order to regard a possible decrease of the output time
1642!--    interval in case of restart runs
1643
1644!
1645!--    Set a flag indicating that so far no statistics have been created
1646!--    for this time step
1647       flow_statistics_called = .FALSE.
1648
1649!
1650!--    If required, call flow_statistics for averaging in time
1651       IF ( averaging_interval_pr /= 0.0_wp  .AND.                                                 &
1652            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.                                &
1653            time_since_reference_point >= skip_time_dopr )  THEN
1654          time_dopr_av = time_dopr_av + dt_3d
1655          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1656             do_sum = .TRUE.
1657             time_dopr_av = MOD( time_dopr_av, MAX( dt_averaging_input_pr, dt_3d ) )
1658          ENDIF
1659       ENDIF
1660       IF ( do_sum )  CALL flow_statistics
1661
1662!
1663!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
1664       IF ( averaging_interval /= 0.0_wp  .AND.                                                    &
1665            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND.                        &
1666            time_since_reference_point >= skip_time_data_output_av )                               &
1667       THEN
1668          time_do_sla = time_do_sla + dt_3d
1669          IF ( time_do_sla >= dt_averaging_input )  THEN
1670             IF ( current_timestep_number > timestep_number_at_prev_calc )                         &
1671                CALL diagnostic_output_quantities_calculate
1672
1673             CALL sum_up_3d_data
1674             average_count_3d = average_count_3d + 1
1675             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1676          ENDIF
1677       ENDIF
1678!
1679!--    Average surface data
1680       IF ( surface_output )  THEN
1681          IF ( averaging_interval_surf /= 0.0_wp                                                   &
1682                .AND.  ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf                &
1683                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1684             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
1685                CALL surface_data_output_averaging
1686                average_count_surf = average_count_surf + 1
1687             ENDIF
1688          ENDIF
1689       ENDIF
1690
1691!
1692!--    Calculate spectra for time averaging
1693       IF ( averaging_interval_sp /= 0.0_wp  .AND. ( dt_dosp - time_dosp ) <= averaging_interval_sp&
1694            .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1695          time_dosp_av = time_dosp_av + dt_3d
1696          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1697             CALL calc_spectra
1698             time_dosp_av = MOD( time_dosp_av, MAX( dt_averaging_input_pr, dt_3d ) )
1699          ENDIF
1700       ENDIF
1701
1702!
1703!--    Call flight module and output data
1704       IF ( virtual_flight )  THEN
1705          CALL flight_measurement
1706          CALL data_output_flight
1707       ENDIF
1708!
1709!--    Take virtual measurements
1710       IF ( virtual_measurement  .AND.  time_virtual_measurement >= dt_virtual_measurement         &
1711                                 .AND.  vm_time_start <= time_since_reference_point )  THEN
1712          CALL vm_sampling
1713          CALL vm_data_output
1714          time_virtual_measurement = MOD(      time_virtual_measurement,                           &
1715                                          MAX( dt_virtual_measurement, dt_3d ) )
1716       ENDIF
1717!
1718!--    Profile output (ASCII) on file
1719       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1720          CALL print_1d
1721          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, dt_3d ) )
1722       ENDIF
1723
1724!
1725!--    Graphic output for PROFIL
1726       IF ( time_dopr >= dt_dopr  .AND.  time_since_reference_point >= skip_time_dopr )  THEN
1727          IF ( dopr_n /= 0 )  CALL data_output_profiles
1728          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
1729          time_dopr_av = 0.0_wp    ! due to averaging (see above)
1730       ENDIF
1731
1732!
1733!--    Graphic output for time series
1734       IF ( time_dots >= dt_dots )  THEN
1735          CALL data_output_tseries
1736          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1737       ENDIF
1738
1739!
1740!--    Output of spectra (formatted for use with PROFIL), in case of no
1741!--    time averaging, spectra has to be calculated before
1742       IF ( time_dosp >= dt_dosp  .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1743          IF ( average_count_sp == 0 )  CALL calc_spectra
1744          CALL data_output_spectra
1745          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1746       ENDIF
1747
1748!
1749!--    2d-data output (cross-sections)
1750       IF ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy )  THEN
1751          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1752             CALL diagnostic_output_quantities_calculate
1753
1754          CALL data_output_2d( 'xy', 0 )
1755          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1756       ENDIF
1757       IF ( time_do2d_xz >= dt_do2d_xz  .AND.  time_since_reference_point >= skip_time_do2d_xz )  THEN
1758          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1759
1760             CALL diagnostic_output_quantities_calculate
1761          CALL data_output_2d( 'xz', 0 )
1762          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1763       ENDIF
1764       IF ( time_do2d_yz >= dt_do2d_yz  .AND.  time_since_reference_point >= skip_time_do2d_yz )  THEN
1765          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1766             CALL diagnostic_output_quantities_calculate
1767
1768          CALL data_output_2d( 'yz', 0 )
1769          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1770       ENDIF
1771
1772!
1773!--    3d-data output (volume data)
1774       IF ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  THEN
1775          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1776             CALL diagnostic_output_quantities_calculate
1777
1778          CALL data_output_3d( 0 )
1779          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1780       ENDIF
1781
1782!
1783!--    Masked data output
1784       DO  mid = 1, masks
1785          IF ( time_domask(mid) >= dt_domask(mid)                                                  &
1786               .AND.  time_since_reference_point >= skip_time_domask(mid) )  THEN
1787             IF ( current_timestep_number > timestep_number_at_prev_calc )                         &
1788                CALL diagnostic_output_quantities_calculate
1789
1790             CALL data_output_mask( 0 )
1791             time_domask(mid) = MOD( time_domask(mid), MAX( dt_domask(mid), dt_3d ) )
1792          ENDIF
1793       ENDDO
1794
1795!
1796!--    Output of time-averaged 2d/3d/masked data
1797       IF ( time_do_av >= dt_data_output_av                                                        &
1798            .AND.  time_since_reference_point >= skip_time_data_output_av )  THEN
1799          CALL average_3d_data
1800!
1801!--       Udate thermal comfort indices based on updated averaged input
1802          IF ( biometeorology  .AND.  thermal_comfort )  THEN
1803             CALL bio_calculate_thermal_index_maps ( .TRUE. )
1804          ENDIF
1805          CALL data_output_2d( 'xy', 1 )
1806          CALL data_output_2d( 'xz', 1 )
1807          CALL data_output_2d( 'yz', 1 )
1808          CALL data_output_3d( 1 )
1809          DO  mid = 1, masks
1810             CALL data_output_mask( 1 )
1811          ENDDO
1812          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1813       ENDIF
1814!
1815!--    Output of surface data, instantaneous and averaged data
1816       IF ( surface_output )  THEN
1817          IF ( time_dosurf >= dt_dosurf  .AND.  time_since_reference_point >= skip_time_dosurf )  THEN
1818             CALL surface_data_output( 0 )
1819             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1820          ENDIF
1821          IF ( time_dosurf_av >= dt_dosurf_av  .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1822             CALL surface_data_output( 1 )
1823             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1824          ENDIF
1825       ENDIF
1826
1827!
1828!--    Output of particle time series
1829       IF ( particle_advection )  THEN
1830          IF ( time_dopts >= dt_dopts  .OR.                                                        &
1831               ( time_since_reference_point >= particle_advection_start  .AND.                     &
1832                 first_call_lpm ) )  THEN
1833             CALL lpm_data_output_ptseries
1834             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1835          ENDIF
1836       ENDIF
1837
1838!
1839!--    If required, set the heat flux for the next time step to a random value
1840       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
1841          IF ( surf_def_h(0)%ns >= 1 )  THEN
1842             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1843             CALL disturb_heatflux( surf_def_h(0) )
1844             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1845          ENDIF
1846          IF ( surf_lsm_h%ns    >= 1 )  THEN
1847             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1848             CALL disturb_heatflux( surf_lsm_h    )
1849             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1850          ENDIF
1851          IF ( surf_usm_h%ns    >= 1 )  THEN
1852             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1853             CALL disturb_heatflux( surf_usm_h    )
1854             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1855          ENDIF
1856       ENDIF
1857
1858!
1859!--    Execute alle other module actions routunes
1860       CALL module_interface_actions( 'after_timestep' )
1861
1862!
1863!--    Determine size of next time step. Save timestep dt_3d because it is
1864!--    newly calculated in routine timestep, but required further below for
1865!--    steering the run control output interval
1866       dt_3d_old = dt_3d
1867       CALL timestep
1868
1869!
1870!--    Synchronize the timestep in case of nested run.
1871       IF ( nested_run )  THEN
1872!
1873!--       Synchronize by unifying the time step.
1874!--       Global minimum of all time-steps is used for all.
1875          CALL pmci_synchronize
1876       ENDIF
1877
1878!
1879!--    Computation and output of run control parameters.
1880!--    This is also done whenever perturbations have been imposed
1881       IF ( time_run_control >= dt_run_control  .OR.                                               &
1882            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created )                           &
1883       THEN
1884          CALL run_control
1885          IF ( time_run_control >= dt_run_control )  THEN
1886             time_run_control = MOD( time_run_control, MAX( dt_run_control, dt_3d_old ) )
1887          ENDIF
1888       ENDIF
1889
1890!
1891!--    Output elapsed simulated time in form of a progress bar on stdout
1892       IF ( myid == 0 )  CALL output_progress_bar
1893
1894       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1895
1896
1897    ENDDO   ! time loop
1898
1899#if defined( _OPENACC )
1900    CALL exit_surface_arrays
1901#endif
1902!$ACC END DATA
1903!$ACC END DATA
1904!$ACC END DATA
1905!$ACC END DATA
1906!$ACC END DATA
1907!$ACC END DATA
1908!$ACC END DATA
1909
1910!
1911!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
1912    IF ( vnest_init )  CALL vnest_deallocate
1913
1914    IF ( myid == 0 )  CALL finish_progress_bar
1915
1916    CALL location_message( 'atmosphere (and/or ocean) time-stepping', 'finished' )
1917
1918 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.