source: palm/trunk/SOURCE/time_integration.f90 @ 3864

Last change on this file since 3864 was 3864, checked in by monakurppa, 2 years ago

major changes in salsa: data input, format and performance

  • Time-dependent emissions enabled: lod=1 for yearly PM emissions that are normalised depending on the time, and lod=2 for preprocessed emissions (similar to the chemistry module).
  • Additionally, 'uniform' emissions allowed. This emission is set constant on all horisontal upward facing surfaces and it is created based on parameters surface_aerosol_flux, aerosol_flux_dpg/sigmag/mass_fracs_a/mass_fracs_b.
  • All emissions are now implemented as surface fluxes! No 3D sources anymore.
  • Update the emission information by calling salsa_emission_update if skip_time_do_salsa >= time_since_reference_point and next_aero_emission_update <= time_since_reference_point
  • Aerosol background concentrations read from PIDS_DYNAMIC. The vertical grid must match the one applied in the model.
  • Gas emissions and background concentrations can be also read in in salsa_mod if the chemistry module is not applied.
  • In deposition, information on the land use type can be now imported from the land use model
  • Use SI units in PARIN, i.e. n_lognorm given in #/m3 and dpg in metres.
  • Apply 100 character line limit
  • Change all variable names from capital to lowercase letter
  • Change real exponents to integer if possible. If not, precalculate the value of exponent
  • Rename in1a to start_subrange_1a, fn2a to end_subrange_1a etc.
  • Rename nbins --> nbins_aerosol, ncc_tot --> ncomponents_mass and ngast --> ngases_salsa
  • Rename ibc to index_bc, idu to index_du etc.
  • Renamed loop indices b, c and sg to ib, ic and ig
  • run_salsa subroutine removed
  • Corrected a bud in salsa_driver: falsely applied ino instead of inh
  • Call salsa_tendency within salsa_prognostic_equations which is called in module_interface_mod instead of prognostic_equations_mod
  • Removed tailing white spaces and unused variables
  • Change error message to start by PA instead of SA
  • Property svn:keywords set to Id
File size: 75.2 KB
Line 
1!> @file time_integration.f90
2!------------------------------------------------------------------------------!
3! This file is part of the PALM model system.
4!
5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2019 Leibniz Universitaet Hannover
18!------------------------------------------------------------------------------!
19!
20! Current revisions:
21! ------------------
22!
23!
24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 3864 2019-04-05 09:01:56Z monakurppa $
27! Modifications made for salsa:
28! - Call salsa_emission_update at each time step but do the checks within
29!   salsa_emission_update (i.e. skip_time_do_salsa >= time_since_reference_point
30!   and next_aero_emission_update <= time_since_reference_point ).
31! - Renamed nbins --> nbins_aerosol, ncc_tot --> ncomponents_mass and
32!   ngast --> ngases_salsa and loop indices b, c and sg to ib, ic and ig
33! - Apply nesting for salsa variables
34! - Removed cpu_log calls speciffic for salsa.
35!
36! 3833 2019-03-28 15:04:04Z forkel
37! added USE chem_gasphase_mod, replaced nspec by nvar since fixed compounds are not integrated
38!
39! 3820 2019-03-27 11:53:41Z forkel
40! renamed do_emiss to emissions_anthropogenic (ecc)
41!
42!
43! 3774 2019-03-04 10:52:49Z moh.hefny
44! rephrase if statement to avoid unallocated array in case of
45! nesting_offline is false (crashing during debug mode)
46!
47! 3761 2019-02-25 15:31:42Z raasch $
48! module section re-formatted and openacc required variables moved to separate section,
49! re-formatting to 100 char line width
50!
51! 3745 2019-02-15 18:57:56Z suehring
52! Call indoor model after first timestep
53!
54! 3744 2019-02-15 18:38:58Z suehring
55! - Moved call of bio_calculate_thermal_index_maps from biometeorology module to
56! time_integration to make sure averaged input is updated before calculating.
57!
58! 3739 2019-02-13 08:05:17Z dom_dwd_user
59! Removed everything related to "time_bio_results" as this is never used.
60!
61! 3724 2019-02-06 16:28:23Z kanani
62! Correct double-used log_point_s unit
63!
64! 3719 2019-02-06 13:10:18Z kanani
65! - removed wind_turbine cpu measurement, since same time is measured inside
66!   wtm_forces subroutine as special measures
67! - moved the numerous vnest cpulog to special measures
68! - extended radiation cpulog over entire radiation part,
69!   moved radiation_interactions cpulog to special measures
70! - moved some cpu_log calls to this routine for better overview
71!
72! 3705 2019-01-29 19:56:39Z suehring
73! Data output for virtual measurements added
74!
75! 3704 2019-01-29 19:51:41Z suehring
76! Rename subroutines for surface-data output
77!
78! 3647 2019-01-02 14:10:44Z kanani
79! Bugfix: add time_since_reference_point to IF clause for data_output calls
80! (otherwise skip_time_* values don't come into affect with dt_do* = 0.0).
81! Clean up indoor_model and biometeorology model call.
82!
83! 3646 2018-12-28 17:58:49Z kanani
84! Bugfix: use time_since_reference_point instead of simulated_time where
85! required (relevant when using wall/soil spinup)
86!
87! 3634 2018-12-18 12:31:28Z knoop
88! OpenACC port for SPEC
89!
90! 3597 2018-12-04 08:40:18Z maronga
91! Removed call to calculation of near air (10 cm) potential temperature (now in
92! surface layer fluxes)
93!
94! 3589 2018-11-30 15:09:51Z suehring
95! Move the control parameter "salsa" from salsa_mod to control_parameters
96! (M. Kurppa)
97!
98! 3582 2018-11-29 19:16:36Z suehring
99! dom_dwd_user, Schrempf:
100! Changes due to merge of uv exposure model into biometeorology_mod.
101!
102! 3525 2018-11-14 16:06:14Z kanani
103! Changes related to clean-up of biometeorology (dom_dwd_user)
104!
105! 3524 2018-11-14 13:36:44Z raasch
106! unused variables removed
107!
108! 3484 2018-11-02 14:41:25Z hellstea
109! pmci_ensure_nest_mass_conservation is premanently removed
110!
111! 3473 2018-10-30 20:50:15Z suehring
112! new module for virtual measurements introduced
113!
114! 3472 2018-10-30 20:43:50Z suehring
115! Add indoor model (kanani, srissman, tlang)
116!
117! 3467 2018-10-30 19:05:21Z suehring
118! Implementation of a new aerosol module salsa.
119!
120! 3448 2018-10-29 18:14:31Z kanani
121! Add biometeorology
122!
123! 3421 2018-10-24 18:39:32Z gronemeier
124! Surface data output
125!
126! 3418 2018-10-24 16:07:39Z kanani
127! call to material_heat_model now with check if spinup runs (rvtils)
128!
129! 3378 2018-10-19 12:34:59Z kanani
130! merge from radiation branch (r3362) into trunk
131! (moh.hefny):
132! Bugfix in the if statement to call radiation_interaction
133!
134! 3347 2018-10-15 14:21:08Z suehring
135! - offline nesting separated from large-scale forcing module
136! - changes for synthetic turbulence generator
137!
138! 3343 2018-10-15 10:38:52Z suehring
139! - Formatting, clean-up, comments (kanani)
140! - Added CALL to chem_emissions_setup (Russo)
141! - Code added for decycling chemistry (basit)
142!
143! 3294 2018-10-01 02:37:10Z raasch
144! changes concerning modularization of ocean option
145!
146! 3274 2018-09-24 15:42:55Z knoop
147! Modularization of all bulk cloud physics code components
148!
149! 3241 2018-09-12 15:02:00Z raasch
150! unused variables removed
151!
152! 3198 2018-08-15 09:23:10Z sward
153! Added multi_agent_system_end; defined start time for MAS relative to
154! time_since_reference_point
155!
156! 3183 2018-07-27 14:25:55Z suehring
157! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
158! Rename subroutines and variables in COSMO nesting mode
159!
160! 3182 2018-07-27 13:36:03Z suehring
161! Added multi agent system
162!
163! 3042 2018-05-25 10:44:37Z schwenkel
164! Changed the name specific humidity to mixing ratio
165!
166! 3040 2018-05-25 10:22:08Z schwenkel
167! Fixed bug in IF statement
168! Ensure that the time when calling the radiation to be the time step of the
169! pre-calculated time when first calculate the positions of the sun
170!
171! 3004 2018-04-27 12:33:25Z Giersch
172! First call of flow_statistics has been removed. It is already called in
173! run_control itself
174!
175! 2984 2018-04-18 11:51:30Z hellstea
176! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
177! as seemingly unnecessary.
178!
179! 2941 2018-04-03 11:54:58Z kanani
180! Deduct spinup_time from RUN_CONTROL output of main 3d run
181! (use time_since_reference_point instead of simulated_time)
182!
183! 2938 2018-03-27 15:52:42Z suehring
184! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
185!
186! 2936 2018-03-27 14:49:27Z suehring
187! Little formatting adjustment.
188!
189! 2817 2018-02-19 16:32:21Z knoop
190! Preliminary gust module interface implemented
191!
192! 2801 2018-02-14 16:01:55Z thiele
193! Changed lpm from subroutine to module.
194! Introduce particle transfer in nested models.
195!
196! 2776 2018-01-31 10:44:42Z Giersch
197! Variable use_synthetic_turbulence_generator has been abbreviated
198!
199! 2773 2018-01-30 14:12:54Z suehring
200! - Nesting for chemical species
201!
202! 2766 2018-01-22 17:17:47Z kanani
203! Removed preprocessor directive __chem
204!
205! 2718 2018-01-02 08:49:38Z maronga
206! Corrected "Former revisions" section
207!
208! 2696 2017-12-14 17:12:51Z kanani
209! - Change in file header (GPL part)
210! - Implementation of uv exposure model (FK)
211! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
212! - renamed diffusivities to tcm_diffusivities (TG)
213! - implement prognostic equation for diss (TG)
214! - Moved/commented CALL to chem_emissions (FK)
215! - Added CALL to chem_emissions (FK)
216! - Implementation of chemistry module (FK)
217! - Calls for setting boundary conditions in USM and LSM (MS)
218! - Large-scale forcing with larger-scale models implemented (MS)
219! - Rename usm_radiation into radiation_interactions; merge with branch
220!   radiation (MS)
221! - added call for usm_green_heat_model for green building surfaces (RvT)
222! - added call for usm_temperature_near_surface for use in indoor model (RvT)
223!
224! 2617 2017-11-16 12:47:24Z suehring
225! Bugfix, assure that the reference state does not become zero.
226!
227! 2563 2017-10-19 15:36:10Z Giersch
228! Variable wind_turbine moved to module control_parameters
229!
230! 2365 2017-08-21 14:59:59Z kanani
231! Vertical grid nesting implemented (SadiqHuq)
232!
233! 2320 2017-07-21 12:47:43Z suehring
234! Set bottom boundary conditions after nesting interpolation and anterpolation
235!
236! 2299 2017-06-29 10:14:38Z maronga
237! Call of soil model adjusted
238!
239! 2292 2017-06-20 09:51:42Z schwenkel
240! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
241! includes two more prognostic equations for cloud drop concentration (nc) 
242! and cloud water content (qc).
243!
244! 2271 2017-06-09 12:34:55Z sward
245! Start timestep message changed
246!
247! 2259 2017-06-08 09:09:11Z gronemeier
248! Implemented synthetic turbulence generator
249!
250! 2233 2017-05-30 18:08:54Z suehring
251!
252! 2232 2017-05-30 17:47:52Z suehring
253! Adjustments to new topography and surface concept
254! Modify passed parameters for disturb_field
255!
256! 2178 2017-03-17 11:07:39Z hellstea
257! Setting perturbations at all times near inflow boundary is removed
258! in case of nested boundaries
259!
260! 2174 2017-03-13 08:18:57Z maronga
261! Added support for nesting with cloud microphysics
262!
263! 2118 2017-01-17 16:38:49Z raasch
264! OpenACC directives and related code removed
265!
266! 2050 2016-11-08 15:00:55Z gronemeier
267! Implement turbulent outflow condition
268!
269! 2031 2016-10-21 15:11:58Z knoop
270! renamed variable rho to rho_ocean
271!
272! 2011 2016-09-19 17:29:57Z kanani
273! Flag urban_surface is now defined in module control_parameters,
274! removed commented CALLs of global_min_max.
275!
276! 2007 2016-08-24 15:47:17Z kanani
277! Added CALLs for new urban surface model
278!
279! 2000 2016-08-20 18:09:15Z knoop
280! Forced header and separation lines into 80 columns
281!
282! 1976 2016-07-27 13:28:04Z maronga
283! Simplified calls to radiation model
284!
285! 1960 2016-07-12 16:34:24Z suehring
286! Separate humidity and passive scalar
287!
288! 1957 2016-07-07 10:43:48Z suehring
289! flight module added
290!
291! 1919 2016-05-27 14:51:23Z raasch
292! Initial version of purely vertical nesting introduced.
293!
294! 1918 2016-05-27 14:35:57Z raasch
295! determination of time step moved to the end of the time step loop,
296! the first time step is now always calculated before the time step loop (i.e.
297! also in case of restart runs)
298!
299! 1914 2016-05-26 14:44:07Z witha
300! Added call for wind turbine model
301!
302! 1878 2016-04-19 12:30:36Z hellstea
303! Synchronization for nested runs rewritten
304!
305! 1853 2016-04-11 09:00:35Z maronga
306! Adjusted for use with radiation_scheme = constant
307!
308! 1849 2016-04-08 11:33:18Z hoffmann
309! Adapted for modularization of microphysics
310!
311! 1833 2016-04-07 14:23:03Z raasch
312! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
313!
314! 1831 2016-04-07 13:15:51Z hoffmann
315! turbulence renamed collision_turbulence
316!
317! 1822 2016-04-07 07:49:42Z hoffmann
318! icloud_scheme replaced by microphysics_*
319!
320! 1808 2016-04-05 19:44:00Z raasch
321! output message in case unscheduled radiation calls removed
322!
323! 1797 2016-03-21 16:50:28Z raasch
324! introduction of different datatransfer modes
325!
326! 1791 2016-03-11 10:41:25Z raasch
327! call of pmci_update_new removed
328!
329! 1786 2016-03-08 05:49:27Z raasch
330! +module spectrum
331!
332! 1783 2016-03-06 18:36:17Z raasch
333! switch back of netcdf data format for mask output moved to the mask output
334! routine
335!
336! 1781 2016-03-03 15:12:23Z raasch
337! some pmc calls removed at the beginning (before timeloop),
338! pmc initialization moved to the main program
339!
340! 1764 2016-02-28 12:45:19Z raasch
341! PMC_ACTIVE flags removed,
342! bugfix: nest synchronization after first call of timestep
343!
344! 1762 2016-02-25 12:31:13Z hellstea
345! Introduction of nested domain feature
346!
347! 1736 2015-12-04 08:56:33Z raasch
348! no perturbations added to total domain if energy limit has been set zero
349!
350! 1691 2015-10-26 16:17:44Z maronga
351! Added option for spin-ups without land surface and radiation models. Moved calls
352! for radiation and lan surface schemes.
353!
354! 1682 2015-10-07 23:56:08Z knoop
355! Code annotations made doxygen readable
356!
357! 1671 2015-09-25 03:29:37Z raasch
358! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
359! for particles
360!
361! 1585 2015-04-30 07:05:52Z maronga
362! Moved call of radiation scheme. Added support for RRTM
363!
364! 1551 2015-03-03 14:18:16Z maronga
365! Added interface for different radiation schemes.
366!
367! 1496 2014-12-02 17:25:50Z maronga
368! Added calls for the land surface model and radiation scheme
369!
370! 1402 2014-05-09 14:25:13Z raasch
371! location messages modified
372!
373! 1384 2014-05-02 14:31:06Z raasch
374! location messages added
375!
376! 1380 2014-04-28 12:40:45Z heinze
377! CALL of nudge_ref added
378! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
379!
380! 1365 2014-04-22 15:03:56Z boeske
381! Reset sums_ls_l to zero at each timestep
382! +sums_ls_l
383! Calculation of reference state (previously in subroutine calc_mean_profile)
384
385! 1342 2014-03-26 17:04:47Z kanani
386! REAL constants defined as wp-kind
387!
388! 1320 2014-03-20 08:40:49Z raasch
389! ONLY-attribute added to USE-statements,
390! kind-parameters added to all INTEGER and REAL declaration statements,
391! kinds are defined in new module kinds,
392! old module precision_kind is removed,
393! revision history before 2012 removed,
394! comment fields (!:) to be used for variable explanations added to
395! all variable declaration statements
396! 1318 2014-03-17 13:35:16Z raasch
397! module interfaces removed
398!
399! 1308 2014-03-13 14:58:42Z fricke
400! +netcdf_data_format_save
401! For masked data, parallel netcdf output is not tested so far, hence
402! netcdf_data_format is switched back to non-paralell output.
403!
404! 1276 2014-01-15 13:40:41Z heinze
405! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
406!
407! 1257 2013-11-08 15:18:40Z raasch
408! acc-update-host directive for timestep removed
409!
410! 1241 2013-10-30 11:36:58Z heinze
411! Generalize calc_mean_profile for wider use
412! Determine shf and qsws in dependence on data from LSF_DATA
413! Determine ug and vg in dependence on data from LSF_DATA
414! 1221 2013-09-10 08:59:13Z raasch
415! host update of arrays before timestep is called
416!
417! 1179 2013-06-14 05:57:58Z raasch
418! mean profiles for reference state are only calculated if required,
419! small bugfix for background communication
420!
421! 1171 2013-05-30 11:27:45Z raasch
422! split of prognostic_equations deactivated (comment lines), for the time being
423!
424! 1128 2013-04-12 06:19:32Z raasch
425! asynchronous transfer of ghost point data realized for acc-optimized version:
426! prognostic_equations are first called two times for those points required for
427! the left-right and north-south exchange, respectively, and then for the
428! remaining points,
429! those parts requiring global communication moved from prognostic_equations to
430! here
431!
432! 1115 2013-03-26 18:16:16Z hoffmann
433! calculation of qr and nr is restricted to precipitation
434!
435! 1113 2013-03-10 02:48:14Z raasch
436! GPU-porting of boundary conditions,
437! openACC directives updated
438! formal parameter removed from routine boundary_conds
439!
440! 1111 2013-03-08 23:54:10Z raasch
441! +internal timestep counter for cpu statistics added,
442! openACC directives updated
443!
444! 1092 2013-02-02 11:24:22Z raasch
445! unused variables removed
446!
447! 1065 2012-11-22 17:42:36Z hoffmann
448! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
449!
450! 1053 2012-11-13 17:11:03Z hoffmann
451! exchange of ghost points for nr, qr added
452!
453! 1036 2012-10-22 13:43:42Z raasch
454! code put under GPL (PALM 3.9)
455!
456! 1019 2012-09-28 06:46:45Z raasch
457! non-optimized version of prognostic_equations removed
458!
459! 1015 2012-09-27 09:23:24Z raasch
460! +call of prognostic_equations_acc
461!
462! 1001 2012-09-13 14:08:46Z raasch
463! all actions concerning leapfrog- and upstream-spline-scheme removed
464!
465! 849 2012-03-15 10:35:09Z raasch
466! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
467!
468! 825 2012-02-19 03:03:44Z raasch
469! wang_collision_kernel renamed wang_kernel
470!
471! Revision 1.1  1997/08/11 06:19:04  raasch
472! Initial revision
473!
474!
475! Description:
476! ------------
477!> Integration in time of the model equations, statistical analysis and graphic
478!> output
479!------------------------------------------------------------------------------!
480 SUBROUTINE time_integration
481 
482
483    USE advec_ws,                                                                                  &
484        ONLY:  ws_statistics
485
486    USE arrays_3d,                                                                                 &
487        ONLY:  diss, diss_p, dzu, e, e_p, nc, nc_p, nr, nr_p, prho, pt, pt_p, pt_init, q_init, q,  &
488               qc, qc_p, ql, ql_c, ql_v, ql_vp, qr, qr_p, q_p, ref_state, rho_ocean, s, s_p, sa_p, &
489               tend, u, u_p, v, vpt, v_p, w, w_p
490
491    USE biometeorology_mod,                                                                        &
492        ONLY:  bio_calculate_thermal_index_maps, thermal_comfort, uvem_calc_exposure, uv_exposure
493
494    USE bulk_cloud_model_mod,                                                                      &
495        ONLY: bulk_cloud_model, calc_liquid_water_content, collision_turbulence,                   &
496              microphysics_morrison, microphysics_seifert
497
498    USE calc_mean_profile_mod,                                                                     &
499        ONLY:  calc_mean_profile
500
501    USE chem_emissions_mod,                                                                        &
502        ONLY:  chem_emissions_setup
503
504    USE chem_gasphase_mod,                                                                         &
505        ONLY:  nvar
506
507    USE chem_modules,                                                                              &
508        ONLY:  bc_cs_t_val, cs_name, emissions_anthropogenic, nspec_out
509
510    USE chemistry_model_mod,                                                                       &
511        ONLY:  chem_boundary_conds, chem_species
512
513    USE control_parameters,                                                                        &
514        ONLY:  advected_distance_x, advected_distance_y, air_chemistry, average_count_3d,          &
515               averaging_interval, averaging_interval_pr, bc_lr_cyc, bc_ns_cyc, bc_pt_t_val,       &
516               bc_q_t_val, biometeorology, call_psolver_at_all_substeps,  child_domain,            &
517               cloud_droplets, constant_flux_layer, constant_heatflux, create_disturbances,        &
518               dopr_n, constant_diffusion, coupling_mode, coupling_start_time,                     &
519               current_timestep_number, disturbance_created, disturbance_energy_limit, dist_range, &
520               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr, dt_coupling,              &
521               dt_data_output_av, dt_disturb, dt_do2d_xy, dt_do2d_xz, dt_do2d_yz, dt_do3d,         &
522               dt_domask,dt_dopts, dt_dopr, dt_dopr_listing, dt_dots, dt_dvrp, dt_run_control,     &
523               end_time, first_call_lpm, first_call_mas, galilei_transformation, humidity,         &
524               indoor_model, intermediate_timestep_count, intermediate_timestep_count_max,         &
525               land_surface, large_scale_forcing, loop_optimization, lsf_surf, lsf_vert, masks,    &
526               mid, multi_agent_system_end, multi_agent_system_start, nesting_offline, neutral,    &
527               nr_timesteps_this_run, nudging, ocean_mode, passive_scalar, pt_reference,           &
528               pt_slope_offset, random_heatflux, rans_mode, rans_tke_e, run_coupled, salsa,        &
529               simulated_time, simulated_time_chr, skip_time_do2d_xy, skip_time_do2d_xz,           &
530               skip_time_do2d_yz, skip_time_do3d, skip_time_domask, skip_time_dopr,                &
531               skip_time_data_output_av, sloping_surface, stop_dt, surface_output,                 &
532               terminate_coupled, terminate_run, timestep_scheme, time_coupling, time_do2d_xy,     &
533               time_do2d_xz, time_do2d_yz, time_do3d, time_domask, time_dopr, time_dopr_av,        &
534               time_dopr_listing, time_dopts, time_dosp, time_dosp_av, time_dots, time_do_av,      &
535               time_do_sla, time_disturb, time_dvrp, time_run_control, time_since_reference_point, &
536               turbulent_inflow, turbulent_outflow, urban_surface,                                 &
537               use_initial_profile_as_reference, use_single_reference_value, u_gtrans, v_gtrans,   &
538               virtual_flight, virtual_measurement, wind_turbine, ws_scheme_mom, ws_scheme_sca
539
540    USE cpulog,                                                                                    &
541        ONLY:  cpu_log, log_point, log_point_s
542
543    USE date_and_time_mod,                                                                         &
544        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
545
546    USE flight_mod,                                                                                &
547        ONLY:  flight_measurement
548
549    USE indices,                                                                                   &
550        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nzb, nzt
551
552    USE indoor_model_mod,                                                                          &
553        ONLY:  dt_indoor, im_main_heatcool, time_indoor
554
555    USE interaction_droplets_ptq_mod,                                                              &
556        ONLY:  interaction_droplets_ptq
557
558    USE interfaces
559
560    USE kinds
561
562    USE land_surface_model_mod,                                                                    &
563        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model, skip_time_do_lsm
564
565    USE lpm_mod,                                                                                   &
566        ONLY:  lpm
567
568    USE lsf_nudging_mod,                                                                           &
569        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
570
571    USE module_interface,                                                                          &
572        ONLY:  module_interface_actions
573
574    USE multi_agent_system_mod,                                                                    &
575        ONLY:  agents_active, multi_agent_system
576
577    USE nesting_offl_mod,                                                                          &
578        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
579
580    USE netcdf_data_input_mod,                                                                     &
581        ONLY:  chem_emis, chem_emis_att, nest_offl, netcdf_data_input_offline_nesting
582
583    USE ocean_mod,                                                                                 &
584        ONLY:  prho_reference
585
586    USE particle_attributes,                                                                       &
587        ONLY:  particle_advection, particle_advection_start, use_sgs_for_particles, wang_kernel
588
589    USE pegrid
590
591    USE pmc_interface,                                                                             &
592        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans, pmci_synchronize
593
594    USE progress_bar,                                                                              &
595        ONLY:  finish_progress_bar, output_progress_bar
596
597    USE prognostic_equations_mod,                                                                  &
598        ONLY:  prognostic_equations_cache, prognostic_equations_vector
599
600    USE radiation_model_mod,                                                                       &
601        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,                    &
602              radiation_interaction, radiation_interactions, skip_time_do_radiation, time_radiation
603
604    USE salsa_mod,                                                                                 &
605        ONLY: aerosol_number, aerosol_mass, bc_am_t_val, bc_an_t_val, bc_gt_t_val,                 &
606              nbins_aerosol, ncomponents_mass, ngases_salsa, salsa_boundary_conds,                 &
607              salsa_emission_update, salsa_gas, salsa_gases_from_chem, skip_time_do_salsa
608
609    USE spectra_mod,                                                                               &
610        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp, skip_time_dosp
611
612    USE statistics,                                                                                &
613        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l
614
615
616    USE surface_layer_fluxes_mod,                                                                  &
617        ONLY:  surface_layer_fluxes
618
619    USE surface_data_output_mod,                                                                   &
620        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf, dt_dosurf_av,               &
621               surface_data_output, surface_data_output_averaging, skip_time_dosurf,               &
622               skip_time_dosurf_av, time_dosurf, time_dosurf_av
623
624    USE surface_mod,                                                                               &
625        ONLY:  surf_def_h, surf_lsm_h, surf_usm_h
626
627    USE synthetic_turbulence_generator_mod,                                                        &
628        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence, stg_adjust, stg_main,    &
629               time_stg_adjust, time_stg_call, use_syn_turb_gen
630
631    USE turbulence_closure_mod,                                                                    &
632        ONLY:  tcm_diffusivities, production_e_init
633
634    USE urban_surface_mod,                                                                         &
635        ONLY:  usm_boundary_condition, usm_material_heat_model, usm_material_model,                &
636               usm_surface_energy_balance, usm_green_heat_model
637
638    USE vertical_nesting_mod,                                                                      &
639        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e, vnest_boundary_conds,              &
640               vnest_boundary_conds_khkm, vnest_deallocate, vnest_init, vnest_init_fine,           &
641               vnest_start_time
642
643    USE virtual_measurement_mod,                                                                   &
644        ONLY:  vm_data_output, vm_sampling, vm_time_start
645
646    USE wind_turbine_model_mod,                                                                    &
647        ONLY:  wtm_forces
648
649
650#if defined( _OPENACC )
651    USE arrays_3d,                                                             &
652        ONLY:  d, dd2zu, ddzu, ddzw, drho_air, drho_air_zw, dzw, heatflux_output_conversion, kh,   &
653               km, momentumflux_output_conversion, p, ptdf_x, ptdf_y, rdf, rdf_sc, rho_air,        &
654               rho_air_zw, te_m, tpt_m, tu_m, tv_m, tw_m, ug, u_init, u_stokes_zu, vg, v_init,     &
655               v_stokes_zu, zu
656
657    USE control_parameters,                                                                        &
658        ONLY:  tsc
659
660    USE indices,                                                                                   &
661        ONLY:  advc_flags_1, advc_flags_2, nyn, nyng, nys, nysg, nz, nzb_max, wall_flags_0
662
663    USE statistics,                                                                                &
664        ONLY:  rmask, statistic_regions, sums_l, sums_l_l, sums_us2_ws_l,                          &
665               sums_wsus_ws_l, sums_vs2_ws_l, sums_wsvs_ws_l, sums_ws2_ws_l, sums_wspts_ws_l,      &
666               sums_wsqs_ws_l, sums_wssas_ws_l, sums_wsqcs_ws_l, sums_wsqrs_ws_l, sums_wsncs_ws_l, &
667               sums_wsnrs_ws_l, sums_wsss_ws_l, weight_substep
668
669    USE salsa_util_mod,                                                                            &
670           ONLY:  sums_salsa_ws_l
671
672    USE surface_mod,                                                                               &
673        ONLY:  bc_h, enter_surface_arrays, exit_surface_arrays
674#endif
675
676
677    IMPLICIT NONE
678
679    CHARACTER (LEN=9) ::  time_to_string   !<
680
681    INTEGER(iwp)      ::  ib        !< index for aerosol size bins
682    INTEGER(iwp)      ::  ic        !< index for aerosol mass bins
683    INTEGER(iwp)      ::  icc       !< additional index for aerosol mass bins
684    INTEGER(iwp)      ::  ig        !< index for salsa gases
685    INTEGER(iwp)      ::  lsp
686    INTEGER(iwp)      ::  lsp_usr   !<
687    INTEGER(iwp)      ::  n         !< loop counter for chemistry species
688
689    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
690                            !< steering of run control output interval
691    REAL(wp) ::  time_since_reference_point_save  !< original value of
692                                                  !< time_since_reference_point
693
694
695!
696!-- Copy data from arrays_3d
697!$ACC DATA &
698!$ACC COPY(d(nzb+1:nzt,nys:nyn,nxl:nxr)) &
699!$ACC COPY(e(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
700!$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
701!$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
702!$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
703!$ACC COPY(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
704!$ACC COPY(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
705!$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
706!$ACC COPY(pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
707
708!$ACC DATA &
709!$ACC COPY(e_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
710!$ACC COPY(u_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
711!$ACC COPY(v_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
712!$ACC COPY(w_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
713!$ACC COPY(pt_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
714!$ACC COPY(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
715!$ACC COPY(te_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
716!$ACC COPY(tu_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
717!$ACC COPY(tv_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
718!$ACC COPY(tw_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
719!$ACC COPY(tpt_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
720
721!$ACC DATA &
722!$ACC COPYIN(rho_air(nzb:nzt+1), drho_air(nzb:nzt+1)) &
723!$ACC COPYIN(rho_air_zw(nzb:nzt+1), drho_air_zw(nzb:nzt+1)) &
724!$ACC COPYIN(zu(nzb:nzt+1)) &
725!$ACC COPYIN(dzu(1:nzt+1), dzw(1:nzt+1)) &
726!$ACC COPYIN(ddzu(1:nzt+1), dd2zu(1:nzt)) &
727!$ACC COPYIN(ddzw(1:nzt+1)) &
728!$ACC COPYIN(heatflux_output_conversion(nzb:nzt+1)) &
729!$ACC COPYIN(momentumflux_output_conversion(nzb:nzt+1)) &
730!$ACC COPYIN(rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt)) &
731!$ACC COPYIN(ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng)) &
732!$ACC COPYIN(ref_state(0:nz+1)) &
733!$ACC COPYIN(u_init(0:nz+1), v_init(0:nz+1)) &
734!$ACC COPYIN(u_stokes_zu(nzb:nzt+1), v_stokes_zu(nzb:nzt+1)) &
735!$ACC COPYIN(pt_init(0:nz+1)) &
736!$ACC COPYIN(ug(0:nz+1), vg(0:nz+1))
737
738!
739!-- Copy data from control_parameters
740!$ACC DATA &
741!$ACC COPYIN(tsc(1:5))
742
743!
744!-- Copy data from indices
745!$ACC DATA &
746!$ACC COPYIN(advc_flags_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
747!$ACC COPYIN(advc_flags_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
748!$ACC COPYIN(wall_flags_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
749
750!
751!-- Copy data from surface_mod
752!$ACC DATA &
753!$ACC COPYIN(bc_h(0:1)) &
754!$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) &
755!$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) &
756!$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) &
757!$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) &
758!$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) &
759!$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns))
760
761!
762!-- Copy data from statistics
763!$ACC DATA &
764!$ACC COPYIN(hom(0:nz+1,1:2,1:4,0)) &
765!$ACC COPYIN(rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions)) &
766!$ACC COPYIN(weight_substep(1:intermediate_timestep_count_max)) &
767!$ACC COPY(sums_l(nzb:nzt+1,1:pr_palm,0)) &
768!$ACC COPY(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
769!$ACC COPY(sums_us2_ws_l(nzb:nzt+1,0)) &
770!$ACC COPY(sums_wsus_ws_l(nzb:nzt+1,0)) &
771!$ACC COPY(sums_vs2_ws_l(nzb:nzt+1,0)) &
772!$ACC COPY(sums_wsvs_ws_l(nzb:nzt+1,0)) &
773!$ACC COPY(sums_ws2_ws_l(nzb:nzt+1,0)) &
774!$ACC COPY(sums_wspts_ws_l(nzb:nzt+1,0)) &
775!$ACC COPY(sums_wssas_ws_l(nzb:nzt+1,0)) &
776!$ACC COPY(sums_wsqs_ws_l(nzb:nzt+1,0)) &
777!$ACC COPY(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
778!$ACC COPY(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
779!$ACC COPY(sums_wsncs_ws_l(nzb:nzt+1,0)) &
780!$ACC COPY(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
781!$ACC COPY(sums_wsss_ws_l(nzb:nzt+1,0)) &
782!$ACC COPY(sums_salsa_ws_l(nzb:nzt+1,0))
783
784#if defined( _OPENACC )
785    CALL enter_surface_arrays
786#endif
787
788!
789!-- At beginning determine the first time step
790    CALL timestep
791!
792!-- Synchronize the timestep in case of nested run.
793    IF ( nested_run )  THEN
794!
795!--    Synchronization by unifying the time step.
796!--    Global minimum of all time-steps is used for all.
797       CALL pmci_synchronize
798    ENDIF
799
800!
801!-- Determine and print out the run control quantities before the first time
802!-- step of this run. For the initial run, some statistics (e.g. divergence)
803!-- need to be determined first --> CALL flow_statistics at the beginning of
804!-- run_control
805    CALL run_control
806!
807!-- Data exchange between coupled models in case that a call has been omitted
808!-- at the end of the previous run of a job chain.
809    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND. .NOT. vnested )  THEN
810!
811!--    In case of model termination initiated by the local model the coupler
812!--    must not be called because this would again cause an MPI hang.
813       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
814          CALL surface_coupler
815          time_coupling = time_coupling - dt_coupling
816       ENDDO
817       IF (time_coupling == 0.0_wp  .AND.  time_since_reference_point < dt_coupling )  THEN
818          time_coupling = time_since_reference_point
819       ENDIF
820    ENDIF
821
822#if defined( __dvrp_graphics )
823!
824!-- Time measurement with dvrp software 
825    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
826#endif
827
828    CALL location_message( 'starting timestep-sequence', .TRUE. )
829
830!
831!-- Start of the time loop
832    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. .NOT. terminate_run )
833
834       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
835!
836!--    Vertical nesting: initialize fine grid
837       IF ( vnested ) THEN
838          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
839             CALL cpu_log( log_point_s(22), 'vnest_init', 'start' )
840             CALL vnest_init_fine
841             vnest_init = .TRUE.
842             CALL cpu_log( log_point_s(22), 'vnest_init', 'stop' )
843          ENDIF
844       ENDIF
845!
846!--    Determine ug, vg and w_subs in dependence on data from external file
847!--    LSF_DATA
848       IF ( large_scale_forcing .AND. lsf_vert )  THEN
849           CALL ls_forcing_vert ( simulated_time )
850           sums_ls_l = 0.0_wp
851       ENDIF
852
853!
854!--    Set pt_init and q_init to the current profiles taken from
855!--    NUDGING_DATA
856       IF ( nudging )  THEN
857           CALL nudge_ref ( simulated_time )
858!
859!--        Store temperature gradient at the top boundary for possible Neumann
860!--        boundary condition
861           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
862           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
863           IF ( air_chemistry )  THEN
864              DO  lsp = 1, nvar
865                 bc_cs_t_val = (  chem_species(lsp)%conc_pr_init(nzt+1)                            &
866                                - chem_species(lsp)%conc_pr_init(nzt) )                            &
867                               / dzu(nzt+1)
868              ENDDO
869           ENDIF
870           IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
871              DO  ib = 1, nbins_aerosol
872                 bc_an_t_val = ( aerosol_number(ib)%init(nzt+1) - aerosol_number(ib)%init(nzt) ) / &
873                               dzu(nzt+1)
874                 DO  ic = 1, ncomponents_mass
875                    icc = ( ic - 1 ) * nbins_aerosol + ib
876                    bc_am_t_val = ( aerosol_mass(icc)%init(nzt+1) - aerosol_mass(icc)%init(nzt) ) /&
877                                  dzu(nzt+1)
878                 ENDDO
879              ENDDO
880              IF ( .NOT. salsa_gases_from_chem )  THEN
881                 DO  ig = 1, ngases_salsa
882                    bc_gt_t_val = ( salsa_gas(ig)%init(nzt+1) - salsa_gas(ig)%init(nzt) ) /        &
883                                  dzu(nzt+1)
884                 ENDDO
885              ENDIF
886           ENDIF
887       ENDIF
888!
889!--    If forcing by larger-scale models is applied, check if new data
890!--    at domain boundaries need to be read.
891       IF ( nesting_offline ) THEN
892          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point ) &
893               CALL netcdf_data_input_offline_nesting
894       ENDIF
895
896!
897!--    Execute alle other module actions routunes
898       CALL module_interface_actions( 'before_timestep' )
899
900!
901!--    Calculate forces by wind turbines
902       IF ( wind_turbine )  CALL wtm_forces 
903       
904!
905!--    Start of intermediate step loop
906       intermediate_timestep_count = 0
907       DO  WHILE ( intermediate_timestep_count < intermediate_timestep_count_max )
908
909          intermediate_timestep_count = intermediate_timestep_count + 1
910
911!
912!--       Set the steering factors for the prognostic equations which depend
913!--       on the timestep scheme
914          CALL timestep_scheme_steering
915
916!
917!--       Calculate those variables needed in the tendency terms which need
918!--       global communication
919          IF ( .NOT. use_single_reference_value  .AND.  .NOT. use_initial_profile_as_reference )   &
920          THEN
921!
922!--          Horizontally averaged profiles to be used as reference state in
923!--          buoyancy terms (WARNING: only the respective last call of
924!--          calc_mean_profile defines the reference state!)
925             IF ( .NOT. neutral )  THEN
926                CALL calc_mean_profile( pt, 4 )
927                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
928             ENDIF
929             IF ( ocean_mode )  THEN
930                CALL calc_mean_profile( rho_ocean, 64 )
931                ref_state(:)  = hom(:,1,64,0)
932             ENDIF
933             IF ( humidity )  THEN
934                CALL calc_mean_profile( vpt, 44 )
935                ref_state(:)  = hom(:,1,44,0)
936             ENDIF
937!
938!--          Assure that ref_state does not become zero at any level
939!--          ( might be the case if a vertical level is completely occupied
940!--            with topography ).
941             ref_state = MERGE( MAXVAL(ref_state), ref_state, ref_state == 0.0_wp )
942          ENDIF
943
944          IF ( .NOT. constant_diffusion )  CALL production_e_init
945          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  intermediate_timestep_count == 1 )     &
946          THEN
947             CALL ws_statistics
948          ENDIF
949!
950!--       In case of nudging calculate current nudging time scale and horizontal
951!--       means of u, v, pt and q
952          IF ( nudging )  THEN
953             CALL calc_tnudge( simulated_time )
954             CALL calc_mean_profile( u, 1 )
955             CALL calc_mean_profile( v, 2 )
956             CALL calc_mean_profile( pt, 4 )
957             CALL calc_mean_profile( q, 41 )
958          ENDIF
959
960!
961!--       Solve the prognostic equations. A fast cache optimized version with
962!--       only one single loop is used in case of Piascek-Williams advection
963!--       scheme. NEC vector machines use a different version, because
964!--       in the other versions a good vectorization is prohibited due to
965!--       inlining problems.
966          IF ( loop_optimization == 'cache' )  THEN
967             CALL prognostic_equations_cache
968          ELSEIF ( loop_optimization == 'vector' )  THEN
969             CALL prognostic_equations_vector
970          ENDIF
971
972!
973!--       Particle transport/physics with the Lagrangian particle model
974!--       (only once during intermediate steps, because it uses an Euler-step)
975!--       ### particle model should be moved before prognostic_equations, in order
976!--       to regard droplet interactions directly
977          IF ( particle_advection  .AND.  time_since_reference_point >= particle_advection_start   &
978               .AND.  intermediate_timestep_count == 1 )                                           &
979          THEN
980             CALL lpm
981             first_call_lpm = .FALSE.
982          ENDIF
983
984!
985!--       Interaction of droplets with temperature and mixing ratio.
986!--       Droplet condensation and evaporation is calculated within
987!--       advec_particles.
988          IF ( cloud_droplets  .AND.  intermediate_timestep_count == intermediate_timestep_count_max ) &
989          THEN
990             CALL interaction_droplets_ptq
991          ENDIF
992
993!
994!--       Movement of agents in multi agent system
995          IF ( agents_active  .AND.  time_since_reference_point >= multi_agent_system_start  .AND. &
996               time_since_reference_point <= multi_agent_system_end  .AND.                         &
997               intermediate_timestep_count == 1 )                                                  &
998          THEN
999             CALL multi_agent_system
1000             first_call_mas = .FALSE.
1001          ENDIF
1002
1003!
1004!--       Exchange of ghost points (lateral boundary conditions)
1005          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
1006
1007          CALL exchange_horiz( u_p, nbgp )
1008          CALL exchange_horiz( v_p, nbgp )
1009          CALL exchange_horiz( w_p, nbgp )
1010          CALL exchange_horiz( pt_p, nbgp )
1011          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
1012          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence                           &
1013               .OR.  use_sgs_for_particles )  THEN
1014             IF ( rans_tke_e )  THEN
1015                CALL exchange_horiz( diss_p, nbgp )
1016             ELSE
1017                CALL exchange_horiz( diss, nbgp )
1018             ENDIF
1019          ENDIF
1020          IF ( ocean_mode )  THEN
1021             CALL exchange_horiz( sa_p, nbgp )
1022             CALL exchange_horiz( rho_ocean, nbgp )
1023             CALL exchange_horiz( prho, nbgp )
1024          ENDIF
1025          IF ( humidity )  THEN
1026             CALL exchange_horiz( q_p, nbgp )
1027             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
1028                CALL exchange_horiz( qc_p, nbgp )
1029                CALL exchange_horiz( nc_p, nbgp )
1030             ENDIF
1031             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
1032                CALL exchange_horiz( qr_p, nbgp )
1033                CALL exchange_horiz( nr_p, nbgp )
1034             ENDIF
1035          ENDIF
1036          IF ( cloud_droplets )  THEN
1037             CALL exchange_horiz( ql, nbgp )
1038             CALL exchange_horiz( ql_c, nbgp )
1039             CALL exchange_horiz( ql_v, nbgp )
1040             CALL exchange_horiz( ql_vp, nbgp )
1041          ENDIF
1042          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
1043          IF ( air_chemistry )  THEN
1044             DO  lsp = 1, nvar
1045                CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp )
1046!
1047!--             kanani: Push chem_boundary_conds after CALL boundary_conds
1048                lsp_usr = 1
1049                DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
1050                   IF ( TRIM(chem_species(lsp)%name) == TRIM(cs_name(lsp_usr)) )  THEN
1051                      CALL chem_boundary_conds( chem_species(lsp)%conc_p,                          &
1052                                                chem_species(lsp)%conc_pr_init )
1053                   ENDIF
1054                   lsp_usr = lsp_usr + 1
1055                ENDDO
1056             ENDDO
1057          ENDIF
1058
1059          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
1060!
1061!--          Exchange ghost points and decycle boundary concentrations if needed
1062             DO  ib = 1, nbins_aerosol
1063                CALL exchange_horiz( aerosol_number(ib)%conc_p, nbgp )
1064                CALL salsa_boundary_conds( aerosol_number(ib)%conc_p, aerosol_number(ib)%init )
1065                DO  ic = 1, ncomponents_mass
1066                   icc = ( ic - 1 ) * nbins_aerosol + ib
1067                   CALL exchange_horiz( aerosol_mass(icc)%conc_p, nbgp )
1068                   CALL salsa_boundary_conds( aerosol_mass(icc)%conc_p, aerosol_mass(icc)%init )
1069                ENDDO
1070             ENDDO
1071             IF ( .NOT. salsa_gases_from_chem )  THEN
1072                DO  ig = 1, ngases_salsa
1073                   CALL exchange_horiz( salsa_gas(ig)%conc_p, nbgp )
1074                   CALL salsa_boundary_conds( salsa_gas(ig)%conc_p, salsa_gas(ig)%init )
1075                ENDDO
1076             ENDIF
1077          ENDIF
1078          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1079
1080!
1081!--       Boundary conditions for the prognostic quantities (except of the
1082!--       velocities at the outflow in case of a non-cyclic lateral wall)
1083          CALL boundary_conds
1084!
1085!--       Swap the time levels in preparation for the next time step.
1086          CALL swap_timelevel
1087
1088!
1089!--       Vertical nesting: Interpolate fine grid data to the coarse grid
1090          IF ( vnest_init ) THEN
1091             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'start' )
1092             CALL vnest_anterpolate
1093             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'stop' )
1094          ENDIF
1095
1096          IF ( nested_run )  THEN
1097
1098             CALL cpu_log( log_point(60), 'nesting', 'start' )
1099!
1100!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
1101!--          and pmci_child_datatrans are called inside the wrapper
1102!--          subroutine pmci_datatrans according to the control parameters
1103!--          nesting_mode and nesting_datatransfer_mode.
1104!--          TO_DO: why is nesting_mode given as a parameter here?
1105             CALL pmci_datatrans( nesting_mode )
1106
1107             IF ( TRIM( nesting_mode ) == 'two-way' .OR.  nesting_mode == 'vertical' )  THEN
1108!
1109!--             Exchange_horiz is needed for all parent-domains after the
1110!--             anterpolation
1111                CALL exchange_horiz( u, nbgp )
1112                CALL exchange_horiz( v, nbgp )
1113                CALL exchange_horiz( w, nbgp )
1114                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
1115
1116                IF ( humidity )  THEN
1117
1118                   CALL exchange_horiz( q, nbgp )
1119
1120                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
1121                       CALL exchange_horiz( qc, nbgp )
1122                       CALL exchange_horiz( nc, nbgp )
1123                   ENDIF
1124                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
1125                       CALL exchange_horiz( qr, nbgp )
1126                       CALL exchange_horiz( nr, nbgp )
1127                   ENDIF
1128
1129                ENDIF
1130
1131                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
1132
1133                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
1134
1135                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.  rans_tke_e )  THEN
1136                   CALL exchange_horiz( diss, nbgp )
1137                ENDIF
1138
1139                IF ( air_chemistry )  THEN
1140                   DO  n = 1, nvar     
1141                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
1142                   ENDDO
1143                ENDIF
1144
1145                IF ( salsa  .AND. time_since_reference_point >= skip_time_do_salsa )  THEN
1146                   DO  ib = 1, nbins_aerosol
1147                      CALL exchange_horiz( aerosol_number(ib)%conc, nbgp )
1148                      CALL salsa_boundary_conds( aerosol_number(ib)%conc, aerosol_number(ib)%init )
1149                      DO  ic = 1, ncomponents_mass
1150                         icc = ( ic - 1 ) * nbins_aerosol + ib
1151                         CALL exchange_horiz( aerosol_mass(icc)%conc, nbgp )
1152                         CALL salsa_boundary_conds( aerosol_mass(icc)%conc, aerosol_mass(icc)%init )
1153                      ENDDO
1154                   ENDDO
1155                   IF ( .NOT. salsa_gases_from_chem )  THEN
1156                      DO  ig = 1, ngases_salsa
1157                         CALL exchange_horiz( salsa_gas(ig)%conc, nbgp )
1158                         CALL salsa_boundary_conds( salsa_gas(ig)%conc, salsa_gas(ig)%init )
1159                      ENDDO
1160                   ENDIF
1161                ENDIF
1162                CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1163
1164             ENDIF
1165!
1166!--          Set boundary conditions again after interpolation and anterpolation.
1167             CALL pmci_boundary_conds
1168
1169             CALL cpu_log( log_point(60), 'nesting', 'stop' )
1170
1171          ENDIF
1172
1173!
1174!--       Temperature offset must be imposed at cyclic boundaries in x-direction
1175!--       when a sloping surface is used
1176          IF ( sloping_surface )  THEN
1177             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - pt_slope_offset
1178             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + pt_slope_offset
1179          ENDIF
1180
1181!
1182!--       Impose a turbulent inflow using the recycling method
1183          IF ( turbulent_inflow )  CALL inflow_turbulence
1184
1185!
1186!--       Set values at outflow boundary using the special outflow condition
1187          IF ( turbulent_outflow )  CALL outflow_turbulence
1188
1189!
1190!--       Impose a random perturbation on the horizontal velocity field
1191          IF ( create_disturbances  .AND.  ( call_psolver_at_all_substeps  .AND.                   &
1192               intermediate_timestep_count == intermediate_timestep_count_max )                    &
1193               .OR. ( .NOT. call_psolver_at_all_substeps  .AND.  intermediate_timestep_count == 1 ) ) &
1194          THEN
1195             time_disturb = time_disturb + dt_3d
1196             IF ( time_disturb >= dt_disturb )  THEN
1197                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                                     &
1198                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
1199                   CALL disturb_field( 'u', tend, u )
1200                   CALL disturb_field( 'v', tend, v )
1201                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )                                &
1202                         .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )                 &
1203                THEN
1204!
1205!--                Runs with a non-cyclic lateral wall need perturbations
1206!--                near the inflow throughout the whole simulation
1207                   dist_range = 1
1208                   CALL disturb_field( 'u', tend, u )
1209                   CALL disturb_field( 'v', tend, v )
1210                   dist_range = 0
1211                ENDIF
1212                time_disturb = time_disturb - dt_disturb
1213             ENDIF
1214          ENDIF
1215
1216!
1217!--       Map forcing data derived from larger scale model onto domain
1218!--       boundaries.
1219          IF ( nesting_offline  .AND.  intermediate_timestep_count ==                              &
1220                                       intermediate_timestep_count_max  )                          &
1221             CALL nesting_offl_bc
1222!
1223!--       Impose a turbulent inflow using synthetic generated turbulence,
1224!--       only once per time step.
1225          IF ( use_syn_turb_gen  .AND.  time_stg_call >= dt_stg_call  .AND.                        &
1226             intermediate_timestep_count == intermediate_timestep_count_max )  THEN
1227             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1228             CALL stg_main
1229             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1230          ENDIF
1231!
1232!--       Ensure mass conservation. This need to be done after imposing
1233!--       synthetic turbulence and top boundary condition for pressure is set to
1234!--       Neumann conditions.
1235!--       Is this also required in case of Dirichlet?
1236          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1237!
1238!--       Reduce the velocity divergence via the equation for perturbation
1239!--       pressure.
1240          IF ( intermediate_timestep_count == 1  .OR. &
1241                call_psolver_at_all_substeps )  THEN
1242
1243             IF (  vnest_init ) THEN
1244!
1245!--             Compute pressure in the CG, interpolate top boundary conditions
1246!--             to the FG and then compute pressure in the FG
1247                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1248
1249                CALL cpu_log( log_point_s(30), 'vnest_bc', 'start' )
1250                CALL vnest_boundary_conds
1251                CALL cpu_log( log_point_s(30), 'vnest_bc', 'stop' )
1252 
1253                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1254
1255!--             Anterpolate TKE, satisfy Germano Identity
1256                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'start' )
1257                CALL vnest_anterpolate_e
1258                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'stop' )
1259
1260             ELSE
1261
1262                CALL pres
1263
1264             ENDIF
1265
1266          ENDIF
1267
1268!
1269!--       If required, compute liquid water content
1270          IF ( bulk_cloud_model )  THEN
1271             CALL calc_liquid_water_content
1272          ENDIF
1273!
1274!--       If required, compute virtual potential temperature
1275          IF ( humidity )  THEN
1276             CALL compute_vpt
1277          ENDIF
1278
1279!
1280!--       Compute the diffusion quantities
1281          IF ( .NOT. constant_diffusion )  THEN
1282
1283!
1284!--          Determine surface fluxes shf and qsws and surface values
1285!--          pt_surface and q_surface in dependence on data from external
1286!--          file LSF_DATA respectively
1287             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND.                                     &
1288                 intermediate_timestep_count == intermediate_timestep_count_max )                  &
1289             THEN
1290                CALL ls_forcing_surf( simulated_time )
1291             ENDIF
1292
1293!
1294!--          First the vertical (and horizontal) fluxes in the surface
1295!--          (constant flux) layer are computed
1296             IF ( constant_flux_layer )  THEN
1297                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1298                CALL surface_layer_fluxes
1299                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
1300             ENDIF
1301!
1302!--          If required, solve the energy balance for the surface and run soil
1303!--          model. Call for horizontal as well as vertical surfaces
1304             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
1305
1306                CALL cpu_log( log_point(54), 'land_surface', 'start' )
1307!
1308!--             Call for horizontal upward-facing surfaces
1309                CALL lsm_energy_balance( .TRUE., -1 )
1310                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
1311!
1312!--             Call for northward-facing surfaces
1313                CALL lsm_energy_balance( .FALSE., 0 )
1314                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
1315!
1316!--             Call for southward-facing surfaces
1317                CALL lsm_energy_balance( .FALSE., 1 )
1318                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
1319!
1320!--             Call for eastward-facing surfaces
1321                CALL lsm_energy_balance( .FALSE., 2 )
1322                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
1323!
1324!--             Call for westward-facing surfaces
1325                CALL lsm_energy_balance( .FALSE., 3 )
1326                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
1327               
1328!
1329!--             At the end, set boundary conditons for potential temperature
1330!--             and humidity after running the land-surface model. This
1331!--             might be important for the nesting, where arrays are transfered.
1332                CALL lsm_boundary_condition
1333
1334               
1335                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1336             ENDIF
1337!
1338!--          If required, solve the energy balance for urban surfaces and run
1339!--          the material heat model
1340             IF (urban_surface) THEN
1341                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
1342               
1343                CALL usm_surface_energy_balance( .FALSE. )
1344                IF ( usm_material_model )  THEN
1345                   CALL usm_green_heat_model
1346                   CALL usm_material_heat_model ( .FALSE. )
1347                ENDIF
1348
1349!
1350!--             At the end, set boundary conditons for potential temperature
1351!--             and humidity after running the urban-surface model. This
1352!--             might be important for the nesting, where arrays are transfered.
1353                CALL usm_boundary_condition
1354
1355                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1356             ENDIF
1357!
1358!--          Compute the diffusion coefficients
1359             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
1360             IF ( .NOT. humidity ) THEN
1361                IF ( ocean_mode )  THEN
1362                   CALL tcm_diffusivities( prho, prho_reference )
1363                ELSE
1364                   CALL tcm_diffusivities( pt, pt_reference )
1365                ENDIF
1366             ELSE
1367                CALL tcm_diffusivities( vpt, pt_reference )
1368             ENDIF
1369             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
1370!
1371!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1372             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
1373
1374          ENDIF
1375
1376!
1377!--       If required, calculate radiative fluxes and heating rates
1378          IF ( radiation  .AND.  intermediate_timestep_count == intermediate_timestep_count_max    &
1379               .AND. time_since_reference_point > skip_time_do_radiation )  THEN
1380
1381               time_radiation = time_radiation + dt_3d
1382
1383             IF ( time_radiation >= dt_radiation  .OR.  force_radiation_call )  THEN
1384
1385                CALL cpu_log( log_point(50), 'radiation', 'start' )
1386
1387                IF ( .NOT. force_radiation_call )  THEN
1388                   time_radiation = time_radiation - dt_radiation
1389                ENDIF
1390
1391!
1392!--             Adjust the current time to the time step of the radiation model.
1393!--             Needed since radiation is pre-calculated and stored only on apparent
1394!--             solar positions
1395                time_since_reference_point_save = time_since_reference_point
1396                time_since_reference_point = REAL( FLOOR( time_since_reference_point /             &
1397                                                          dt_radiation), wp ) * dt_radiation
1398
1399                CALL radiation_control
1400
1401                IF ( ( urban_surface  .OR.  land_surface )  .AND.  radiation_interactions )  THEN
1402                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'start' )
1403                   CALL radiation_interaction
1404                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'stop' )
1405                ENDIF
1406   
1407!
1408!--             Return the current time to its original value
1409                time_since_reference_point = time_since_reference_point_save
1410
1411                CALL cpu_log( log_point(50), 'radiation', 'stop' )
1412
1413             ENDIF
1414          ENDIF
1415
1416       ENDDO   ! Intermediate step loop
1417
1418!
1419!--    Will be used at some point by flow_statistics.
1420       !$ACC UPDATE &
1421       !$ACC HOST(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
1422       !$ACC HOST(sums_us2_ws_l(nzb:nzt+1,0)) &
1423       !$ACC HOST(sums_wsus_ws_l(nzb:nzt+1,0)) &
1424       !$ACC HOST(sums_vs2_ws_l(nzb:nzt+1,0)) &
1425       !$ACC HOST(sums_wsvs_ws_l(nzb:nzt+1,0)) &
1426       !$ACC HOST(sums_ws2_ws_l(nzb:nzt+1,0)) &
1427       !$ACC HOST(sums_wspts_ws_l(nzb:nzt+1,0)) &
1428       !$ACC HOST(sums_wssas_ws_l(nzb:nzt+1,0)) &
1429       !$ACC HOST(sums_wsqs_ws_l(nzb:nzt+1,0)) &
1430       !$ACC HOST(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
1431       !$ACC HOST(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
1432       !$ACC HOST(sums_wsncs_ws_l(nzb:nzt+1,0)) &
1433       !$ACC HOST(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
1434       !$ACC HOST(sums_wsss_ws_l(nzb:nzt+1,0)) &
1435       !$ACC HOST(sums_salsa_ws_l(nzb:nzt+1,0))
1436
1437!
1438!--    If required, consider chemical emissions
1439       IF ( air_chemistry  .AND.  emissions_anthropogenic )  THEN
1440!
1441!--       Update the time --> kanani: revise location of this CALL
1442          CALL calc_date_and_time
1443!
1444!--       Call emission routine only once an hour
1445          IF (hour_of_year  .GT.  hour_call_emis )  THEN
1446             CALL chem_emissions_setup( chem_emis_att, chem_emis, nspec_out )
1447             hour_call_emis = hour_of_year
1448          ENDIF
1449       ENDIF
1450!
1451!--    If required, consider aerosol emissions for the salsa model
1452       IF ( salsa )  THEN
1453!
1454!--       Call emission routine to update emissions if needed
1455          CALL salsa_emission_update
1456
1457       ENDIF
1458!
1459!--    If required, calculate indoor temperature, waste heat, heat flux
1460!--    through wall, etc.
1461!--    dt_indoor steers the frequency of the indoor model calculations.
1462!--    Note, at first timestep indoor model is called, in order to provide
1463!--    a waste heat flux.
1464       IF ( indoor_model )  THEN
1465
1466          time_indoor = time_indoor + dt_3d
1467
1468          IF ( time_indoor >= dt_indoor  .OR.  current_timestep_number == 0 )  THEN
1469
1470             time_indoor = time_indoor - dt_indoor
1471
1472             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1473             CALL im_main_heatcool
1474             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1475
1476          ENDIF
1477       ENDIF
1478!
1479!--    Increase simulation time and output times
1480       nr_timesteps_this_run      = nr_timesteps_this_run + 1
1481       current_timestep_number    = current_timestep_number + 1
1482       simulated_time             = simulated_time   + dt_3d
1483       time_since_reference_point = simulated_time - coupling_start_time
1484       simulated_time_chr         = time_to_string( time_since_reference_point )
1485
1486
1487
1488
1489       IF ( time_since_reference_point >= skip_time_data_output_av )  THEN
1490          time_do_av         = time_do_av       + dt_3d
1491       ENDIF
1492       IF ( time_since_reference_point >= skip_time_do2d_xy )  THEN
1493          time_do2d_xy       = time_do2d_xy     + dt_3d
1494       ENDIF
1495       IF ( time_since_reference_point >= skip_time_do2d_xz )  THEN
1496          time_do2d_xz       = time_do2d_xz     + dt_3d
1497       ENDIF
1498       IF ( time_since_reference_point >= skip_time_do2d_yz )  THEN
1499          time_do2d_yz       = time_do2d_yz     + dt_3d
1500       ENDIF
1501       IF ( time_since_reference_point >= skip_time_do3d    )  THEN
1502          time_do3d          = time_do3d        + dt_3d
1503       ENDIF
1504       DO  mid = 1, masks
1505          IF ( time_since_reference_point >= skip_time_domask(mid) )  THEN
1506             time_domask(mid)= time_domask(mid) + dt_3d
1507          ENDIF
1508       ENDDO
1509       time_dvrp          = time_dvrp        + dt_3d
1510       IF ( time_since_reference_point >= skip_time_dosp )  THEN
1511          time_dosp       = time_dosp        + dt_3d
1512       ENDIF
1513       time_dots          = time_dots        + dt_3d
1514       IF ( .NOT. first_call_lpm )  THEN
1515          time_dopts      = time_dopts       + dt_3d
1516       ENDIF
1517       IF ( time_since_reference_point >= skip_time_dopr )  THEN
1518          time_dopr       = time_dopr        + dt_3d
1519       ENDIF
1520       time_dopr_listing  = time_dopr_listing + dt_3d
1521       time_run_control   = time_run_control + dt_3d
1522!
1523!--    Increment time-counter for surface output
1524       IF ( surface_output )  THEN
1525          IF ( time_since_reference_point >= skip_time_dosurf )  THEN
1526             time_dosurf    = time_dosurf + dt_3d
1527          ENDIF
1528          IF ( time_since_reference_point >= skip_time_dosurf_av )  THEN
1529             time_dosurf_av = time_dosurf_av + dt_3d
1530          ENDIF
1531       ENDIF
1532!
1533!--    In case of synthetic turbulence generation and parametrized turbulence
1534!--    information, update the time counter and if required, adjust the
1535!--    STG to new atmospheric conditions.
1536       IF ( use_syn_turb_gen  )  THEN
1537          IF ( parametrize_inflow_turbulence )  THEN
1538             time_stg_adjust = time_stg_adjust + dt_3d
1539             IF ( time_stg_adjust >= dt_stg_adjust )  THEN
1540                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1541                CALL stg_adjust
1542                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1543             ENDIF
1544          ENDIF
1545          time_stg_call = time_stg_call + dt_3d
1546       ENDIF
1547
1548!
1549!--    Data exchange between coupled models
1550       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND.  .NOT. vnested )  THEN
1551          time_coupling = time_coupling + dt_3d
1552
1553!
1554!--       In case of model termination initiated by the local model
1555!--       (terminate_coupled > 0), the coupler must be skipped because it would
1556!--       cause an MPI intercomminucation hang.
1557!--       If necessary, the coupler will be called at the beginning of the
1558!--       next restart run.
1559          DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
1560             CALL surface_coupler
1561             time_coupling = time_coupling - dt_coupling
1562          ENDDO
1563       ENDIF
1564
1565!
1566!--    Biometeorology calculation of stationary thermal indices
1567!--    Todo (kanani): biometeorology needs own time_... treatment.
1568!--                   It might be that time_do2d_xy differs from time_do3d,
1569!--                   and then we might get trouble with the biomet output,
1570!--                   because we can have 2d and/or 3d biomet output!!
1571       IF ( biometeorology                                                                         &
1572            .AND. ( ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  &
1573                  .OR.                                                                             &
1574            ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy ) &
1575                    ) )  THEN
1576!
1577!--       If required, do thermal comfort calculations
1578          IF ( thermal_comfort )  THEN
1579             CALL bio_calculate_thermal_index_maps ( .FALSE. )
1580          ENDIF
1581!
1582!--       If required, do UV exposure calculations
1583          IF ( uv_exposure )  THEN
1584             CALL uvem_calc_exposure
1585          ENDIF
1586       ENDIF
1587
1588!
1589!--    Execute alle other module actions routunes
1590       CALL module_interface_actions( 'after_integration' )
1591
1592!
1593!--    If Galilei transformation is used, determine the distance that the
1594!--    model has moved so far
1595       IF ( galilei_transformation )  THEN
1596          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1597          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1598       ENDIF
1599
1600!
1601!--    Check, if restart is necessary (because cpu-time is expiring or
1602!--    because it is forced by user) and set stop flag
1603!--    This call is skipped if the remote model has already initiated a restart.
1604       IF ( .NOT. terminate_run )  CALL check_for_restart
1605
1606!
1607!--    Carry out statistical analysis and output at the requested output times.
1608!--    The MOD function is used for calculating the output time counters (like
1609!--    time_dopr) in order to regard a possible decrease of the output time
1610!--    interval in case of restart runs
1611
1612!
1613!--    Set a flag indicating that so far no statistics have been created
1614!--    for this time step
1615       flow_statistics_called = .FALSE.
1616
1617!
1618!--    If required, call flow_statistics for averaging in time
1619       IF ( averaging_interval_pr /= 0.0_wp  .AND.                                                 &
1620            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.                                &
1621            time_since_reference_point >= skip_time_dopr )  THEN
1622          time_dopr_av = time_dopr_av + dt_3d
1623          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1624             do_sum = .TRUE.
1625             time_dopr_av = MOD( time_dopr_av, MAX( dt_averaging_input_pr, dt_3d ) )
1626          ENDIF
1627       ENDIF
1628       IF ( do_sum )  CALL flow_statistics
1629
1630!
1631!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
1632       IF ( averaging_interval /= 0.0_wp  .AND.                                                    &
1633            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND.                        &
1634            time_since_reference_point >= skip_time_data_output_av )                               &
1635       THEN
1636          time_do_sla = time_do_sla + dt_3d
1637          IF ( time_do_sla >= dt_averaging_input )  THEN
1638             CALL sum_up_3d_data
1639             average_count_3d = average_count_3d + 1
1640             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1641          ENDIF
1642       ENDIF
1643!
1644!--    Average surface data
1645       IF ( surface_output )  THEN
1646          IF ( averaging_interval_surf /= 0.0_wp                                                   &
1647                .AND.  ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf                &
1648                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1649             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
1650                CALL surface_data_output_averaging
1651                average_count_surf = average_count_surf + 1
1652             ENDIF
1653          ENDIF
1654       ENDIF
1655
1656!
1657!--    Calculate spectra for time averaging
1658       IF ( averaging_interval_sp /= 0.0_wp  .AND. ( dt_dosp - time_dosp ) <= averaging_interval_sp&
1659            .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1660          time_dosp_av = time_dosp_av + dt_3d
1661          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1662             CALL calc_spectra
1663             time_dosp_av = MOD( time_dosp_av, MAX( dt_averaging_input_pr, dt_3d ) )
1664          ENDIF
1665       ENDIF
1666
1667!
1668!--    Call flight module and output data
1669       IF ( virtual_flight )  THEN
1670          CALL flight_measurement
1671          CALL data_output_flight
1672       ENDIF
1673!
1674!--    Take virtual measurements
1675       IF ( virtual_measurement  .AND.  vm_time_start <= time_since_reference_point )  THEN
1676          CALL vm_sampling
1677          CALL vm_data_output
1678       ENDIF
1679
1680!
1681!--    Profile output (ASCII) on file
1682       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1683          CALL print_1d
1684          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, dt_3d ) )
1685       ENDIF
1686
1687!
1688!--    Graphic output for PROFIL
1689       IF ( time_dopr >= dt_dopr  .AND.  time_since_reference_point >= skip_time_dopr )  THEN
1690          IF ( dopr_n /= 0 )  CALL data_output_profiles
1691          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
1692          time_dopr_av = 0.0_wp    ! due to averaging (see above)
1693       ENDIF
1694
1695!
1696!--    Graphic output for time series
1697       IF ( time_dots >= dt_dots )  THEN
1698          CALL data_output_tseries
1699          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1700       ENDIF
1701
1702!
1703!--    Output of spectra (formatted for use with PROFIL), in case of no
1704!--    time averaging, spectra has to be calculated before
1705       IF ( time_dosp >= dt_dosp  .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1706          IF ( average_count_sp == 0 )  CALL calc_spectra
1707          CALL data_output_spectra
1708          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1709       ENDIF
1710
1711!
1712!--    2d-data output (cross-sections)
1713       IF ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy )  THEN
1714          CALL data_output_2d( 'xy', 0 )
1715          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1716       ENDIF
1717       IF ( time_do2d_xz >= dt_do2d_xz  .AND.  time_since_reference_point >= skip_time_do2d_xz )  THEN
1718          CALL data_output_2d( 'xz', 0 )
1719          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1720       ENDIF
1721       IF ( time_do2d_yz >= dt_do2d_yz  .AND.  time_since_reference_point >= skip_time_do2d_yz )  THEN
1722          CALL data_output_2d( 'yz', 0 )
1723          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1724       ENDIF
1725
1726!
1727!--    3d-data output (volume data)
1728       IF ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  THEN
1729          CALL data_output_3d( 0 )
1730          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1731       ENDIF
1732
1733!
1734!--    Masked data output
1735       DO  mid = 1, masks
1736          IF ( time_domask(mid) >= dt_domask(mid)                                                  &
1737               .AND.  time_since_reference_point >= skip_time_domask(mid) )  THEN
1738             CALL data_output_mask( 0 )
1739             time_domask(mid) = MOD( time_domask(mid), MAX( dt_domask(mid), dt_3d ) )
1740          ENDIF
1741       ENDDO
1742
1743!
1744!--    Output of time-averaged 2d/3d/masked data
1745       IF ( time_do_av >= dt_data_output_av                                                        &
1746            .AND.  time_since_reference_point >= skip_time_data_output_av )  THEN
1747          CALL average_3d_data
1748!
1749!--       Udate thermal comfort indices based on updated averaged input
1750          IF ( biometeorology  .AND.  thermal_comfort )  THEN
1751             CALL bio_calculate_thermal_index_maps ( .TRUE. )
1752          ENDIF
1753          CALL data_output_2d( 'xy', 1 )
1754          CALL data_output_2d( 'xz', 1 )
1755          CALL data_output_2d( 'yz', 1 )
1756          CALL data_output_3d( 1 )
1757          DO  mid = 1, masks
1758             CALL data_output_mask( 1 )
1759          ENDDO
1760          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1761       ENDIF
1762!
1763!--    Output of surface data, instantaneous and averaged data
1764       IF ( surface_output )  THEN
1765          IF ( time_dosurf >= dt_dosurf  .AND.  time_since_reference_point >= skip_time_dosurf )  THEN
1766             CALL surface_data_output( 0 )
1767             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1768          ENDIF
1769          IF ( time_dosurf_av >= dt_dosurf_av  .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1770             CALL surface_data_output( 1 )
1771             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1772          ENDIF
1773       ENDIF
1774
1775!
1776!--    Output of particle time series
1777       IF ( particle_advection )  THEN
1778          IF ( time_dopts >= dt_dopts  .OR.                                                        &
1779               ( time_since_reference_point >= particle_advection_start  .AND.                     &
1780                 first_call_lpm ) )  THEN
1781             CALL data_output_ptseries
1782             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1783          ENDIF
1784       ENDIF
1785
1786!
1787!--    Output of dvrp-graphics (isosurface, particles, slicer)
1788#if defined( __dvrp_graphics )
1789       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
1790#endif
1791       IF ( time_dvrp >= dt_dvrp )  THEN
1792          CALL data_output_dvrp
1793          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
1794       ENDIF
1795#if defined( __dvrp_graphics )
1796       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
1797#endif
1798
1799!
1800!--    If required, set the heat flux for the next time step to a random value
1801       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
1802          IF ( surf_def_h(0)%ns >= 1 )  THEN
1803             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1804             CALL disturb_heatflux( surf_def_h(0) )
1805             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1806          ENDIF
1807          IF ( surf_lsm_h%ns    >= 1 )  THEN
1808             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1809             CALL disturb_heatflux( surf_lsm_h    )
1810             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1811          ENDIF
1812          IF ( surf_usm_h%ns    >= 1 )  THEN
1813             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1814             CALL disturb_heatflux( surf_usm_h    )
1815             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1816          ENDIF
1817       ENDIF
1818
1819!
1820!--    Execute alle other module actions routunes
1821       CALL module_interface_actions( 'after_timestep' )
1822
1823!
1824!--    Determine size of next time step. Save timestep dt_3d because it is
1825!--    newly calculated in routine timestep, but required further below for
1826!--    steering the run control output interval
1827       dt_3d_old = dt_3d
1828       CALL timestep
1829
1830!
1831!--    Synchronize the timestep in case of nested run.
1832       IF ( nested_run )  THEN
1833!
1834!--       Synchronize by unifying the time step.
1835!--       Global minimum of all time-steps is used for all.
1836          CALL pmci_synchronize
1837       ENDIF
1838
1839!
1840!--    Computation and output of run control parameters.
1841!--    This is also done whenever perturbations have been imposed
1842       IF ( time_run_control >= dt_run_control  .OR.                                               &
1843            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created )                           &
1844       THEN
1845          CALL run_control
1846          IF ( time_run_control >= dt_run_control )  THEN
1847             time_run_control = MOD( time_run_control, MAX( dt_run_control, dt_3d_old ) )
1848          ENDIF
1849       ENDIF
1850
1851!
1852!--    Output elapsed simulated time in form of a progress bar on stdout
1853       IF ( myid == 0 )  CALL output_progress_bar
1854
1855       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1856
1857
1858    ENDDO   ! time loop
1859
1860#if defined( _OPENACC )
1861    CALL exit_surface_arrays
1862#endif
1863!$ACC END DATA
1864!$ACC END DATA
1865!$ACC END DATA
1866!$ACC END DATA
1867!$ACC END DATA
1868!$ACC END DATA
1869!$ACC END DATA
1870
1871!
1872!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
1873    IF ( vnest_init )  CALL vnest_deallocate
1874
1875    IF ( myid == 0 )  CALL finish_progress_bar
1876
1877#if defined( __dvrp_graphics )
1878    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
1879#endif
1880
1881    CALL location_message( 'finished time-stepping', .TRUE. )
1882
1883 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.