source: palm/trunk/SOURCE/time_integration.f90 @ 3872

Last change on this file since 3872 was 3872, checked in by knoop, 2 years ago

Including last commit, salsa dependency for advec_ws removed

  • Property svn:keywords set to Id
File size: 75.1 KB
Line 
1!> @file time_integration.f90
2!------------------------------------------------------------------------------!
3! This file is part of the PALM model system.
4!
5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2019 Leibniz Universitaet Hannover
18!------------------------------------------------------------------------------!
19!
20! Current revisions:
21! ------------------
22!
23!
24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 3872 2019-04-08 15:03:06Z knoop $
27! Modifications made for salsa:
28! - Call salsa_emission_update at each time step but do the checks within
29!   salsa_emission_update (i.e. skip_time_do_salsa >= time_since_reference_point
30!   and next_aero_emission_update <= time_since_reference_point ).
31! - Renamed nbins --> nbins_aerosol, ncc_tot --> ncomponents_mass and
32!   ngast --> ngases_salsa and loop indices b, c and sg to ib, ic and ig
33! - Apply nesting for salsa variables
34! - Removed cpu_log calls speciffic for salsa.
35!
36! 3833 2019-03-28 15:04:04Z forkel
37! added USE chem_gasphase_mod, replaced nspec by nvar since fixed compounds are not integrated
38!
39! 3820 2019-03-27 11:53:41Z forkel
40! renamed do_emiss to emissions_anthropogenic (ecc)
41!
42!
43! 3774 2019-03-04 10:52:49Z moh.hefny
44! rephrase if statement to avoid unallocated array in case of
45! nesting_offline is false (crashing during debug mode)
46!
47! 3761 2019-02-25 15:31:42Z raasch $
48! module section re-formatted and openacc required variables moved to separate section,
49! re-formatting to 100 char line width
50!
51! 3745 2019-02-15 18:57:56Z suehring
52! Call indoor model after first timestep
53!
54! 3744 2019-02-15 18:38:58Z suehring
55! - Moved call of bio_calculate_thermal_index_maps from biometeorology module to
56! time_integration to make sure averaged input is updated before calculating.
57!
58! 3739 2019-02-13 08:05:17Z dom_dwd_user
59! Removed everything related to "time_bio_results" as this is never used.
60!
61! 3724 2019-02-06 16:28:23Z kanani
62! Correct double-used log_point_s unit
63!
64! 3719 2019-02-06 13:10:18Z kanani
65! - removed wind_turbine cpu measurement, since same time is measured inside
66!   wtm_forces subroutine as special measures
67! - moved the numerous vnest cpulog to special measures
68! - extended radiation cpulog over entire radiation part,
69!   moved radiation_interactions cpulog to special measures
70! - moved some cpu_log calls to this routine for better overview
71!
72! 3705 2019-01-29 19:56:39Z suehring
73! Data output for virtual measurements added
74!
75! 3704 2019-01-29 19:51:41Z suehring
76! Rename subroutines for surface-data output
77!
78! 3647 2019-01-02 14:10:44Z kanani
79! Bugfix: add time_since_reference_point to IF clause for data_output calls
80! (otherwise skip_time_* values don't come into affect with dt_do* = 0.0).
81! Clean up indoor_model and biometeorology model call.
82!
83! 3646 2018-12-28 17:58:49Z kanani
84! Bugfix: use time_since_reference_point instead of simulated_time where
85! required (relevant when using wall/soil spinup)
86!
87! 3634 2018-12-18 12:31:28Z knoop
88! OpenACC port for SPEC
89!
90! 3597 2018-12-04 08:40:18Z maronga
91! Removed call to calculation of near air (10 cm) potential temperature (now in
92! surface layer fluxes)
93!
94! 3589 2018-11-30 15:09:51Z suehring
95! Move the control parameter "salsa" from salsa_mod to control_parameters
96! (M. Kurppa)
97!
98! 3582 2018-11-29 19:16:36Z suehring
99! dom_dwd_user, Schrempf:
100! Changes due to merge of uv exposure model into biometeorology_mod.
101!
102! 3525 2018-11-14 16:06:14Z kanani
103! Changes related to clean-up of biometeorology (dom_dwd_user)
104!
105! 3524 2018-11-14 13:36:44Z raasch
106! unused variables removed
107!
108! 3484 2018-11-02 14:41:25Z hellstea
109! pmci_ensure_nest_mass_conservation is premanently removed
110!
111! 3473 2018-10-30 20:50:15Z suehring
112! new module for virtual measurements introduced
113!
114! 3472 2018-10-30 20:43:50Z suehring
115! Add indoor model (kanani, srissman, tlang)
116!
117! 3467 2018-10-30 19:05:21Z suehring
118! Implementation of a new aerosol module salsa.
119!
120! 3448 2018-10-29 18:14:31Z kanani
121! Add biometeorology
122!
123! 3421 2018-10-24 18:39:32Z gronemeier
124! Surface data output
125!
126! 3418 2018-10-24 16:07:39Z kanani
127! call to material_heat_model now with check if spinup runs (rvtils)
128!
129! 3378 2018-10-19 12:34:59Z kanani
130! merge from radiation branch (r3362) into trunk
131! (moh.hefny):
132! Bugfix in the if statement to call radiation_interaction
133!
134! 3347 2018-10-15 14:21:08Z suehring
135! - offline nesting separated from large-scale forcing module
136! - changes for synthetic turbulence generator
137!
138! 3343 2018-10-15 10:38:52Z suehring
139! - Formatting, clean-up, comments (kanani)
140! - Added CALL to chem_emissions_setup (Russo)
141! - Code added for decycling chemistry (basit)
142!
143! 3294 2018-10-01 02:37:10Z raasch
144! changes concerning modularization of ocean option
145!
146! 3274 2018-09-24 15:42:55Z knoop
147! Modularization of all bulk cloud physics code components
148!
149! 3241 2018-09-12 15:02:00Z raasch
150! unused variables removed
151!
152! 3198 2018-08-15 09:23:10Z sward
153! Added multi_agent_system_end; defined start time for MAS relative to
154! time_since_reference_point
155!
156! 3183 2018-07-27 14:25:55Z suehring
157! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
158! Rename subroutines and variables in COSMO nesting mode
159!
160! 3182 2018-07-27 13:36:03Z suehring
161! Added multi agent system
162!
163! 3042 2018-05-25 10:44:37Z schwenkel
164! Changed the name specific humidity to mixing ratio
165!
166! 3040 2018-05-25 10:22:08Z schwenkel
167! Fixed bug in IF statement
168! Ensure that the time when calling the radiation to be the time step of the
169! pre-calculated time when first calculate the positions of the sun
170!
171! 3004 2018-04-27 12:33:25Z Giersch
172! First call of flow_statistics has been removed. It is already called in
173! run_control itself
174!
175! 2984 2018-04-18 11:51:30Z hellstea
176! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
177! as seemingly unnecessary.
178!
179! 2941 2018-04-03 11:54:58Z kanani
180! Deduct spinup_time from RUN_CONTROL output of main 3d run
181! (use time_since_reference_point instead of simulated_time)
182!
183! 2938 2018-03-27 15:52:42Z suehring
184! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
185!
186! 2936 2018-03-27 14:49:27Z suehring
187! Little formatting adjustment.
188!
189! 2817 2018-02-19 16:32:21Z knoop
190! Preliminary gust module interface implemented
191!
192! 2801 2018-02-14 16:01:55Z thiele
193! Changed lpm from subroutine to module.
194! Introduce particle transfer in nested models.
195!
196! 2776 2018-01-31 10:44:42Z Giersch
197! Variable use_synthetic_turbulence_generator has been abbreviated
198!
199! 2773 2018-01-30 14:12:54Z suehring
200! - Nesting for chemical species
201!
202! 2766 2018-01-22 17:17:47Z kanani
203! Removed preprocessor directive __chem
204!
205! 2718 2018-01-02 08:49:38Z maronga
206! Corrected "Former revisions" section
207!
208! 2696 2017-12-14 17:12:51Z kanani
209! - Change in file header (GPL part)
210! - Implementation of uv exposure model (FK)
211! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
212! - renamed diffusivities to tcm_diffusivities (TG)
213! - implement prognostic equation for diss (TG)
214! - Moved/commented CALL to chem_emissions (FK)
215! - Added CALL to chem_emissions (FK)
216! - Implementation of chemistry module (FK)
217! - Calls for setting boundary conditions in USM and LSM (MS)
218! - Large-scale forcing with larger-scale models implemented (MS)
219! - Rename usm_radiation into radiation_interactions; merge with branch
220!   radiation (MS)
221! - added call for usm_green_heat_model for green building surfaces (RvT)
222! - added call for usm_temperature_near_surface for use in indoor model (RvT)
223!
224! 2617 2017-11-16 12:47:24Z suehring
225! Bugfix, assure that the reference state does not become zero.
226!
227! 2563 2017-10-19 15:36:10Z Giersch
228! Variable wind_turbine moved to module control_parameters
229!
230! 2365 2017-08-21 14:59:59Z kanani
231! Vertical grid nesting implemented (SadiqHuq)
232!
233! 2320 2017-07-21 12:47:43Z suehring
234! Set bottom boundary conditions after nesting interpolation and anterpolation
235!
236! 2299 2017-06-29 10:14:38Z maronga
237! Call of soil model adjusted
238!
239! 2292 2017-06-20 09:51:42Z schwenkel
240! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
241! includes two more prognostic equations for cloud drop concentration (nc) 
242! and cloud water content (qc).
243!
244! 2271 2017-06-09 12:34:55Z sward
245! Start timestep message changed
246!
247! 2259 2017-06-08 09:09:11Z gronemeier
248! Implemented synthetic turbulence generator
249!
250! 2233 2017-05-30 18:08:54Z suehring
251!
252! 2232 2017-05-30 17:47:52Z suehring
253! Adjustments to new topography and surface concept
254! Modify passed parameters for disturb_field
255!
256! 2178 2017-03-17 11:07:39Z hellstea
257! Setting perturbations at all times near inflow boundary is removed
258! in case of nested boundaries
259!
260! 2174 2017-03-13 08:18:57Z maronga
261! Added support for nesting with cloud microphysics
262!
263! 2118 2017-01-17 16:38:49Z raasch
264! OpenACC directives and related code removed
265!
266! 2050 2016-11-08 15:00:55Z gronemeier
267! Implement turbulent outflow condition
268!
269! 2031 2016-10-21 15:11:58Z knoop
270! renamed variable rho to rho_ocean
271!
272! 2011 2016-09-19 17:29:57Z kanani
273! Flag urban_surface is now defined in module control_parameters,
274! removed commented CALLs of global_min_max.
275!
276! 2007 2016-08-24 15:47:17Z kanani
277! Added CALLs for new urban surface model
278!
279! 2000 2016-08-20 18:09:15Z knoop
280! Forced header and separation lines into 80 columns
281!
282! 1976 2016-07-27 13:28:04Z maronga
283! Simplified calls to radiation model
284!
285! 1960 2016-07-12 16:34:24Z suehring
286! Separate humidity and passive scalar
287!
288! 1957 2016-07-07 10:43:48Z suehring
289! flight module added
290!
291! 1919 2016-05-27 14:51:23Z raasch
292! Initial version of purely vertical nesting introduced.
293!
294! 1918 2016-05-27 14:35:57Z raasch
295! determination of time step moved to the end of the time step loop,
296! the first time step is now always calculated before the time step loop (i.e.
297! also in case of restart runs)
298!
299! 1914 2016-05-26 14:44:07Z witha
300! Added call for wind turbine model
301!
302! 1878 2016-04-19 12:30:36Z hellstea
303! Synchronization for nested runs rewritten
304!
305! 1853 2016-04-11 09:00:35Z maronga
306! Adjusted for use with radiation_scheme = constant
307!
308! 1849 2016-04-08 11:33:18Z hoffmann
309! Adapted for modularization of microphysics
310!
311! 1833 2016-04-07 14:23:03Z raasch
312! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
313!
314! 1831 2016-04-07 13:15:51Z hoffmann
315! turbulence renamed collision_turbulence
316!
317! 1822 2016-04-07 07:49:42Z hoffmann
318! icloud_scheme replaced by microphysics_*
319!
320! 1808 2016-04-05 19:44:00Z raasch
321! output message in case unscheduled radiation calls removed
322!
323! 1797 2016-03-21 16:50:28Z raasch
324! introduction of different datatransfer modes
325!
326! 1791 2016-03-11 10:41:25Z raasch
327! call of pmci_update_new removed
328!
329! 1786 2016-03-08 05:49:27Z raasch
330! +module spectrum
331!
332! 1783 2016-03-06 18:36:17Z raasch
333! switch back of netcdf data format for mask output moved to the mask output
334! routine
335!
336! 1781 2016-03-03 15:12:23Z raasch
337! some pmc calls removed at the beginning (before timeloop),
338! pmc initialization moved to the main program
339!
340! 1764 2016-02-28 12:45:19Z raasch
341! PMC_ACTIVE flags removed,
342! bugfix: nest synchronization after first call of timestep
343!
344! 1762 2016-02-25 12:31:13Z hellstea
345! Introduction of nested domain feature
346!
347! 1736 2015-12-04 08:56:33Z raasch
348! no perturbations added to total domain if energy limit has been set zero
349!
350! 1691 2015-10-26 16:17:44Z maronga
351! Added option for spin-ups without land surface and radiation models. Moved calls
352! for radiation and lan surface schemes.
353!
354! 1682 2015-10-07 23:56:08Z knoop
355! Code annotations made doxygen readable
356!
357! 1671 2015-09-25 03:29:37Z raasch
358! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
359! for particles
360!
361! 1585 2015-04-30 07:05:52Z maronga
362! Moved call of radiation scheme. Added support for RRTM
363!
364! 1551 2015-03-03 14:18:16Z maronga
365! Added interface for different radiation schemes.
366!
367! 1496 2014-12-02 17:25:50Z maronga
368! Added calls for the land surface model and radiation scheme
369!
370! 1402 2014-05-09 14:25:13Z raasch
371! location messages modified
372!
373! 1384 2014-05-02 14:31:06Z raasch
374! location messages added
375!
376! 1380 2014-04-28 12:40:45Z heinze
377! CALL of nudge_ref added
378! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
379!
380! 1365 2014-04-22 15:03:56Z boeske
381! Reset sums_ls_l to zero at each timestep
382! +sums_ls_l
383! Calculation of reference state (previously in subroutine calc_mean_profile)
384
385! 1342 2014-03-26 17:04:47Z kanani
386! REAL constants defined as wp-kind
387!
388! 1320 2014-03-20 08:40:49Z raasch
389! ONLY-attribute added to USE-statements,
390! kind-parameters added to all INTEGER and REAL declaration statements,
391! kinds are defined in new module kinds,
392! old module precision_kind is removed,
393! revision history before 2012 removed,
394! comment fields (!:) to be used for variable explanations added to
395! all variable declaration statements
396! 1318 2014-03-17 13:35:16Z raasch
397! module interfaces removed
398!
399! 1308 2014-03-13 14:58:42Z fricke
400! +netcdf_data_format_save
401! For masked data, parallel netcdf output is not tested so far, hence
402! netcdf_data_format is switched back to non-paralell output.
403!
404! 1276 2014-01-15 13:40:41Z heinze
405! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
406!
407! 1257 2013-11-08 15:18:40Z raasch
408! acc-update-host directive for timestep removed
409!
410! 1241 2013-10-30 11:36:58Z heinze
411! Generalize calc_mean_profile for wider use
412! Determine shf and qsws in dependence on data from LSF_DATA
413! Determine ug and vg in dependence on data from LSF_DATA
414! 1221 2013-09-10 08:59:13Z raasch
415! host update of arrays before timestep is called
416!
417! 1179 2013-06-14 05:57:58Z raasch
418! mean profiles for reference state are only calculated if required,
419! small bugfix for background communication
420!
421! 1171 2013-05-30 11:27:45Z raasch
422! split of prognostic_equations deactivated (comment lines), for the time being
423!
424! 1128 2013-04-12 06:19:32Z raasch
425! asynchronous transfer of ghost point data realized for acc-optimized version:
426! prognostic_equations are first called two times for those points required for
427! the left-right and north-south exchange, respectively, and then for the
428! remaining points,
429! those parts requiring global communication moved from prognostic_equations to
430! here
431!
432! 1115 2013-03-26 18:16:16Z hoffmann
433! calculation of qr and nr is restricted to precipitation
434!
435! 1113 2013-03-10 02:48:14Z raasch
436! GPU-porting of boundary conditions,
437! openACC directives updated
438! formal parameter removed from routine boundary_conds
439!
440! 1111 2013-03-08 23:54:10Z raasch
441! +internal timestep counter for cpu statistics added,
442! openACC directives updated
443!
444! 1092 2013-02-02 11:24:22Z raasch
445! unused variables removed
446!
447! 1065 2012-11-22 17:42:36Z hoffmann
448! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
449!
450! 1053 2012-11-13 17:11:03Z hoffmann
451! exchange of ghost points for nr, qr added
452!
453! 1036 2012-10-22 13:43:42Z raasch
454! code put under GPL (PALM 3.9)
455!
456! 1019 2012-09-28 06:46:45Z raasch
457! non-optimized version of prognostic_equations removed
458!
459! 1015 2012-09-27 09:23:24Z raasch
460! +call of prognostic_equations_acc
461!
462! 1001 2012-09-13 14:08:46Z raasch
463! all actions concerning leapfrog- and upstream-spline-scheme removed
464!
465! 849 2012-03-15 10:35:09Z raasch
466! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
467!
468! 825 2012-02-19 03:03:44Z raasch
469! wang_collision_kernel renamed wang_kernel
470!
471! Revision 1.1  1997/08/11 06:19:04  raasch
472! Initial revision
473!
474!
475! Description:
476! ------------
477!> Integration in time of the model equations, statistical analysis and graphic
478!> output
479!------------------------------------------------------------------------------!
480 SUBROUTINE time_integration
481 
482
483    USE advec_ws,                                                                                  &
484        ONLY:  ws_statistics
485
486    USE arrays_3d,                                                                                 &
487        ONLY:  diss, diss_p, dzu, e, e_p, nc, nc_p, nr, nr_p, prho, pt, pt_p, pt_init, q_init, q,  &
488               qc, qc_p, ql, ql_c, ql_v, ql_vp, qr, qr_p, q_p, ref_state, rho_ocean, s, s_p, sa_p, &
489               tend, u, u_p, v, vpt, v_p, w, w_p
490
491    USE biometeorology_mod,                                                                        &
492        ONLY:  bio_calculate_thermal_index_maps, thermal_comfort, uvem_calc_exposure, uv_exposure
493
494    USE bulk_cloud_model_mod,                                                                      &
495        ONLY: bulk_cloud_model, calc_liquid_water_content, collision_turbulence,                   &
496              microphysics_morrison, microphysics_seifert
497
498    USE calc_mean_profile_mod,                                                                     &
499        ONLY:  calc_mean_profile
500
501    USE chem_emissions_mod,                                                                        &
502        ONLY:  chem_emissions_setup
503
504    USE chem_gasphase_mod,                                                                         &
505        ONLY:  nvar
506
507    USE chem_modules,                                                                              &
508        ONLY:  bc_cs_t_val, cs_name, emissions_anthropogenic, nspec_out
509
510    USE chemistry_model_mod,                                                                       &
511        ONLY:  chem_boundary_conds, chem_species
512
513    USE control_parameters,                                                                        &
514        ONLY:  advected_distance_x, advected_distance_y, air_chemistry, average_count_3d,          &
515               averaging_interval, averaging_interval_pr, bc_lr_cyc, bc_ns_cyc, bc_pt_t_val,       &
516               bc_q_t_val, biometeorology, call_psolver_at_all_substeps,  child_domain,            &
517               cloud_droplets, constant_flux_layer, constant_heatflux, create_disturbances,        &
518               dopr_n, constant_diffusion, coupling_mode, coupling_start_time,                     &
519               current_timestep_number, disturbance_created, disturbance_energy_limit, dist_range, &
520               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr, dt_coupling,              &
521               dt_data_output_av, dt_disturb, dt_do2d_xy, dt_do2d_xz, dt_do2d_yz, dt_do3d,         &
522               dt_domask,dt_dopts, dt_dopr, dt_dopr_listing, dt_dots, dt_dvrp, dt_run_control,     &
523               end_time, first_call_lpm, first_call_mas, galilei_transformation, humidity,         &
524               indoor_model, intermediate_timestep_count, intermediate_timestep_count_max,         &
525               land_surface, large_scale_forcing, loop_optimization, lsf_surf, lsf_vert, masks,    &
526               mid, multi_agent_system_end, multi_agent_system_start, nesting_offline, neutral,    &
527               nr_timesteps_this_run, nudging, ocean_mode, passive_scalar, pt_reference,           &
528               pt_slope_offset, random_heatflux, rans_mode, rans_tke_e, run_coupled, salsa,        &
529               simulated_time, simulated_time_chr, skip_time_do2d_xy, skip_time_do2d_xz,           &
530               skip_time_do2d_yz, skip_time_do3d, skip_time_domask, skip_time_dopr,                &
531               skip_time_data_output_av, sloping_surface, stop_dt, surface_output,                 &
532               terminate_coupled, terminate_run, timestep_scheme, time_coupling, time_do2d_xy,     &
533               time_do2d_xz, time_do2d_yz, time_do3d, time_domask, time_dopr, time_dopr_av,        &
534               time_dopr_listing, time_dopts, time_dosp, time_dosp_av, time_dots, time_do_av,      &
535               time_do_sla, time_disturb, time_dvrp, time_run_control, time_since_reference_point, &
536               turbulent_inflow, turbulent_outflow, urban_surface,                                 &
537               use_initial_profile_as_reference, use_single_reference_value, u_gtrans, v_gtrans,   &
538               virtual_flight, virtual_measurement, wind_turbine, ws_scheme_mom, ws_scheme_sca
539
540    USE cpulog,                                                                                    &
541        ONLY:  cpu_log, log_point, log_point_s
542
543    USE date_and_time_mod,                                                                         &
544        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
545
546    USE flight_mod,                                                                                &
547        ONLY:  flight_measurement
548
549    USE indices,                                                                                   &
550        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nzb, nzt
551
552    USE indoor_model_mod,                                                                          &
553        ONLY:  dt_indoor, im_main_heatcool, time_indoor
554
555    USE interaction_droplets_ptq_mod,                                                              &
556        ONLY:  interaction_droplets_ptq
557
558    USE interfaces
559
560    USE kinds
561
562    USE land_surface_model_mod,                                                                    &
563        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model, skip_time_do_lsm
564
565    USE lpm_mod,                                                                                   &
566        ONLY:  lpm
567
568    USE lsf_nudging_mod,                                                                           &
569        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
570
571    USE module_interface,                                                                          &
572        ONLY:  module_interface_actions
573
574    USE multi_agent_system_mod,                                                                    &
575        ONLY:  agents_active, multi_agent_system
576
577    USE nesting_offl_mod,                                                                          &
578        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
579
580    USE netcdf_data_input_mod,                                                                     &
581        ONLY:  chem_emis, chem_emis_att, nest_offl, netcdf_data_input_offline_nesting
582
583    USE ocean_mod,                                                                                 &
584        ONLY:  prho_reference
585
586    USE particle_attributes,                                                                       &
587        ONLY:  particle_advection, particle_advection_start, use_sgs_for_particles, wang_kernel
588
589    USE pegrid
590
591    USE pmc_interface,                                                                             &
592        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans, pmci_synchronize
593
594    USE progress_bar,                                                                              &
595        ONLY:  finish_progress_bar, output_progress_bar
596
597    USE prognostic_equations_mod,                                                                  &
598        ONLY:  prognostic_equations_cache, prognostic_equations_vector
599
600    USE radiation_model_mod,                                                                       &
601        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,                    &
602              radiation_interaction, radiation_interactions, skip_time_do_radiation, time_radiation
603
604    USE salsa_mod,                                                                                 &
605        ONLY: aerosol_number, aerosol_mass, bc_am_t_val, bc_an_t_val, bc_gt_t_val,                 &
606              nbins_aerosol, ncomponents_mass, ngases_salsa, salsa_boundary_conds,                 &
607              salsa_emission_update, salsa_gas, salsa_gases_from_chem, skip_time_do_salsa
608
609    USE spectra_mod,                                                                               &
610        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp, skip_time_dosp
611
612    USE statistics,                                                                                &
613        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l
614
615
616    USE surface_layer_fluxes_mod,                                                                  &
617        ONLY:  surface_layer_fluxes
618
619    USE surface_data_output_mod,                                                                   &
620        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf, dt_dosurf_av,               &
621               surface_data_output, surface_data_output_averaging, skip_time_dosurf,               &
622               skip_time_dosurf_av, time_dosurf, time_dosurf_av
623
624    USE surface_mod,                                                                               &
625        ONLY:  surf_def_h, surf_lsm_h, surf_usm_h
626
627    USE synthetic_turbulence_generator_mod,                                                        &
628        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence, stg_adjust, stg_main,    &
629               time_stg_adjust, time_stg_call, use_syn_turb_gen
630
631    USE turbulence_closure_mod,                                                                    &
632        ONLY:  tcm_diffusivities, production_e_init
633
634    USE urban_surface_mod,                                                                         &
635        ONLY:  usm_boundary_condition, usm_material_heat_model, usm_material_model,                &
636               usm_surface_energy_balance, usm_green_heat_model
637
638    USE vertical_nesting_mod,                                                                      &
639        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e, vnest_boundary_conds,              &
640               vnest_boundary_conds_khkm, vnest_deallocate, vnest_init, vnest_init_fine,           &
641               vnest_start_time
642
643    USE virtual_measurement_mod,                                                                   &
644        ONLY:  vm_data_output, vm_sampling, vm_time_start
645
646    USE wind_turbine_model_mod,                                                                    &
647        ONLY:  wtm_forces
648
649
650#if defined( _OPENACC )
651    USE arrays_3d,                                                             &
652        ONLY:  d, dd2zu, ddzu, ddzw, drho_air, drho_air_zw, dzw, heatflux_output_conversion, kh,   &
653               km, momentumflux_output_conversion, p, ptdf_x, ptdf_y, rdf, rdf_sc, rho_air,        &
654               rho_air_zw, te_m, tpt_m, tu_m, tv_m, tw_m, ug, u_init, u_stokes_zu, vg, v_init,     &
655               v_stokes_zu, zu
656
657    USE control_parameters,                                                                        &
658        ONLY:  tsc
659
660    USE indices,                                                                                   &
661        ONLY:  advc_flags_1, advc_flags_2, nyn, nyng, nys, nysg, nz, nzb_max, wall_flags_0
662
663    USE statistics,                                                                                &
664        ONLY:  rmask, statistic_regions, sums_l, sums_l_l, sums_us2_ws_l,                          &
665               sums_wsus_ws_l, sums_vs2_ws_l, sums_wsvs_ws_l, sums_ws2_ws_l, sums_wspts_ws_l,      &
666               sums_wsqs_ws_l, sums_wssas_ws_l, sums_wsqcs_ws_l, sums_wsqrs_ws_l, sums_wsncs_ws_l, &
667               sums_wsnrs_ws_l, sums_wsss_ws_l, weight_substep, sums_salsa_ws_l
668
669    USE surface_mod,                                                                               &
670        ONLY:  bc_h, enter_surface_arrays, exit_surface_arrays
671#endif
672
673
674    IMPLICIT NONE
675
676    CHARACTER (LEN=9) ::  time_to_string   !<
677
678    INTEGER(iwp)      ::  ib        !< index for aerosol size bins
679    INTEGER(iwp)      ::  ic        !< index for aerosol mass bins
680    INTEGER(iwp)      ::  icc       !< additional index for aerosol mass bins
681    INTEGER(iwp)      ::  ig        !< index for salsa gases
682    INTEGER(iwp)      ::  lsp
683    INTEGER(iwp)      ::  lsp_usr   !<
684    INTEGER(iwp)      ::  n         !< loop counter for chemistry species
685
686    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
687                            !< steering of run control output interval
688    REAL(wp) ::  time_since_reference_point_save  !< original value of
689                                                  !< time_since_reference_point
690
691
692!
693!-- Copy data from arrays_3d
694!$ACC DATA &
695!$ACC COPY(d(nzb+1:nzt,nys:nyn,nxl:nxr)) &
696!$ACC COPY(e(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
697!$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
698!$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
699!$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
700!$ACC COPY(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
701!$ACC COPY(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
702!$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
703!$ACC COPY(pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
704
705!$ACC DATA &
706!$ACC COPY(e_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
707!$ACC COPY(u_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
708!$ACC COPY(v_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
709!$ACC COPY(w_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
710!$ACC COPY(pt_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
711!$ACC COPY(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
712!$ACC COPY(te_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
713!$ACC COPY(tu_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
714!$ACC COPY(tv_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
715!$ACC COPY(tw_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
716!$ACC COPY(tpt_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
717
718!$ACC DATA &
719!$ACC COPYIN(rho_air(nzb:nzt+1), drho_air(nzb:nzt+1)) &
720!$ACC COPYIN(rho_air_zw(nzb:nzt+1), drho_air_zw(nzb:nzt+1)) &
721!$ACC COPYIN(zu(nzb:nzt+1)) &
722!$ACC COPYIN(dzu(1:nzt+1), dzw(1:nzt+1)) &
723!$ACC COPYIN(ddzu(1:nzt+1), dd2zu(1:nzt)) &
724!$ACC COPYIN(ddzw(1:nzt+1)) &
725!$ACC COPYIN(heatflux_output_conversion(nzb:nzt+1)) &
726!$ACC COPYIN(momentumflux_output_conversion(nzb:nzt+1)) &
727!$ACC COPYIN(rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt)) &
728!$ACC COPYIN(ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng)) &
729!$ACC COPYIN(ref_state(0:nz+1)) &
730!$ACC COPYIN(u_init(0:nz+1), v_init(0:nz+1)) &
731!$ACC COPYIN(u_stokes_zu(nzb:nzt+1), v_stokes_zu(nzb:nzt+1)) &
732!$ACC COPYIN(pt_init(0:nz+1)) &
733!$ACC COPYIN(ug(0:nz+1), vg(0:nz+1))
734
735!
736!-- Copy data from control_parameters
737!$ACC DATA &
738!$ACC COPYIN(tsc(1:5))
739
740!
741!-- Copy data from indices
742!$ACC DATA &
743!$ACC COPYIN(advc_flags_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
744!$ACC COPYIN(advc_flags_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
745!$ACC COPYIN(wall_flags_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
746
747!
748!-- Copy data from surface_mod
749!$ACC DATA &
750!$ACC COPYIN(bc_h(0:1)) &
751!$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) &
752!$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) &
753!$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) &
754!$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) &
755!$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) &
756!$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns))
757
758!
759!-- Copy data from statistics
760!$ACC DATA &
761!$ACC COPYIN(hom(0:nz+1,1:2,1:4,0)) &
762!$ACC COPYIN(rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions)) &
763!$ACC COPYIN(weight_substep(1:intermediate_timestep_count_max)) &
764!$ACC COPY(sums_l(nzb:nzt+1,1:pr_palm,0)) &
765!$ACC COPY(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
766!$ACC COPY(sums_us2_ws_l(nzb:nzt+1,0)) &
767!$ACC COPY(sums_wsus_ws_l(nzb:nzt+1,0)) &
768!$ACC COPY(sums_vs2_ws_l(nzb:nzt+1,0)) &
769!$ACC COPY(sums_wsvs_ws_l(nzb:nzt+1,0)) &
770!$ACC COPY(sums_ws2_ws_l(nzb:nzt+1,0)) &
771!$ACC COPY(sums_wspts_ws_l(nzb:nzt+1,0)) &
772!$ACC COPY(sums_wssas_ws_l(nzb:nzt+1,0)) &
773!$ACC COPY(sums_wsqs_ws_l(nzb:nzt+1,0)) &
774!$ACC COPY(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
775!$ACC COPY(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
776!$ACC COPY(sums_wsncs_ws_l(nzb:nzt+1,0)) &
777!$ACC COPY(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
778!$ACC COPY(sums_wsss_ws_l(nzb:nzt+1,0)) &
779!$ACC COPY(sums_salsa_ws_l(nzb:nzt+1,0))
780
781#if defined( _OPENACC )
782    CALL enter_surface_arrays
783#endif
784
785!
786!-- At beginning determine the first time step
787    CALL timestep
788!
789!-- Synchronize the timestep in case of nested run.
790    IF ( nested_run )  THEN
791!
792!--    Synchronization by unifying the time step.
793!--    Global minimum of all time-steps is used for all.
794       CALL pmci_synchronize
795    ENDIF
796
797!
798!-- Determine and print out the run control quantities before the first time
799!-- step of this run. For the initial run, some statistics (e.g. divergence)
800!-- need to be determined first --> CALL flow_statistics at the beginning of
801!-- run_control
802    CALL run_control
803!
804!-- Data exchange between coupled models in case that a call has been omitted
805!-- at the end of the previous run of a job chain.
806    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND. .NOT. vnested )  THEN
807!
808!--    In case of model termination initiated by the local model the coupler
809!--    must not be called because this would again cause an MPI hang.
810       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
811          CALL surface_coupler
812          time_coupling = time_coupling - dt_coupling
813       ENDDO
814       IF (time_coupling == 0.0_wp  .AND.  time_since_reference_point < dt_coupling )  THEN
815          time_coupling = time_since_reference_point
816       ENDIF
817    ENDIF
818
819#if defined( __dvrp_graphics )
820!
821!-- Time measurement with dvrp software 
822    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
823#endif
824
825    CALL location_message( 'starting timestep-sequence', .TRUE. )
826
827!
828!-- Start of the time loop
829    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. .NOT. terminate_run )
830
831       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
832!
833!--    Vertical nesting: initialize fine grid
834       IF ( vnested ) THEN
835          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
836             CALL cpu_log( log_point_s(22), 'vnest_init', 'start' )
837             CALL vnest_init_fine
838             vnest_init = .TRUE.
839             CALL cpu_log( log_point_s(22), 'vnest_init', 'stop' )
840          ENDIF
841       ENDIF
842!
843!--    Determine ug, vg and w_subs in dependence on data from external file
844!--    LSF_DATA
845       IF ( large_scale_forcing .AND. lsf_vert )  THEN
846           CALL ls_forcing_vert ( simulated_time )
847           sums_ls_l = 0.0_wp
848       ENDIF
849
850!
851!--    Set pt_init and q_init to the current profiles taken from
852!--    NUDGING_DATA
853       IF ( nudging )  THEN
854           CALL nudge_ref ( simulated_time )
855!
856!--        Store temperature gradient at the top boundary for possible Neumann
857!--        boundary condition
858           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
859           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
860           IF ( air_chemistry )  THEN
861              DO  lsp = 1, nvar
862                 bc_cs_t_val = (  chem_species(lsp)%conc_pr_init(nzt+1)                            &
863                                - chem_species(lsp)%conc_pr_init(nzt) )                            &
864                               / dzu(nzt+1)
865              ENDDO
866           ENDIF
867           IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
868              DO  ib = 1, nbins_aerosol
869                 bc_an_t_val = ( aerosol_number(ib)%init(nzt+1) - aerosol_number(ib)%init(nzt) ) / &
870                               dzu(nzt+1)
871                 DO  ic = 1, ncomponents_mass
872                    icc = ( ic - 1 ) * nbins_aerosol + ib
873                    bc_am_t_val = ( aerosol_mass(icc)%init(nzt+1) - aerosol_mass(icc)%init(nzt) ) /&
874                                  dzu(nzt+1)
875                 ENDDO
876              ENDDO
877              IF ( .NOT. salsa_gases_from_chem )  THEN
878                 DO  ig = 1, ngases_salsa
879                    bc_gt_t_val = ( salsa_gas(ig)%init(nzt+1) - salsa_gas(ig)%init(nzt) ) /        &
880                                  dzu(nzt+1)
881                 ENDDO
882              ENDIF
883           ENDIF
884       ENDIF
885!
886!--    If forcing by larger-scale models is applied, check if new data
887!--    at domain boundaries need to be read.
888       IF ( nesting_offline ) THEN
889          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point ) &
890               CALL netcdf_data_input_offline_nesting
891       ENDIF
892
893!
894!--    Execute alle other module actions routunes
895       CALL module_interface_actions( 'before_timestep' )
896
897!
898!--    Calculate forces by wind turbines
899       IF ( wind_turbine )  CALL wtm_forces 
900       
901!
902!--    Start of intermediate step loop
903       intermediate_timestep_count = 0
904       DO  WHILE ( intermediate_timestep_count < intermediate_timestep_count_max )
905
906          intermediate_timestep_count = intermediate_timestep_count + 1
907
908!
909!--       Set the steering factors for the prognostic equations which depend
910!--       on the timestep scheme
911          CALL timestep_scheme_steering
912
913!
914!--       Calculate those variables needed in the tendency terms which need
915!--       global communication
916          IF ( .NOT. use_single_reference_value  .AND.  .NOT. use_initial_profile_as_reference )   &
917          THEN
918!
919!--          Horizontally averaged profiles to be used as reference state in
920!--          buoyancy terms (WARNING: only the respective last call of
921!--          calc_mean_profile defines the reference state!)
922             IF ( .NOT. neutral )  THEN
923                CALL calc_mean_profile( pt, 4 )
924                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
925             ENDIF
926             IF ( ocean_mode )  THEN
927                CALL calc_mean_profile( rho_ocean, 64 )
928                ref_state(:)  = hom(:,1,64,0)
929             ENDIF
930             IF ( humidity )  THEN
931                CALL calc_mean_profile( vpt, 44 )
932                ref_state(:)  = hom(:,1,44,0)
933             ENDIF
934!
935!--          Assure that ref_state does not become zero at any level
936!--          ( might be the case if a vertical level is completely occupied
937!--            with topography ).
938             ref_state = MERGE( MAXVAL(ref_state), ref_state, ref_state == 0.0_wp )
939          ENDIF
940
941          IF ( .NOT. constant_diffusion )  CALL production_e_init
942          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  intermediate_timestep_count == 1 )     &
943          THEN
944             CALL ws_statistics
945          ENDIF
946!
947!--       In case of nudging calculate current nudging time scale and horizontal
948!--       means of u, v, pt and q
949          IF ( nudging )  THEN
950             CALL calc_tnudge( simulated_time )
951             CALL calc_mean_profile( u, 1 )
952             CALL calc_mean_profile( v, 2 )
953             CALL calc_mean_profile( pt, 4 )
954             CALL calc_mean_profile( q, 41 )
955          ENDIF
956
957!
958!--       Solve the prognostic equations. A fast cache optimized version with
959!--       only one single loop is used in case of Piascek-Williams advection
960!--       scheme. NEC vector machines use a different version, because
961!--       in the other versions a good vectorization is prohibited due to
962!--       inlining problems.
963          IF ( loop_optimization == 'cache' )  THEN
964             CALL prognostic_equations_cache
965          ELSEIF ( loop_optimization == 'vector' )  THEN
966             CALL prognostic_equations_vector
967          ENDIF
968
969!
970!--       Particle transport/physics with the Lagrangian particle model
971!--       (only once during intermediate steps, because it uses an Euler-step)
972!--       ### particle model should be moved before prognostic_equations, in order
973!--       to regard droplet interactions directly
974          IF ( particle_advection  .AND.  time_since_reference_point >= particle_advection_start   &
975               .AND.  intermediate_timestep_count == 1 )                                           &
976          THEN
977             CALL lpm
978             first_call_lpm = .FALSE.
979          ENDIF
980
981!
982!--       Interaction of droplets with temperature and mixing ratio.
983!--       Droplet condensation and evaporation is calculated within
984!--       advec_particles.
985          IF ( cloud_droplets  .AND.  intermediate_timestep_count == intermediate_timestep_count_max ) &
986          THEN
987             CALL interaction_droplets_ptq
988          ENDIF
989
990!
991!--       Movement of agents in multi agent system
992          IF ( agents_active  .AND.  time_since_reference_point >= multi_agent_system_start  .AND. &
993               time_since_reference_point <= multi_agent_system_end  .AND.                         &
994               intermediate_timestep_count == 1 )                                                  &
995          THEN
996             CALL multi_agent_system
997             first_call_mas = .FALSE.
998          ENDIF
999
1000!
1001!--       Exchange of ghost points (lateral boundary conditions)
1002          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
1003
1004          CALL exchange_horiz( u_p, nbgp )
1005          CALL exchange_horiz( v_p, nbgp )
1006          CALL exchange_horiz( w_p, nbgp )
1007          CALL exchange_horiz( pt_p, nbgp )
1008          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
1009          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence                           &
1010               .OR.  use_sgs_for_particles )  THEN
1011             IF ( rans_tke_e )  THEN
1012                CALL exchange_horiz( diss_p, nbgp )
1013             ELSE
1014                CALL exchange_horiz( diss, nbgp )
1015             ENDIF
1016          ENDIF
1017          IF ( ocean_mode )  THEN
1018             CALL exchange_horiz( sa_p, nbgp )
1019             CALL exchange_horiz( rho_ocean, nbgp )
1020             CALL exchange_horiz( prho, nbgp )
1021          ENDIF
1022          IF ( humidity )  THEN
1023             CALL exchange_horiz( q_p, nbgp )
1024             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
1025                CALL exchange_horiz( qc_p, nbgp )
1026                CALL exchange_horiz( nc_p, nbgp )
1027             ENDIF
1028             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
1029                CALL exchange_horiz( qr_p, nbgp )
1030                CALL exchange_horiz( nr_p, nbgp )
1031             ENDIF
1032          ENDIF
1033          IF ( cloud_droplets )  THEN
1034             CALL exchange_horiz( ql, nbgp )
1035             CALL exchange_horiz( ql_c, nbgp )
1036             CALL exchange_horiz( ql_v, nbgp )
1037             CALL exchange_horiz( ql_vp, nbgp )
1038          ENDIF
1039          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
1040          IF ( air_chemistry )  THEN
1041             DO  lsp = 1, nvar
1042                CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp )
1043!
1044!--             kanani: Push chem_boundary_conds after CALL boundary_conds
1045                lsp_usr = 1
1046                DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
1047                   IF ( TRIM(chem_species(lsp)%name) == TRIM(cs_name(lsp_usr)) )  THEN
1048                      CALL chem_boundary_conds( chem_species(lsp)%conc_p,                          &
1049                                                chem_species(lsp)%conc_pr_init )
1050                   ENDIF
1051                   lsp_usr = lsp_usr + 1
1052                ENDDO
1053             ENDDO
1054          ENDIF
1055
1056          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
1057!
1058!--          Exchange ghost points and decycle boundary concentrations if needed
1059             DO  ib = 1, nbins_aerosol
1060                CALL exchange_horiz( aerosol_number(ib)%conc_p, nbgp )
1061                CALL salsa_boundary_conds( aerosol_number(ib)%conc_p, aerosol_number(ib)%init )
1062                DO  ic = 1, ncomponents_mass
1063                   icc = ( ic - 1 ) * nbins_aerosol + ib
1064                   CALL exchange_horiz( aerosol_mass(icc)%conc_p, nbgp )
1065                   CALL salsa_boundary_conds( aerosol_mass(icc)%conc_p, aerosol_mass(icc)%init )
1066                ENDDO
1067             ENDDO
1068             IF ( .NOT. salsa_gases_from_chem )  THEN
1069                DO  ig = 1, ngases_salsa
1070                   CALL exchange_horiz( salsa_gas(ig)%conc_p, nbgp )
1071                   CALL salsa_boundary_conds( salsa_gas(ig)%conc_p, salsa_gas(ig)%init )
1072                ENDDO
1073             ENDIF
1074          ENDIF
1075          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1076
1077!
1078!--       Boundary conditions for the prognostic quantities (except of the
1079!--       velocities at the outflow in case of a non-cyclic lateral wall)
1080          CALL boundary_conds
1081!
1082!--       Swap the time levels in preparation for the next time step.
1083          CALL swap_timelevel
1084
1085!
1086!--       Vertical nesting: Interpolate fine grid data to the coarse grid
1087          IF ( vnest_init ) THEN
1088             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'start' )
1089             CALL vnest_anterpolate
1090             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'stop' )
1091          ENDIF
1092
1093          IF ( nested_run )  THEN
1094
1095             CALL cpu_log( log_point(60), 'nesting', 'start' )
1096!
1097!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
1098!--          and pmci_child_datatrans are called inside the wrapper
1099!--          subroutine pmci_datatrans according to the control parameters
1100!--          nesting_mode and nesting_datatransfer_mode.
1101!--          TO_DO: why is nesting_mode given as a parameter here?
1102             CALL pmci_datatrans( nesting_mode )
1103
1104             IF ( TRIM( nesting_mode ) == 'two-way' .OR.  nesting_mode == 'vertical' )  THEN
1105!
1106!--             Exchange_horiz is needed for all parent-domains after the
1107!--             anterpolation
1108                CALL exchange_horiz( u, nbgp )
1109                CALL exchange_horiz( v, nbgp )
1110                CALL exchange_horiz( w, nbgp )
1111                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
1112
1113                IF ( humidity )  THEN
1114
1115                   CALL exchange_horiz( q, nbgp )
1116
1117                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
1118                       CALL exchange_horiz( qc, nbgp )
1119                       CALL exchange_horiz( nc, nbgp )
1120                   ENDIF
1121                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
1122                       CALL exchange_horiz( qr, nbgp )
1123                       CALL exchange_horiz( nr, nbgp )
1124                   ENDIF
1125
1126                ENDIF
1127
1128                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
1129
1130                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
1131
1132                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.  rans_tke_e )  THEN
1133                   CALL exchange_horiz( diss, nbgp )
1134                ENDIF
1135
1136                IF ( air_chemistry )  THEN
1137                   DO  n = 1, nvar     
1138                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
1139                   ENDDO
1140                ENDIF
1141
1142                IF ( salsa  .AND. time_since_reference_point >= skip_time_do_salsa )  THEN
1143                   DO  ib = 1, nbins_aerosol
1144                      CALL exchange_horiz( aerosol_number(ib)%conc, nbgp )
1145                      CALL salsa_boundary_conds( aerosol_number(ib)%conc, aerosol_number(ib)%init )
1146                      DO  ic = 1, ncomponents_mass
1147                         icc = ( ic - 1 ) * nbins_aerosol + ib
1148                         CALL exchange_horiz( aerosol_mass(icc)%conc, nbgp )
1149                         CALL salsa_boundary_conds( aerosol_mass(icc)%conc, aerosol_mass(icc)%init )
1150                      ENDDO
1151                   ENDDO
1152                   IF ( .NOT. salsa_gases_from_chem )  THEN
1153                      DO  ig = 1, ngases_salsa
1154                         CALL exchange_horiz( salsa_gas(ig)%conc, nbgp )
1155                         CALL salsa_boundary_conds( salsa_gas(ig)%conc, salsa_gas(ig)%init )
1156                      ENDDO
1157                   ENDIF
1158                ENDIF
1159                CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1160
1161             ENDIF
1162!
1163!--          Set boundary conditions again after interpolation and anterpolation.
1164             CALL pmci_boundary_conds
1165
1166             CALL cpu_log( log_point(60), 'nesting', 'stop' )
1167
1168          ENDIF
1169
1170!
1171!--       Temperature offset must be imposed at cyclic boundaries in x-direction
1172!--       when a sloping surface is used
1173          IF ( sloping_surface )  THEN
1174             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - pt_slope_offset
1175             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + pt_slope_offset
1176          ENDIF
1177
1178!
1179!--       Impose a turbulent inflow using the recycling method
1180          IF ( turbulent_inflow )  CALL inflow_turbulence
1181
1182!
1183!--       Set values at outflow boundary using the special outflow condition
1184          IF ( turbulent_outflow )  CALL outflow_turbulence
1185
1186!
1187!--       Impose a random perturbation on the horizontal velocity field
1188          IF ( create_disturbances  .AND.  ( call_psolver_at_all_substeps  .AND.                   &
1189               intermediate_timestep_count == intermediate_timestep_count_max )                    &
1190               .OR. ( .NOT. call_psolver_at_all_substeps  .AND.  intermediate_timestep_count == 1 ) ) &
1191          THEN
1192             time_disturb = time_disturb + dt_3d
1193             IF ( time_disturb >= dt_disturb )  THEN
1194                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                                     &
1195                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
1196                   CALL disturb_field( 'u', tend, u )
1197                   CALL disturb_field( 'v', tend, v )
1198                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )                                &
1199                         .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )                 &
1200                THEN
1201!
1202!--                Runs with a non-cyclic lateral wall need perturbations
1203!--                near the inflow throughout the whole simulation
1204                   dist_range = 1
1205                   CALL disturb_field( 'u', tend, u )
1206                   CALL disturb_field( 'v', tend, v )
1207                   dist_range = 0
1208                ENDIF
1209                time_disturb = time_disturb - dt_disturb
1210             ENDIF
1211          ENDIF
1212
1213!
1214!--       Map forcing data derived from larger scale model onto domain
1215!--       boundaries.
1216          IF ( nesting_offline  .AND.  intermediate_timestep_count ==                              &
1217                                       intermediate_timestep_count_max  )                          &
1218             CALL nesting_offl_bc
1219!
1220!--       Impose a turbulent inflow using synthetic generated turbulence,
1221!--       only once per time step.
1222          IF ( use_syn_turb_gen  .AND.  time_stg_call >= dt_stg_call  .AND.                        &
1223             intermediate_timestep_count == intermediate_timestep_count_max )  THEN
1224             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1225             CALL stg_main
1226             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1227          ENDIF
1228!
1229!--       Ensure mass conservation. This need to be done after imposing
1230!--       synthetic turbulence and top boundary condition for pressure is set to
1231!--       Neumann conditions.
1232!--       Is this also required in case of Dirichlet?
1233          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1234!
1235!--       Reduce the velocity divergence via the equation for perturbation
1236!--       pressure.
1237          IF ( intermediate_timestep_count == 1  .OR. &
1238                call_psolver_at_all_substeps )  THEN
1239
1240             IF (  vnest_init ) THEN
1241!
1242!--             Compute pressure in the CG, interpolate top boundary conditions
1243!--             to the FG and then compute pressure in the FG
1244                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1245
1246                CALL cpu_log( log_point_s(30), 'vnest_bc', 'start' )
1247                CALL vnest_boundary_conds
1248                CALL cpu_log( log_point_s(30), 'vnest_bc', 'stop' )
1249 
1250                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1251
1252!--             Anterpolate TKE, satisfy Germano Identity
1253                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'start' )
1254                CALL vnest_anterpolate_e
1255                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'stop' )
1256
1257             ELSE
1258
1259                CALL pres
1260
1261             ENDIF
1262
1263          ENDIF
1264
1265!
1266!--       If required, compute liquid water content
1267          IF ( bulk_cloud_model )  THEN
1268             CALL calc_liquid_water_content
1269          ENDIF
1270!
1271!--       If required, compute virtual potential temperature
1272          IF ( humidity )  THEN
1273             CALL compute_vpt
1274          ENDIF
1275
1276!
1277!--       Compute the diffusion quantities
1278          IF ( .NOT. constant_diffusion )  THEN
1279
1280!
1281!--          Determine surface fluxes shf and qsws and surface values
1282!--          pt_surface and q_surface in dependence on data from external
1283!--          file LSF_DATA respectively
1284             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND.                                     &
1285                 intermediate_timestep_count == intermediate_timestep_count_max )                  &
1286             THEN
1287                CALL ls_forcing_surf( simulated_time )
1288             ENDIF
1289
1290!
1291!--          First the vertical (and horizontal) fluxes in the surface
1292!--          (constant flux) layer are computed
1293             IF ( constant_flux_layer )  THEN
1294                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1295                CALL surface_layer_fluxes
1296                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
1297             ENDIF
1298!
1299!--          If required, solve the energy balance for the surface and run soil
1300!--          model. Call for horizontal as well as vertical surfaces
1301             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
1302
1303                CALL cpu_log( log_point(54), 'land_surface', 'start' )
1304!
1305!--             Call for horizontal upward-facing surfaces
1306                CALL lsm_energy_balance( .TRUE., -1 )
1307                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
1308!
1309!--             Call for northward-facing surfaces
1310                CALL lsm_energy_balance( .FALSE., 0 )
1311                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
1312!
1313!--             Call for southward-facing surfaces
1314                CALL lsm_energy_balance( .FALSE., 1 )
1315                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
1316!
1317!--             Call for eastward-facing surfaces
1318                CALL lsm_energy_balance( .FALSE., 2 )
1319                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
1320!
1321!--             Call for westward-facing surfaces
1322                CALL lsm_energy_balance( .FALSE., 3 )
1323                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
1324               
1325!
1326!--             At the end, set boundary conditons for potential temperature
1327!--             and humidity after running the land-surface model. This
1328!--             might be important for the nesting, where arrays are transfered.
1329                CALL lsm_boundary_condition
1330
1331               
1332                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1333             ENDIF
1334!
1335!--          If required, solve the energy balance for urban surfaces and run
1336!--          the material heat model
1337             IF (urban_surface) THEN
1338                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
1339               
1340                CALL usm_surface_energy_balance( .FALSE. )
1341                IF ( usm_material_model )  THEN
1342                   CALL usm_green_heat_model
1343                   CALL usm_material_heat_model ( .FALSE. )
1344                ENDIF
1345
1346!
1347!--             At the end, set boundary conditons for potential temperature
1348!--             and humidity after running the urban-surface model. This
1349!--             might be important for the nesting, where arrays are transfered.
1350                CALL usm_boundary_condition
1351
1352                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1353             ENDIF
1354!
1355!--          Compute the diffusion coefficients
1356             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
1357             IF ( .NOT. humidity ) THEN
1358                IF ( ocean_mode )  THEN
1359                   CALL tcm_diffusivities( prho, prho_reference )
1360                ELSE
1361                   CALL tcm_diffusivities( pt, pt_reference )
1362                ENDIF
1363             ELSE
1364                CALL tcm_diffusivities( vpt, pt_reference )
1365             ENDIF
1366             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
1367!
1368!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1369             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
1370
1371          ENDIF
1372
1373!
1374!--       If required, calculate radiative fluxes and heating rates
1375          IF ( radiation  .AND.  intermediate_timestep_count == intermediate_timestep_count_max    &
1376               .AND. time_since_reference_point > skip_time_do_radiation )  THEN
1377
1378               time_radiation = time_radiation + dt_3d
1379
1380             IF ( time_radiation >= dt_radiation  .OR.  force_radiation_call )  THEN
1381
1382                CALL cpu_log( log_point(50), 'radiation', 'start' )
1383
1384                IF ( .NOT. force_radiation_call )  THEN
1385                   time_radiation = time_radiation - dt_radiation
1386                ENDIF
1387
1388!
1389!--             Adjust the current time to the time step of the radiation model.
1390!--             Needed since radiation is pre-calculated and stored only on apparent
1391!--             solar positions
1392                time_since_reference_point_save = time_since_reference_point
1393                time_since_reference_point = REAL( FLOOR( time_since_reference_point /             &
1394                                                          dt_radiation), wp ) * dt_radiation
1395
1396                CALL radiation_control
1397
1398                IF ( ( urban_surface  .OR.  land_surface )  .AND.  radiation_interactions )  THEN
1399                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'start' )
1400                   CALL radiation_interaction
1401                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'stop' )
1402                ENDIF
1403   
1404!
1405!--             Return the current time to its original value
1406                time_since_reference_point = time_since_reference_point_save
1407
1408                CALL cpu_log( log_point(50), 'radiation', 'stop' )
1409
1410             ENDIF
1411          ENDIF
1412
1413       ENDDO   ! Intermediate step loop
1414
1415!
1416!--    Will be used at some point by flow_statistics.
1417       !$ACC UPDATE &
1418       !$ACC HOST(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
1419       !$ACC HOST(sums_us2_ws_l(nzb:nzt+1,0)) &
1420       !$ACC HOST(sums_wsus_ws_l(nzb:nzt+1,0)) &
1421       !$ACC HOST(sums_vs2_ws_l(nzb:nzt+1,0)) &
1422       !$ACC HOST(sums_wsvs_ws_l(nzb:nzt+1,0)) &
1423       !$ACC HOST(sums_ws2_ws_l(nzb:nzt+1,0)) &
1424       !$ACC HOST(sums_wspts_ws_l(nzb:nzt+1,0)) &
1425       !$ACC HOST(sums_wssas_ws_l(nzb:nzt+1,0)) &
1426       !$ACC HOST(sums_wsqs_ws_l(nzb:nzt+1,0)) &
1427       !$ACC HOST(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
1428       !$ACC HOST(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
1429       !$ACC HOST(sums_wsncs_ws_l(nzb:nzt+1,0)) &
1430       !$ACC HOST(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
1431       !$ACC HOST(sums_wsss_ws_l(nzb:nzt+1,0)) &
1432       !$ACC HOST(sums_salsa_ws_l(nzb:nzt+1,0))
1433
1434!
1435!--    If required, consider chemical emissions
1436       IF ( air_chemistry  .AND.  emissions_anthropogenic )  THEN
1437!
1438!--       Update the time --> kanani: revise location of this CALL
1439          CALL calc_date_and_time
1440!
1441!--       Call emission routine only once an hour
1442          IF (hour_of_year  .GT.  hour_call_emis )  THEN
1443             CALL chem_emissions_setup( chem_emis_att, chem_emis, nspec_out )
1444             hour_call_emis = hour_of_year
1445          ENDIF
1446       ENDIF
1447!
1448!--    If required, consider aerosol emissions for the salsa model
1449       IF ( salsa )  THEN
1450!
1451!--       Call emission routine to update emissions if needed
1452          CALL salsa_emission_update
1453
1454       ENDIF
1455!
1456!--    If required, calculate indoor temperature, waste heat, heat flux
1457!--    through wall, etc.
1458!--    dt_indoor steers the frequency of the indoor model calculations.
1459!--    Note, at first timestep indoor model is called, in order to provide
1460!--    a waste heat flux.
1461       IF ( indoor_model )  THEN
1462
1463          time_indoor = time_indoor + dt_3d
1464
1465          IF ( time_indoor >= dt_indoor  .OR.  current_timestep_number == 0 )  THEN
1466
1467             time_indoor = time_indoor - dt_indoor
1468
1469             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1470             CALL im_main_heatcool
1471             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1472
1473          ENDIF
1474       ENDIF
1475!
1476!--    Increase simulation time and output times
1477       nr_timesteps_this_run      = nr_timesteps_this_run + 1
1478       current_timestep_number    = current_timestep_number + 1
1479       simulated_time             = simulated_time   + dt_3d
1480       time_since_reference_point = simulated_time - coupling_start_time
1481       simulated_time_chr         = time_to_string( time_since_reference_point )
1482
1483
1484
1485
1486       IF ( time_since_reference_point >= skip_time_data_output_av )  THEN
1487          time_do_av         = time_do_av       + dt_3d
1488       ENDIF
1489       IF ( time_since_reference_point >= skip_time_do2d_xy )  THEN
1490          time_do2d_xy       = time_do2d_xy     + dt_3d
1491       ENDIF
1492       IF ( time_since_reference_point >= skip_time_do2d_xz )  THEN
1493          time_do2d_xz       = time_do2d_xz     + dt_3d
1494       ENDIF
1495       IF ( time_since_reference_point >= skip_time_do2d_yz )  THEN
1496          time_do2d_yz       = time_do2d_yz     + dt_3d
1497       ENDIF
1498       IF ( time_since_reference_point >= skip_time_do3d    )  THEN
1499          time_do3d          = time_do3d        + dt_3d
1500       ENDIF
1501       DO  mid = 1, masks
1502          IF ( time_since_reference_point >= skip_time_domask(mid) )  THEN
1503             time_domask(mid)= time_domask(mid) + dt_3d
1504          ENDIF
1505       ENDDO
1506       time_dvrp          = time_dvrp        + dt_3d
1507       IF ( time_since_reference_point >= skip_time_dosp )  THEN
1508          time_dosp       = time_dosp        + dt_3d
1509       ENDIF
1510       time_dots          = time_dots        + dt_3d
1511       IF ( .NOT. first_call_lpm )  THEN
1512          time_dopts      = time_dopts       + dt_3d
1513       ENDIF
1514       IF ( time_since_reference_point >= skip_time_dopr )  THEN
1515          time_dopr       = time_dopr        + dt_3d
1516       ENDIF
1517       time_dopr_listing  = time_dopr_listing + dt_3d
1518       time_run_control   = time_run_control + dt_3d
1519!
1520!--    Increment time-counter for surface output
1521       IF ( surface_output )  THEN
1522          IF ( time_since_reference_point >= skip_time_dosurf )  THEN
1523             time_dosurf    = time_dosurf + dt_3d
1524          ENDIF
1525          IF ( time_since_reference_point >= skip_time_dosurf_av )  THEN
1526             time_dosurf_av = time_dosurf_av + dt_3d
1527          ENDIF
1528       ENDIF
1529!
1530!--    In case of synthetic turbulence generation and parametrized turbulence
1531!--    information, update the time counter and if required, adjust the
1532!--    STG to new atmospheric conditions.
1533       IF ( use_syn_turb_gen  )  THEN
1534          IF ( parametrize_inflow_turbulence )  THEN
1535             time_stg_adjust = time_stg_adjust + dt_3d
1536             IF ( time_stg_adjust >= dt_stg_adjust )  THEN
1537                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1538                CALL stg_adjust
1539                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1540             ENDIF
1541          ENDIF
1542          time_stg_call = time_stg_call + dt_3d
1543       ENDIF
1544
1545!
1546!--    Data exchange between coupled models
1547       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND.  .NOT. vnested )  THEN
1548          time_coupling = time_coupling + dt_3d
1549
1550!
1551!--       In case of model termination initiated by the local model
1552!--       (terminate_coupled > 0), the coupler must be skipped because it would
1553!--       cause an MPI intercomminucation hang.
1554!--       If necessary, the coupler will be called at the beginning of the
1555!--       next restart run.
1556          DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
1557             CALL surface_coupler
1558             time_coupling = time_coupling - dt_coupling
1559          ENDDO
1560       ENDIF
1561
1562!
1563!--    Biometeorology calculation of stationary thermal indices
1564!--    Todo (kanani): biometeorology needs own time_... treatment.
1565!--                   It might be that time_do2d_xy differs from time_do3d,
1566!--                   and then we might get trouble with the biomet output,
1567!--                   because we can have 2d and/or 3d biomet output!!
1568       IF ( biometeorology                                                                         &
1569            .AND. ( ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  &
1570                  .OR.                                                                             &
1571            ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy ) &
1572                    ) )  THEN
1573!
1574!--       If required, do thermal comfort calculations
1575          IF ( thermal_comfort )  THEN
1576             CALL bio_calculate_thermal_index_maps ( .FALSE. )
1577          ENDIF
1578!
1579!--       If required, do UV exposure calculations
1580          IF ( uv_exposure )  THEN
1581             CALL uvem_calc_exposure
1582          ENDIF
1583       ENDIF
1584
1585!
1586!--    Execute alle other module actions routunes
1587       CALL module_interface_actions( 'after_integration' )
1588
1589!
1590!--    If Galilei transformation is used, determine the distance that the
1591!--    model has moved so far
1592       IF ( galilei_transformation )  THEN
1593          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1594          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1595       ENDIF
1596
1597!
1598!--    Check, if restart is necessary (because cpu-time is expiring or
1599!--    because it is forced by user) and set stop flag
1600!--    This call is skipped if the remote model has already initiated a restart.
1601       IF ( .NOT. terminate_run )  CALL check_for_restart
1602
1603!
1604!--    Carry out statistical analysis and output at the requested output times.
1605!--    The MOD function is used for calculating the output time counters (like
1606!--    time_dopr) in order to regard a possible decrease of the output time
1607!--    interval in case of restart runs
1608
1609!
1610!--    Set a flag indicating that so far no statistics have been created
1611!--    for this time step
1612       flow_statistics_called = .FALSE.
1613
1614!
1615!--    If required, call flow_statistics for averaging in time
1616       IF ( averaging_interval_pr /= 0.0_wp  .AND.                                                 &
1617            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.                                &
1618            time_since_reference_point >= skip_time_dopr )  THEN
1619          time_dopr_av = time_dopr_av + dt_3d
1620          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1621             do_sum = .TRUE.
1622             time_dopr_av = MOD( time_dopr_av, MAX( dt_averaging_input_pr, dt_3d ) )
1623          ENDIF
1624       ENDIF
1625       IF ( do_sum )  CALL flow_statistics
1626
1627!
1628!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
1629       IF ( averaging_interval /= 0.0_wp  .AND.                                                    &
1630            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND.                        &
1631            time_since_reference_point >= skip_time_data_output_av )                               &
1632       THEN
1633          time_do_sla = time_do_sla + dt_3d
1634          IF ( time_do_sla >= dt_averaging_input )  THEN
1635             CALL sum_up_3d_data
1636             average_count_3d = average_count_3d + 1
1637             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1638          ENDIF
1639       ENDIF
1640!
1641!--    Average surface data
1642       IF ( surface_output )  THEN
1643          IF ( averaging_interval_surf /= 0.0_wp                                                   &
1644                .AND.  ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf                &
1645                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1646             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
1647                CALL surface_data_output_averaging
1648                average_count_surf = average_count_surf + 1
1649             ENDIF
1650          ENDIF
1651       ENDIF
1652
1653!
1654!--    Calculate spectra for time averaging
1655       IF ( averaging_interval_sp /= 0.0_wp  .AND. ( dt_dosp - time_dosp ) <= averaging_interval_sp&
1656            .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1657          time_dosp_av = time_dosp_av + dt_3d
1658          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1659             CALL calc_spectra
1660             time_dosp_av = MOD( time_dosp_av, MAX( dt_averaging_input_pr, dt_3d ) )
1661          ENDIF
1662       ENDIF
1663
1664!
1665!--    Call flight module and output data
1666       IF ( virtual_flight )  THEN
1667          CALL flight_measurement
1668          CALL data_output_flight
1669       ENDIF
1670!
1671!--    Take virtual measurements
1672       IF ( virtual_measurement  .AND.  vm_time_start <= time_since_reference_point )  THEN
1673          CALL vm_sampling
1674          CALL vm_data_output
1675       ENDIF
1676
1677!
1678!--    Profile output (ASCII) on file
1679       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1680          CALL print_1d
1681          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, dt_3d ) )
1682       ENDIF
1683
1684!
1685!--    Graphic output for PROFIL
1686       IF ( time_dopr >= dt_dopr  .AND.  time_since_reference_point >= skip_time_dopr )  THEN
1687          IF ( dopr_n /= 0 )  CALL data_output_profiles
1688          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
1689          time_dopr_av = 0.0_wp    ! due to averaging (see above)
1690       ENDIF
1691
1692!
1693!--    Graphic output for time series
1694       IF ( time_dots >= dt_dots )  THEN
1695          CALL data_output_tseries
1696          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1697       ENDIF
1698
1699!
1700!--    Output of spectra (formatted for use with PROFIL), in case of no
1701!--    time averaging, spectra has to be calculated before
1702       IF ( time_dosp >= dt_dosp  .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1703          IF ( average_count_sp == 0 )  CALL calc_spectra
1704          CALL data_output_spectra
1705          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1706       ENDIF
1707
1708!
1709!--    2d-data output (cross-sections)
1710       IF ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy )  THEN
1711          CALL data_output_2d( 'xy', 0 )
1712          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1713       ENDIF
1714       IF ( time_do2d_xz >= dt_do2d_xz  .AND.  time_since_reference_point >= skip_time_do2d_xz )  THEN
1715          CALL data_output_2d( 'xz', 0 )
1716          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1717       ENDIF
1718       IF ( time_do2d_yz >= dt_do2d_yz  .AND.  time_since_reference_point >= skip_time_do2d_yz )  THEN
1719          CALL data_output_2d( 'yz', 0 )
1720          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1721       ENDIF
1722
1723!
1724!--    3d-data output (volume data)
1725       IF ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  THEN
1726          CALL data_output_3d( 0 )
1727          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1728       ENDIF
1729
1730!
1731!--    Masked data output
1732       DO  mid = 1, masks
1733          IF ( time_domask(mid) >= dt_domask(mid)                                                  &
1734               .AND.  time_since_reference_point >= skip_time_domask(mid) )  THEN
1735             CALL data_output_mask( 0 )
1736             time_domask(mid) = MOD( time_domask(mid), MAX( dt_domask(mid), dt_3d ) )
1737          ENDIF
1738       ENDDO
1739
1740!
1741!--    Output of time-averaged 2d/3d/masked data
1742       IF ( time_do_av >= dt_data_output_av                                                        &
1743            .AND.  time_since_reference_point >= skip_time_data_output_av )  THEN
1744          CALL average_3d_data
1745!
1746!--       Udate thermal comfort indices based on updated averaged input
1747          IF ( biometeorology  .AND.  thermal_comfort )  THEN
1748             CALL bio_calculate_thermal_index_maps ( .TRUE. )
1749          ENDIF
1750          CALL data_output_2d( 'xy', 1 )
1751          CALL data_output_2d( 'xz', 1 )
1752          CALL data_output_2d( 'yz', 1 )
1753          CALL data_output_3d( 1 )
1754          DO  mid = 1, masks
1755             CALL data_output_mask( 1 )
1756          ENDDO
1757          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1758       ENDIF
1759!
1760!--    Output of surface data, instantaneous and averaged data
1761       IF ( surface_output )  THEN
1762          IF ( time_dosurf >= dt_dosurf  .AND.  time_since_reference_point >= skip_time_dosurf )  THEN
1763             CALL surface_data_output( 0 )
1764             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1765          ENDIF
1766          IF ( time_dosurf_av >= dt_dosurf_av  .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1767             CALL surface_data_output( 1 )
1768             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1769          ENDIF
1770       ENDIF
1771
1772!
1773!--    Output of particle time series
1774       IF ( particle_advection )  THEN
1775          IF ( time_dopts >= dt_dopts  .OR.                                                        &
1776               ( time_since_reference_point >= particle_advection_start  .AND.                     &
1777                 first_call_lpm ) )  THEN
1778             CALL data_output_ptseries
1779             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1780          ENDIF
1781       ENDIF
1782
1783!
1784!--    Output of dvrp-graphics (isosurface, particles, slicer)
1785#if defined( __dvrp_graphics )
1786       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
1787#endif
1788       IF ( time_dvrp >= dt_dvrp )  THEN
1789          CALL data_output_dvrp
1790          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
1791       ENDIF
1792#if defined( __dvrp_graphics )
1793       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
1794#endif
1795
1796!
1797!--    If required, set the heat flux for the next time step to a random value
1798       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
1799          IF ( surf_def_h(0)%ns >= 1 )  THEN
1800             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1801             CALL disturb_heatflux( surf_def_h(0) )
1802             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1803          ENDIF
1804          IF ( surf_lsm_h%ns    >= 1 )  THEN
1805             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1806             CALL disturb_heatflux( surf_lsm_h    )
1807             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1808          ENDIF
1809          IF ( surf_usm_h%ns    >= 1 )  THEN
1810             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1811             CALL disturb_heatflux( surf_usm_h    )
1812             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1813          ENDIF
1814       ENDIF
1815
1816!
1817!--    Execute alle other module actions routunes
1818       CALL module_interface_actions( 'after_timestep' )
1819
1820!
1821!--    Determine size of next time step. Save timestep dt_3d because it is
1822!--    newly calculated in routine timestep, but required further below for
1823!--    steering the run control output interval
1824       dt_3d_old = dt_3d
1825       CALL timestep
1826
1827!
1828!--    Synchronize the timestep in case of nested run.
1829       IF ( nested_run )  THEN
1830!
1831!--       Synchronize by unifying the time step.
1832!--       Global minimum of all time-steps is used for all.
1833          CALL pmci_synchronize
1834       ENDIF
1835
1836!
1837!--    Computation and output of run control parameters.
1838!--    This is also done whenever perturbations have been imposed
1839       IF ( time_run_control >= dt_run_control  .OR.                                               &
1840            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created )                           &
1841       THEN
1842          CALL run_control
1843          IF ( time_run_control >= dt_run_control )  THEN
1844             time_run_control = MOD( time_run_control, MAX( dt_run_control, dt_3d_old ) )
1845          ENDIF
1846       ENDIF
1847
1848!
1849!--    Output elapsed simulated time in form of a progress bar on stdout
1850       IF ( myid == 0 )  CALL output_progress_bar
1851
1852       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1853
1854
1855    ENDDO   ! time loop
1856
1857#if defined( _OPENACC )
1858    CALL exit_surface_arrays
1859#endif
1860!$ACC END DATA
1861!$ACC END DATA
1862!$ACC END DATA
1863!$ACC END DATA
1864!$ACC END DATA
1865!$ACC END DATA
1866!$ACC END DATA
1867
1868!
1869!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
1870    IF ( vnest_init )  CALL vnest_deallocate
1871
1872    IF ( myid == 0 )  CALL finish_progress_bar
1873
1874#if defined( __dvrp_graphics )
1875    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
1876#endif
1877
1878    CALL location_message( 'finished time-stepping', .TRUE. )
1879
1880 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.