source: palm/trunk/SOURCE/time_integration.f90 @ 2157

Last change on this file since 2157 was 2119, checked in by raasch, 8 years ago

last commit documented

  • Property svn:keywords set to Id
File size: 39.9 KB
Line 
1!> @file time_integration.f90
2!------------------------------------------------------------------------------!
3! This file is part of PALM.
4!
5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2017 Leibniz Universitaet Hannover
18!------------------------------------------------------------------------------!
19!
20! Current revisions:
21! ------------------
22!
23!
24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 2119 2017-01-17 16:51:50Z suehring $
27!
28! 2118 2017-01-17 16:38:49Z raasch
29! OpenACC directives and related code removed
30!
31! 2050 2016-11-08 15:00:55Z gronemeier
32! Implement turbulent outflow condition
33!
34! 2031 2016-10-21 15:11:58Z knoop
35! renamed variable rho to rho_ocean
36!
37! 2011 2016-09-19 17:29:57Z kanani
38! Flag urban_surface is now defined in module control_parameters,
39! removed commented CALLs of global_min_max.
40!
41! 2007 2016-08-24 15:47:17Z kanani
42! Added CALLs for new urban surface model
43!
44! 2000 2016-08-20 18:09:15Z knoop
45! Forced header and separation lines into 80 columns
46!
47! 1976 2016-07-27 13:28:04Z maronga
48! Simplified calls to radiation model
49!
50! 1960 2016-07-12 16:34:24Z suehring
51! Separate humidity and passive scalar
52!
53! 1957 2016-07-07 10:43:48Z suehring
54! flight module added
55!
56! 1919 2016-05-27 14:51:23Z raasch
57! Initial version of purely vertical nesting introduced.
58!
59! 1918 2016-05-27 14:35:57Z raasch
60! determination of time step moved to the end of the time step loop,
61! the first time step is now always calculated before the time step loop (i.e.
62! also in case of restart runs)
63!
64! 1914 2016-05-26 14:44:07Z witha
65! Added call for wind turbine model
66!
67! 1878 2016-04-19 12:30:36Z hellstea
68! Synchronization for nested runs rewritten
69!
70! 1853 2016-04-11 09:00:35Z maronga
71! Adjusted for use with radiation_scheme = constant
72!
73! 1849 2016-04-08 11:33:18Z hoffmann
74! Adapted for modularization of microphysics
75!
76! 1833 2016-04-07 14:23:03Z raasch
77! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
78!
79! 1831 2016-04-07 13:15:51Z hoffmann
80! turbulence renamed collision_turbulence
81!
82! 1822 2016-04-07 07:49:42Z hoffmann
83! icloud_scheme replaced by microphysics_*
84!
85! 1808 2016-04-05 19:44:00Z raasch
86! output message in case unscheduled radiation calls removed
87!
88! 1797 2016-03-21 16:50:28Z raasch
89! introduction of different datatransfer modes
90!
91! 1791 2016-03-11 10:41:25Z raasch
92! call of pmci_update_new removed
93!
94! 1786 2016-03-08 05:49:27Z raasch
95! +module spectrum
96!
97! 1783 2016-03-06 18:36:17Z raasch
98! switch back of netcdf data format for mask output moved to the mask output
99! routine
100!
101! 1781 2016-03-03 15:12:23Z raasch
102! some pmc calls removed at the beginning (before timeloop),
103! pmc initialization moved to the main program
104!
105! 1764 2016-02-28 12:45:19Z raasch
106! PMC_ACTIVE flags removed,
107! bugfix: nest synchronization after first call of timestep
108!
109! 1762 2016-02-25 12:31:13Z hellstea
110! Introduction of nested domain feature
111!
112! 1736 2015-12-04 08:56:33Z raasch
113! no perturbations added to total domain if energy limit has been set zero
114!
115! 1691 2015-10-26 16:17:44Z maronga
116! Added option for spin-ups without land surface and radiation models. Moved calls
117! for radiation and lan surface schemes.
118!
119! 1682 2015-10-07 23:56:08Z knoop
120! Code annotations made doxygen readable
121!
122! 1671 2015-09-25 03:29:37Z raasch
123! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
124! for particles
125!
126! 1585 2015-04-30 07:05:52Z maronga
127! Moved call of radiation scheme. Added support for RRTM
128!
129! 1551 2015-03-03 14:18:16Z maronga
130! Added interface for different radiation schemes.
131!
132! 1496 2014-12-02 17:25:50Z maronga
133! Added calls for the land surface model and radiation scheme
134!
135! 1402 2014-05-09 14:25:13Z raasch
136! location messages modified
137!
138! 1384 2014-05-02 14:31:06Z raasch
139! location messages added
140!
141! 1380 2014-04-28 12:40:45Z heinze
142! CALL of nudge_ref added
143! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
144!
145! 1365 2014-04-22 15:03:56Z boeske
146! Reset sums_ls_l to zero at each timestep
147! +sums_ls_l
148! Calculation of reference state (previously in subroutine calc_mean_profile)
149
150! 1342 2014-03-26 17:04:47Z kanani
151! REAL constants defined as wp-kind
152!
153! 1320 2014-03-20 08:40:49Z raasch
154! ONLY-attribute added to USE-statements,
155! kind-parameters added to all INTEGER and REAL declaration statements,
156! kinds are defined in new module kinds,
157! old module precision_kind is removed,
158! revision history before 2012 removed,
159! comment fields (!:) to be used for variable explanations added to
160! all variable declaration statements
161! 1318 2014-03-17 13:35:16Z raasch
162! module interfaces removed
163!
164! 1308 2014-03-13 14:58:42Z fricke
165! +netcdf_data_format_save
166! For masked data, parallel netcdf output is not tested so far, hence
167! netcdf_data_format is switched back to non-paralell output.
168!
169! 1276 2014-01-15 13:40:41Z heinze
170! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
171!
172! 1257 2013-11-08 15:18:40Z raasch
173! acc-update-host directive for timestep removed
174!
175! 1241 2013-10-30 11:36:58Z heinze
176! Generalize calc_mean_profile for wider use
177! Determine shf and qsws in dependence on data from LSF_DATA
178! Determine ug and vg in dependence on data from LSF_DATA
179! 1221 2013-09-10 08:59:13Z raasch
180! host update of arrays before timestep is called
181!
182! 1179 2013-06-14 05:57:58Z raasch
183! mean profiles for reference state are only calculated if required,
184! small bugfix for background communication
185!
186! 1171 2013-05-30 11:27:45Z raasch
187! split of prognostic_equations deactivated (comment lines), for the time being
188!
189! 1128 2013-04-12 06:19:32Z raasch
190! asynchronous transfer of ghost point data realized for acc-optimized version:
191! prognostic_equations are first called two times for those points required for
192! the left-right and north-south exchange, respectively, and then for the
193! remaining points,
194! those parts requiring global communication moved from prognostic_equations to
195! here
196!
197! 1115 2013-03-26 18:16:16Z hoffmann
198! calculation of qr and nr is restricted to precipitation
199!
200! 1113 2013-03-10 02:48:14Z raasch
201! GPU-porting of boundary conditions,
202! openACC directives updated
203! formal parameter removed from routine boundary_conds
204!
205! 1111 2013-03-08 23:54:10Z raasch
206! +internal timestep counter for cpu statistics added,
207! openACC directives updated
208!
209! 1092 2013-02-02 11:24:22Z raasch
210! unused variables removed
211!
212! 1065 2012-11-22 17:42:36Z hoffmann
213! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
214!
215! 1053 2012-11-13 17:11:03Z hoffmann
216! exchange of ghost points for nr, qr added
217!
218! 1036 2012-10-22 13:43:42Z raasch
219! code put under GPL (PALM 3.9)
220!
221! 1019 2012-09-28 06:46:45Z raasch
222! non-optimized version of prognostic_equations removed
223!
224! 1015 2012-09-27 09:23:24Z raasch
225! +call of prognostic_equations_acc
226!
227! 1001 2012-09-13 14:08:46Z raasch
228! all actions concerning leapfrog- and upstream-spline-scheme removed
229!
230! 849 2012-03-15 10:35:09Z raasch
231! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
232!
233! 825 2012-02-19 03:03:44Z raasch
234! wang_collision_kernel renamed wang_kernel
235!
236! Revision 1.1  1997/08/11 06:19:04  raasch
237! Initial revision
238!
239!
240! Description:
241! ------------
242!> Integration in time of the model equations, statistical analysis and graphic
243!> output
244!------------------------------------------------------------------------------!
245 SUBROUTINE time_integration
246 
247
248    USE advec_ws,                                                              &
249        ONLY:  ws_statistics
250
251    USE arrays_3d,                                                             &
252        ONLY:  diss, dzu, e, e_p, nr_p, prho, pt, pt_p, pt_init, q_init, q,    &
253               ql, ql_c, ql_v, ql_vp, qr_p, q_p, ref_state, rho_ocean, s, s_p, sa_p, &
254               tend, u, u_p, v, vpt, v_p, w, w_p
255
256    USE calc_mean_profile_mod,                                                 &
257        ONLY:  calc_mean_profile
258
259    USE control_parameters,                                                    &
260        ONLY:  advected_distance_x, advected_distance_y, average_count_3d,     &
261               averaging_interval, averaging_interval_pr,                      &
262               bc_lr_cyc, bc_ns_cyc, bc_pt_t_val,                              &
263               bc_q_t_val, call_psolver_at_all_substeps, cloud_droplets,       &
264               cloud_physics, constant_flux_layer, constant_heatflux,          &
265               create_disturbances, dopr_n, constant_diffusion, coupling_mode, &
266               coupling_start_time, current_timestep_number,                   &
267               disturbance_created, disturbance_energy_limit, dist_range,      &
268               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr,       &
269               dt_coupling, dt_data_output_av, dt_disturb, dt_do2d_xy,         &
270               dt_do2d_xz, dt_do2d_yz, dt_do3d, dt_domask,dt_dopts, dt_dopr,   &
271               dt_dopr_listing, dt_dots, dt_dvrp, dt_run_control,              &
272               end_time, first_call_lpm, galilei_transformation, humidity,     &
273               intermediate_timestep_count,                                    &
274               intermediate_timestep_count_max, large_scale_forcing,           &
275               loop_optimization, lsf_surf, lsf_vert, masks,                   &
276               microphysics_seifert, mid, nest_domain,                         &
277               neutral, nr_timesteps_this_run, nudging,                        &
278               ocean, passive_scalar,                                          &
279               prho_reference, pt_reference, pt_slope_offset, random_heatflux, &
280               run_coupled, simulated_time, simulated_time_chr,                &
281               skip_time_do2d_xy, skip_time_do2d_xz, skip_time_do2d_yz,        &
282               skip_time_do3d, skip_time_domask, skip_time_dopr,               &
283               skip_time_data_output_av, sloping_surface,                      &
284               stop_dt, terminate_coupled, terminate_run, timestep_scheme,     &
285               time_coupling, time_do2d_xy, time_do2d_xz, time_do2d_yz,        &
286               time_do3d, time_domask, time_dopr, time_dopr_av,                &
287               time_dopr_listing, time_dopts, time_dosp, time_dosp_av,         &
288               time_dots, time_do_av, time_do_sla, time_disturb, time_dvrp,    &
289               time_run_control, time_since_reference_point,                   &
290               turbulent_inflow, turbulent_outflow, urban_surface,             &
291               use_initial_profile_as_reference,                               &
292               use_single_reference_value, u_gtrans, v_gtrans, virtual_flight, &
293               ws_scheme_mom, ws_scheme_sca
294
295    USE cpulog,                                                                &
296        ONLY:  cpu_log, log_point, log_point_s
297
298    USE flight_mod,                                                            &
299        ONLY:  flight_measurement
300
301
302    USE indices,                                                               &
303        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt, &
304               nzb_u_inner, nzb_v_inner
305
306    USE interaction_droplets_ptq_mod,                                          &
307        ONLY:  interaction_droplets_ptq
308
309    USE interfaces
310
311    USE kinds
312
313    USE land_surface_model_mod,                                                &
314        ONLY:  land_surface, lsm_energy_balance, lsm_soil_model,               &
315               skip_time_do_lsm
316
317    USE ls_forcing_mod,                                                        &
318        ONLY:  ls_forcing_surf, ls_forcing_vert
319
320    USE microphysics_mod,                                                      &
321        ONLY: collision_turbulence
322
323    USE nudge_mod,                                                             &
324        ONLY:  calc_tnudge, nudge_ref
325
326    USE particle_attributes,                                                   &
327        ONLY:  particle_advection, particle_advection_start,                   &
328               use_sgs_for_particles, wang_kernel
329
330    USE pegrid
331
332    USE pmc_interface,                                                         &
333        ONLY:  nested_run, nesting_mode, pmci_datatrans,                       &
334               pmci_ensure_nest_mass_conservation, pmci_synchronize
335
336    USE production_e_mod,                                                      &
337        ONLY:  production_e_init
338
339    USE progress_bar,                                                          &
340        ONLY:  finish_progress_bar, output_progress_bar
341
342    USE prognostic_equations_mod,                                              &
343        ONLY:  prognostic_equations_cache, prognostic_equations_vector
344
345    USE radiation_model_mod,                                                   &
346        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,&
347              skip_time_do_radiation, time_radiation
348
349    USE spectra_mod,                                                           &
350        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp,  &
351              skip_time_dosp
352
353    USE statistics,                                                            &
354        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l, u_max,         &
355               u_max_ijk, v_max, v_max_ijk, w_max, w_max_ijk
356
357    USE surface_layer_fluxes_mod,                                              &
358        ONLY:  surface_layer_fluxes
359
360    USE urban_surface_mod,                                                     &
361        ONLY:  usm_material_heat_model, usm_material_model,     &
362               usm_radiation, usm_surface_energy_balance             
363
364    USE user_actions_mod,                                                      &
365        ONLY:  user_actions
366
367    USE wind_turbine_model_mod,                                                &
368        ONLY:  wind_turbine, wtm_forces
369
370    IMPLICIT NONE
371
372    CHARACTER (LEN=9) ::  time_to_string          !<
373
374    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
375                            !< steering of run control output interval
376
377!
378!-- At beginning determine the first time step
379    CALL timestep
380
381!
382!-- Synchronize the timestep in case of nested run.
383    IF ( nested_run )  THEN
384!
385!--    Synchronization by unifying the time step.
386!--    Global minimum of all time-steps is used for all.
387       CALL pmci_synchronize
388    ENDIF
389
390!
391!-- Determine and print out the run control quantities before the first time
392!-- step of this run. For the initial run, some statistics (e.g. divergence)
393!-- need to be determined first.
394    IF ( simulated_time == 0.0_wp )  CALL flow_statistics
395    CALL run_control
396
397!
398!-- Data exchange between coupled models in case that a call has been omitted
399!-- at the end of the previous run of a job chain.
400    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled )  THEN
401!
402!--    In case of model termination initiated by the local model the coupler
403!--    must not be called because this would again cause an MPI hang.
404       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
405          CALL surface_coupler
406          time_coupling = time_coupling - dt_coupling
407       ENDDO
408       IF (time_coupling == 0.0_wp  .AND.                                      &
409           time_since_reference_point < dt_coupling )                          &
410       THEN
411          time_coupling = time_since_reference_point
412       ENDIF
413    ENDIF
414
415#if defined( __dvrp_graphics )
416!
417!-- Time measurement with dvrp software 
418    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
419#endif
420
421    CALL location_message( 'start with time-stepping', .TRUE. )
422!
423!-- Start of the time loop
424    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. &
425                .NOT. terminate_run )
426
427       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
428
429!
430!--    Determine ug, vg and w_subs in dependence on data from external file
431!--    LSF_DATA
432       IF ( large_scale_forcing .AND. lsf_vert )  THEN
433           CALL ls_forcing_vert ( simulated_time )
434           sums_ls_l = 0.0_wp
435       ENDIF
436
437!
438!--    Set pt_init and q_init to the current profiles taken from
439!--    NUDGING_DATA
440       IF ( nudging )  THEN
441           CALL nudge_ref ( simulated_time )
442!
443!--        Store temperature gradient at the top boundary for possible Neumann
444!--        boundary condition
445           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
446           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
447       ENDIF
448
449!
450!--    Execute the user-defined actions
451       CALL user_actions( 'before_timestep' )
452
453!
454!--    Calculate forces by wind turbines
455       IF ( wind_turbine )  THEN
456
457          CALL cpu_log( log_point(55), 'wind_turbine', 'start' )
458
459          CALL wtm_forces
460
461          CALL cpu_log( log_point(55), 'wind_turbine', 'stop' )
462
463       ENDIF       
464       
465!
466!--    Start of intermediate step loop
467       intermediate_timestep_count = 0
468       DO  WHILE ( intermediate_timestep_count < &
469                   intermediate_timestep_count_max )
470
471          intermediate_timestep_count = intermediate_timestep_count + 1
472
473!
474!--       Set the steering factors for the prognostic equations which depend
475!--       on the timestep scheme
476          CALL timestep_scheme_steering
477
478!
479!--       Calculate those variables needed in the tendency terms which need
480!--       global communication
481          IF ( .NOT. use_single_reference_value  .AND. &
482               .NOT. use_initial_profile_as_reference )  THEN
483!
484!--          Horizontally averaged profiles to be used as reference state in
485!--          buoyancy terms (WARNING: only the respective last call of
486!--          calc_mean_profile defines the reference state!)
487             IF ( .NOT. neutral )  THEN
488                CALL calc_mean_profile( pt, 4 )
489                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
490             ENDIF
491             IF ( ocean )  THEN
492                CALL calc_mean_profile( rho_ocean, 64 )
493                ref_state(:)  = hom(:,1,64,0)
494             ENDIF
495             IF ( humidity )  THEN
496                CALL calc_mean_profile( vpt, 44 )
497                ref_state(:)  = hom(:,1,44,0)
498             ENDIF
499
500          ENDIF
501
502          IF ( .NOT. constant_diffusion )  CALL production_e_init
503          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  &
504               intermediate_timestep_count == 1 )  CALL ws_statistics
505!
506!--       In case of nudging calculate current nudging time scale and horizontal
507!--       means of u, v, pt and q
508          IF ( nudging )  THEN
509             CALL calc_tnudge( simulated_time )
510             CALL calc_mean_profile( u, 1 )
511             CALL calc_mean_profile( v, 2 )
512             CALL calc_mean_profile( pt, 4 )
513             CALL calc_mean_profile( q, 41 )
514          ENDIF
515
516!
517!--       Solve the prognostic equations. A fast cache optimized version with
518!--       only one single loop is used in case of Piascek-Williams advection
519!--       scheme. NEC vector machines use a different version, because
520!--       in the other versions a good vectorization is prohibited due to
521!--       inlining problems.
522          IF ( loop_optimization == 'cache' )  THEN
523             CALL prognostic_equations_cache
524          ELSEIF ( loop_optimization == 'vector' )  THEN
525             CALL prognostic_equations_vector
526          ENDIF
527
528!
529!--       Particle transport/physics with the Lagrangian particle model
530!--       (only once during intermediate steps, because it uses an Euler-step)
531!--       ### particle model should be moved before prognostic_equations, in order
532!--       to regard droplet interactions directly
533          IF ( particle_advection  .AND.                         &
534               simulated_time >= particle_advection_start  .AND. &
535               intermediate_timestep_count == 1 )  THEN
536             CALL lpm
537             first_call_lpm = .FALSE.
538          ENDIF
539
540!
541!--       Interaction of droplets with temperature and specific humidity.
542!--       Droplet condensation and evaporation is calculated within
543!--       advec_particles.
544          IF ( cloud_droplets  .AND.  &
545               intermediate_timestep_count == intermediate_timestep_count_max )&
546          THEN
547             CALL interaction_droplets_ptq
548          ENDIF
549
550!
551!--       Exchange of ghost points (lateral boundary conditions)
552          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
553
554          CALL exchange_horiz( u_p, nbgp )
555          CALL exchange_horiz( v_p, nbgp )
556          CALL exchange_horiz( w_p, nbgp )
557          CALL exchange_horiz( pt_p, nbgp )
558          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
559          IF ( ocean )  THEN
560             CALL exchange_horiz( sa_p, nbgp )
561             CALL exchange_horiz( rho_ocean, nbgp )
562             CALL exchange_horiz( prho, nbgp )
563          ENDIF
564          IF ( humidity )  THEN
565             CALL exchange_horiz( q_p, nbgp )
566             IF ( cloud_physics .AND. microphysics_seifert )  THEN
567                CALL exchange_horiz( qr_p, nbgp )
568                CALL exchange_horiz( nr_p, nbgp )
569             ENDIF
570          ENDIF
571          IF ( cloud_droplets )  THEN
572             CALL exchange_horiz( ql, nbgp )
573             CALL exchange_horiz( ql_c, nbgp )
574             CALL exchange_horiz( ql_v, nbgp )
575             CALL exchange_horiz( ql_vp, nbgp )
576          ENDIF
577          IF ( wang_kernel  .OR.  collision_turbulence  .OR.                &
578               use_sgs_for_particles )  THEN
579             CALL exchange_horiz( diss, nbgp )
580          ENDIF
581          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
582
583          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
584
585!
586!--       Boundary conditions for the prognostic quantities (except of the
587!--       velocities at the outflow in case of a non-cyclic lateral wall)
588          CALL boundary_conds
589
590!
591!--       Swap the time levels in preparation for the next time step.
592          CALL swap_timelevel
593
594          IF ( nested_run )  THEN
595
596             CALL cpu_log( log_point(60), 'nesting', 'start' )
597!
598!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
599!--          and pmci_child_datatrans are called inside the wrapper
600!--          subroutine pmci_datatrans according to the control parameters
601!--          nesting_mode and nesting_datatransfer_mode.
602!--          TO_DO: why is nesting_mode given as a parameter here?
603             CALL pmci_datatrans( nesting_mode )
604
605             IF ( TRIM( nesting_mode ) == 'two-way' .OR.                               &
606                  nesting_mode == 'vertical' )  THEN
607!
608!--             Exchange_horiz is needed for all parent-domains after the
609!--             anterpolation
610                CALL exchange_horiz( u, nbgp )
611                CALL exchange_horiz( v, nbgp )
612                CALL exchange_horiz( w, nbgp )
613                IF ( .NOT. neutral            )  CALL exchange_horiz( pt, nbgp )
614                IF ( humidity                 )  CALL exchange_horiz( q, nbgp  )
615                IF ( passive_scalar           )  CALL exchange_horiz( s, nbgp  )
616                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp  )
617             ENDIF
618!
619!--          Correct the w top-BC in nest domains to ensure mass conservation.
620!--          This action must never be done for the root domain. Vertical
621!--          nesting implies mass conservation.
622             IF ( nest_domain )  THEN
623                CALL pmci_ensure_nest_mass_conservation
624             ENDIF
625
626             CALL cpu_log( log_point(60), 'nesting', 'stop' )
627
628          ENDIF
629
630!
631!--       Temperature offset must be imposed at cyclic boundaries in x-direction
632!--       when a sloping surface is used
633          IF ( sloping_surface )  THEN
634             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - &
635                                                    pt_slope_offset
636             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + &
637                                                    pt_slope_offset
638          ENDIF
639
640!
641!--       Impose a turbulent inflow using the recycling method
642          IF ( turbulent_inflow )  CALL  inflow_turbulence
643
644!
645!--       Set values at outflow boundary using the special outflow condition
646          IF ( turbulent_outflow )  CALL  outflow_turbulence
647
648!
649!--       Impose a random perturbation on the horizontal velocity field
650          IF ( create_disturbances  .AND.                                      &
651               ( call_psolver_at_all_substeps  .AND.                           &
652               intermediate_timestep_count == intermediate_timestep_count_max )&
653          .OR. ( .NOT. call_psolver_at_all_substeps  .AND.                     &
654               intermediate_timestep_count == 1 ) )                            &
655          THEN
656             time_disturb = time_disturb + dt_3d
657             IF ( time_disturb >= dt_disturb )  THEN
658                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                 &
659                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
660                   CALL disturb_field( nzb_u_inner, tend, u )
661                   CALL disturb_field( nzb_v_inner, tend, v )
662                ELSEIF ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )  THEN
663!
664!--                Runs with a non-cyclic lateral wall need perturbations
665!--                near the inflow throughout the whole simulation
666                   dist_range = 1
667                   CALL disturb_field( nzb_u_inner, tend, u )
668                   CALL disturb_field( nzb_v_inner, tend, v )
669                   dist_range = 0
670                ENDIF
671                time_disturb = time_disturb - dt_disturb
672             ENDIF
673          ENDIF
674
675!
676!--       Reduce the velocity divergence via the equation for perturbation
677!--       pressure.
678          IF ( intermediate_timestep_count == 1  .OR. &
679                call_psolver_at_all_substeps )  THEN
680             CALL pres
681          ENDIF
682
683!
684!--       If required, compute liquid water content
685          IF ( cloud_physics )  THEN
686             CALL calc_liquid_water_content
687          ENDIF
688!
689!--       If required, compute virtual potential temperature
690          IF ( humidity )  THEN
691             CALL compute_vpt 
692          ENDIF 
693
694!
695!--       Compute the diffusion quantities
696          IF ( .NOT. constant_diffusion )  THEN
697
698!
699!--          Determine surface fluxes shf and qsws and surface values
700!--          pt_surface and q_surface in dependence on data from external
701!--          file LSF_DATA respectively
702             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND. &
703                 intermediate_timestep_count == intermediate_timestep_count_max )&
704             THEN
705                CALL ls_forcing_surf ( simulated_time )
706             ENDIF
707
708!
709!--          First the vertical fluxes in the surface (constant flux) layer are computed
710             IF ( constant_flux_layer )  THEN
711                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
712                CALL surface_layer_fluxes
713                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
714             ENDIF
715
716!
717!--          If required, solve the energy balance for the surface and run soil
718!--          model
719             IF ( land_surface .AND. simulated_time > skip_time_do_lsm)  THEN
720
721                CALL cpu_log( log_point(54), 'land_surface', 'start' )
722                CALL lsm_energy_balance
723                CALL lsm_soil_model
724                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
725             ENDIF
726
727!
728!--          If required, solve the energy balance for urban surfaces and run
729!--          the material heat model
730             IF (urban_surface) THEN
731                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
732                CALL usm_surface_energy_balance
733                IF ( usm_material_model )  THEN
734                   CALL usm_material_heat_model
735                ENDIF
736                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
737             ENDIF
738
739!
740!--          Compute the diffusion coefficients
741             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
742             IF ( .NOT. humidity ) THEN
743                IF ( ocean )  THEN
744                   CALL diffusivities( prho, prho_reference )
745                ELSE
746                   CALL diffusivities( pt, pt_reference )
747                ENDIF
748             ELSE
749                CALL diffusivities( vpt, pt_reference )
750             ENDIF
751             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
752
753          ENDIF
754
755!
756!--       If required, calculate radiative fluxes and heating rates
757          IF ( radiation .AND. intermediate_timestep_count                     &
758               == intermediate_timestep_count_max .AND. simulated_time >    &
759               skip_time_do_radiation )  THEN
760
761               time_radiation = time_radiation + dt_3d
762
763             IF ( time_radiation >= dt_radiation .OR. force_radiation_call )   &
764             THEN
765
766                CALL cpu_log( log_point(50), 'radiation', 'start' )
767
768                IF ( .NOT. force_radiation_call )  THEN
769                   time_radiation = time_radiation - dt_radiation
770                ENDIF
771
772                CALL radiation_control
773
774                CALL cpu_log( log_point(50), 'radiation', 'stop' )
775
776                IF (urban_surface)  THEN
777                   CALL cpu_log( log_point(75), 'usm_radiation', 'start' )
778                   CALL usm_radiation
779                   CALL cpu_log( log_point(75), 'usm_radiation', 'stop' )
780                ENDIF
781
782             ENDIF
783          ENDIF
784
785       ENDDO   ! Intermediate step loop
786
787!
788!--    Increase simulation time and output times
789       nr_timesteps_this_run      = nr_timesteps_this_run + 1
790       current_timestep_number    = current_timestep_number + 1
791       simulated_time             = simulated_time   + dt_3d
792       simulated_time_chr         = time_to_string( simulated_time )
793       time_since_reference_point = simulated_time - coupling_start_time
794
795
796
797       IF ( simulated_time >= skip_time_data_output_av )  THEN
798          time_do_av         = time_do_av       + dt_3d
799       ENDIF
800       IF ( simulated_time >= skip_time_do2d_xy )  THEN
801          time_do2d_xy       = time_do2d_xy     + dt_3d
802       ENDIF
803       IF ( simulated_time >= skip_time_do2d_xz )  THEN
804          time_do2d_xz       = time_do2d_xz     + dt_3d
805       ENDIF
806       IF ( simulated_time >= skip_time_do2d_yz )  THEN
807          time_do2d_yz       = time_do2d_yz     + dt_3d
808       ENDIF
809       IF ( simulated_time >= skip_time_do3d    )  THEN
810          time_do3d          = time_do3d        + dt_3d
811       ENDIF
812       DO  mid = 1, masks
813          IF ( simulated_time >= skip_time_domask(mid) )  THEN
814             time_domask(mid)= time_domask(mid) + dt_3d
815          ENDIF
816       ENDDO
817       time_dvrp          = time_dvrp        + dt_3d
818       IF ( simulated_time >= skip_time_dosp )  THEN
819          time_dosp       = time_dosp        + dt_3d
820       ENDIF
821       time_dots          = time_dots        + dt_3d
822       IF ( .NOT. first_call_lpm )  THEN
823          time_dopts      = time_dopts       + dt_3d
824       ENDIF
825       IF ( simulated_time >= skip_time_dopr )  THEN
826          time_dopr       = time_dopr        + dt_3d
827       ENDIF
828       time_dopr_listing          = time_dopr_listing        + dt_3d
829       time_run_control   = time_run_control + dt_3d
830
831!
832!--    Data exchange between coupled models
833       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled )  THEN
834          time_coupling = time_coupling + dt_3d
835
836!
837!--       In case of model termination initiated by the local model
838!--       (terminate_coupled > 0), the coupler must be skipped because it would
839!--       cause an MPI intercomminucation hang.
840!--       If necessary, the coupler will be called at the beginning of the
841!--       next restart run.
842          DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 )
843             CALL surface_coupler
844             time_coupling = time_coupling - dt_coupling
845          ENDDO
846       ENDIF
847
848!
849!--    Execute user-defined actions
850       CALL user_actions( 'after_integration' )
851
852!
853!--    If Galilei transformation is used, determine the distance that the
854!--    model has moved so far
855       IF ( galilei_transformation )  THEN
856          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
857          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
858       ENDIF
859
860!
861!--    Check, if restart is necessary (because cpu-time is expiring or
862!--    because it is forced by user) and set stop flag
863!--    This call is skipped if the remote model has already initiated a restart.
864       IF ( .NOT. terminate_run )  CALL check_for_restart
865
866!
867!--    Carry out statistical analysis and output at the requested output times.
868!--    The MOD function is used for calculating the output time counters (like
869!--    time_dopr) in order to regard a possible decrease of the output time
870!--    interval in case of restart runs
871
872!
873!--    Set a flag indicating that so far no statistics have been created
874!--    for this time step
875       flow_statistics_called = .FALSE.
876
877!
878!--    If required, call flow_statistics for averaging in time
879       IF ( averaging_interval_pr /= 0.0_wp  .AND.  &
880            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.  &
881            simulated_time >= skip_time_dopr )  THEN
882          time_dopr_av = time_dopr_av + dt_3d
883          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
884             do_sum = .TRUE.
885             time_dopr_av = MOD( time_dopr_av, &
886                                    MAX( dt_averaging_input_pr, dt_3d ) )
887          ENDIF
888       ENDIF
889       IF ( do_sum )  CALL flow_statistics
890
891!
892!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
893       IF ( averaging_interval /= 0.0_wp  .AND.                                &
894            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND. &
895            simulated_time >= skip_time_data_output_av )                    &
896       THEN
897          time_do_sla = time_do_sla + dt_3d
898          IF ( time_do_sla >= dt_averaging_input )  THEN
899             CALL sum_up_3d_data
900             average_count_3d = average_count_3d + 1
901             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
902          ENDIF
903       ENDIF
904
905!
906!--    Calculate spectra for time averaging
907       IF ( averaging_interval_sp /= 0.0_wp  .AND.  &
908            ( dt_dosp - time_dosp ) <= averaging_interval_sp  .AND.  &
909            simulated_time >= skip_time_dosp )  THEN
910          time_dosp_av = time_dosp_av + dt_3d
911          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
912             CALL calc_spectra
913             time_dosp_av = MOD( time_dosp_av, &
914                                 MAX( dt_averaging_input_pr, dt_3d ) )
915          ENDIF
916       ENDIF
917
918!
919!--    Call flight module and output data
920       IF ( virtual_flight )  THEN
921          CALL flight_measurement
922          CALL data_output_flight
923       ENDIF
924
925!
926!--    Profile output (ASCII) on file
927       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
928          CALL print_1d
929          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, &
930                                                           dt_3d ) )
931       ENDIF
932
933!
934!--    Graphic output for PROFIL
935       IF ( time_dopr >= dt_dopr )  THEN
936          IF ( dopr_n /= 0 )  CALL data_output_profiles
937          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
938          time_dopr_av = 0.0_wp    ! due to averaging (see above)
939       ENDIF
940
941!
942!--    Graphic output for time series
943       IF ( time_dots >= dt_dots )  THEN
944          CALL data_output_tseries
945          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
946       ENDIF
947
948!
949!--    Output of spectra (formatted for use with PROFIL), in case of no
950!--    time averaging, spectra has to be calculated before
951       IF ( time_dosp >= dt_dosp )  THEN
952          IF ( average_count_sp == 0 )  CALL calc_spectra
953          CALL data_output_spectra
954          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
955       ENDIF
956
957!
958!--    2d-data output (cross-sections)
959       IF ( time_do2d_xy >= dt_do2d_xy )  THEN
960          CALL data_output_2d( 'xy', 0 )
961          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
962       ENDIF
963       IF ( time_do2d_xz >= dt_do2d_xz )  THEN
964          CALL data_output_2d( 'xz', 0 )
965          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
966       ENDIF
967       IF ( time_do2d_yz >= dt_do2d_yz )  THEN
968          CALL data_output_2d( 'yz', 0 )
969          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
970       ENDIF
971
972!
973!--    3d-data output (volume data)
974       IF ( time_do3d >= dt_do3d )  THEN
975          CALL data_output_3d( 0 )
976          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
977       ENDIF
978
979!
980!--    Masked data output
981       DO  mid = 1, masks
982          IF ( time_domask(mid) >= dt_domask(mid) )  THEN
983             CALL data_output_mask( 0 )
984             time_domask(mid) = MOD( time_domask(mid),  &
985                                     MAX( dt_domask(mid), dt_3d ) )
986          ENDIF
987       ENDDO
988
989!
990!--    Output of time-averaged 2d/3d/masked data
991       IF ( time_do_av >= dt_data_output_av )  THEN
992          CALL average_3d_data
993          CALL data_output_2d( 'xy', 1 )
994          CALL data_output_2d( 'xz', 1 )
995          CALL data_output_2d( 'yz', 1 )
996          CALL data_output_3d( 1 )
997          DO  mid = 1, masks
998             CALL data_output_mask( 1 )
999          ENDDO
1000          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1001       ENDIF
1002
1003!
1004!--    Output of particle time series
1005       IF ( particle_advection )  THEN
1006          IF ( time_dopts >= dt_dopts  .OR. &
1007               ( simulated_time >= particle_advection_start  .AND. &
1008                 first_call_lpm ) )  THEN
1009             CALL data_output_ptseries
1010             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1011          ENDIF
1012       ENDIF
1013
1014!
1015!--    Output of dvrp-graphics (isosurface, particles, slicer)
1016#if defined( __dvrp_graphics )
1017       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
1018#endif
1019       IF ( time_dvrp >= dt_dvrp )  THEN
1020          CALL data_output_dvrp
1021          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
1022       ENDIF
1023#if defined( __dvrp_graphics )
1024       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
1025#endif
1026
1027!
1028!--    If required, set the heat flux for the next time step at a random value
1029       IF ( constant_heatflux  .AND.  random_heatflux )  CALL disturb_heatflux
1030
1031!
1032!--    Execute user-defined actions
1033       CALL user_actions( 'after_timestep' )
1034
1035!
1036!--    Determine size of next time step. Save timestep dt_3d because it is
1037!--    newly calculated in routine timestep, but required further below for
1038!--    steering the run control output interval
1039       dt_3d_old = dt_3d
1040       CALL timestep
1041
1042!
1043!--    Synchronize the timestep in case of nested run.
1044       IF ( nested_run )  THEN
1045!
1046!--       Synchronize by unifying the time step.
1047!--       Global minimum of all time-steps is used for all.
1048          CALL pmci_synchronize
1049       ENDIF
1050
1051!
1052!--    Computation and output of run control parameters.
1053!--    This is also done whenever perturbations have been imposed
1054       IF ( time_run_control >= dt_run_control  .OR.                     &
1055            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created ) &
1056       THEN
1057          CALL run_control
1058          IF ( time_run_control >= dt_run_control )  THEN
1059             time_run_control = MOD( time_run_control, &
1060                                     MAX( dt_run_control, dt_3d_old ) )
1061          ENDIF
1062       ENDIF
1063
1064!
1065!--    Output elapsed simulated time in form of a progress bar on stdout
1066       IF ( myid == 0 )  CALL output_progress_bar
1067
1068       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1069
1070
1071    ENDDO   ! time loop
1072
1073    IF ( myid == 0 )  CALL finish_progress_bar
1074
1075#if defined( __dvrp_graphics )
1076    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
1077#endif
1078
1079    CALL location_message( 'finished time-stepping', .TRUE. )
1080
1081 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.