source: palm/trunk/SOURCE/time_integration.f90 @ 3891

Last change on this file since 3891 was 3885, checked in by kanani, 6 years ago

restructure/add location/debug messages

  • Property svn:keywords set to Id
File size: 74.5 KB
Line 
1!> @file time_integration.f90
2!------------------------------------------------------------------------------!
3! This file is part of the PALM model system.
4!
5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2019 Leibniz Universitaet Hannover
18!------------------------------------------------------------------------------!
19!
20! Current revisions:
21! ------------------
22!
23!
24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 3885 2019-04-11 11:29:34Z suehring $
27! Changes related to global restructuring of location messages and introduction
28! of additional debug messages
29!
30! 3879 2019-04-08 20:25:23Z knoop
31! Moved wtm_forces to module_interface_actions
32!
33! 3872 2019-04-08 15:03:06Z knoop
34! Modifications made for salsa:
35! - Call salsa_emission_update at each time step but do the checks within
36!   salsa_emission_update (i.e. skip_time_do_salsa >= time_since_reference_point
37!   and next_aero_emission_update <= time_since_reference_point ).
38! - Renamed nbins --> nbins_aerosol, ncc_tot --> ncomponents_mass and
39!   ngast --> ngases_salsa and loop indices b, c and sg to ib, ic and ig
40! - Apply nesting for salsa variables
41! - Removed cpu_log calls speciffic for salsa.
42!
43! 3833 2019-03-28 15:04:04Z forkel
44! added USE chem_gasphase_mod, replaced nspec by nspec since fixed compounds are not integrated
45!
46! 3820 2019-03-27 11:53:41Z forkel
47! renamed do_emiss to emissions_anthropogenic (ecc)
48!
49!
50! 3774 2019-03-04 10:52:49Z moh.hefny
51! rephrase if statement to avoid unallocated array in case of
52! nesting_offline is false (crashing during debug mode)
53!
54! 3761 2019-02-25 15:31:42Z raasch $
55! module section re-formatted and openacc required variables moved to separate section,
56! re-formatting to 100 char line width
57!
58! 3745 2019-02-15 18:57:56Z suehring
59! Call indoor model after first timestep
60!
61! 3744 2019-02-15 18:38:58Z suehring
62! - Moved call of bio_calculate_thermal_index_maps from biometeorology module to
63! time_integration to make sure averaged input is updated before calculating.
64!
65! 3739 2019-02-13 08:05:17Z dom_dwd_user
66! Removed everything related to "time_bio_results" as this is never used.
67!
68! 3724 2019-02-06 16:28:23Z kanani
69! Correct double-used log_point_s unit
70!
71! 3719 2019-02-06 13:10:18Z kanani
72! - removed wind_turbine cpu measurement, since same time is measured inside
73!   wtm_forces subroutine as special measures
74! - moved the numerous vnest cpulog to special measures
75! - extended radiation cpulog over entire radiation part,
76!   moved radiation_interactions cpulog to special measures
77! - moved some cpu_log calls to this routine for better overview
78!
79! 3705 2019-01-29 19:56:39Z suehring
80! Data output for virtual measurements added
81!
82! 3704 2019-01-29 19:51:41Z suehring
83! Rename subroutines for surface-data output
84!
85! 3647 2019-01-02 14:10:44Z kanani
86! Bugfix: add time_since_reference_point to IF clause for data_output calls
87! (otherwise skip_time_* values don't come into affect with dt_do* = 0.0).
88! Clean up indoor_model and biometeorology model call.
89!
90! 3646 2018-12-28 17:58:49Z kanani
91! Bugfix: use time_since_reference_point instead of simulated_time where
92! required (relevant when using wall/soil spinup)
93!
94! 3634 2018-12-18 12:31:28Z knoop
95! OpenACC port for SPEC
96!
97! 3597 2018-12-04 08:40:18Z maronga
98! Removed call to calculation of near air (10 cm) potential temperature (now in
99! surface layer fluxes)
100!
101! 3589 2018-11-30 15:09:51Z suehring
102! Move the control parameter "salsa" from salsa_mod to control_parameters
103! (M. Kurppa)
104!
105! 3582 2018-11-29 19:16:36Z suehring
106! dom_dwd_user, Schrempf:
107! Changes due to merge of uv exposure model into biometeorology_mod.
108!
109! 3525 2018-11-14 16:06:14Z kanani
110! Changes related to clean-up of biometeorology (dom_dwd_user)
111!
112! 3524 2018-11-14 13:36:44Z raasch
113! unused variables removed
114!
115! 3484 2018-11-02 14:41:25Z hellstea
116! pmci_ensure_nest_mass_conservation is premanently removed
117!
118! 3473 2018-10-30 20:50:15Z suehring
119! new module for virtual measurements introduced
120!
121! 3472 2018-10-30 20:43:50Z suehring
122! Add indoor model (kanani, srissman, tlang)
123!
124! 3467 2018-10-30 19:05:21Z suehring
125! Implementation of a new aerosol module salsa.
126!
127! 3448 2018-10-29 18:14:31Z kanani
128! Add biometeorology
129!
130! 3421 2018-10-24 18:39:32Z gronemeier
131! Surface data output
132!
133! 3418 2018-10-24 16:07:39Z kanani
134! call to material_heat_model now with check if spinup runs (rvtils)
135!
136! 3378 2018-10-19 12:34:59Z kanani
137! merge from radiation branch (r3362) into trunk
138! (moh.hefny):
139! Bugfix in the if statement to call radiation_interaction
140!
141! 3347 2018-10-15 14:21:08Z suehring
142! - offline nesting separated from large-scale forcing module
143! - changes for synthetic turbulence generator
144!
145! 3343 2018-10-15 10:38:52Z suehring
146! - Formatting, clean-up, comments (kanani)
147! - Added CALL to chem_emissions_setup (Russo)
148! - Code added for decycling chemistry (basit)
149!
150! 3294 2018-10-01 02:37:10Z raasch
151! changes concerning modularization of ocean option
152!
153! 3274 2018-09-24 15:42:55Z knoop
154! Modularization of all bulk cloud physics code components
155!
156! 3241 2018-09-12 15:02:00Z raasch
157! unused variables removed
158!
159! 3198 2018-08-15 09:23:10Z sward
160! Added multi_agent_system_end; defined start time for MAS relative to
161! time_since_reference_point
162!
163! 3183 2018-07-27 14:25:55Z suehring
164! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
165! Rename subroutines and variables in COSMO nesting mode
166!
167! 3182 2018-07-27 13:36:03Z suehring
168! Added multi agent system
169!
170! 3042 2018-05-25 10:44:37Z schwenkel
171! Changed the name specific humidity to mixing ratio
172!
173! 3040 2018-05-25 10:22:08Z schwenkel
174! Fixed bug in IF statement
175! Ensure that the time when calling the radiation to be the time step of the
176! pre-calculated time when first calculate the positions of the sun
177!
178! 3004 2018-04-27 12:33:25Z Giersch
179! First call of flow_statistics has been removed. It is already called in
180! run_control itself
181!
182! 2984 2018-04-18 11:51:30Z hellstea
183! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
184! as seemingly unnecessary.
185!
186! 2941 2018-04-03 11:54:58Z kanani
187! Deduct spinup_time from RUN_CONTROL output of main 3d run
188! (use time_since_reference_point instead of simulated_time)
189!
190! 2938 2018-03-27 15:52:42Z suehring
191! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
192!
193! 2936 2018-03-27 14:49:27Z suehring
194! Little formatting adjustment.
195!
196! 2817 2018-02-19 16:32:21Z knoop
197! Preliminary gust module interface implemented
198!
199! 2801 2018-02-14 16:01:55Z thiele
200! Changed lpm from subroutine to module.
201! Introduce particle transfer in nested models.
202!
203! 2776 2018-01-31 10:44:42Z Giersch
204! Variable use_synthetic_turbulence_generator has been abbreviated
205!
206! 2773 2018-01-30 14:12:54Z suehring
207! - Nesting for chemical species
208!
209! 2766 2018-01-22 17:17:47Z kanani
210! Removed preprocessor directive __chem
211!
212! 2718 2018-01-02 08:49:38Z maronga
213! Corrected "Former revisions" section
214!
215! 2696 2017-12-14 17:12:51Z kanani
216! - Change in file header (GPL part)
217! - Implementation of uv exposure model (FK)
218! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
219! - renamed diffusivities to tcm_diffusivities (TG)
220! - implement prognostic equation for diss (TG)
221! - Moved/commented CALL to chem_emissions (FK)
222! - Added CALL to chem_emissions (FK)
223! - Implementation of chemistry module (FK)
224! - Calls for setting boundary conditions in USM and LSM (MS)
225! - Large-scale forcing with larger-scale models implemented (MS)
226! - Rename usm_radiation into radiation_interactions; merge with branch
227!   radiation (MS)
228! - added call for usm_green_heat_model for green building surfaces (RvT)
229! - added call for usm_temperature_near_surface for use in indoor model (RvT)
230!
231! 2617 2017-11-16 12:47:24Z suehring
232! Bugfix, assure that the reference state does not become zero.
233!
234! 2563 2017-10-19 15:36:10Z Giersch
235! Variable wind_turbine moved to module control_parameters
236!
237! 2365 2017-08-21 14:59:59Z kanani
238! Vertical grid nesting implemented (SadiqHuq)
239!
240! 2320 2017-07-21 12:47:43Z suehring
241! Set bottom boundary conditions after nesting interpolation and anterpolation
242!
243! 2299 2017-06-29 10:14:38Z maronga
244! Call of soil model adjusted
245!
246! 2292 2017-06-20 09:51:42Z schwenkel
247! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
248! includes two more prognostic equations for cloud drop concentration (nc) 
249! and cloud water content (qc).
250!
251! 2271 2017-06-09 12:34:55Z sward
252! Start timestep message changed
253!
254! 2259 2017-06-08 09:09:11Z gronemeier
255! Implemented synthetic turbulence generator
256!
257! 2233 2017-05-30 18:08:54Z suehring
258!
259! 2232 2017-05-30 17:47:52Z suehring
260! Adjustments to new topography and surface concept
261! Modify passed parameters for disturb_field
262!
263! 2178 2017-03-17 11:07:39Z hellstea
264! Setting perturbations at all times near inflow boundary is removed
265! in case of nested boundaries
266!
267! 2174 2017-03-13 08:18:57Z maronga
268! Added support for nesting with cloud microphysics
269!
270! 2118 2017-01-17 16:38:49Z raasch
271! OpenACC directives and related code removed
272!
273! 2050 2016-11-08 15:00:55Z gronemeier
274! Implement turbulent outflow condition
275!
276! 2031 2016-10-21 15:11:58Z knoop
277! renamed variable rho to rho_ocean
278!
279! 2011 2016-09-19 17:29:57Z kanani
280! Flag urban_surface is now defined in module control_parameters,
281! removed commented CALLs of global_min_max.
282!
283! 2007 2016-08-24 15:47:17Z kanani
284! Added CALLs for new urban surface model
285!
286! 2000 2016-08-20 18:09:15Z knoop
287! Forced header and separation lines into 80 columns
288!
289! 1976 2016-07-27 13:28:04Z maronga
290! Simplified calls to radiation model
291!
292! 1960 2016-07-12 16:34:24Z suehring
293! Separate humidity and passive scalar
294!
295! 1957 2016-07-07 10:43:48Z suehring
296! flight module added
297!
298! 1919 2016-05-27 14:51:23Z raasch
299! Initial version of purely vertical nesting introduced.
300!
301! 1918 2016-05-27 14:35:57Z raasch
302! determination of time step moved to the end of the time step loop,
303! the first time step is now always calculated before the time step loop (i.e.
304! also in case of restart runs)
305!
306! 1914 2016-05-26 14:44:07Z witha
307! Added call for wind turbine model
308!
309! 1878 2016-04-19 12:30:36Z hellstea
310! Synchronization for nested runs rewritten
311!
312! 1853 2016-04-11 09:00:35Z maronga
313! Adjusted for use with radiation_scheme = constant
314!
315! 1849 2016-04-08 11:33:18Z hoffmann
316! Adapted for modularization of microphysics
317!
318! 1833 2016-04-07 14:23:03Z raasch
319! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
320!
321! 1831 2016-04-07 13:15:51Z hoffmann
322! turbulence renamed collision_turbulence
323!
324! 1822 2016-04-07 07:49:42Z hoffmann
325! icloud_scheme replaced by microphysics_*
326!
327! 1808 2016-04-05 19:44:00Z raasch
328! output message in case unscheduled radiation calls removed
329!
330! 1797 2016-03-21 16:50:28Z raasch
331! introduction of different datatransfer modes
332!
333! 1791 2016-03-11 10:41:25Z raasch
334! call of pmci_update_new removed
335!
336! 1786 2016-03-08 05:49:27Z raasch
337! +module spectrum
338!
339! 1783 2016-03-06 18:36:17Z raasch
340! switch back of netcdf data format for mask output moved to the mask output
341! routine
342!
343! 1781 2016-03-03 15:12:23Z raasch
344! some pmc calls removed at the beginning (before timeloop),
345! pmc initialization moved to the main program
346!
347! 1764 2016-02-28 12:45:19Z raasch
348! PMC_ACTIVE flags removed,
349! bugfix: nest synchronization after first call of timestep
350!
351! 1762 2016-02-25 12:31:13Z hellstea
352! Introduction of nested domain feature
353!
354! 1736 2015-12-04 08:56:33Z raasch
355! no perturbations added to total domain if energy limit has been set zero
356!
357! 1691 2015-10-26 16:17:44Z maronga
358! Added option for spin-ups without land surface and radiation models. Moved calls
359! for radiation and lan surface schemes.
360!
361! 1682 2015-10-07 23:56:08Z knoop
362! Code annotations made doxygen readable
363!
364! 1671 2015-09-25 03:29:37Z raasch
365! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
366! for particles
367!
368! 1585 2015-04-30 07:05:52Z maronga
369! Moved call of radiation scheme. Added support for RRTM
370!
371! 1551 2015-03-03 14:18:16Z maronga
372! Added interface for different radiation schemes.
373!
374! 1496 2014-12-02 17:25:50Z maronga
375! Added calls for the land surface model and radiation scheme
376!
377! 1402 2014-05-09 14:25:13Z raasch
378! location messages modified
379!
380! 1384 2014-05-02 14:31:06Z raasch
381! location messages added
382!
383! 1380 2014-04-28 12:40:45Z heinze
384! CALL of nudge_ref added
385! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
386!
387! 1365 2014-04-22 15:03:56Z boeske
388! Reset sums_ls_l to zero at each timestep
389! +sums_ls_l
390! Calculation of reference state (previously in subroutine calc_mean_profile)
391
392! 1342 2014-03-26 17:04:47Z kanani
393! REAL constants defined as wp-kind
394!
395! 1320 2014-03-20 08:40:49Z raasch
396! ONLY-attribute added to USE-statements,
397! kind-parameters added to all INTEGER and REAL declaration statements,
398! kinds are defined in new module kinds,
399! old module precision_kind is removed,
400! revision history before 2012 removed,
401! comment fields (!:) to be used for variable explanations added to
402! all variable declaration statements
403! 1318 2014-03-17 13:35:16Z raasch
404! module interfaces removed
405!
406! 1308 2014-03-13 14:58:42Z fricke
407! +netcdf_data_format_save
408! For masked data, parallel netcdf output is not tested so far, hence
409! netcdf_data_format is switched back to non-paralell output.
410!
411! 1276 2014-01-15 13:40:41Z heinze
412! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
413!
414! 1257 2013-11-08 15:18:40Z raasch
415! acc-update-host directive for timestep removed
416!
417! 1241 2013-10-30 11:36:58Z heinze
418! Generalize calc_mean_profile for wider use
419! Determine shf and qsws in dependence on data from LSF_DATA
420! Determine ug and vg in dependence on data from LSF_DATA
421! 1221 2013-09-10 08:59:13Z raasch
422! host update of arrays before timestep is called
423!
424! 1179 2013-06-14 05:57:58Z raasch
425! mean profiles for reference state are only calculated if required,
426! small bugfix for background communication
427!
428! 1171 2013-05-30 11:27:45Z raasch
429! split of prognostic_equations deactivated (comment lines), for the time being
430!
431! 1128 2013-04-12 06:19:32Z raasch
432! asynchronous transfer of ghost point data realized for acc-optimized version:
433! prognostic_equations are first called two times for those points required for
434! the left-right and north-south exchange, respectively, and then for the
435! remaining points,
436! those parts requiring global communication moved from prognostic_equations to
437! here
438!
439! 1115 2013-03-26 18:16:16Z hoffmann
440! calculation of qr and nr is restricted to precipitation
441!
442! 1113 2013-03-10 02:48:14Z raasch
443! GPU-porting of boundary conditions,
444! openACC directives updated
445! formal parameter removed from routine boundary_conds
446!
447! 1111 2013-03-08 23:54:10Z raasch
448! +internal timestep counter for cpu statistics added,
449! openACC directives updated
450!
451! 1092 2013-02-02 11:24:22Z raasch
452! unused variables removed
453!
454! 1065 2012-11-22 17:42:36Z hoffmann
455! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
456!
457! 1053 2012-11-13 17:11:03Z hoffmann
458! exchange of ghost points for nr, qr added
459!
460! 1036 2012-10-22 13:43:42Z raasch
461! code put under GPL (PALM 3.9)
462!
463! 1019 2012-09-28 06:46:45Z raasch
464! non-optimized version of prognostic_equations removed
465!
466! 1015 2012-09-27 09:23:24Z raasch
467! +call of prognostic_equations_acc
468!
469! 1001 2012-09-13 14:08:46Z raasch
470! all actions concerning leapfrog- and upstream-spline-scheme removed
471!
472! 849 2012-03-15 10:35:09Z raasch
473! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
474!
475! 825 2012-02-19 03:03:44Z raasch
476! wang_collision_kernel renamed wang_kernel
477!
478! Revision 1.1  1997/08/11 06:19:04  raasch
479! Initial revision
480!
481!
482! Description:
483! ------------
484!> Integration in time of the model equations, statistical analysis and graphic
485!> output
486!------------------------------------------------------------------------------!
487 SUBROUTINE time_integration
488 
489
490    USE advec_ws,                                                                                  &
491        ONLY:  ws_statistics
492
493    USE arrays_3d,                                                                                 &
494        ONLY:  diss, diss_p, dzu, e, e_p, nc, nc_p, nr, nr_p, prho, pt, pt_p, pt_init, q_init, q,  &
495               qc, qc_p, ql, ql_c, ql_v, ql_vp, qr, qr_p, q_p, ref_state, rho_ocean, s, s_p, sa_p, &
496               tend, u, u_p, v, vpt, v_p, w, w_p
497
498    USE biometeorology_mod,                                                                        &
499        ONLY:  bio_calculate_thermal_index_maps, thermal_comfort, uvem_calc_exposure, uv_exposure
500
501    USE bulk_cloud_model_mod,                                                                      &
502        ONLY: bulk_cloud_model, calc_liquid_water_content, collision_turbulence,                   &
503              microphysics_morrison, microphysics_seifert
504
505    USE calc_mean_profile_mod,                                                                     &
506        ONLY:  calc_mean_profile
507
508    USE chem_emissions_mod,                                                                        &
509        ONLY:  chem_emissions_setup
510
511    USE chem_gasphase_mod,                                                                         &
512        ONLY:  nspec
513
514    USE chem_modules,                                                                              &
515        ONLY:  bc_cs_t_val, emissions_anthropogenic, nspec_out, chem_species
516
517    USE chemistry_model_mod,                                                                       &
518        ONLY:  chem_boundary_conds_decycle
519
520    USE control_parameters,                                                                        &
521        ONLY:  advected_distance_x, advected_distance_y, air_chemistry, average_count_3d,          &
522               averaging_interval, averaging_interval_pr, bc_lr_cyc, bc_ns_cyc, bc_pt_t_val,       &
523               bc_q_t_val, biometeorology, call_psolver_at_all_substeps,  child_domain,            &
524               cloud_droplets, constant_flux_layer, constant_heatflux, create_disturbances,        &
525               dopr_n, constant_diffusion, coupling_mode, coupling_start_time,                     &
526               current_timestep_number, disturbance_created, disturbance_energy_limit, dist_range, &
527               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr, dt_coupling,              &
528               dt_data_output_av, dt_disturb, dt_do2d_xy, dt_do2d_xz, dt_do2d_yz, dt_do3d,         &
529               dt_domask,dt_dopts, dt_dopr, dt_dopr_listing, dt_dots, dt_dvrp, dt_run_control,     &
530               end_time, first_call_lpm, first_call_mas, galilei_transformation, humidity,         &
531               indoor_model, intermediate_timestep_count, intermediate_timestep_count_max,         &
532               land_surface, large_scale_forcing, loop_optimization, lsf_surf, lsf_vert, masks,    &
533               mid, multi_agent_system_end, multi_agent_system_start, nesting_offline, neutral,    &
534               nr_timesteps_this_run, nudging, ocean_mode, passive_scalar, pt_reference,           &
535               pt_slope_offset, random_heatflux, rans_mode, rans_tke_e, run_coupled, salsa,        &
536               simulated_time, simulated_time_chr, skip_time_do2d_xy, skip_time_do2d_xz,           &
537               skip_time_do2d_yz, skip_time_do3d, skip_time_domask, skip_time_dopr,                &
538               skip_time_data_output_av, sloping_surface, stop_dt, surface_output,                 &
539               terminate_coupled, terminate_run, timestep_scheme, time_coupling, time_do2d_xy,     &
540               time_do2d_xz, time_do2d_yz, time_do3d, time_domask, time_dopr, time_dopr_av,        &
541               time_dopr_listing, time_dopts, time_dosp, time_dosp_av, time_dots, time_do_av,      &
542               time_do_sla, time_disturb, time_dvrp, time_run_control, time_since_reference_point, &
543               turbulent_inflow, turbulent_outflow, urban_surface,                                 &
544               use_initial_profile_as_reference, use_single_reference_value, u_gtrans, v_gtrans,   &
545               virtual_flight, virtual_measurement, ws_scheme_mom, ws_scheme_sca
546
547    USE cpulog,                                                                                    &
548        ONLY:  cpu_log, log_point, log_point_s
549
550    USE date_and_time_mod,                                                                         &
551        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
552
553    USE flight_mod,                                                                                &
554        ONLY:  flight_measurement
555
556    USE indices,                                                                                   &
557        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nzb, nzt
558
559    USE indoor_model_mod,                                                                          &
560        ONLY:  dt_indoor, im_main_heatcool, time_indoor
561
562    USE interaction_droplets_ptq_mod,                                                              &
563        ONLY:  interaction_droplets_ptq
564
565    USE interfaces
566
567    USE kinds
568
569    USE land_surface_model_mod,                                                                    &
570        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model, skip_time_do_lsm
571
572    USE lpm_mod,                                                                                   &
573        ONLY:  lpm
574
575    USE lsf_nudging_mod,                                                                           &
576        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
577
578    USE module_interface,                                                                          &
579        ONLY:  module_interface_actions
580
581    USE multi_agent_system_mod,                                                                    &
582        ONLY:  agents_active, multi_agent_system
583
584    USE nesting_offl_mod,                                                                          &
585        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
586
587    USE netcdf_data_input_mod,                                                                     &
588        ONLY:  chem_emis, chem_emis_att, nest_offl, netcdf_data_input_offline_nesting
589
590    USE ocean_mod,                                                                                 &
591        ONLY:  prho_reference
592
593    USE particle_attributes,                                                                       &
594        ONLY:  particle_advection, particle_advection_start, use_sgs_for_particles, wang_kernel
595
596    USE pegrid
597
598    USE pmc_interface,                                                                             &
599        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans, pmci_synchronize
600
601    USE progress_bar,                                                                              &
602        ONLY:  finish_progress_bar, output_progress_bar
603
604    USE prognostic_equations_mod,                                                                  &
605        ONLY:  prognostic_equations_cache, prognostic_equations_vector
606
607    USE radiation_model_mod,                                                                       &
608        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,                    &
609              radiation_interaction, radiation_interactions, skip_time_do_radiation, time_radiation
610
611    USE salsa_mod,                                                                                 &
612        ONLY: aerosol_number, aerosol_mass, bc_am_t_val, bc_an_t_val, bc_gt_t_val,                 &
613              nbins_aerosol, ncomponents_mass, ngases_salsa, salsa_boundary_conds,                 &
614              salsa_emission_update, salsa_gas, salsa_gases_from_chem, skip_time_do_salsa
615
616    USE spectra_mod,                                                                               &
617        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp, skip_time_dosp
618
619    USE statistics,                                                                                &
620        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l
621
622
623    USE surface_layer_fluxes_mod,                                                                  &
624        ONLY:  surface_layer_fluxes
625
626    USE surface_data_output_mod,                                                                   &
627        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf, dt_dosurf_av,               &
628               surface_data_output, surface_data_output_averaging, skip_time_dosurf,               &
629               skip_time_dosurf_av, time_dosurf, time_dosurf_av
630
631    USE surface_mod,                                                                               &
632        ONLY:  surf_def_h, surf_lsm_h, surf_usm_h
633
634    USE synthetic_turbulence_generator_mod,                                                        &
635        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence, stg_adjust, stg_main,    &
636               time_stg_adjust, time_stg_call, use_syn_turb_gen
637
638    USE turbulence_closure_mod,                                                                    &
639        ONLY:  tcm_diffusivities, production_e_init
640
641    USE urban_surface_mod,                                                                         &
642        ONLY:  usm_boundary_condition, usm_material_heat_model, usm_material_model,                &
643               usm_surface_energy_balance, usm_green_heat_model
644
645    USE vertical_nesting_mod,                                                                      &
646        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e, vnest_boundary_conds,              &
647               vnest_boundary_conds_khkm, vnest_deallocate, vnest_init, vnest_init_fine,           &
648               vnest_start_time
649
650    USE virtual_measurement_mod,                                                                   &
651        ONLY:  vm_data_output, vm_sampling, vm_time_start
652
653
654#if defined( _OPENACC )
655    USE arrays_3d,                                                             &
656        ONLY:  d, dd2zu, ddzu, ddzw, drho_air, drho_air_zw, dzw, heatflux_output_conversion, kh,   &
657               km, momentumflux_output_conversion, p, ptdf_x, ptdf_y, rdf, rdf_sc, rho_air,        &
658               rho_air_zw, te_m, tpt_m, tu_m, tv_m, tw_m, ug, u_init, u_stokes_zu, vg, v_init,     &
659               v_stokes_zu, zu
660
661    USE control_parameters,                                                                        &
662        ONLY:  tsc
663
664    USE indices,                                                                                   &
665        ONLY:  advc_flags_1, advc_flags_2, nyn, nyng, nys, nysg, nz, nzb_max, wall_flags_0
666
667    USE statistics,                                                                                &
668        ONLY:  rmask, statistic_regions, sums_l, sums_l_l, sums_us2_ws_l,                          &
669               sums_wsus_ws_l, sums_vs2_ws_l, sums_wsvs_ws_l, sums_ws2_ws_l, sums_wspts_ws_l,      &
670               sums_wsqs_ws_l, sums_wssas_ws_l, sums_wsqcs_ws_l, sums_wsqrs_ws_l, sums_wsncs_ws_l, &
671               sums_wsnrs_ws_l, sums_wsss_ws_l, weight_substep, sums_salsa_ws_l
672
673    USE surface_mod,                                                                               &
674        ONLY:  bc_h, enter_surface_arrays, exit_surface_arrays
675#endif
676
677
678    IMPLICIT NONE
679
680    CHARACTER (LEN=9) ::  time_to_string   !<
681
682    INTEGER(iwp)      ::  ib        !< index for aerosol size bins
683    INTEGER(iwp)      ::  ic        !< index for aerosol mass bins
684    INTEGER(iwp)      ::  icc       !< additional index for aerosol mass bins
685    INTEGER(iwp)      ::  ig        !< index for salsa gases
686    INTEGER(iwp)      ::  n         !< loop counter for chemistry species
687
688    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
689                            !< steering of run control output interval
690    REAL(wp) ::  time_since_reference_point_save  !< original value of
691                                                  !< time_since_reference_point
692
693
694!
695!-- Copy data from arrays_3d
696!$ACC DATA &
697!$ACC COPY(d(nzb+1:nzt,nys:nyn,nxl:nxr)) &
698!$ACC COPY(e(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
699!$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
700!$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
701!$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
702!$ACC COPY(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
703!$ACC COPY(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
704!$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
705!$ACC COPY(pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
706
707!$ACC DATA &
708!$ACC COPY(e_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
709!$ACC COPY(u_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
710!$ACC COPY(v_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
711!$ACC COPY(w_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
712!$ACC COPY(pt_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
713!$ACC COPY(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
714!$ACC COPY(te_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
715!$ACC COPY(tu_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
716!$ACC COPY(tv_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
717!$ACC COPY(tw_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
718!$ACC COPY(tpt_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
719
720!$ACC DATA &
721!$ACC COPYIN(rho_air(nzb:nzt+1), drho_air(nzb:nzt+1)) &
722!$ACC COPYIN(rho_air_zw(nzb:nzt+1), drho_air_zw(nzb:nzt+1)) &
723!$ACC COPYIN(zu(nzb:nzt+1)) &
724!$ACC COPYIN(dzu(1:nzt+1), dzw(1:nzt+1)) &
725!$ACC COPYIN(ddzu(1:nzt+1), dd2zu(1:nzt)) &
726!$ACC COPYIN(ddzw(1:nzt+1)) &
727!$ACC COPYIN(heatflux_output_conversion(nzb:nzt+1)) &
728!$ACC COPYIN(momentumflux_output_conversion(nzb:nzt+1)) &
729!$ACC COPYIN(rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt)) &
730!$ACC COPYIN(ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng)) &
731!$ACC COPYIN(ref_state(0:nz+1)) &
732!$ACC COPYIN(u_init(0:nz+1), v_init(0:nz+1)) &
733!$ACC COPYIN(u_stokes_zu(nzb:nzt+1), v_stokes_zu(nzb:nzt+1)) &
734!$ACC COPYIN(pt_init(0:nz+1)) &
735!$ACC COPYIN(ug(0:nz+1), vg(0:nz+1))
736
737!
738!-- Copy data from control_parameters
739!$ACC DATA &
740!$ACC COPYIN(tsc(1:5))
741
742!
743!-- Copy data from indices
744!$ACC DATA &
745!$ACC COPYIN(advc_flags_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
746!$ACC COPYIN(advc_flags_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
747!$ACC COPYIN(wall_flags_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
748
749!
750!-- Copy data from surface_mod
751!$ACC DATA &
752!$ACC COPYIN(bc_h(0:1)) &
753!$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) &
754!$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) &
755!$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) &
756!$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) &
757!$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) &
758!$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns))
759
760!
761!-- Copy data from statistics
762!$ACC DATA &
763!$ACC COPYIN(hom(0:nz+1,1:2,1:4,0)) &
764!$ACC COPYIN(rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions)) &
765!$ACC COPYIN(weight_substep(1:intermediate_timestep_count_max)) &
766!$ACC COPY(sums_l(nzb:nzt+1,1:pr_palm,0)) &
767!$ACC COPY(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
768!$ACC COPY(sums_us2_ws_l(nzb:nzt+1,0)) &
769!$ACC COPY(sums_wsus_ws_l(nzb:nzt+1,0)) &
770!$ACC COPY(sums_vs2_ws_l(nzb:nzt+1,0)) &
771!$ACC COPY(sums_wsvs_ws_l(nzb:nzt+1,0)) &
772!$ACC COPY(sums_ws2_ws_l(nzb:nzt+1,0)) &
773!$ACC COPY(sums_wspts_ws_l(nzb:nzt+1,0)) &
774!$ACC COPY(sums_wssas_ws_l(nzb:nzt+1,0)) &
775!$ACC COPY(sums_wsqs_ws_l(nzb:nzt+1,0)) &
776!$ACC COPY(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
777!$ACC COPY(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
778!$ACC COPY(sums_wsncs_ws_l(nzb:nzt+1,0)) &
779!$ACC COPY(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
780!$ACC COPY(sums_wsss_ws_l(nzb:nzt+1,0)) &
781!$ACC COPY(sums_salsa_ws_l(nzb:nzt+1,0))
782
783#if defined( _OPENACC )
784    CALL enter_surface_arrays
785#endif
786
787!
788!-- At beginning determine the first time step
789    CALL timestep
790!
791!-- Synchronize the timestep in case of nested run.
792    IF ( nested_run )  THEN
793!
794!--    Synchronization by unifying the time step.
795!--    Global minimum of all time-steps is used for all.
796       CALL pmci_synchronize
797    ENDIF
798
799!
800!-- Determine and print out the run control quantities before the first time
801!-- step of this run. For the initial run, some statistics (e.g. divergence)
802!-- need to be determined first --> CALL flow_statistics at the beginning of
803!-- run_control
804    CALL run_control
805!
806!-- Data exchange between coupled models in case that a call has been omitted
807!-- at the end of the previous run of a job chain.
808    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND. .NOT. vnested )  THEN
809!
810!--    In case of model termination initiated by the local model the coupler
811!--    must not be called because this would again cause an MPI hang.
812       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
813          CALL surface_coupler
814          time_coupling = time_coupling - dt_coupling
815       ENDDO
816       IF (time_coupling == 0.0_wp  .AND.  time_since_reference_point < dt_coupling )  THEN
817          time_coupling = time_since_reference_point
818       ENDIF
819    ENDIF
820
821#if defined( __dvrp_graphics )
822!
823!-- Time measurement with dvrp software 
824    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
825#endif
826
827    CALL location_message( 'atmosphere (and/or ocean) time-stepping', 'start' )
828
829!
830!-- Start of the time loop
831    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. .NOT. terminate_run )
832
833       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
834!
835!--    Vertical nesting: initialize fine grid
836       IF ( vnested ) THEN
837          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
838             CALL cpu_log( log_point_s(22), 'vnest_init', 'start' )
839             CALL vnest_init_fine
840             vnest_init = .TRUE.
841             CALL cpu_log( log_point_s(22), 'vnest_init', 'stop' )
842          ENDIF
843       ENDIF
844!
845!--    Determine ug, vg and w_subs in dependence on data from external file
846!--    LSF_DATA
847       IF ( large_scale_forcing .AND. lsf_vert )  THEN
848           CALL ls_forcing_vert ( simulated_time )
849           sums_ls_l = 0.0_wp
850       ENDIF
851
852!
853!--    Set pt_init and q_init to the current profiles taken from
854!--    NUDGING_DATA
855       IF ( nudging )  THEN
856           CALL nudge_ref ( simulated_time )
857!
858!--        Store temperature gradient at the top boundary for possible Neumann
859!--        boundary condition
860           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
861           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
862           IF ( air_chemistry )  THEN
863              DO  n = 1, nspec
864                 bc_cs_t_val = (  chem_species(n)%conc_pr_init(nzt+1)                            &
865                                - chem_species(n)%conc_pr_init(nzt) )                            &
866                               / dzu(nzt+1)
867              ENDDO
868           ENDIF
869           IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
870              DO  ib = 1, nbins_aerosol
871                 bc_an_t_val = ( aerosol_number(ib)%init(nzt+1) - aerosol_number(ib)%init(nzt) ) / &
872                               dzu(nzt+1)
873                 DO  ic = 1, ncomponents_mass
874                    icc = ( ic - 1 ) * nbins_aerosol + ib
875                    bc_am_t_val = ( aerosol_mass(icc)%init(nzt+1) - aerosol_mass(icc)%init(nzt) ) /&
876                                  dzu(nzt+1)
877                 ENDDO
878              ENDDO
879              IF ( .NOT. salsa_gases_from_chem )  THEN
880                 DO  ig = 1, ngases_salsa
881                    bc_gt_t_val = ( salsa_gas(ig)%init(nzt+1) - salsa_gas(ig)%init(nzt) ) /        &
882                                  dzu(nzt+1)
883                 ENDDO
884              ENDIF
885           ENDIF
886       ENDIF
887!
888!--    If forcing by larger-scale models is applied, check if new data
889!--    at domain boundaries need to be read.
890       IF ( nesting_offline ) THEN
891          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point ) &
892               CALL netcdf_data_input_offline_nesting
893       ENDIF
894
895!
896!--    Execute all other module actions routunes
897       CALL module_interface_actions( 'before_timestep' )
898       
899!
900!--    Start of intermediate step loop
901       intermediate_timestep_count = 0
902       DO  WHILE ( intermediate_timestep_count < intermediate_timestep_count_max )
903
904          intermediate_timestep_count = intermediate_timestep_count + 1
905
906!
907!--       Set the steering factors for the prognostic equations which depend
908!--       on the timestep scheme
909          CALL timestep_scheme_steering
910
911!
912!--       Calculate those variables needed in the tendency terms which need
913!--       global communication
914          IF ( .NOT. use_single_reference_value  .AND.  .NOT. use_initial_profile_as_reference )   &
915          THEN
916!
917!--          Horizontally averaged profiles to be used as reference state in
918!--          buoyancy terms (WARNING: only the respective last call of
919!--          calc_mean_profile defines the reference state!)
920             IF ( .NOT. neutral )  THEN
921                CALL calc_mean_profile( pt, 4 )
922                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
923             ENDIF
924             IF ( ocean_mode )  THEN
925                CALL calc_mean_profile( rho_ocean, 64 )
926                ref_state(:)  = hom(:,1,64,0)
927             ENDIF
928             IF ( humidity )  THEN
929                CALL calc_mean_profile( vpt, 44 )
930                ref_state(:)  = hom(:,1,44,0)
931             ENDIF
932!
933!--          Assure that ref_state does not become zero at any level
934!--          ( might be the case if a vertical level is completely occupied
935!--            with topography ).
936             ref_state = MERGE( MAXVAL(ref_state), ref_state, ref_state == 0.0_wp )
937          ENDIF
938
939          IF ( .NOT. constant_diffusion )  CALL production_e_init
940          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  intermediate_timestep_count == 1 )     &
941          THEN
942             CALL ws_statistics
943          ENDIF
944!
945!--       In case of nudging calculate current nudging time scale and horizontal
946!--       means of u, v, pt and q
947          IF ( nudging )  THEN
948             CALL calc_tnudge( simulated_time )
949             CALL calc_mean_profile( u, 1 )
950             CALL calc_mean_profile( v, 2 )
951             CALL calc_mean_profile( pt, 4 )
952             CALL calc_mean_profile( q, 41 )
953          ENDIF
954!
955!--       Execute all other module actions routunes
956          CALL module_interface_actions( 'before_prognostic_equations' )
957!
958!--       Solve the prognostic equations. A fast cache optimized version with
959!--       only one single loop is used in case of Piascek-Williams advection
960!--       scheme. NEC vector machines use a different version, because
961!--       in the other versions a good vectorization is prohibited due to
962!--       inlining problems.
963          IF ( loop_optimization == 'cache' )  THEN
964             CALL prognostic_equations_cache
965          ELSEIF ( loop_optimization == 'vector' )  THEN
966             CALL prognostic_equations_vector
967          ENDIF
968
969!
970!--       Particle transport/physics with the Lagrangian particle model
971!--       (only once during intermediate steps, because it uses an Euler-step)
972!--       ### particle model should be moved before prognostic_equations, in order
973!--       to regard droplet interactions directly
974          IF ( particle_advection  .AND.  time_since_reference_point >= particle_advection_start   &
975               .AND.  intermediate_timestep_count == 1 )                                           &
976          THEN
977             CALL lpm
978             first_call_lpm = .FALSE.
979          ENDIF
980
981!
982!--       Interaction of droplets with temperature and mixing ratio.
983!--       Droplet condensation and evaporation is calculated within
984!--       advec_particles.
985          IF ( cloud_droplets  .AND.  intermediate_timestep_count == intermediate_timestep_count_max ) &
986          THEN
987             CALL interaction_droplets_ptq
988          ENDIF
989
990!
991!--       Movement of agents in multi agent system
992          IF ( agents_active  .AND.  time_since_reference_point >= multi_agent_system_start  .AND. &
993               time_since_reference_point <= multi_agent_system_end  .AND.                         &
994               intermediate_timestep_count == 1 )                                                  &
995          THEN
996             CALL multi_agent_system
997             first_call_mas = .FALSE.
998          ENDIF
999
1000!
1001!--       Exchange of ghost points (lateral boundary conditions)
1002          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
1003
1004          CALL exchange_horiz( u_p, nbgp )
1005          CALL exchange_horiz( v_p, nbgp )
1006          CALL exchange_horiz( w_p, nbgp )
1007          CALL exchange_horiz( pt_p, nbgp )
1008          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
1009          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence                           &
1010               .OR.  use_sgs_for_particles )  THEN
1011             IF ( rans_tke_e )  THEN
1012                CALL exchange_horiz( diss_p, nbgp )
1013             ELSE
1014                CALL exchange_horiz( diss, nbgp )
1015             ENDIF
1016          ENDIF
1017          IF ( ocean_mode )  THEN
1018             CALL exchange_horiz( sa_p, nbgp )
1019             CALL exchange_horiz( rho_ocean, nbgp )
1020             CALL exchange_horiz( prho, nbgp )
1021          ENDIF
1022          IF ( humidity )  THEN
1023             CALL exchange_horiz( q_p, nbgp )
1024             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
1025                CALL exchange_horiz( qc_p, nbgp )
1026                CALL exchange_horiz( nc_p, nbgp )
1027             ENDIF
1028             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
1029                CALL exchange_horiz( qr_p, nbgp )
1030                CALL exchange_horiz( nr_p, nbgp )
1031             ENDIF
1032          ENDIF
1033          IF ( cloud_droplets )  THEN
1034             CALL exchange_horiz( ql, nbgp )
1035             CALL exchange_horiz( ql_c, nbgp )
1036             CALL exchange_horiz( ql_v, nbgp )
1037             CALL exchange_horiz( ql_vp, nbgp )
1038          ENDIF
1039          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
1040          IF ( air_chemistry  )  CALL chem_boundary_conds_decycle
1041
1042          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
1043!
1044!--          Exchange ghost points and decycle boundary concentrations if needed
1045             DO  ib = 1, nbins_aerosol
1046                CALL exchange_horiz( aerosol_number(ib)%conc_p, nbgp )
1047                CALL salsa_boundary_conds( aerosol_number(ib)%conc_p, aerosol_number(ib)%init )
1048                DO  ic = 1, ncomponents_mass
1049                   icc = ( ic - 1 ) * nbins_aerosol + ib
1050                   CALL exchange_horiz( aerosol_mass(icc)%conc_p, nbgp )
1051                   CALL salsa_boundary_conds( aerosol_mass(icc)%conc_p, aerosol_mass(icc)%init )
1052                ENDDO
1053             ENDDO
1054             IF ( .NOT. salsa_gases_from_chem )  THEN
1055                DO  ig = 1, ngases_salsa
1056                   CALL exchange_horiz( salsa_gas(ig)%conc_p, nbgp )
1057                   CALL salsa_boundary_conds( salsa_gas(ig)%conc_p, salsa_gas(ig)%init )
1058                ENDDO
1059             ENDIF
1060          ENDIF
1061          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1062
1063!
1064!--       Boundary conditions for the prognostic quantities (except of the
1065!--       velocities at the outflow in case of a non-cyclic lateral wall)
1066          CALL boundary_conds
1067!
1068!--       Swap the time levels in preparation for the next time step.
1069          CALL swap_timelevel
1070
1071!
1072!--       Vertical nesting: Interpolate fine grid data to the coarse grid
1073          IF ( vnest_init ) THEN
1074             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'start' )
1075             CALL vnest_anterpolate
1076             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'stop' )
1077          ENDIF
1078
1079          IF ( nested_run )  THEN
1080
1081             CALL cpu_log( log_point(60), 'nesting', 'start' )
1082!
1083!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
1084!--          and pmci_child_datatrans are called inside the wrapper
1085!--          subroutine pmci_datatrans according to the control parameters
1086!--          nesting_mode and nesting_datatransfer_mode.
1087!--          TO_DO: why is nesting_mode given as a parameter here?
1088             CALL pmci_datatrans( nesting_mode )
1089
1090             IF ( TRIM( nesting_mode ) == 'two-way' .OR.  nesting_mode == 'vertical' )  THEN
1091!
1092!--             Exchange_horiz is needed for all parent-domains after the
1093!--             anterpolation
1094                CALL exchange_horiz( u, nbgp )
1095                CALL exchange_horiz( v, nbgp )
1096                CALL exchange_horiz( w, nbgp )
1097                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
1098
1099                IF ( humidity )  THEN
1100
1101                   CALL exchange_horiz( q, nbgp )
1102
1103                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
1104                       CALL exchange_horiz( qc, nbgp )
1105                       CALL exchange_horiz( nc, nbgp )
1106                   ENDIF
1107                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
1108                       CALL exchange_horiz( qr, nbgp )
1109                       CALL exchange_horiz( nr, nbgp )
1110                   ENDIF
1111
1112                ENDIF
1113
1114                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
1115
1116                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
1117
1118                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.  rans_tke_e )  THEN
1119                   CALL exchange_horiz( diss, nbgp )
1120                ENDIF
1121
1122                IF ( air_chemistry )  THEN
1123                   DO  n = 1, nspec
1124                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
1125                   ENDDO
1126                ENDIF
1127
1128                IF ( salsa  .AND. time_since_reference_point >= skip_time_do_salsa )  THEN
1129                   DO  ib = 1, nbins_aerosol
1130                      CALL exchange_horiz( aerosol_number(ib)%conc, nbgp )
1131                      CALL salsa_boundary_conds( aerosol_number(ib)%conc, aerosol_number(ib)%init )
1132                      DO  ic = 1, ncomponents_mass
1133                         icc = ( ic - 1 ) * nbins_aerosol + ib
1134                         CALL exchange_horiz( aerosol_mass(icc)%conc, nbgp )
1135                         CALL salsa_boundary_conds( aerosol_mass(icc)%conc, aerosol_mass(icc)%init )
1136                      ENDDO
1137                   ENDDO
1138                   IF ( .NOT. salsa_gases_from_chem )  THEN
1139                      DO  ig = 1, ngases_salsa
1140                         CALL exchange_horiz( salsa_gas(ig)%conc, nbgp )
1141                         CALL salsa_boundary_conds( salsa_gas(ig)%conc, salsa_gas(ig)%init )
1142                      ENDDO
1143                   ENDIF
1144                ENDIF
1145                CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1146
1147             ENDIF
1148!
1149!--          Set boundary conditions again after interpolation and anterpolation.
1150             CALL pmci_boundary_conds
1151
1152             CALL cpu_log( log_point(60), 'nesting', 'stop' )
1153
1154          ENDIF
1155
1156!
1157!--       Temperature offset must be imposed at cyclic boundaries in x-direction
1158!--       when a sloping surface is used
1159          IF ( sloping_surface )  THEN
1160             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - pt_slope_offset
1161             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + pt_slope_offset
1162          ENDIF
1163
1164!
1165!--       Impose a turbulent inflow using the recycling method
1166          IF ( turbulent_inflow )  CALL inflow_turbulence
1167
1168!
1169!--       Set values at outflow boundary using the special outflow condition
1170          IF ( turbulent_outflow )  CALL outflow_turbulence
1171
1172!
1173!--       Impose a random perturbation on the horizontal velocity field
1174          IF ( create_disturbances  .AND.  ( call_psolver_at_all_substeps  .AND.                   &
1175               intermediate_timestep_count == intermediate_timestep_count_max )                    &
1176               .OR. ( .NOT. call_psolver_at_all_substeps  .AND.  intermediate_timestep_count == 1 ) ) &
1177          THEN
1178             time_disturb = time_disturb + dt_3d
1179             IF ( time_disturb >= dt_disturb )  THEN
1180                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                                     &
1181                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
1182                   CALL disturb_field( 'u', tend, u )
1183                   CALL disturb_field( 'v', tend, v )
1184                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )                                &
1185                         .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )                 &
1186                THEN
1187!
1188!--                Runs with a non-cyclic lateral wall need perturbations
1189!--                near the inflow throughout the whole simulation
1190                   dist_range = 1
1191                   CALL disturb_field( 'u', tend, u )
1192                   CALL disturb_field( 'v', tend, v )
1193                   dist_range = 0
1194                ENDIF
1195                time_disturb = time_disturb - dt_disturb
1196             ENDIF
1197          ENDIF
1198
1199!
1200!--       Map forcing data derived from larger scale model onto domain
1201!--       boundaries.
1202          IF ( nesting_offline  .AND.  intermediate_timestep_count ==                              &
1203                                       intermediate_timestep_count_max  )                          &
1204             CALL nesting_offl_bc
1205!
1206!--       Impose a turbulent inflow using synthetic generated turbulence,
1207!--       only once per time step.
1208          IF ( use_syn_turb_gen  .AND.  time_stg_call >= dt_stg_call  .AND.                        &
1209             intermediate_timestep_count == intermediate_timestep_count_max )  THEN
1210             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1211             CALL stg_main
1212             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1213          ENDIF
1214!
1215!--       Ensure mass conservation. This need to be done after imposing
1216!--       synthetic turbulence and top boundary condition for pressure is set to
1217!--       Neumann conditions.
1218!--       Is this also required in case of Dirichlet?
1219          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1220!
1221!--       Reduce the velocity divergence via the equation for perturbation
1222!--       pressure.
1223          IF ( intermediate_timestep_count == 1  .OR. &
1224                call_psolver_at_all_substeps )  THEN
1225
1226             IF (  vnest_init ) THEN
1227!
1228!--             Compute pressure in the CG, interpolate top boundary conditions
1229!--             to the FG and then compute pressure in the FG
1230                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1231
1232                CALL cpu_log( log_point_s(30), 'vnest_bc', 'start' )
1233                CALL vnest_boundary_conds
1234                CALL cpu_log( log_point_s(30), 'vnest_bc', 'stop' )
1235 
1236                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1237
1238!--             Anterpolate TKE, satisfy Germano Identity
1239                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'start' )
1240                CALL vnest_anterpolate_e
1241                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'stop' )
1242
1243             ELSE
1244
1245                CALL pres
1246
1247             ENDIF
1248
1249          ENDIF
1250
1251!
1252!--       If required, compute liquid water content
1253          IF ( bulk_cloud_model )  THEN
1254             CALL calc_liquid_water_content
1255          ENDIF
1256!
1257!--       If required, compute virtual potential temperature
1258          IF ( humidity )  THEN
1259             CALL compute_vpt 
1260          ENDIF 
1261
1262!
1263!--       Compute the diffusion quantities
1264          IF ( .NOT. constant_diffusion )  THEN
1265
1266!
1267!--          Determine surface fluxes shf and qsws and surface values
1268!--          pt_surface and q_surface in dependence on data from external
1269!--          file LSF_DATA respectively
1270             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND.                                     &
1271                 intermediate_timestep_count == intermediate_timestep_count_max )                  &
1272             THEN
1273                CALL ls_forcing_surf( simulated_time )
1274             ENDIF
1275
1276!
1277!--          First the vertical (and horizontal) fluxes in the surface
1278!--          (constant flux) layer are computed
1279             IF ( constant_flux_layer )  THEN
1280                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1281                CALL surface_layer_fluxes
1282                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
1283             ENDIF
1284!
1285!--          If required, solve the energy balance for the surface and run soil
1286!--          model. Call for horizontal as well as vertical surfaces
1287             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
1288
1289                CALL cpu_log( log_point(54), 'land_surface', 'start' )
1290!
1291!--             Call for horizontal upward-facing surfaces
1292                CALL lsm_energy_balance( .TRUE., -1 )
1293                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
1294!
1295!--             Call for northward-facing surfaces
1296                CALL lsm_energy_balance( .FALSE., 0 )
1297                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
1298!
1299!--             Call for southward-facing surfaces
1300                CALL lsm_energy_balance( .FALSE., 1 )
1301                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
1302!
1303!--             Call for eastward-facing surfaces
1304                CALL lsm_energy_balance( .FALSE., 2 )
1305                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
1306!
1307!--             Call for westward-facing surfaces
1308                CALL lsm_energy_balance( .FALSE., 3 )
1309                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
1310               
1311!
1312!--             At the end, set boundary conditons for potential temperature
1313!--             and humidity after running the land-surface model. This
1314!--             might be important for the nesting, where arrays are transfered.
1315                CALL lsm_boundary_condition
1316
1317               
1318                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1319             ENDIF
1320!
1321!--          If required, solve the energy balance for urban surfaces and run
1322!--          the material heat model
1323             IF (urban_surface) THEN
1324                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
1325               
1326                CALL usm_surface_energy_balance( .FALSE. )
1327                IF ( usm_material_model )  THEN
1328                   CALL usm_green_heat_model
1329                   CALL usm_material_heat_model ( .FALSE. )
1330                ENDIF
1331
1332!
1333!--             At the end, set boundary conditons for potential temperature
1334!--             and humidity after running the urban-surface model. This
1335!--             might be important for the nesting, where arrays are transfered.
1336                CALL usm_boundary_condition
1337
1338                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1339             ENDIF
1340!
1341!--          Compute the diffusion coefficients
1342             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
1343             IF ( .NOT. humidity ) THEN
1344                IF ( ocean_mode )  THEN
1345                   CALL tcm_diffusivities( prho, prho_reference )
1346                ELSE
1347                   CALL tcm_diffusivities( pt, pt_reference )
1348                ENDIF
1349             ELSE
1350                CALL tcm_diffusivities( vpt, pt_reference )
1351             ENDIF
1352             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
1353!
1354!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1355             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
1356
1357          ENDIF
1358
1359!
1360!--       If required, calculate radiative fluxes and heating rates
1361          IF ( radiation  .AND.  intermediate_timestep_count == intermediate_timestep_count_max    &
1362               .AND. time_since_reference_point > skip_time_do_radiation )  THEN
1363
1364               time_radiation = time_radiation + dt_3d
1365
1366             IF ( time_radiation >= dt_radiation  .OR.  force_radiation_call )  THEN
1367
1368                CALL cpu_log( log_point(50), 'radiation', 'start' )
1369
1370                IF ( .NOT. force_radiation_call )  THEN
1371                   time_radiation = time_radiation - dt_radiation
1372                ENDIF
1373
1374!
1375!--             Adjust the current time to the time step of the radiation model.
1376!--             Needed since radiation is pre-calculated and stored only on apparent
1377!--             solar positions
1378                time_since_reference_point_save = time_since_reference_point
1379                time_since_reference_point = REAL( FLOOR( time_since_reference_point /             &
1380                                                          dt_radiation), wp ) * dt_radiation
1381
1382                CALL radiation_control
1383
1384                IF ( ( urban_surface  .OR.  land_surface )  .AND.  radiation_interactions )  THEN
1385                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'start' )
1386                   CALL radiation_interaction
1387                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'stop' )
1388                ENDIF
1389   
1390!
1391!--             Return the current time to its original value
1392                time_since_reference_point = time_since_reference_point_save
1393
1394                CALL cpu_log( log_point(50), 'radiation', 'stop' )
1395
1396             ENDIF
1397          ENDIF
1398
1399       ENDDO   ! Intermediate step loop
1400
1401!
1402!--    Will be used at some point by flow_statistics.
1403       !$ACC UPDATE &
1404       !$ACC HOST(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
1405       !$ACC HOST(sums_us2_ws_l(nzb:nzt+1,0)) &
1406       !$ACC HOST(sums_wsus_ws_l(nzb:nzt+1,0)) &
1407       !$ACC HOST(sums_vs2_ws_l(nzb:nzt+1,0)) &
1408       !$ACC HOST(sums_wsvs_ws_l(nzb:nzt+1,0)) &
1409       !$ACC HOST(sums_ws2_ws_l(nzb:nzt+1,0)) &
1410       !$ACC HOST(sums_wspts_ws_l(nzb:nzt+1,0)) &
1411       !$ACC HOST(sums_wssas_ws_l(nzb:nzt+1,0)) &
1412       !$ACC HOST(sums_wsqs_ws_l(nzb:nzt+1,0)) &
1413       !$ACC HOST(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
1414       !$ACC HOST(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
1415       !$ACC HOST(sums_wsncs_ws_l(nzb:nzt+1,0)) &
1416       !$ACC HOST(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
1417       !$ACC HOST(sums_wsss_ws_l(nzb:nzt+1,0)) &
1418       !$ACC HOST(sums_salsa_ws_l(nzb:nzt+1,0))
1419
1420!
1421!--    If required, consider chemical emissions
1422       IF ( air_chemistry  .AND.  emissions_anthropogenic )  THEN
1423!
1424!--       Update the time --> kanani: revise location of this CALL
1425          CALL calc_date_and_time
1426!
1427!--       Call emission routine only once an hour
1428          IF (hour_of_year  .GT.  hour_call_emis )  THEN
1429             CALL chem_emissions_setup( chem_emis_att, chem_emis, nspec_out )
1430             hour_call_emis = hour_of_year
1431          ENDIF
1432       ENDIF
1433!
1434!--    If required, consider aerosol emissions for the salsa model
1435       IF ( salsa )  THEN
1436!
1437!--       Call emission routine to update emissions if needed
1438          CALL salsa_emission_update
1439
1440       ENDIF
1441!
1442!--    If required, calculate indoor temperature, waste heat, heat flux
1443!--    through wall, etc.
1444!--    dt_indoor steers the frequency of the indoor model calculations.
1445!--    Note, at first timestep indoor model is called, in order to provide
1446!--    a waste heat flux.
1447       IF ( indoor_model )  THEN
1448
1449          time_indoor = time_indoor + dt_3d
1450
1451          IF ( time_indoor >= dt_indoor  .OR.  current_timestep_number == 0 )  THEN
1452
1453             time_indoor = time_indoor - dt_indoor
1454
1455             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1456             CALL im_main_heatcool
1457             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1458
1459          ENDIF
1460       ENDIF
1461!
1462!--    Increase simulation time and output times
1463       nr_timesteps_this_run      = nr_timesteps_this_run + 1
1464       current_timestep_number    = current_timestep_number + 1
1465       simulated_time             = simulated_time   + dt_3d
1466       time_since_reference_point = simulated_time - coupling_start_time
1467       simulated_time_chr         = time_to_string( time_since_reference_point )
1468
1469
1470
1471
1472       IF ( time_since_reference_point >= skip_time_data_output_av )  THEN
1473          time_do_av         = time_do_av       + dt_3d
1474       ENDIF
1475       IF ( time_since_reference_point >= skip_time_do2d_xy )  THEN
1476          time_do2d_xy       = time_do2d_xy     + dt_3d
1477       ENDIF
1478       IF ( time_since_reference_point >= skip_time_do2d_xz )  THEN
1479          time_do2d_xz       = time_do2d_xz     + dt_3d
1480       ENDIF
1481       IF ( time_since_reference_point >= skip_time_do2d_yz )  THEN
1482          time_do2d_yz       = time_do2d_yz     + dt_3d
1483       ENDIF
1484       IF ( time_since_reference_point >= skip_time_do3d    )  THEN
1485          time_do3d          = time_do3d        + dt_3d
1486       ENDIF
1487       DO  mid = 1, masks
1488          IF ( time_since_reference_point >= skip_time_domask(mid) )  THEN
1489             time_domask(mid)= time_domask(mid) + dt_3d
1490          ENDIF
1491       ENDDO
1492       time_dvrp          = time_dvrp        + dt_3d
1493       IF ( time_since_reference_point >= skip_time_dosp )  THEN
1494          time_dosp       = time_dosp        + dt_3d
1495       ENDIF
1496       time_dots          = time_dots        + dt_3d
1497       IF ( .NOT. first_call_lpm )  THEN
1498          time_dopts      = time_dopts       + dt_3d
1499       ENDIF
1500       IF ( time_since_reference_point >= skip_time_dopr )  THEN
1501          time_dopr       = time_dopr        + dt_3d
1502       ENDIF
1503       time_dopr_listing  = time_dopr_listing + dt_3d
1504       time_run_control   = time_run_control + dt_3d
1505!
1506!--    Increment time-counter for surface output
1507       IF ( surface_output )  THEN
1508          IF ( time_since_reference_point >= skip_time_dosurf )  THEN
1509             time_dosurf    = time_dosurf + dt_3d
1510          ENDIF
1511          IF ( time_since_reference_point >= skip_time_dosurf_av )  THEN
1512             time_dosurf_av = time_dosurf_av + dt_3d
1513          ENDIF
1514       ENDIF
1515!
1516!--    In case of synthetic turbulence generation and parametrized turbulence
1517!--    information, update the time counter and if required, adjust the
1518!--    STG to new atmospheric conditions.
1519       IF ( use_syn_turb_gen  )  THEN
1520          IF ( parametrize_inflow_turbulence )  THEN
1521             time_stg_adjust = time_stg_adjust + dt_3d
1522             IF ( time_stg_adjust >= dt_stg_adjust )  THEN
1523                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1524                CALL stg_adjust
1525                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1526             ENDIF
1527          ENDIF
1528          time_stg_call = time_stg_call + dt_3d
1529       ENDIF
1530
1531!
1532!--    Data exchange between coupled models
1533       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND.  .NOT. vnested )  THEN
1534          time_coupling = time_coupling + dt_3d
1535
1536!
1537!--       In case of model termination initiated by the local model
1538!--       (terminate_coupled > 0), the coupler must be skipped because it would
1539!--       cause an MPI intercomminucation hang.
1540!--       If necessary, the coupler will be called at the beginning of the
1541!--       next restart run.
1542          DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
1543             CALL surface_coupler
1544             time_coupling = time_coupling - dt_coupling
1545          ENDDO
1546       ENDIF
1547
1548!
1549!--    Biometeorology calculation of stationary thermal indices
1550!--    Todo (kanani): biometeorology needs own time_... treatment.
1551!--                   It might be that time_do2d_xy differs from time_do3d,
1552!--                   and then we might get trouble with the biomet output,
1553!--                   because we can have 2d and/or 3d biomet output!!
1554       IF ( biometeorology                                                                         &
1555            .AND. ( ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  &
1556                  .OR.                                                                             &
1557            ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy ) &
1558                    ) )  THEN
1559!
1560!--       If required, do thermal comfort calculations
1561          IF ( thermal_comfort )  THEN
1562             CALL bio_calculate_thermal_index_maps ( .FALSE. )
1563          ENDIF
1564!
1565!--       If required, do UV exposure calculations
1566          IF ( uv_exposure )  THEN
1567             CALL uvem_calc_exposure
1568          ENDIF
1569       ENDIF
1570
1571!
1572!--    Execute alle other module actions routunes
1573       CALL module_interface_actions( 'after_integration' )
1574
1575!
1576!--    If Galilei transformation is used, determine the distance that the
1577!--    model has moved so far
1578       IF ( galilei_transformation )  THEN
1579          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1580          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1581       ENDIF
1582
1583!
1584!--    Check, if restart is necessary (because cpu-time is expiring or
1585!--    because it is forced by user) and set stop flag
1586!--    This call is skipped if the remote model has already initiated a restart.
1587       IF ( .NOT. terminate_run )  CALL check_for_restart
1588
1589!
1590!--    Carry out statistical analysis and output at the requested output times.
1591!--    The MOD function is used for calculating the output time counters (like
1592!--    time_dopr) in order to regard a possible decrease of the output time
1593!--    interval in case of restart runs
1594
1595!
1596!--    Set a flag indicating that so far no statistics have been created
1597!--    for this time step
1598       flow_statistics_called = .FALSE.
1599
1600!
1601!--    If required, call flow_statistics for averaging in time
1602       IF ( averaging_interval_pr /= 0.0_wp  .AND.                                                 &
1603            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.                                &
1604            time_since_reference_point >= skip_time_dopr )  THEN
1605          time_dopr_av = time_dopr_av + dt_3d
1606          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1607             do_sum = .TRUE.
1608             time_dopr_av = MOD( time_dopr_av, MAX( dt_averaging_input_pr, dt_3d ) )
1609          ENDIF
1610       ENDIF
1611       IF ( do_sum )  CALL flow_statistics
1612
1613!
1614!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
1615       IF ( averaging_interval /= 0.0_wp  .AND.                                                    &
1616            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND.                        &
1617            time_since_reference_point >= skip_time_data_output_av )                               &
1618       THEN
1619          time_do_sla = time_do_sla + dt_3d
1620          IF ( time_do_sla >= dt_averaging_input )  THEN
1621             CALL sum_up_3d_data
1622             average_count_3d = average_count_3d + 1
1623             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1624          ENDIF
1625       ENDIF
1626!
1627!--    Average surface data
1628       IF ( surface_output )  THEN
1629          IF ( averaging_interval_surf /= 0.0_wp                                                   &
1630                .AND.  ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf                &
1631                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1632             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
1633                CALL surface_data_output_averaging
1634                average_count_surf = average_count_surf + 1
1635             ENDIF
1636          ENDIF
1637       ENDIF
1638
1639!
1640!--    Calculate spectra for time averaging
1641       IF ( averaging_interval_sp /= 0.0_wp  .AND. ( dt_dosp - time_dosp ) <= averaging_interval_sp&
1642            .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1643          time_dosp_av = time_dosp_av + dt_3d
1644          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1645             CALL calc_spectra
1646             time_dosp_av = MOD( time_dosp_av, MAX( dt_averaging_input_pr, dt_3d ) )
1647          ENDIF
1648       ENDIF
1649
1650!
1651!--    Call flight module and output data
1652       IF ( virtual_flight )  THEN
1653          CALL flight_measurement
1654          CALL data_output_flight
1655       ENDIF
1656!
1657!--    Take virtual measurements
1658       IF ( virtual_measurement  .AND.  vm_time_start <= time_since_reference_point )  THEN
1659          CALL vm_sampling
1660          CALL vm_data_output
1661       ENDIF
1662
1663!
1664!--    Profile output (ASCII) on file
1665       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1666          CALL print_1d
1667          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, dt_3d ) )
1668       ENDIF
1669
1670!
1671!--    Graphic output for PROFIL
1672       IF ( time_dopr >= dt_dopr  .AND.  time_since_reference_point >= skip_time_dopr )  THEN
1673          IF ( dopr_n /= 0 )  CALL data_output_profiles
1674          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
1675          time_dopr_av = 0.0_wp    ! due to averaging (see above)
1676       ENDIF
1677
1678!
1679!--    Graphic output for time series
1680       IF ( time_dots >= dt_dots )  THEN
1681          CALL data_output_tseries
1682          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1683       ENDIF
1684
1685!
1686!--    Output of spectra (formatted for use with PROFIL), in case of no
1687!--    time averaging, spectra has to be calculated before
1688       IF ( time_dosp >= dt_dosp  .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1689          IF ( average_count_sp == 0 )  CALL calc_spectra
1690          CALL data_output_spectra
1691          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1692       ENDIF
1693
1694!
1695!--    2d-data output (cross-sections)
1696       IF ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy )  THEN
1697          CALL data_output_2d( 'xy', 0 )
1698          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1699       ENDIF
1700       IF ( time_do2d_xz >= dt_do2d_xz  .AND.  time_since_reference_point >= skip_time_do2d_xz )  THEN
1701          CALL data_output_2d( 'xz', 0 )
1702          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1703       ENDIF
1704       IF ( time_do2d_yz >= dt_do2d_yz  .AND.  time_since_reference_point >= skip_time_do2d_yz )  THEN
1705          CALL data_output_2d( 'yz', 0 )
1706          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1707       ENDIF
1708
1709!
1710!--    3d-data output (volume data)
1711       IF ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  THEN
1712          CALL data_output_3d( 0 )
1713          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1714       ENDIF
1715
1716!
1717!--    Masked data output
1718       DO  mid = 1, masks
1719          IF ( time_domask(mid) >= dt_domask(mid)                                                  &
1720               .AND.  time_since_reference_point >= skip_time_domask(mid) )  THEN
1721             CALL data_output_mask( 0 )
1722             time_domask(mid) = MOD( time_domask(mid), MAX( dt_domask(mid), dt_3d ) )
1723          ENDIF
1724       ENDDO
1725
1726!
1727!--    Output of time-averaged 2d/3d/masked data
1728       IF ( time_do_av >= dt_data_output_av                                                        &
1729            .AND.  time_since_reference_point >= skip_time_data_output_av )  THEN
1730          CALL average_3d_data
1731!
1732!--       Udate thermal comfort indices based on updated averaged input
1733          IF ( biometeorology  .AND.  thermal_comfort )  THEN
1734             CALL bio_calculate_thermal_index_maps ( .TRUE. )
1735          ENDIF
1736          CALL data_output_2d( 'xy', 1 )
1737          CALL data_output_2d( 'xz', 1 )
1738          CALL data_output_2d( 'yz', 1 )
1739          CALL data_output_3d( 1 )
1740          DO  mid = 1, masks
1741             CALL data_output_mask( 1 )
1742          ENDDO
1743          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1744       ENDIF
1745!
1746!--    Output of surface data, instantaneous and averaged data
1747       IF ( surface_output )  THEN
1748          IF ( time_dosurf >= dt_dosurf  .AND.  time_since_reference_point >= skip_time_dosurf )  THEN
1749             CALL surface_data_output( 0 )
1750             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1751          ENDIF
1752          IF ( time_dosurf_av >= dt_dosurf_av  .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1753             CALL surface_data_output( 1 )
1754             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1755          ENDIF
1756       ENDIF
1757
1758!
1759!--    Output of particle time series
1760       IF ( particle_advection )  THEN
1761          IF ( time_dopts >= dt_dopts  .OR.                                                        &
1762               ( time_since_reference_point >= particle_advection_start  .AND.                     &
1763                 first_call_lpm ) )  THEN
1764             CALL data_output_ptseries
1765             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1766          ENDIF
1767       ENDIF
1768
1769!
1770!--    Output of dvrp-graphics (isosurface, particles, slicer)
1771#if defined( __dvrp_graphics )
1772       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
1773#endif
1774       IF ( time_dvrp >= dt_dvrp )  THEN
1775          CALL data_output_dvrp
1776          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
1777       ENDIF
1778#if defined( __dvrp_graphics )
1779       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
1780#endif
1781
1782!
1783!--    If required, set the heat flux for the next time step to a random value
1784       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
1785          IF ( surf_def_h(0)%ns >= 1 )  THEN
1786             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1787             CALL disturb_heatflux( surf_def_h(0) )
1788             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1789          ENDIF
1790          IF ( surf_lsm_h%ns    >= 1 )  THEN
1791             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1792             CALL disturb_heatflux( surf_lsm_h    )
1793             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1794          ENDIF
1795          IF ( surf_usm_h%ns    >= 1 )  THEN
1796             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1797             CALL disturb_heatflux( surf_usm_h    )
1798             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1799          ENDIF
1800       ENDIF
1801
1802!
1803!--    Execute alle other module actions routunes
1804       CALL module_interface_actions( 'after_timestep' )
1805
1806!
1807!--    Determine size of next time step. Save timestep dt_3d because it is
1808!--    newly calculated in routine timestep, but required further below for
1809!--    steering the run control output interval
1810       dt_3d_old = dt_3d
1811       CALL timestep
1812
1813!
1814!--    Synchronize the timestep in case of nested run.
1815       IF ( nested_run )  THEN
1816!
1817!--       Synchronize by unifying the time step.
1818!--       Global minimum of all time-steps is used for all.
1819          CALL pmci_synchronize
1820       ENDIF
1821
1822!
1823!--    Computation and output of run control parameters.
1824!--    This is also done whenever perturbations have been imposed
1825       IF ( time_run_control >= dt_run_control  .OR.                                               &
1826            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created )                           &
1827       THEN
1828          CALL run_control
1829          IF ( time_run_control >= dt_run_control )  THEN
1830             time_run_control = MOD( time_run_control, MAX( dt_run_control, dt_3d_old ) )
1831          ENDIF
1832       ENDIF
1833
1834!
1835!--    Output elapsed simulated time in form of a progress bar on stdout
1836       IF ( myid == 0 )  CALL output_progress_bar
1837
1838       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1839
1840
1841    ENDDO   ! time loop
1842
1843#if defined( _OPENACC )
1844    CALL exit_surface_arrays
1845#endif
1846!$ACC END DATA
1847!$ACC END DATA
1848!$ACC END DATA
1849!$ACC END DATA
1850!$ACC END DATA
1851!$ACC END DATA
1852!$ACC END DATA
1853
1854!
1855!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
1856    IF ( vnest_init )  CALL vnest_deallocate
1857
1858    IF ( myid == 0 )  CALL finish_progress_bar
1859
1860#if defined( __dvrp_graphics )
1861    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
1862#endif
1863
1864    CALL location_message( 'atmosphere (and/or ocean) time-stepping', 'finished' )
1865
1866 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.