source: palm/trunk/SOURCE/time_integration.f90 @ 3879

Last change on this file since 3879 was 3879, checked in by knoop, 5 years ago

Moved loop over chem_species into chem_boundary_conds_decycle

  • Property svn:keywords set to Id
File size: 74.3 KB
Line 
1!> @file time_integration.f90
2!------------------------------------------------------------------------------!
3! This file is part of the PALM model system.
4!
5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2019 Leibniz Universitaet Hannover
18!------------------------------------------------------------------------------!
19!
20! Current revisions:
21! ------------------
22!
23!
24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 3879 2019-04-08 20:25:23Z knoop $
27! Moved wtm_forces to module_interface_actions
28!
29! 3872 2019-04-08 15:03:06Z knoop
30! Modifications made for salsa:
31! - Call salsa_emission_update at each time step but do the checks within
32!   salsa_emission_update (i.e. skip_time_do_salsa >= time_since_reference_point
33!   and next_aero_emission_update <= time_since_reference_point ).
34! - Renamed nbins --> nbins_aerosol, ncc_tot --> ncomponents_mass and
35!   ngast --> ngases_salsa and loop indices b, c and sg to ib, ic and ig
36! - Apply nesting for salsa variables
37! - Removed cpu_log calls speciffic for salsa.
38!
39! 3833 2019-03-28 15:04:04Z forkel
40! added USE chem_gasphase_mod, replaced nspec by nspec since fixed compounds are not integrated
41!
42! 3820 2019-03-27 11:53:41Z forkel
43! renamed do_emiss to emissions_anthropogenic (ecc)
44!
45!
46! 3774 2019-03-04 10:52:49Z moh.hefny
47! rephrase if statement to avoid unallocated array in case of
48! nesting_offline is false (crashing during debug mode)
49!
50! 3761 2019-02-25 15:31:42Z raasch $
51! module section re-formatted and openacc required variables moved to separate section,
52! re-formatting to 100 char line width
53!
54! 3745 2019-02-15 18:57:56Z suehring
55! Call indoor model after first timestep
56!
57! 3744 2019-02-15 18:38:58Z suehring
58! - Moved call of bio_calculate_thermal_index_maps from biometeorology module to
59! time_integration to make sure averaged input is updated before calculating.
60!
61! 3739 2019-02-13 08:05:17Z dom_dwd_user
62! Removed everything related to "time_bio_results" as this is never used.
63!
64! 3724 2019-02-06 16:28:23Z kanani
65! Correct double-used log_point_s unit
66!
67! 3719 2019-02-06 13:10:18Z kanani
68! - removed wind_turbine cpu measurement, since same time is measured inside
69!   wtm_forces subroutine as special measures
70! - moved the numerous vnest cpulog to special measures
71! - extended radiation cpulog over entire radiation part,
72!   moved radiation_interactions cpulog to special measures
73! - moved some cpu_log calls to this routine for better overview
74!
75! 3705 2019-01-29 19:56:39Z suehring
76! Data output for virtual measurements added
77!
78! 3704 2019-01-29 19:51:41Z suehring
79! Rename subroutines for surface-data output
80!
81! 3647 2019-01-02 14:10:44Z kanani
82! Bugfix: add time_since_reference_point to IF clause for data_output calls
83! (otherwise skip_time_* values don't come into affect with dt_do* = 0.0).
84! Clean up indoor_model and biometeorology model call.
85!
86! 3646 2018-12-28 17:58:49Z kanani
87! Bugfix: use time_since_reference_point instead of simulated_time where
88! required (relevant when using wall/soil spinup)
89!
90! 3634 2018-12-18 12:31:28Z knoop
91! OpenACC port for SPEC
92!
93! 3597 2018-12-04 08:40:18Z maronga
94! Removed call to calculation of near air (10 cm) potential temperature (now in
95! surface layer fluxes)
96!
97! 3589 2018-11-30 15:09:51Z suehring
98! Move the control parameter "salsa" from salsa_mod to control_parameters
99! (M. Kurppa)
100!
101! 3582 2018-11-29 19:16:36Z suehring
102! dom_dwd_user, Schrempf:
103! Changes due to merge of uv exposure model into biometeorology_mod.
104!
105! 3525 2018-11-14 16:06:14Z kanani
106! Changes related to clean-up of biometeorology (dom_dwd_user)
107!
108! 3524 2018-11-14 13:36:44Z raasch
109! unused variables removed
110!
111! 3484 2018-11-02 14:41:25Z hellstea
112! pmci_ensure_nest_mass_conservation is premanently removed
113!
114! 3473 2018-10-30 20:50:15Z suehring
115! new module for virtual measurements introduced
116!
117! 3472 2018-10-30 20:43:50Z suehring
118! Add indoor model (kanani, srissman, tlang)
119!
120! 3467 2018-10-30 19:05:21Z suehring
121! Implementation of a new aerosol module salsa.
122!
123! 3448 2018-10-29 18:14:31Z kanani
124! Add biometeorology
125!
126! 3421 2018-10-24 18:39:32Z gronemeier
127! Surface data output
128!
129! 3418 2018-10-24 16:07:39Z kanani
130! call to material_heat_model now with check if spinup runs (rvtils)
131!
132! 3378 2018-10-19 12:34:59Z kanani
133! merge from radiation branch (r3362) into trunk
134! (moh.hefny):
135! Bugfix in the if statement to call radiation_interaction
136!
137! 3347 2018-10-15 14:21:08Z suehring
138! - offline nesting separated from large-scale forcing module
139! - changes for synthetic turbulence generator
140!
141! 3343 2018-10-15 10:38:52Z suehring
142! - Formatting, clean-up, comments (kanani)
143! - Added CALL to chem_emissions_setup (Russo)
144! - Code added for decycling chemistry (basit)
145!
146! 3294 2018-10-01 02:37:10Z raasch
147! changes concerning modularization of ocean option
148!
149! 3274 2018-09-24 15:42:55Z knoop
150! Modularization of all bulk cloud physics code components
151!
152! 3241 2018-09-12 15:02:00Z raasch
153! unused variables removed
154!
155! 3198 2018-08-15 09:23:10Z sward
156! Added multi_agent_system_end; defined start time for MAS relative to
157! time_since_reference_point
158!
159! 3183 2018-07-27 14:25:55Z suehring
160! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
161! Rename subroutines and variables in COSMO nesting mode
162!
163! 3182 2018-07-27 13:36:03Z suehring
164! Added multi agent system
165!
166! 3042 2018-05-25 10:44:37Z schwenkel
167! Changed the name specific humidity to mixing ratio
168!
169! 3040 2018-05-25 10:22:08Z schwenkel
170! Fixed bug in IF statement
171! Ensure that the time when calling the radiation to be the time step of the
172! pre-calculated time when first calculate the positions of the sun
173!
174! 3004 2018-04-27 12:33:25Z Giersch
175! First call of flow_statistics has been removed. It is already called in
176! run_control itself
177!
178! 2984 2018-04-18 11:51:30Z hellstea
179! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
180! as seemingly unnecessary.
181!
182! 2941 2018-04-03 11:54:58Z kanani
183! Deduct spinup_time from RUN_CONTROL output of main 3d run
184! (use time_since_reference_point instead of simulated_time)
185!
186! 2938 2018-03-27 15:52:42Z suehring
187! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
188!
189! 2936 2018-03-27 14:49:27Z suehring
190! Little formatting adjustment.
191!
192! 2817 2018-02-19 16:32:21Z knoop
193! Preliminary gust module interface implemented
194!
195! 2801 2018-02-14 16:01:55Z thiele
196! Changed lpm from subroutine to module.
197! Introduce particle transfer in nested models.
198!
199! 2776 2018-01-31 10:44:42Z Giersch
200! Variable use_synthetic_turbulence_generator has been abbreviated
201!
202! 2773 2018-01-30 14:12:54Z suehring
203! - Nesting for chemical species
204!
205! 2766 2018-01-22 17:17:47Z kanani
206! Removed preprocessor directive __chem
207!
208! 2718 2018-01-02 08:49:38Z maronga
209! Corrected "Former revisions" section
210!
211! 2696 2017-12-14 17:12:51Z kanani
212! - Change in file header (GPL part)
213! - Implementation of uv exposure model (FK)
214! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
215! - renamed diffusivities to tcm_diffusivities (TG)
216! - implement prognostic equation for diss (TG)
217! - Moved/commented CALL to chem_emissions (FK)
218! - Added CALL to chem_emissions (FK)
219! - Implementation of chemistry module (FK)
220! - Calls for setting boundary conditions in USM and LSM (MS)
221! - Large-scale forcing with larger-scale models implemented (MS)
222! - Rename usm_radiation into radiation_interactions; merge with branch
223!   radiation (MS)
224! - added call for usm_green_heat_model for green building surfaces (RvT)
225! - added call for usm_temperature_near_surface for use in indoor model (RvT)
226!
227! 2617 2017-11-16 12:47:24Z suehring
228! Bugfix, assure that the reference state does not become zero.
229!
230! 2563 2017-10-19 15:36:10Z Giersch
231! Variable wind_turbine moved to module control_parameters
232!
233! 2365 2017-08-21 14:59:59Z kanani
234! Vertical grid nesting implemented (SadiqHuq)
235!
236! 2320 2017-07-21 12:47:43Z suehring
237! Set bottom boundary conditions after nesting interpolation and anterpolation
238!
239! 2299 2017-06-29 10:14:38Z maronga
240! Call of soil model adjusted
241!
242! 2292 2017-06-20 09:51:42Z schwenkel
243! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
244! includes two more prognostic equations for cloud drop concentration (nc) 
245! and cloud water content (qc).
246!
247! 2271 2017-06-09 12:34:55Z sward
248! Start timestep message changed
249!
250! 2259 2017-06-08 09:09:11Z gronemeier
251! Implemented synthetic turbulence generator
252!
253! 2233 2017-05-30 18:08:54Z suehring
254!
255! 2232 2017-05-30 17:47:52Z suehring
256! Adjustments to new topography and surface concept
257! Modify passed parameters for disturb_field
258!
259! 2178 2017-03-17 11:07:39Z hellstea
260! Setting perturbations at all times near inflow boundary is removed
261! in case of nested boundaries
262!
263! 2174 2017-03-13 08:18:57Z maronga
264! Added support for nesting with cloud microphysics
265!
266! 2118 2017-01-17 16:38:49Z raasch
267! OpenACC directives and related code removed
268!
269! 2050 2016-11-08 15:00:55Z gronemeier
270! Implement turbulent outflow condition
271!
272! 2031 2016-10-21 15:11:58Z knoop
273! renamed variable rho to rho_ocean
274!
275! 2011 2016-09-19 17:29:57Z kanani
276! Flag urban_surface is now defined in module control_parameters,
277! removed commented CALLs of global_min_max.
278!
279! 2007 2016-08-24 15:47:17Z kanani
280! Added CALLs for new urban surface model
281!
282! 2000 2016-08-20 18:09:15Z knoop
283! Forced header and separation lines into 80 columns
284!
285! 1976 2016-07-27 13:28:04Z maronga
286! Simplified calls to radiation model
287!
288! 1960 2016-07-12 16:34:24Z suehring
289! Separate humidity and passive scalar
290!
291! 1957 2016-07-07 10:43:48Z suehring
292! flight module added
293!
294! 1919 2016-05-27 14:51:23Z raasch
295! Initial version of purely vertical nesting introduced.
296!
297! 1918 2016-05-27 14:35:57Z raasch
298! determination of time step moved to the end of the time step loop,
299! the first time step is now always calculated before the time step loop (i.e.
300! also in case of restart runs)
301!
302! 1914 2016-05-26 14:44:07Z witha
303! Added call for wind turbine model
304!
305! 1878 2016-04-19 12:30:36Z hellstea
306! Synchronization for nested runs rewritten
307!
308! 1853 2016-04-11 09:00:35Z maronga
309! Adjusted for use with radiation_scheme = constant
310!
311! 1849 2016-04-08 11:33:18Z hoffmann
312! Adapted for modularization of microphysics
313!
314! 1833 2016-04-07 14:23:03Z raasch
315! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
316!
317! 1831 2016-04-07 13:15:51Z hoffmann
318! turbulence renamed collision_turbulence
319!
320! 1822 2016-04-07 07:49:42Z hoffmann
321! icloud_scheme replaced by microphysics_*
322!
323! 1808 2016-04-05 19:44:00Z raasch
324! output message in case unscheduled radiation calls removed
325!
326! 1797 2016-03-21 16:50:28Z raasch
327! introduction of different datatransfer modes
328!
329! 1791 2016-03-11 10:41:25Z raasch
330! call of pmci_update_new removed
331!
332! 1786 2016-03-08 05:49:27Z raasch
333! +module spectrum
334!
335! 1783 2016-03-06 18:36:17Z raasch
336! switch back of netcdf data format for mask output moved to the mask output
337! routine
338!
339! 1781 2016-03-03 15:12:23Z raasch
340! some pmc calls removed at the beginning (before timeloop),
341! pmc initialization moved to the main program
342!
343! 1764 2016-02-28 12:45:19Z raasch
344! PMC_ACTIVE flags removed,
345! bugfix: nest synchronization after first call of timestep
346!
347! 1762 2016-02-25 12:31:13Z hellstea
348! Introduction of nested domain feature
349!
350! 1736 2015-12-04 08:56:33Z raasch
351! no perturbations added to total domain if energy limit has been set zero
352!
353! 1691 2015-10-26 16:17:44Z maronga
354! Added option for spin-ups without land surface and radiation models. Moved calls
355! for radiation and lan surface schemes.
356!
357! 1682 2015-10-07 23:56:08Z knoop
358! Code annotations made doxygen readable
359!
360! 1671 2015-09-25 03:29:37Z raasch
361! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
362! for particles
363!
364! 1585 2015-04-30 07:05:52Z maronga
365! Moved call of radiation scheme. Added support for RRTM
366!
367! 1551 2015-03-03 14:18:16Z maronga
368! Added interface for different radiation schemes.
369!
370! 1496 2014-12-02 17:25:50Z maronga
371! Added calls for the land surface model and radiation scheme
372!
373! 1402 2014-05-09 14:25:13Z raasch
374! location messages modified
375!
376! 1384 2014-05-02 14:31:06Z raasch
377! location messages added
378!
379! 1380 2014-04-28 12:40:45Z heinze
380! CALL of nudge_ref added
381! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
382!
383! 1365 2014-04-22 15:03:56Z boeske
384! Reset sums_ls_l to zero at each timestep
385! +sums_ls_l
386! Calculation of reference state (previously in subroutine calc_mean_profile)
387
388! 1342 2014-03-26 17:04:47Z kanani
389! REAL constants defined as wp-kind
390!
391! 1320 2014-03-20 08:40:49Z raasch
392! ONLY-attribute added to USE-statements,
393! kind-parameters added to all INTEGER and REAL declaration statements,
394! kinds are defined in new module kinds,
395! old module precision_kind is removed,
396! revision history before 2012 removed,
397! comment fields (!:) to be used for variable explanations added to
398! all variable declaration statements
399! 1318 2014-03-17 13:35:16Z raasch
400! module interfaces removed
401!
402! 1308 2014-03-13 14:58:42Z fricke
403! +netcdf_data_format_save
404! For masked data, parallel netcdf output is not tested so far, hence
405! netcdf_data_format is switched back to non-paralell output.
406!
407! 1276 2014-01-15 13:40:41Z heinze
408! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
409!
410! 1257 2013-11-08 15:18:40Z raasch
411! acc-update-host directive for timestep removed
412!
413! 1241 2013-10-30 11:36:58Z heinze
414! Generalize calc_mean_profile for wider use
415! Determine shf and qsws in dependence on data from LSF_DATA
416! Determine ug and vg in dependence on data from LSF_DATA
417! 1221 2013-09-10 08:59:13Z raasch
418! host update of arrays before timestep is called
419!
420! 1179 2013-06-14 05:57:58Z raasch
421! mean profiles for reference state are only calculated if required,
422! small bugfix for background communication
423!
424! 1171 2013-05-30 11:27:45Z raasch
425! split of prognostic_equations deactivated (comment lines), for the time being
426!
427! 1128 2013-04-12 06:19:32Z raasch
428! asynchronous transfer of ghost point data realized for acc-optimized version:
429! prognostic_equations are first called two times for those points required for
430! the left-right and north-south exchange, respectively, and then for the
431! remaining points,
432! those parts requiring global communication moved from prognostic_equations to
433! here
434!
435! 1115 2013-03-26 18:16:16Z hoffmann
436! calculation of qr and nr is restricted to precipitation
437!
438! 1113 2013-03-10 02:48:14Z raasch
439! GPU-porting of boundary conditions,
440! openACC directives updated
441! formal parameter removed from routine boundary_conds
442!
443! 1111 2013-03-08 23:54:10Z raasch
444! +internal timestep counter for cpu statistics added,
445! openACC directives updated
446!
447! 1092 2013-02-02 11:24:22Z raasch
448! unused variables removed
449!
450! 1065 2012-11-22 17:42:36Z hoffmann
451! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
452!
453! 1053 2012-11-13 17:11:03Z hoffmann
454! exchange of ghost points for nr, qr added
455!
456! 1036 2012-10-22 13:43:42Z raasch
457! code put under GPL (PALM 3.9)
458!
459! 1019 2012-09-28 06:46:45Z raasch
460! non-optimized version of prognostic_equations removed
461!
462! 1015 2012-09-27 09:23:24Z raasch
463! +call of prognostic_equations_acc
464!
465! 1001 2012-09-13 14:08:46Z raasch
466! all actions concerning leapfrog- and upstream-spline-scheme removed
467!
468! 849 2012-03-15 10:35:09Z raasch
469! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
470!
471! 825 2012-02-19 03:03:44Z raasch
472! wang_collision_kernel renamed wang_kernel
473!
474! Revision 1.1  1997/08/11 06:19:04  raasch
475! Initial revision
476!
477!
478! Description:
479! ------------
480!> Integration in time of the model equations, statistical analysis and graphic
481!> output
482!------------------------------------------------------------------------------!
483 SUBROUTINE time_integration
484 
485
486    USE advec_ws,                                                                                  &
487        ONLY:  ws_statistics
488
489    USE arrays_3d,                                                                                 &
490        ONLY:  diss, diss_p, dzu, e, e_p, nc, nc_p, nr, nr_p, prho, pt, pt_p, pt_init, q_init, q,  &
491               qc, qc_p, ql, ql_c, ql_v, ql_vp, qr, qr_p, q_p, ref_state, rho_ocean, s, s_p, sa_p, &
492               tend, u, u_p, v, vpt, v_p, w, w_p
493
494    USE biometeorology_mod,                                                                        &
495        ONLY:  bio_calculate_thermal_index_maps, thermal_comfort, uvem_calc_exposure, uv_exposure
496
497    USE bulk_cloud_model_mod,                                                                      &
498        ONLY: bulk_cloud_model, calc_liquid_water_content, collision_turbulence,                   &
499              microphysics_morrison, microphysics_seifert
500
501    USE calc_mean_profile_mod,                                                                     &
502        ONLY:  calc_mean_profile
503
504    USE chem_emissions_mod,                                                                        &
505        ONLY:  chem_emissions_setup
506
507    USE chem_gasphase_mod,                                                                         &
508        ONLY:  nspec
509
510    USE chem_modules,                                                                              &
511        ONLY:  bc_cs_t_val, emissions_anthropogenic, nspec_out, chem_species
512
513    USE chemistry_model_mod,                                                                       &
514        ONLY:  chem_boundary_conds_decycle
515
516    USE control_parameters,                                                                        &
517        ONLY:  advected_distance_x, advected_distance_y, air_chemistry, average_count_3d,          &
518               averaging_interval, averaging_interval_pr, bc_lr_cyc, bc_ns_cyc, bc_pt_t_val,       &
519               bc_q_t_val, biometeorology, call_psolver_at_all_substeps,  child_domain,            &
520               cloud_droplets, constant_flux_layer, constant_heatflux, create_disturbances,        &
521               dopr_n, constant_diffusion, coupling_mode, coupling_start_time,                     &
522               current_timestep_number, disturbance_created, disturbance_energy_limit, dist_range, &
523               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr, dt_coupling,              &
524               dt_data_output_av, dt_disturb, dt_do2d_xy, dt_do2d_xz, dt_do2d_yz, dt_do3d,         &
525               dt_domask,dt_dopts, dt_dopr, dt_dopr_listing, dt_dots, dt_dvrp, dt_run_control,     &
526               end_time, first_call_lpm, first_call_mas, galilei_transformation, humidity,         &
527               indoor_model, intermediate_timestep_count, intermediate_timestep_count_max,         &
528               land_surface, large_scale_forcing, loop_optimization, lsf_surf, lsf_vert, masks,    &
529               mid, multi_agent_system_end, multi_agent_system_start, nesting_offline, neutral,    &
530               nr_timesteps_this_run, nudging, ocean_mode, passive_scalar, pt_reference,           &
531               pt_slope_offset, random_heatflux, rans_mode, rans_tke_e, run_coupled, salsa,        &
532               simulated_time, simulated_time_chr, skip_time_do2d_xy, skip_time_do2d_xz,           &
533               skip_time_do2d_yz, skip_time_do3d, skip_time_domask, skip_time_dopr,                &
534               skip_time_data_output_av, sloping_surface, stop_dt, surface_output,                 &
535               terminate_coupled, terminate_run, timestep_scheme, time_coupling, time_do2d_xy,     &
536               time_do2d_xz, time_do2d_yz, time_do3d, time_domask, time_dopr, time_dopr_av,        &
537               time_dopr_listing, time_dopts, time_dosp, time_dosp_av, time_dots, time_do_av,      &
538               time_do_sla, time_disturb, time_dvrp, time_run_control, time_since_reference_point, &
539               turbulent_inflow, turbulent_outflow, urban_surface,                                 &
540               use_initial_profile_as_reference, use_single_reference_value, u_gtrans, v_gtrans,   &
541               virtual_flight, virtual_measurement, ws_scheme_mom, ws_scheme_sca
542
543    USE cpulog,                                                                                    &
544        ONLY:  cpu_log, log_point, log_point_s
545
546    USE date_and_time_mod,                                                                         &
547        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
548
549    USE flight_mod,                                                                                &
550        ONLY:  flight_measurement
551
552    USE indices,                                                                                   &
553        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nzb, nzt
554
555    USE indoor_model_mod,                                                                          &
556        ONLY:  dt_indoor, im_main_heatcool, time_indoor
557
558    USE interaction_droplets_ptq_mod,                                                              &
559        ONLY:  interaction_droplets_ptq
560
561    USE interfaces
562
563    USE kinds
564
565    USE land_surface_model_mod,                                                                    &
566        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model, skip_time_do_lsm
567
568    USE lpm_mod,                                                                                   &
569        ONLY:  lpm
570
571    USE lsf_nudging_mod,                                                                           &
572        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
573
574    USE module_interface,                                                                          &
575        ONLY:  module_interface_actions
576
577    USE multi_agent_system_mod,                                                                    &
578        ONLY:  agents_active, multi_agent_system
579
580    USE nesting_offl_mod,                                                                          &
581        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
582
583    USE netcdf_data_input_mod,                                                                     &
584        ONLY:  chem_emis, chem_emis_att, nest_offl, netcdf_data_input_offline_nesting
585
586    USE ocean_mod,                                                                                 &
587        ONLY:  prho_reference
588
589    USE particle_attributes,                                                                       &
590        ONLY:  particle_advection, particle_advection_start, use_sgs_for_particles, wang_kernel
591
592    USE pegrid
593
594    USE pmc_interface,                                                                             &
595        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans, pmci_synchronize
596
597    USE progress_bar,                                                                              &
598        ONLY:  finish_progress_bar, output_progress_bar
599
600    USE prognostic_equations_mod,                                                                  &
601        ONLY:  prognostic_equations_cache, prognostic_equations_vector
602
603    USE radiation_model_mod,                                                                       &
604        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,                    &
605              radiation_interaction, radiation_interactions, skip_time_do_radiation, time_radiation
606
607    USE salsa_mod,                                                                                 &
608        ONLY: aerosol_number, aerosol_mass, bc_am_t_val, bc_an_t_val, bc_gt_t_val,                 &
609              nbins_aerosol, ncomponents_mass, ngases_salsa, salsa_boundary_conds,                 &
610              salsa_emission_update, salsa_gas, salsa_gases_from_chem, skip_time_do_salsa
611
612    USE spectra_mod,                                                                               &
613        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp, skip_time_dosp
614
615    USE statistics,                                                                                &
616        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l
617
618
619    USE surface_layer_fluxes_mod,                                                                  &
620        ONLY:  surface_layer_fluxes
621
622    USE surface_data_output_mod,                                                                   &
623        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf, dt_dosurf_av,               &
624               surface_data_output, surface_data_output_averaging, skip_time_dosurf,               &
625               skip_time_dosurf_av, time_dosurf, time_dosurf_av
626
627    USE surface_mod,                                                                               &
628        ONLY:  surf_def_h, surf_lsm_h, surf_usm_h
629
630    USE synthetic_turbulence_generator_mod,                                                        &
631        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence, stg_adjust, stg_main,    &
632               time_stg_adjust, time_stg_call, use_syn_turb_gen
633
634    USE turbulence_closure_mod,                                                                    &
635        ONLY:  tcm_diffusivities, production_e_init
636
637    USE urban_surface_mod,                                                                         &
638        ONLY:  usm_boundary_condition, usm_material_heat_model, usm_material_model,                &
639               usm_surface_energy_balance, usm_green_heat_model
640
641    USE vertical_nesting_mod,                                                                      &
642        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e, vnest_boundary_conds,              &
643               vnest_boundary_conds_khkm, vnest_deallocate, vnest_init, vnest_init_fine,           &
644               vnest_start_time
645
646    USE virtual_measurement_mod,                                                                   &
647        ONLY:  vm_data_output, vm_sampling, vm_time_start
648
649
650#if defined( _OPENACC )
651    USE arrays_3d,                                                             &
652        ONLY:  d, dd2zu, ddzu, ddzw, drho_air, drho_air_zw, dzw, heatflux_output_conversion, kh,   &
653               km, momentumflux_output_conversion, p, ptdf_x, ptdf_y, rdf, rdf_sc, rho_air,        &
654               rho_air_zw, te_m, tpt_m, tu_m, tv_m, tw_m, ug, u_init, u_stokes_zu, vg, v_init,     &
655               v_stokes_zu, zu
656
657    USE control_parameters,                                                                        &
658        ONLY:  tsc
659
660    USE indices,                                                                                   &
661        ONLY:  advc_flags_1, advc_flags_2, nyn, nyng, nys, nysg, nz, nzb_max, wall_flags_0
662
663    USE statistics,                                                                                &
664        ONLY:  rmask, statistic_regions, sums_l, sums_l_l, sums_us2_ws_l,                          &
665               sums_wsus_ws_l, sums_vs2_ws_l, sums_wsvs_ws_l, sums_ws2_ws_l, sums_wspts_ws_l,      &
666               sums_wsqs_ws_l, sums_wssas_ws_l, sums_wsqcs_ws_l, sums_wsqrs_ws_l, sums_wsncs_ws_l, &
667               sums_wsnrs_ws_l, sums_wsss_ws_l, weight_substep, sums_salsa_ws_l
668
669    USE surface_mod,                                                                               &
670        ONLY:  bc_h, enter_surface_arrays, exit_surface_arrays
671#endif
672
673
674    IMPLICIT NONE
675
676    CHARACTER (LEN=9) ::  time_to_string   !<
677
678    INTEGER(iwp)      ::  ib        !< index for aerosol size bins
679    INTEGER(iwp)      ::  ic        !< index for aerosol mass bins
680    INTEGER(iwp)      ::  icc       !< additional index for aerosol mass bins
681    INTEGER(iwp)      ::  ig        !< index for salsa gases
682    INTEGER(iwp)      ::  n         !< loop counter for chemistry species
683
684    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
685                            !< steering of run control output interval
686    REAL(wp) ::  time_since_reference_point_save  !< original value of
687                                                  !< time_since_reference_point
688
689
690!
691!-- Copy data from arrays_3d
692!$ACC DATA &
693!$ACC COPY(d(nzb+1:nzt,nys:nyn,nxl:nxr)) &
694!$ACC COPY(e(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
695!$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
696!$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
697!$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
698!$ACC COPY(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
699!$ACC COPY(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
700!$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
701!$ACC COPY(pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
702
703!$ACC DATA &
704!$ACC COPY(e_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
705!$ACC COPY(u_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
706!$ACC COPY(v_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
707!$ACC COPY(w_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
708!$ACC COPY(pt_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
709!$ACC COPY(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
710!$ACC COPY(te_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
711!$ACC COPY(tu_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
712!$ACC COPY(tv_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
713!$ACC COPY(tw_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
714!$ACC COPY(tpt_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
715
716!$ACC DATA &
717!$ACC COPYIN(rho_air(nzb:nzt+1), drho_air(nzb:nzt+1)) &
718!$ACC COPYIN(rho_air_zw(nzb:nzt+1), drho_air_zw(nzb:nzt+1)) &
719!$ACC COPYIN(zu(nzb:nzt+1)) &
720!$ACC COPYIN(dzu(1:nzt+1), dzw(1:nzt+1)) &
721!$ACC COPYIN(ddzu(1:nzt+1), dd2zu(1:nzt)) &
722!$ACC COPYIN(ddzw(1:nzt+1)) &
723!$ACC COPYIN(heatflux_output_conversion(nzb:nzt+1)) &
724!$ACC COPYIN(momentumflux_output_conversion(nzb:nzt+1)) &
725!$ACC COPYIN(rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt)) &
726!$ACC COPYIN(ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng)) &
727!$ACC COPYIN(ref_state(0:nz+1)) &
728!$ACC COPYIN(u_init(0:nz+1), v_init(0:nz+1)) &
729!$ACC COPYIN(u_stokes_zu(nzb:nzt+1), v_stokes_zu(nzb:nzt+1)) &
730!$ACC COPYIN(pt_init(0:nz+1)) &
731!$ACC COPYIN(ug(0:nz+1), vg(0:nz+1))
732
733!
734!-- Copy data from control_parameters
735!$ACC DATA &
736!$ACC COPYIN(tsc(1:5))
737
738!
739!-- Copy data from indices
740!$ACC DATA &
741!$ACC COPYIN(advc_flags_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
742!$ACC COPYIN(advc_flags_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
743!$ACC COPYIN(wall_flags_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
744
745!
746!-- Copy data from surface_mod
747!$ACC DATA &
748!$ACC COPYIN(bc_h(0:1)) &
749!$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) &
750!$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) &
751!$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) &
752!$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) &
753!$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) &
754!$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns))
755
756!
757!-- Copy data from statistics
758!$ACC DATA &
759!$ACC COPYIN(hom(0:nz+1,1:2,1:4,0)) &
760!$ACC COPYIN(rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions)) &
761!$ACC COPYIN(weight_substep(1:intermediate_timestep_count_max)) &
762!$ACC COPY(sums_l(nzb:nzt+1,1:pr_palm,0)) &
763!$ACC COPY(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
764!$ACC COPY(sums_us2_ws_l(nzb:nzt+1,0)) &
765!$ACC COPY(sums_wsus_ws_l(nzb:nzt+1,0)) &
766!$ACC COPY(sums_vs2_ws_l(nzb:nzt+1,0)) &
767!$ACC COPY(sums_wsvs_ws_l(nzb:nzt+1,0)) &
768!$ACC COPY(sums_ws2_ws_l(nzb:nzt+1,0)) &
769!$ACC COPY(sums_wspts_ws_l(nzb:nzt+1,0)) &
770!$ACC COPY(sums_wssas_ws_l(nzb:nzt+1,0)) &
771!$ACC COPY(sums_wsqs_ws_l(nzb:nzt+1,0)) &
772!$ACC COPY(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
773!$ACC COPY(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
774!$ACC COPY(sums_wsncs_ws_l(nzb:nzt+1,0)) &
775!$ACC COPY(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
776!$ACC COPY(sums_wsss_ws_l(nzb:nzt+1,0)) &
777!$ACC COPY(sums_salsa_ws_l(nzb:nzt+1,0))
778
779#if defined( _OPENACC )
780    CALL enter_surface_arrays
781#endif
782
783!
784!-- At beginning determine the first time step
785    CALL timestep
786!
787!-- Synchronize the timestep in case of nested run.
788    IF ( nested_run )  THEN
789!
790!--    Synchronization by unifying the time step.
791!--    Global minimum of all time-steps is used for all.
792       CALL pmci_synchronize
793    ENDIF
794
795!
796!-- Determine and print out the run control quantities before the first time
797!-- step of this run. For the initial run, some statistics (e.g. divergence)
798!-- need to be determined first --> CALL flow_statistics at the beginning of
799!-- run_control
800    CALL run_control
801!
802!-- Data exchange between coupled models in case that a call has been omitted
803!-- at the end of the previous run of a job chain.
804    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND. .NOT. vnested )  THEN
805!
806!--    In case of model termination initiated by the local model the coupler
807!--    must not be called because this would again cause an MPI hang.
808       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
809          CALL surface_coupler
810          time_coupling = time_coupling - dt_coupling
811       ENDDO
812       IF (time_coupling == 0.0_wp  .AND.  time_since_reference_point < dt_coupling )  THEN
813          time_coupling = time_since_reference_point
814       ENDIF
815    ENDIF
816
817#if defined( __dvrp_graphics )
818!
819!-- Time measurement with dvrp software 
820    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
821#endif
822
823    CALL location_message( 'starting timestep-sequence', .TRUE. )
824
825!
826!-- Start of the time loop
827    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. .NOT. terminate_run )
828
829       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
830!
831!--    Vertical nesting: initialize fine grid
832       IF ( vnested ) THEN
833          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
834             CALL cpu_log( log_point_s(22), 'vnest_init', 'start' )
835             CALL vnest_init_fine
836             vnest_init = .TRUE.
837             CALL cpu_log( log_point_s(22), 'vnest_init', 'stop' )
838          ENDIF
839       ENDIF
840!
841!--    Determine ug, vg and w_subs in dependence on data from external file
842!--    LSF_DATA
843       IF ( large_scale_forcing .AND. lsf_vert )  THEN
844           CALL ls_forcing_vert ( simulated_time )
845           sums_ls_l = 0.0_wp
846       ENDIF
847
848!
849!--    Set pt_init and q_init to the current profiles taken from
850!--    NUDGING_DATA
851       IF ( nudging )  THEN
852           CALL nudge_ref ( simulated_time )
853!
854!--        Store temperature gradient at the top boundary for possible Neumann
855!--        boundary condition
856           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
857           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
858           IF ( air_chemistry )  THEN
859              DO  n = 1, nspec
860                 bc_cs_t_val = (  chem_species(n)%conc_pr_init(nzt+1)                            &
861                                - chem_species(n)%conc_pr_init(nzt) )                            &
862                               / dzu(nzt+1)
863              ENDDO
864           ENDIF
865           IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
866              DO  ib = 1, nbins_aerosol
867                 bc_an_t_val = ( aerosol_number(ib)%init(nzt+1) - aerosol_number(ib)%init(nzt) ) / &
868                               dzu(nzt+1)
869                 DO  ic = 1, ncomponents_mass
870                    icc = ( ic - 1 ) * nbins_aerosol + ib
871                    bc_am_t_val = ( aerosol_mass(icc)%init(nzt+1) - aerosol_mass(icc)%init(nzt) ) /&
872                                  dzu(nzt+1)
873                 ENDDO
874              ENDDO
875              IF ( .NOT. salsa_gases_from_chem )  THEN
876                 DO  ig = 1, ngases_salsa
877                    bc_gt_t_val = ( salsa_gas(ig)%init(nzt+1) - salsa_gas(ig)%init(nzt) ) /        &
878                                  dzu(nzt+1)
879                 ENDDO
880              ENDIF
881           ENDIF
882       ENDIF
883!
884!--    If forcing by larger-scale models is applied, check if new data
885!--    at domain boundaries need to be read.
886       IF ( nesting_offline ) THEN
887          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point ) &
888               CALL netcdf_data_input_offline_nesting
889       ENDIF
890
891!
892!--    Execute all other module actions routunes
893       CALL module_interface_actions( 'before_timestep' )
894       
895!
896!--    Start of intermediate step loop
897       intermediate_timestep_count = 0
898       DO  WHILE ( intermediate_timestep_count < intermediate_timestep_count_max )
899
900          intermediate_timestep_count = intermediate_timestep_count + 1
901
902!
903!--       Set the steering factors for the prognostic equations which depend
904!--       on the timestep scheme
905          CALL timestep_scheme_steering
906
907!
908!--       Calculate those variables needed in the tendency terms which need
909!--       global communication
910          IF ( .NOT. use_single_reference_value  .AND.  .NOT. use_initial_profile_as_reference )   &
911          THEN
912!
913!--          Horizontally averaged profiles to be used as reference state in
914!--          buoyancy terms (WARNING: only the respective last call of
915!--          calc_mean_profile defines the reference state!)
916             IF ( .NOT. neutral )  THEN
917                CALL calc_mean_profile( pt, 4 )
918                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
919             ENDIF
920             IF ( ocean_mode )  THEN
921                CALL calc_mean_profile( rho_ocean, 64 )
922                ref_state(:)  = hom(:,1,64,0)
923             ENDIF
924             IF ( humidity )  THEN
925                CALL calc_mean_profile( vpt, 44 )
926                ref_state(:)  = hom(:,1,44,0)
927             ENDIF
928!
929!--          Assure that ref_state does not become zero at any level
930!--          ( might be the case if a vertical level is completely occupied
931!--            with topography ).
932             ref_state = MERGE( MAXVAL(ref_state), ref_state, ref_state == 0.0_wp )
933          ENDIF
934
935          IF ( .NOT. constant_diffusion )  CALL production_e_init
936          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  intermediate_timestep_count == 1 )     &
937          THEN
938             CALL ws_statistics
939          ENDIF
940!
941!--       In case of nudging calculate current nudging time scale and horizontal
942!--       means of u, v, pt and q
943          IF ( nudging )  THEN
944             CALL calc_tnudge( simulated_time )
945             CALL calc_mean_profile( u, 1 )
946             CALL calc_mean_profile( v, 2 )
947             CALL calc_mean_profile( pt, 4 )
948             CALL calc_mean_profile( q, 41 )
949          ENDIF
950!
951!--       Execute all other module actions routunes
952          CALL module_interface_actions( 'before_prognostic_equations' )
953!
954!--       Solve the prognostic equations. A fast cache optimized version with
955!--       only one single loop is used in case of Piascek-Williams advection
956!--       scheme. NEC vector machines use a different version, because
957!--       in the other versions a good vectorization is prohibited due to
958!--       inlining problems.
959          IF ( loop_optimization == 'cache' )  THEN
960             CALL prognostic_equations_cache
961          ELSEIF ( loop_optimization == 'vector' )  THEN
962             CALL prognostic_equations_vector
963          ENDIF
964
965!
966!--       Particle transport/physics with the Lagrangian particle model
967!--       (only once during intermediate steps, because it uses an Euler-step)
968!--       ### particle model should be moved before prognostic_equations, in order
969!--       to regard droplet interactions directly
970          IF ( particle_advection  .AND.  time_since_reference_point >= particle_advection_start   &
971               .AND.  intermediate_timestep_count == 1 )                                           &
972          THEN
973             CALL lpm
974             first_call_lpm = .FALSE.
975          ENDIF
976
977!
978!--       Interaction of droplets with temperature and mixing ratio.
979!--       Droplet condensation and evaporation is calculated within
980!--       advec_particles.
981          IF ( cloud_droplets  .AND.  intermediate_timestep_count == intermediate_timestep_count_max ) &
982          THEN
983             CALL interaction_droplets_ptq
984          ENDIF
985
986!
987!--       Movement of agents in multi agent system
988          IF ( agents_active  .AND.  time_since_reference_point >= multi_agent_system_start  .AND. &
989               time_since_reference_point <= multi_agent_system_end  .AND.                         &
990               intermediate_timestep_count == 1 )                                                  &
991          THEN
992             CALL multi_agent_system
993             first_call_mas = .FALSE.
994          ENDIF
995
996!
997!--       Exchange of ghost points (lateral boundary conditions)
998          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
999
1000          CALL exchange_horiz( u_p, nbgp )
1001          CALL exchange_horiz( v_p, nbgp )
1002          CALL exchange_horiz( w_p, nbgp )
1003          CALL exchange_horiz( pt_p, nbgp )
1004          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
1005          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence                           &
1006               .OR.  use_sgs_for_particles )  THEN
1007             IF ( rans_tke_e )  THEN
1008                CALL exchange_horiz( diss_p, nbgp )
1009             ELSE
1010                CALL exchange_horiz( diss, nbgp )
1011             ENDIF
1012          ENDIF
1013          IF ( ocean_mode )  THEN
1014             CALL exchange_horiz( sa_p, nbgp )
1015             CALL exchange_horiz( rho_ocean, nbgp )
1016             CALL exchange_horiz( prho, nbgp )
1017          ENDIF
1018          IF ( humidity )  THEN
1019             CALL exchange_horiz( q_p, nbgp )
1020             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
1021                CALL exchange_horiz( qc_p, nbgp )
1022                CALL exchange_horiz( nc_p, nbgp )
1023             ENDIF
1024             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
1025                CALL exchange_horiz( qr_p, nbgp )
1026                CALL exchange_horiz( nr_p, nbgp )
1027             ENDIF
1028          ENDIF
1029          IF ( cloud_droplets )  THEN
1030             CALL exchange_horiz( ql, nbgp )
1031             CALL exchange_horiz( ql_c, nbgp )
1032             CALL exchange_horiz( ql_v, nbgp )
1033             CALL exchange_horiz( ql_vp, nbgp )
1034          ENDIF
1035          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
1036          IF ( air_chemistry  )  CALL chem_boundary_conds_decycle
1037
1038          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
1039!
1040!--          Exchange ghost points and decycle boundary concentrations if needed
1041             DO  ib = 1, nbins_aerosol
1042                CALL exchange_horiz( aerosol_number(ib)%conc_p, nbgp )
1043                CALL salsa_boundary_conds( aerosol_number(ib)%conc_p, aerosol_number(ib)%init )
1044                DO  ic = 1, ncomponents_mass
1045                   icc = ( ic - 1 ) * nbins_aerosol + ib
1046                   CALL exchange_horiz( aerosol_mass(icc)%conc_p, nbgp )
1047                   CALL salsa_boundary_conds( aerosol_mass(icc)%conc_p, aerosol_mass(icc)%init )
1048                ENDDO
1049             ENDDO
1050             IF ( .NOT. salsa_gases_from_chem )  THEN
1051                DO  ig = 1, ngases_salsa
1052                   CALL exchange_horiz( salsa_gas(ig)%conc_p, nbgp )
1053                   CALL salsa_boundary_conds( salsa_gas(ig)%conc_p, salsa_gas(ig)%init )
1054                ENDDO
1055             ENDIF
1056          ENDIF
1057          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1058
1059!
1060!--       Boundary conditions for the prognostic quantities (except of the
1061!--       velocities at the outflow in case of a non-cyclic lateral wall)
1062          CALL boundary_conds
1063!
1064!--       Swap the time levels in preparation for the next time step.
1065          CALL swap_timelevel
1066
1067!
1068!--       Vertical nesting: Interpolate fine grid data to the coarse grid
1069          IF ( vnest_init ) THEN
1070             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'start' )
1071             CALL vnest_anterpolate
1072             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'stop' )
1073          ENDIF
1074
1075          IF ( nested_run )  THEN
1076
1077             CALL cpu_log( log_point(60), 'nesting', 'start' )
1078!
1079!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
1080!--          and pmci_child_datatrans are called inside the wrapper
1081!--          subroutine pmci_datatrans according to the control parameters
1082!--          nesting_mode and nesting_datatransfer_mode.
1083!--          TO_DO: why is nesting_mode given as a parameter here?
1084             CALL pmci_datatrans( nesting_mode )
1085
1086             IF ( TRIM( nesting_mode ) == 'two-way' .OR.  nesting_mode == 'vertical' )  THEN
1087!
1088!--             Exchange_horiz is needed for all parent-domains after the
1089!--             anterpolation
1090                CALL exchange_horiz( u, nbgp )
1091                CALL exchange_horiz( v, nbgp )
1092                CALL exchange_horiz( w, nbgp )
1093                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
1094
1095                IF ( humidity )  THEN
1096
1097                   CALL exchange_horiz( q, nbgp )
1098
1099                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
1100                       CALL exchange_horiz( qc, nbgp )
1101                       CALL exchange_horiz( nc, nbgp )
1102                   ENDIF
1103                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
1104                       CALL exchange_horiz( qr, nbgp )
1105                       CALL exchange_horiz( nr, nbgp )
1106                   ENDIF
1107
1108                ENDIF
1109
1110                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
1111
1112                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
1113
1114                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.  rans_tke_e )  THEN
1115                   CALL exchange_horiz( diss, nbgp )
1116                ENDIF
1117
1118                IF ( air_chemistry )  THEN
1119                   DO  n = 1, nspec
1120                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
1121                   ENDDO
1122                ENDIF
1123
1124                IF ( salsa  .AND. time_since_reference_point >= skip_time_do_salsa )  THEN
1125                   DO  ib = 1, nbins_aerosol
1126                      CALL exchange_horiz( aerosol_number(ib)%conc, nbgp )
1127                      CALL salsa_boundary_conds( aerosol_number(ib)%conc, aerosol_number(ib)%init )
1128                      DO  ic = 1, ncomponents_mass
1129                         icc = ( ic - 1 ) * nbins_aerosol + ib
1130                         CALL exchange_horiz( aerosol_mass(icc)%conc, nbgp )
1131                         CALL salsa_boundary_conds( aerosol_mass(icc)%conc, aerosol_mass(icc)%init )
1132                      ENDDO
1133                   ENDDO
1134                   IF ( .NOT. salsa_gases_from_chem )  THEN
1135                      DO  ig = 1, ngases_salsa
1136                         CALL exchange_horiz( salsa_gas(ig)%conc, nbgp )
1137                         CALL salsa_boundary_conds( salsa_gas(ig)%conc, salsa_gas(ig)%init )
1138                      ENDDO
1139                   ENDIF
1140                ENDIF
1141                CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1142
1143             ENDIF
1144!
1145!--          Set boundary conditions again after interpolation and anterpolation.
1146             CALL pmci_boundary_conds
1147
1148             CALL cpu_log( log_point(60), 'nesting', 'stop' )
1149
1150          ENDIF
1151
1152!
1153!--       Temperature offset must be imposed at cyclic boundaries in x-direction
1154!--       when a sloping surface is used
1155          IF ( sloping_surface )  THEN
1156             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - pt_slope_offset
1157             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + pt_slope_offset
1158          ENDIF
1159
1160!
1161!--       Impose a turbulent inflow using the recycling method
1162          IF ( turbulent_inflow )  CALL inflow_turbulence
1163
1164!
1165!--       Set values at outflow boundary using the special outflow condition
1166          IF ( turbulent_outflow )  CALL outflow_turbulence
1167
1168!
1169!--       Impose a random perturbation on the horizontal velocity field
1170          IF ( create_disturbances  .AND.  ( call_psolver_at_all_substeps  .AND.                   &
1171               intermediate_timestep_count == intermediate_timestep_count_max )                    &
1172               .OR. ( .NOT. call_psolver_at_all_substeps  .AND.  intermediate_timestep_count == 1 ) ) &
1173          THEN
1174             time_disturb = time_disturb + dt_3d
1175             IF ( time_disturb >= dt_disturb )  THEN
1176                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                                     &
1177                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
1178                   CALL disturb_field( 'u', tend, u )
1179                   CALL disturb_field( 'v', tend, v )
1180                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )                                &
1181                         .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )                 &
1182                THEN
1183!
1184!--                Runs with a non-cyclic lateral wall need perturbations
1185!--                near the inflow throughout the whole simulation
1186                   dist_range = 1
1187                   CALL disturb_field( 'u', tend, u )
1188                   CALL disturb_field( 'v', tend, v )
1189                   dist_range = 0
1190                ENDIF
1191                time_disturb = time_disturb - dt_disturb
1192             ENDIF
1193          ENDIF
1194
1195!
1196!--       Map forcing data derived from larger scale model onto domain
1197!--       boundaries.
1198          IF ( nesting_offline  .AND.  intermediate_timestep_count ==                              &
1199                                       intermediate_timestep_count_max  )                          &
1200             CALL nesting_offl_bc
1201!
1202!--       Impose a turbulent inflow using synthetic generated turbulence,
1203!--       only once per time step.
1204          IF ( use_syn_turb_gen  .AND.  time_stg_call >= dt_stg_call  .AND.                        &
1205             intermediate_timestep_count == intermediate_timestep_count_max )  THEN
1206             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1207             CALL stg_main
1208             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1209          ENDIF
1210!
1211!--       Ensure mass conservation. This need to be done after imposing
1212!--       synthetic turbulence and top boundary condition for pressure is set to
1213!--       Neumann conditions.
1214!--       Is this also required in case of Dirichlet?
1215          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1216!
1217!--       Reduce the velocity divergence via the equation for perturbation
1218!--       pressure.
1219          IF ( intermediate_timestep_count == 1  .OR. &
1220                call_psolver_at_all_substeps )  THEN
1221
1222             IF (  vnest_init ) THEN
1223!
1224!--             Compute pressure in the CG, interpolate top boundary conditions
1225!--             to the FG and then compute pressure in the FG
1226                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1227
1228                CALL cpu_log( log_point_s(30), 'vnest_bc', 'start' )
1229                CALL vnest_boundary_conds
1230                CALL cpu_log( log_point_s(30), 'vnest_bc', 'stop' )
1231 
1232                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1233
1234!--             Anterpolate TKE, satisfy Germano Identity
1235                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'start' )
1236                CALL vnest_anterpolate_e
1237                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'stop' )
1238
1239             ELSE
1240
1241                CALL pres
1242
1243             ENDIF
1244
1245          ENDIF
1246
1247!
1248!--       If required, compute liquid water content
1249          IF ( bulk_cloud_model )  THEN
1250             CALL calc_liquid_water_content
1251          ENDIF
1252!
1253!--       If required, compute virtual potential temperature
1254          IF ( humidity )  THEN
1255             CALL compute_vpt 
1256          ENDIF 
1257
1258!
1259!--       Compute the diffusion quantities
1260          IF ( .NOT. constant_diffusion )  THEN
1261
1262!
1263!--          Determine surface fluxes shf and qsws and surface values
1264!--          pt_surface and q_surface in dependence on data from external
1265!--          file LSF_DATA respectively
1266             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND.                                     &
1267                 intermediate_timestep_count == intermediate_timestep_count_max )                  &
1268             THEN
1269                CALL ls_forcing_surf( simulated_time )
1270             ENDIF
1271
1272!
1273!--          First the vertical (and horizontal) fluxes in the surface
1274!--          (constant flux) layer are computed
1275             IF ( constant_flux_layer )  THEN
1276                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1277                CALL surface_layer_fluxes
1278                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
1279             ENDIF
1280!
1281!--          If required, solve the energy balance for the surface and run soil
1282!--          model. Call for horizontal as well as vertical surfaces
1283             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
1284
1285                CALL cpu_log( log_point(54), 'land_surface', 'start' )
1286!
1287!--             Call for horizontal upward-facing surfaces
1288                CALL lsm_energy_balance( .TRUE., -1 )
1289                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
1290!
1291!--             Call for northward-facing surfaces
1292                CALL lsm_energy_balance( .FALSE., 0 )
1293                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
1294!
1295!--             Call for southward-facing surfaces
1296                CALL lsm_energy_balance( .FALSE., 1 )
1297                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
1298!
1299!--             Call for eastward-facing surfaces
1300                CALL lsm_energy_balance( .FALSE., 2 )
1301                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
1302!
1303!--             Call for westward-facing surfaces
1304                CALL lsm_energy_balance( .FALSE., 3 )
1305                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
1306               
1307!
1308!--             At the end, set boundary conditons for potential temperature
1309!--             and humidity after running the land-surface model. This
1310!--             might be important for the nesting, where arrays are transfered.
1311                CALL lsm_boundary_condition
1312
1313               
1314                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1315             ENDIF
1316!
1317!--          If required, solve the energy balance for urban surfaces and run
1318!--          the material heat model
1319             IF (urban_surface) THEN
1320                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
1321               
1322                CALL usm_surface_energy_balance( .FALSE. )
1323                IF ( usm_material_model )  THEN
1324                   CALL usm_green_heat_model
1325                   CALL usm_material_heat_model ( .FALSE. )
1326                ENDIF
1327
1328!
1329!--             At the end, set boundary conditons for potential temperature
1330!--             and humidity after running the urban-surface model. This
1331!--             might be important for the nesting, where arrays are transfered.
1332                CALL usm_boundary_condition
1333
1334                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1335             ENDIF
1336!
1337!--          Compute the diffusion coefficients
1338             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
1339             IF ( .NOT. humidity ) THEN
1340                IF ( ocean_mode )  THEN
1341                   CALL tcm_diffusivities( prho, prho_reference )
1342                ELSE
1343                   CALL tcm_diffusivities( pt, pt_reference )
1344                ENDIF
1345             ELSE
1346                CALL tcm_diffusivities( vpt, pt_reference )
1347             ENDIF
1348             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
1349!
1350!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1351             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
1352
1353          ENDIF
1354
1355!
1356!--       If required, calculate radiative fluxes and heating rates
1357          IF ( radiation  .AND.  intermediate_timestep_count == intermediate_timestep_count_max    &
1358               .AND. time_since_reference_point > skip_time_do_radiation )  THEN
1359
1360               time_radiation = time_radiation + dt_3d
1361
1362             IF ( time_radiation >= dt_radiation  .OR.  force_radiation_call )  THEN
1363
1364                CALL cpu_log( log_point(50), 'radiation', 'start' )
1365
1366                IF ( .NOT. force_radiation_call )  THEN
1367                   time_radiation = time_radiation - dt_radiation
1368                ENDIF
1369
1370!
1371!--             Adjust the current time to the time step of the radiation model.
1372!--             Needed since radiation is pre-calculated and stored only on apparent
1373!--             solar positions
1374                time_since_reference_point_save = time_since_reference_point
1375                time_since_reference_point = REAL( FLOOR( time_since_reference_point /             &
1376                                                          dt_radiation), wp ) * dt_radiation
1377
1378                CALL radiation_control
1379
1380                IF ( ( urban_surface  .OR.  land_surface )  .AND.  radiation_interactions )  THEN
1381                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'start' )
1382                   CALL radiation_interaction
1383                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'stop' )
1384                ENDIF
1385   
1386!
1387!--             Return the current time to its original value
1388                time_since_reference_point = time_since_reference_point_save
1389
1390                CALL cpu_log( log_point(50), 'radiation', 'stop' )
1391
1392             ENDIF
1393          ENDIF
1394
1395       ENDDO   ! Intermediate step loop
1396
1397!
1398!--    Will be used at some point by flow_statistics.
1399       !$ACC UPDATE &
1400       !$ACC HOST(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
1401       !$ACC HOST(sums_us2_ws_l(nzb:nzt+1,0)) &
1402       !$ACC HOST(sums_wsus_ws_l(nzb:nzt+1,0)) &
1403       !$ACC HOST(sums_vs2_ws_l(nzb:nzt+1,0)) &
1404       !$ACC HOST(sums_wsvs_ws_l(nzb:nzt+1,0)) &
1405       !$ACC HOST(sums_ws2_ws_l(nzb:nzt+1,0)) &
1406       !$ACC HOST(sums_wspts_ws_l(nzb:nzt+1,0)) &
1407       !$ACC HOST(sums_wssas_ws_l(nzb:nzt+1,0)) &
1408       !$ACC HOST(sums_wsqs_ws_l(nzb:nzt+1,0)) &
1409       !$ACC HOST(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
1410       !$ACC HOST(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
1411       !$ACC HOST(sums_wsncs_ws_l(nzb:nzt+1,0)) &
1412       !$ACC HOST(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
1413       !$ACC HOST(sums_wsss_ws_l(nzb:nzt+1,0)) &
1414       !$ACC HOST(sums_salsa_ws_l(nzb:nzt+1,0))
1415
1416!
1417!--    If required, consider chemical emissions
1418       IF ( air_chemistry  .AND.  emissions_anthropogenic )  THEN
1419!
1420!--       Update the time --> kanani: revise location of this CALL
1421          CALL calc_date_and_time
1422!
1423!--       Call emission routine only once an hour
1424          IF (hour_of_year  .GT.  hour_call_emis )  THEN
1425             CALL chem_emissions_setup( chem_emis_att, chem_emis, nspec_out )
1426             hour_call_emis = hour_of_year
1427          ENDIF
1428       ENDIF
1429!
1430!--    If required, consider aerosol emissions for the salsa model
1431       IF ( salsa )  THEN
1432!
1433!--       Call emission routine to update emissions if needed
1434          CALL salsa_emission_update
1435
1436       ENDIF
1437!
1438!--    If required, calculate indoor temperature, waste heat, heat flux
1439!--    through wall, etc.
1440!--    dt_indoor steers the frequency of the indoor model calculations.
1441!--    Note, at first timestep indoor model is called, in order to provide
1442!--    a waste heat flux.
1443       IF ( indoor_model )  THEN
1444
1445          time_indoor = time_indoor + dt_3d
1446
1447          IF ( time_indoor >= dt_indoor  .OR.  current_timestep_number == 0 )  THEN
1448
1449             time_indoor = time_indoor - dt_indoor
1450
1451             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1452             CALL im_main_heatcool
1453             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1454
1455          ENDIF
1456       ENDIF
1457!
1458!--    Increase simulation time and output times
1459       nr_timesteps_this_run      = nr_timesteps_this_run + 1
1460       current_timestep_number    = current_timestep_number + 1
1461       simulated_time             = simulated_time   + dt_3d
1462       time_since_reference_point = simulated_time - coupling_start_time
1463       simulated_time_chr         = time_to_string( time_since_reference_point )
1464
1465
1466
1467
1468       IF ( time_since_reference_point >= skip_time_data_output_av )  THEN
1469          time_do_av         = time_do_av       + dt_3d
1470       ENDIF
1471       IF ( time_since_reference_point >= skip_time_do2d_xy )  THEN
1472          time_do2d_xy       = time_do2d_xy     + dt_3d
1473       ENDIF
1474       IF ( time_since_reference_point >= skip_time_do2d_xz )  THEN
1475          time_do2d_xz       = time_do2d_xz     + dt_3d
1476       ENDIF
1477       IF ( time_since_reference_point >= skip_time_do2d_yz )  THEN
1478          time_do2d_yz       = time_do2d_yz     + dt_3d
1479       ENDIF
1480       IF ( time_since_reference_point >= skip_time_do3d    )  THEN
1481          time_do3d          = time_do3d        + dt_3d
1482       ENDIF
1483       DO  mid = 1, masks
1484          IF ( time_since_reference_point >= skip_time_domask(mid) )  THEN
1485             time_domask(mid)= time_domask(mid) + dt_3d
1486          ENDIF
1487       ENDDO
1488       time_dvrp          = time_dvrp        + dt_3d
1489       IF ( time_since_reference_point >= skip_time_dosp )  THEN
1490          time_dosp       = time_dosp        + dt_3d
1491       ENDIF
1492       time_dots          = time_dots        + dt_3d
1493       IF ( .NOT. first_call_lpm )  THEN
1494          time_dopts      = time_dopts       + dt_3d
1495       ENDIF
1496       IF ( time_since_reference_point >= skip_time_dopr )  THEN
1497          time_dopr       = time_dopr        + dt_3d
1498       ENDIF
1499       time_dopr_listing  = time_dopr_listing + dt_3d
1500       time_run_control   = time_run_control + dt_3d
1501!
1502!--    Increment time-counter for surface output
1503       IF ( surface_output )  THEN
1504          IF ( time_since_reference_point >= skip_time_dosurf )  THEN
1505             time_dosurf    = time_dosurf + dt_3d
1506          ENDIF
1507          IF ( time_since_reference_point >= skip_time_dosurf_av )  THEN
1508             time_dosurf_av = time_dosurf_av + dt_3d
1509          ENDIF
1510       ENDIF
1511!
1512!--    In case of synthetic turbulence generation and parametrized turbulence
1513!--    information, update the time counter and if required, adjust the
1514!--    STG to new atmospheric conditions.
1515       IF ( use_syn_turb_gen  )  THEN
1516          IF ( parametrize_inflow_turbulence )  THEN
1517             time_stg_adjust = time_stg_adjust + dt_3d
1518             IF ( time_stg_adjust >= dt_stg_adjust )  THEN
1519                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1520                CALL stg_adjust
1521                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1522             ENDIF
1523          ENDIF
1524          time_stg_call = time_stg_call + dt_3d
1525       ENDIF
1526
1527!
1528!--    Data exchange between coupled models
1529       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND.  .NOT. vnested )  THEN
1530          time_coupling = time_coupling + dt_3d
1531
1532!
1533!--       In case of model termination initiated by the local model
1534!--       (terminate_coupled > 0), the coupler must be skipped because it would
1535!--       cause an MPI intercomminucation hang.
1536!--       If necessary, the coupler will be called at the beginning of the
1537!--       next restart run.
1538          DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
1539             CALL surface_coupler
1540             time_coupling = time_coupling - dt_coupling
1541          ENDDO
1542       ENDIF
1543
1544!
1545!--    Biometeorology calculation of stationary thermal indices
1546!--    Todo (kanani): biometeorology needs own time_... treatment.
1547!--                   It might be that time_do2d_xy differs from time_do3d,
1548!--                   and then we might get trouble with the biomet output,
1549!--                   because we can have 2d and/or 3d biomet output!!
1550       IF ( biometeorology                                                                         &
1551            .AND. ( ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  &
1552                  .OR.                                                                             &
1553            ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy ) &
1554                    ) )  THEN
1555!
1556!--       If required, do thermal comfort calculations
1557          IF ( thermal_comfort )  THEN
1558             CALL bio_calculate_thermal_index_maps ( .FALSE. )
1559          ENDIF
1560!
1561!--       If required, do UV exposure calculations
1562          IF ( uv_exposure )  THEN
1563             CALL uvem_calc_exposure
1564          ENDIF
1565       ENDIF
1566
1567!
1568!--    Execute alle other module actions routunes
1569       CALL module_interface_actions( 'after_integration' )
1570
1571!
1572!--    If Galilei transformation is used, determine the distance that the
1573!--    model has moved so far
1574       IF ( galilei_transformation )  THEN
1575          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1576          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1577       ENDIF
1578
1579!
1580!--    Check, if restart is necessary (because cpu-time is expiring or
1581!--    because it is forced by user) and set stop flag
1582!--    This call is skipped if the remote model has already initiated a restart.
1583       IF ( .NOT. terminate_run )  CALL check_for_restart
1584
1585!
1586!--    Carry out statistical analysis and output at the requested output times.
1587!--    The MOD function is used for calculating the output time counters (like
1588!--    time_dopr) in order to regard a possible decrease of the output time
1589!--    interval in case of restart runs
1590
1591!
1592!--    Set a flag indicating that so far no statistics have been created
1593!--    for this time step
1594       flow_statistics_called = .FALSE.
1595
1596!
1597!--    If required, call flow_statistics for averaging in time
1598       IF ( averaging_interval_pr /= 0.0_wp  .AND.                                                 &
1599            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.                                &
1600            time_since_reference_point >= skip_time_dopr )  THEN
1601          time_dopr_av = time_dopr_av + dt_3d
1602          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1603             do_sum = .TRUE.
1604             time_dopr_av = MOD( time_dopr_av, MAX( dt_averaging_input_pr, dt_3d ) )
1605          ENDIF
1606       ENDIF
1607       IF ( do_sum )  CALL flow_statistics
1608
1609!
1610!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
1611       IF ( averaging_interval /= 0.0_wp  .AND.                                                    &
1612            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND.                        &
1613            time_since_reference_point >= skip_time_data_output_av )                               &
1614       THEN
1615          time_do_sla = time_do_sla + dt_3d
1616          IF ( time_do_sla >= dt_averaging_input )  THEN
1617             CALL sum_up_3d_data
1618             average_count_3d = average_count_3d + 1
1619             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1620          ENDIF
1621       ENDIF
1622!
1623!--    Average surface data
1624       IF ( surface_output )  THEN
1625          IF ( averaging_interval_surf /= 0.0_wp                                                   &
1626                .AND.  ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf                &
1627                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1628             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
1629                CALL surface_data_output_averaging
1630                average_count_surf = average_count_surf + 1
1631             ENDIF
1632          ENDIF
1633       ENDIF
1634
1635!
1636!--    Calculate spectra for time averaging
1637       IF ( averaging_interval_sp /= 0.0_wp  .AND. ( dt_dosp - time_dosp ) <= averaging_interval_sp&
1638            .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1639          time_dosp_av = time_dosp_av + dt_3d
1640          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1641             CALL calc_spectra
1642             time_dosp_av = MOD( time_dosp_av, MAX( dt_averaging_input_pr, dt_3d ) )
1643          ENDIF
1644       ENDIF
1645
1646!
1647!--    Call flight module and output data
1648       IF ( virtual_flight )  THEN
1649          CALL flight_measurement
1650          CALL data_output_flight
1651       ENDIF
1652!
1653!--    Take virtual measurements
1654       IF ( virtual_measurement  .AND.  vm_time_start <= time_since_reference_point )  THEN
1655          CALL vm_sampling
1656          CALL vm_data_output
1657       ENDIF
1658
1659!
1660!--    Profile output (ASCII) on file
1661       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1662          CALL print_1d
1663          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, dt_3d ) )
1664       ENDIF
1665
1666!
1667!--    Graphic output for PROFIL
1668       IF ( time_dopr >= dt_dopr  .AND.  time_since_reference_point >= skip_time_dopr )  THEN
1669          IF ( dopr_n /= 0 )  CALL data_output_profiles
1670          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
1671          time_dopr_av = 0.0_wp    ! due to averaging (see above)
1672       ENDIF
1673
1674!
1675!--    Graphic output for time series
1676       IF ( time_dots >= dt_dots )  THEN
1677          CALL data_output_tseries
1678          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1679       ENDIF
1680
1681!
1682!--    Output of spectra (formatted for use with PROFIL), in case of no
1683!--    time averaging, spectra has to be calculated before
1684       IF ( time_dosp >= dt_dosp  .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1685          IF ( average_count_sp == 0 )  CALL calc_spectra
1686          CALL data_output_spectra
1687          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1688       ENDIF
1689
1690!
1691!--    2d-data output (cross-sections)
1692       IF ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy )  THEN
1693          CALL data_output_2d( 'xy', 0 )
1694          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1695       ENDIF
1696       IF ( time_do2d_xz >= dt_do2d_xz  .AND.  time_since_reference_point >= skip_time_do2d_xz )  THEN
1697          CALL data_output_2d( 'xz', 0 )
1698          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1699       ENDIF
1700       IF ( time_do2d_yz >= dt_do2d_yz  .AND.  time_since_reference_point >= skip_time_do2d_yz )  THEN
1701          CALL data_output_2d( 'yz', 0 )
1702          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1703       ENDIF
1704
1705!
1706!--    3d-data output (volume data)
1707       IF ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  THEN
1708          CALL data_output_3d( 0 )
1709          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1710       ENDIF
1711
1712!
1713!--    Masked data output
1714       DO  mid = 1, masks
1715          IF ( time_domask(mid) >= dt_domask(mid)                                                  &
1716               .AND.  time_since_reference_point >= skip_time_domask(mid) )  THEN
1717             CALL data_output_mask( 0 )
1718             time_domask(mid) = MOD( time_domask(mid), MAX( dt_domask(mid), dt_3d ) )
1719          ENDIF
1720       ENDDO
1721
1722!
1723!--    Output of time-averaged 2d/3d/masked data
1724       IF ( time_do_av >= dt_data_output_av                                                        &
1725            .AND.  time_since_reference_point >= skip_time_data_output_av )  THEN
1726          CALL average_3d_data
1727!
1728!--       Udate thermal comfort indices based on updated averaged input
1729          IF ( biometeorology  .AND.  thermal_comfort )  THEN
1730             CALL bio_calculate_thermal_index_maps ( .TRUE. )
1731          ENDIF
1732          CALL data_output_2d( 'xy', 1 )
1733          CALL data_output_2d( 'xz', 1 )
1734          CALL data_output_2d( 'yz', 1 )
1735          CALL data_output_3d( 1 )
1736          DO  mid = 1, masks
1737             CALL data_output_mask( 1 )
1738          ENDDO
1739          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1740       ENDIF
1741!
1742!--    Output of surface data, instantaneous and averaged data
1743       IF ( surface_output )  THEN
1744          IF ( time_dosurf >= dt_dosurf  .AND.  time_since_reference_point >= skip_time_dosurf )  THEN
1745             CALL surface_data_output( 0 )
1746             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1747          ENDIF
1748          IF ( time_dosurf_av >= dt_dosurf_av  .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1749             CALL surface_data_output( 1 )
1750             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1751          ENDIF
1752       ENDIF
1753
1754!
1755!--    Output of particle time series
1756       IF ( particle_advection )  THEN
1757          IF ( time_dopts >= dt_dopts  .OR.                                                        &
1758               ( time_since_reference_point >= particle_advection_start  .AND.                     &
1759                 first_call_lpm ) )  THEN
1760             CALL data_output_ptseries
1761             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1762          ENDIF
1763       ENDIF
1764
1765!
1766!--    Output of dvrp-graphics (isosurface, particles, slicer)
1767#if defined( __dvrp_graphics )
1768       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
1769#endif
1770       IF ( time_dvrp >= dt_dvrp )  THEN
1771          CALL data_output_dvrp
1772          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
1773       ENDIF
1774#if defined( __dvrp_graphics )
1775       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
1776#endif
1777
1778!
1779!--    If required, set the heat flux for the next time step to a random value
1780       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
1781          IF ( surf_def_h(0)%ns >= 1 )  THEN
1782             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1783             CALL disturb_heatflux( surf_def_h(0) )
1784             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1785          ENDIF
1786          IF ( surf_lsm_h%ns    >= 1 )  THEN
1787             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1788             CALL disturb_heatflux( surf_lsm_h    )
1789             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1790          ENDIF
1791          IF ( surf_usm_h%ns    >= 1 )  THEN
1792             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1793             CALL disturb_heatflux( surf_usm_h    )
1794             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1795          ENDIF
1796       ENDIF
1797
1798!
1799!--    Execute alle other module actions routunes
1800       CALL module_interface_actions( 'after_timestep' )
1801
1802!
1803!--    Determine size of next time step. Save timestep dt_3d because it is
1804!--    newly calculated in routine timestep, but required further below for
1805!--    steering the run control output interval
1806       dt_3d_old = dt_3d
1807       CALL timestep
1808
1809!
1810!--    Synchronize the timestep in case of nested run.
1811       IF ( nested_run )  THEN
1812!
1813!--       Synchronize by unifying the time step.
1814!--       Global minimum of all time-steps is used for all.
1815          CALL pmci_synchronize
1816       ENDIF
1817
1818!
1819!--    Computation and output of run control parameters.
1820!--    This is also done whenever perturbations have been imposed
1821       IF ( time_run_control >= dt_run_control  .OR.                                               &
1822            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created )                           &
1823       THEN
1824          CALL run_control
1825          IF ( time_run_control >= dt_run_control )  THEN
1826             time_run_control = MOD( time_run_control, MAX( dt_run_control, dt_3d_old ) )
1827          ENDIF
1828       ENDIF
1829
1830!
1831!--    Output elapsed simulated time in form of a progress bar on stdout
1832       IF ( myid == 0 )  CALL output_progress_bar
1833
1834       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1835
1836
1837    ENDDO   ! time loop
1838
1839#if defined( _OPENACC )
1840    CALL exit_surface_arrays
1841#endif
1842!$ACC END DATA
1843!$ACC END DATA
1844!$ACC END DATA
1845!$ACC END DATA
1846!$ACC END DATA
1847!$ACC END DATA
1848!$ACC END DATA
1849
1850!
1851!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
1852    IF ( vnest_init )  CALL vnest_deallocate
1853
1854    IF ( myid == 0 )  CALL finish_progress_bar
1855
1856#if defined( __dvrp_graphics )
1857    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
1858#endif
1859
1860    CALL location_message( 'finished time-stepping', .TRUE. )
1861
1862 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.