source: palm/trunk/SOURCE/time_integration.f90 @ 4113

Last change on this file since 4113 was 4111, checked in by suehring, 5 years ago

advc_flags_1/2 renamed in ACC directives

  • Property svn:keywords set to Id
File size: 80.6 KB
Line 
1!> @file time_integration.f90
2!------------------------------------------------------------------------------!
3! This file is part of the PALM model system.
4!
5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2019 Leibniz Universitaet Hannover
18!------------------------------------------------------------------------------!
19!
20! Current revisions:
21! ------------------
22!
23!
24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 4111 2019-07-22 18:16:57Z gronemeier $
27! advc_flags_1 / advc_flags_2 renamed to advc_flags_m / advc_flags_s
28!
29! 4069 2019-07-01 14:05:51Z Giersch
30! Masked output running index mid has been introduced as a local variable to
31! avoid runtime error (Loop variable has been modified) in time_integration
32!
33! 4064 2019-07-01 05:33:33Z gronemeier
34! Moved call to radiation module out of intermediate time loop
35!
36! 4048 2019-06-21 21:00:21Z knoop
37! Moved production_e_init call into turbulence_closure_mod
38!
39! 4047 2019-06-21 18:58:09Z knoop
40! Added remainings of swap_timelevel upon its dissolution
41!
42! 4043 2019-06-18 16:59:00Z schwenkel
43! Further LPM modularization
44!
45! 4039 2019-06-18 10:32:41Z suehring
46! Rename subroutines in module for diagnostic quantities
47!
48! 4029 2019-06-14 14:04:35Z raasch
49! exchange of ghost points and boundary conditions separated for chemical species and SALSA module,
50! bugfix: decycling of chemistry species after nesting data transfer
51!
52! 4022 2019-06-12 11:52:39Z suehring
53! Call synthetic turbulence generator at last RK3 substep right after boundary
54! conditions are updated in offline nesting in order to assure that
55! perturbations are always imposed
56!
57! 4017 2019-06-06 12:16:46Z schwenkel
58! Mass (volume) flux correction included to ensure global mass conservation for child domains.
59!
60! 3994 2019-05-22 18:08:09Z suehring
61! output of turbulence intensity added
62!
63! 3988 2019-05-22 11:32:37Z kanani
64! Implement steerable output interval for virtual measurements
65!
66! 3968 2019-05-13 11:04:01Z suehring
67! replace nspec_out with n_matched_vars
68!
69! 3929 2019-04-24 12:52:08Z banzhafs
70! Reverse changes back from revision 3878: use chem_boundary_conds instead of
71! chem_boundary_conds_decycle
72!
73!
74! 3885 2019-04-11 11:29:34Z kanani
75! Changes related to global restructuring of location messages and introduction
76! of additional debug messages
77!
78! 3879 2019-04-08 20:25:23Z knoop
79! Moved wtm_forces to module_interface_actions
80!
81! 3872 2019-04-08 15:03:06Z knoop
82! Modifications made for salsa:
83! - Call salsa_emission_update at each time step but do the checks within
84!   salsa_emission_update (i.e. skip_time_do_salsa >= time_since_reference_point
85!   and next_aero_emission_update <= time_since_reference_point ).
86! - Renamed nbins --> nbins_aerosol, ncc_tot --> ncomponents_mass and
87!   ngast --> ngases_salsa and loop indices b, c and sg to ib, ic and ig
88! - Apply nesting for salsa variables
89! - Removed cpu_log calls speciffic for salsa.
90!
91! 3833 2019-03-28 15:04:04Z forkel
92! added USE chem_gasphase_mod, replaced nspec by nspec since fixed compounds are not integrated
93!
94! 3820 2019-03-27 11:53:41Z forkel
95! renamed do_emiss to emissions_anthropogenic (ecc)
96!
97!
98! 3774 2019-03-04 10:52:49Z moh.hefny
99! rephrase if statement to avoid unallocated array in case of
100! nesting_offline is false (crashing during debug mode)
101!
102! 3761 2019-02-25 15:31:42Z raasch $
103! module section re-formatted and openacc required variables moved to separate section,
104! re-formatting to 100 char line width
105!
106! 3745 2019-02-15 18:57:56Z suehring
107! Call indoor model after first timestep
108!
109! 3744 2019-02-15 18:38:58Z suehring
110! - Moved call of bio_calculate_thermal_index_maps from biometeorology module to
111! time_integration to make sure averaged input is updated before calculating.
112!
113! 3739 2019-02-13 08:05:17Z dom_dwd_user
114! Removed everything related to "time_bio_results" as this is never used.
115!
116! 3724 2019-02-06 16:28:23Z kanani
117! Correct double-used log_point_s unit
118!
119! 3719 2019-02-06 13:10:18Z kanani
120! - removed wind_turbine cpu measurement, since same time is measured inside
121!   wtm_forces subroutine as special measures
122! - moved the numerous vnest cpulog to special measures
123! - extended radiation cpulog over entire radiation part,
124!   moved radiation_interactions cpulog to special measures
125! - moved some cpu_log calls to this routine for better overview
126!
127! 3705 2019-01-29 19:56:39Z suehring
128! Data output for virtual measurements added
129!
130! 3704 2019-01-29 19:51:41Z suehring
131! Rename subroutines for surface-data output
132!
133! 3647 2019-01-02 14:10:44Z kanani
134! Bugfix: add time_since_reference_point to IF clause for data_output calls
135! (otherwise skip_time_* values don't come into affect with dt_do* = 0.0).
136! Clean up indoor_model and biometeorology model call.
137!
138! 3646 2018-12-28 17:58:49Z kanani
139! Bugfix: use time_since_reference_point instead of simulated_time where
140! required (relevant when using wall/soil spinup)
141!
142! 3634 2018-12-18 12:31:28Z knoop
143! OpenACC port for SPEC
144!
145! 3597 2018-12-04 08:40:18Z maronga
146! Removed call to calculation of near air (10 cm) potential temperature (now in
147! surface layer fluxes)
148!
149! 3589 2018-11-30 15:09:51Z suehring
150! Move the control parameter "salsa" from salsa_mod to control_parameters
151! (M. Kurppa)
152!
153! 3582 2018-11-29 19:16:36Z suehring
154! dom_dwd_user, Schrempf:
155! Changes due to merge of uv exposure model into biometeorology_mod.
156!
157! 3525 2018-11-14 16:06:14Z kanani
158! Changes related to clean-up of biometeorology (dom_dwd_user)
159!
160! 3524 2018-11-14 13:36:44Z raasch
161! unused variables removed
162!
163! 3484 2018-11-02 14:41:25Z hellstea
164! pmci_ensure_nest_mass_conservation is premanently removed
165!
166! 3473 2018-10-30 20:50:15Z suehring
167! new module for virtual measurements introduced
168!
169! 3472 2018-10-30 20:43:50Z suehring
170! Add indoor model (kanani, srissman, tlang)
171!
172! 3467 2018-10-30 19:05:21Z suehring
173! Implementation of a new aerosol module salsa.
174!
175! 3448 2018-10-29 18:14:31Z kanani
176! Add biometeorology
177!
178! 3421 2018-10-24 18:39:32Z gronemeier
179! Surface data output
180!
181! 3418 2018-10-24 16:07:39Z kanani
182! call to material_heat_model now with check if spinup runs (rvtils)
183!
184! 3378 2018-10-19 12:34:59Z kanani
185! merge from radiation branch (r3362) into trunk
186! (moh.hefny):
187! Bugfix in the if statement to call radiation_interaction
188!
189! 3347 2018-10-15 14:21:08Z suehring
190! - offline nesting separated from large-scale forcing module
191! - changes for synthetic turbulence generator
192!
193! 3343 2018-10-15 10:38:52Z suehring
194! - Formatting, clean-up, comments (kanani)
195! - Added CALL to chem_emissions_setup (Russo)
196! - Code added for decycling chemistry (basit)
197!
198! 3294 2018-10-01 02:37:10Z raasch
199! changes concerning modularization of ocean option
200!
201! 3274 2018-09-24 15:42:55Z knoop
202! Modularization of all bulk cloud physics code components
203!
204! 3241 2018-09-12 15:02:00Z raasch
205! unused variables removed
206!
207! 3198 2018-08-15 09:23:10Z sward
208! Added multi_agent_system_end; defined start time for MAS relative to
209! time_since_reference_point
210!
211! 3183 2018-07-27 14:25:55Z suehring
212! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
213! Rename subroutines and variables in COSMO nesting mode
214!
215! 3182 2018-07-27 13:36:03Z suehring
216! Added multi agent system
217!
218! 3042 2018-05-25 10:44:37Z schwenkel
219! Changed the name specific humidity to mixing ratio
220!
221! 3040 2018-05-25 10:22:08Z schwenkel
222! Fixed bug in IF statement
223! Ensure that the time when calling the radiation to be the time step of the
224! pre-calculated time when first calculate the positions of the sun
225!
226! 3004 2018-04-27 12:33:25Z Giersch
227! First call of flow_statistics has been removed. It is already called in
228! run_control itself
229!
230! 2984 2018-04-18 11:51:30Z hellstea
231! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
232! as seemingly unnecessary.
233!
234! 2941 2018-04-03 11:54:58Z kanani
235! Deduct spinup_time from RUN_CONTROL output of main 3d run
236! (use time_since_reference_point instead of simulated_time)
237!
238! 2938 2018-03-27 15:52:42Z suehring
239! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
240!
241! 2936 2018-03-27 14:49:27Z suehring
242! Little formatting adjustment.
243!
244! 2817 2018-02-19 16:32:21Z knoop
245! Preliminary gust module interface implemented
246!
247! 2801 2018-02-14 16:01:55Z thiele
248! Changed lpm from subroutine to module.
249! Introduce particle transfer in nested models.
250!
251! 2776 2018-01-31 10:44:42Z Giersch
252! Variable use_synthetic_turbulence_generator has been abbreviated
253!
254! 2773 2018-01-30 14:12:54Z suehring
255! - Nesting for chemical species
256!
257! 2766 2018-01-22 17:17:47Z kanani
258! Removed preprocessor directive __chem
259!
260! 2718 2018-01-02 08:49:38Z maronga
261! Corrected "Former revisions" section
262!
263! 2696 2017-12-14 17:12:51Z kanani
264! - Change in file header (GPL part)
265! - Implementation of uv exposure model (FK)
266! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
267! - renamed diffusivities to tcm_diffusivities (TG)
268! - implement prognostic equation for diss (TG)
269! - Moved/commented CALL to chem_emissions (FK)
270! - Added CALL to chem_emissions (FK)
271! - Implementation of chemistry module (FK)
272! - Calls for setting boundary conditions in USM and LSM (MS)
273! - Large-scale forcing with larger-scale models implemented (MS)
274! - Rename usm_radiation into radiation_interactions; merge with branch
275!   radiation (MS)
276! - added call for usm_green_heat_model for green building surfaces (RvT)
277! - added call for usm_temperature_near_surface for use in indoor model (RvT)
278!
279! 2617 2017-11-16 12:47:24Z suehring
280! Bugfix, assure that the reference state does not become zero.
281!
282! 2563 2017-10-19 15:36:10Z Giersch
283! Variable wind_turbine moved to module control_parameters
284!
285! 2365 2017-08-21 14:59:59Z kanani
286! Vertical grid nesting implemented (SadiqHuq)
287!
288! 2320 2017-07-21 12:47:43Z suehring
289! Set bottom boundary conditions after nesting interpolation and anterpolation
290!
291! 2299 2017-06-29 10:14:38Z maronga
292! Call of soil model adjusted
293!
294! 2292 2017-06-20 09:51:42Z schwenkel
295! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
296! includes two more prognostic equations for cloud drop concentration (nc) 
297! and cloud water content (qc).
298!
299! 2271 2017-06-09 12:34:55Z sward
300! Start timestep message changed
301!
302! 2259 2017-06-08 09:09:11Z gronemeier
303! Implemented synthetic turbulence generator
304!
305! 2233 2017-05-30 18:08:54Z suehring
306!
307! 2232 2017-05-30 17:47:52Z suehring
308! Adjustments to new topography and surface concept
309! Modify passed parameters for disturb_field
310!
311! 2178 2017-03-17 11:07:39Z hellstea
312! Setting perturbations at all times near inflow boundary is removed
313! in case of nested boundaries
314!
315! 2174 2017-03-13 08:18:57Z maronga
316! Added support for nesting with cloud microphysics
317!
318! 2118 2017-01-17 16:38:49Z raasch
319! OpenACC directives and related code removed
320!
321! 2050 2016-11-08 15:00:55Z gronemeier
322! Implement turbulent outflow condition
323!
324! 2031 2016-10-21 15:11:58Z knoop
325! renamed variable rho to rho_ocean
326!
327! 2011 2016-09-19 17:29:57Z kanani
328! Flag urban_surface is now defined in module control_parameters,
329! removed commented CALLs of global_min_max.
330!
331! 2007 2016-08-24 15:47:17Z kanani
332! Added CALLs for new urban surface model
333!
334! 2000 2016-08-20 18:09:15Z knoop
335! Forced header and separation lines into 80 columns
336!
337! 1976 2016-07-27 13:28:04Z maronga
338! Simplified calls to radiation model
339!
340! 1960 2016-07-12 16:34:24Z suehring
341! Separate humidity and passive scalar
342!
343! 1957 2016-07-07 10:43:48Z suehring
344! flight module added
345!
346! 1919 2016-05-27 14:51:23Z raasch
347! Initial version of purely vertical nesting introduced.
348!
349! 1918 2016-05-27 14:35:57Z raasch
350! determination of time step moved to the end of the time step loop,
351! the first time step is now always calculated before the time step loop (i.e.
352! also in case of restart runs)
353!
354! 1914 2016-05-26 14:44:07Z witha
355! Added call for wind turbine model
356!
357! 1878 2016-04-19 12:30:36Z hellstea
358! Synchronization for nested runs rewritten
359!
360! 1853 2016-04-11 09:00:35Z maronga
361! Adjusted for use with radiation_scheme = constant
362!
363! 1849 2016-04-08 11:33:18Z hoffmann
364! Adapted for modularization of microphysics
365!
366! 1833 2016-04-07 14:23:03Z raasch
367! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
368!
369! 1831 2016-04-07 13:15:51Z hoffmann
370! turbulence renamed collision_turbulence
371!
372! 1822 2016-04-07 07:49:42Z hoffmann
373! icloud_scheme replaced by microphysics_*
374!
375! 1808 2016-04-05 19:44:00Z raasch
376! output message in case unscheduled radiation calls removed
377!
378! 1797 2016-03-21 16:50:28Z raasch
379! introduction of different datatransfer modes
380!
381! 1791 2016-03-11 10:41:25Z raasch
382! call of pmci_update_new removed
383!
384! 1786 2016-03-08 05:49:27Z raasch
385! +module spectrum
386!
387! 1783 2016-03-06 18:36:17Z raasch
388! switch back of netcdf data format for mask output moved to the mask output
389! routine
390!
391! 1781 2016-03-03 15:12:23Z raasch
392! some pmc calls removed at the beginning (before timeloop),
393! pmc initialization moved to the main program
394!
395! 1764 2016-02-28 12:45:19Z raasch
396! PMC_ACTIVE flags removed,
397! bugfix: nest synchronization after first call of timestep
398!
399! 1762 2016-02-25 12:31:13Z hellstea
400! Introduction of nested domain feature
401!
402! 1736 2015-12-04 08:56:33Z raasch
403! no perturbations added to total domain if energy limit has been set zero
404!
405! 1691 2015-10-26 16:17:44Z maronga
406! Added option for spin-ups without land surface and radiation models. Moved calls
407! for radiation and lan surface schemes.
408!
409! 1682 2015-10-07 23:56:08Z knoop
410! Code annotations made doxygen readable
411!
412! 1671 2015-09-25 03:29:37Z raasch
413! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
414! for particles
415!
416! 1585 2015-04-30 07:05:52Z maronga
417! Moved call of radiation scheme. Added support for RRTM
418!
419! 1551 2015-03-03 14:18:16Z maronga
420! Added interface for different radiation schemes.
421!
422! 1496 2014-12-02 17:25:50Z maronga
423! Added calls for the land surface model and radiation scheme
424!
425! 1402 2014-05-09 14:25:13Z raasch
426! location messages modified
427!
428! 1384 2014-05-02 14:31:06Z raasch
429! location messages added
430!
431! 1380 2014-04-28 12:40:45Z heinze
432! CALL of nudge_ref added
433! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
434!
435! 1365 2014-04-22 15:03:56Z boeske
436! Reset sums_ls_l to zero at each timestep
437! +sums_ls_l
438! Calculation of reference state (previously in subroutine calc_mean_profile)
439
440! 1342 2014-03-26 17:04:47Z kanani
441! REAL constants defined as wp-kind
442!
443! 1320 2014-03-20 08:40:49Z raasch
444! ONLY-attribute added to USE-statements,
445! kind-parameters added to all INTEGER and REAL declaration statements,
446! kinds are defined in new module kinds,
447! old module precision_kind is removed,
448! revision history before 2012 removed,
449! comment fields (!:) to be used for variable explanations added to
450! all variable declaration statements
451! 1318 2014-03-17 13:35:16Z raasch
452! module interfaces removed
453!
454! 1308 2014-03-13 14:58:42Z fricke
455! +netcdf_data_format_save
456! For masked data, parallel netcdf output is not tested so far, hence
457! netcdf_data_format is switched back to non-paralell output.
458!
459! 1276 2014-01-15 13:40:41Z heinze
460! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
461!
462! 1257 2013-11-08 15:18:40Z raasch
463! acc-update-host directive for timestep removed
464!
465! 1241 2013-10-30 11:36:58Z heinze
466! Generalize calc_mean_profile for wider use
467! Determine shf and qsws in dependence on data from LSF_DATA
468! Determine ug and vg in dependence on data from LSF_DATA
469! 1221 2013-09-10 08:59:13Z raasch
470! host update of arrays before timestep is called
471!
472! 1179 2013-06-14 05:57:58Z raasch
473! mean profiles for reference state are only calculated if required,
474! small bugfix for background communication
475!
476! 1171 2013-05-30 11:27:45Z raasch
477! split of prognostic_equations deactivated (comment lines), for the time being
478!
479! 1128 2013-04-12 06:19:32Z raasch
480! asynchronous transfer of ghost point data realized for acc-optimized version:
481! prognostic_equations are first called two times for those points required for
482! the left-right and north-south exchange, respectively, and then for the
483! remaining points,
484! those parts requiring global communication moved from prognostic_equations to
485! here
486!
487! 1115 2013-03-26 18:16:16Z hoffmann
488! calculation of qr and nr is restricted to precipitation
489!
490! 1113 2013-03-10 02:48:14Z raasch
491! GPU-porting of boundary conditions,
492! openACC directives updated
493! formal parameter removed from routine boundary_conds
494!
495! 1111 2013-03-08 23:54:10Z raasch
496! +internal timestep counter for cpu statistics added,
497! openACC directives updated
498!
499! 1092 2013-02-02 11:24:22Z raasch
500! unused variables removed
501!
502! 1065 2012-11-22 17:42:36Z hoffmann
503! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
504!
505! 1053 2012-11-13 17:11:03Z hoffmann
506! exchange of ghost points for nr, qr added
507!
508! 1036 2012-10-22 13:43:42Z raasch
509! code put under GPL (PALM 3.9)
510!
511! 1019 2012-09-28 06:46:45Z raasch
512! non-optimized version of prognostic_equations removed
513!
514! 1015 2012-09-27 09:23:24Z raasch
515! +call of prognostic_equations_acc
516!
517! 1001 2012-09-13 14:08:46Z raasch
518! all actions concerning leapfrog- and upstream-spline-scheme removed
519!
520! 849 2012-03-15 10:35:09Z raasch
521! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
522!
523! 825 2012-02-19 03:03:44Z raasch
524! wang_collision_kernel renamed wang_kernel
525!
526! Revision 1.1  1997/08/11 06:19:04  raasch
527! Initial revision
528!
529!
530! Description:
531! ------------
532!> Integration in time of the model equations, statistical analysis and graphic
533!> output
534!------------------------------------------------------------------------------!
535 SUBROUTINE time_integration
536 
537
538    USE advec_ws,                                                                                  &
539        ONLY:  ws_statistics
540
541    USE arrays_3d,                                                                                 &
542        ONLY:  diss, diss_p, dzu, e, e_p, nc, nc_p, nr, nr_p, prho, pt, pt_p, pt_init, q_init, q,  &
543               qc, qc_p, ql, ql_c, ql_v, ql_vp, qr, qr_p, q_p, ref_state, rho_ocean, s, s_p, sa_p, &
544               tend, u, u_p, v, vpt, v_p, w, w_p
545
546    USE biometeorology_mod,                                                                        &
547        ONLY:  bio_calculate_thermal_index_maps, thermal_comfort, uvem_calc_exposure, uv_exposure
548
549    USE bulk_cloud_model_mod,                                                                      &
550        ONLY: bulk_cloud_model, calc_liquid_water_content, collision_turbulence,                   &
551              microphysics_morrison, microphysics_seifert
552
553    USE calc_mean_profile_mod,                                                                     &
554        ONLY:  calc_mean_profile
555
556    USE chem_emissions_mod,                                                                        &
557        ONLY:  chem_emissions_setup
558
559    USE chem_gasphase_mod,                                                                         &
560        ONLY:  nvar
561
562    USE chem_modules,                                                                              &
563        ONLY:  bc_cs_t_val, chem_species, cs_name, emissions_anthropogenic, n_matched_vars
564
565    USE chemistry_model_mod,                                                                       &
566        ONLY:  chem_boundary_conds
567
568    USE control_parameters,                                                                        &
569        ONLY:  advected_distance_x, advected_distance_y, air_chemistry, average_count_3d,          &
570               averaging_interval, averaging_interval_pr, bc_lr_cyc, bc_ns_cyc, bc_pt_t_val,       &
571               bc_q_t_val, biometeorology, call_psolver_at_all_substeps,  child_domain,            &
572               cloud_droplets, constant_flux_layer, constant_heatflux, create_disturbances,        &
573               dopr_n, constant_diffusion, coupling_mode, coupling_start_time,                     &
574               current_timestep_number, disturbance_created, disturbance_energy_limit, dist_range, &
575               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr, dt_coupling,              &
576               dt_data_output_av, dt_disturb, dt_do2d_xy, dt_do2d_xz, dt_do2d_yz, dt_do3d,         &
577               dt_domask,dt_dopts, dt_dopr, dt_dopr_listing, dt_dots, dt_run_control,              &
578               end_time, first_call_lpm, first_call_mas, galilei_transformation, humidity,         &
579               indoor_model, intermediate_timestep_count, intermediate_timestep_count_max,         &
580               land_surface, large_scale_forcing, loop_optimization, lsf_surf, lsf_vert, masks,    &
581               multi_agent_system_end, multi_agent_system_start, nesting_offline, neutral,         &
582               nr_timesteps_this_run, nudging, ocean_mode, passive_scalar, pt_reference,           &
583               pt_slope_offset, random_heatflux, rans_mode, rans_tke_e, run_coupled, salsa,        &
584               simulated_time, simulated_time_chr, skip_time_do2d_xy, skip_time_do2d_xz,           &
585               skip_time_do2d_yz, skip_time_do3d, skip_time_domask, skip_time_dopr,                &
586               skip_time_data_output_av, sloping_surface, stop_dt, surface_output,                 &
587               terminate_coupled, terminate_run, timestep_scheme, time_coupling, time_do2d_xy,     &
588               time_do2d_xz, time_do2d_yz, time_do3d, time_domask, time_dopr, time_dopr_av,        &
589               time_dopr_listing, time_dopts, time_dosp, time_dosp_av, time_dots, time_do_av,      &
590               time_do_sla, time_disturb, time_run_control, time_since_reference_point,            &
591               turbulent_inflow, turbulent_outflow, urban_surface,                                 &
592               use_initial_profile_as_reference, use_single_reference_value, u_gtrans, v_gtrans,   &
593               virtual_flight, virtual_measurement, ws_scheme_mom, ws_scheme_sca, timestep_count
594
595    USE cpulog,                                                                                    &
596        ONLY:  cpu_log, log_point, log_point_s
597
598    USE date_and_time_mod,                                                                         &
599        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
600
601    USE diagnostic_output_quantities_mod,                                                          &
602        ONLY:  doq_calculate,                                                                      &
603               timestep_number_at_prev_calc
604
605    USE flight_mod,                                                                                &
606        ONLY:  flight_measurement
607
608    USE indices,                                                                                   &
609        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nzb, nzt
610
611    USE indoor_model_mod,                                                                          &
612        ONLY:  dt_indoor, im_main_heatcool, time_indoor
613
614    USE interfaces
615
616    USE kinds
617
618    USE land_surface_model_mod,                                                                    &
619        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model, skip_time_do_lsm
620
621    USE lagrangian_particle_model_mod,                                                             &
622        ONLY:  lpm_data_output_ptseries, lpm_interaction_droplets_ptq
623
624    USE lsf_nudging_mod,                                                                           &
625        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
626
627    USE module_interface,                                                                          &
628        ONLY:  module_interface_actions, module_interface_swap_timelevel
629
630    USE multi_agent_system_mod,                                                                    &
631        ONLY:  agents_active, multi_agent_system
632
633    USE nesting_offl_mod,                                                                          &
634        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
635
636    USE netcdf_data_input_mod,                                                                     &
637        ONLY:  chem_emis, chem_emis_att, nest_offl, netcdf_data_input_offline_nesting
638
639    USE ocean_mod,                                                                                 &
640        ONLY:  prho_reference
641
642    USE particle_attributes,                                                                       &
643        ONLY:  particle_advection, particle_advection_start, use_sgs_for_particles, wang_kernel
644
645    USE pegrid
646
647    USE pmc_interface,                                                                             &
648        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans, pmci_synchronize,    &
649        pmci_ensure_nest_mass_conservation, pmci_ensure_nest_mass_conservation_vertical,           &
650        pmci_set_swaplevel
651
652    USE progress_bar,                                                                              &
653        ONLY:  finish_progress_bar, output_progress_bar
654
655    USE prognostic_equations_mod,                                                                  &
656        ONLY:  prognostic_equations_cache, prognostic_equations_vector
657
658    USE radiation_model_mod,                                                                       &
659        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,                    &
660              radiation_interaction, radiation_interactions, skip_time_do_radiation, time_radiation
661
662    USE salsa_mod,                                                                                 &
663        ONLY: aerosol_number, aerosol_mass, bc_am_t_val, bc_an_t_val, bc_gt_t_val,                 &
664              nbins_aerosol, ncomponents_mass, ngases_salsa, salsa_boundary_conds,                 &
665              salsa_emission_update, salsa_gas, salsa_gases_from_chem, skip_time_do_salsa
666
667    USE spectra_mod,                                                                               &
668        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp, skip_time_dosp
669
670    USE statistics,                                                                                &
671        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l
672
673
674    USE surface_layer_fluxes_mod,                                                                  &
675        ONLY:  surface_layer_fluxes
676
677    USE surface_data_output_mod,                                                                   &
678        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf, dt_dosurf_av,               &
679               surface_data_output, surface_data_output_averaging, skip_time_dosurf,               &
680               skip_time_dosurf_av, time_dosurf, time_dosurf_av
681
682    USE surface_mod,                                                                               &
683        ONLY:  surf_def_h, surf_lsm_h, surf_usm_h
684
685    USE synthetic_turbulence_generator_mod,                                                        &
686        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence, stg_adjust, stg_main,    &
687               time_stg_adjust, time_stg_call, use_syn_turb_gen
688
689    USE turbulence_closure_mod,                                                                    &
690        ONLY:  tcm_diffusivities
691
692    USE urban_surface_mod,                                                                         &
693        ONLY:  usm_boundary_condition, usm_material_heat_model, usm_material_model,                &
694               usm_surface_energy_balance, usm_green_heat_model
695
696    USE vertical_nesting_mod,                                                                      &
697        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e, vnest_boundary_conds,              &
698               vnest_boundary_conds_khkm, vnest_deallocate, vnest_init, vnest_init_fine,           &
699               vnest_start_time
700
701    USE virtual_measurement_mod,                                                                   &
702        ONLY:  dt_virtual_measurement,                                                             &
703               time_virtual_measurement,                                                           &
704               vm_data_output,                                                                     &
705               vm_sampling,                                                                        &
706               vm_time_start
707
708
709#if defined( _OPENACC )
710    USE arrays_3d,                                                             &
711        ONLY:  d, dd2zu, ddzu, ddzw, drho_air, drho_air_zw, dzw, heatflux_output_conversion, kh,   &
712               km, momentumflux_output_conversion, p, ptdf_x, ptdf_y, rdf, rdf_sc, rho_air,        &
713               rho_air_zw, te_m, tpt_m, tu_m, tv_m, tw_m, ug, u_init, u_stokes_zu, vg, v_init,     &
714               v_stokes_zu, zu
715
716    USE control_parameters,                                                                        &
717        ONLY:  tsc
718
719    USE indices,                                                                                   &
720        ONLY:  advc_flags_m, advc_flags_s, nyn, nyng, nys, nysg, nz, nzb_max, wall_flags_0
721
722    USE statistics,                                                                                &
723        ONLY:  rmask, statistic_regions, sums_l, sums_l_l, sums_us2_ws_l,                          &
724               sums_wsus_ws_l, sums_vs2_ws_l, sums_wsvs_ws_l, sums_ws2_ws_l, sums_wspts_ws_l,      &
725               sums_wsqs_ws_l, sums_wssas_ws_l, sums_wsqcs_ws_l, sums_wsqrs_ws_l, sums_wsncs_ws_l, &
726               sums_wsnrs_ws_l, sums_wsss_ws_l, weight_substep, sums_salsa_ws_l
727
728    USE surface_mod,                                                                               &
729        ONLY:  bc_h, enter_surface_arrays, exit_surface_arrays
730#endif
731
732
733    IMPLICIT NONE
734
735    CHARACTER (LEN=9) ::  time_to_string   !<
736
737    INTEGER(iwp) ::  ib        !< index for aerosol size bins
738    INTEGER(iwp) ::  ic        !< index for aerosol mass bins
739    INTEGER(iwp) ::  icc       !< additional index for aerosol mass bins
740    INTEGER(iwp) ::  ig        !< index for salsa gases
741    INTEGER(iwp) ::  lsp
742    INTEGER(iwp) ::  lsp_usr   !<
743    INTEGER(iwp) ::  mid       !< masked output running index
744    INTEGER(iwp) ::  n         !< loop counter for chemistry species
745
746    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
747                            !< steering of run control output interval
748    REAL(wp) ::  time_since_reference_point_save  !< original value of
749                                                  !< time_since_reference_point
750
751
752!
753!-- Copy data from arrays_3d
754!$ACC DATA &
755!$ACC COPY(d(nzb+1:nzt,nys:nyn,nxl:nxr)) &
756!$ACC COPY(e(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
757!$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
758!$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
759!$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
760!$ACC COPY(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
761!$ACC COPY(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
762!$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
763!$ACC COPY(pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
764
765!$ACC DATA &
766!$ACC COPY(e_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
767!$ACC COPY(u_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
768!$ACC COPY(v_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
769!$ACC COPY(w_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
770!$ACC COPY(pt_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
771!$ACC COPY(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
772!$ACC COPY(te_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
773!$ACC COPY(tu_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
774!$ACC COPY(tv_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
775!$ACC COPY(tw_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
776!$ACC COPY(tpt_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
777
778!$ACC DATA &
779!$ACC COPYIN(rho_air(nzb:nzt+1), drho_air(nzb:nzt+1)) &
780!$ACC COPYIN(rho_air_zw(nzb:nzt+1), drho_air_zw(nzb:nzt+1)) &
781!$ACC COPYIN(zu(nzb:nzt+1)) &
782!$ACC COPYIN(dzu(1:nzt+1), dzw(1:nzt+1)) &
783!$ACC COPYIN(ddzu(1:nzt+1), dd2zu(1:nzt)) &
784!$ACC COPYIN(ddzw(1:nzt+1)) &
785!$ACC COPYIN(heatflux_output_conversion(nzb:nzt+1)) &
786!$ACC COPYIN(momentumflux_output_conversion(nzb:nzt+1)) &
787!$ACC COPYIN(rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt)) &
788!$ACC COPYIN(ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng)) &
789!$ACC COPYIN(ref_state(0:nz+1)) &
790!$ACC COPYIN(u_init(0:nz+1), v_init(0:nz+1)) &
791!$ACC COPYIN(u_stokes_zu(nzb:nzt+1), v_stokes_zu(nzb:nzt+1)) &
792!$ACC COPYIN(pt_init(0:nz+1)) &
793!$ACC COPYIN(ug(0:nz+1), vg(0:nz+1))
794
795!
796!-- Copy data from control_parameters
797!$ACC DATA &
798!$ACC COPYIN(tsc(1:5))
799
800!
801!-- Copy data from indices
802!$ACC DATA &
803!$ACC COPYIN(advc_flags_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
804!$ACC COPYIN(advc_flags_s(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
805!$ACC COPYIN(wall_flags_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
806
807!
808!-- Copy data from surface_mod
809!$ACC DATA &
810!$ACC COPYIN(bc_h(0:1)) &
811!$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) &
812!$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) &
813!$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) &
814!$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) &
815!$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) &
816!$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns))
817
818!
819!-- Copy data from statistics
820!$ACC DATA &
821!$ACC COPYIN(hom(0:nz+1,1:2,1:4,0)) &
822!$ACC COPYIN(rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions)) &
823!$ACC COPYIN(weight_substep(1:intermediate_timestep_count_max)) &
824!$ACC COPY(sums_l(nzb:nzt+1,1:pr_palm,0)) &
825!$ACC COPY(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
826!$ACC COPY(sums_us2_ws_l(nzb:nzt+1,0)) &
827!$ACC COPY(sums_wsus_ws_l(nzb:nzt+1,0)) &
828!$ACC COPY(sums_vs2_ws_l(nzb:nzt+1,0)) &
829!$ACC COPY(sums_wsvs_ws_l(nzb:nzt+1,0)) &
830!$ACC COPY(sums_ws2_ws_l(nzb:nzt+1,0)) &
831!$ACC COPY(sums_wspts_ws_l(nzb:nzt+1,0)) &
832!$ACC COPY(sums_wssas_ws_l(nzb:nzt+1,0)) &
833!$ACC COPY(sums_wsqs_ws_l(nzb:nzt+1,0)) &
834!$ACC COPY(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
835!$ACC COPY(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
836!$ACC COPY(sums_wsncs_ws_l(nzb:nzt+1,0)) &
837!$ACC COPY(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
838!$ACC COPY(sums_wsss_ws_l(nzb:nzt+1,0)) &
839!$ACC COPY(sums_salsa_ws_l(nzb:nzt+1,0))
840
841#if defined( _OPENACC )
842    CALL enter_surface_arrays
843#endif
844
845!
846!-- At beginning determine the first time step
847    CALL timestep
848!
849!-- Synchronize the timestep in case of nested run.
850    IF ( nested_run )  THEN
851!
852!--    Synchronization by unifying the time step.
853!--    Global minimum of all time-steps is used for all.
854       CALL pmci_synchronize
855    ENDIF
856
857!
858!-- Determine and print out the run control quantities before the first time
859!-- step of this run. For the initial run, some statistics (e.g. divergence)
860!-- need to be determined first --> CALL flow_statistics at the beginning of
861!-- run_control
862    CALL run_control
863!
864!-- Data exchange between coupled models in case that a call has been omitted
865!-- at the end of the previous run of a job chain.
866    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND. .NOT. vnested )  THEN
867!
868!--    In case of model termination initiated by the local model the coupler
869!--    must not be called because this would again cause an MPI hang.
870       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
871          CALL surface_coupler
872          time_coupling = time_coupling - dt_coupling
873       ENDDO
874       IF (time_coupling == 0.0_wp  .AND.  time_since_reference_point < dt_coupling )  THEN
875          time_coupling = time_since_reference_point
876       ENDIF
877    ENDIF
878
879    CALL location_message( 'atmosphere (and/or ocean) time-stepping', 'start' )
880
881!
882!-- Start of the time loop
883    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. .NOT. terminate_run )
884
885       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
886!
887!--    Vertical nesting: initialize fine grid
888       IF ( vnested ) THEN
889          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
890             CALL cpu_log( log_point_s(22), 'vnest_init', 'start' )
891             CALL vnest_init_fine
892             vnest_init = .TRUE.
893             CALL cpu_log( log_point_s(22), 'vnest_init', 'stop' )
894          ENDIF
895       ENDIF
896!
897!--    Determine ug, vg and w_subs in dependence on data from external file
898!--    LSF_DATA
899       IF ( large_scale_forcing .AND. lsf_vert )  THEN
900           CALL ls_forcing_vert ( simulated_time )
901           sums_ls_l = 0.0_wp
902       ENDIF
903
904!
905!--    Set pt_init and q_init to the current profiles taken from
906!--    NUDGING_DATA
907       IF ( nudging )  THEN
908           CALL nudge_ref ( simulated_time )
909!
910!--        Store temperature gradient at the top boundary for possible Neumann
911!--        boundary condition
912           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
913           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
914           IF ( air_chemistry )  THEN
915              DO  lsp = 1, nvar
916                 bc_cs_t_val = (  chem_species(lsp)%conc_pr_init(nzt+1)                            &
917                                - chem_species(lsp)%conc_pr_init(nzt) )                            &
918                               / dzu(nzt+1)
919              ENDDO
920           ENDIF
921           IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
922              DO  ib = 1, nbins_aerosol
923                 bc_an_t_val = ( aerosol_number(ib)%init(nzt+1) - aerosol_number(ib)%init(nzt) ) / &
924                               dzu(nzt+1)
925                 DO  ic = 1, ncomponents_mass
926                    icc = ( ic - 1 ) * nbins_aerosol + ib
927                    bc_am_t_val = ( aerosol_mass(icc)%init(nzt+1) - aerosol_mass(icc)%init(nzt) ) /&
928                                  dzu(nzt+1)
929                 ENDDO
930              ENDDO
931              IF ( .NOT. salsa_gases_from_chem )  THEN
932                 DO  ig = 1, ngases_salsa
933                    bc_gt_t_val = ( salsa_gas(ig)%init(nzt+1) - salsa_gas(ig)%init(nzt) ) /        &
934                                  dzu(nzt+1)
935                 ENDDO
936              ENDIF
937           ENDIF
938       ENDIF
939!
940!--    If forcing by larger-scale models is applied, check if new data
941!--    at domain boundaries need to be read.
942       IF ( nesting_offline ) THEN
943          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point ) &
944               CALL netcdf_data_input_offline_nesting
945       ENDIF
946
947!
948!--    Execute all other module actions routunes
949       CALL module_interface_actions( 'before_timestep' )
950       
951!
952!--    Start of intermediate step loop
953       intermediate_timestep_count = 0
954       DO  WHILE ( intermediate_timestep_count < intermediate_timestep_count_max )
955
956          intermediate_timestep_count = intermediate_timestep_count + 1
957
958!
959!--       Set the steering factors for the prognostic equations which depend
960!--       on the timestep scheme
961          CALL timestep_scheme_steering
962
963!
964!--       Calculate those variables needed in the tendency terms which need
965!--       global communication
966          IF ( .NOT. use_single_reference_value  .AND.  .NOT. use_initial_profile_as_reference )   &
967          THEN
968!
969!--          Horizontally averaged profiles to be used as reference state in
970!--          buoyancy terms (WARNING: only the respective last call of
971!--          calc_mean_profile defines the reference state!)
972             IF ( .NOT. neutral )  THEN
973                CALL calc_mean_profile( pt, 4 )
974                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
975             ENDIF
976             IF ( ocean_mode )  THEN
977                CALL calc_mean_profile( rho_ocean, 64 )
978                ref_state(:)  = hom(:,1,64,0)
979             ENDIF
980             IF ( humidity )  THEN
981                CALL calc_mean_profile( vpt, 44 )
982                ref_state(:)  = hom(:,1,44,0)
983             ENDIF
984!
985!--          Assure that ref_state does not become zero at any level
986!--          ( might be the case if a vertical level is completely occupied
987!--            with topography ).
988             ref_state = MERGE( MAXVAL(ref_state), ref_state, ref_state == 0.0_wp )
989          ENDIF
990
991          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  intermediate_timestep_count == 1 )     &
992          THEN
993             CALL ws_statistics
994          ENDIF
995!
996!--       In case of nudging calculate current nudging time scale and horizontal
997!--       means of u, v, pt and q
998          IF ( nudging )  THEN
999             CALL calc_tnudge( simulated_time )
1000             CALL calc_mean_profile( u, 1 )
1001             CALL calc_mean_profile( v, 2 )
1002             CALL calc_mean_profile( pt, 4 )
1003             CALL calc_mean_profile( q, 41 )
1004          ENDIF
1005!
1006!--       Execute all other module actions routunes
1007          CALL module_interface_actions( 'before_prognostic_equations' )
1008!
1009!--       Solve the prognostic equations. A fast cache optimized version with
1010!--       only one single loop is used in case of Piascek-Williams advection
1011!--       scheme. NEC vector machines use a different version, because
1012!--       in the other versions a good vectorization is prohibited due to
1013!--       inlining problems.
1014          IF ( loop_optimization == 'cache' )  THEN
1015             CALL prognostic_equations_cache
1016          ELSEIF ( loop_optimization == 'vector' )  THEN
1017             CALL prognostic_equations_vector
1018          ENDIF
1019
1020!
1021!--       Particle transport/physics with the Lagrangian particle model
1022!--       (only once during intermediate steps, because it uses an Euler-step)
1023!--       ### particle model should be moved before prognostic_equations, in order
1024!--       to regard droplet interactions directly
1025          IF ( particle_advection  .AND.  time_since_reference_point >= particle_advection_start   &
1026               .AND.  intermediate_timestep_count == 1 )                                           &
1027          THEN
1028             CALL module_interface_actions( 'after_prognostic_equations' )
1029             first_call_lpm = .FALSE.
1030          ENDIF
1031
1032!
1033!--       Interaction of droplets with temperature and mixing ratio.
1034!--       Droplet condensation and evaporation is calculated within
1035!--       advec_particles.
1036          IF ( cloud_droplets  .AND.  intermediate_timestep_count == intermediate_timestep_count_max ) &
1037          THEN
1038             CALL lpm_interaction_droplets_ptq
1039          ENDIF
1040
1041!
1042!--       Movement of agents in multi agent system
1043          IF ( agents_active  .AND.  time_since_reference_point >= multi_agent_system_start  .AND. &
1044               time_since_reference_point <= multi_agent_system_end  .AND.                         &
1045               intermediate_timestep_count == 1 )                                                  &
1046          THEN
1047             CALL multi_agent_system
1048             first_call_mas = .FALSE.
1049          ENDIF
1050
1051!
1052!--       Exchange of ghost points (lateral boundary conditions)
1053          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
1054
1055          CALL exchange_horiz( u_p, nbgp )
1056          CALL exchange_horiz( v_p, nbgp )
1057          CALL exchange_horiz( w_p, nbgp )
1058          CALL exchange_horiz( pt_p, nbgp )
1059          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
1060          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence                           &
1061               .OR.  use_sgs_for_particles )  THEN
1062             IF ( rans_tke_e )  THEN
1063                CALL exchange_horiz( diss_p, nbgp )
1064             ELSE
1065                CALL exchange_horiz( diss, nbgp )
1066             ENDIF
1067          ENDIF
1068          IF ( ocean_mode )  THEN
1069             CALL exchange_horiz( sa_p, nbgp )
1070             CALL exchange_horiz( rho_ocean, nbgp )
1071             CALL exchange_horiz( prho, nbgp )
1072          ENDIF
1073          IF ( humidity )  THEN
1074             CALL exchange_horiz( q_p, nbgp )
1075             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
1076                CALL exchange_horiz( qc_p, nbgp )
1077                CALL exchange_horiz( nc_p, nbgp )
1078             ENDIF
1079             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
1080                CALL exchange_horiz( qr_p, nbgp )
1081                CALL exchange_horiz( nr_p, nbgp )
1082             ENDIF
1083          ENDIF
1084          IF ( cloud_droplets )  THEN
1085             CALL exchange_horiz( ql, nbgp )
1086             CALL exchange_horiz( ql_c, nbgp )
1087             CALL exchange_horiz( ql_v, nbgp )
1088             CALL exchange_horiz( ql_vp, nbgp )
1089          ENDIF
1090          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
1091          IF ( air_chemistry )  THEN
1092             DO  lsp = 1, nvar
1093                CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp )
1094             ENDDO
1095          ENDIF
1096
1097          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
1098             DO  ib = 1, nbins_aerosol
1099                CALL exchange_horiz( aerosol_number(ib)%conc_p, nbgp )
1100                DO  ic = 1, ncomponents_mass
1101                   icc = ( ic - 1 ) * nbins_aerosol + ib
1102                   CALL exchange_horiz( aerosol_mass(icc)%conc_p, nbgp )
1103                ENDDO
1104             ENDDO
1105             IF ( .NOT. salsa_gases_from_chem )  THEN
1106                DO  ig = 1, ngases_salsa
1107                   CALL exchange_horiz( salsa_gas(ig)%conc_p, nbgp )
1108                ENDDO
1109             ENDIF
1110          ENDIF
1111          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1112
1113!
1114!--       Boundary conditions for the prognostic quantities (except of the
1115!--       velocities at the outflow in case of a non-cyclic lateral wall)
1116          CALL boundary_conds
1117
1118!
1119!--       Boundary conditions for prognostic quantitites of other modules:
1120!--       Here, only decycling is carried out
1121          IF ( air_chemistry )  THEN
1122
1123             DO  lsp = 1, nvar
1124                lsp_usr = 1
1125                DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
1126                   IF ( TRIM( chem_species(lsp)%name ) == TRIM( cs_name(lsp_usr) ) )  THEN
1127                      CALL chem_boundary_conds( chem_species(lsp)%conc_p,                          &
1128                                                chem_species(lsp)%conc_pr_init )
1129                   ENDIF
1130                   lsp_usr = lsp_usr + 1
1131                ENDDO
1132             ENDDO
1133
1134          ENDIF
1135
1136          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
1137
1138             DO  ib = 1, nbins_aerosol
1139                CALL salsa_boundary_conds( aerosol_number(ib)%conc_p, aerosol_number(ib)%init )
1140                DO  ic = 1, ncomponents_mass
1141                   icc = ( ic - 1 ) * nbins_aerosol + ib
1142                   CALL salsa_boundary_conds( aerosol_mass(icc)%conc_p, aerosol_mass(icc)%init )
1143                ENDDO
1144             ENDDO
1145             IF ( .NOT. salsa_gases_from_chem )  THEN
1146                DO  ig = 1, ngases_salsa
1147                   CALL salsa_boundary_conds( salsa_gas(ig)%conc_p, salsa_gas(ig)%init )
1148                ENDDO
1149             ENDIF
1150
1151          ENDIF
1152
1153!
1154!--       Incrementing timestep counter
1155          timestep_count = timestep_count + 1
1156
1157          CALL cpu_log( log_point(28), 'swap_timelevel', 'start' )
1158!
1159!--       Set the swap level for all modules
1160          CALL module_interface_swap_timelevel( MOD( timestep_count, 2) )
1161!
1162!--       Set the swap level for steering the pmc data transfer
1163          IF ( nested_run )  CALL pmci_set_swaplevel( MOD( timestep_count, 2) + 1 )  !> @todo: why the +1 ?
1164
1165          CALL cpu_log( log_point(28), 'swap_timelevel', 'stop' )
1166
1167!
1168!--       Vertical nesting: Interpolate fine grid data to the coarse grid
1169          IF ( vnest_init ) THEN
1170             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'start' )
1171             CALL vnest_anterpolate
1172             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'stop' )
1173          ENDIF
1174
1175          IF ( nested_run )  THEN
1176
1177             CALL cpu_log( log_point(60), 'nesting', 'start' )
1178!
1179!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
1180!--          and pmci_child_datatrans are called inside the wrapper
1181!--          subroutine pmci_datatrans according to the control parameters
1182!--          nesting_mode and nesting_datatransfer_mode.
1183!--          TO_DO: why is nesting_mode given as a parameter here?
1184             CALL pmci_datatrans( nesting_mode )
1185
1186             IF ( TRIM( nesting_mode ) == 'two-way' .OR.  nesting_mode == 'vertical' )  THEN
1187
1188                CALL cpu_log( log_point_s(92), 'exchange-horiz-nest', 'start' )
1189!
1190!--             Exchange_horiz is needed for all parent-domains after the
1191!--             anterpolation
1192                CALL exchange_horiz( u, nbgp )
1193                CALL exchange_horiz( v, nbgp )
1194                CALL exchange_horiz( w, nbgp )
1195                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
1196
1197                IF ( humidity )  THEN
1198
1199                   CALL exchange_horiz( q, nbgp )
1200
1201                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
1202                       CALL exchange_horiz( qc, nbgp )
1203                       CALL exchange_horiz( nc, nbgp )
1204                   ENDIF
1205                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
1206                       CALL exchange_horiz( qr, nbgp )
1207                       CALL exchange_horiz( nr, nbgp )
1208                   ENDIF
1209
1210                ENDIF
1211
1212                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
1213
1214                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
1215
1216                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.  rans_tke_e )  THEN
1217                   CALL exchange_horiz( diss, nbgp )
1218                ENDIF
1219
1220                IF ( air_chemistry )  THEN
1221                   DO  n = 1, nvar
1222                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
1223                   ENDDO
1224                ENDIF
1225
1226                IF ( salsa  .AND. time_since_reference_point >= skip_time_do_salsa )  THEN
1227                   DO  ib = 1, nbins_aerosol
1228                      CALL exchange_horiz( aerosol_number(ib)%conc, nbgp )
1229                      DO  ic = 1, ncomponents_mass
1230                         icc = ( ic - 1 ) * nbins_aerosol + ib
1231                         CALL exchange_horiz( aerosol_mass(icc)%conc, nbgp )
1232                      ENDDO
1233                   ENDDO
1234                   IF ( .NOT. salsa_gases_from_chem )  THEN
1235                      DO  ig = 1, ngases_salsa
1236                         CALL exchange_horiz( salsa_gas(ig)%conc, nbgp )
1237                      ENDDO
1238                   ENDIF
1239                ENDIF
1240                CALL cpu_log( log_point_s(92), 'exchange-horiz-nest', 'stop' )
1241
1242             ENDIF
1243
1244!
1245!--          Set boundary conditions again after interpolation and anterpolation.
1246             CALL pmci_boundary_conds
1247
1248!
1249!--          Set chemistry boundary conditions (decycling)
1250             IF ( air_chemistry )  THEN
1251                DO  lsp = 1, nvar
1252                   lsp_usr = 1
1253                   DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
1254                      IF ( TRIM( chem_species(lsp)%name ) == TRIM( cs_name(lsp_usr) ) )  THEN
1255                         CALL chem_boundary_conds( chem_species(lsp)%conc,                         &
1256                                                   chem_species(lsp)%conc_pr_init )
1257                      ENDIF
1258                      lsp_usr = lsp_usr + 1
1259                   ENDDO
1260                ENDDO
1261             ENDIF
1262
1263!
1264!--          Set SALSA boundary conditions (decycling)
1265             IF ( salsa  .AND. time_since_reference_point >= skip_time_do_salsa )  THEN
1266                DO  ib = 1, nbins_aerosol
1267                   CALL salsa_boundary_conds( aerosol_number(ib)%conc, aerosol_number(ib)%init )
1268                   DO  ic = 1, ncomponents_mass
1269                      icc = ( ic - 1 ) * nbins_aerosol + ib
1270                      CALL salsa_boundary_conds( aerosol_mass(icc)%conc, aerosol_mass(icc)%init )
1271                   ENDDO
1272                ENDDO
1273                IF ( .NOT. salsa_gases_from_chem )  THEN
1274                   DO  ig = 1, ngases_salsa
1275                      CALL salsa_boundary_conds( salsa_gas(ig)%conc, salsa_gas(ig)%init )
1276                   ENDDO
1277                ENDIF
1278             ENDIF
1279
1280             CALL cpu_log( log_point(60), 'nesting', 'stop' )
1281
1282          ENDIF
1283
1284!
1285!--       Temperature offset must be imposed at cyclic boundaries in x-direction
1286!--       when a sloping surface is used
1287          IF ( sloping_surface )  THEN
1288             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - pt_slope_offset
1289             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + pt_slope_offset
1290          ENDIF
1291
1292!
1293!--       Impose a turbulent inflow using the recycling method
1294          IF ( turbulent_inflow )  CALL inflow_turbulence
1295
1296!
1297!--       Set values at outflow boundary using the special outflow condition
1298          IF ( turbulent_outflow )  CALL outflow_turbulence
1299
1300!
1301!--       Impose a random perturbation on the horizontal velocity field
1302          IF ( create_disturbances  .AND.  ( call_psolver_at_all_substeps  .AND.                   &
1303               intermediate_timestep_count == intermediate_timestep_count_max )                    &
1304               .OR. ( .NOT. call_psolver_at_all_substeps  .AND.  intermediate_timestep_count == 1 ) ) &
1305          THEN
1306             time_disturb = time_disturb + dt_3d
1307             IF ( time_disturb >= dt_disturb )  THEN
1308                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                                     &
1309                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
1310                   CALL disturb_field( 'u', tend, u )
1311                   CALL disturb_field( 'v', tend, v )
1312                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )                                &
1313                         .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )                 &
1314                THEN
1315!
1316!--                Runs with a non-cyclic lateral wall need perturbations
1317!--                near the inflow throughout the whole simulation
1318                   dist_range = 1
1319                   CALL disturb_field( 'u', tend, u )
1320                   CALL disturb_field( 'v', tend, v )
1321                   dist_range = 0
1322                ENDIF
1323                time_disturb = time_disturb - dt_disturb
1324             ENDIF
1325          ENDIF
1326
1327!
1328!--       Map forcing data derived from larger scale model onto domain
1329!--       boundaries.
1330          IF ( nesting_offline  .AND.  intermediate_timestep_count ==                              &
1331                                       intermediate_timestep_count_max  )                          &
1332             CALL nesting_offl_bc
1333!
1334!--       Impose a turbulent inflow using synthetic generated turbulence.
1335          IF ( use_syn_turb_gen  .AND.                                                             &
1336               intermediate_timestep_count == intermediate_timestep_count_max )  THEN
1337             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1338             CALL stg_main
1339             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1340          ENDIF
1341!
1342!--       Ensure mass conservation. This need to be done after imposing
1343!--       synthetic turbulence and top boundary condition for pressure is set to
1344!--       Neumann conditions.
1345!--       Is this also required in case of Dirichlet?
1346          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1347!
1348!--       Reduce the velocity divergence via the equation for perturbation
1349!--       pressure.
1350          IF ( intermediate_timestep_count == 1  .OR. &
1351                call_psolver_at_all_substeps )  THEN
1352
1353             IF (  vnest_init ) THEN
1354!
1355!--             Compute pressure in the CG, interpolate top boundary conditions
1356!--             to the FG and then compute pressure in the FG
1357                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1358
1359                CALL cpu_log( log_point_s(30), 'vnest_bc', 'start' )
1360                CALL vnest_boundary_conds
1361                CALL cpu_log( log_point_s(30), 'vnest_bc', 'stop' )
1362 
1363                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1364
1365!--             Anterpolate TKE, satisfy Germano Identity
1366                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'start' )
1367                CALL vnest_anterpolate_e
1368                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'stop' )
1369
1370             ELSE
1371!               
1372!--             Mass (volume) flux correction to ensure global mass conservation for child domains.
1373                IF ( child_domain )  THEN
1374                   IF ( nesting_mode == 'vertical' )  THEN
1375                      CALL pmci_ensure_nest_mass_conservation_vertical
1376                   ELSE
1377                      CALL pmci_ensure_nest_mass_conservation
1378                   ENDIF
1379                ENDIF
1380               
1381                CALL pres
1382
1383             ENDIF
1384
1385          ENDIF
1386
1387!
1388!--       If required, compute liquid water content
1389          IF ( bulk_cloud_model )  THEN
1390             CALL calc_liquid_water_content
1391          ENDIF
1392!
1393!--       If required, compute virtual potential temperature
1394          IF ( humidity )  THEN
1395             CALL compute_vpt 
1396          ENDIF 
1397
1398!
1399!--       Compute the diffusion quantities
1400          IF ( .NOT. constant_diffusion )  THEN
1401
1402!
1403!--          Determine surface fluxes shf and qsws and surface values
1404!--          pt_surface and q_surface in dependence on data from external
1405!--          file LSF_DATA respectively
1406             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND.                                     &
1407                 intermediate_timestep_count == intermediate_timestep_count_max )                  &
1408             THEN
1409                CALL ls_forcing_surf( simulated_time )
1410             ENDIF
1411
1412!
1413!--          First the vertical (and horizontal) fluxes in the surface
1414!--          (constant flux) layer are computed
1415             IF ( constant_flux_layer )  THEN
1416                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1417                CALL surface_layer_fluxes
1418                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
1419             ENDIF
1420!
1421!--          If required, solve the energy balance for the surface and run soil
1422!--          model. Call for horizontal as well as vertical surfaces
1423             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
1424
1425                CALL cpu_log( log_point(54), 'land_surface', 'start' )
1426!
1427!--             Call for horizontal upward-facing surfaces
1428                CALL lsm_energy_balance( .TRUE., -1 )
1429                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
1430!
1431!--             Call for northward-facing surfaces
1432                CALL lsm_energy_balance( .FALSE., 0 )
1433                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
1434!
1435!--             Call for southward-facing surfaces
1436                CALL lsm_energy_balance( .FALSE., 1 )
1437                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
1438!
1439!--             Call for eastward-facing surfaces
1440                CALL lsm_energy_balance( .FALSE., 2 )
1441                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
1442!
1443!--             Call for westward-facing surfaces
1444                CALL lsm_energy_balance( .FALSE., 3 )
1445                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
1446               
1447!
1448!--             At the end, set boundary conditons for potential temperature
1449!--             and humidity after running the land-surface model. This
1450!--             might be important for the nesting, where arrays are transfered.
1451                CALL lsm_boundary_condition
1452
1453               
1454                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1455             ENDIF
1456!
1457!--          If required, solve the energy balance for urban surfaces and run
1458!--          the material heat model
1459             IF (urban_surface) THEN
1460                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
1461               
1462                CALL usm_surface_energy_balance( .FALSE. )
1463                IF ( usm_material_model )  THEN
1464                   CALL usm_green_heat_model
1465                   CALL usm_material_heat_model ( .FALSE. )
1466                ENDIF
1467
1468!
1469!--             At the end, set boundary conditons for potential temperature
1470!--             and humidity after running the urban-surface model. This
1471!--             might be important for the nesting, where arrays are transfered.
1472                CALL usm_boundary_condition
1473
1474                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1475             ENDIF
1476!
1477!--          Compute the diffusion coefficients
1478             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
1479             IF ( .NOT. humidity ) THEN
1480                IF ( ocean_mode )  THEN
1481                   CALL tcm_diffusivities( prho, prho_reference )
1482                ELSE
1483                   CALL tcm_diffusivities( pt, pt_reference )
1484                ENDIF
1485             ELSE
1486                CALL tcm_diffusivities( vpt, pt_reference )
1487             ENDIF
1488             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
1489!
1490!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1491             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
1492
1493          ENDIF
1494
1495       ENDDO   ! Intermediate step loop
1496
1497!
1498!--    Will be used at some point by flow_statistics.
1499       !$ACC UPDATE &
1500       !$ACC HOST(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
1501       !$ACC HOST(sums_us2_ws_l(nzb:nzt+1,0)) &
1502       !$ACC HOST(sums_wsus_ws_l(nzb:nzt+1,0)) &
1503       !$ACC HOST(sums_vs2_ws_l(nzb:nzt+1,0)) &
1504       !$ACC HOST(sums_wsvs_ws_l(nzb:nzt+1,0)) &
1505       !$ACC HOST(sums_ws2_ws_l(nzb:nzt+1,0)) &
1506       !$ACC HOST(sums_wspts_ws_l(nzb:nzt+1,0)) &
1507       !$ACC HOST(sums_wssas_ws_l(nzb:nzt+1,0)) &
1508       !$ACC HOST(sums_wsqs_ws_l(nzb:nzt+1,0)) &
1509       !$ACC HOST(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
1510       !$ACC HOST(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
1511       !$ACC HOST(sums_wsncs_ws_l(nzb:nzt+1,0)) &
1512       !$ACC HOST(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
1513       !$ACC HOST(sums_wsss_ws_l(nzb:nzt+1,0)) &
1514       !$ACC HOST(sums_salsa_ws_l(nzb:nzt+1,0))
1515
1516!
1517!--    If required, calculate radiative fluxes and heating rates
1518       IF ( radiation  .AND.  time_since_reference_point > skip_time_do_radiation )  THEN
1519
1520          time_radiation = time_radiation + dt_3d
1521
1522          IF ( time_radiation >= dt_radiation  .OR.  force_radiation_call )  THEN
1523
1524             CALL cpu_log( log_point(50), 'radiation', 'start' )
1525
1526             IF ( .NOT. force_radiation_call )  THEN
1527                time_radiation = time_radiation - dt_radiation
1528             ENDIF
1529
1530!
1531!--          Adjust the current time to the time step of the radiation model.
1532!--          Needed since radiation is pre-calculated and stored only on apparent
1533!--          solar positions
1534             time_since_reference_point_save = time_since_reference_point
1535             time_since_reference_point = REAL( FLOOR( time_since_reference_point /             &
1536                                                       dt_radiation ), wp ) * dt_radiation
1537
1538             CALL radiation_control
1539
1540             IF ( ( urban_surface  .OR.  land_surface )  .AND.  radiation_interactions )  THEN
1541                CALL cpu_log( log_point_s(46), 'radiation_interaction', 'start' )
1542                CALL radiation_interaction
1543                CALL cpu_log( log_point_s(46), 'radiation_interaction', 'stop' )
1544             ENDIF
1545 
1546!
1547!--          Return the current time to its original value
1548             time_since_reference_point = time_since_reference_point_save
1549
1550             CALL cpu_log( log_point(50), 'radiation', 'stop' )
1551
1552          ENDIF
1553       ENDIF
1554
1555!
1556!--    If required, consider chemical emissions
1557       IF ( air_chemistry  .AND.  emissions_anthropogenic )  THEN
1558!
1559!--       Update the time --> kanani: revise location of this CALL
1560          CALL calc_date_and_time
1561!
1562!--       Call emission routine only once an hour
1563          IF (hour_of_year  .GT.  hour_call_emis )  THEN
1564             CALL chem_emissions_setup( chem_emis_att, chem_emis, n_matched_vars )
1565             hour_call_emis = hour_of_year
1566          ENDIF
1567       ENDIF
1568!
1569!--    If required, consider aerosol emissions for the salsa model
1570       IF ( salsa )  THEN
1571!
1572!--       Call emission routine to update emissions if needed
1573          CALL salsa_emission_update
1574
1575       ENDIF
1576!
1577!--    If required, calculate indoor temperature, waste heat, heat flux
1578!--    through wall, etc.
1579!--    dt_indoor steers the frequency of the indoor model calculations.
1580!--    Note, at first timestep indoor model is called, in order to provide
1581!--    a waste heat flux.
1582       IF ( indoor_model )  THEN
1583
1584          time_indoor = time_indoor + dt_3d
1585
1586          IF ( time_indoor >= dt_indoor  .OR.  current_timestep_number == 0 )  THEN
1587
1588             time_indoor = time_indoor - dt_indoor
1589
1590             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1591             CALL im_main_heatcool
1592             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1593
1594          ENDIF
1595       ENDIF
1596!
1597!--    Increase simulation time and output times
1598       nr_timesteps_this_run      = nr_timesteps_this_run + 1
1599       current_timestep_number    = current_timestep_number + 1
1600       simulated_time             = simulated_time   + dt_3d
1601       time_since_reference_point = simulated_time - coupling_start_time
1602       simulated_time_chr         = time_to_string( time_since_reference_point )
1603
1604
1605
1606
1607       IF ( time_since_reference_point >= skip_time_data_output_av )  THEN
1608          time_do_av         = time_do_av       + dt_3d
1609       ENDIF
1610       IF ( time_since_reference_point >= skip_time_do2d_xy )  THEN
1611          time_do2d_xy       = time_do2d_xy     + dt_3d
1612       ENDIF
1613       IF ( time_since_reference_point >= skip_time_do2d_xz )  THEN
1614          time_do2d_xz       = time_do2d_xz     + dt_3d
1615       ENDIF
1616       IF ( time_since_reference_point >= skip_time_do2d_yz )  THEN
1617          time_do2d_yz       = time_do2d_yz     + dt_3d
1618       ENDIF
1619       IF ( time_since_reference_point >= skip_time_do3d    )  THEN
1620          time_do3d          = time_do3d        + dt_3d
1621       ENDIF
1622       DO  mid = 1, masks
1623          IF ( time_since_reference_point >= skip_time_domask(mid) )  THEN
1624             time_domask(mid)= time_domask(mid) + dt_3d
1625          ENDIF
1626       ENDDO
1627       IF ( time_since_reference_point >= skip_time_dosp )  THEN
1628          time_dosp       = time_dosp        + dt_3d
1629       ENDIF
1630       time_dots          = time_dots        + dt_3d
1631       IF ( .NOT. first_call_lpm )  THEN
1632          time_dopts      = time_dopts       + dt_3d
1633       ENDIF
1634       IF ( time_since_reference_point >= skip_time_dopr )  THEN
1635          time_dopr       = time_dopr        + dt_3d
1636       ENDIF
1637       time_dopr_listing  = time_dopr_listing + dt_3d
1638       time_run_control   = time_run_control + dt_3d
1639!
1640!--    Increment time-counter for surface output
1641       IF ( surface_output )  THEN
1642          IF ( time_since_reference_point >= skip_time_dosurf )  THEN
1643             time_dosurf    = time_dosurf + dt_3d
1644          ENDIF
1645          IF ( time_since_reference_point >= skip_time_dosurf_av )  THEN
1646             time_dosurf_av = time_dosurf_av + dt_3d
1647          ENDIF
1648       ENDIF
1649!
1650!--    Increment time-counter for virtual measurements
1651       IF ( virtual_measurement  .AND.  vm_time_start <= time_since_reference_point )  THEN
1652          time_virtual_measurement = time_virtual_measurement + dt_3d
1653       ENDIF
1654!
1655!--    In case of synthetic turbulence generation and parametrized turbulence
1656!--    information, update the time counter and if required, adjust the
1657!--    STG to new atmospheric conditions.
1658       IF ( use_syn_turb_gen  )  THEN
1659          IF ( parametrize_inflow_turbulence )  THEN
1660             time_stg_adjust = time_stg_adjust + dt_3d
1661             IF ( time_stg_adjust >= dt_stg_adjust )  THEN
1662                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1663                CALL stg_adjust
1664                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1665             ENDIF
1666          ENDIF
1667          time_stg_call = time_stg_call + dt_3d
1668       ENDIF
1669
1670!
1671!--    Data exchange between coupled models
1672       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND.  .NOT. vnested )  THEN
1673          time_coupling = time_coupling + dt_3d
1674
1675!
1676!--       In case of model termination initiated by the local model
1677!--       (terminate_coupled > 0), the coupler must be skipped because it would
1678!--       cause an MPI intercomminucation hang.
1679!--       If necessary, the coupler will be called at the beginning of the
1680!--       next restart run.
1681          DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
1682             CALL surface_coupler
1683             time_coupling = time_coupling - dt_coupling
1684          ENDDO
1685       ENDIF
1686
1687!
1688!--    Biometeorology calculation of stationary thermal indices
1689!--    Todo (kanani): biometeorology needs own time_... treatment.
1690!--                   It might be that time_do2d_xy differs from time_do3d,
1691!--                   and then we might get trouble with the biomet output,
1692!--                   because we can have 2d and/or 3d biomet output!!
1693       IF ( biometeorology                                                                         &
1694            .AND. ( ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  &
1695                  .OR.                                                                             &
1696            ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy ) &
1697                    ) )  THEN
1698!
1699!--       If required, do thermal comfort calculations
1700          IF ( thermal_comfort )  THEN
1701             CALL bio_calculate_thermal_index_maps ( .FALSE. )
1702          ENDIF
1703!
1704!--       If required, do UV exposure calculations
1705          IF ( uv_exposure )  THEN
1706             CALL uvem_calc_exposure
1707          ENDIF
1708       ENDIF
1709
1710!
1711!--    Execute alle other module actions routunes
1712       CALL module_interface_actions( 'after_integration' )
1713
1714!
1715!--    If Galilei transformation is used, determine the distance that the
1716!--    model has moved so far
1717       IF ( galilei_transformation )  THEN
1718          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1719          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1720       ENDIF
1721
1722!
1723!--    Check, if restart is necessary (because cpu-time is expiring or
1724!--    because it is forced by user) and set stop flag
1725!--    This call is skipped if the remote model has already initiated a restart.
1726       IF ( .NOT. terminate_run )  CALL check_for_restart
1727
1728!
1729!--    Carry out statistical analysis and output at the requested output times.
1730!--    The MOD function is used for calculating the output time counters (like
1731!--    time_dopr) in order to regard a possible decrease of the output time
1732!--    interval in case of restart runs
1733
1734!
1735!--    Set a flag indicating that so far no statistics have been created
1736!--    for this time step
1737       flow_statistics_called = .FALSE.
1738
1739!
1740!--    If required, call flow_statistics for averaging in time
1741       IF ( averaging_interval_pr /= 0.0_wp  .AND.                                                 &
1742            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.                                &
1743            time_since_reference_point >= skip_time_dopr )  THEN
1744          time_dopr_av = time_dopr_av + dt_3d
1745          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1746             do_sum = .TRUE.
1747             time_dopr_av = MOD( time_dopr_av, MAX( dt_averaging_input_pr, dt_3d ) )
1748          ENDIF
1749       ENDIF
1750       IF ( do_sum )  CALL flow_statistics
1751
1752!
1753!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
1754       IF ( averaging_interval /= 0.0_wp  .AND.                                                    &
1755            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND.                        &
1756            time_since_reference_point >= skip_time_data_output_av )                               &
1757       THEN
1758          time_do_sla = time_do_sla + dt_3d
1759          IF ( time_do_sla >= dt_averaging_input )  THEN
1760             IF ( current_timestep_number > timestep_number_at_prev_calc )                         &
1761                CALL doq_calculate
1762
1763             CALL sum_up_3d_data
1764             average_count_3d = average_count_3d + 1
1765             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1766          ENDIF
1767       ENDIF
1768!
1769!--    Average surface data
1770       IF ( surface_output )  THEN
1771          IF ( averaging_interval_surf /= 0.0_wp                                                   &
1772                .AND.  ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf                &
1773                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1774             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
1775                CALL surface_data_output_averaging
1776                average_count_surf = average_count_surf + 1
1777             ENDIF
1778          ENDIF
1779       ENDIF
1780
1781!
1782!--    Calculate spectra for time averaging
1783       IF ( averaging_interval_sp /= 0.0_wp  .AND. ( dt_dosp - time_dosp ) <= averaging_interval_sp&
1784            .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1785          time_dosp_av = time_dosp_av + dt_3d
1786          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1787             CALL calc_spectra
1788             time_dosp_av = MOD( time_dosp_av, MAX( dt_averaging_input_pr, dt_3d ) )
1789          ENDIF
1790       ENDIF
1791
1792!
1793!--    Call flight module and output data
1794       IF ( virtual_flight )  THEN
1795          CALL flight_measurement
1796          CALL data_output_flight
1797       ENDIF
1798!
1799!--    Take virtual measurements
1800       IF ( virtual_measurement  .AND.  time_virtual_measurement >= dt_virtual_measurement         &
1801                                 .AND.  vm_time_start <= time_since_reference_point )  THEN
1802          CALL vm_sampling
1803          CALL vm_data_output
1804          time_virtual_measurement = MOD(      time_virtual_measurement,                           &
1805                                          MAX( dt_virtual_measurement, dt_3d ) )
1806       ENDIF
1807!
1808!--    Profile output (ASCII) on file
1809       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1810          CALL print_1d
1811          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, dt_3d ) )
1812       ENDIF
1813
1814!
1815!--    Graphic output for PROFIL
1816       IF ( time_dopr >= dt_dopr  .AND.  time_since_reference_point >= skip_time_dopr )  THEN
1817          IF ( dopr_n /= 0 )  CALL data_output_profiles
1818          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
1819          time_dopr_av = 0.0_wp    ! due to averaging (see above)
1820       ENDIF
1821
1822!
1823!--    Graphic output for time series
1824       IF ( time_dots >= dt_dots )  THEN
1825          CALL data_output_tseries
1826          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1827       ENDIF
1828
1829!
1830!--    Output of spectra (formatted for use with PROFIL), in case of no
1831!--    time averaging, spectra has to be calculated before
1832       IF ( time_dosp >= dt_dosp  .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1833          IF ( average_count_sp == 0 )  CALL calc_spectra
1834          CALL data_output_spectra
1835          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1836       ENDIF
1837
1838!
1839!--    2d-data output (cross-sections)
1840       IF ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy )  THEN
1841          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1842             CALL doq_calculate
1843
1844          CALL data_output_2d( 'xy', 0 )
1845          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1846       ENDIF
1847       IF ( time_do2d_xz >= dt_do2d_xz  .AND.  time_since_reference_point >= skip_time_do2d_xz )  THEN
1848          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1849
1850             CALL doq_calculate
1851          CALL data_output_2d( 'xz', 0 )
1852          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1853       ENDIF
1854       IF ( time_do2d_yz >= dt_do2d_yz  .AND.  time_since_reference_point >= skip_time_do2d_yz )  THEN
1855          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1856             CALL doq_calculate
1857
1858          CALL data_output_2d( 'yz', 0 )
1859          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1860       ENDIF
1861
1862!
1863!--    3d-data output (volume data)
1864       IF ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  THEN
1865          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1866             CALL doq_calculate
1867
1868          CALL data_output_3d( 0 )
1869          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1870       ENDIF
1871
1872!
1873!--    Masked data output
1874       DO  mid = 1, masks
1875          IF ( time_domask(mid) >= dt_domask(mid)                                                  &
1876               .AND.  time_since_reference_point >= skip_time_domask(mid) )  THEN
1877             IF ( current_timestep_number > timestep_number_at_prev_calc )                         &
1878                CALL doq_calculate
1879
1880             CALL data_output_mask( 0, mid )
1881             time_domask(mid) = MOD( time_domask(mid), MAX( dt_domask(mid), dt_3d ) )
1882          ENDIF
1883       ENDDO
1884
1885!
1886!--    Output of time-averaged 2d/3d/masked data
1887       IF ( time_do_av >= dt_data_output_av                                                        &
1888            .AND.  time_since_reference_point >= skip_time_data_output_av )  THEN
1889          CALL average_3d_data
1890!
1891!--       Udate thermal comfort indices based on updated averaged input
1892          IF ( biometeorology  .AND.  thermal_comfort )  THEN
1893             CALL bio_calculate_thermal_index_maps ( .TRUE. )
1894          ENDIF
1895          CALL data_output_2d( 'xy', 1 )
1896          CALL data_output_2d( 'xz', 1 )
1897          CALL data_output_2d( 'yz', 1 )
1898          CALL data_output_3d( 1 )
1899          DO  mid = 1, masks
1900             CALL data_output_mask( 1, mid )
1901          ENDDO
1902          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1903       ENDIF
1904!
1905!--    Output of surface data, instantaneous and averaged data
1906       IF ( surface_output )  THEN
1907          IF ( time_dosurf >= dt_dosurf  .AND.  time_since_reference_point >= skip_time_dosurf )  THEN
1908             CALL surface_data_output( 0 )
1909             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1910          ENDIF
1911          IF ( time_dosurf_av >= dt_dosurf_av  .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1912             CALL surface_data_output( 1 )
1913             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1914          ENDIF
1915       ENDIF
1916
1917!
1918!--    Output of particle time series
1919       IF ( particle_advection )  THEN
1920          IF ( time_dopts >= dt_dopts  .OR.                                                        &
1921               ( time_since_reference_point >= particle_advection_start  .AND.                     &
1922                 first_call_lpm ) )  THEN
1923             CALL lpm_data_output_ptseries
1924             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1925          ENDIF
1926       ENDIF
1927
1928!
1929!--    If required, set the heat flux for the next time step to a random value
1930       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
1931          IF ( surf_def_h(0)%ns >= 1 )  THEN
1932             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1933             CALL disturb_heatflux( surf_def_h(0) )
1934             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1935          ENDIF
1936          IF ( surf_lsm_h%ns    >= 1 )  THEN
1937             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1938             CALL disturb_heatflux( surf_lsm_h    )
1939             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1940          ENDIF
1941          IF ( surf_usm_h%ns    >= 1 )  THEN
1942             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1943             CALL disturb_heatflux( surf_usm_h    )
1944             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1945          ENDIF
1946       ENDIF
1947
1948!
1949!--    Execute alle other module actions routunes
1950       CALL module_interface_actions( 'after_timestep' )
1951
1952!
1953!--    Determine size of next time step. Save timestep dt_3d because it is
1954!--    newly calculated in routine timestep, but required further below for
1955!--    steering the run control output interval
1956       dt_3d_old = dt_3d
1957       CALL timestep
1958
1959!
1960!--    Synchronize the timestep in case of nested run.
1961       IF ( nested_run )  THEN
1962!
1963!--       Synchronize by unifying the time step.
1964!--       Global minimum of all time-steps is used for all.
1965          CALL pmci_synchronize
1966       ENDIF
1967
1968!
1969!--    Computation and output of run control parameters.
1970!--    This is also done whenever perturbations have been imposed
1971       IF ( time_run_control >= dt_run_control  .OR.                                               &
1972            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created )                           &
1973       THEN
1974          CALL run_control
1975          IF ( time_run_control >= dt_run_control )  THEN
1976             time_run_control = MOD( time_run_control, MAX( dt_run_control, dt_3d_old ) )
1977          ENDIF
1978       ENDIF
1979
1980!
1981!--    Output elapsed simulated time in form of a progress bar on stdout
1982       IF ( myid == 0 )  CALL output_progress_bar
1983
1984       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1985
1986
1987    ENDDO   ! time loop
1988
1989#if defined( _OPENACC )
1990    CALL exit_surface_arrays
1991#endif
1992!$ACC END DATA
1993!$ACC END DATA
1994!$ACC END DATA
1995!$ACC END DATA
1996!$ACC END DATA
1997!$ACC END DATA
1998!$ACC END DATA
1999
2000!
2001!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
2002    IF ( vnest_init )  CALL vnest_deallocate
2003
2004    IF ( myid == 0 )  CALL finish_progress_bar
2005
2006    CALL location_message( 'atmosphere (and/or ocean) time-stepping', 'finished' )
2007
2008 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.