source: palm/trunk/SOURCE/time_integration.f90 @ 4051

Last change on this file since 4051 was 4048, checked in by knoop, 5 years ago

Moved turbulence_closure_mod calls into module_interface

  • Property svn:keywords set to Id
File size: 80.3 KB
RevLine 
[1682]1!> @file time_integration.f90
[2000]2!------------------------------------------------------------------------------!
[2696]3! This file is part of the PALM model system.
[1036]4!
[2000]5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
[1036]9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
[3647]17! Copyright 1997-2019 Leibniz Universitaet Hannover
[2000]18!------------------------------------------------------------------------------!
[1036]19!
[484]20! Current revisions:
[1092]21! ------------------
[1928]22!
[3745]23!
[1366]24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 4048 2019-06-21 21:00:21Z suehring $
[4048]27! Moved production_e_init call into turbulence_closure_mod
28!
29! 4047 2019-06-21 18:58:09Z knoop
[4047]30! Added remainings of swap_timelevel upon its dissolution
31!
32! 4043 2019-06-18 16:59:00Z schwenkel
[4043]33! Further LPM modularization
34!
35! 4039 2019-06-18 10:32:41Z suehring
[4039]36! Rename subroutines in module for diagnostic quantities
37!
38! 4029 2019-06-14 14:04:35Z raasch
[4029]39! exchange of ghost points and boundary conditions separated for chemical species and SALSA module,
40! bugfix: decycling of chemistry species after nesting data transfer
41!
42! 4022 2019-06-12 11:52:39Z suehring
[4022]43! Call synthetic turbulence generator at last RK3 substep right after boundary
44! conditions are updated in offline nesting in order to assure that
45! perturbations are always imposed
46!
47! 4017 2019-06-06 12:16:46Z schwenkel
[4010]48! Mass (volume) flux correction included to ensure global mass conservation for child domains.
49!
50! 3994 2019-05-22 18:08:09Z suehring
[3994]51! output of turbulence intensity added
52!
53! 3988 2019-05-22 11:32:37Z kanani
[3988]54! Implement steerable output interval for virtual measurements
55!
56! 3968 2019-05-13 11:04:01Z suehring
[3968]57! replace nspec_out with n_matched_vars
58!
59! 3929 2019-04-24 12:52:08Z banzhafs
[3929]60! Reverse changes back from revision 3878: use chem_boundary_conds instead of
61! chem_boundary_conds_decycle
62!
63!
64! 3885 2019-04-11 11:29:34Z kanani
[3885]65! Changes related to global restructuring of location messages and introduction
66! of additional debug messages
[3929]67!
[3885]68! 3879 2019-04-08 20:25:23Z knoop
[3875]69! Moved wtm_forces to module_interface_actions
70!
71! 3872 2019-04-08 15:03:06Z knoop
[3864]72! Modifications made for salsa:
73! - Call salsa_emission_update at each time step but do the checks within
74!   salsa_emission_update (i.e. skip_time_do_salsa >= time_since_reference_point
75!   and next_aero_emission_update <= time_since_reference_point ).
76! - Renamed nbins --> nbins_aerosol, ncc_tot --> ncomponents_mass and
77!   ngast --> ngases_salsa and loop indices b, c and sg to ib, ic and ig
78! - Apply nesting for salsa variables
79! - Removed cpu_log calls speciffic for salsa.
80!
81! 3833 2019-03-28 15:04:04Z forkel
[3879]82! added USE chem_gasphase_mod, replaced nspec by nspec since fixed compounds are not integrated
[3833]83!
84! 3820 2019-03-27 11:53:41Z forkel
[3820]85! renamed do_emiss to emissions_anthropogenic (ecc)
86!
87!
88! 3774 2019-03-04 10:52:49Z moh.hefny
[3774]89! rephrase if statement to avoid unallocated array in case of
90! nesting_offline is false (crashing during debug mode)
91!
92! 3761 2019-02-25 15:31:42Z raasch $
[3761]93! module section re-formatted and openacc required variables moved to separate section,
94! re-formatting to 100 char line width
95!
96! 3745 2019-02-15 18:57:56Z suehring
[3745]97! Call indoor model after first timestep
98!
99! 3744 2019-02-15 18:38:58Z suehring
[3742]100! - Moved call of bio_calculate_thermal_index_maps from biometeorology module to
101! time_integration to make sure averaged input is updated before calculating.
102!
103! 3739 2019-02-13 08:05:17Z dom_dwd_user
[3739]104! Removed everything related to "time_bio_results" as this is never used.
105!
106! 3724 2019-02-06 16:28:23Z kanani
[3724]107! Correct double-used log_point_s unit
108!
109! 3719 2019-02-06 13:10:18Z kanani
[3719]110! - removed wind_turbine cpu measurement, since same time is measured inside
111!   wtm_forces subroutine as special measures
112! - moved the numerous vnest cpulog to special measures
113! - extended radiation cpulog over entire radiation part,
114!   moved radiation_interactions cpulog to special measures
115! - moved some cpu_log calls to this routine for better overview
116!
117! 3705 2019-01-29 19:56:39Z suehring
[3705]118! Data output for virtual measurements added
119!
120! 3704 2019-01-29 19:51:41Z suehring
[3648]121! Rename subroutines for surface-data output
122!
123! 3647 2019-01-02 14:10:44Z kanani
[3647]124! Bugfix: add time_since_reference_point to IF clause for data_output calls
125! (otherwise skip_time_* values don't come into affect with dt_do* = 0.0).
126! Clean up indoor_model and biometeorology model call.
127!
128! 3646 2018-12-28 17:58:49Z kanani
[3646]129! Bugfix: use time_since_reference_point instead of simulated_time where
130! required (relevant when using wall/soil spinup)
131!
132! 3634 2018-12-18 12:31:28Z knoop
[3634]133! OpenACC port for SPEC
134!
135! 3597 2018-12-04 08:40:18Z maronga
[3597]136! Removed call to calculation of near air (10 cm) potential temperature (now in
137! surface layer fluxes)
138!
139! 3589 2018-11-30 15:09:51Z suehring
[3589]140! Move the control parameter "salsa" from salsa_mod to control_parameters
141! (M. Kurppa)
142!
143! 3582 2018-11-29 19:16:36Z suehring
[3569]144! dom_dwd_user, Schrempf:
145! Changes due to merge of uv exposure model into biometeorology_mod.
146!
147! 3525 2018-11-14 16:06:14Z kanani
[3525]148! Changes related to clean-up of biometeorology (dom_dwd_user)
149!
150! 3524 2018-11-14 13:36:44Z raasch
[3524]151! unused variables removed
152!
153! 3484 2018-11-02 14:41:25Z hellstea
[3484]154! pmci_ensure_nest_mass_conservation is premanently removed
155!
156! 3473 2018-10-30 20:50:15Z suehring
[3473]157! new module for virtual measurements introduced
158!
159! 3472 2018-10-30 20:43:50Z suehring
[3469]160! Add indoor model (kanani, srissman, tlang)
161!
162! 3467 2018-10-30 19:05:21Z suehring
[3467]163! Implementation of a new aerosol module salsa.
164!
165! 3448 2018-10-29 18:14:31Z kanani
[3448]166! Add biometeorology
167!
168! 3421 2018-10-24 18:39:32Z gronemeier
[3421]169! Surface data output
170!
171! 3418 2018-10-24 16:07:39Z kanani
[3418]172! call to material_heat_model now with check if spinup runs (rvtils)
173!
174! 3378 2018-10-19 12:34:59Z kanani
[3378]175! merge from radiation branch (r3362) into trunk
176! (moh.hefny):
177! Bugfix in the if statement to call radiation_interaction
178!
179! 3347 2018-10-15 14:21:08Z suehring
[3347]180! - offline nesting separated from large-scale forcing module
181! - changes for synthetic turbulence generator
182!
183! 3343 2018-10-15 10:38:52Z suehring
[3298]184! - Formatting, clean-up, comments (kanani)
185! - Added CALL to chem_emissions_setup (Russo)
186! - Code added for decycling chemistry (basit)
187!
188! 3294 2018-10-01 02:37:10Z raasch
[3294]189! changes concerning modularization of ocean option
190!
191! 3274 2018-09-24 15:42:55Z knoop
[3274]192! Modularization of all bulk cloud physics code components
193!
194! 3241 2018-09-12 15:02:00Z raasch
[3241]195! unused variables removed
196!
197! 3198 2018-08-15 09:23:10Z sward
[3198]198! Added multi_agent_system_end; defined start time for MAS relative to
199! time_since_reference_point
200!
201! 3183 2018-07-27 14:25:55Z suehring
[3183]202! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
203! Rename subroutines and variables in COSMO nesting mode
204!
205! 3182 2018-07-27 13:36:03Z suehring
[3159]206! Added multi agent system
207!
208! 3042 2018-05-25 10:44:37Z schwenkel
[3042]209! Changed the name specific humidity to mixing ratio
210!
211! 3040 2018-05-25 10:22:08Z schwenkel
[3014]212! Fixed bug in IF statement
213! Ensure that the time when calling the radiation to be the time step of the
214! pre-calculated time when first calculate the positions of the sun
215!
216! 3004 2018-04-27 12:33:25Z Giersch
[3004]217! First call of flow_statistics has been removed. It is already called in
218! run_control itself
219!
220! 2984 2018-04-18 11:51:30Z hellstea
[2984]221! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
222! as seemingly unnecessary.
[2977]223!
224! 2941 2018-04-03 11:54:58Z kanani
[2941]225! Deduct spinup_time from RUN_CONTROL output of main 3d run
226! (use time_since_reference_point instead of simulated_time)
227!
228! 2938 2018-03-27 15:52:42Z suehring
[2938]229! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
230!
231! 2936 2018-03-27 14:49:27Z suehring
[2934]232! Little formatting adjustment.
233!
234! 2817 2018-02-19 16:32:21Z knoop
[2817]235! Preliminary gust module interface implemented
236!
237! 2801 2018-02-14 16:01:55Z thiele
[2801]238! Changed lpm from subroutine to module.
239! Introduce particle transfer in nested models.
240!
241! 2776 2018-01-31 10:44:42Z Giersch
[2776]242! Variable use_synthetic_turbulence_generator has been abbreviated
243!
244! 2773 2018-01-30 14:12:54Z suehring
[2773]245! - Nesting for chemical species
246!
247! 2766 2018-01-22 17:17:47Z kanani
[2766]248! Removed preprocessor directive __chem
249!
250! 2718 2018-01-02 08:49:38Z maronga
[2716]251! Corrected "Former revisions" section
252!
253! 2696 2017-12-14 17:12:51Z kanani
254! - Change in file header (GPL part)
[2696]255! - Implementation of uv exposure model (FK)
256! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
257! - renamed diffusivities to tcm_diffusivities (TG)
258! - implement prognostic equation for diss (TG)
259! - Moved/commented CALL to chem_emissions (FK)
260! - Added CALL to chem_emissions (FK)
261! - Implementation of chemistry module (FK)
262! - Calls for setting boundary conditions in USM and LSM (MS)
263! - Large-scale forcing with larger-scale models implemented (MS)
264! - Rename usm_radiation into radiation_interactions; merge with branch
265!   radiation (MS)
266! - added call for usm_green_heat_model for green building surfaces (RvT)
267! - added call for usm_temperature_near_surface for use in indoor model (RvT)
268!
269! 2617 2017-11-16 12:47:24Z suehring
[2617]270! Bugfix, assure that the reference state does not become zero.
271!
272! 2563 2017-10-19 15:36:10Z Giersch
[2563]273! Variable wind_turbine moved to module control_parameters
274!
275! 2365 2017-08-21 14:59:59Z kanani
[2365]276! Vertical grid nesting implemented (SadiqHuq)
277!
278! 2320 2017-07-21 12:47:43Z suehring
[2311]279! Set bottom boundary conditions after nesting interpolation and anterpolation
280!
281! 2299 2017-06-29 10:14:38Z maronga
[2299]282! Call of soil model adjusted
283!
284! 2292 2017-06-20 09:51:42Z schwenkel
[2292]285! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
286! includes two more prognostic equations for cloud drop concentration (nc) 
287! and cloud water content (qc).
288!
289! 2271 2017-06-09 12:34:55Z sward
[2271]290! Start timestep message changed
291!
292! 2259 2017-06-08 09:09:11Z gronemeier
[2259]293! Implemented synthetic turbulence generator
[1366]294!
[2259]295! 2233 2017-05-30 18:08:54Z suehring
296!
[2233]297! 2232 2017-05-30 17:47:52Z suehring
298! Adjustments to new topography and surface concept
299! Modify passed parameters for disturb_field
300!
[2179]301! 2178 2017-03-17 11:07:39Z hellstea
302! Setting perturbations at all times near inflow boundary is removed
303! in case of nested boundaries
304!
[2175]305! 2174 2017-03-13 08:18:57Z maronga
306! Added support for nesting with cloud microphysics
307!
[2119]308! 2118 2017-01-17 16:38:49Z raasch
309! OpenACC directives and related code removed
310!
[2051]311! 2050 2016-11-08 15:00:55Z gronemeier
312! Implement turbulent outflow condition
313!
[2032]314! 2031 2016-10-21 15:11:58Z knoop
315! renamed variable rho to rho_ocean
316!
[2012]317! 2011 2016-09-19 17:29:57Z kanani
318! Flag urban_surface is now defined in module control_parameters,
319! removed commented CALLs of global_min_max.
320!
[2008]321! 2007 2016-08-24 15:47:17Z kanani
322! Added CALLs for new urban surface model
323!
[2001]324! 2000 2016-08-20 18:09:15Z knoop
325! Forced header and separation lines into 80 columns
326!
[1977]327! 1976 2016-07-27 13:28:04Z maronga
328! Simplified calls to radiation model
329!
[1961]330! 1960 2016-07-12 16:34:24Z suehring
331! Separate humidity and passive scalar
332!
[1958]333! 1957 2016-07-07 10:43:48Z suehring
334! flight module added
335!
[1933]336! 1919 2016-05-27 14:51:23Z raasch
337! Initial version of purely vertical nesting introduced.
[1928]338!
[1919]339! 1918 2016-05-27 14:35:57Z raasch
340! determination of time step moved to the end of the time step loop,
341! the first time step is now always calculated before the time step loop (i.e.
342! also in case of restart runs)
343!
[1917]344! 1914 2016-05-26 14:44:07Z witha
345! Added call for wind turbine model
346!
[1879]347! 1878 2016-04-19 12:30:36Z hellstea
348! Synchronization for nested runs rewritten
349!
[1854]350! 1853 2016-04-11 09:00:35Z maronga
351! Adjusted for use with radiation_scheme = constant
352!
[1851]353! 1849 2016-04-08 11:33:18Z hoffmann
354! Adapted for modularization of microphysics
355!
[1834]356! 1833 2016-04-07 14:23:03Z raasch
357! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
358!
[1832]359! 1831 2016-04-07 13:15:51Z hoffmann
360! turbulence renamed collision_turbulence
361!
[1823]362! 1822 2016-04-07 07:49:42Z hoffmann
363! icloud_scheme replaced by microphysics_*
364!
[1809]365! 1808 2016-04-05 19:44:00Z raasch
366! output message in case unscheduled radiation calls removed
367!
[1798]368! 1797 2016-03-21 16:50:28Z raasch
369! introduction of different datatransfer modes
370!
[1792]371! 1791 2016-03-11 10:41:25Z raasch
372! call of pmci_update_new removed
373!
[1787]374! 1786 2016-03-08 05:49:27Z raasch
375! +module spectrum
376!
[1784]377! 1783 2016-03-06 18:36:17Z raasch
378! switch back of netcdf data format for mask output moved to the mask output
379! routine
380!
[1782]381! 1781 2016-03-03 15:12:23Z raasch
382! some pmc calls removed at the beginning (before timeloop),
383! pmc initialization moved to the main program
384!
[1765]385! 1764 2016-02-28 12:45:19Z raasch
386! PMC_ACTIVE flags removed,
387! bugfix: nest synchronization after first call of timestep
388!
[1763]389! 1762 2016-02-25 12:31:13Z hellstea
390! Introduction of nested domain feature
391!
[1737]392! 1736 2015-12-04 08:56:33Z raasch
393! no perturbations added to total domain if energy limit has been set zero
394!
[1692]395! 1691 2015-10-26 16:17:44Z maronga
396! Added option for spin-ups without land surface and radiation models. Moved calls
397! for radiation and lan surface schemes.
398!
[1683]399! 1682 2015-10-07 23:56:08Z knoop
400! Code annotations made doxygen readable
401!
[1672]402! 1671 2015-09-25 03:29:37Z raasch
403! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
404! for particles
405!
[1586]406! 1585 2015-04-30 07:05:52Z maronga
407! Moved call of radiation scheme. Added support for RRTM
408!
[1552]409! 1551 2015-03-03 14:18:16Z maronga
410! Added interface for different radiation schemes.
411!
[1497]412! 1496 2014-12-02 17:25:50Z maronga
413! Added calls for the land surface model and radiation scheme
414!
[1403]415! 1402 2014-05-09 14:25:13Z raasch
416! location messages modified
417!
[1385]418! 1384 2014-05-02 14:31:06Z raasch
419! location messages added
420!
[1381]421! 1380 2014-04-28 12:40:45Z heinze
422! CALL of nudge_ref added
423! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
424!
[1366]425! 1365 2014-04-22 15:03:56Z boeske
[1365]426! Reset sums_ls_l to zero at each timestep
427! +sums_ls_l
428! Calculation of reference state (previously in subroutine calc_mean_profile)
429
[1343]430! 1342 2014-03-26 17:04:47Z kanani
431! REAL constants defined as wp-kind
432!
[1321]433! 1320 2014-03-20 08:40:49Z raasch
[1320]434! ONLY-attribute added to USE-statements,
435! kind-parameters added to all INTEGER and REAL declaration statements,
436! kinds are defined in new module kinds,
437! old module precision_kind is removed,
438! revision history before 2012 removed,
439! comment fields (!:) to be used for variable explanations added to
440! all variable declaration statements
[1319]441! 1318 2014-03-17 13:35:16Z raasch
442! module interfaces removed
443!
[1309]444! 1308 2014-03-13 14:58:42Z fricke
445! +netcdf_data_format_save
446! For masked data, parallel netcdf output is not tested so far, hence
447! netcdf_data_format is switched back to non-paralell output.
448!
[1277]449! 1276 2014-01-15 13:40:41Z heinze
450! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
451!
[1258]452! 1257 2013-11-08 15:18:40Z raasch
453! acc-update-host directive for timestep removed
454!
[1242]455! 1241 2013-10-30 11:36:58Z heinze
456! Generalize calc_mean_profile for wider use
457! Determine shf and qsws in dependence on data from LSF_DATA
458! Determine ug and vg in dependence on data from LSF_DATA
[1222]459! 1221 2013-09-10 08:59:13Z raasch
460! host update of arrays before timestep is called
461!
[1182]462! 1179 2013-06-14 05:57:58Z raasch
463! mean profiles for reference state are only calculated if required,
464! small bugfix for background communication
465!
[1172]466! 1171 2013-05-30 11:27:45Z raasch
467! split of prognostic_equations deactivated (comment lines), for the time being
468!
[1132]469! 1128 2013-04-12 06:19:32Z raasch
[1128]470! asynchronous transfer of ghost point data realized for acc-optimized version:
471! prognostic_equations are first called two times for those points required for
472! the left-right and north-south exchange, respectively, and then for the
473! remaining points,
474! those parts requiring global communication moved from prognostic_equations to
475! here
[392]476!
[1116]477! 1115 2013-03-26 18:16:16Z hoffmann
478! calculation of qr and nr is restricted to precipitation
479!
[1114]480! 1113 2013-03-10 02:48:14Z raasch
481! GPU-porting of boundary conditions,
482! openACC directives updated
483! formal parameter removed from routine boundary_conds
484!
[1112]485! 1111 2013-03-08 23:54:10Z raasch
486! +internal timestep counter for cpu statistics added,
487! openACC directives updated
488!
[1093]489! 1092 2013-02-02 11:24:22Z raasch
490! unused variables removed
491!
[1066]492! 1065 2012-11-22 17:42:36Z hoffmann
493! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
494!
[1054]495! 1053 2012-11-13 17:11:03Z hoffmann
496! exchange of ghost points for nr, qr added
497!
[1037]498! 1036 2012-10-22 13:43:42Z raasch
499! code put under GPL (PALM 3.9)
500!
[1020]501! 1019 2012-09-28 06:46:45Z raasch
502! non-optimized version of prognostic_equations removed
503!
[1017]504! 1015 2012-09-27 09:23:24Z raasch
505! +call of prognostic_equations_acc
506!
[1002]507! 1001 2012-09-13 14:08:46Z raasch
508! all actions concerning leapfrog- and upstream-spline-scheme removed
509!
[850]510! 849 2012-03-15 10:35:09Z raasch
511! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
512!
[826]513! 825 2012-02-19 03:03:44Z raasch
514! wang_collision_kernel renamed wang_kernel
515!
[1]516! Revision 1.1  1997/08/11 06:19:04  raasch
517! Initial revision
518!
519!
520! Description:
521! ------------
[1682]522!> Integration in time of the model equations, statistical analysis and graphic
523!> output
[1]524!------------------------------------------------------------------------------!
[1682]525 SUBROUTINE time_integration
526 
[1]527
[3761]528    USE advec_ws,                                                                                  &
[1320]529        ONLY:  ws_statistics
530
[3761]531    USE arrays_3d,                                                                                 &
532        ONLY:  diss, diss_p, dzu, e, e_p, nc, nc_p, nr, nr_p, prho, pt, pt_p, pt_init, q_init, q,  &
533               qc, qc_p, ql, ql_c, ql_v, ql_vp, qr, qr_p, q_p, ref_state, rho_ocean, s, s_p, sa_p, &
534               tend, u, u_p, v, vpt, v_p, w, w_p
[1320]535
[3761]536    USE biometeorology_mod,                                                                        &
537        ONLY:  bio_calculate_thermal_index_maps, thermal_comfort, uvem_calc_exposure, uv_exposure
[3448]538
[3761]539    USE bulk_cloud_model_mod,                                                                      &
540        ONLY: bulk_cloud_model, calc_liquid_water_content, collision_turbulence,                   &
541              microphysics_morrison, microphysics_seifert
[3294]542
[3761]543    USE calc_mean_profile_mod,                                                                     &
[1320]544        ONLY:  calc_mean_profile
545
[3761]546    USE chem_emissions_mod,                                                                        &
[3298]547        ONLY:  chem_emissions_setup
[2696]548
[3833]549    USE chem_gasphase_mod,                                                                         &
[3929]550        ONLY:  nvar
[3833]551
[3761]552    USE chem_modules,                                                                              &
[3968]553        ONLY:  bc_cs_t_val, chem_species, cs_name, emissions_anthropogenic, n_matched_vars
[2696]554
[3761]555    USE chemistry_model_mod,                                                                       &
[3929]556        ONLY:  chem_boundary_conds
[3298]557
[3761]558    USE control_parameters,                                                                        &
559        ONLY:  advected_distance_x, advected_distance_y, air_chemistry, average_count_3d,          &
560               averaging_interval, averaging_interval_pr, bc_lr_cyc, bc_ns_cyc, bc_pt_t_val,       &
561               bc_q_t_val, biometeorology, call_psolver_at_all_substeps,  child_domain,            &
562               cloud_droplets, constant_flux_layer, constant_heatflux, create_disturbances,        &
563               dopr_n, constant_diffusion, coupling_mode, coupling_start_time,                     &
564               current_timestep_number, disturbance_created, disturbance_energy_limit, dist_range, &
565               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr, dt_coupling,              &
566               dt_data_output_av, dt_disturb, dt_do2d_xy, dt_do2d_xz, dt_do2d_yz, dt_do3d,         &
[4017]567               dt_domask,dt_dopts, dt_dopr, dt_dopr_listing, dt_dots, dt_run_control,              &
[3761]568               end_time, first_call_lpm, first_call_mas, galilei_transformation, humidity,         &
569               indoor_model, intermediate_timestep_count, intermediate_timestep_count_max,         &
570               land_surface, large_scale_forcing, loop_optimization, lsf_surf, lsf_vert, masks,    &
571               mid, multi_agent_system_end, multi_agent_system_start, nesting_offline, neutral,    &
572               nr_timesteps_this_run, nudging, ocean_mode, passive_scalar, pt_reference,           &
573               pt_slope_offset, random_heatflux, rans_mode, rans_tke_e, run_coupled, salsa,        &
574               simulated_time, simulated_time_chr, skip_time_do2d_xy, skip_time_do2d_xz,           &
575               skip_time_do2d_yz, skip_time_do3d, skip_time_domask, skip_time_dopr,                &
576               skip_time_data_output_av, sloping_surface, stop_dt, surface_output,                 &
577               terminate_coupled, terminate_run, timestep_scheme, time_coupling, time_do2d_xy,     &
578               time_do2d_xz, time_do2d_yz, time_do3d, time_domask, time_dopr, time_dopr_av,        &
579               time_dopr_listing, time_dopts, time_dosp, time_dosp_av, time_dots, time_do_av,      &
[4017]580               time_do_sla, time_disturb, time_run_control, time_since_reference_point,            &
[3761]581               turbulent_inflow, turbulent_outflow, urban_surface,                                 &
582               use_initial_profile_as_reference, use_single_reference_value, u_gtrans, v_gtrans,   &
[4047]583               virtual_flight, virtual_measurement, ws_scheme_mom, ws_scheme_sca, timestep_count
[1320]584
[3761]585    USE cpulog,                                                                                    &
[1320]586        ONLY:  cpu_log, log_point, log_point_s
587
[3761]588    USE date_and_time_mod,                                                                         &
[3298]589        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
590
[3994]591    USE diagnostic_output_quantities_mod,                                                          &
[4039]592        ONLY:  doq_calculate,                                                                      &
[3994]593               timestep_number_at_prev_calc
594
[3761]595    USE flight_mod,                                                                                &
[1957]596        ONLY:  flight_measurement
597
[3761]598    USE indices,                                                                                   &
599        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nzb, nzt
[1320]600
[3761]601    USE indoor_model_mod,                                                                          &
602        ONLY:  dt_indoor, im_main_heatcool, time_indoor
[3469]603
[1918]604    USE interfaces
605
[1320]606    USE kinds
607
[3761]608    USE land_surface_model_mod,                                                                    &
609        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model, skip_time_do_lsm
[1496]610
[4017]611    USE lagrangian_particle_model_mod,                                                             &
[4043]612        ONLY:  lpm_data_output_ptseries, lpm_interaction_droplets_ptq
[3761]613
614    USE lsf_nudging_mod,                                                                           &
[3347]615        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
[1320]616
[3761]617    USE module_interface,                                                                          &
[4047]618        ONLY:  module_interface_actions, module_interface_swap_timelevel
[3684]619
[3761]620    USE multi_agent_system_mod,                                                                    &
[3198]621        ONLY:  agents_active, multi_agent_system
[3448]622
[3761]623    USE nesting_offl_mod,                                                                          &
[3347]624        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
[3864]625
[3761]626    USE netcdf_data_input_mod,                                                                     &
627        ONLY:  chem_emis, chem_emis_att, nest_offl, netcdf_data_input_offline_nesting
[3298]628
[3761]629    USE ocean_mod,                                                                                 &
[3294]630        ONLY:  prho_reference
631
[3761]632    USE particle_attributes,                                                                       &
633        ONLY:  particle_advection, particle_advection_start, use_sgs_for_particles, wang_kernel
[1320]634
[1]635    USE pegrid
636
[3761]637    USE pmc_interface,                                                                             &
[4010]638        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans, pmci_synchronize,    &
[4047]639        pmci_ensure_nest_mass_conservation, pmci_ensure_nest_mass_conservation_vertical,           &
640        pmci_set_swaplevel
[1762]641
[3761]642    USE progress_bar,                                                                              &
[1402]643        ONLY:  finish_progress_bar, output_progress_bar
644
[3761]645    USE prognostic_equations_mod,                                                                  &
[2118]646        ONLY:  prognostic_equations_cache, prognostic_equations_vector
[1320]647
[3761]648    USE radiation_model_mod,                                                                       &
649        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,                    &
650              radiation_interaction, radiation_interactions, skip_time_do_radiation, time_radiation
[3864]651
[3761]652    USE salsa_mod,                                                                                 &
[3864]653        ONLY: aerosol_number, aerosol_mass, bc_am_t_val, bc_an_t_val, bc_gt_t_val,                 &
654              nbins_aerosol, ncomponents_mass, ngases_salsa, salsa_boundary_conds,                 &
655              salsa_emission_update, salsa_gas, salsa_gases_from_chem, skip_time_do_salsa
[1496]656
[3761]657    USE spectra_mod,                                                                               &
658        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp, skip_time_dosp
[1786]659
[3761]660    USE statistics,                                                                                &
661        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l
[1320]662
[3761]663
664    USE surface_layer_fluxes_mod,                                                                  &
[1691]665        ONLY:  surface_layer_fluxes
666
[3761]667    USE surface_data_output_mod,                                                                   &
668        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf, dt_dosurf_av,               &
669               surface_data_output, surface_data_output_averaging, skip_time_dosurf,               &
[3648]670               skip_time_dosurf_av, time_dosurf, time_dosurf_av
[2232]671
[3761]672    USE surface_mod,                                                                               &
673        ONLY:  surf_def_h, surf_lsm_h, surf_usm_h
674
675    USE synthetic_turbulence_generator_mod,                                                        &
676        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence, stg_adjust, stg_main,    &
677               time_stg_adjust, time_stg_call, use_syn_turb_gen
678
679    USE turbulence_closure_mod,                                                                    &
[4048]680        ONLY:  tcm_diffusivities
[2696]681
[3761]682    USE urban_surface_mod,                                                                         &
683        ONLY:  usm_boundary_condition, usm_material_heat_model, usm_material_model,                &
[3597]684               usm_surface_energy_balance, usm_green_heat_model
[2007]685
[3761]686    USE vertical_nesting_mod,                                                                      &
687        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e, vnest_boundary_conds,              &
688               vnest_boundary_conds_khkm, vnest_deallocate, vnest_init, vnest_init_fine,           &
689               vnest_start_time
[3864]690
[3761]691    USE virtual_measurement_mod,                                                                   &
[3988]692        ONLY:  dt_virtual_measurement,                                                             &
693               time_virtual_measurement,                                                           &
694               vm_data_output,                                                                     &
695               vm_sampling,                                                                        &
696               vm_time_start
[2259]697
[1914]698
[3761]699#if defined( _OPENACC )
700    USE arrays_3d,                                                             &
701        ONLY:  d, dd2zu, ddzu, ddzw, drho_air, drho_air_zw, dzw, heatflux_output_conversion, kh,   &
702               km, momentumflux_output_conversion, p, ptdf_x, ptdf_y, rdf, rdf_sc, rho_air,        &
703               rho_air_zw, te_m, tpt_m, tu_m, tv_m, tw_m, ug, u_init, u_stokes_zu, vg, v_init,     &
704               v_stokes_zu, zu
[2365]705
[3761]706    USE control_parameters,                                                                        &
707        ONLY:  tsc
708
709    USE indices,                                                                                   &
710        ONLY:  advc_flags_1, advc_flags_2, nyn, nyng, nys, nysg, nz, nzb_max, wall_flags_0
711
712    USE statistics,                                                                                &
713        ONLY:  rmask, statistic_regions, sums_l, sums_l_l, sums_us2_ws_l,                          &
714               sums_wsus_ws_l, sums_vs2_ws_l, sums_wsvs_ws_l, sums_ws2_ws_l, sums_wspts_ws_l,      &
715               sums_wsqs_ws_l, sums_wssas_ws_l, sums_wsqcs_ws_l, sums_wsqrs_ws_l, sums_wsncs_ws_l, &
[3872]716               sums_wsnrs_ws_l, sums_wsss_ws_l, weight_substep, sums_salsa_ws_l
[3761]717
718    USE surface_mod,                                                                               &
719        ONLY:  bc_h, enter_surface_arrays, exit_surface_arrays
720#endif
721
722
[1]723    IMPLICIT NONE
724
[3298]725    CHARACTER (LEN=9) ::  time_to_string   !<
[3864]726
727    INTEGER(iwp)      ::  ib        !< index for aerosol size bins
728    INTEGER(iwp)      ::  ic        !< index for aerosol mass bins
729    INTEGER(iwp)      ::  icc       !< additional index for aerosol mass bins
730    INTEGER(iwp)      ::  ig        !< index for salsa gases
[3929]731    INTEGER(iwp)      ::  lsp
732    INTEGER(iwp)      ::  lsp_usr   !<
[3298]733    INTEGER(iwp)      ::  n         !< loop counter for chemistry species
[3014]734
[1918]735    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
736                            !< steering of run control output interval
[3241]737    REAL(wp) ::  time_since_reference_point_save  !< original value of
738                                                  !< time_since_reference_point
739
[3634]740
[3761]741!
742!-- Copy data from arrays_3d
[3634]743!$ACC DATA &
744!$ACC COPY(d(nzb+1:nzt,nys:nyn,nxl:nxr)) &
745!$ACC COPY(e(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
746!$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
747!$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
748!$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
749!$ACC COPY(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
750!$ACC COPY(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
751!$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
752!$ACC COPY(pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
753
754!$ACC DATA &
755!$ACC COPY(e_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
756!$ACC COPY(u_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
757!$ACC COPY(v_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
758!$ACC COPY(w_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
759!$ACC COPY(pt_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
760!$ACC COPY(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
761!$ACC COPY(te_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
762!$ACC COPY(tu_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
763!$ACC COPY(tv_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
764!$ACC COPY(tw_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
765!$ACC COPY(tpt_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
766
767!$ACC DATA &
768!$ACC COPYIN(rho_air(nzb:nzt+1), drho_air(nzb:nzt+1)) &
769!$ACC COPYIN(rho_air_zw(nzb:nzt+1), drho_air_zw(nzb:nzt+1)) &
770!$ACC COPYIN(zu(nzb:nzt+1)) &
771!$ACC COPYIN(dzu(1:nzt+1), dzw(1:nzt+1)) &
772!$ACC COPYIN(ddzu(1:nzt+1), dd2zu(1:nzt)) &
773!$ACC COPYIN(ddzw(1:nzt+1)) &
[3658]774!$ACC COPYIN(heatflux_output_conversion(nzb:nzt+1)) &
775!$ACC COPYIN(momentumflux_output_conversion(nzb:nzt+1)) &
[3634]776!$ACC COPYIN(rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt)) &
777!$ACC COPYIN(ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng)) &
778!$ACC COPYIN(ref_state(0:nz+1)) &
779!$ACC COPYIN(u_init(0:nz+1), v_init(0:nz+1)) &
780!$ACC COPYIN(u_stokes_zu(nzb:nzt+1), v_stokes_zu(nzb:nzt+1)) &
781!$ACC COPYIN(pt_init(0:nz+1)) &
782!$ACC COPYIN(ug(0:nz+1), vg(0:nz+1))
783
[3761]784!
785!-- Copy data from control_parameters
[3634]786!$ACC DATA &
787!$ACC COPYIN(tsc(1:5))
788
[3761]789!
790!-- Copy data from indices
[3634]791!$ACC DATA &
792!$ACC COPYIN(advc_flags_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
793!$ACC COPYIN(advc_flags_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
794!$ACC COPYIN(wall_flags_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
795
[3761]796!
797!-- Copy data from surface_mod
[3634]798!$ACC DATA &
799!$ACC COPYIN(bc_h(0:1)) &
800!$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) &
801!$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) &
802!$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) &
803!$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) &
804!$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) &
805!$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns))
806
[3761]807!
808!-- Copy data from statistics
[3634]809!$ACC DATA &
[3658]810!$ACC COPYIN(hom(0:nz+1,1:2,1:4,0)) &
[3634]811!$ACC COPYIN(rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions)) &
812!$ACC COPYIN(weight_substep(1:intermediate_timestep_count_max)) &
[3658]813!$ACC COPY(sums_l(nzb:nzt+1,1:pr_palm,0)) &
[3634]814!$ACC COPY(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
815!$ACC COPY(sums_us2_ws_l(nzb:nzt+1,0)) &
816!$ACC COPY(sums_wsus_ws_l(nzb:nzt+1,0)) &
817!$ACC COPY(sums_vs2_ws_l(nzb:nzt+1,0)) &
818!$ACC COPY(sums_wsvs_ws_l(nzb:nzt+1,0)) &
819!$ACC COPY(sums_ws2_ws_l(nzb:nzt+1,0)) &
820!$ACC COPY(sums_wspts_ws_l(nzb:nzt+1,0)) &
821!$ACC COPY(sums_wssas_ws_l(nzb:nzt+1,0)) &
822!$ACC COPY(sums_wsqs_ws_l(nzb:nzt+1,0)) &
823!$ACC COPY(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
824!$ACC COPY(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
825!$ACC COPY(sums_wsncs_ws_l(nzb:nzt+1,0)) &
826!$ACC COPY(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
827!$ACC COPY(sums_wsss_ws_l(nzb:nzt+1,0)) &
828!$ACC COPY(sums_salsa_ws_l(nzb:nzt+1,0))
829
[3761]830#if defined( _OPENACC )
[3658]831    CALL enter_surface_arrays
832#endif
833
[1]834!
[1918]835!-- At beginning determine the first time step
836    CALL timestep
[1764]837!
838!-- Synchronize the timestep in case of nested run.
839    IF ( nested_run )  THEN
[1878]840!
841!--    Synchronization by unifying the time step.
842!--    Global minimum of all time-steps is used for all.
843       CALL pmci_synchronize
[1764]844    ENDIF
845
[1918]846!
847!-- Determine and print out the run control quantities before the first time
848!-- step of this run. For the initial run, some statistics (e.g. divergence)
[3004]849!-- need to be determined first --> CALL flow_statistics at the beginning of
850!-- run_control
[1]851    CALL run_control
[108]852!
853!-- Data exchange between coupled models in case that a call has been omitted
854!-- at the end of the previous run of a job chain.
[3761]855    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND. .NOT. vnested )  THEN
[108]856!
857!--    In case of model termination initiated by the local model the coupler
858!--    must not be called because this would again cause an MPI hang.
[1918]859       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
[108]860          CALL surface_coupler
861          time_coupling = time_coupling - dt_coupling
862       ENDDO
[3761]863       IF (time_coupling == 0.0_wp  .AND.  time_since_reference_point < dt_coupling )  THEN
[348]864          time_coupling = time_since_reference_point
865       ENDIF
[108]866    ENDIF
867
[3885]868    CALL location_message( 'atmosphere (and/or ocean) time-stepping', 'start' )
[3761]869
[1]870!
871!-- Start of the time loop
[3761]872    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. .NOT. terminate_run )
[1]873
874       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
875!
[2365]876!--    Vertical nesting: initialize fine grid
877       IF ( vnested ) THEN
878          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
[3719]879             CALL cpu_log( log_point_s(22), 'vnest_init', 'start' )
[2365]880             CALL vnest_init_fine
881             vnest_init = .TRUE.
[3719]882             CALL cpu_log( log_point_s(22), 'vnest_init', 'stop' )
[2365]883          ENDIF
884       ENDIF
885!
[1241]886!--    Determine ug, vg and w_subs in dependence on data from external file
887!--    LSF_DATA
[1365]888       IF ( large_scale_forcing .AND. lsf_vert )  THEN
[1241]889           CALL ls_forcing_vert ( simulated_time )
[1365]890           sums_ls_l = 0.0_wp
[1241]891       ENDIF
892
893!
[1380]894!--    Set pt_init and q_init to the current profiles taken from
895!--    NUDGING_DATA
896       IF ( nudging )  THEN
897           CALL nudge_ref ( simulated_time )
898!
899!--        Store temperature gradient at the top boundary for possible Neumann
900!--        boundary condition
901           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
902           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
[3298]903           IF ( air_chemistry )  THEN
[3929]904              DO  lsp = 1, nvar
905                 bc_cs_t_val = (  chem_species(lsp)%conc_pr_init(nzt+1)                            &
906                                - chem_species(lsp)%conc_pr_init(nzt) )                            &
[3298]907                               / dzu(nzt+1)
908              ENDDO
909           ENDIF
[3864]910           IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
911              DO  ib = 1, nbins_aerosol
912                 bc_an_t_val = ( aerosol_number(ib)%init(nzt+1) - aerosol_number(ib)%init(nzt) ) / &
913                               dzu(nzt+1)
914                 DO  ic = 1, ncomponents_mass
915                    icc = ( ic - 1 ) * nbins_aerosol + ib
916                    bc_am_t_val = ( aerosol_mass(icc)%init(nzt+1) - aerosol_mass(icc)%init(nzt) ) /&
917                                  dzu(nzt+1)
918                 ENDDO
919              ENDDO
920              IF ( .NOT. salsa_gases_from_chem )  THEN
921                 DO  ig = 1, ngases_salsa
922                    bc_gt_t_val = ( salsa_gas(ig)%init(nzt+1) - salsa_gas(ig)%init(nzt) ) /        &
923                                  dzu(nzt+1)
924                 ENDDO
925              ENDIF
926           ENDIF
[1380]927       ENDIF
[2696]928!
929!--    If forcing by larger-scale models is applied, check if new data
930!--    at domain boundaries need to be read.
[3774]931       IF ( nesting_offline ) THEN
932          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point ) &
933               CALL netcdf_data_input_offline_nesting
[2696]934       ENDIF
[1380]935
936!
[3876]937!--    Execute all other module actions routunes
[3684]938       CALL module_interface_actions( 'before_timestep' )
[1914]939       
940!
[1]941!--    Start of intermediate step loop
942       intermediate_timestep_count = 0
[3761]943       DO  WHILE ( intermediate_timestep_count < intermediate_timestep_count_max )
[1]944
945          intermediate_timestep_count = intermediate_timestep_count + 1
946
947!
948!--       Set the steering factors for the prognostic equations which depend
949!--       on the timestep scheme
950          CALL timestep_scheme_steering
951
952!
[1128]953!--       Calculate those variables needed in the tendency terms which need
954!--       global communication
[3761]955          IF ( .NOT. use_single_reference_value  .AND.  .NOT. use_initial_profile_as_reference )   &
956          THEN
[1179]957!
958!--          Horizontally averaged profiles to be used as reference state in
959!--          buoyancy terms (WARNING: only the respective last call of
960!--          calc_mean_profile defines the reference state!)
[1365]961             IF ( .NOT. neutral )  THEN
962                CALL calc_mean_profile( pt, 4 )
963                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
964             ENDIF
[3294]965             IF ( ocean_mode )  THEN
[2031]966                CALL calc_mean_profile( rho_ocean, 64 )
[1365]967                ref_state(:)  = hom(:,1,64,0)
968             ENDIF
969             IF ( humidity )  THEN
970                CALL calc_mean_profile( vpt, 44 )
971                ref_state(:)  = hom(:,1,44,0)
972             ENDIF
[2617]973!
974!--          Assure that ref_state does not become zero at any level
975!--          ( might be the case if a vertical level is completely occupied
976!--            with topography ).
[3761]977             ref_state = MERGE( MAXVAL(ref_state), ref_state, ref_state == 0.0_wp )
[1179]978          ENDIF
979
[3761]980          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  intermediate_timestep_count == 1 )     &
981          THEN
982             CALL ws_statistics
983          ENDIF
[1365]984!
985!--       In case of nudging calculate current nudging time scale and horizontal
[1380]986!--       means of u, v, pt and q
[1365]987          IF ( nudging )  THEN
988             CALL calc_tnudge( simulated_time )
989             CALL calc_mean_profile( u, 1 )
990             CALL calc_mean_profile( v, 2 )
991             CALL calc_mean_profile( pt, 4 )
992             CALL calc_mean_profile( q, 41 )
993          ENDIF
[1128]994!
[3876]995!--       Execute all other module actions routunes
996          CALL module_interface_actions( 'before_prognostic_equations' )
997!
[1]998!--       Solve the prognostic equations. A fast cache optimized version with
999!--       only one single loop is used in case of Piascek-Williams advection
1000!--       scheme. NEC vector machines use a different version, because
1001!--       in the other versions a good vectorization is prohibited due to
1002!--       inlining problems.
[1019]1003          IF ( loop_optimization == 'cache' )  THEN
1004             CALL prognostic_equations_cache
1005          ELSEIF ( loop_optimization == 'vector' )  THEN
[63]1006             CALL prognostic_equations_vector
[1]1007          ENDIF
1008
1009!
[849]1010!--       Particle transport/physics with the Lagrangian particle model
1011!--       (only once during intermediate steps, because it uses an Euler-step)
[1128]1012!--       ### particle model should be moved before prognostic_equations, in order
1013!--       to regard droplet interactions directly
[3761]1014          IF ( particle_advection  .AND.  time_since_reference_point >= particle_advection_start   &
1015               .AND.  intermediate_timestep_count == 1 )                                           &
1016          THEN
[4017]1017             CALL module_interface_actions( 'after_prognostic_equations' )
[849]1018             first_call_lpm = .FALSE.
[1]1019          ENDIF
1020
1021!
[3040]1022!--       Interaction of droplets with temperature and mixing ratio.
[1]1023!--       Droplet condensation and evaporation is calculated within
1024!--       advec_particles.
[3761]1025          IF ( cloud_droplets  .AND.  intermediate_timestep_count == intermediate_timestep_count_max ) &
[1]1026          THEN
[4043]1027             CALL lpm_interaction_droplets_ptq
[1]1028          ENDIF
1029
1030!
[3159]1031!--       Movement of agents in multi agent system
[3761]1032          IF ( agents_active  .AND.  time_since_reference_point >= multi_agent_system_start  .AND. &
1033               time_since_reference_point <= multi_agent_system_end  .AND.                         &
1034               intermediate_timestep_count == 1 )                                                  &
1035          THEN
[3159]1036             CALL multi_agent_system
1037             first_call_mas = .FALSE.
1038          ENDIF
1039
1040!
[1]1041!--       Exchange of ghost points (lateral boundary conditions)
[2118]1042          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
[1113]1043
[2118]1044          CALL exchange_horiz( u_p, nbgp )
1045          CALL exchange_horiz( v_p, nbgp )
1046          CALL exchange_horiz( w_p, nbgp )
1047          CALL exchange_horiz( pt_p, nbgp )
1048          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
[3761]1049          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence                           &
[2696]1050               .OR.  use_sgs_for_particles )  THEN
1051             IF ( rans_tke_e )  THEN
1052                CALL exchange_horiz( diss_p, nbgp )
1053             ELSE
1054                CALL exchange_horiz( diss, nbgp )
1055             ENDIF
1056          ENDIF
[3294]1057          IF ( ocean_mode )  THEN
[2118]1058             CALL exchange_horiz( sa_p, nbgp )
1059             CALL exchange_horiz( rho_ocean, nbgp )
1060             CALL exchange_horiz( prho, nbgp )
1061          ENDIF
1062          IF ( humidity )  THEN
1063             CALL exchange_horiz( q_p, nbgp )
[3274]1064             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
[2292]1065                CALL exchange_horiz( qc_p, nbgp )
1066                CALL exchange_horiz( nc_p, nbgp )
1067             ENDIF
[3274]1068             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
[2118]1069                CALL exchange_horiz( qr_p, nbgp )
1070                CALL exchange_horiz( nr_p, nbgp )
[1053]1071             ENDIF
[2118]1072          ENDIF
1073          IF ( cloud_droplets )  THEN
1074             CALL exchange_horiz( ql, nbgp )
1075             CALL exchange_horiz( ql_c, nbgp )
1076             CALL exchange_horiz( ql_v, nbgp )
1077             CALL exchange_horiz( ql_vp, nbgp )
1078          ENDIF
[2696]1079          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
[3929]1080          IF ( air_chemistry )  THEN
1081             DO  lsp = 1, nvar
1082                CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp )
[4029]1083             ENDDO
1084          ENDIF
1085
1086          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
1087             DO  ib = 1, nbins_aerosol
1088                CALL exchange_horiz( aerosol_number(ib)%conc_p, nbgp )
1089                DO  ic = 1, ncomponents_mass
1090                   icc = ( ic - 1 ) * nbins_aerosol + ib
1091                   CALL exchange_horiz( aerosol_mass(icc)%conc_p, nbgp )
1092                ENDDO
1093             ENDDO
1094             IF ( .NOT. salsa_gases_from_chem )  THEN
1095                DO  ig = 1, ngases_salsa
1096                   CALL exchange_horiz( salsa_gas(ig)%conc_p, nbgp )
1097                ENDDO
1098             ENDIF
1099          ENDIF
1100          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1101
[3929]1102!
[4029]1103!--       Boundary conditions for the prognostic quantities (except of the
1104!--       velocities at the outflow in case of a non-cyclic lateral wall)
1105          CALL boundary_conds
1106
1107!
1108!--       Boundary conditions for prognostic quantitites of other modules:
1109!--       Here, only decycling is carried out
1110          IF ( air_chemistry )  THEN
1111
1112             DO  lsp = 1, nvar
[3929]1113                lsp_usr = 1
1114                DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
[4029]1115                   IF ( TRIM( chem_species(lsp)%name ) == TRIM( cs_name(lsp_usr) ) )  THEN
[3929]1116                      CALL chem_boundary_conds( chem_species(lsp)%conc_p,                          &
1117                                                chem_species(lsp)%conc_pr_init )
1118                   ENDIF
1119                   lsp_usr = lsp_usr + 1
1120                ENDDO
1121             ENDDO
[4029]1122
[3929]1123          ENDIF
[2766]1124
[3864]1125          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
[4029]1126
[3864]1127             DO  ib = 1, nbins_aerosol
1128                CALL salsa_boundary_conds( aerosol_number(ib)%conc_p, aerosol_number(ib)%init )
1129                DO  ic = 1, ncomponents_mass
1130                   icc = ( ic - 1 ) * nbins_aerosol + ib
1131                   CALL salsa_boundary_conds( aerosol_mass(icc)%conc_p, aerosol_mass(icc)%init )
[3467]1132                ENDDO
1133             ENDDO
1134             IF ( .NOT. salsa_gases_from_chem )  THEN
[3864]1135                DO  ig = 1, ngases_salsa
1136                   CALL salsa_boundary_conds( salsa_gas(ig)%conc_p, salsa_gas(ig)%init )
1137                ENDDO
[3467]1138             ENDIF
[4029]1139
[3864]1140          ENDIF
[1128]1141
[1]1142!
[4047]1143!--       Incrementing timestep counter
1144          timestep_count = timestep_count + 1
[73]1145
[4047]1146          CALL cpu_log( log_point(28), 'swap_timelevel', 'start' )
[2365]1147!
[4047]1148!--       Set the swap level for all modules
1149          CALL module_interface_swap_timelevel( MOD( timestep_count, 2) )
1150!
1151!--       Set the swap level for steering the pmc data transfer
1152          IF ( nested_run )  CALL pmci_set_swaplevel( MOD( timestep_count, 2) + 1 )  !> @todo: why the +1 ?
1153
1154          CALL cpu_log( log_point(28), 'swap_timelevel', 'stop' )
1155
1156!
[2365]1157!--       Vertical nesting: Interpolate fine grid data to the coarse grid
1158          IF ( vnest_init ) THEN
[3719]1159             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'start' )
[2365]1160             CALL vnest_anterpolate
[3719]1161             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'stop' )
[2365]1162          ENDIF
1163
[1764]1164          IF ( nested_run )  THEN
[1797]1165
[1764]1166             CALL cpu_log( log_point(60), 'nesting', 'start' )
[1762]1167!
[1933]1168!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
1169!--          and pmci_child_datatrans are called inside the wrapper
[1797]1170!--          subroutine pmci_datatrans according to the control parameters
1171!--          nesting_mode and nesting_datatransfer_mode.
1172!--          TO_DO: why is nesting_mode given as a parameter here?
1173             CALL pmci_datatrans( nesting_mode )
[1762]1174
[3761]1175             IF ( TRIM( nesting_mode ) == 'two-way' .OR.  nesting_mode == 'vertical' )  THEN
[4029]1176
1177                CALL cpu_log( log_point_s(92), 'exchange-horiz-nest', 'start' )
[1762]1178!
[1933]1179!--             Exchange_horiz is needed for all parent-domains after the
[1764]1180!--             anterpolation
1181                CALL exchange_horiz( u, nbgp )
1182                CALL exchange_horiz( v, nbgp )
1183                CALL exchange_horiz( w, nbgp )
[2174]1184                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
1185
1186                IF ( humidity )  THEN
1187
1188                   CALL exchange_horiz( q, nbgp )
1189
[3274]1190                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
[2292]1191                       CALL exchange_horiz( qc, nbgp )
1192                       CALL exchange_horiz( nc, nbgp )
1193                   ENDIF
[3274]1194                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
[2174]1195                       CALL exchange_horiz( qr, nbgp )
1196                       CALL exchange_horiz( nr, nbgp )
1197                   ENDIF
1198
1199                ENDIF
1200
[3467]1201                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
[3864]1202
[2174]1203                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
[2773]1204
[3761]1205                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.  rans_tke_e )  THEN
[2938]1206                   CALL exchange_horiz( diss, nbgp )
[3761]1207                ENDIF
[2938]1208
[2773]1209                IF ( air_chemistry )  THEN
[3929]1210                   DO  n = 1, nvar
[2773]1211                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
1212                   ENDDO
1213                ENDIF
1214
[3864]1215                IF ( salsa  .AND. time_since_reference_point >= skip_time_do_salsa )  THEN
1216                   DO  ib = 1, nbins_aerosol
1217                      CALL exchange_horiz( aerosol_number(ib)%conc, nbgp )
1218                      DO  ic = 1, ncomponents_mass
1219                         icc = ( ic - 1 ) * nbins_aerosol + ib
1220                         CALL exchange_horiz( aerosol_mass(icc)%conc, nbgp )
1221                      ENDDO
1222                   ENDDO
1223                   IF ( .NOT. salsa_gases_from_chem )  THEN
1224                      DO  ig = 1, ngases_salsa
1225                         CALL exchange_horiz( salsa_gas(ig)%conc, nbgp )
1226                      ENDDO
1227                   ENDIF
1228                ENDIF
[4029]1229                CALL cpu_log( log_point_s(92), 'exchange-horiz-nest', 'stop' )
[3864]1230
[1762]1231             ENDIF
[4029]1232
[1762]1233!
[2311]1234!--          Set boundary conditions again after interpolation and anterpolation.
1235             CALL pmci_boundary_conds
[1764]1236
[4029]1237!
1238!--          Set chemistry boundary conditions (decycling)
1239             IF ( air_chemistry )  THEN
1240                DO  lsp = 1, nvar
1241                   lsp_usr = 1
1242                   DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
1243                      IF ( TRIM( chem_species(lsp)%name ) == TRIM( cs_name(lsp_usr) ) )  THEN
1244                         CALL chem_boundary_conds( chem_species(lsp)%conc,                         &
1245                                                   chem_species(lsp)%conc_pr_init )
1246                      ENDIF
1247                      lsp_usr = lsp_usr + 1
1248                   ENDDO
1249                ENDDO
1250             ENDIF
1251
1252!
1253!--          Set SALSA boundary conditions (decycling)
1254             IF ( salsa  .AND. time_since_reference_point >= skip_time_do_salsa )  THEN
1255                DO  ib = 1, nbins_aerosol
1256                   CALL salsa_boundary_conds( aerosol_number(ib)%conc, aerosol_number(ib)%init )
1257                   DO  ic = 1, ncomponents_mass
1258                      icc = ( ic - 1 ) * nbins_aerosol + ib
1259                      CALL salsa_boundary_conds( aerosol_mass(icc)%conc, aerosol_mass(icc)%init )
1260                   ENDDO
1261                ENDDO
1262                IF ( .NOT. salsa_gases_from_chem )  THEN
1263                   DO  ig = 1, ngases_salsa
1264                      CALL salsa_boundary_conds( salsa_gas(ig)%conc, salsa_gas(ig)%init )
1265                   ENDDO
1266                ENDIF
1267             ENDIF
1268
[1764]1269             CALL cpu_log( log_point(60), 'nesting', 'stop' )
1270
[1762]1271          ENDIF
1272
1273!
[1]1274!--       Temperature offset must be imposed at cyclic boundaries in x-direction
1275!--       when a sloping surface is used
1276          IF ( sloping_surface )  THEN
[3761]1277             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - pt_slope_offset
1278             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + pt_slope_offset
[1]1279          ENDIF
1280
1281!
[151]1282!--       Impose a turbulent inflow using the recycling method
[3719]1283          IF ( turbulent_inflow )  CALL inflow_turbulence
[151]1284
1285!
[2050]1286!--       Set values at outflow boundary using the special outflow condition
[3719]1287          IF ( turbulent_outflow )  CALL outflow_turbulence
[2050]1288
1289!
[1]1290!--       Impose a random perturbation on the horizontal velocity field
[3761]1291          IF ( create_disturbances  .AND.  ( call_psolver_at_all_substeps  .AND.                   &
1292               intermediate_timestep_count == intermediate_timestep_count_max )                    &
1293               .OR. ( .NOT. call_psolver_at_all_substeps  .AND.  intermediate_timestep_count == 1 ) ) &
[1]1294          THEN
1295             time_disturb = time_disturb + dt_3d
1296             IF ( time_disturb >= dt_disturb )  THEN
[3761]1297                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                                     &
[1736]1298                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
[2232]1299                   CALL disturb_field( 'u', tend, u )
1300                   CALL disturb_field( 'v', tend, v )
[3761]1301                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )                                &
1302                         .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )                 &
[3182]1303                THEN
[1]1304!
1305!--                Runs with a non-cyclic lateral wall need perturbations
1306!--                near the inflow throughout the whole simulation
1307                   dist_range = 1
[2232]1308                   CALL disturb_field( 'u', tend, u )
1309                   CALL disturb_field( 'v', tend, v )
[1]1310                   dist_range = 0
1311                ENDIF
1312                time_disturb = time_disturb - dt_disturb
1313             ENDIF
1314          ENDIF
1315
1316!
[2696]1317!--       Map forcing data derived from larger scale model onto domain
1318!--       boundaries.
[3761]1319          IF ( nesting_offline  .AND.  intermediate_timestep_count ==                              &
1320                                       intermediate_timestep_count_max  )                          &
[3347]1321             CALL nesting_offl_bc
[2938]1322!
[4022]1323!--       Impose a turbulent inflow using synthetic generated turbulence.
1324          IF ( use_syn_turb_gen  .AND.                                                             &
1325               intermediate_timestep_count == intermediate_timestep_count_max )  THEN
[3719]1326             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
[3347]1327             CALL stg_main
[3719]1328             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
[2696]1329          ENDIF
1330!
[3347]1331!--       Ensure mass conservation. This need to be done after imposing
1332!--       synthetic turbulence and top boundary condition for pressure is set to
1333!--       Neumann conditions.
1334!--       Is this also required in case of Dirichlet?
1335          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1336!
[1]1337!--       Reduce the velocity divergence via the equation for perturbation
1338!--       pressure.
[106]1339          IF ( intermediate_timestep_count == 1  .OR. &
1340                call_psolver_at_all_substeps )  THEN
[2365]1341
1342             IF (  vnest_init ) THEN
1343!
1344!--             Compute pressure in the CG, interpolate top boundary conditions
1345!--             to the FG and then compute pressure in the FG
1346                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1347
[3719]1348                CALL cpu_log( log_point_s(30), 'vnest_bc', 'start' )
[2365]1349                CALL vnest_boundary_conds
[3719]1350                CALL cpu_log( log_point_s(30), 'vnest_bc', 'stop' )
[2365]1351 
1352                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1353
1354!--             Anterpolate TKE, satisfy Germano Identity
[3719]1355                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'start' )
[2365]1356                CALL vnest_anterpolate_e
[3719]1357                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'stop' )
[2365]1358
1359             ELSE
[4010]1360!               
1361!--             Mass (volume) flux correction to ensure global mass conservation for child domains.
1362                IF ( child_domain )  THEN
1363                   IF ( nesting_mode == 'vertical' )  THEN
1364                      CALL pmci_ensure_nest_mass_conservation_vertical
1365                   ELSE
1366                      CALL pmci_ensure_nest_mass_conservation
1367                   ENDIF
1368                ENDIF
1369               
[2365]1370                CALL pres
1371
1372             ENDIF
1373
[1]1374          ENDIF
1375
1376!
1377!--       If required, compute liquid water content
[3274]1378          IF ( bulk_cloud_model )  THEN
[1015]1379             CALL calc_liquid_water_content
1380          ENDIF
[2174]1381!
[1115]1382!--       If required, compute virtual potential temperature
1383          IF ( humidity )  THEN
1384             CALL compute_vpt 
1385          ENDIF 
[1585]1386
[1]1387!
1388!--       Compute the diffusion quantities
1389          IF ( .NOT. constant_diffusion )  THEN
1390
1391!
[1276]1392!--          Determine surface fluxes shf and qsws and surface values
1393!--          pt_surface and q_surface in dependence on data from external
1394!--          file LSF_DATA respectively
[3761]1395             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND.                                     &
1396                 intermediate_timestep_count == intermediate_timestep_count_max )                  &
[1276]1397             THEN
[2320]1398                CALL ls_forcing_surf( simulated_time )
[1276]1399             ENDIF
1400
1401!
[2232]1402!--          First the vertical (and horizontal) fluxes in the surface
1403!--          (constant flux) layer are computed
[1691]1404             IF ( constant_flux_layer )  THEN
1405                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1406                CALL surface_layer_fluxes
1407                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
[1]1408             ENDIF
1409!
[1691]1410!--          If required, solve the energy balance for the surface and run soil
[2232]1411!--          model. Call for horizontal as well as vertical surfaces
[2696]1412             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
[1691]1413
1414                CALL cpu_log( log_point(54), 'land_surface', 'start' )
[2232]1415!
1416!--             Call for horizontal upward-facing surfaces
1417                CALL lsm_energy_balance( .TRUE., -1 )
[2299]1418                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
[2232]1419!
1420!--             Call for northward-facing surfaces
1421                CALL lsm_energy_balance( .FALSE., 0 )
[2299]1422                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
[2232]1423!
1424!--             Call for southward-facing surfaces
1425                CALL lsm_energy_balance( .FALSE., 1 )
[2299]1426                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
[2232]1427!
1428!--             Call for eastward-facing surfaces
1429                CALL lsm_energy_balance( .FALSE., 2 )
[2299]1430                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
[2232]1431!
1432!--             Call for westward-facing surfaces
1433                CALL lsm_energy_balance( .FALSE., 3 )
[2299]1434                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
[3597]1435               
[2696]1436!
1437!--             At the end, set boundary conditons for potential temperature
1438!--             and humidity after running the land-surface model. This
1439!--             might be important for the nesting, where arrays are transfered.
1440                CALL lsm_boundary_condition
[2232]1441
[3597]1442               
[1691]1443                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1444             ENDIF
1445!
[2007]1446!--          If required, solve the energy balance for urban surfaces and run
1447!--          the material heat model
1448             IF (urban_surface) THEN
1449                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
[3176]1450               
[3418]1451                CALL usm_surface_energy_balance( .FALSE. )
[2007]1452                IF ( usm_material_model )  THEN
[2696]1453                   CALL usm_green_heat_model
[3418]1454                   CALL usm_material_heat_model ( .FALSE. )
[2007]1455                ENDIF
[2696]1456
1457!
1458!--             At the end, set boundary conditons for potential temperature
1459!--             and humidity after running the urban-surface model. This
1460!--             might be important for the nesting, where arrays are transfered.
1461                CALL usm_boundary_condition
1462
[2007]1463                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1464             ENDIF
1465!
[1]1466!--          Compute the diffusion coefficients
1467             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
[75]1468             IF ( .NOT. humidity ) THEN
[3294]1469                IF ( ocean_mode )  THEN
[2696]1470                   CALL tcm_diffusivities( prho, prho_reference )
[97]1471                ELSE
[2696]1472                   CALL tcm_diffusivities( pt, pt_reference )
[97]1473                ENDIF
[1]1474             ELSE
[2696]1475                CALL tcm_diffusivities( vpt, pt_reference )
[1]1476             ENDIF
1477             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
[2696]1478!
1479!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1480             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
[1]1481
1482          ENDIF
1483
[1691]1484!
1485!--       If required, calculate radiative fluxes and heating rates
[3761]1486          IF ( radiation  .AND.  intermediate_timestep_count == intermediate_timestep_count_max    &
1487               .AND. time_since_reference_point > skip_time_do_radiation )  THEN
[1691]1488
1489               time_radiation = time_radiation + dt_3d
1490
[3761]1491             IF ( time_radiation >= dt_radiation  .OR.  force_radiation_call )  THEN
[1691]1492
1493                CALL cpu_log( log_point(50), 'radiation', 'start' )
1494
1495                IF ( .NOT. force_radiation_call )  THEN
1496                   time_radiation = time_radiation - dt_radiation
1497                ENDIF
1498
[3014]1499!
[3241]1500!--             Adjust the current time to the time step of the radiation model.
[3014]1501!--             Needed since radiation is pre-calculated and stored only on apparent
1502!--             solar positions
[3241]1503                time_since_reference_point_save = time_since_reference_point
[3761]1504                time_since_reference_point = REAL( FLOOR( time_since_reference_point /             &
1505                                                          dt_radiation), wp ) * dt_radiation
[3014]1506
[1976]1507                CALL radiation_control
[1691]1508
[3761]1509                IF ( ( urban_surface  .OR.  land_surface )  .AND.  radiation_interactions )  THEN
[3724]1510                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'start' )
[2696]1511                   CALL radiation_interaction
[3724]1512                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'stop' )
[2007]1513                ENDIF
[3014]1514   
1515!
1516!--             Return the current time to its original value
[3241]1517                time_since_reference_point = time_since_reference_point_save
[2007]1518
[3719]1519                CALL cpu_log( log_point(50), 'radiation', 'stop' )
1520
[1691]1521             ENDIF
1522          ENDIF
1523
[1]1524       ENDDO   ! Intermediate step loop
[3634]1525
[1]1526!
[3634]1527!--    Will be used at some point by flow_statistics.
[3658]1528       !$ACC UPDATE &
[3634]1529       !$ACC HOST(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
1530       !$ACC HOST(sums_us2_ws_l(nzb:nzt+1,0)) &
1531       !$ACC HOST(sums_wsus_ws_l(nzb:nzt+1,0)) &
1532       !$ACC HOST(sums_vs2_ws_l(nzb:nzt+1,0)) &
1533       !$ACC HOST(sums_wsvs_ws_l(nzb:nzt+1,0)) &
1534       !$ACC HOST(sums_ws2_ws_l(nzb:nzt+1,0)) &
1535       !$ACC HOST(sums_wspts_ws_l(nzb:nzt+1,0)) &
1536       !$ACC HOST(sums_wssas_ws_l(nzb:nzt+1,0)) &
1537       !$ACC HOST(sums_wsqs_ws_l(nzb:nzt+1,0)) &
1538       !$ACC HOST(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
1539       !$ACC HOST(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
1540       !$ACC HOST(sums_wsncs_ws_l(nzb:nzt+1,0)) &
1541       !$ACC HOST(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
1542       !$ACC HOST(sums_wsss_ws_l(nzb:nzt+1,0)) &
1543       !$ACC HOST(sums_salsa_ws_l(nzb:nzt+1,0))
1544
1545!
[2766]1546!--    If required, consider chemical emissions
[3820]1547       IF ( air_chemistry  .AND.  emissions_anthropogenic )  THEN
[3298]1548!
1549!--       Update the time --> kanani: revise location of this CALL
1550          CALL calc_date_and_time
1551!
1552!--       Call emission routine only once an hour
1553          IF (hour_of_year  .GT.  hour_call_emis )  THEN
[3968]1554             CALL chem_emissions_setup( chem_emis_att, chem_emis, n_matched_vars )
[3298]1555             hour_call_emis = hour_of_year
1556          ENDIF
[2766]1557       ENDIF
[3864]1558!
1559!--    If required, consider aerosol emissions for the salsa model
1560       IF ( salsa )  THEN
1561!
1562!--       Call emission routine to update emissions if needed
1563          CALL salsa_emission_update
[3569]1564
[3864]1565       ENDIF
[2696]1566!
[3469]1567!--    If required, calculate indoor temperature, waste heat, heat flux
1568!--    through wall, etc.
[3744]1569!--    dt_indoor steers the frequency of the indoor model calculations.
1570!--    Note, at first timestep indoor model is called, in order to provide
1571!--    a waste heat flux.
[3647]1572       IF ( indoor_model )  THEN
[3469]1573
1574          time_indoor = time_indoor + dt_3d
1575
[3761]1576          IF ( time_indoor >= dt_indoor  .OR.  current_timestep_number == 0 )  THEN
[3469]1577
1578             time_indoor = time_indoor - dt_indoor
1579
1580             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1581             CALL im_main_heatcool
1582             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1583
1584          ENDIF
1585       ENDIF
1586!
[1]1587!--    Increase simulation time and output times
[1111]1588       nr_timesteps_this_run      = nr_timesteps_this_run + 1
[291]1589       current_timestep_number    = current_timestep_number + 1
1590       simulated_time             = simulated_time   + dt_3d
1591       time_since_reference_point = simulated_time - coupling_start_time
[2941]1592       simulated_time_chr         = time_to_string( time_since_reference_point )
[291]1593
[1957]1594
1595
[2941]1596
[3646]1597       IF ( time_since_reference_point >= skip_time_data_output_av )  THEN
[1]1598          time_do_av         = time_do_av       + dt_3d
1599       ENDIF
[3646]1600       IF ( time_since_reference_point >= skip_time_do2d_xy )  THEN
[1]1601          time_do2d_xy       = time_do2d_xy     + dt_3d
1602       ENDIF
[3646]1603       IF ( time_since_reference_point >= skip_time_do2d_xz )  THEN
[1]1604          time_do2d_xz       = time_do2d_xz     + dt_3d
1605       ENDIF
[3646]1606       IF ( time_since_reference_point >= skip_time_do2d_yz )  THEN
[1]1607          time_do2d_yz       = time_do2d_yz     + dt_3d
1608       ENDIF
[3646]1609       IF ( time_since_reference_point >= skip_time_do3d    )  THEN
[1]1610          time_do3d          = time_do3d        + dt_3d
1611       ENDIF
[410]1612       DO  mid = 1, masks
[3646]1613          IF ( time_since_reference_point >= skip_time_domask(mid) )  THEN
[410]1614             time_domask(mid)= time_domask(mid) + dt_3d
1615          ENDIF
1616       ENDDO
[3646]1617       IF ( time_since_reference_point >= skip_time_dosp )  THEN
[1]1618          time_dosp       = time_dosp        + dt_3d
1619       ENDIF
1620       time_dots          = time_dots        + dt_3d
[849]1621       IF ( .NOT. first_call_lpm )  THEN
[1]1622          time_dopts      = time_dopts       + dt_3d
1623       ENDIF
[3646]1624       IF ( time_since_reference_point >= skip_time_dopr )  THEN
[1]1625          time_dopr       = time_dopr        + dt_3d
1626       ENDIF
[3467]1627       time_dopr_listing  = time_dopr_listing + dt_3d
[1]1628       time_run_control   = time_run_control + dt_3d
[3347]1629!
[3421]1630!--    Increment time-counter for surface output
[3648]1631       IF ( surface_output )  THEN
[3646]1632          IF ( time_since_reference_point >= skip_time_dosurf )  THEN
[3421]1633             time_dosurf    = time_dosurf + dt_3d
1634          ENDIF
[3646]1635          IF ( time_since_reference_point >= skip_time_dosurf_av )  THEN
[3421]1636             time_dosurf_av = time_dosurf_av + dt_3d
1637          ENDIF
1638       ENDIF
1639!
[3988]1640!--    Increment time-counter for virtual measurements
1641       IF ( virtual_measurement  .AND.  vm_time_start <= time_since_reference_point )  THEN
1642          time_virtual_measurement = time_virtual_measurement + dt_3d
1643       ENDIF
1644!
[3347]1645!--    In case of synthetic turbulence generation and parametrized turbulence
1646!--    information, update the time counter and if required, adjust the
1647!--    STG to new atmospheric conditions.
1648       IF ( use_syn_turb_gen  )  THEN
1649          IF ( parametrize_inflow_turbulence )  THEN
1650             time_stg_adjust = time_stg_adjust + dt_3d
[3719]1651             IF ( time_stg_adjust >= dt_stg_adjust )  THEN
1652                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1653                CALL stg_adjust
1654                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1655             ENDIF
[3347]1656          ENDIF
1657          time_stg_call = time_stg_call + dt_3d
1658       ENDIF
[1]1659
1660!
[102]1661!--    Data exchange between coupled models
[3761]1662       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND.  .NOT. vnested )  THEN
[102]1663          time_coupling = time_coupling + dt_3d
[343]1664
[108]1665!
1666!--       In case of model termination initiated by the local model
1667!--       (terminate_coupled > 0), the coupler must be skipped because it would
1668!--       cause an MPI intercomminucation hang.
1669!--       If necessary, the coupler will be called at the beginning of the
1670!--       next restart run.
[3761]1671          DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
[102]1672             CALL surface_coupler
1673             time_coupling = time_coupling - dt_coupling
1674          ENDDO
1675       ENDIF
1676
1677!
[3448]1678!--    Biometeorology calculation of stationary thermal indices
[3647]1679!--    Todo (kanani): biometeorology needs own time_... treatment.
1680!--                   It might be that time_do2d_xy differs from time_do3d,
1681!--                   and then we might get trouble with the biomet output,
1682!--                   because we can have 2d and/or 3d biomet output!!
[3761]1683       IF ( biometeorology                                                                         &
1684            .AND. ( ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  &
1685                  .OR.                                                                             &
1686            ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy ) &
[3647]1687                    ) )  THEN
[3569]1688!
1689!--       If required, do thermal comfort calculations
1690          IF ( thermal_comfort )  THEN
1691             CALL bio_calculate_thermal_index_maps ( .FALSE. )
1692          ENDIF
1693!
1694!--       If required, do UV exposure calculations
1695          IF ( uv_exposure )  THEN
1696             CALL uvem_calc_exposure
1697          ENDIF
[3448]1698       ENDIF
1699
1700!
[3684]1701!--    Execute alle other module actions routunes
1702       CALL module_interface_actions( 'after_integration' )
[2817]1703
1704!
[1]1705!--    If Galilei transformation is used, determine the distance that the
1706!--    model has moved so far
1707       IF ( galilei_transformation )  THEN
1708          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1709          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1710       ENDIF
1711
1712!
1713!--    Check, if restart is necessary (because cpu-time is expiring or
1714!--    because it is forced by user) and set stop flag
[108]1715!--    This call is skipped if the remote model has already initiated a restart.
1716       IF ( .NOT. terminate_run )  CALL check_for_restart
[1]1717
1718!
1719!--    Carry out statistical analysis and output at the requested output times.
1720!--    The MOD function is used for calculating the output time counters (like
1721!--    time_dopr) in order to regard a possible decrease of the output time
1722!--    interval in case of restart runs
1723
1724!
1725!--    Set a flag indicating that so far no statistics have been created
1726!--    for this time step
1727       flow_statistics_called = .FALSE.
1728
1729!
1730!--    If required, call flow_statistics for averaging in time
[3761]1731       IF ( averaging_interval_pr /= 0.0_wp  .AND.                                                 &
1732            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.                                &
[3646]1733            time_since_reference_point >= skip_time_dopr )  THEN
[1]1734          time_dopr_av = time_dopr_av + dt_3d
1735          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1736             do_sum = .TRUE.
[3761]1737             time_dopr_av = MOD( time_dopr_av, MAX( dt_averaging_input_pr, dt_3d ) )
[1]1738          ENDIF
1739       ENDIF
1740       IF ( do_sum )  CALL flow_statistics
1741
1742!
[410]1743!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
[3761]1744       IF ( averaging_interval /= 0.0_wp  .AND.                                                    &
1745            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND.                        &
1746            time_since_reference_point >= skip_time_data_output_av )                               &
[1]1747       THEN
1748          time_do_sla = time_do_sla + dt_3d
1749          IF ( time_do_sla >= dt_averaging_input )  THEN
[3994]1750             IF ( current_timestep_number > timestep_number_at_prev_calc )                         &
[4039]1751                CALL doq_calculate
[3994]1752
[1]1753             CALL sum_up_3d_data
1754             average_count_3d = average_count_3d + 1
1755             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1756          ENDIF
1757       ENDIF
[3421]1758!
1759!--    Average surface data
[3648]1760       IF ( surface_output )  THEN
[3761]1761          IF ( averaging_interval_surf /= 0.0_wp                                                   &
1762                .AND.  ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf                &
[3647]1763                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
[3421]1764             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
[3648]1765                CALL surface_data_output_averaging
[3421]1766                average_count_surf = average_count_surf + 1
1767             ENDIF
1768          ENDIF
1769       ENDIF
[1]1770
1771!
1772!--    Calculate spectra for time averaging
[3761]1773       IF ( averaging_interval_sp /= 0.0_wp  .AND. ( dt_dosp - time_dosp ) <= averaging_interval_sp&
1774            .AND.  time_since_reference_point >= skip_time_dosp )  THEN
[1]1775          time_dosp_av = time_dosp_av + dt_3d
1776          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1777             CALL calc_spectra
[3761]1778             time_dosp_av = MOD( time_dosp_av, MAX( dt_averaging_input_pr, dt_3d ) )
[1]1779          ENDIF
1780       ENDIF
1781
1782!
[1957]1783!--    Call flight module and output data
1784       IF ( virtual_flight )  THEN
1785          CALL flight_measurement
1786          CALL data_output_flight
1787       ENDIF
[3472]1788!
1789!--    Take virtual measurements
[3988]1790       IF ( virtual_measurement  .AND.  time_virtual_measurement >= dt_virtual_measurement         &
1791                                 .AND.  vm_time_start <= time_since_reference_point )  THEN
[3704]1792          CALL vm_sampling
1793          CALL vm_data_output
[3988]1794          time_virtual_measurement = MOD(      time_virtual_measurement,                           &
1795                                          MAX( dt_virtual_measurement, dt_3d ) )
[3704]1796       ENDIF
[1957]1797!
[1]1798!--    Profile output (ASCII) on file
1799       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1800          CALL print_1d
[3761]1801          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, dt_3d ) )
[1]1802       ENDIF
1803
1804!
1805!--    Graphic output for PROFIL
[3761]1806       IF ( time_dopr >= dt_dopr  .AND.  time_since_reference_point >= skip_time_dopr )  THEN
[1]1807          IF ( dopr_n /= 0 )  CALL data_output_profiles
1808          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
[1342]1809          time_dopr_av = 0.0_wp    ! due to averaging (see above)
[1]1810       ENDIF
1811
1812!
1813!--    Graphic output for time series
1814       IF ( time_dots >= dt_dots )  THEN
[48]1815          CALL data_output_tseries
[1]1816          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1817       ENDIF
1818
1819!
1820!--    Output of spectra (formatted for use with PROFIL), in case of no
1821!--    time averaging, spectra has to be calculated before
[3761]1822       IF ( time_dosp >= dt_dosp  .AND.  time_since_reference_point >= skip_time_dosp )  THEN
[1]1823          IF ( average_count_sp == 0 )  CALL calc_spectra
1824          CALL data_output_spectra
1825          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1826       ENDIF
1827
1828!
1829!--    2d-data output (cross-sections)
[3761]1830       IF ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy )  THEN
[3994]1831          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
[4039]1832             CALL doq_calculate
[3994]1833
[1]1834          CALL data_output_2d( 'xy', 0 )
1835          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1836       ENDIF
[3761]1837       IF ( time_do2d_xz >= dt_do2d_xz  .AND.  time_since_reference_point >= skip_time_do2d_xz )  THEN
[3994]1838          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1839
[4039]1840             CALL doq_calculate
[1]1841          CALL data_output_2d( 'xz', 0 )
1842          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1843       ENDIF
[3761]1844       IF ( time_do2d_yz >= dt_do2d_yz  .AND.  time_since_reference_point >= skip_time_do2d_yz )  THEN
[3994]1845          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
[4039]1846             CALL doq_calculate
[3994]1847
[1]1848          CALL data_output_2d( 'yz', 0 )
1849          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1850       ENDIF
1851
1852!
1853!--    3d-data output (volume data)
[3761]1854       IF ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  THEN
[3994]1855          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
[4039]1856             CALL doq_calculate
[3994]1857
[1]1858          CALL data_output_3d( 0 )
1859          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1860       ENDIF
1861
1862!
[1783]1863!--    Masked data output
[410]1864       DO  mid = 1, masks
[3761]1865          IF ( time_domask(mid) >= dt_domask(mid)                                                  &
1866               .AND.  time_since_reference_point >= skip_time_domask(mid) )  THEN
[3994]1867             IF ( current_timestep_number > timestep_number_at_prev_calc )                         &
[4039]1868                CALL doq_calculate
[3994]1869
[410]1870             CALL data_output_mask( 0 )
[3761]1871             time_domask(mid) = MOD( time_domask(mid), MAX( dt_domask(mid), dt_3d ) )
[410]1872          ENDIF
1873       ENDDO
1874
1875!
1876!--    Output of time-averaged 2d/3d/masked data
[3761]1877       IF ( time_do_av >= dt_data_output_av                                                        &
1878            .AND.  time_since_reference_point >= skip_time_data_output_av )  THEN
[1]1879          CALL average_3d_data
[3742]1880!
1881!--       Udate thermal comfort indices based on updated averaged input
1882          IF ( biometeorology  .AND.  thermal_comfort )  THEN
1883             CALL bio_calculate_thermal_index_maps ( .TRUE. )
1884          ENDIF
[1]1885          CALL data_output_2d( 'xy', 1 )
1886          CALL data_output_2d( 'xz', 1 )
1887          CALL data_output_2d( 'yz', 1 )
1888          CALL data_output_3d( 1 )
[410]1889          DO  mid = 1, masks
1890             CALL data_output_mask( 1 )
1891          ENDDO
[1]1892          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1893       ENDIF
[3421]1894!
1895!--    Output of surface data, instantaneous and averaged data
[3648]1896       IF ( surface_output )  THEN
[3761]1897          IF ( time_dosurf >= dt_dosurf  .AND.  time_since_reference_point >= skip_time_dosurf )  THEN
[3648]1898             CALL surface_data_output( 0 )
[3421]1899             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1900          ENDIF
[3761]1901          IF ( time_dosurf_av >= dt_dosurf_av  .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
[3648]1902             CALL surface_data_output( 1 )
[3421]1903             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1904          ENDIF
1905       ENDIF
[1]1906
1907!
1908!--    Output of particle time series
[253]1909       IF ( particle_advection )  THEN
[3761]1910          IF ( time_dopts >= dt_dopts  .OR.                                                        &
1911               ( time_since_reference_point >= particle_advection_start  .AND.                     &
[849]1912                 first_call_lpm ) )  THEN
[4017]1913             CALL lpm_data_output_ptseries
[253]1914             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1915          ENDIF
[1]1916       ENDIF
1917
1918!
[3719]1919!--    If required, set the heat flux for the next time step to a random value
[2232]1920       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
[3719]1921          IF ( surf_def_h(0)%ns >= 1 )  THEN
1922             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1923             CALL disturb_heatflux( surf_def_h(0) )
1924             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1925          ENDIF
1926          IF ( surf_lsm_h%ns    >= 1 )  THEN
1927             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1928             CALL disturb_heatflux( surf_lsm_h    )
1929             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1930          ENDIF
1931          IF ( surf_usm_h%ns    >= 1 )  THEN
1932             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1933             CALL disturb_heatflux( surf_usm_h    )
1934             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1935          ENDIF
[2232]1936       ENDIF
[1]1937
1938!
[3684]1939!--    Execute alle other module actions routunes
1940       CALL module_interface_actions( 'after_timestep' )
[2817]1941
1942!
[1918]1943!--    Determine size of next time step. Save timestep dt_3d because it is
1944!--    newly calculated in routine timestep, but required further below for
1945!--    steering the run control output interval
1946       dt_3d_old = dt_3d
1947       CALL timestep
1948
1949!
[1925]1950!--    Synchronize the timestep in case of nested run.
1951       IF ( nested_run )  THEN
1952!
1953!--       Synchronize by unifying the time step.
1954!--       Global minimum of all time-steps is used for all.
1955          CALL pmci_synchronize
1956       ENDIF
1957
1958!
[1918]1959!--    Computation and output of run control parameters.
1960!--    This is also done whenever perturbations have been imposed
[3761]1961       IF ( time_run_control >= dt_run_control  .OR.                                               &
1962            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created )                           &
[1918]1963       THEN
1964          CALL run_control
1965          IF ( time_run_control >= dt_run_control )  THEN
[3761]1966             time_run_control = MOD( time_run_control, MAX( dt_run_control, dt_3d_old ) )
[1918]1967          ENDIF
1968       ENDIF
1969
1970!
[1402]1971!--    Output elapsed simulated time in form of a progress bar on stdout
1972       IF ( myid == 0 )  CALL output_progress_bar
1973
[1]1974       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1975
[667]1976
[1]1977    ENDDO   ! time loop
[3448]1978
[3761]1979#if defined( _OPENACC )
[3658]1980    CALL exit_surface_arrays
1981#endif
[3634]1982!$ACC END DATA
1983!$ACC END DATA
1984!$ACC END DATA
1985!$ACC END DATA
1986!$ACC END DATA
1987!$ACC END DATA
1988!$ACC END DATA
1989
[3347]1990!
[2365]1991!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
1992    IF ( vnest_init )  CALL vnest_deallocate
1993
[1402]1994    IF ( myid == 0 )  CALL finish_progress_bar
1995
[3885]1996    CALL location_message( 'atmosphere (and/or ocean) time-stepping', 'finished' )
[1384]1997
[1]1998 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.