source: palm/trunk/SOURCE/time_integration.f90 @ 4029

Last change on this file since 4029 was 4029, checked in by raasch, 5 years ago

bugfix: decycling of chemistry species after nesting data transfer, exchange of ghost points and boundary conditions separated for chemical species and SALSA module, nest_chemistry option removed, netcdf variable NF90_NOFILL is used as argument instead of 1 in calls to NF90_DEF_VAR_FILL

  • Property svn:keywords set to Id
File size: 79.8 KB
RevLine 
[1682]1!> @file time_integration.f90
[2000]2!------------------------------------------------------------------------------!
[2696]3! This file is part of the PALM model system.
[1036]4!
[2000]5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
[1036]9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
[3647]17! Copyright 1997-2019 Leibniz Universitaet Hannover
[2000]18!------------------------------------------------------------------------------!
[1036]19!
[484]20! Current revisions:
[1092]21! ------------------
[1928]22!
[3745]23!
[1366]24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 4029 2019-06-14 14:04:35Z raasch $
[4029]27! exchange of ghost points and boundary conditions separated for chemical species and SALSA module,
28! bugfix: decycling of chemistry species after nesting data transfer
29!
30! 4022 2019-06-12 11:52:39Z suehring
[4022]31! Call synthetic turbulence generator at last RK3 substep right after boundary
32! conditions are updated in offline nesting in order to assure that
33! perturbations are always imposed
34!
35! 4017 2019-06-06 12:16:46Z schwenkel
[4010]36! Mass (volume) flux correction included to ensure global mass conservation for child domains.
37!
38! 3994 2019-05-22 18:08:09Z suehring
[3994]39! output of turbulence intensity added
40!
41! 3988 2019-05-22 11:32:37Z kanani
[3988]42! Implement steerable output interval for virtual measurements
43!
44! 3968 2019-05-13 11:04:01Z suehring
[3968]45! replace nspec_out with n_matched_vars
46!
47! 3929 2019-04-24 12:52:08Z banzhafs
[3929]48! Reverse changes back from revision 3878: use chem_boundary_conds instead of
49! chem_boundary_conds_decycle
50!
51!
52! 3885 2019-04-11 11:29:34Z kanani
[3885]53! Changes related to global restructuring of location messages and introduction
54! of additional debug messages
[3929]55!
[3885]56! 3879 2019-04-08 20:25:23Z knoop
[3875]57! Moved wtm_forces to module_interface_actions
58!
59! 3872 2019-04-08 15:03:06Z knoop
[3864]60! Modifications made for salsa:
61! - Call salsa_emission_update at each time step but do the checks within
62!   salsa_emission_update (i.e. skip_time_do_salsa >= time_since_reference_point
63!   and next_aero_emission_update <= time_since_reference_point ).
64! - Renamed nbins --> nbins_aerosol, ncc_tot --> ncomponents_mass and
65!   ngast --> ngases_salsa and loop indices b, c and sg to ib, ic and ig
66! - Apply nesting for salsa variables
67! - Removed cpu_log calls speciffic for salsa.
68!
69! 3833 2019-03-28 15:04:04Z forkel
[3879]70! added USE chem_gasphase_mod, replaced nspec by nspec since fixed compounds are not integrated
[3833]71!
72! 3820 2019-03-27 11:53:41Z forkel
[3820]73! renamed do_emiss to emissions_anthropogenic (ecc)
74!
75!
76! 3774 2019-03-04 10:52:49Z moh.hefny
[3774]77! rephrase if statement to avoid unallocated array in case of
78! nesting_offline is false (crashing during debug mode)
79!
80! 3761 2019-02-25 15:31:42Z raasch $
[3761]81! module section re-formatted and openacc required variables moved to separate section,
82! re-formatting to 100 char line width
83!
84! 3745 2019-02-15 18:57:56Z suehring
[3745]85! Call indoor model after first timestep
86!
87! 3744 2019-02-15 18:38:58Z suehring
[3742]88! - Moved call of bio_calculate_thermal_index_maps from biometeorology module to
89! time_integration to make sure averaged input is updated before calculating.
90!
91! 3739 2019-02-13 08:05:17Z dom_dwd_user
[3739]92! Removed everything related to "time_bio_results" as this is never used.
93!
94! 3724 2019-02-06 16:28:23Z kanani
[3724]95! Correct double-used log_point_s unit
96!
97! 3719 2019-02-06 13:10:18Z kanani
[3719]98! - removed wind_turbine cpu measurement, since same time is measured inside
99!   wtm_forces subroutine as special measures
100! - moved the numerous vnest cpulog to special measures
101! - extended radiation cpulog over entire radiation part,
102!   moved radiation_interactions cpulog to special measures
103! - moved some cpu_log calls to this routine for better overview
104!
105! 3705 2019-01-29 19:56:39Z suehring
[3705]106! Data output for virtual measurements added
107!
108! 3704 2019-01-29 19:51:41Z suehring
[3648]109! Rename subroutines for surface-data output
110!
111! 3647 2019-01-02 14:10:44Z kanani
[3647]112! Bugfix: add time_since_reference_point to IF clause for data_output calls
113! (otherwise skip_time_* values don't come into affect with dt_do* = 0.0).
114! Clean up indoor_model and biometeorology model call.
115!
116! 3646 2018-12-28 17:58:49Z kanani
[3646]117! Bugfix: use time_since_reference_point instead of simulated_time where
118! required (relevant when using wall/soil spinup)
119!
120! 3634 2018-12-18 12:31:28Z knoop
[3634]121! OpenACC port for SPEC
122!
123! 3597 2018-12-04 08:40:18Z maronga
[3597]124! Removed call to calculation of near air (10 cm) potential temperature (now in
125! surface layer fluxes)
126!
127! 3589 2018-11-30 15:09:51Z suehring
[3589]128! Move the control parameter "salsa" from salsa_mod to control_parameters
129! (M. Kurppa)
130!
131! 3582 2018-11-29 19:16:36Z suehring
[3569]132! dom_dwd_user, Schrempf:
133! Changes due to merge of uv exposure model into biometeorology_mod.
134!
135! 3525 2018-11-14 16:06:14Z kanani
[3525]136! Changes related to clean-up of biometeorology (dom_dwd_user)
137!
138! 3524 2018-11-14 13:36:44Z raasch
[3524]139! unused variables removed
140!
141! 3484 2018-11-02 14:41:25Z hellstea
[3484]142! pmci_ensure_nest_mass_conservation is premanently removed
143!
144! 3473 2018-10-30 20:50:15Z suehring
[3473]145! new module for virtual measurements introduced
146!
147! 3472 2018-10-30 20:43:50Z suehring
[3469]148! Add indoor model (kanani, srissman, tlang)
149!
150! 3467 2018-10-30 19:05:21Z suehring
[3467]151! Implementation of a new aerosol module salsa.
152!
153! 3448 2018-10-29 18:14:31Z kanani
[3448]154! Add biometeorology
155!
156! 3421 2018-10-24 18:39:32Z gronemeier
[3421]157! Surface data output
158!
159! 3418 2018-10-24 16:07:39Z kanani
[3418]160! call to material_heat_model now with check if spinup runs (rvtils)
161!
162! 3378 2018-10-19 12:34:59Z kanani
[3378]163! merge from radiation branch (r3362) into trunk
164! (moh.hefny):
165! Bugfix in the if statement to call radiation_interaction
166!
167! 3347 2018-10-15 14:21:08Z suehring
[3347]168! - offline nesting separated from large-scale forcing module
169! - changes for synthetic turbulence generator
170!
171! 3343 2018-10-15 10:38:52Z suehring
[3298]172! - Formatting, clean-up, comments (kanani)
173! - Added CALL to chem_emissions_setup (Russo)
174! - Code added for decycling chemistry (basit)
175!
176! 3294 2018-10-01 02:37:10Z raasch
[3294]177! changes concerning modularization of ocean option
178!
179! 3274 2018-09-24 15:42:55Z knoop
[3274]180! Modularization of all bulk cloud physics code components
181!
182! 3241 2018-09-12 15:02:00Z raasch
[3241]183! unused variables removed
184!
185! 3198 2018-08-15 09:23:10Z sward
[3198]186! Added multi_agent_system_end; defined start time for MAS relative to
187! time_since_reference_point
188!
189! 3183 2018-07-27 14:25:55Z suehring
[3183]190! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
191! Rename subroutines and variables in COSMO nesting mode
192!
193! 3182 2018-07-27 13:36:03Z suehring
[3159]194! Added multi agent system
195!
196! 3042 2018-05-25 10:44:37Z schwenkel
[3042]197! Changed the name specific humidity to mixing ratio
198!
199! 3040 2018-05-25 10:22:08Z schwenkel
[3014]200! Fixed bug in IF statement
201! Ensure that the time when calling the radiation to be the time step of the
202! pre-calculated time when first calculate the positions of the sun
203!
204! 3004 2018-04-27 12:33:25Z Giersch
[3004]205! First call of flow_statistics has been removed. It is already called in
206! run_control itself
207!
208! 2984 2018-04-18 11:51:30Z hellstea
[2984]209! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
210! as seemingly unnecessary.
[2977]211!
212! 2941 2018-04-03 11:54:58Z kanani
[2941]213! Deduct spinup_time from RUN_CONTROL output of main 3d run
214! (use time_since_reference_point instead of simulated_time)
215!
216! 2938 2018-03-27 15:52:42Z suehring
[2938]217! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
218!
219! 2936 2018-03-27 14:49:27Z suehring
[2934]220! Little formatting adjustment.
221!
222! 2817 2018-02-19 16:32:21Z knoop
[2817]223! Preliminary gust module interface implemented
224!
225! 2801 2018-02-14 16:01:55Z thiele
[2801]226! Changed lpm from subroutine to module.
227! Introduce particle transfer in nested models.
228!
229! 2776 2018-01-31 10:44:42Z Giersch
[2776]230! Variable use_synthetic_turbulence_generator has been abbreviated
231!
232! 2773 2018-01-30 14:12:54Z suehring
[2773]233! - Nesting for chemical species
234!
235! 2766 2018-01-22 17:17:47Z kanani
[2766]236! Removed preprocessor directive __chem
237!
238! 2718 2018-01-02 08:49:38Z maronga
[2716]239! Corrected "Former revisions" section
240!
241! 2696 2017-12-14 17:12:51Z kanani
242! - Change in file header (GPL part)
[2696]243! - Implementation of uv exposure model (FK)
244! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
245! - renamed diffusivities to tcm_diffusivities (TG)
246! - implement prognostic equation for diss (TG)
247! - Moved/commented CALL to chem_emissions (FK)
248! - Added CALL to chem_emissions (FK)
249! - Implementation of chemistry module (FK)
250! - Calls for setting boundary conditions in USM and LSM (MS)
251! - Large-scale forcing with larger-scale models implemented (MS)
252! - Rename usm_radiation into radiation_interactions; merge with branch
253!   radiation (MS)
254! - added call for usm_green_heat_model for green building surfaces (RvT)
255! - added call for usm_temperature_near_surface for use in indoor model (RvT)
256!
257! 2617 2017-11-16 12:47:24Z suehring
[2617]258! Bugfix, assure that the reference state does not become zero.
259!
260! 2563 2017-10-19 15:36:10Z Giersch
[2563]261! Variable wind_turbine moved to module control_parameters
262!
263! 2365 2017-08-21 14:59:59Z kanani
[2365]264! Vertical grid nesting implemented (SadiqHuq)
265!
266! 2320 2017-07-21 12:47:43Z suehring
[2311]267! Set bottom boundary conditions after nesting interpolation and anterpolation
268!
269! 2299 2017-06-29 10:14:38Z maronga
[2299]270! Call of soil model adjusted
271!
272! 2292 2017-06-20 09:51:42Z schwenkel
[2292]273! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
274! includes two more prognostic equations for cloud drop concentration (nc) 
275! and cloud water content (qc).
276!
277! 2271 2017-06-09 12:34:55Z sward
[2271]278! Start timestep message changed
279!
280! 2259 2017-06-08 09:09:11Z gronemeier
[2259]281! Implemented synthetic turbulence generator
[1366]282!
[2259]283! 2233 2017-05-30 18:08:54Z suehring
284!
[2233]285! 2232 2017-05-30 17:47:52Z suehring
286! Adjustments to new topography and surface concept
287! Modify passed parameters for disturb_field
288!
[2179]289! 2178 2017-03-17 11:07:39Z hellstea
290! Setting perturbations at all times near inflow boundary is removed
291! in case of nested boundaries
292!
[2175]293! 2174 2017-03-13 08:18:57Z maronga
294! Added support for nesting with cloud microphysics
295!
[2119]296! 2118 2017-01-17 16:38:49Z raasch
297! OpenACC directives and related code removed
298!
[2051]299! 2050 2016-11-08 15:00:55Z gronemeier
300! Implement turbulent outflow condition
301!
[2032]302! 2031 2016-10-21 15:11:58Z knoop
303! renamed variable rho to rho_ocean
304!
[2012]305! 2011 2016-09-19 17:29:57Z kanani
306! Flag urban_surface is now defined in module control_parameters,
307! removed commented CALLs of global_min_max.
308!
[2008]309! 2007 2016-08-24 15:47:17Z kanani
310! Added CALLs for new urban surface model
311!
[2001]312! 2000 2016-08-20 18:09:15Z knoop
313! Forced header and separation lines into 80 columns
314!
[1977]315! 1976 2016-07-27 13:28:04Z maronga
316! Simplified calls to radiation model
317!
[1961]318! 1960 2016-07-12 16:34:24Z suehring
319! Separate humidity and passive scalar
320!
[1958]321! 1957 2016-07-07 10:43:48Z suehring
322! flight module added
323!
[1933]324! 1919 2016-05-27 14:51:23Z raasch
325! Initial version of purely vertical nesting introduced.
[1928]326!
[1919]327! 1918 2016-05-27 14:35:57Z raasch
328! determination of time step moved to the end of the time step loop,
329! the first time step is now always calculated before the time step loop (i.e.
330! also in case of restart runs)
331!
[1917]332! 1914 2016-05-26 14:44:07Z witha
333! Added call for wind turbine model
334!
[1879]335! 1878 2016-04-19 12:30:36Z hellstea
336! Synchronization for nested runs rewritten
337!
[1854]338! 1853 2016-04-11 09:00:35Z maronga
339! Adjusted for use with radiation_scheme = constant
340!
[1851]341! 1849 2016-04-08 11:33:18Z hoffmann
342! Adapted for modularization of microphysics
343!
[1834]344! 1833 2016-04-07 14:23:03Z raasch
345! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
346!
[1832]347! 1831 2016-04-07 13:15:51Z hoffmann
348! turbulence renamed collision_turbulence
349!
[1823]350! 1822 2016-04-07 07:49:42Z hoffmann
351! icloud_scheme replaced by microphysics_*
352!
[1809]353! 1808 2016-04-05 19:44:00Z raasch
354! output message in case unscheduled radiation calls removed
355!
[1798]356! 1797 2016-03-21 16:50:28Z raasch
357! introduction of different datatransfer modes
358!
[1792]359! 1791 2016-03-11 10:41:25Z raasch
360! call of pmci_update_new removed
361!
[1787]362! 1786 2016-03-08 05:49:27Z raasch
363! +module spectrum
364!
[1784]365! 1783 2016-03-06 18:36:17Z raasch
366! switch back of netcdf data format for mask output moved to the mask output
367! routine
368!
[1782]369! 1781 2016-03-03 15:12:23Z raasch
370! some pmc calls removed at the beginning (before timeloop),
371! pmc initialization moved to the main program
372!
[1765]373! 1764 2016-02-28 12:45:19Z raasch
374! PMC_ACTIVE flags removed,
375! bugfix: nest synchronization after first call of timestep
376!
[1763]377! 1762 2016-02-25 12:31:13Z hellstea
378! Introduction of nested domain feature
379!
[1737]380! 1736 2015-12-04 08:56:33Z raasch
381! no perturbations added to total domain if energy limit has been set zero
382!
[1692]383! 1691 2015-10-26 16:17:44Z maronga
384! Added option for spin-ups without land surface and radiation models. Moved calls
385! for radiation and lan surface schemes.
386!
[1683]387! 1682 2015-10-07 23:56:08Z knoop
388! Code annotations made doxygen readable
389!
[1672]390! 1671 2015-09-25 03:29:37Z raasch
391! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
392! for particles
393!
[1586]394! 1585 2015-04-30 07:05:52Z maronga
395! Moved call of radiation scheme. Added support for RRTM
396!
[1552]397! 1551 2015-03-03 14:18:16Z maronga
398! Added interface for different radiation schemes.
399!
[1497]400! 1496 2014-12-02 17:25:50Z maronga
401! Added calls for the land surface model and radiation scheme
402!
[1403]403! 1402 2014-05-09 14:25:13Z raasch
404! location messages modified
405!
[1385]406! 1384 2014-05-02 14:31:06Z raasch
407! location messages added
408!
[1381]409! 1380 2014-04-28 12:40:45Z heinze
410! CALL of nudge_ref added
411! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
412!
[1366]413! 1365 2014-04-22 15:03:56Z boeske
[1365]414! Reset sums_ls_l to zero at each timestep
415! +sums_ls_l
416! Calculation of reference state (previously in subroutine calc_mean_profile)
417
[1343]418! 1342 2014-03-26 17:04:47Z kanani
419! REAL constants defined as wp-kind
420!
[1321]421! 1320 2014-03-20 08:40:49Z raasch
[1320]422! ONLY-attribute added to USE-statements,
423! kind-parameters added to all INTEGER and REAL declaration statements,
424! kinds are defined in new module kinds,
425! old module precision_kind is removed,
426! revision history before 2012 removed,
427! comment fields (!:) to be used for variable explanations added to
428! all variable declaration statements
[1319]429! 1318 2014-03-17 13:35:16Z raasch
430! module interfaces removed
431!
[1309]432! 1308 2014-03-13 14:58:42Z fricke
433! +netcdf_data_format_save
434! For masked data, parallel netcdf output is not tested so far, hence
435! netcdf_data_format is switched back to non-paralell output.
436!
[1277]437! 1276 2014-01-15 13:40:41Z heinze
438! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
439!
[1258]440! 1257 2013-11-08 15:18:40Z raasch
441! acc-update-host directive for timestep removed
442!
[1242]443! 1241 2013-10-30 11:36:58Z heinze
444! Generalize calc_mean_profile for wider use
445! Determine shf and qsws in dependence on data from LSF_DATA
446! Determine ug and vg in dependence on data from LSF_DATA
[1222]447! 1221 2013-09-10 08:59:13Z raasch
448! host update of arrays before timestep is called
449!
[1182]450! 1179 2013-06-14 05:57:58Z raasch
451! mean profiles for reference state are only calculated if required,
452! small bugfix for background communication
453!
[1172]454! 1171 2013-05-30 11:27:45Z raasch
455! split of prognostic_equations deactivated (comment lines), for the time being
456!
[1132]457! 1128 2013-04-12 06:19:32Z raasch
[1128]458! asynchronous transfer of ghost point data realized for acc-optimized version:
459! prognostic_equations are first called two times for those points required for
460! the left-right and north-south exchange, respectively, and then for the
461! remaining points,
462! those parts requiring global communication moved from prognostic_equations to
463! here
[392]464!
[1116]465! 1115 2013-03-26 18:16:16Z hoffmann
466! calculation of qr and nr is restricted to precipitation
467!
[1114]468! 1113 2013-03-10 02:48:14Z raasch
469! GPU-porting of boundary conditions,
470! openACC directives updated
471! formal parameter removed from routine boundary_conds
472!
[1112]473! 1111 2013-03-08 23:54:10Z raasch
474! +internal timestep counter for cpu statistics added,
475! openACC directives updated
476!
[1093]477! 1092 2013-02-02 11:24:22Z raasch
478! unused variables removed
479!
[1066]480! 1065 2012-11-22 17:42:36Z hoffmann
481! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
482!
[1054]483! 1053 2012-11-13 17:11:03Z hoffmann
484! exchange of ghost points for nr, qr added
485!
[1037]486! 1036 2012-10-22 13:43:42Z raasch
487! code put under GPL (PALM 3.9)
488!
[1020]489! 1019 2012-09-28 06:46:45Z raasch
490! non-optimized version of prognostic_equations removed
491!
[1017]492! 1015 2012-09-27 09:23:24Z raasch
493! +call of prognostic_equations_acc
494!
[1002]495! 1001 2012-09-13 14:08:46Z raasch
496! all actions concerning leapfrog- and upstream-spline-scheme removed
497!
[850]498! 849 2012-03-15 10:35:09Z raasch
499! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
500!
[826]501! 825 2012-02-19 03:03:44Z raasch
502! wang_collision_kernel renamed wang_kernel
503!
[1]504! Revision 1.1  1997/08/11 06:19:04  raasch
505! Initial revision
506!
507!
508! Description:
509! ------------
[1682]510!> Integration in time of the model equations, statistical analysis and graphic
511!> output
[1]512!------------------------------------------------------------------------------!
[1682]513 SUBROUTINE time_integration
514 
[1]515
[3761]516    USE advec_ws,                                                                                  &
[1320]517        ONLY:  ws_statistics
518
[3761]519    USE arrays_3d,                                                                                 &
520        ONLY:  diss, diss_p, dzu, e, e_p, nc, nc_p, nr, nr_p, prho, pt, pt_p, pt_init, q_init, q,  &
521               qc, qc_p, ql, ql_c, ql_v, ql_vp, qr, qr_p, q_p, ref_state, rho_ocean, s, s_p, sa_p, &
522               tend, u, u_p, v, vpt, v_p, w, w_p
[1320]523
[3761]524    USE biometeorology_mod,                                                                        &
525        ONLY:  bio_calculate_thermal_index_maps, thermal_comfort, uvem_calc_exposure, uv_exposure
[3448]526
[3761]527    USE bulk_cloud_model_mod,                                                                      &
528        ONLY: bulk_cloud_model, calc_liquid_water_content, collision_turbulence,                   &
529              microphysics_morrison, microphysics_seifert
[3294]530
[3761]531    USE calc_mean_profile_mod,                                                                     &
[1320]532        ONLY:  calc_mean_profile
533
[3761]534    USE chem_emissions_mod,                                                                        &
[3298]535        ONLY:  chem_emissions_setup
[2696]536
[3833]537    USE chem_gasphase_mod,                                                                         &
[3929]538        ONLY:  nvar
[3833]539
[3761]540    USE chem_modules,                                                                              &
[3968]541        ONLY:  bc_cs_t_val, chem_species, cs_name, emissions_anthropogenic, n_matched_vars
[2696]542
[3761]543    USE chemistry_model_mod,                                                                       &
[3929]544        ONLY:  chem_boundary_conds
[3298]545
[3761]546    USE control_parameters,                                                                        &
547        ONLY:  advected_distance_x, advected_distance_y, air_chemistry, average_count_3d,          &
548               averaging_interval, averaging_interval_pr, bc_lr_cyc, bc_ns_cyc, bc_pt_t_val,       &
549               bc_q_t_val, biometeorology, call_psolver_at_all_substeps,  child_domain,            &
550               cloud_droplets, constant_flux_layer, constant_heatflux, create_disturbances,        &
551               dopr_n, constant_diffusion, coupling_mode, coupling_start_time,                     &
552               current_timestep_number, disturbance_created, disturbance_energy_limit, dist_range, &
553               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr, dt_coupling,              &
554               dt_data_output_av, dt_disturb, dt_do2d_xy, dt_do2d_xz, dt_do2d_yz, dt_do3d,         &
[4017]555               dt_domask,dt_dopts, dt_dopr, dt_dopr_listing, dt_dots, dt_run_control,              &
[3761]556               end_time, first_call_lpm, first_call_mas, galilei_transformation, humidity,         &
557               indoor_model, intermediate_timestep_count, intermediate_timestep_count_max,         &
558               land_surface, large_scale_forcing, loop_optimization, lsf_surf, lsf_vert, masks,    &
559               mid, multi_agent_system_end, multi_agent_system_start, nesting_offline, neutral,    &
560               nr_timesteps_this_run, nudging, ocean_mode, passive_scalar, pt_reference,           &
561               pt_slope_offset, random_heatflux, rans_mode, rans_tke_e, run_coupled, salsa,        &
562               simulated_time, simulated_time_chr, skip_time_do2d_xy, skip_time_do2d_xz,           &
563               skip_time_do2d_yz, skip_time_do3d, skip_time_domask, skip_time_dopr,                &
564               skip_time_data_output_av, sloping_surface, stop_dt, surface_output,                 &
565               terminate_coupled, terminate_run, timestep_scheme, time_coupling, time_do2d_xy,     &
566               time_do2d_xz, time_do2d_yz, time_do3d, time_domask, time_dopr, time_dopr_av,        &
567               time_dopr_listing, time_dopts, time_dosp, time_dosp_av, time_dots, time_do_av,      &
[4017]568               time_do_sla, time_disturb, time_run_control, time_since_reference_point,            &
[3761]569               turbulent_inflow, turbulent_outflow, urban_surface,                                 &
570               use_initial_profile_as_reference, use_single_reference_value, u_gtrans, v_gtrans,   &
[3875]571               virtual_flight, virtual_measurement, ws_scheme_mom, ws_scheme_sca
[1320]572
[3761]573    USE cpulog,                                                                                    &
[1320]574        ONLY:  cpu_log, log_point, log_point_s
575
[3761]576    USE date_and_time_mod,                                                                         &
[3298]577        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
578
[3994]579    USE diagnostic_output_quantities_mod,                                                          &
580        ONLY:  diagnostic_output_quantities_calculate,                                             &
581               timestep_number_at_prev_calc
582
[3761]583    USE flight_mod,                                                                                &
[1957]584        ONLY:  flight_measurement
585
[3761]586    USE indices,                                                                                   &
587        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nzb, nzt
[1320]588
[3761]589    USE indoor_model_mod,                                                                          &
590        ONLY:  dt_indoor, im_main_heatcool, time_indoor
[3469]591
[3761]592    USE interaction_droplets_ptq_mod,                                                              &
[1320]593        ONLY:  interaction_droplets_ptq
594
[1918]595    USE interfaces
596
[1320]597    USE kinds
598
[3761]599    USE land_surface_model_mod,                                                                    &
600        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model, skip_time_do_lsm
[1496]601
[4017]602    USE lagrangian_particle_model_mod,                                                             &
603        ONLY:  lpm_data_output_ptseries
[3761]604
605    USE lsf_nudging_mod,                                                                           &
[3347]606        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
[1320]607
[3761]608    USE module_interface,                                                                          &
[3684]609        ONLY:  module_interface_actions
610
[3761]611    USE multi_agent_system_mod,                                                                    &
[3198]612        ONLY:  agents_active, multi_agent_system
[3448]613
[3761]614    USE nesting_offl_mod,                                                                          &
[3347]615        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
[3864]616
[3761]617    USE netcdf_data_input_mod,                                                                     &
618        ONLY:  chem_emis, chem_emis_att, nest_offl, netcdf_data_input_offline_nesting
[3298]619
[3761]620    USE ocean_mod,                                                                                 &
[3294]621        ONLY:  prho_reference
622
[3761]623    USE particle_attributes,                                                                       &
624        ONLY:  particle_advection, particle_advection_start, use_sgs_for_particles, wang_kernel
[1320]625
[1]626    USE pegrid
627
[3761]628    USE pmc_interface,                                                                             &
[4010]629        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans, pmci_synchronize,    &
630        pmci_ensure_nest_mass_conservation, pmci_ensure_nest_mass_conservation_vertical
[1762]631
[3761]632    USE progress_bar,                                                                              &
[1402]633        ONLY:  finish_progress_bar, output_progress_bar
634
[3761]635    USE prognostic_equations_mod,                                                                  &
[2118]636        ONLY:  prognostic_equations_cache, prognostic_equations_vector
[1320]637
[3761]638    USE radiation_model_mod,                                                                       &
639        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,                    &
640              radiation_interaction, radiation_interactions, skip_time_do_radiation, time_radiation
[3864]641
[3761]642    USE salsa_mod,                                                                                 &
[3864]643        ONLY: aerosol_number, aerosol_mass, bc_am_t_val, bc_an_t_val, bc_gt_t_val,                 &
644              nbins_aerosol, ncomponents_mass, ngases_salsa, salsa_boundary_conds,                 &
645              salsa_emission_update, salsa_gas, salsa_gases_from_chem, skip_time_do_salsa
[1496]646
[3761]647    USE spectra_mod,                                                                               &
648        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp, skip_time_dosp
[1786]649
[3761]650    USE statistics,                                                                                &
651        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l
[1320]652
[3761]653
654    USE surface_layer_fluxes_mod,                                                                  &
[1691]655        ONLY:  surface_layer_fluxes
656
[3761]657    USE surface_data_output_mod,                                                                   &
658        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf, dt_dosurf_av,               &
659               surface_data_output, surface_data_output_averaging, skip_time_dosurf,               &
[3648]660               skip_time_dosurf_av, time_dosurf, time_dosurf_av
[2232]661
[3761]662    USE surface_mod,                                                                               &
663        ONLY:  surf_def_h, surf_lsm_h, surf_usm_h
664
665    USE synthetic_turbulence_generator_mod,                                                        &
666        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence, stg_adjust, stg_main,    &
667               time_stg_adjust, time_stg_call, use_syn_turb_gen
668
669    USE turbulence_closure_mod,                                                                    &
[2696]670        ONLY:  tcm_diffusivities, production_e_init
671
[3761]672    USE urban_surface_mod,                                                                         &
673        ONLY:  usm_boundary_condition, usm_material_heat_model, usm_material_model,                &
[3597]674               usm_surface_energy_balance, usm_green_heat_model
[2007]675
[3761]676    USE vertical_nesting_mod,                                                                      &
677        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e, vnest_boundary_conds,              &
678               vnest_boundary_conds_khkm, vnest_deallocate, vnest_init, vnest_init_fine,           &
679               vnest_start_time
[3864]680
[3761]681    USE virtual_measurement_mod,                                                                   &
[3988]682        ONLY:  dt_virtual_measurement,                                                             &
683               time_virtual_measurement,                                                           &
684               vm_data_output,                                                                     &
685               vm_sampling,                                                                        &
686               vm_time_start
[2259]687
[1914]688
[3761]689#if defined( _OPENACC )
690    USE arrays_3d,                                                             &
691        ONLY:  d, dd2zu, ddzu, ddzw, drho_air, drho_air_zw, dzw, heatflux_output_conversion, kh,   &
692               km, momentumflux_output_conversion, p, ptdf_x, ptdf_y, rdf, rdf_sc, rho_air,        &
693               rho_air_zw, te_m, tpt_m, tu_m, tv_m, tw_m, ug, u_init, u_stokes_zu, vg, v_init,     &
694               v_stokes_zu, zu
[2365]695
[3761]696    USE control_parameters,                                                                        &
697        ONLY:  tsc
698
699    USE indices,                                                                                   &
700        ONLY:  advc_flags_1, advc_flags_2, nyn, nyng, nys, nysg, nz, nzb_max, wall_flags_0
701
702    USE statistics,                                                                                &
703        ONLY:  rmask, statistic_regions, sums_l, sums_l_l, sums_us2_ws_l,                          &
704               sums_wsus_ws_l, sums_vs2_ws_l, sums_wsvs_ws_l, sums_ws2_ws_l, sums_wspts_ws_l,      &
705               sums_wsqs_ws_l, sums_wssas_ws_l, sums_wsqcs_ws_l, sums_wsqrs_ws_l, sums_wsncs_ws_l, &
[3872]706               sums_wsnrs_ws_l, sums_wsss_ws_l, weight_substep, sums_salsa_ws_l
[3761]707
708    USE surface_mod,                                                                               &
709        ONLY:  bc_h, enter_surface_arrays, exit_surface_arrays
710#endif
711
712
[1]713    IMPLICIT NONE
714
[3298]715    CHARACTER (LEN=9) ::  time_to_string   !<
[3864]716
717    INTEGER(iwp)      ::  ib        !< index for aerosol size bins
718    INTEGER(iwp)      ::  ic        !< index for aerosol mass bins
719    INTEGER(iwp)      ::  icc       !< additional index for aerosol mass bins
720    INTEGER(iwp)      ::  ig        !< index for salsa gases
[3929]721    INTEGER(iwp)      ::  lsp
722    INTEGER(iwp)      ::  lsp_usr   !<
[3298]723    INTEGER(iwp)      ::  n         !< loop counter for chemistry species
[3014]724
[1918]725    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
726                            !< steering of run control output interval
[3241]727    REAL(wp) ::  time_since_reference_point_save  !< original value of
728                                                  !< time_since_reference_point
729
[3634]730
[3761]731!
732!-- Copy data from arrays_3d
[3634]733!$ACC DATA &
734!$ACC COPY(d(nzb+1:nzt,nys:nyn,nxl:nxr)) &
735!$ACC COPY(e(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
736!$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
737!$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
738!$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
739!$ACC COPY(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
740!$ACC COPY(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
741!$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
742!$ACC COPY(pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
743
744!$ACC DATA &
745!$ACC COPY(e_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
746!$ACC COPY(u_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
747!$ACC COPY(v_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
748!$ACC COPY(w_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
749!$ACC COPY(pt_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
750!$ACC COPY(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
751!$ACC COPY(te_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
752!$ACC COPY(tu_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
753!$ACC COPY(tv_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
754!$ACC COPY(tw_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
755!$ACC COPY(tpt_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
756
757!$ACC DATA &
758!$ACC COPYIN(rho_air(nzb:nzt+1), drho_air(nzb:nzt+1)) &
759!$ACC COPYIN(rho_air_zw(nzb:nzt+1), drho_air_zw(nzb:nzt+1)) &
760!$ACC COPYIN(zu(nzb:nzt+1)) &
761!$ACC COPYIN(dzu(1:nzt+1), dzw(1:nzt+1)) &
762!$ACC COPYIN(ddzu(1:nzt+1), dd2zu(1:nzt)) &
763!$ACC COPYIN(ddzw(1:nzt+1)) &
[3658]764!$ACC COPYIN(heatflux_output_conversion(nzb:nzt+1)) &
765!$ACC COPYIN(momentumflux_output_conversion(nzb:nzt+1)) &
[3634]766!$ACC COPYIN(rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt)) &
767!$ACC COPYIN(ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng)) &
768!$ACC COPYIN(ref_state(0:nz+1)) &
769!$ACC COPYIN(u_init(0:nz+1), v_init(0:nz+1)) &
770!$ACC COPYIN(u_stokes_zu(nzb:nzt+1), v_stokes_zu(nzb:nzt+1)) &
771!$ACC COPYIN(pt_init(0:nz+1)) &
772!$ACC COPYIN(ug(0:nz+1), vg(0:nz+1))
773
[3761]774!
775!-- Copy data from control_parameters
[3634]776!$ACC DATA &
777!$ACC COPYIN(tsc(1:5))
778
[3761]779!
780!-- Copy data from indices
[3634]781!$ACC DATA &
782!$ACC COPYIN(advc_flags_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
783!$ACC COPYIN(advc_flags_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
784!$ACC COPYIN(wall_flags_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
785
[3761]786!
787!-- Copy data from surface_mod
[3634]788!$ACC DATA &
789!$ACC COPYIN(bc_h(0:1)) &
790!$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) &
791!$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) &
792!$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) &
793!$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) &
794!$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) &
795!$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns))
796
[3761]797!
798!-- Copy data from statistics
[3634]799!$ACC DATA &
[3658]800!$ACC COPYIN(hom(0:nz+1,1:2,1:4,0)) &
[3634]801!$ACC COPYIN(rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions)) &
802!$ACC COPYIN(weight_substep(1:intermediate_timestep_count_max)) &
[3658]803!$ACC COPY(sums_l(nzb:nzt+1,1:pr_palm,0)) &
[3634]804!$ACC COPY(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
805!$ACC COPY(sums_us2_ws_l(nzb:nzt+1,0)) &
806!$ACC COPY(sums_wsus_ws_l(nzb:nzt+1,0)) &
807!$ACC COPY(sums_vs2_ws_l(nzb:nzt+1,0)) &
808!$ACC COPY(sums_wsvs_ws_l(nzb:nzt+1,0)) &
809!$ACC COPY(sums_ws2_ws_l(nzb:nzt+1,0)) &
810!$ACC COPY(sums_wspts_ws_l(nzb:nzt+1,0)) &
811!$ACC COPY(sums_wssas_ws_l(nzb:nzt+1,0)) &
812!$ACC COPY(sums_wsqs_ws_l(nzb:nzt+1,0)) &
813!$ACC COPY(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
814!$ACC COPY(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
815!$ACC COPY(sums_wsncs_ws_l(nzb:nzt+1,0)) &
816!$ACC COPY(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
817!$ACC COPY(sums_wsss_ws_l(nzb:nzt+1,0)) &
818!$ACC COPY(sums_salsa_ws_l(nzb:nzt+1,0))
819
[3761]820#if defined( _OPENACC )
[3658]821    CALL enter_surface_arrays
822#endif
823
[1]824!
[1918]825!-- At beginning determine the first time step
826    CALL timestep
[1764]827!
828!-- Synchronize the timestep in case of nested run.
829    IF ( nested_run )  THEN
[1878]830!
831!--    Synchronization by unifying the time step.
832!--    Global minimum of all time-steps is used for all.
833       CALL pmci_synchronize
[1764]834    ENDIF
835
[1918]836!
837!-- Determine and print out the run control quantities before the first time
838!-- step of this run. For the initial run, some statistics (e.g. divergence)
[3004]839!-- need to be determined first --> CALL flow_statistics at the beginning of
840!-- run_control
[1]841    CALL run_control
[108]842!
843!-- Data exchange between coupled models in case that a call has been omitted
844!-- at the end of the previous run of a job chain.
[3761]845    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND. .NOT. vnested )  THEN
[108]846!
847!--    In case of model termination initiated by the local model the coupler
848!--    must not be called because this would again cause an MPI hang.
[1918]849       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
[108]850          CALL surface_coupler
851          time_coupling = time_coupling - dt_coupling
852       ENDDO
[3761]853       IF (time_coupling == 0.0_wp  .AND.  time_since_reference_point < dt_coupling )  THEN
[348]854          time_coupling = time_since_reference_point
855       ENDIF
[108]856    ENDIF
857
[3885]858    CALL location_message( 'atmosphere (and/or ocean) time-stepping', 'start' )
[3761]859
[1]860!
861!-- Start of the time loop
[3761]862    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. .NOT. terminate_run )
[1]863
864       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
865!
[2365]866!--    Vertical nesting: initialize fine grid
867       IF ( vnested ) THEN
868          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
[3719]869             CALL cpu_log( log_point_s(22), 'vnest_init', 'start' )
[2365]870             CALL vnest_init_fine
871             vnest_init = .TRUE.
[3719]872             CALL cpu_log( log_point_s(22), 'vnest_init', 'stop' )
[2365]873          ENDIF
874       ENDIF
875!
[1241]876!--    Determine ug, vg and w_subs in dependence on data from external file
877!--    LSF_DATA
[1365]878       IF ( large_scale_forcing .AND. lsf_vert )  THEN
[1241]879           CALL ls_forcing_vert ( simulated_time )
[1365]880           sums_ls_l = 0.0_wp
[1241]881       ENDIF
882
883!
[1380]884!--    Set pt_init and q_init to the current profiles taken from
885!--    NUDGING_DATA
886       IF ( nudging )  THEN
887           CALL nudge_ref ( simulated_time )
888!
889!--        Store temperature gradient at the top boundary for possible Neumann
890!--        boundary condition
891           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
892           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
[3298]893           IF ( air_chemistry )  THEN
[3929]894              DO  lsp = 1, nvar
895                 bc_cs_t_val = (  chem_species(lsp)%conc_pr_init(nzt+1)                            &
896                                - chem_species(lsp)%conc_pr_init(nzt) )                            &
[3298]897                               / dzu(nzt+1)
898              ENDDO
899           ENDIF
[3864]900           IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
901              DO  ib = 1, nbins_aerosol
902                 bc_an_t_val = ( aerosol_number(ib)%init(nzt+1) - aerosol_number(ib)%init(nzt) ) / &
903                               dzu(nzt+1)
904                 DO  ic = 1, ncomponents_mass
905                    icc = ( ic - 1 ) * nbins_aerosol + ib
906                    bc_am_t_val = ( aerosol_mass(icc)%init(nzt+1) - aerosol_mass(icc)%init(nzt) ) /&
907                                  dzu(nzt+1)
908                 ENDDO
909              ENDDO
910              IF ( .NOT. salsa_gases_from_chem )  THEN
911                 DO  ig = 1, ngases_salsa
912                    bc_gt_t_val = ( salsa_gas(ig)%init(nzt+1) - salsa_gas(ig)%init(nzt) ) /        &
913                                  dzu(nzt+1)
914                 ENDDO
915              ENDIF
916           ENDIF
[1380]917       ENDIF
[2696]918!
919!--    If forcing by larger-scale models is applied, check if new data
920!--    at domain boundaries need to be read.
[3774]921       IF ( nesting_offline ) THEN
922          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point ) &
923               CALL netcdf_data_input_offline_nesting
[2696]924       ENDIF
[1380]925
926!
[3876]927!--    Execute all other module actions routunes
[3684]928       CALL module_interface_actions( 'before_timestep' )
[1914]929       
930!
[1]931!--    Start of intermediate step loop
932       intermediate_timestep_count = 0
[3761]933       DO  WHILE ( intermediate_timestep_count < intermediate_timestep_count_max )
[1]934
935          intermediate_timestep_count = intermediate_timestep_count + 1
936
937!
938!--       Set the steering factors for the prognostic equations which depend
939!--       on the timestep scheme
940          CALL timestep_scheme_steering
941
942!
[1128]943!--       Calculate those variables needed in the tendency terms which need
944!--       global communication
[3761]945          IF ( .NOT. use_single_reference_value  .AND.  .NOT. use_initial_profile_as_reference )   &
946          THEN
[1179]947!
948!--          Horizontally averaged profiles to be used as reference state in
949!--          buoyancy terms (WARNING: only the respective last call of
950!--          calc_mean_profile defines the reference state!)
[1365]951             IF ( .NOT. neutral )  THEN
952                CALL calc_mean_profile( pt, 4 )
953                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
954             ENDIF
[3294]955             IF ( ocean_mode )  THEN
[2031]956                CALL calc_mean_profile( rho_ocean, 64 )
[1365]957                ref_state(:)  = hom(:,1,64,0)
958             ENDIF
959             IF ( humidity )  THEN
960                CALL calc_mean_profile( vpt, 44 )
961                ref_state(:)  = hom(:,1,44,0)
962             ENDIF
[2617]963!
964!--          Assure that ref_state does not become zero at any level
965!--          ( might be the case if a vertical level is completely occupied
966!--            with topography ).
[3761]967             ref_state = MERGE( MAXVAL(ref_state), ref_state, ref_state == 0.0_wp )
[1179]968          ENDIF
969
[1128]970          IF ( .NOT. constant_diffusion )  CALL production_e_init
[3761]971          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  intermediate_timestep_count == 1 )     &
972          THEN
973             CALL ws_statistics
974          ENDIF
[1365]975!
976!--       In case of nudging calculate current nudging time scale and horizontal
[1380]977!--       means of u, v, pt and q
[1365]978          IF ( nudging )  THEN
979             CALL calc_tnudge( simulated_time )
980             CALL calc_mean_profile( u, 1 )
981             CALL calc_mean_profile( v, 2 )
982             CALL calc_mean_profile( pt, 4 )
983             CALL calc_mean_profile( q, 41 )
984          ENDIF
[1128]985!
[3876]986!--       Execute all other module actions routunes
987          CALL module_interface_actions( 'before_prognostic_equations' )
988!
[1]989!--       Solve the prognostic equations. A fast cache optimized version with
990!--       only one single loop is used in case of Piascek-Williams advection
991!--       scheme. NEC vector machines use a different version, because
992!--       in the other versions a good vectorization is prohibited due to
993!--       inlining problems.
[1019]994          IF ( loop_optimization == 'cache' )  THEN
995             CALL prognostic_equations_cache
996          ELSEIF ( loop_optimization == 'vector' )  THEN
[63]997             CALL prognostic_equations_vector
[1]998          ENDIF
999
1000!
[849]1001!--       Particle transport/physics with the Lagrangian particle model
1002!--       (only once during intermediate steps, because it uses an Euler-step)
[1128]1003!--       ### particle model should be moved before prognostic_equations, in order
1004!--       to regard droplet interactions directly
[3761]1005          IF ( particle_advection  .AND.  time_since_reference_point >= particle_advection_start   &
1006               .AND.  intermediate_timestep_count == 1 )                                           &
1007          THEN
[4017]1008             CALL module_interface_actions( 'after_prognostic_equations' )
[849]1009             first_call_lpm = .FALSE.
[1]1010          ENDIF
1011
1012!
[3040]1013!--       Interaction of droplets with temperature and mixing ratio.
[1]1014!--       Droplet condensation and evaporation is calculated within
1015!--       advec_particles.
[3761]1016          IF ( cloud_droplets  .AND.  intermediate_timestep_count == intermediate_timestep_count_max ) &
[1]1017          THEN
1018             CALL interaction_droplets_ptq
1019          ENDIF
1020
1021!
[3159]1022!--       Movement of agents in multi agent system
[3761]1023          IF ( agents_active  .AND.  time_since_reference_point >= multi_agent_system_start  .AND. &
1024               time_since_reference_point <= multi_agent_system_end  .AND.                         &
1025               intermediate_timestep_count == 1 )                                                  &
1026          THEN
[3159]1027             CALL multi_agent_system
1028             first_call_mas = .FALSE.
1029          ENDIF
1030
1031!
[1]1032!--       Exchange of ghost points (lateral boundary conditions)
[2118]1033          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
[1113]1034
[2118]1035          CALL exchange_horiz( u_p, nbgp )
1036          CALL exchange_horiz( v_p, nbgp )
1037          CALL exchange_horiz( w_p, nbgp )
1038          CALL exchange_horiz( pt_p, nbgp )
1039          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
[3761]1040          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence                           &
[2696]1041               .OR.  use_sgs_for_particles )  THEN
1042             IF ( rans_tke_e )  THEN
1043                CALL exchange_horiz( diss_p, nbgp )
1044             ELSE
1045                CALL exchange_horiz( diss, nbgp )
1046             ENDIF
1047          ENDIF
[3294]1048          IF ( ocean_mode )  THEN
[2118]1049             CALL exchange_horiz( sa_p, nbgp )
1050             CALL exchange_horiz( rho_ocean, nbgp )
1051             CALL exchange_horiz( prho, nbgp )
1052          ENDIF
1053          IF ( humidity )  THEN
1054             CALL exchange_horiz( q_p, nbgp )
[3274]1055             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
[2292]1056                CALL exchange_horiz( qc_p, nbgp )
1057                CALL exchange_horiz( nc_p, nbgp )
1058             ENDIF
[3274]1059             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
[2118]1060                CALL exchange_horiz( qr_p, nbgp )
1061                CALL exchange_horiz( nr_p, nbgp )
[1053]1062             ENDIF
[2118]1063          ENDIF
1064          IF ( cloud_droplets )  THEN
1065             CALL exchange_horiz( ql, nbgp )
1066             CALL exchange_horiz( ql_c, nbgp )
1067             CALL exchange_horiz( ql_v, nbgp )
1068             CALL exchange_horiz( ql_vp, nbgp )
1069          ENDIF
[2696]1070          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
[3929]1071          IF ( air_chemistry )  THEN
1072             DO  lsp = 1, nvar
1073                CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp )
[4029]1074             ENDDO
1075          ENDIF
1076
1077          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
1078             DO  ib = 1, nbins_aerosol
1079                CALL exchange_horiz( aerosol_number(ib)%conc_p, nbgp )
1080                DO  ic = 1, ncomponents_mass
1081                   icc = ( ic - 1 ) * nbins_aerosol + ib
1082                   CALL exchange_horiz( aerosol_mass(icc)%conc_p, nbgp )
1083                ENDDO
1084             ENDDO
1085             IF ( .NOT. salsa_gases_from_chem )  THEN
1086                DO  ig = 1, ngases_salsa
1087                   CALL exchange_horiz( salsa_gas(ig)%conc_p, nbgp )
1088                ENDDO
1089             ENDIF
1090          ENDIF
1091          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1092
[3929]1093!
[4029]1094!--       Boundary conditions for the prognostic quantities (except of the
1095!--       velocities at the outflow in case of a non-cyclic lateral wall)
1096          CALL boundary_conds
1097
1098!
1099!--       Boundary conditions for prognostic quantitites of other modules:
1100!--       Here, only decycling is carried out
1101          IF ( air_chemistry )  THEN
1102
1103             DO  lsp = 1, nvar
[3929]1104                lsp_usr = 1
1105                DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
[4029]1106                   IF ( TRIM( chem_species(lsp)%name ) == TRIM( cs_name(lsp_usr) ) )  THEN
[3929]1107                      CALL chem_boundary_conds( chem_species(lsp)%conc_p,                          &
1108                                                chem_species(lsp)%conc_pr_init )
1109                   ENDIF
1110                   lsp_usr = lsp_usr + 1
1111                ENDDO
1112             ENDDO
[4029]1113
[3929]1114          ENDIF
[2766]1115
[3864]1116          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
[4029]1117
[3864]1118             DO  ib = 1, nbins_aerosol
1119                CALL salsa_boundary_conds( aerosol_number(ib)%conc_p, aerosol_number(ib)%init )
1120                DO  ic = 1, ncomponents_mass
1121                   icc = ( ic - 1 ) * nbins_aerosol + ib
1122                   CALL salsa_boundary_conds( aerosol_mass(icc)%conc_p, aerosol_mass(icc)%init )
[3467]1123                ENDDO
1124             ENDDO
1125             IF ( .NOT. salsa_gases_from_chem )  THEN
[3864]1126                DO  ig = 1, ngases_salsa
1127                   CALL salsa_boundary_conds( salsa_gas(ig)%conc_p, salsa_gas(ig)%init )
1128                ENDDO
[3467]1129             ENDIF
[4029]1130
[3864]1131          ENDIF
[1128]1132
[1]1133!
[73]1134!--       Swap the time levels in preparation for the next time step.
1135          CALL swap_timelevel
1136
[2365]1137!
1138!--       Vertical nesting: Interpolate fine grid data to the coarse grid
1139          IF ( vnest_init ) THEN
[3719]1140             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'start' )
[2365]1141             CALL vnest_anterpolate
[3719]1142             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'stop' )
[2365]1143          ENDIF
1144
[1764]1145          IF ( nested_run )  THEN
[1797]1146
[1764]1147             CALL cpu_log( log_point(60), 'nesting', 'start' )
[1762]1148!
[1933]1149!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
1150!--          and pmci_child_datatrans are called inside the wrapper
[1797]1151!--          subroutine pmci_datatrans according to the control parameters
1152!--          nesting_mode and nesting_datatransfer_mode.
1153!--          TO_DO: why is nesting_mode given as a parameter here?
1154             CALL pmci_datatrans( nesting_mode )
[1762]1155
[3761]1156             IF ( TRIM( nesting_mode ) == 'two-way' .OR.  nesting_mode == 'vertical' )  THEN
[4029]1157
1158                CALL cpu_log( log_point_s(92), 'exchange-horiz-nest', 'start' )
[1762]1159!
[1933]1160!--             Exchange_horiz is needed for all parent-domains after the
[1764]1161!--             anterpolation
1162                CALL exchange_horiz( u, nbgp )
1163                CALL exchange_horiz( v, nbgp )
1164                CALL exchange_horiz( w, nbgp )
[2174]1165                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
1166
1167                IF ( humidity )  THEN
1168
1169                   CALL exchange_horiz( q, nbgp )
1170
[3274]1171                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
[2292]1172                       CALL exchange_horiz( qc, nbgp )
1173                       CALL exchange_horiz( nc, nbgp )
1174                   ENDIF
[3274]1175                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
[2174]1176                       CALL exchange_horiz( qr, nbgp )
1177                       CALL exchange_horiz( nr, nbgp )
1178                   ENDIF
1179
1180                ENDIF
1181
[3467]1182                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
[3864]1183
[2174]1184                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
[2773]1185
[3761]1186                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.  rans_tke_e )  THEN
[2938]1187                   CALL exchange_horiz( diss, nbgp )
[3761]1188                ENDIF
[2938]1189
[2773]1190                IF ( air_chemistry )  THEN
[3929]1191                   DO  n = 1, nvar
[2773]1192                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
1193                   ENDDO
1194                ENDIF
1195
[3864]1196                IF ( salsa  .AND. time_since_reference_point >= skip_time_do_salsa )  THEN
1197                   DO  ib = 1, nbins_aerosol
1198                      CALL exchange_horiz( aerosol_number(ib)%conc, nbgp )
1199                      DO  ic = 1, ncomponents_mass
1200                         icc = ( ic - 1 ) * nbins_aerosol + ib
1201                         CALL exchange_horiz( aerosol_mass(icc)%conc, nbgp )
1202                      ENDDO
1203                   ENDDO
1204                   IF ( .NOT. salsa_gases_from_chem )  THEN
1205                      DO  ig = 1, ngases_salsa
1206                         CALL exchange_horiz( salsa_gas(ig)%conc, nbgp )
1207                      ENDDO
1208                   ENDIF
1209                ENDIF
[4029]1210                CALL cpu_log( log_point_s(92), 'exchange-horiz-nest', 'stop' )
[3864]1211
[1762]1212             ENDIF
[4029]1213
[1762]1214!
[2311]1215!--          Set boundary conditions again after interpolation and anterpolation.
1216             CALL pmci_boundary_conds
[1764]1217
[4029]1218!
1219!--          Set chemistry boundary conditions (decycling)
1220             IF ( air_chemistry )  THEN
1221                DO  lsp = 1, nvar
1222                   lsp_usr = 1
1223                   DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
1224                      IF ( TRIM( chem_species(lsp)%name ) == TRIM( cs_name(lsp_usr) ) )  THEN
1225                         CALL chem_boundary_conds( chem_species(lsp)%conc,                         &
1226                                                   chem_species(lsp)%conc_pr_init )
1227                      ENDIF
1228                      lsp_usr = lsp_usr + 1
1229                   ENDDO
1230                ENDDO
1231             ENDIF
1232
1233!
1234!--          Set SALSA boundary conditions (decycling)
1235             IF ( salsa  .AND. time_since_reference_point >= skip_time_do_salsa )  THEN
1236                DO  ib = 1, nbins_aerosol
1237                   CALL salsa_boundary_conds( aerosol_number(ib)%conc, aerosol_number(ib)%init )
1238                   DO  ic = 1, ncomponents_mass
1239                      icc = ( ic - 1 ) * nbins_aerosol + ib
1240                      CALL salsa_boundary_conds( aerosol_mass(icc)%conc, aerosol_mass(icc)%init )
1241                   ENDDO
1242                ENDDO
1243                IF ( .NOT. salsa_gases_from_chem )  THEN
1244                   DO  ig = 1, ngases_salsa
1245                      CALL salsa_boundary_conds( salsa_gas(ig)%conc, salsa_gas(ig)%init )
1246                   ENDDO
1247                ENDIF
1248             ENDIF
1249
[1764]1250             CALL cpu_log( log_point(60), 'nesting', 'stop' )
1251
[1762]1252          ENDIF
1253
1254!
[1]1255!--       Temperature offset must be imposed at cyclic boundaries in x-direction
1256!--       when a sloping surface is used
1257          IF ( sloping_surface )  THEN
[3761]1258             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - pt_slope_offset
1259             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + pt_slope_offset
[1]1260          ENDIF
1261
1262!
[151]1263!--       Impose a turbulent inflow using the recycling method
[3719]1264          IF ( turbulent_inflow )  CALL inflow_turbulence
[151]1265
1266!
[2050]1267!--       Set values at outflow boundary using the special outflow condition
[3719]1268          IF ( turbulent_outflow )  CALL outflow_turbulence
[2050]1269
1270!
[1]1271!--       Impose a random perturbation on the horizontal velocity field
[3761]1272          IF ( create_disturbances  .AND.  ( call_psolver_at_all_substeps  .AND.                   &
1273               intermediate_timestep_count == intermediate_timestep_count_max )                    &
1274               .OR. ( .NOT. call_psolver_at_all_substeps  .AND.  intermediate_timestep_count == 1 ) ) &
[1]1275          THEN
1276             time_disturb = time_disturb + dt_3d
1277             IF ( time_disturb >= dt_disturb )  THEN
[3761]1278                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                                     &
[1736]1279                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
[2232]1280                   CALL disturb_field( 'u', tend, u )
1281                   CALL disturb_field( 'v', tend, v )
[3761]1282                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )                                &
1283                         .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )                 &
[3182]1284                THEN
[1]1285!
1286!--                Runs with a non-cyclic lateral wall need perturbations
1287!--                near the inflow throughout the whole simulation
1288                   dist_range = 1
[2232]1289                   CALL disturb_field( 'u', tend, u )
1290                   CALL disturb_field( 'v', tend, v )
[1]1291                   dist_range = 0
1292                ENDIF
1293                time_disturb = time_disturb - dt_disturb
1294             ENDIF
1295          ENDIF
1296
1297!
[2696]1298!--       Map forcing data derived from larger scale model onto domain
1299!--       boundaries.
[3761]1300          IF ( nesting_offline  .AND.  intermediate_timestep_count ==                              &
1301                                       intermediate_timestep_count_max  )                          &
[3347]1302             CALL nesting_offl_bc
[2938]1303!
[4022]1304!--       Impose a turbulent inflow using synthetic generated turbulence.
1305          IF ( use_syn_turb_gen  .AND.                                                             &
1306               intermediate_timestep_count == intermediate_timestep_count_max )  THEN
[3719]1307             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
[3347]1308             CALL stg_main
[3719]1309             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
[2696]1310          ENDIF
1311!
[3347]1312!--       Ensure mass conservation. This need to be done after imposing
1313!--       synthetic turbulence and top boundary condition for pressure is set to
1314!--       Neumann conditions.
1315!--       Is this also required in case of Dirichlet?
1316          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1317!
[1]1318!--       Reduce the velocity divergence via the equation for perturbation
1319!--       pressure.
[106]1320          IF ( intermediate_timestep_count == 1  .OR. &
1321                call_psolver_at_all_substeps )  THEN
[2365]1322
1323             IF (  vnest_init ) THEN
1324!
1325!--             Compute pressure in the CG, interpolate top boundary conditions
1326!--             to the FG and then compute pressure in the FG
1327                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1328
[3719]1329                CALL cpu_log( log_point_s(30), 'vnest_bc', 'start' )
[2365]1330                CALL vnest_boundary_conds
[3719]1331                CALL cpu_log( log_point_s(30), 'vnest_bc', 'stop' )
[2365]1332 
1333                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1334
1335!--             Anterpolate TKE, satisfy Germano Identity
[3719]1336                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'start' )
[2365]1337                CALL vnest_anterpolate_e
[3719]1338                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'stop' )
[2365]1339
1340             ELSE
[4010]1341!               
1342!--             Mass (volume) flux correction to ensure global mass conservation for child domains.
1343                IF ( child_domain )  THEN
1344                   IF ( nesting_mode == 'vertical' )  THEN
1345                      CALL pmci_ensure_nest_mass_conservation_vertical
1346                   ELSE
1347                      CALL pmci_ensure_nest_mass_conservation
1348                   ENDIF
1349                ENDIF
1350               
[2365]1351                CALL pres
1352
1353             ENDIF
1354
[1]1355          ENDIF
1356
1357!
1358!--       If required, compute liquid water content
[3274]1359          IF ( bulk_cloud_model )  THEN
[1015]1360             CALL calc_liquid_water_content
1361          ENDIF
[2174]1362!
[1115]1363!--       If required, compute virtual potential temperature
1364          IF ( humidity )  THEN
1365             CALL compute_vpt 
1366          ENDIF 
[1585]1367
[1]1368!
1369!--       Compute the diffusion quantities
1370          IF ( .NOT. constant_diffusion )  THEN
1371
1372!
[1276]1373!--          Determine surface fluxes shf and qsws and surface values
1374!--          pt_surface and q_surface in dependence on data from external
1375!--          file LSF_DATA respectively
[3761]1376             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND.                                     &
1377                 intermediate_timestep_count == intermediate_timestep_count_max )                  &
[1276]1378             THEN
[2320]1379                CALL ls_forcing_surf( simulated_time )
[1276]1380             ENDIF
1381
1382!
[2232]1383!--          First the vertical (and horizontal) fluxes in the surface
1384!--          (constant flux) layer are computed
[1691]1385             IF ( constant_flux_layer )  THEN
1386                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1387                CALL surface_layer_fluxes
1388                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
[1]1389             ENDIF
1390!
[1691]1391!--          If required, solve the energy balance for the surface and run soil
[2232]1392!--          model. Call for horizontal as well as vertical surfaces
[2696]1393             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
[1691]1394
1395                CALL cpu_log( log_point(54), 'land_surface', 'start' )
[2232]1396!
1397!--             Call for horizontal upward-facing surfaces
1398                CALL lsm_energy_balance( .TRUE., -1 )
[2299]1399                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
[2232]1400!
1401!--             Call for northward-facing surfaces
1402                CALL lsm_energy_balance( .FALSE., 0 )
[2299]1403                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
[2232]1404!
1405!--             Call for southward-facing surfaces
1406                CALL lsm_energy_balance( .FALSE., 1 )
[2299]1407                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
[2232]1408!
1409!--             Call for eastward-facing surfaces
1410                CALL lsm_energy_balance( .FALSE., 2 )
[2299]1411                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
[2232]1412!
1413!--             Call for westward-facing surfaces
1414                CALL lsm_energy_balance( .FALSE., 3 )
[2299]1415                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
[3597]1416               
[2696]1417!
1418!--             At the end, set boundary conditons for potential temperature
1419!--             and humidity after running the land-surface model. This
1420!--             might be important for the nesting, where arrays are transfered.
1421                CALL lsm_boundary_condition
[2232]1422
[3597]1423               
[1691]1424                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1425             ENDIF
1426!
[2007]1427!--          If required, solve the energy balance for urban surfaces and run
1428!--          the material heat model
1429             IF (urban_surface) THEN
1430                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
[3176]1431               
[3418]1432                CALL usm_surface_energy_balance( .FALSE. )
[2007]1433                IF ( usm_material_model )  THEN
[2696]1434                   CALL usm_green_heat_model
[3418]1435                   CALL usm_material_heat_model ( .FALSE. )
[2007]1436                ENDIF
[2696]1437
1438!
1439!--             At the end, set boundary conditons for potential temperature
1440!--             and humidity after running the urban-surface model. This
1441!--             might be important for the nesting, where arrays are transfered.
1442                CALL usm_boundary_condition
1443
[2007]1444                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1445             ENDIF
1446!
[1]1447!--          Compute the diffusion coefficients
1448             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
[75]1449             IF ( .NOT. humidity ) THEN
[3294]1450                IF ( ocean_mode )  THEN
[2696]1451                   CALL tcm_diffusivities( prho, prho_reference )
[97]1452                ELSE
[2696]1453                   CALL tcm_diffusivities( pt, pt_reference )
[97]1454                ENDIF
[1]1455             ELSE
[2696]1456                CALL tcm_diffusivities( vpt, pt_reference )
[1]1457             ENDIF
1458             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
[2696]1459!
1460!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1461             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
[1]1462
1463          ENDIF
1464
[1691]1465!
1466!--       If required, calculate radiative fluxes and heating rates
[3761]1467          IF ( radiation  .AND.  intermediate_timestep_count == intermediate_timestep_count_max    &
1468               .AND. time_since_reference_point > skip_time_do_radiation )  THEN
[1691]1469
1470               time_radiation = time_radiation + dt_3d
1471
[3761]1472             IF ( time_radiation >= dt_radiation  .OR.  force_radiation_call )  THEN
[1691]1473
1474                CALL cpu_log( log_point(50), 'radiation', 'start' )
1475
1476                IF ( .NOT. force_radiation_call )  THEN
1477                   time_radiation = time_radiation - dt_radiation
1478                ENDIF
1479
[3014]1480!
[3241]1481!--             Adjust the current time to the time step of the radiation model.
[3014]1482!--             Needed since radiation is pre-calculated and stored only on apparent
1483!--             solar positions
[3241]1484                time_since_reference_point_save = time_since_reference_point
[3761]1485                time_since_reference_point = REAL( FLOOR( time_since_reference_point /             &
1486                                                          dt_radiation), wp ) * dt_radiation
[3014]1487
[1976]1488                CALL radiation_control
[1691]1489
[3761]1490                IF ( ( urban_surface  .OR.  land_surface )  .AND.  radiation_interactions )  THEN
[3724]1491                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'start' )
[2696]1492                   CALL radiation_interaction
[3724]1493                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'stop' )
[2007]1494                ENDIF
[3014]1495   
1496!
1497!--             Return the current time to its original value
[3241]1498                time_since_reference_point = time_since_reference_point_save
[2007]1499
[3719]1500                CALL cpu_log( log_point(50), 'radiation', 'stop' )
1501
[1691]1502             ENDIF
1503          ENDIF
1504
[1]1505       ENDDO   ! Intermediate step loop
[3634]1506
[1]1507!
[3634]1508!--    Will be used at some point by flow_statistics.
[3658]1509       !$ACC UPDATE &
[3634]1510       !$ACC HOST(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
1511       !$ACC HOST(sums_us2_ws_l(nzb:nzt+1,0)) &
1512       !$ACC HOST(sums_wsus_ws_l(nzb:nzt+1,0)) &
1513       !$ACC HOST(sums_vs2_ws_l(nzb:nzt+1,0)) &
1514       !$ACC HOST(sums_wsvs_ws_l(nzb:nzt+1,0)) &
1515       !$ACC HOST(sums_ws2_ws_l(nzb:nzt+1,0)) &
1516       !$ACC HOST(sums_wspts_ws_l(nzb:nzt+1,0)) &
1517       !$ACC HOST(sums_wssas_ws_l(nzb:nzt+1,0)) &
1518       !$ACC HOST(sums_wsqs_ws_l(nzb:nzt+1,0)) &
1519       !$ACC HOST(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
1520       !$ACC HOST(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
1521       !$ACC HOST(sums_wsncs_ws_l(nzb:nzt+1,0)) &
1522       !$ACC HOST(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
1523       !$ACC HOST(sums_wsss_ws_l(nzb:nzt+1,0)) &
1524       !$ACC HOST(sums_salsa_ws_l(nzb:nzt+1,0))
1525
1526!
[2766]1527!--    If required, consider chemical emissions
[3820]1528       IF ( air_chemistry  .AND.  emissions_anthropogenic )  THEN
[3298]1529!
1530!--       Update the time --> kanani: revise location of this CALL
1531          CALL calc_date_and_time
1532!
1533!--       Call emission routine only once an hour
1534          IF (hour_of_year  .GT.  hour_call_emis )  THEN
[3968]1535             CALL chem_emissions_setup( chem_emis_att, chem_emis, n_matched_vars )
[3298]1536             hour_call_emis = hour_of_year
1537          ENDIF
[2766]1538       ENDIF
[3864]1539!
1540!--    If required, consider aerosol emissions for the salsa model
1541       IF ( salsa )  THEN
1542!
1543!--       Call emission routine to update emissions if needed
1544          CALL salsa_emission_update
[3569]1545
[3864]1546       ENDIF
[2696]1547!
[3469]1548!--    If required, calculate indoor temperature, waste heat, heat flux
1549!--    through wall, etc.
[3744]1550!--    dt_indoor steers the frequency of the indoor model calculations.
1551!--    Note, at first timestep indoor model is called, in order to provide
1552!--    a waste heat flux.
[3647]1553       IF ( indoor_model )  THEN
[3469]1554
1555          time_indoor = time_indoor + dt_3d
1556
[3761]1557          IF ( time_indoor >= dt_indoor  .OR.  current_timestep_number == 0 )  THEN
[3469]1558
1559             time_indoor = time_indoor - dt_indoor
1560
1561             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1562             CALL im_main_heatcool
1563             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1564
1565          ENDIF
1566       ENDIF
1567!
[1]1568!--    Increase simulation time and output times
[1111]1569       nr_timesteps_this_run      = nr_timesteps_this_run + 1
[291]1570       current_timestep_number    = current_timestep_number + 1
1571       simulated_time             = simulated_time   + dt_3d
1572       time_since_reference_point = simulated_time - coupling_start_time
[2941]1573       simulated_time_chr         = time_to_string( time_since_reference_point )
[291]1574
[1957]1575
1576
[2941]1577
[3646]1578       IF ( time_since_reference_point >= skip_time_data_output_av )  THEN
[1]1579          time_do_av         = time_do_av       + dt_3d
1580       ENDIF
[3646]1581       IF ( time_since_reference_point >= skip_time_do2d_xy )  THEN
[1]1582          time_do2d_xy       = time_do2d_xy     + dt_3d
1583       ENDIF
[3646]1584       IF ( time_since_reference_point >= skip_time_do2d_xz )  THEN
[1]1585          time_do2d_xz       = time_do2d_xz     + dt_3d
1586       ENDIF
[3646]1587       IF ( time_since_reference_point >= skip_time_do2d_yz )  THEN
[1]1588          time_do2d_yz       = time_do2d_yz     + dt_3d
1589       ENDIF
[3646]1590       IF ( time_since_reference_point >= skip_time_do3d    )  THEN
[1]1591          time_do3d          = time_do3d        + dt_3d
1592       ENDIF
[410]1593       DO  mid = 1, masks
[3646]1594          IF ( time_since_reference_point >= skip_time_domask(mid) )  THEN
[410]1595             time_domask(mid)= time_domask(mid) + dt_3d
1596          ENDIF
1597       ENDDO
[3646]1598       IF ( time_since_reference_point >= skip_time_dosp )  THEN
[1]1599          time_dosp       = time_dosp        + dt_3d
1600       ENDIF
1601       time_dots          = time_dots        + dt_3d
[849]1602       IF ( .NOT. first_call_lpm )  THEN
[1]1603          time_dopts      = time_dopts       + dt_3d
1604       ENDIF
[3646]1605       IF ( time_since_reference_point >= skip_time_dopr )  THEN
[1]1606          time_dopr       = time_dopr        + dt_3d
1607       ENDIF
[3467]1608       time_dopr_listing  = time_dopr_listing + dt_3d
[1]1609       time_run_control   = time_run_control + dt_3d
[3347]1610!
[3421]1611!--    Increment time-counter for surface output
[3648]1612       IF ( surface_output )  THEN
[3646]1613          IF ( time_since_reference_point >= skip_time_dosurf )  THEN
[3421]1614             time_dosurf    = time_dosurf + dt_3d
1615          ENDIF
[3646]1616          IF ( time_since_reference_point >= skip_time_dosurf_av )  THEN
[3421]1617             time_dosurf_av = time_dosurf_av + dt_3d
1618          ENDIF
1619       ENDIF
1620!
[3988]1621!--    Increment time-counter for virtual measurements
1622       IF ( virtual_measurement  .AND.  vm_time_start <= time_since_reference_point )  THEN
1623          time_virtual_measurement = time_virtual_measurement + dt_3d
1624       ENDIF
1625!
[3347]1626!--    In case of synthetic turbulence generation and parametrized turbulence
1627!--    information, update the time counter and if required, adjust the
1628!--    STG to new atmospheric conditions.
1629       IF ( use_syn_turb_gen  )  THEN
1630          IF ( parametrize_inflow_turbulence )  THEN
1631             time_stg_adjust = time_stg_adjust + dt_3d
[3719]1632             IF ( time_stg_adjust >= dt_stg_adjust )  THEN
1633                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1634                CALL stg_adjust
1635                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1636             ENDIF
[3347]1637          ENDIF
1638          time_stg_call = time_stg_call + dt_3d
1639       ENDIF
[1]1640
1641!
[102]1642!--    Data exchange between coupled models
[3761]1643       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND.  .NOT. vnested )  THEN
[102]1644          time_coupling = time_coupling + dt_3d
[343]1645
[108]1646!
1647!--       In case of model termination initiated by the local model
1648!--       (terminate_coupled > 0), the coupler must be skipped because it would
1649!--       cause an MPI intercomminucation hang.
1650!--       If necessary, the coupler will be called at the beginning of the
1651!--       next restart run.
[3761]1652          DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
[102]1653             CALL surface_coupler
1654             time_coupling = time_coupling - dt_coupling
1655          ENDDO
1656       ENDIF
1657
1658!
[3448]1659!--    Biometeorology calculation of stationary thermal indices
[3647]1660!--    Todo (kanani): biometeorology needs own time_... treatment.
1661!--                   It might be that time_do2d_xy differs from time_do3d,
1662!--                   and then we might get trouble with the biomet output,
1663!--                   because we can have 2d and/or 3d biomet output!!
[3761]1664       IF ( biometeorology                                                                         &
1665            .AND. ( ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  &
1666                  .OR.                                                                             &
1667            ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy ) &
[3647]1668                    ) )  THEN
[3569]1669!
1670!--       If required, do thermal comfort calculations
1671          IF ( thermal_comfort )  THEN
1672             CALL bio_calculate_thermal_index_maps ( .FALSE. )
1673          ENDIF
1674!
1675!--       If required, do UV exposure calculations
1676          IF ( uv_exposure )  THEN
1677             CALL uvem_calc_exposure
1678          ENDIF
[3448]1679       ENDIF
1680
1681!
[3684]1682!--    Execute alle other module actions routunes
1683       CALL module_interface_actions( 'after_integration' )
[2817]1684
1685!
[1]1686!--    If Galilei transformation is used, determine the distance that the
1687!--    model has moved so far
1688       IF ( galilei_transformation )  THEN
1689          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1690          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1691       ENDIF
1692
1693!
1694!--    Check, if restart is necessary (because cpu-time is expiring or
1695!--    because it is forced by user) and set stop flag
[108]1696!--    This call is skipped if the remote model has already initiated a restart.
1697       IF ( .NOT. terminate_run )  CALL check_for_restart
[1]1698
1699!
1700!--    Carry out statistical analysis and output at the requested output times.
1701!--    The MOD function is used for calculating the output time counters (like
1702!--    time_dopr) in order to regard a possible decrease of the output time
1703!--    interval in case of restart runs
1704
1705!
1706!--    Set a flag indicating that so far no statistics have been created
1707!--    for this time step
1708       flow_statistics_called = .FALSE.
1709
1710!
1711!--    If required, call flow_statistics for averaging in time
[3761]1712       IF ( averaging_interval_pr /= 0.0_wp  .AND.                                                 &
1713            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.                                &
[3646]1714            time_since_reference_point >= skip_time_dopr )  THEN
[1]1715          time_dopr_av = time_dopr_av + dt_3d
1716          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1717             do_sum = .TRUE.
[3761]1718             time_dopr_av = MOD( time_dopr_av, MAX( dt_averaging_input_pr, dt_3d ) )
[1]1719          ENDIF
1720       ENDIF
1721       IF ( do_sum )  CALL flow_statistics
1722
1723!
[410]1724!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
[3761]1725       IF ( averaging_interval /= 0.0_wp  .AND.                                                    &
1726            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND.                        &
1727            time_since_reference_point >= skip_time_data_output_av )                               &
[1]1728       THEN
1729          time_do_sla = time_do_sla + dt_3d
1730          IF ( time_do_sla >= dt_averaging_input )  THEN
[3994]1731             IF ( current_timestep_number > timestep_number_at_prev_calc )                         &
1732                CALL diagnostic_output_quantities_calculate
1733
[1]1734             CALL sum_up_3d_data
1735             average_count_3d = average_count_3d + 1
1736             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1737          ENDIF
1738       ENDIF
[3421]1739!
1740!--    Average surface data
[3648]1741       IF ( surface_output )  THEN
[3761]1742          IF ( averaging_interval_surf /= 0.0_wp                                                   &
1743                .AND.  ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf                &
[3647]1744                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
[3421]1745             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
[3648]1746                CALL surface_data_output_averaging
[3421]1747                average_count_surf = average_count_surf + 1
1748             ENDIF
1749          ENDIF
1750       ENDIF
[1]1751
1752!
1753!--    Calculate spectra for time averaging
[3761]1754       IF ( averaging_interval_sp /= 0.0_wp  .AND. ( dt_dosp - time_dosp ) <= averaging_interval_sp&
1755            .AND.  time_since_reference_point >= skip_time_dosp )  THEN
[1]1756          time_dosp_av = time_dosp_av + dt_3d
1757          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1758             CALL calc_spectra
[3761]1759             time_dosp_av = MOD( time_dosp_av, MAX( dt_averaging_input_pr, dt_3d ) )
[1]1760          ENDIF
1761       ENDIF
1762
1763!
[1957]1764!--    Call flight module and output data
1765       IF ( virtual_flight )  THEN
1766          CALL flight_measurement
1767          CALL data_output_flight
1768       ENDIF
[3472]1769!
1770!--    Take virtual measurements
[3988]1771       IF ( virtual_measurement  .AND.  time_virtual_measurement >= dt_virtual_measurement         &
1772                                 .AND.  vm_time_start <= time_since_reference_point )  THEN
[3704]1773          CALL vm_sampling
1774          CALL vm_data_output
[3988]1775          time_virtual_measurement = MOD(      time_virtual_measurement,                           &
1776                                          MAX( dt_virtual_measurement, dt_3d ) )
[3704]1777       ENDIF
[1957]1778!
[1]1779!--    Profile output (ASCII) on file
1780       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1781          CALL print_1d
[3761]1782          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, dt_3d ) )
[1]1783       ENDIF
1784
1785!
1786!--    Graphic output for PROFIL
[3761]1787       IF ( time_dopr >= dt_dopr  .AND.  time_since_reference_point >= skip_time_dopr )  THEN
[1]1788          IF ( dopr_n /= 0 )  CALL data_output_profiles
1789          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
[1342]1790          time_dopr_av = 0.0_wp    ! due to averaging (see above)
[1]1791       ENDIF
1792
1793!
1794!--    Graphic output for time series
1795       IF ( time_dots >= dt_dots )  THEN
[48]1796          CALL data_output_tseries
[1]1797          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1798       ENDIF
1799
1800!
1801!--    Output of spectra (formatted for use with PROFIL), in case of no
1802!--    time averaging, spectra has to be calculated before
[3761]1803       IF ( time_dosp >= dt_dosp  .AND.  time_since_reference_point >= skip_time_dosp )  THEN
[1]1804          IF ( average_count_sp == 0 )  CALL calc_spectra
1805          CALL data_output_spectra
1806          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1807       ENDIF
1808
1809!
1810!--    2d-data output (cross-sections)
[3761]1811       IF ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy )  THEN
[3994]1812          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1813             CALL diagnostic_output_quantities_calculate
1814
[1]1815          CALL data_output_2d( 'xy', 0 )
1816          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1817       ENDIF
[3761]1818       IF ( time_do2d_xz >= dt_do2d_xz  .AND.  time_since_reference_point >= skip_time_do2d_xz )  THEN
[3994]1819          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1820
1821             CALL diagnostic_output_quantities_calculate
[1]1822          CALL data_output_2d( 'xz', 0 )
1823          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1824       ENDIF
[3761]1825       IF ( time_do2d_yz >= dt_do2d_yz  .AND.  time_since_reference_point >= skip_time_do2d_yz )  THEN
[3994]1826          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1827             CALL diagnostic_output_quantities_calculate
1828
[1]1829          CALL data_output_2d( 'yz', 0 )
1830          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1831       ENDIF
1832
1833!
1834!--    3d-data output (volume data)
[3761]1835       IF ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  THEN
[3994]1836          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1837             CALL diagnostic_output_quantities_calculate
1838
[1]1839          CALL data_output_3d( 0 )
1840          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1841       ENDIF
1842
1843!
[1783]1844!--    Masked data output
[410]1845       DO  mid = 1, masks
[3761]1846          IF ( time_domask(mid) >= dt_domask(mid)                                                  &
1847               .AND.  time_since_reference_point >= skip_time_domask(mid) )  THEN
[3994]1848             IF ( current_timestep_number > timestep_number_at_prev_calc )                         &
1849                CALL diagnostic_output_quantities_calculate
1850
[410]1851             CALL data_output_mask( 0 )
[3761]1852             time_domask(mid) = MOD( time_domask(mid), MAX( dt_domask(mid), dt_3d ) )
[410]1853          ENDIF
1854       ENDDO
1855
1856!
1857!--    Output of time-averaged 2d/3d/masked data
[3761]1858       IF ( time_do_av >= dt_data_output_av                                                        &
1859            .AND.  time_since_reference_point >= skip_time_data_output_av )  THEN
[1]1860          CALL average_3d_data
[3742]1861!
1862!--       Udate thermal comfort indices based on updated averaged input
1863          IF ( biometeorology  .AND.  thermal_comfort )  THEN
1864             CALL bio_calculate_thermal_index_maps ( .TRUE. )
1865          ENDIF
[1]1866          CALL data_output_2d( 'xy', 1 )
1867          CALL data_output_2d( 'xz', 1 )
1868          CALL data_output_2d( 'yz', 1 )
1869          CALL data_output_3d( 1 )
[410]1870          DO  mid = 1, masks
1871             CALL data_output_mask( 1 )
1872          ENDDO
[1]1873          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1874       ENDIF
[3421]1875!
1876!--    Output of surface data, instantaneous and averaged data
[3648]1877       IF ( surface_output )  THEN
[3761]1878          IF ( time_dosurf >= dt_dosurf  .AND.  time_since_reference_point >= skip_time_dosurf )  THEN
[3648]1879             CALL surface_data_output( 0 )
[3421]1880             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1881          ENDIF
[3761]1882          IF ( time_dosurf_av >= dt_dosurf_av  .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
[3648]1883             CALL surface_data_output( 1 )
[3421]1884             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1885          ENDIF
1886       ENDIF
[1]1887
1888!
1889!--    Output of particle time series
[253]1890       IF ( particle_advection )  THEN
[3761]1891          IF ( time_dopts >= dt_dopts  .OR.                                                        &
1892               ( time_since_reference_point >= particle_advection_start  .AND.                     &
[849]1893                 first_call_lpm ) )  THEN
[4017]1894             CALL lpm_data_output_ptseries
[253]1895             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1896          ENDIF
[1]1897       ENDIF
1898
1899!
[3719]1900!--    If required, set the heat flux for the next time step to a random value
[2232]1901       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
[3719]1902          IF ( surf_def_h(0)%ns >= 1 )  THEN
1903             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1904             CALL disturb_heatflux( surf_def_h(0) )
1905             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1906          ENDIF
1907          IF ( surf_lsm_h%ns    >= 1 )  THEN
1908             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1909             CALL disturb_heatflux( surf_lsm_h    )
1910             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1911          ENDIF
1912          IF ( surf_usm_h%ns    >= 1 )  THEN
1913             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1914             CALL disturb_heatflux( surf_usm_h    )
1915             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1916          ENDIF
[2232]1917       ENDIF
[1]1918
1919!
[3684]1920!--    Execute alle other module actions routunes
1921       CALL module_interface_actions( 'after_timestep' )
[2817]1922
1923!
[1918]1924!--    Determine size of next time step. Save timestep dt_3d because it is
1925!--    newly calculated in routine timestep, but required further below for
1926!--    steering the run control output interval
1927       dt_3d_old = dt_3d
1928       CALL timestep
1929
1930!
[1925]1931!--    Synchronize the timestep in case of nested run.
1932       IF ( nested_run )  THEN
1933!
1934!--       Synchronize by unifying the time step.
1935!--       Global minimum of all time-steps is used for all.
1936          CALL pmci_synchronize
1937       ENDIF
1938
1939!
[1918]1940!--    Computation and output of run control parameters.
1941!--    This is also done whenever perturbations have been imposed
[3761]1942       IF ( time_run_control >= dt_run_control  .OR.                                               &
1943            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created )                           &
[1918]1944       THEN
1945          CALL run_control
1946          IF ( time_run_control >= dt_run_control )  THEN
[3761]1947             time_run_control = MOD( time_run_control, MAX( dt_run_control, dt_3d_old ) )
[1918]1948          ENDIF
1949       ENDIF
1950
1951!
[1402]1952!--    Output elapsed simulated time in form of a progress bar on stdout
1953       IF ( myid == 0 )  CALL output_progress_bar
1954
[1]1955       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1956
[667]1957
[1]1958    ENDDO   ! time loop
[3448]1959
[3761]1960#if defined( _OPENACC )
[3658]1961    CALL exit_surface_arrays
1962#endif
[3634]1963!$ACC END DATA
1964!$ACC END DATA
1965!$ACC END DATA
1966!$ACC END DATA
1967!$ACC END DATA
1968!$ACC END DATA
1969!$ACC END DATA
1970
[3347]1971!
[2365]1972!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
1973    IF ( vnest_init )  CALL vnest_deallocate
1974
[1402]1975    IF ( myid == 0 )  CALL finish_progress_bar
1976
[3885]1977    CALL location_message( 'atmosphere (and/or ocean) time-stepping', 'finished' )
[1384]1978
[1]1979 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.