source: palm/trunk/SOURCE/time_integration.f90 @ 4016

Last change on this file since 4016 was 4010, checked in by hellstea, 5 years ago

Nest mass conservation correction included

  • Property svn:keywords set to Id
File size: 78.3 KB
RevLine 
[1682]1!> @file time_integration.f90
[2000]2!------------------------------------------------------------------------------!
[2696]3! This file is part of the PALM model system.
[1036]4!
[2000]5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
[1036]9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
[3647]17! Copyright 1997-2019 Leibniz Universitaet Hannover
[2000]18!------------------------------------------------------------------------------!
[1036]19!
[484]20! Current revisions:
[1092]21! ------------------
[1928]22!
[3745]23!
[1366]24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 4010 2019-05-31 13:25:08Z forkel $
[4010]27! Mass (volume) flux correction included to ensure global mass conservation for child domains.
28!
29! 3994 2019-05-22 18:08:09Z suehring
[3994]30! output of turbulence intensity added
31!
32! 3988 2019-05-22 11:32:37Z kanani
[3988]33! Implement steerable output interval for virtual measurements
34!
35! 3968 2019-05-13 11:04:01Z suehring
[3968]36! replace nspec_out with n_matched_vars
37!
38! 3929 2019-04-24 12:52:08Z banzhafs
[3929]39! Reverse changes back from revision 3878: use chem_boundary_conds instead of
40! chem_boundary_conds_decycle
41!
42!
43! 3885 2019-04-11 11:29:34Z kanani
[3885]44! Changes related to global restructuring of location messages and introduction
45! of additional debug messages
[3929]46!
[3885]47! 3879 2019-04-08 20:25:23Z knoop
[3875]48! Moved wtm_forces to module_interface_actions
49!
50! 3872 2019-04-08 15:03:06Z knoop
[3864]51! Modifications made for salsa:
52! - Call salsa_emission_update at each time step but do the checks within
53!   salsa_emission_update (i.e. skip_time_do_salsa >= time_since_reference_point
54!   and next_aero_emission_update <= time_since_reference_point ).
55! - Renamed nbins --> nbins_aerosol, ncc_tot --> ncomponents_mass and
56!   ngast --> ngases_salsa and loop indices b, c and sg to ib, ic and ig
57! - Apply nesting for salsa variables
58! - Removed cpu_log calls speciffic for salsa.
59!
60! 3833 2019-03-28 15:04:04Z forkel
[3879]61! added USE chem_gasphase_mod, replaced nspec by nspec since fixed compounds are not integrated
[3833]62!
63! 3820 2019-03-27 11:53:41Z forkel
[3820]64! renamed do_emiss to emissions_anthropogenic (ecc)
65!
66!
67! 3774 2019-03-04 10:52:49Z moh.hefny
[3774]68! rephrase if statement to avoid unallocated array in case of
69! nesting_offline is false (crashing during debug mode)
70!
71! 3761 2019-02-25 15:31:42Z raasch $
[3761]72! module section re-formatted and openacc required variables moved to separate section,
73! re-formatting to 100 char line width
74!
75! 3745 2019-02-15 18:57:56Z suehring
[3745]76! Call indoor model after first timestep
77!
78! 3744 2019-02-15 18:38:58Z suehring
[3742]79! - Moved call of bio_calculate_thermal_index_maps from biometeorology module to
80! time_integration to make sure averaged input is updated before calculating.
81!
82! 3739 2019-02-13 08:05:17Z dom_dwd_user
[3739]83! Removed everything related to "time_bio_results" as this is never used.
84!
85! 3724 2019-02-06 16:28:23Z kanani
[3724]86! Correct double-used log_point_s unit
87!
88! 3719 2019-02-06 13:10:18Z kanani
[3719]89! - removed wind_turbine cpu measurement, since same time is measured inside
90!   wtm_forces subroutine as special measures
91! - moved the numerous vnest cpulog to special measures
92! - extended radiation cpulog over entire radiation part,
93!   moved radiation_interactions cpulog to special measures
94! - moved some cpu_log calls to this routine for better overview
95!
96! 3705 2019-01-29 19:56:39Z suehring
[3705]97! Data output for virtual measurements added
98!
99! 3704 2019-01-29 19:51:41Z suehring
[3648]100! Rename subroutines for surface-data output
101!
102! 3647 2019-01-02 14:10:44Z kanani
[3647]103! Bugfix: add time_since_reference_point to IF clause for data_output calls
104! (otherwise skip_time_* values don't come into affect with dt_do* = 0.0).
105! Clean up indoor_model and biometeorology model call.
106!
107! 3646 2018-12-28 17:58:49Z kanani
[3646]108! Bugfix: use time_since_reference_point instead of simulated_time where
109! required (relevant when using wall/soil spinup)
110!
111! 3634 2018-12-18 12:31:28Z knoop
[3634]112! OpenACC port for SPEC
113!
114! 3597 2018-12-04 08:40:18Z maronga
[3597]115! Removed call to calculation of near air (10 cm) potential temperature (now in
116! surface layer fluxes)
117!
118! 3589 2018-11-30 15:09:51Z suehring
[3589]119! Move the control parameter "salsa" from salsa_mod to control_parameters
120! (M. Kurppa)
121!
122! 3582 2018-11-29 19:16:36Z suehring
[3569]123! dom_dwd_user, Schrempf:
124! Changes due to merge of uv exposure model into biometeorology_mod.
125!
126! 3525 2018-11-14 16:06:14Z kanani
[3525]127! Changes related to clean-up of biometeorology (dom_dwd_user)
128!
129! 3524 2018-11-14 13:36:44Z raasch
[3524]130! unused variables removed
131!
132! 3484 2018-11-02 14:41:25Z hellstea
[3484]133! pmci_ensure_nest_mass_conservation is premanently removed
134!
135! 3473 2018-10-30 20:50:15Z suehring
[3473]136! new module for virtual measurements introduced
137!
138! 3472 2018-10-30 20:43:50Z suehring
[3469]139! Add indoor model (kanani, srissman, tlang)
140!
141! 3467 2018-10-30 19:05:21Z suehring
[3467]142! Implementation of a new aerosol module salsa.
143!
144! 3448 2018-10-29 18:14:31Z kanani
[3448]145! Add biometeorology
146!
147! 3421 2018-10-24 18:39:32Z gronemeier
[3421]148! Surface data output
149!
150! 3418 2018-10-24 16:07:39Z kanani
[3418]151! call to material_heat_model now with check if spinup runs (rvtils)
152!
153! 3378 2018-10-19 12:34:59Z kanani
[3378]154! merge from radiation branch (r3362) into trunk
155! (moh.hefny):
156! Bugfix in the if statement to call radiation_interaction
157!
158! 3347 2018-10-15 14:21:08Z suehring
[3347]159! - offline nesting separated from large-scale forcing module
160! - changes for synthetic turbulence generator
161!
162! 3343 2018-10-15 10:38:52Z suehring
[3298]163! - Formatting, clean-up, comments (kanani)
164! - Added CALL to chem_emissions_setup (Russo)
165! - Code added for decycling chemistry (basit)
166!
167! 3294 2018-10-01 02:37:10Z raasch
[3294]168! changes concerning modularization of ocean option
169!
170! 3274 2018-09-24 15:42:55Z knoop
[3274]171! Modularization of all bulk cloud physics code components
172!
173! 3241 2018-09-12 15:02:00Z raasch
[3241]174! unused variables removed
175!
176! 3198 2018-08-15 09:23:10Z sward
[3198]177! Added multi_agent_system_end; defined start time for MAS relative to
178! time_since_reference_point
179!
180! 3183 2018-07-27 14:25:55Z suehring
[3183]181! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
182! Rename subroutines and variables in COSMO nesting mode
183!
184! 3182 2018-07-27 13:36:03Z suehring
[3159]185! Added multi agent system
186!
187! 3042 2018-05-25 10:44:37Z schwenkel
[3042]188! Changed the name specific humidity to mixing ratio
189!
190! 3040 2018-05-25 10:22:08Z schwenkel
[3014]191! Fixed bug in IF statement
192! Ensure that the time when calling the radiation to be the time step of the
193! pre-calculated time when first calculate the positions of the sun
194!
195! 3004 2018-04-27 12:33:25Z Giersch
[3004]196! First call of flow_statistics has been removed. It is already called in
197! run_control itself
198!
199! 2984 2018-04-18 11:51:30Z hellstea
[2984]200! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
201! as seemingly unnecessary.
[2977]202!
203! 2941 2018-04-03 11:54:58Z kanani
[2941]204! Deduct spinup_time from RUN_CONTROL output of main 3d run
205! (use time_since_reference_point instead of simulated_time)
206!
207! 2938 2018-03-27 15:52:42Z suehring
[2938]208! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
209!
210! 2936 2018-03-27 14:49:27Z suehring
[2934]211! Little formatting adjustment.
212!
213! 2817 2018-02-19 16:32:21Z knoop
[2817]214! Preliminary gust module interface implemented
215!
216! 2801 2018-02-14 16:01:55Z thiele
[2801]217! Changed lpm from subroutine to module.
218! Introduce particle transfer in nested models.
219!
220! 2776 2018-01-31 10:44:42Z Giersch
[2776]221! Variable use_synthetic_turbulence_generator has been abbreviated
222!
223! 2773 2018-01-30 14:12:54Z suehring
[2773]224! - Nesting for chemical species
225!
226! 2766 2018-01-22 17:17:47Z kanani
[2766]227! Removed preprocessor directive __chem
228!
229! 2718 2018-01-02 08:49:38Z maronga
[2716]230! Corrected "Former revisions" section
231!
232! 2696 2017-12-14 17:12:51Z kanani
233! - Change in file header (GPL part)
[2696]234! - Implementation of uv exposure model (FK)
235! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
236! - renamed diffusivities to tcm_diffusivities (TG)
237! - implement prognostic equation for diss (TG)
238! - Moved/commented CALL to chem_emissions (FK)
239! - Added CALL to chem_emissions (FK)
240! - Implementation of chemistry module (FK)
241! - Calls for setting boundary conditions in USM and LSM (MS)
242! - Large-scale forcing with larger-scale models implemented (MS)
243! - Rename usm_radiation into radiation_interactions; merge with branch
244!   radiation (MS)
245! - added call for usm_green_heat_model for green building surfaces (RvT)
246! - added call for usm_temperature_near_surface for use in indoor model (RvT)
247!
248! 2617 2017-11-16 12:47:24Z suehring
[2617]249! Bugfix, assure that the reference state does not become zero.
250!
251! 2563 2017-10-19 15:36:10Z Giersch
[2563]252! Variable wind_turbine moved to module control_parameters
253!
254! 2365 2017-08-21 14:59:59Z kanani
[2365]255! Vertical grid nesting implemented (SadiqHuq)
256!
257! 2320 2017-07-21 12:47:43Z suehring
[2311]258! Set bottom boundary conditions after nesting interpolation and anterpolation
259!
260! 2299 2017-06-29 10:14:38Z maronga
[2299]261! Call of soil model adjusted
262!
263! 2292 2017-06-20 09:51:42Z schwenkel
[2292]264! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
265! includes two more prognostic equations for cloud drop concentration (nc) 
266! and cloud water content (qc).
267!
268! 2271 2017-06-09 12:34:55Z sward
[2271]269! Start timestep message changed
270!
271! 2259 2017-06-08 09:09:11Z gronemeier
[2259]272! Implemented synthetic turbulence generator
[1366]273!
[2259]274! 2233 2017-05-30 18:08:54Z suehring
275!
[2233]276! 2232 2017-05-30 17:47:52Z suehring
277! Adjustments to new topography and surface concept
278! Modify passed parameters for disturb_field
279!
[2179]280! 2178 2017-03-17 11:07:39Z hellstea
281! Setting perturbations at all times near inflow boundary is removed
282! in case of nested boundaries
283!
[2175]284! 2174 2017-03-13 08:18:57Z maronga
285! Added support for nesting with cloud microphysics
286!
[2119]287! 2118 2017-01-17 16:38:49Z raasch
288! OpenACC directives and related code removed
289!
[2051]290! 2050 2016-11-08 15:00:55Z gronemeier
291! Implement turbulent outflow condition
292!
[2032]293! 2031 2016-10-21 15:11:58Z knoop
294! renamed variable rho to rho_ocean
295!
[2012]296! 2011 2016-09-19 17:29:57Z kanani
297! Flag urban_surface is now defined in module control_parameters,
298! removed commented CALLs of global_min_max.
299!
[2008]300! 2007 2016-08-24 15:47:17Z kanani
301! Added CALLs for new urban surface model
302!
[2001]303! 2000 2016-08-20 18:09:15Z knoop
304! Forced header and separation lines into 80 columns
305!
[1977]306! 1976 2016-07-27 13:28:04Z maronga
307! Simplified calls to radiation model
308!
[1961]309! 1960 2016-07-12 16:34:24Z suehring
310! Separate humidity and passive scalar
311!
[1958]312! 1957 2016-07-07 10:43:48Z suehring
313! flight module added
314!
[1933]315! 1919 2016-05-27 14:51:23Z raasch
316! Initial version of purely vertical nesting introduced.
[1928]317!
[1919]318! 1918 2016-05-27 14:35:57Z raasch
319! determination of time step moved to the end of the time step loop,
320! the first time step is now always calculated before the time step loop (i.e.
321! also in case of restart runs)
322!
[1917]323! 1914 2016-05-26 14:44:07Z witha
324! Added call for wind turbine model
325!
[1879]326! 1878 2016-04-19 12:30:36Z hellstea
327! Synchronization for nested runs rewritten
328!
[1854]329! 1853 2016-04-11 09:00:35Z maronga
330! Adjusted for use with radiation_scheme = constant
331!
[1851]332! 1849 2016-04-08 11:33:18Z hoffmann
333! Adapted for modularization of microphysics
334!
[1834]335! 1833 2016-04-07 14:23:03Z raasch
336! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
337!
[1832]338! 1831 2016-04-07 13:15:51Z hoffmann
339! turbulence renamed collision_turbulence
340!
[1823]341! 1822 2016-04-07 07:49:42Z hoffmann
342! icloud_scheme replaced by microphysics_*
343!
[1809]344! 1808 2016-04-05 19:44:00Z raasch
345! output message in case unscheduled radiation calls removed
346!
[1798]347! 1797 2016-03-21 16:50:28Z raasch
348! introduction of different datatransfer modes
349!
[1792]350! 1791 2016-03-11 10:41:25Z raasch
351! call of pmci_update_new removed
352!
[1787]353! 1786 2016-03-08 05:49:27Z raasch
354! +module spectrum
355!
[1784]356! 1783 2016-03-06 18:36:17Z raasch
357! switch back of netcdf data format for mask output moved to the mask output
358! routine
359!
[1782]360! 1781 2016-03-03 15:12:23Z raasch
361! some pmc calls removed at the beginning (before timeloop),
362! pmc initialization moved to the main program
363!
[1765]364! 1764 2016-02-28 12:45:19Z raasch
365! PMC_ACTIVE flags removed,
366! bugfix: nest synchronization after first call of timestep
367!
[1763]368! 1762 2016-02-25 12:31:13Z hellstea
369! Introduction of nested domain feature
370!
[1737]371! 1736 2015-12-04 08:56:33Z raasch
372! no perturbations added to total domain if energy limit has been set zero
373!
[1692]374! 1691 2015-10-26 16:17:44Z maronga
375! Added option for spin-ups without land surface and radiation models. Moved calls
376! for radiation and lan surface schemes.
377!
[1683]378! 1682 2015-10-07 23:56:08Z knoop
379! Code annotations made doxygen readable
380!
[1672]381! 1671 2015-09-25 03:29:37Z raasch
382! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
383! for particles
384!
[1586]385! 1585 2015-04-30 07:05:52Z maronga
386! Moved call of radiation scheme. Added support for RRTM
387!
[1552]388! 1551 2015-03-03 14:18:16Z maronga
389! Added interface for different radiation schemes.
390!
[1497]391! 1496 2014-12-02 17:25:50Z maronga
392! Added calls for the land surface model and radiation scheme
393!
[1403]394! 1402 2014-05-09 14:25:13Z raasch
395! location messages modified
396!
[1385]397! 1384 2014-05-02 14:31:06Z raasch
398! location messages added
399!
[1381]400! 1380 2014-04-28 12:40:45Z heinze
401! CALL of nudge_ref added
402! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
403!
[1366]404! 1365 2014-04-22 15:03:56Z boeske
[1365]405! Reset sums_ls_l to zero at each timestep
406! +sums_ls_l
407! Calculation of reference state (previously in subroutine calc_mean_profile)
408
[1343]409! 1342 2014-03-26 17:04:47Z kanani
410! REAL constants defined as wp-kind
411!
[1321]412! 1320 2014-03-20 08:40:49Z raasch
[1320]413! ONLY-attribute added to USE-statements,
414! kind-parameters added to all INTEGER and REAL declaration statements,
415! kinds are defined in new module kinds,
416! old module precision_kind is removed,
417! revision history before 2012 removed,
418! comment fields (!:) to be used for variable explanations added to
419! all variable declaration statements
[1319]420! 1318 2014-03-17 13:35:16Z raasch
421! module interfaces removed
422!
[1309]423! 1308 2014-03-13 14:58:42Z fricke
424! +netcdf_data_format_save
425! For masked data, parallel netcdf output is not tested so far, hence
426! netcdf_data_format is switched back to non-paralell output.
427!
[1277]428! 1276 2014-01-15 13:40:41Z heinze
429! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
430!
[1258]431! 1257 2013-11-08 15:18:40Z raasch
432! acc-update-host directive for timestep removed
433!
[1242]434! 1241 2013-10-30 11:36:58Z heinze
435! Generalize calc_mean_profile for wider use
436! Determine shf and qsws in dependence on data from LSF_DATA
437! Determine ug and vg in dependence on data from LSF_DATA
[1222]438! 1221 2013-09-10 08:59:13Z raasch
439! host update of arrays before timestep is called
440!
[1182]441! 1179 2013-06-14 05:57:58Z raasch
442! mean profiles for reference state are only calculated if required,
443! small bugfix for background communication
444!
[1172]445! 1171 2013-05-30 11:27:45Z raasch
446! split of prognostic_equations deactivated (comment lines), for the time being
447!
[1132]448! 1128 2013-04-12 06:19:32Z raasch
[1128]449! asynchronous transfer of ghost point data realized for acc-optimized version:
450! prognostic_equations are first called two times for those points required for
451! the left-right and north-south exchange, respectively, and then for the
452! remaining points,
453! those parts requiring global communication moved from prognostic_equations to
454! here
[392]455!
[1116]456! 1115 2013-03-26 18:16:16Z hoffmann
457! calculation of qr and nr is restricted to precipitation
458!
[1114]459! 1113 2013-03-10 02:48:14Z raasch
460! GPU-porting of boundary conditions,
461! openACC directives updated
462! formal parameter removed from routine boundary_conds
463!
[1112]464! 1111 2013-03-08 23:54:10Z raasch
465! +internal timestep counter for cpu statistics added,
466! openACC directives updated
467!
[1093]468! 1092 2013-02-02 11:24:22Z raasch
469! unused variables removed
470!
[1066]471! 1065 2012-11-22 17:42:36Z hoffmann
472! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
473!
[1054]474! 1053 2012-11-13 17:11:03Z hoffmann
475! exchange of ghost points for nr, qr added
476!
[1037]477! 1036 2012-10-22 13:43:42Z raasch
478! code put under GPL (PALM 3.9)
479!
[1020]480! 1019 2012-09-28 06:46:45Z raasch
481! non-optimized version of prognostic_equations removed
482!
[1017]483! 1015 2012-09-27 09:23:24Z raasch
484! +call of prognostic_equations_acc
485!
[1002]486! 1001 2012-09-13 14:08:46Z raasch
487! all actions concerning leapfrog- and upstream-spline-scheme removed
488!
[850]489! 849 2012-03-15 10:35:09Z raasch
490! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
491!
[826]492! 825 2012-02-19 03:03:44Z raasch
493! wang_collision_kernel renamed wang_kernel
494!
[1]495! Revision 1.1  1997/08/11 06:19:04  raasch
496! Initial revision
497!
498!
499! Description:
500! ------------
[1682]501!> Integration in time of the model equations, statistical analysis and graphic
502!> output
[1]503!------------------------------------------------------------------------------!
[1682]504 SUBROUTINE time_integration
505 
[1]506
[3761]507    USE advec_ws,                                                                                  &
[1320]508        ONLY:  ws_statistics
509
[3761]510    USE arrays_3d,                                                                                 &
511        ONLY:  diss, diss_p, dzu, e, e_p, nc, nc_p, nr, nr_p, prho, pt, pt_p, pt_init, q_init, q,  &
512               qc, qc_p, ql, ql_c, ql_v, ql_vp, qr, qr_p, q_p, ref_state, rho_ocean, s, s_p, sa_p, &
513               tend, u, u_p, v, vpt, v_p, w, w_p
[1320]514
[3761]515    USE biometeorology_mod,                                                                        &
516        ONLY:  bio_calculate_thermal_index_maps, thermal_comfort, uvem_calc_exposure, uv_exposure
[3448]517
[3761]518    USE bulk_cloud_model_mod,                                                                      &
519        ONLY: bulk_cloud_model, calc_liquid_water_content, collision_turbulence,                   &
520              microphysics_morrison, microphysics_seifert
[3294]521
[3761]522    USE calc_mean_profile_mod,                                                                     &
[1320]523        ONLY:  calc_mean_profile
524
[3761]525    USE chem_emissions_mod,                                                                        &
[3298]526        ONLY:  chem_emissions_setup
[2696]527
[3833]528    USE chem_gasphase_mod,                                                                         &
[3929]529        ONLY:  nvar
[3833]530
[3761]531    USE chem_modules,                                                                              &
[3968]532        ONLY:  bc_cs_t_val, chem_species, cs_name, emissions_anthropogenic, n_matched_vars
[2696]533
[3761]534    USE chemistry_model_mod,                                                                       &
[3929]535        ONLY:  chem_boundary_conds
[3298]536
[3761]537    USE control_parameters,                                                                        &
538        ONLY:  advected_distance_x, advected_distance_y, air_chemistry, average_count_3d,          &
539               averaging_interval, averaging_interval_pr, bc_lr_cyc, bc_ns_cyc, bc_pt_t_val,       &
540               bc_q_t_val, biometeorology, call_psolver_at_all_substeps,  child_domain,            &
541               cloud_droplets, constant_flux_layer, constant_heatflux, create_disturbances,        &
542               dopr_n, constant_diffusion, coupling_mode, coupling_start_time,                     &
543               current_timestep_number, disturbance_created, disturbance_energy_limit, dist_range, &
544               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr, dt_coupling,              &
545               dt_data_output_av, dt_disturb, dt_do2d_xy, dt_do2d_xz, dt_do2d_yz, dt_do3d,         &
546               dt_domask,dt_dopts, dt_dopr, dt_dopr_listing, dt_dots, dt_dvrp, dt_run_control,     &
547               end_time, first_call_lpm, first_call_mas, galilei_transformation, humidity,         &
548               indoor_model, intermediate_timestep_count, intermediate_timestep_count_max,         &
549               land_surface, large_scale_forcing, loop_optimization, lsf_surf, lsf_vert, masks,    &
550               mid, multi_agent_system_end, multi_agent_system_start, nesting_offline, neutral,    &
551               nr_timesteps_this_run, nudging, ocean_mode, passive_scalar, pt_reference,           &
552               pt_slope_offset, random_heatflux, rans_mode, rans_tke_e, run_coupled, salsa,        &
553               simulated_time, simulated_time_chr, skip_time_do2d_xy, skip_time_do2d_xz,           &
554               skip_time_do2d_yz, skip_time_do3d, skip_time_domask, skip_time_dopr,                &
555               skip_time_data_output_av, sloping_surface, stop_dt, surface_output,                 &
556               terminate_coupled, terminate_run, timestep_scheme, time_coupling, time_do2d_xy,     &
557               time_do2d_xz, time_do2d_yz, time_do3d, time_domask, time_dopr, time_dopr_av,        &
558               time_dopr_listing, time_dopts, time_dosp, time_dosp_av, time_dots, time_do_av,      &
559               time_do_sla, time_disturb, time_dvrp, time_run_control, time_since_reference_point, &
560               turbulent_inflow, turbulent_outflow, urban_surface,                                 &
561               use_initial_profile_as_reference, use_single_reference_value, u_gtrans, v_gtrans,   &
[3875]562               virtual_flight, virtual_measurement, ws_scheme_mom, ws_scheme_sca
[1320]563
[3761]564    USE cpulog,                                                                                    &
[1320]565        ONLY:  cpu_log, log_point, log_point_s
566
[3761]567    USE date_and_time_mod,                                                                         &
[3298]568        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
569
[3994]570    USE diagnostic_output_quantities_mod,                                                          &
571        ONLY:  diagnostic_output_quantities_calculate,                                             &
572               timestep_number_at_prev_calc
573
[3761]574    USE flight_mod,                                                                                &
[1957]575        ONLY:  flight_measurement
576
[3761]577    USE indices,                                                                                   &
578        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nzb, nzt
[1320]579
[3761]580    USE indoor_model_mod,                                                                          &
581        ONLY:  dt_indoor, im_main_heatcool, time_indoor
[3469]582
[3761]583    USE interaction_droplets_ptq_mod,                                                              &
[1320]584        ONLY:  interaction_droplets_ptq
585
[1918]586    USE interfaces
587
[1320]588    USE kinds
589
[3761]590    USE land_surface_model_mod,                                                                    &
591        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model, skip_time_do_lsm
[1496]592
[3761]593    USE lpm_mod,                                                                                   &
594        ONLY:  lpm
595
596    USE lsf_nudging_mod,                                                                           &
[3347]597        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
[1320]598
[3761]599    USE module_interface,                                                                          &
[3684]600        ONLY:  module_interface_actions
601
[3761]602    USE multi_agent_system_mod,                                                                    &
[3198]603        ONLY:  agents_active, multi_agent_system
[3448]604
[3761]605    USE nesting_offl_mod,                                                                          &
[3347]606        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
[3864]607
[3761]608    USE netcdf_data_input_mod,                                                                     &
609        ONLY:  chem_emis, chem_emis_att, nest_offl, netcdf_data_input_offline_nesting
[3298]610
[3761]611    USE ocean_mod,                                                                                 &
[3294]612        ONLY:  prho_reference
613
[3761]614    USE particle_attributes,                                                                       &
615        ONLY:  particle_advection, particle_advection_start, use_sgs_for_particles, wang_kernel
[1320]616
[1]617    USE pegrid
618
[3761]619    USE pmc_interface,                                                                             &
[4010]620        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans, pmci_synchronize,    &
621        pmci_ensure_nest_mass_conservation, pmci_ensure_nest_mass_conservation_vertical
[1762]622
[3761]623    USE progress_bar,                                                                              &
[1402]624        ONLY:  finish_progress_bar, output_progress_bar
625
[3761]626    USE prognostic_equations_mod,                                                                  &
[2118]627        ONLY:  prognostic_equations_cache, prognostic_equations_vector
[1320]628
[3761]629    USE radiation_model_mod,                                                                       &
630        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,                    &
631              radiation_interaction, radiation_interactions, skip_time_do_radiation, time_radiation
[3864]632
[3761]633    USE salsa_mod,                                                                                 &
[3864]634        ONLY: aerosol_number, aerosol_mass, bc_am_t_val, bc_an_t_val, bc_gt_t_val,                 &
635              nbins_aerosol, ncomponents_mass, ngases_salsa, salsa_boundary_conds,                 &
636              salsa_emission_update, salsa_gas, salsa_gases_from_chem, skip_time_do_salsa
[1496]637
[3761]638    USE spectra_mod,                                                                               &
639        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp, skip_time_dosp
[1786]640
[3761]641    USE statistics,                                                                                &
642        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l
[1320]643
[3761]644
645    USE surface_layer_fluxes_mod,                                                                  &
[1691]646        ONLY:  surface_layer_fluxes
647
[3761]648    USE surface_data_output_mod,                                                                   &
649        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf, dt_dosurf_av,               &
650               surface_data_output, surface_data_output_averaging, skip_time_dosurf,               &
[3648]651               skip_time_dosurf_av, time_dosurf, time_dosurf_av
[2232]652
[3761]653    USE surface_mod,                                                                               &
654        ONLY:  surf_def_h, surf_lsm_h, surf_usm_h
655
656    USE synthetic_turbulence_generator_mod,                                                        &
657        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence, stg_adjust, stg_main,    &
658               time_stg_adjust, time_stg_call, use_syn_turb_gen
659
660    USE turbulence_closure_mod,                                                                    &
[2696]661        ONLY:  tcm_diffusivities, production_e_init
662
[3761]663    USE urban_surface_mod,                                                                         &
664        ONLY:  usm_boundary_condition, usm_material_heat_model, usm_material_model,                &
[3597]665               usm_surface_energy_balance, usm_green_heat_model
[2007]666
[3761]667    USE vertical_nesting_mod,                                                                      &
668        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e, vnest_boundary_conds,              &
669               vnest_boundary_conds_khkm, vnest_deallocate, vnest_init, vnest_init_fine,           &
670               vnest_start_time
[3864]671
[3761]672    USE virtual_measurement_mod,                                                                   &
[3988]673        ONLY:  dt_virtual_measurement,                                                             &
674               time_virtual_measurement,                                                           &
675               vm_data_output,                                                                     &
676               vm_sampling,                                                                        &
677               vm_time_start
[2259]678
[1914]679
[3761]680#if defined( _OPENACC )
681    USE arrays_3d,                                                             &
682        ONLY:  d, dd2zu, ddzu, ddzw, drho_air, drho_air_zw, dzw, heatflux_output_conversion, kh,   &
683               km, momentumflux_output_conversion, p, ptdf_x, ptdf_y, rdf, rdf_sc, rho_air,        &
684               rho_air_zw, te_m, tpt_m, tu_m, tv_m, tw_m, ug, u_init, u_stokes_zu, vg, v_init,     &
685               v_stokes_zu, zu
[2365]686
[3761]687    USE control_parameters,                                                                        &
688        ONLY:  tsc
689
690    USE indices,                                                                                   &
691        ONLY:  advc_flags_1, advc_flags_2, nyn, nyng, nys, nysg, nz, nzb_max, wall_flags_0
692
693    USE statistics,                                                                                &
694        ONLY:  rmask, statistic_regions, sums_l, sums_l_l, sums_us2_ws_l,                          &
695               sums_wsus_ws_l, sums_vs2_ws_l, sums_wsvs_ws_l, sums_ws2_ws_l, sums_wspts_ws_l,      &
696               sums_wsqs_ws_l, sums_wssas_ws_l, sums_wsqcs_ws_l, sums_wsqrs_ws_l, sums_wsncs_ws_l, &
[3872]697               sums_wsnrs_ws_l, sums_wsss_ws_l, weight_substep, sums_salsa_ws_l
[3761]698
699    USE surface_mod,                                                                               &
700        ONLY:  bc_h, enter_surface_arrays, exit_surface_arrays
701#endif
702
703
[1]704    IMPLICIT NONE
705
[3298]706    CHARACTER (LEN=9) ::  time_to_string   !<
[3864]707
708    INTEGER(iwp)      ::  ib        !< index for aerosol size bins
709    INTEGER(iwp)      ::  ic        !< index for aerosol mass bins
710    INTEGER(iwp)      ::  icc       !< additional index for aerosol mass bins
711    INTEGER(iwp)      ::  ig        !< index for salsa gases
[3929]712    INTEGER(iwp)      ::  lsp
713    INTEGER(iwp)      ::  lsp_usr   !<
[3298]714    INTEGER(iwp)      ::  n         !< loop counter for chemistry species
[3014]715
[1918]716    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
717                            !< steering of run control output interval
[3241]718    REAL(wp) ::  time_since_reference_point_save  !< original value of
719                                                  !< time_since_reference_point
720
[3634]721
[3761]722!
723!-- Copy data from arrays_3d
[3634]724!$ACC DATA &
725!$ACC COPY(d(nzb+1:nzt,nys:nyn,nxl:nxr)) &
726!$ACC COPY(e(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
727!$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
728!$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
729!$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
730!$ACC COPY(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
731!$ACC COPY(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
732!$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
733!$ACC COPY(pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
734
735!$ACC DATA &
736!$ACC COPY(e_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
737!$ACC COPY(u_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
738!$ACC COPY(v_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
739!$ACC COPY(w_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
740!$ACC COPY(pt_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
741!$ACC COPY(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
742!$ACC COPY(te_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
743!$ACC COPY(tu_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
744!$ACC COPY(tv_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
745!$ACC COPY(tw_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
746!$ACC COPY(tpt_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
747
748!$ACC DATA &
749!$ACC COPYIN(rho_air(nzb:nzt+1), drho_air(nzb:nzt+1)) &
750!$ACC COPYIN(rho_air_zw(nzb:nzt+1), drho_air_zw(nzb:nzt+1)) &
751!$ACC COPYIN(zu(nzb:nzt+1)) &
752!$ACC COPYIN(dzu(1:nzt+1), dzw(1:nzt+1)) &
753!$ACC COPYIN(ddzu(1:nzt+1), dd2zu(1:nzt)) &
754!$ACC COPYIN(ddzw(1:nzt+1)) &
[3658]755!$ACC COPYIN(heatflux_output_conversion(nzb:nzt+1)) &
756!$ACC COPYIN(momentumflux_output_conversion(nzb:nzt+1)) &
[3634]757!$ACC COPYIN(rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt)) &
758!$ACC COPYIN(ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng)) &
759!$ACC COPYIN(ref_state(0:nz+1)) &
760!$ACC COPYIN(u_init(0:nz+1), v_init(0:nz+1)) &
761!$ACC COPYIN(u_stokes_zu(nzb:nzt+1), v_stokes_zu(nzb:nzt+1)) &
762!$ACC COPYIN(pt_init(0:nz+1)) &
763!$ACC COPYIN(ug(0:nz+1), vg(0:nz+1))
764
[3761]765!
766!-- Copy data from control_parameters
[3634]767!$ACC DATA &
768!$ACC COPYIN(tsc(1:5))
769
[3761]770!
771!-- Copy data from indices
[3634]772!$ACC DATA &
773!$ACC COPYIN(advc_flags_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
774!$ACC COPYIN(advc_flags_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
775!$ACC COPYIN(wall_flags_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
776
[3761]777!
778!-- Copy data from surface_mod
[3634]779!$ACC DATA &
780!$ACC COPYIN(bc_h(0:1)) &
781!$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) &
782!$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) &
783!$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) &
784!$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) &
785!$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) &
786!$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns))
787
[3761]788!
789!-- Copy data from statistics
[3634]790!$ACC DATA &
[3658]791!$ACC COPYIN(hom(0:nz+1,1:2,1:4,0)) &
[3634]792!$ACC COPYIN(rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions)) &
793!$ACC COPYIN(weight_substep(1:intermediate_timestep_count_max)) &
[3658]794!$ACC COPY(sums_l(nzb:nzt+1,1:pr_palm,0)) &
[3634]795!$ACC COPY(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
796!$ACC COPY(sums_us2_ws_l(nzb:nzt+1,0)) &
797!$ACC COPY(sums_wsus_ws_l(nzb:nzt+1,0)) &
798!$ACC COPY(sums_vs2_ws_l(nzb:nzt+1,0)) &
799!$ACC COPY(sums_wsvs_ws_l(nzb:nzt+1,0)) &
800!$ACC COPY(sums_ws2_ws_l(nzb:nzt+1,0)) &
801!$ACC COPY(sums_wspts_ws_l(nzb:nzt+1,0)) &
802!$ACC COPY(sums_wssas_ws_l(nzb:nzt+1,0)) &
803!$ACC COPY(sums_wsqs_ws_l(nzb:nzt+1,0)) &
804!$ACC COPY(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
805!$ACC COPY(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
806!$ACC COPY(sums_wsncs_ws_l(nzb:nzt+1,0)) &
807!$ACC COPY(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
808!$ACC COPY(sums_wsss_ws_l(nzb:nzt+1,0)) &
809!$ACC COPY(sums_salsa_ws_l(nzb:nzt+1,0))
810
[3761]811#if defined( _OPENACC )
[3658]812    CALL enter_surface_arrays
813#endif
814
[1]815!
[1918]816!-- At beginning determine the first time step
817    CALL timestep
[1764]818!
819!-- Synchronize the timestep in case of nested run.
820    IF ( nested_run )  THEN
[1878]821!
822!--    Synchronization by unifying the time step.
823!--    Global minimum of all time-steps is used for all.
824       CALL pmci_synchronize
[1764]825    ENDIF
826
[1918]827!
828!-- Determine and print out the run control quantities before the first time
829!-- step of this run. For the initial run, some statistics (e.g. divergence)
[3004]830!-- need to be determined first --> CALL flow_statistics at the beginning of
831!-- run_control
[1]832    CALL run_control
[108]833!
834!-- Data exchange between coupled models in case that a call has been omitted
835!-- at the end of the previous run of a job chain.
[3761]836    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND. .NOT. vnested )  THEN
[108]837!
838!--    In case of model termination initiated by the local model the coupler
839!--    must not be called because this would again cause an MPI hang.
[1918]840       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
[108]841          CALL surface_coupler
842          time_coupling = time_coupling - dt_coupling
843       ENDDO
[3761]844       IF (time_coupling == 0.0_wp  .AND.  time_since_reference_point < dt_coupling )  THEN
[348]845          time_coupling = time_since_reference_point
846       ENDIF
[108]847    ENDIF
848
[1]849#if defined( __dvrp_graphics )
850!
851!-- Time measurement with dvrp software 
852    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
853#endif
854
[3885]855    CALL location_message( 'atmosphere (and/or ocean) time-stepping', 'start' )
[3761]856
[1]857!
858!-- Start of the time loop
[3761]859    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. .NOT. terminate_run )
[1]860
861       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
862!
[2365]863!--    Vertical nesting: initialize fine grid
864       IF ( vnested ) THEN
865          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
[3719]866             CALL cpu_log( log_point_s(22), 'vnest_init', 'start' )
[2365]867             CALL vnest_init_fine
868             vnest_init = .TRUE.
[3719]869             CALL cpu_log( log_point_s(22), 'vnest_init', 'stop' )
[2365]870          ENDIF
871       ENDIF
872!
[1241]873!--    Determine ug, vg and w_subs in dependence on data from external file
874!--    LSF_DATA
[1365]875       IF ( large_scale_forcing .AND. lsf_vert )  THEN
[1241]876           CALL ls_forcing_vert ( simulated_time )
[1365]877           sums_ls_l = 0.0_wp
[1241]878       ENDIF
879
880!
[1380]881!--    Set pt_init and q_init to the current profiles taken from
882!--    NUDGING_DATA
883       IF ( nudging )  THEN
884           CALL nudge_ref ( simulated_time )
885!
886!--        Store temperature gradient at the top boundary for possible Neumann
887!--        boundary condition
888           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
889           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
[3298]890           IF ( air_chemistry )  THEN
[3929]891              DO  lsp = 1, nvar
892                 bc_cs_t_val = (  chem_species(lsp)%conc_pr_init(nzt+1)                            &
893                                - chem_species(lsp)%conc_pr_init(nzt) )                            &
[3298]894                               / dzu(nzt+1)
895              ENDDO
896           ENDIF
[3864]897           IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
898              DO  ib = 1, nbins_aerosol
899                 bc_an_t_val = ( aerosol_number(ib)%init(nzt+1) - aerosol_number(ib)%init(nzt) ) / &
900                               dzu(nzt+1)
901                 DO  ic = 1, ncomponents_mass
902                    icc = ( ic - 1 ) * nbins_aerosol + ib
903                    bc_am_t_val = ( aerosol_mass(icc)%init(nzt+1) - aerosol_mass(icc)%init(nzt) ) /&
904                                  dzu(nzt+1)
905                 ENDDO
906              ENDDO
907              IF ( .NOT. salsa_gases_from_chem )  THEN
908                 DO  ig = 1, ngases_salsa
909                    bc_gt_t_val = ( salsa_gas(ig)%init(nzt+1) - salsa_gas(ig)%init(nzt) ) /        &
910                                  dzu(nzt+1)
911                 ENDDO
912              ENDIF
913           ENDIF
[1380]914       ENDIF
[2696]915!
916!--    If forcing by larger-scale models is applied, check if new data
917!--    at domain boundaries need to be read.
[3774]918       IF ( nesting_offline ) THEN
919          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point ) &
920               CALL netcdf_data_input_offline_nesting
[2696]921       ENDIF
[1380]922
923!
[3876]924!--    Execute all other module actions routunes
[3684]925       CALL module_interface_actions( 'before_timestep' )
[1914]926       
927!
[1]928!--    Start of intermediate step loop
929       intermediate_timestep_count = 0
[3761]930       DO  WHILE ( intermediate_timestep_count < intermediate_timestep_count_max )
[1]931
932          intermediate_timestep_count = intermediate_timestep_count + 1
933
934!
935!--       Set the steering factors for the prognostic equations which depend
936!--       on the timestep scheme
937          CALL timestep_scheme_steering
938
939!
[1128]940!--       Calculate those variables needed in the tendency terms which need
941!--       global communication
[3761]942          IF ( .NOT. use_single_reference_value  .AND.  .NOT. use_initial_profile_as_reference )   &
943          THEN
[1179]944!
945!--          Horizontally averaged profiles to be used as reference state in
946!--          buoyancy terms (WARNING: only the respective last call of
947!--          calc_mean_profile defines the reference state!)
[1365]948             IF ( .NOT. neutral )  THEN
949                CALL calc_mean_profile( pt, 4 )
950                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
951             ENDIF
[3294]952             IF ( ocean_mode )  THEN
[2031]953                CALL calc_mean_profile( rho_ocean, 64 )
[1365]954                ref_state(:)  = hom(:,1,64,0)
955             ENDIF
956             IF ( humidity )  THEN
957                CALL calc_mean_profile( vpt, 44 )
958                ref_state(:)  = hom(:,1,44,0)
959             ENDIF
[2617]960!
961!--          Assure that ref_state does not become zero at any level
962!--          ( might be the case if a vertical level is completely occupied
963!--            with topography ).
[3761]964             ref_state = MERGE( MAXVAL(ref_state), ref_state, ref_state == 0.0_wp )
[1179]965          ENDIF
966
[1128]967          IF ( .NOT. constant_diffusion )  CALL production_e_init
[3761]968          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  intermediate_timestep_count == 1 )     &
969          THEN
970             CALL ws_statistics
971          ENDIF
[1365]972!
973!--       In case of nudging calculate current nudging time scale and horizontal
[1380]974!--       means of u, v, pt and q
[1365]975          IF ( nudging )  THEN
976             CALL calc_tnudge( simulated_time )
977             CALL calc_mean_profile( u, 1 )
978             CALL calc_mean_profile( v, 2 )
979             CALL calc_mean_profile( pt, 4 )
980             CALL calc_mean_profile( q, 41 )
981          ENDIF
[1128]982!
[3876]983!--       Execute all other module actions routunes
984          CALL module_interface_actions( 'before_prognostic_equations' )
985!
[1]986!--       Solve the prognostic equations. A fast cache optimized version with
987!--       only one single loop is used in case of Piascek-Williams advection
988!--       scheme. NEC vector machines use a different version, because
989!--       in the other versions a good vectorization is prohibited due to
990!--       inlining problems.
[1019]991          IF ( loop_optimization == 'cache' )  THEN
992             CALL prognostic_equations_cache
993          ELSEIF ( loop_optimization == 'vector' )  THEN
[63]994             CALL prognostic_equations_vector
[1]995          ENDIF
996
997!
[849]998!--       Particle transport/physics with the Lagrangian particle model
999!--       (only once during intermediate steps, because it uses an Euler-step)
[1128]1000!--       ### particle model should be moved before prognostic_equations, in order
1001!--       to regard droplet interactions directly
[3761]1002          IF ( particle_advection  .AND.  time_since_reference_point >= particle_advection_start   &
1003               .AND.  intermediate_timestep_count == 1 )                                           &
1004          THEN
[849]1005             CALL lpm
1006             first_call_lpm = .FALSE.
[1]1007          ENDIF
1008
1009!
[3040]1010!--       Interaction of droplets with temperature and mixing ratio.
[1]1011!--       Droplet condensation and evaporation is calculated within
1012!--       advec_particles.
[3761]1013          IF ( cloud_droplets  .AND.  intermediate_timestep_count == intermediate_timestep_count_max ) &
[1]1014          THEN
1015             CALL interaction_droplets_ptq
1016          ENDIF
1017
1018!
[3159]1019!--       Movement of agents in multi agent system
[3761]1020          IF ( agents_active  .AND.  time_since_reference_point >= multi_agent_system_start  .AND. &
1021               time_since_reference_point <= multi_agent_system_end  .AND.                         &
1022               intermediate_timestep_count == 1 )                                                  &
1023          THEN
[3159]1024             CALL multi_agent_system
1025             first_call_mas = .FALSE.
1026          ENDIF
1027
1028!
[1]1029!--       Exchange of ghost points (lateral boundary conditions)
[2118]1030          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
[1113]1031
[2118]1032          CALL exchange_horiz( u_p, nbgp )
1033          CALL exchange_horiz( v_p, nbgp )
1034          CALL exchange_horiz( w_p, nbgp )
1035          CALL exchange_horiz( pt_p, nbgp )
1036          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
[3761]1037          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence                           &
[2696]1038               .OR.  use_sgs_for_particles )  THEN
1039             IF ( rans_tke_e )  THEN
1040                CALL exchange_horiz( diss_p, nbgp )
1041             ELSE
1042                CALL exchange_horiz( diss, nbgp )
1043             ENDIF
1044          ENDIF
[3294]1045          IF ( ocean_mode )  THEN
[2118]1046             CALL exchange_horiz( sa_p, nbgp )
1047             CALL exchange_horiz( rho_ocean, nbgp )
1048             CALL exchange_horiz( prho, nbgp )
1049          ENDIF
1050          IF ( humidity )  THEN
1051             CALL exchange_horiz( q_p, nbgp )
[3274]1052             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
[2292]1053                CALL exchange_horiz( qc_p, nbgp )
1054                CALL exchange_horiz( nc_p, nbgp )
1055             ENDIF
[3274]1056             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
[2118]1057                CALL exchange_horiz( qr_p, nbgp )
1058                CALL exchange_horiz( nr_p, nbgp )
[1053]1059             ENDIF
[2118]1060          ENDIF
1061          IF ( cloud_droplets )  THEN
1062             CALL exchange_horiz( ql, nbgp )
1063             CALL exchange_horiz( ql_c, nbgp )
1064             CALL exchange_horiz( ql_v, nbgp )
1065             CALL exchange_horiz( ql_vp, nbgp )
1066          ENDIF
[2696]1067          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
[3929]1068          IF ( air_chemistry )  THEN
1069             DO  lsp = 1, nvar
1070                CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp )
1071!
1072!--             kanani: Push chem_boundary_conds after CALL boundary_conds
1073                lsp_usr = 1
1074                DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
1075                   IF ( TRIM(chem_species(lsp)%name) == TRIM(cs_name(lsp_usr)) )  THEN
1076                      CALL chem_boundary_conds( chem_species(lsp)%conc_p,                          &
1077                                                chem_species(lsp)%conc_pr_init )
1078                   ENDIF
1079                   lsp_usr = lsp_usr + 1
1080                ENDDO
1081             ENDDO
1082          ENDIF
[2766]1083
[3864]1084          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
1085!
1086!--          Exchange ghost points and decycle boundary concentrations if needed
1087             DO  ib = 1, nbins_aerosol
1088                CALL exchange_horiz( aerosol_number(ib)%conc_p, nbgp )
1089                CALL salsa_boundary_conds( aerosol_number(ib)%conc_p, aerosol_number(ib)%init )
1090                DO  ic = 1, ncomponents_mass
1091                   icc = ( ic - 1 ) * nbins_aerosol + ib
1092                   CALL exchange_horiz( aerosol_mass(icc)%conc_p, nbgp )
1093                   CALL salsa_boundary_conds( aerosol_mass(icc)%conc_p, aerosol_mass(icc)%init )
[3467]1094                ENDDO
1095             ENDDO
1096             IF ( .NOT. salsa_gases_from_chem )  THEN
[3864]1097                DO  ig = 1, ngases_salsa
1098                   CALL exchange_horiz( salsa_gas(ig)%conc_p, nbgp )
1099                   CALL salsa_boundary_conds( salsa_gas(ig)%conc_p, salsa_gas(ig)%init )
1100                ENDDO
[3467]1101             ENDIF
[3864]1102          ENDIF
[2118]1103          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
[1128]1104
[1]1105!
1106!--       Boundary conditions for the prognostic quantities (except of the
1107!--       velocities at the outflow in case of a non-cyclic lateral wall)
[1113]1108          CALL boundary_conds
[1]1109!
[73]1110!--       Swap the time levels in preparation for the next time step.
1111          CALL swap_timelevel
1112
[2365]1113!
1114!--       Vertical nesting: Interpolate fine grid data to the coarse grid
1115          IF ( vnest_init ) THEN
[3719]1116             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'start' )
[2365]1117             CALL vnest_anterpolate
[3719]1118             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'stop' )
[2365]1119          ENDIF
1120
[1764]1121          IF ( nested_run )  THEN
[1797]1122
[1764]1123             CALL cpu_log( log_point(60), 'nesting', 'start' )
[1762]1124!
[1933]1125!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
1126!--          and pmci_child_datatrans are called inside the wrapper
[1797]1127!--          subroutine pmci_datatrans according to the control parameters
1128!--          nesting_mode and nesting_datatransfer_mode.
1129!--          TO_DO: why is nesting_mode given as a parameter here?
1130             CALL pmci_datatrans( nesting_mode )
[1762]1131
[3761]1132             IF ( TRIM( nesting_mode ) == 'two-way' .OR.  nesting_mode == 'vertical' )  THEN
[1762]1133!
[1933]1134!--             Exchange_horiz is needed for all parent-domains after the
[1764]1135!--             anterpolation
1136                CALL exchange_horiz( u, nbgp )
1137                CALL exchange_horiz( v, nbgp )
1138                CALL exchange_horiz( w, nbgp )
[2174]1139                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
1140
1141                IF ( humidity )  THEN
1142
1143                   CALL exchange_horiz( q, nbgp )
1144
[3274]1145                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
[2292]1146                       CALL exchange_horiz( qc, nbgp )
1147                       CALL exchange_horiz( nc, nbgp )
1148                   ENDIF
[3274]1149                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
[2174]1150                       CALL exchange_horiz( qr, nbgp )
1151                       CALL exchange_horiz( nr, nbgp )
1152                   ENDIF
1153
1154                ENDIF
1155
[3467]1156                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
[3864]1157
[2174]1158                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
[2773]1159
[3761]1160                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.  rans_tke_e )  THEN
[2938]1161                   CALL exchange_horiz( diss, nbgp )
[3761]1162                ENDIF
[2938]1163
[2773]1164                IF ( air_chemistry )  THEN
[3929]1165                   DO  n = 1, nvar
[2773]1166                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
1167                   ENDDO
1168                ENDIF
1169
[3864]1170                IF ( salsa  .AND. time_since_reference_point >= skip_time_do_salsa )  THEN
1171                   DO  ib = 1, nbins_aerosol
1172                      CALL exchange_horiz( aerosol_number(ib)%conc, nbgp )
1173                      CALL salsa_boundary_conds( aerosol_number(ib)%conc, aerosol_number(ib)%init )
1174                      DO  ic = 1, ncomponents_mass
1175                         icc = ( ic - 1 ) * nbins_aerosol + ib
1176                         CALL exchange_horiz( aerosol_mass(icc)%conc, nbgp )
1177                         CALL salsa_boundary_conds( aerosol_mass(icc)%conc, aerosol_mass(icc)%init )
1178                      ENDDO
1179                   ENDDO
1180                   IF ( .NOT. salsa_gases_from_chem )  THEN
1181                      DO  ig = 1, ngases_salsa
1182                         CALL exchange_horiz( salsa_gas(ig)%conc, nbgp )
1183                         CALL salsa_boundary_conds( salsa_gas(ig)%conc, salsa_gas(ig)%init )
1184                      ENDDO
1185                   ENDIF
1186                ENDIF
1187                CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1188
[1762]1189             ENDIF
1190!
[2311]1191!--          Set boundary conditions again after interpolation and anterpolation.
1192             CALL pmci_boundary_conds
[1764]1193
1194             CALL cpu_log( log_point(60), 'nesting', 'stop' )
1195
[1762]1196          ENDIF
1197
1198!
[1]1199!--       Temperature offset must be imposed at cyclic boundaries in x-direction
1200!--       when a sloping surface is used
1201          IF ( sloping_surface )  THEN
[3761]1202             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - pt_slope_offset
1203             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + pt_slope_offset
[1]1204          ENDIF
1205
1206!
[151]1207!--       Impose a turbulent inflow using the recycling method
[3719]1208          IF ( turbulent_inflow )  CALL inflow_turbulence
[151]1209
1210!
[2050]1211!--       Set values at outflow boundary using the special outflow condition
[3719]1212          IF ( turbulent_outflow )  CALL outflow_turbulence
[2050]1213
1214!
[1]1215!--       Impose a random perturbation on the horizontal velocity field
[3761]1216          IF ( create_disturbances  .AND.  ( call_psolver_at_all_substeps  .AND.                   &
1217               intermediate_timestep_count == intermediate_timestep_count_max )                    &
1218               .OR. ( .NOT. call_psolver_at_all_substeps  .AND.  intermediate_timestep_count == 1 ) ) &
[1]1219          THEN
1220             time_disturb = time_disturb + dt_3d
1221             IF ( time_disturb >= dt_disturb )  THEN
[3761]1222                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                                     &
[1736]1223                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
[2232]1224                   CALL disturb_field( 'u', tend, u )
1225                   CALL disturb_field( 'v', tend, v )
[3761]1226                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )                                &
1227                         .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )                 &
[3182]1228                THEN
[1]1229!
1230!--                Runs with a non-cyclic lateral wall need perturbations
1231!--                near the inflow throughout the whole simulation
1232                   dist_range = 1
[2232]1233                   CALL disturb_field( 'u', tend, u )
1234                   CALL disturb_field( 'v', tend, v )
[1]1235                   dist_range = 0
1236                ENDIF
1237                time_disturb = time_disturb - dt_disturb
1238             ENDIF
1239          ENDIF
1240
1241!
[2696]1242!--       Map forcing data derived from larger scale model onto domain
1243!--       boundaries.
[3761]1244          IF ( nesting_offline  .AND.  intermediate_timestep_count ==                              &
1245                                       intermediate_timestep_count_max  )                          &
[3347]1246             CALL nesting_offl_bc
[2938]1247!
[3347]1248!--       Impose a turbulent inflow using synthetic generated turbulence,
1249!--       only once per time step.
[3761]1250          IF ( use_syn_turb_gen  .AND.  time_stg_call >= dt_stg_call  .AND.                        &
[3719]1251             intermediate_timestep_count == intermediate_timestep_count_max )  THEN
1252             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
[3347]1253             CALL stg_main
[3719]1254             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
[2696]1255          ENDIF
1256!
[3347]1257!--       Ensure mass conservation. This need to be done after imposing
1258!--       synthetic turbulence and top boundary condition for pressure is set to
1259!--       Neumann conditions.
1260!--       Is this also required in case of Dirichlet?
1261          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1262!
[1]1263!--       Reduce the velocity divergence via the equation for perturbation
1264!--       pressure.
[106]1265          IF ( intermediate_timestep_count == 1  .OR. &
1266                call_psolver_at_all_substeps )  THEN
[2365]1267
1268             IF (  vnest_init ) THEN
1269!
1270!--             Compute pressure in the CG, interpolate top boundary conditions
1271!--             to the FG and then compute pressure in the FG
1272                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1273
[3719]1274                CALL cpu_log( log_point_s(30), 'vnest_bc', 'start' )
[2365]1275                CALL vnest_boundary_conds
[3719]1276                CALL cpu_log( log_point_s(30), 'vnest_bc', 'stop' )
[2365]1277 
1278                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1279
1280!--             Anterpolate TKE, satisfy Germano Identity
[3719]1281                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'start' )
[2365]1282                CALL vnest_anterpolate_e
[3719]1283                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'stop' )
[2365]1284
1285             ELSE
[4010]1286!               
1287!--             Mass (volume) flux correction to ensure global mass conservation for child domains.
1288                IF ( child_domain )  THEN
1289                   IF ( nesting_mode == 'vertical' )  THEN
1290                      CALL pmci_ensure_nest_mass_conservation_vertical
1291                   ELSE
1292                      CALL pmci_ensure_nest_mass_conservation
1293                   ENDIF
1294                ENDIF
1295               
[2365]1296                CALL pres
1297
1298             ENDIF
1299
[1]1300          ENDIF
1301
1302!
1303!--       If required, compute liquid water content
[3274]1304          IF ( bulk_cloud_model )  THEN
[1015]1305             CALL calc_liquid_water_content
1306          ENDIF
[2174]1307!
[1115]1308!--       If required, compute virtual potential temperature
1309          IF ( humidity )  THEN
1310             CALL compute_vpt 
1311          ENDIF 
[1585]1312
[1]1313!
1314!--       Compute the diffusion quantities
1315          IF ( .NOT. constant_diffusion )  THEN
1316
1317!
[1276]1318!--          Determine surface fluxes shf and qsws and surface values
1319!--          pt_surface and q_surface in dependence on data from external
1320!--          file LSF_DATA respectively
[3761]1321             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND.                                     &
1322                 intermediate_timestep_count == intermediate_timestep_count_max )                  &
[1276]1323             THEN
[2320]1324                CALL ls_forcing_surf( simulated_time )
[1276]1325             ENDIF
1326
1327!
[2232]1328!--          First the vertical (and horizontal) fluxes in the surface
1329!--          (constant flux) layer are computed
[1691]1330             IF ( constant_flux_layer )  THEN
1331                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1332                CALL surface_layer_fluxes
1333                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
[1]1334             ENDIF
1335!
[1691]1336!--          If required, solve the energy balance for the surface and run soil
[2232]1337!--          model. Call for horizontal as well as vertical surfaces
[2696]1338             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
[1691]1339
1340                CALL cpu_log( log_point(54), 'land_surface', 'start' )
[2232]1341!
1342!--             Call for horizontal upward-facing surfaces
1343                CALL lsm_energy_balance( .TRUE., -1 )
[2299]1344                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
[2232]1345!
1346!--             Call for northward-facing surfaces
1347                CALL lsm_energy_balance( .FALSE., 0 )
[2299]1348                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
[2232]1349!
1350!--             Call for southward-facing surfaces
1351                CALL lsm_energy_balance( .FALSE., 1 )
[2299]1352                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
[2232]1353!
1354!--             Call for eastward-facing surfaces
1355                CALL lsm_energy_balance( .FALSE., 2 )
[2299]1356                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
[2232]1357!
1358!--             Call for westward-facing surfaces
1359                CALL lsm_energy_balance( .FALSE., 3 )
[2299]1360                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
[3597]1361               
[2696]1362!
1363!--             At the end, set boundary conditons for potential temperature
1364!--             and humidity after running the land-surface model. This
1365!--             might be important for the nesting, where arrays are transfered.
1366                CALL lsm_boundary_condition
[2232]1367
[3597]1368               
[1691]1369                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1370             ENDIF
1371!
[2007]1372!--          If required, solve the energy balance for urban surfaces and run
1373!--          the material heat model
1374             IF (urban_surface) THEN
1375                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
[3176]1376               
[3418]1377                CALL usm_surface_energy_balance( .FALSE. )
[2007]1378                IF ( usm_material_model )  THEN
[2696]1379                   CALL usm_green_heat_model
[3418]1380                   CALL usm_material_heat_model ( .FALSE. )
[2007]1381                ENDIF
[2696]1382
1383!
1384!--             At the end, set boundary conditons for potential temperature
1385!--             and humidity after running the urban-surface model. This
1386!--             might be important for the nesting, where arrays are transfered.
1387                CALL usm_boundary_condition
1388
[2007]1389                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1390             ENDIF
1391!
[1]1392!--          Compute the diffusion coefficients
1393             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
[75]1394             IF ( .NOT. humidity ) THEN
[3294]1395                IF ( ocean_mode )  THEN
[2696]1396                   CALL tcm_diffusivities( prho, prho_reference )
[97]1397                ELSE
[2696]1398                   CALL tcm_diffusivities( pt, pt_reference )
[97]1399                ENDIF
[1]1400             ELSE
[2696]1401                CALL tcm_diffusivities( vpt, pt_reference )
[1]1402             ENDIF
1403             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
[2696]1404!
1405!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1406             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
[1]1407
1408          ENDIF
1409
[1691]1410!
1411!--       If required, calculate radiative fluxes and heating rates
[3761]1412          IF ( radiation  .AND.  intermediate_timestep_count == intermediate_timestep_count_max    &
1413               .AND. time_since_reference_point > skip_time_do_radiation )  THEN
[1691]1414
1415               time_radiation = time_radiation + dt_3d
1416
[3761]1417             IF ( time_radiation >= dt_radiation  .OR.  force_radiation_call )  THEN
[1691]1418
1419                CALL cpu_log( log_point(50), 'radiation', 'start' )
1420
1421                IF ( .NOT. force_radiation_call )  THEN
1422                   time_radiation = time_radiation - dt_radiation
1423                ENDIF
1424
[3014]1425!
[3241]1426!--             Adjust the current time to the time step of the radiation model.
[3014]1427!--             Needed since radiation is pre-calculated and stored only on apparent
1428!--             solar positions
[3241]1429                time_since_reference_point_save = time_since_reference_point
[3761]1430                time_since_reference_point = REAL( FLOOR( time_since_reference_point /             &
1431                                                          dt_radiation), wp ) * dt_radiation
[3014]1432
[1976]1433                CALL radiation_control
[1691]1434
[3761]1435                IF ( ( urban_surface  .OR.  land_surface )  .AND.  radiation_interactions )  THEN
[3724]1436                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'start' )
[2696]1437                   CALL radiation_interaction
[3724]1438                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'stop' )
[2007]1439                ENDIF
[3014]1440   
1441!
1442!--             Return the current time to its original value
[3241]1443                time_since_reference_point = time_since_reference_point_save
[2007]1444
[3719]1445                CALL cpu_log( log_point(50), 'radiation', 'stop' )
1446
[1691]1447             ENDIF
1448          ENDIF
1449
[1]1450       ENDDO   ! Intermediate step loop
[3634]1451
[1]1452!
[3634]1453!--    Will be used at some point by flow_statistics.
[3658]1454       !$ACC UPDATE &
[3634]1455       !$ACC HOST(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
1456       !$ACC HOST(sums_us2_ws_l(nzb:nzt+1,0)) &
1457       !$ACC HOST(sums_wsus_ws_l(nzb:nzt+1,0)) &
1458       !$ACC HOST(sums_vs2_ws_l(nzb:nzt+1,0)) &
1459       !$ACC HOST(sums_wsvs_ws_l(nzb:nzt+1,0)) &
1460       !$ACC HOST(sums_ws2_ws_l(nzb:nzt+1,0)) &
1461       !$ACC HOST(sums_wspts_ws_l(nzb:nzt+1,0)) &
1462       !$ACC HOST(sums_wssas_ws_l(nzb:nzt+1,0)) &
1463       !$ACC HOST(sums_wsqs_ws_l(nzb:nzt+1,0)) &
1464       !$ACC HOST(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
1465       !$ACC HOST(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
1466       !$ACC HOST(sums_wsncs_ws_l(nzb:nzt+1,0)) &
1467       !$ACC HOST(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
1468       !$ACC HOST(sums_wsss_ws_l(nzb:nzt+1,0)) &
1469       !$ACC HOST(sums_salsa_ws_l(nzb:nzt+1,0))
1470
1471!
[2766]1472!--    If required, consider chemical emissions
[3820]1473       IF ( air_chemistry  .AND.  emissions_anthropogenic )  THEN
[3298]1474!
1475!--       Update the time --> kanani: revise location of this CALL
1476          CALL calc_date_and_time
1477!
1478!--       Call emission routine only once an hour
1479          IF (hour_of_year  .GT.  hour_call_emis )  THEN
[3968]1480             CALL chem_emissions_setup( chem_emis_att, chem_emis, n_matched_vars )
[3298]1481             hour_call_emis = hour_of_year
1482          ENDIF
[2766]1483       ENDIF
[3864]1484!
1485!--    If required, consider aerosol emissions for the salsa model
1486       IF ( salsa )  THEN
1487!
1488!--       Call emission routine to update emissions if needed
1489          CALL salsa_emission_update
[3569]1490
[3864]1491       ENDIF
[2696]1492!
[3469]1493!--    If required, calculate indoor temperature, waste heat, heat flux
1494!--    through wall, etc.
[3744]1495!--    dt_indoor steers the frequency of the indoor model calculations.
1496!--    Note, at first timestep indoor model is called, in order to provide
1497!--    a waste heat flux.
[3647]1498       IF ( indoor_model )  THEN
[3469]1499
1500          time_indoor = time_indoor + dt_3d
1501
[3761]1502          IF ( time_indoor >= dt_indoor  .OR.  current_timestep_number == 0 )  THEN
[3469]1503
1504             time_indoor = time_indoor - dt_indoor
1505
1506             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1507             CALL im_main_heatcool
1508             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1509
1510          ENDIF
1511       ENDIF
1512!
[1]1513!--    Increase simulation time and output times
[1111]1514       nr_timesteps_this_run      = nr_timesteps_this_run + 1
[291]1515       current_timestep_number    = current_timestep_number + 1
1516       simulated_time             = simulated_time   + dt_3d
1517       time_since_reference_point = simulated_time - coupling_start_time
[2941]1518       simulated_time_chr         = time_to_string( time_since_reference_point )
[291]1519
[1957]1520
1521
[2941]1522
[3646]1523       IF ( time_since_reference_point >= skip_time_data_output_av )  THEN
[1]1524          time_do_av         = time_do_av       + dt_3d
1525       ENDIF
[3646]1526       IF ( time_since_reference_point >= skip_time_do2d_xy )  THEN
[1]1527          time_do2d_xy       = time_do2d_xy     + dt_3d
1528       ENDIF
[3646]1529       IF ( time_since_reference_point >= skip_time_do2d_xz )  THEN
[1]1530          time_do2d_xz       = time_do2d_xz     + dt_3d
1531       ENDIF
[3646]1532       IF ( time_since_reference_point >= skip_time_do2d_yz )  THEN
[1]1533          time_do2d_yz       = time_do2d_yz     + dt_3d
1534       ENDIF
[3646]1535       IF ( time_since_reference_point >= skip_time_do3d    )  THEN
[1]1536          time_do3d          = time_do3d        + dt_3d
1537       ENDIF
[410]1538       DO  mid = 1, masks
[3646]1539          IF ( time_since_reference_point >= skip_time_domask(mid) )  THEN
[410]1540             time_domask(mid)= time_domask(mid) + dt_3d
1541          ENDIF
1542       ENDDO
[1]1543       time_dvrp          = time_dvrp        + dt_3d
[3646]1544       IF ( time_since_reference_point >= skip_time_dosp )  THEN
[1]1545          time_dosp       = time_dosp        + dt_3d
1546       ENDIF
1547       time_dots          = time_dots        + dt_3d
[849]1548       IF ( .NOT. first_call_lpm )  THEN
[1]1549          time_dopts      = time_dopts       + dt_3d
1550       ENDIF
[3646]1551       IF ( time_since_reference_point >= skip_time_dopr )  THEN
[1]1552          time_dopr       = time_dopr        + dt_3d
1553       ENDIF
[3467]1554       time_dopr_listing  = time_dopr_listing + dt_3d
[1]1555       time_run_control   = time_run_control + dt_3d
[3347]1556!
[3421]1557!--    Increment time-counter for surface output
[3648]1558       IF ( surface_output )  THEN
[3646]1559          IF ( time_since_reference_point >= skip_time_dosurf )  THEN
[3421]1560             time_dosurf    = time_dosurf + dt_3d
1561          ENDIF
[3646]1562          IF ( time_since_reference_point >= skip_time_dosurf_av )  THEN
[3421]1563             time_dosurf_av = time_dosurf_av + dt_3d
1564          ENDIF
1565       ENDIF
1566!
[3988]1567!--    Increment time-counter for virtual measurements
1568       IF ( virtual_measurement  .AND.  vm_time_start <= time_since_reference_point )  THEN
1569          time_virtual_measurement = time_virtual_measurement + dt_3d
1570       ENDIF
1571!
[3347]1572!--    In case of synthetic turbulence generation and parametrized turbulence
1573!--    information, update the time counter and if required, adjust the
1574!--    STG to new atmospheric conditions.
1575       IF ( use_syn_turb_gen  )  THEN
1576          IF ( parametrize_inflow_turbulence )  THEN
1577             time_stg_adjust = time_stg_adjust + dt_3d
[3719]1578             IF ( time_stg_adjust >= dt_stg_adjust )  THEN
1579                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1580                CALL stg_adjust
1581                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1582             ENDIF
[3347]1583          ENDIF
1584          time_stg_call = time_stg_call + dt_3d
1585       ENDIF
[1]1586
1587!
[102]1588!--    Data exchange between coupled models
[3761]1589       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND.  .NOT. vnested )  THEN
[102]1590          time_coupling = time_coupling + dt_3d
[343]1591
[108]1592!
1593!--       In case of model termination initiated by the local model
1594!--       (terminate_coupled > 0), the coupler must be skipped because it would
1595!--       cause an MPI intercomminucation hang.
1596!--       If necessary, the coupler will be called at the beginning of the
1597!--       next restart run.
[3761]1598          DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
[102]1599             CALL surface_coupler
1600             time_coupling = time_coupling - dt_coupling
1601          ENDDO
1602       ENDIF
1603
1604!
[3448]1605!--    Biometeorology calculation of stationary thermal indices
[3647]1606!--    Todo (kanani): biometeorology needs own time_... treatment.
1607!--                   It might be that time_do2d_xy differs from time_do3d,
1608!--                   and then we might get trouble with the biomet output,
1609!--                   because we can have 2d and/or 3d biomet output!!
[3761]1610       IF ( biometeorology                                                                         &
1611            .AND. ( ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  &
1612                  .OR.                                                                             &
1613            ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy ) &
[3647]1614                    ) )  THEN
[3569]1615!
1616!--       If required, do thermal comfort calculations
1617          IF ( thermal_comfort )  THEN
1618             CALL bio_calculate_thermal_index_maps ( .FALSE. )
1619          ENDIF
1620!
1621!--       If required, do UV exposure calculations
1622          IF ( uv_exposure )  THEN
1623             CALL uvem_calc_exposure
1624          ENDIF
[3448]1625       ENDIF
1626
1627!
[3684]1628!--    Execute alle other module actions routunes
1629       CALL module_interface_actions( 'after_integration' )
[2817]1630
1631!
[1]1632!--    If Galilei transformation is used, determine the distance that the
1633!--    model has moved so far
1634       IF ( galilei_transformation )  THEN
1635          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1636          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1637       ENDIF
1638
1639!
1640!--    Check, if restart is necessary (because cpu-time is expiring or
1641!--    because it is forced by user) and set stop flag
[108]1642!--    This call is skipped if the remote model has already initiated a restart.
1643       IF ( .NOT. terminate_run )  CALL check_for_restart
[1]1644
1645!
1646!--    Carry out statistical analysis and output at the requested output times.
1647!--    The MOD function is used for calculating the output time counters (like
1648!--    time_dopr) in order to regard a possible decrease of the output time
1649!--    interval in case of restart runs
1650
1651!
1652!--    Set a flag indicating that so far no statistics have been created
1653!--    for this time step
1654       flow_statistics_called = .FALSE.
1655
1656!
1657!--    If required, call flow_statistics for averaging in time
[3761]1658       IF ( averaging_interval_pr /= 0.0_wp  .AND.                                                 &
1659            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.                                &
[3646]1660            time_since_reference_point >= skip_time_dopr )  THEN
[1]1661          time_dopr_av = time_dopr_av + dt_3d
1662          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1663             do_sum = .TRUE.
[3761]1664             time_dopr_av = MOD( time_dopr_av, MAX( dt_averaging_input_pr, dt_3d ) )
[1]1665          ENDIF
1666       ENDIF
1667       IF ( do_sum )  CALL flow_statistics
1668
1669!
[410]1670!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
[3761]1671       IF ( averaging_interval /= 0.0_wp  .AND.                                                    &
1672            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND.                        &
1673            time_since_reference_point >= skip_time_data_output_av )                               &
[1]1674       THEN
1675          time_do_sla = time_do_sla + dt_3d
1676          IF ( time_do_sla >= dt_averaging_input )  THEN
[3994]1677             IF ( current_timestep_number > timestep_number_at_prev_calc )                         &
1678                CALL diagnostic_output_quantities_calculate
1679
[1]1680             CALL sum_up_3d_data
1681             average_count_3d = average_count_3d + 1
1682             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1683          ENDIF
1684       ENDIF
[3421]1685!
1686!--    Average surface data
[3648]1687       IF ( surface_output )  THEN
[3761]1688          IF ( averaging_interval_surf /= 0.0_wp                                                   &
1689                .AND.  ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf                &
[3647]1690                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
[3421]1691             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
[3648]1692                CALL surface_data_output_averaging
[3421]1693                average_count_surf = average_count_surf + 1
1694             ENDIF
1695          ENDIF
1696       ENDIF
[1]1697
1698!
1699!--    Calculate spectra for time averaging
[3761]1700       IF ( averaging_interval_sp /= 0.0_wp  .AND. ( dt_dosp - time_dosp ) <= averaging_interval_sp&
1701            .AND.  time_since_reference_point >= skip_time_dosp )  THEN
[1]1702          time_dosp_av = time_dosp_av + dt_3d
1703          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1704             CALL calc_spectra
[3761]1705             time_dosp_av = MOD( time_dosp_av, MAX( dt_averaging_input_pr, dt_3d ) )
[1]1706          ENDIF
1707       ENDIF
1708
1709!
[1957]1710!--    Call flight module and output data
1711       IF ( virtual_flight )  THEN
1712          CALL flight_measurement
1713          CALL data_output_flight
1714       ENDIF
[3472]1715!
1716!--    Take virtual measurements
[3988]1717       IF ( virtual_measurement  .AND.  time_virtual_measurement >= dt_virtual_measurement         &
1718                                 .AND.  vm_time_start <= time_since_reference_point )  THEN
[3704]1719          CALL vm_sampling
1720          CALL vm_data_output
[3988]1721          time_virtual_measurement = MOD(      time_virtual_measurement,                           &
1722                                          MAX( dt_virtual_measurement, dt_3d ) )
[3704]1723       ENDIF
[1957]1724!
[1]1725!--    Profile output (ASCII) on file
1726       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1727          CALL print_1d
[3761]1728          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, dt_3d ) )
[1]1729       ENDIF
1730
1731!
1732!--    Graphic output for PROFIL
[3761]1733       IF ( time_dopr >= dt_dopr  .AND.  time_since_reference_point >= skip_time_dopr )  THEN
[1]1734          IF ( dopr_n /= 0 )  CALL data_output_profiles
1735          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
[1342]1736          time_dopr_av = 0.0_wp    ! due to averaging (see above)
[1]1737       ENDIF
1738
1739!
1740!--    Graphic output for time series
1741       IF ( time_dots >= dt_dots )  THEN
[48]1742          CALL data_output_tseries
[1]1743          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1744       ENDIF
1745
1746!
1747!--    Output of spectra (formatted for use with PROFIL), in case of no
1748!--    time averaging, spectra has to be calculated before
[3761]1749       IF ( time_dosp >= dt_dosp  .AND.  time_since_reference_point >= skip_time_dosp )  THEN
[1]1750          IF ( average_count_sp == 0 )  CALL calc_spectra
1751          CALL data_output_spectra
1752          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1753       ENDIF
1754
1755!
1756!--    2d-data output (cross-sections)
[3761]1757       IF ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy )  THEN
[3994]1758          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1759             CALL diagnostic_output_quantities_calculate
1760
[1]1761          CALL data_output_2d( 'xy', 0 )
1762          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1763       ENDIF
[3761]1764       IF ( time_do2d_xz >= dt_do2d_xz  .AND.  time_since_reference_point >= skip_time_do2d_xz )  THEN
[3994]1765          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1766
1767             CALL diagnostic_output_quantities_calculate
[1]1768          CALL data_output_2d( 'xz', 0 )
1769          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1770       ENDIF
[3761]1771       IF ( time_do2d_yz >= dt_do2d_yz  .AND.  time_since_reference_point >= skip_time_do2d_yz )  THEN
[3994]1772          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1773             CALL diagnostic_output_quantities_calculate
1774
[1]1775          CALL data_output_2d( 'yz', 0 )
1776          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1777       ENDIF
1778
1779!
1780!--    3d-data output (volume data)
[3761]1781       IF ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  THEN
[3994]1782          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1783             CALL diagnostic_output_quantities_calculate
1784
[1]1785          CALL data_output_3d( 0 )
1786          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1787       ENDIF
1788
1789!
[1783]1790!--    Masked data output
[410]1791       DO  mid = 1, masks
[3761]1792          IF ( time_domask(mid) >= dt_domask(mid)                                                  &
1793               .AND.  time_since_reference_point >= skip_time_domask(mid) )  THEN
[3994]1794             IF ( current_timestep_number > timestep_number_at_prev_calc )                         &
1795                CALL diagnostic_output_quantities_calculate
1796
[410]1797             CALL data_output_mask( 0 )
[3761]1798             time_domask(mid) = MOD( time_domask(mid), MAX( dt_domask(mid), dt_3d ) )
[410]1799          ENDIF
1800       ENDDO
1801
1802!
1803!--    Output of time-averaged 2d/3d/masked data
[3761]1804       IF ( time_do_av >= dt_data_output_av                                                        &
1805            .AND.  time_since_reference_point >= skip_time_data_output_av )  THEN
[1]1806          CALL average_3d_data
[3742]1807!
1808!--       Udate thermal comfort indices based on updated averaged input
1809          IF ( biometeorology  .AND.  thermal_comfort )  THEN
1810             CALL bio_calculate_thermal_index_maps ( .TRUE. )
1811          ENDIF
[1]1812          CALL data_output_2d( 'xy', 1 )
1813          CALL data_output_2d( 'xz', 1 )
1814          CALL data_output_2d( 'yz', 1 )
1815          CALL data_output_3d( 1 )
[410]1816          DO  mid = 1, masks
1817             CALL data_output_mask( 1 )
1818          ENDDO
[1]1819          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1820       ENDIF
[3421]1821!
1822!--    Output of surface data, instantaneous and averaged data
[3648]1823       IF ( surface_output )  THEN
[3761]1824          IF ( time_dosurf >= dt_dosurf  .AND.  time_since_reference_point >= skip_time_dosurf )  THEN
[3648]1825             CALL surface_data_output( 0 )
[3421]1826             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1827          ENDIF
[3761]1828          IF ( time_dosurf_av >= dt_dosurf_av  .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
[3648]1829             CALL surface_data_output( 1 )
[3421]1830             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1831          ENDIF
1832       ENDIF
[1]1833
1834!
1835!--    Output of particle time series
[253]1836       IF ( particle_advection )  THEN
[3761]1837          IF ( time_dopts >= dt_dopts  .OR.                                                        &
1838               ( time_since_reference_point >= particle_advection_start  .AND.                     &
[849]1839                 first_call_lpm ) )  THEN
[253]1840             CALL data_output_ptseries
1841             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1842          ENDIF
[1]1843       ENDIF
1844
1845!
1846!--    Output of dvrp-graphics (isosurface, particles, slicer)
1847#if defined( __dvrp_graphics )
1848       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
1849#endif
1850       IF ( time_dvrp >= dt_dvrp )  THEN
1851          CALL data_output_dvrp
1852          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
1853       ENDIF
1854#if defined( __dvrp_graphics )
1855       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
1856#endif
1857
1858!
[3719]1859!--    If required, set the heat flux for the next time step to a random value
[2232]1860       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
[3719]1861          IF ( surf_def_h(0)%ns >= 1 )  THEN
1862             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1863             CALL disturb_heatflux( surf_def_h(0) )
1864             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1865          ENDIF
1866          IF ( surf_lsm_h%ns    >= 1 )  THEN
1867             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1868             CALL disturb_heatflux( surf_lsm_h    )
1869             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1870          ENDIF
1871          IF ( surf_usm_h%ns    >= 1 )  THEN
1872             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1873             CALL disturb_heatflux( surf_usm_h    )
1874             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1875          ENDIF
[2232]1876       ENDIF
[1]1877
1878!
[3684]1879!--    Execute alle other module actions routunes
1880       CALL module_interface_actions( 'after_timestep' )
[2817]1881
1882!
[1918]1883!--    Determine size of next time step. Save timestep dt_3d because it is
1884!--    newly calculated in routine timestep, but required further below for
1885!--    steering the run control output interval
1886       dt_3d_old = dt_3d
1887       CALL timestep
1888
1889!
[1925]1890!--    Synchronize the timestep in case of nested run.
1891       IF ( nested_run )  THEN
1892!
1893!--       Synchronize by unifying the time step.
1894!--       Global minimum of all time-steps is used for all.
1895          CALL pmci_synchronize
1896       ENDIF
1897
1898!
[1918]1899!--    Computation and output of run control parameters.
1900!--    This is also done whenever perturbations have been imposed
[3761]1901       IF ( time_run_control >= dt_run_control  .OR.                                               &
1902            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created )                           &
[1918]1903       THEN
1904          CALL run_control
1905          IF ( time_run_control >= dt_run_control )  THEN
[3761]1906             time_run_control = MOD( time_run_control, MAX( dt_run_control, dt_3d_old ) )
[1918]1907          ENDIF
1908       ENDIF
1909
1910!
[1402]1911!--    Output elapsed simulated time in form of a progress bar on stdout
1912       IF ( myid == 0 )  CALL output_progress_bar
1913
[1]1914       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1915
[667]1916
[1]1917    ENDDO   ! time loop
[3448]1918
[3761]1919#if defined( _OPENACC )
[3658]1920    CALL exit_surface_arrays
1921#endif
[3634]1922!$ACC END DATA
1923!$ACC END DATA
1924!$ACC END DATA
1925!$ACC END DATA
1926!$ACC END DATA
1927!$ACC END DATA
1928!$ACC END DATA
1929
[3347]1930!
[2365]1931!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
1932    IF ( vnest_init )  CALL vnest_deallocate
1933
[1402]1934    IF ( myid == 0 )  CALL finish_progress_bar
1935
[1]1936#if defined( __dvrp_graphics )
1937    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
1938#endif
1939
[3885]1940    CALL location_message( 'atmosphere (and/or ocean) time-stepping', 'finished' )
[1384]1941
[1]1942 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.