source: palm/trunk/SOURCE/time_integration.f90 @ 3847

Last change on this file since 3847 was 3833, checked in by forkel, 6 years ago

removed USE chem_gasphase_mod from chem_modules, apply USE chem_gasphase for nvar, nspec, cs_mech and spc_names instead

  • Property svn:keywords set to Id
File size: 72.9 KB
RevLine 
[1682]1!> @file time_integration.f90
[2000]2!------------------------------------------------------------------------------!
[2696]3! This file is part of the PALM model system.
[1036]4!
[2000]5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
[1036]9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
[3647]17! Copyright 1997-2019 Leibniz Universitaet Hannover
[2000]18!------------------------------------------------------------------------------!
[1036]19!
[484]20! Current revisions:
[1092]21! ------------------
[1928]22!
[3745]23!
[1366]24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 3833 2019-03-28 15:04:04Z suehring $
[3833]27! added USE chem_gasphase_mod, replaced nspec by nvar since fixed compounds are not integrated
28!
29! 3820 2019-03-27 11:53:41Z forkel
[3820]30! renamed do_emiss to emissions_anthropogenic (ecc)
31!
32!
33! 3774 2019-03-04 10:52:49Z moh.hefny
[3774]34! rephrase if statement to avoid unallocated array in case of
35! nesting_offline is false (crashing during debug mode)
36!
37! 3761 2019-02-25 15:31:42Z raasch $
[3761]38! module section re-formatted and openacc required variables moved to separate section,
39! re-formatting to 100 char line width
40!
41! 3745 2019-02-15 18:57:56Z suehring
[3745]42! Call indoor model after first timestep
43!
44! 3744 2019-02-15 18:38:58Z suehring
[3742]45! - Moved call of bio_calculate_thermal_index_maps from biometeorology module to
46! time_integration to make sure averaged input is updated before calculating.
47!
48! 3739 2019-02-13 08:05:17Z dom_dwd_user
[3739]49! Removed everything related to "time_bio_results" as this is never used.
50!
51! 3724 2019-02-06 16:28:23Z kanani
[3724]52! Correct double-used log_point_s unit
53!
54! 3719 2019-02-06 13:10:18Z kanani
[3719]55! - removed wind_turbine cpu measurement, since same time is measured inside
56!   wtm_forces subroutine as special measures
57! - moved the numerous vnest cpulog to special measures
58! - extended radiation cpulog over entire radiation part,
59!   moved radiation_interactions cpulog to special measures
60! - moved some cpu_log calls to this routine for better overview
61!
62! 3705 2019-01-29 19:56:39Z suehring
[3705]63! Data output for virtual measurements added
64!
65! 3704 2019-01-29 19:51:41Z suehring
[3648]66! Rename subroutines for surface-data output
67!
68! 3647 2019-01-02 14:10:44Z kanani
[3647]69! Bugfix: add time_since_reference_point to IF clause for data_output calls
70! (otherwise skip_time_* values don't come into affect with dt_do* = 0.0).
71! Clean up indoor_model and biometeorology model call.
72!
73! 3646 2018-12-28 17:58:49Z kanani
[3646]74! Bugfix: use time_since_reference_point instead of simulated_time where
75! required (relevant when using wall/soil spinup)
76!
77! 3634 2018-12-18 12:31:28Z knoop
[3634]78! OpenACC port for SPEC
79!
80! 3597 2018-12-04 08:40:18Z maronga
[3597]81! Removed call to calculation of near air (10 cm) potential temperature (now in
82! surface layer fluxes)
83!
84! 3589 2018-11-30 15:09:51Z suehring
[3589]85! Move the control parameter "salsa" from salsa_mod to control_parameters
86! (M. Kurppa)
87!
88! 3582 2018-11-29 19:16:36Z suehring
[3569]89! dom_dwd_user, Schrempf:
90! Changes due to merge of uv exposure model into biometeorology_mod.
91!
92! 3525 2018-11-14 16:06:14Z kanani
[3525]93! Changes related to clean-up of biometeorology (dom_dwd_user)
94!
95! 3524 2018-11-14 13:36:44Z raasch
[3524]96! unused variables removed
97!
98! 3484 2018-11-02 14:41:25Z hellstea
[3484]99! pmci_ensure_nest_mass_conservation is premanently removed
100!
101! 3473 2018-10-30 20:50:15Z suehring
[3473]102! new module for virtual measurements introduced
103!
104! 3472 2018-10-30 20:43:50Z suehring
[3469]105! Add indoor model (kanani, srissman, tlang)
106!
107! 3467 2018-10-30 19:05:21Z suehring
[3467]108! Implementation of a new aerosol module salsa.
109!
110! 3448 2018-10-29 18:14:31Z kanani
[3448]111! Add biometeorology
112!
113! 3421 2018-10-24 18:39:32Z gronemeier
[3421]114! Surface data output
115!
116! 3418 2018-10-24 16:07:39Z kanani
[3418]117! call to material_heat_model now with check if spinup runs (rvtils)
118!
119! 3378 2018-10-19 12:34:59Z kanani
[3378]120! merge from radiation branch (r3362) into trunk
121! (moh.hefny):
122! Bugfix in the if statement to call radiation_interaction
123!
124! 3347 2018-10-15 14:21:08Z suehring
[3347]125! - offline nesting separated from large-scale forcing module
126! - changes for synthetic turbulence generator
127!
128! 3343 2018-10-15 10:38:52Z suehring
[3298]129! - Formatting, clean-up, comments (kanani)
130! - Added CALL to chem_emissions_setup (Russo)
131! - Code added for decycling chemistry (basit)
132!
133! 3294 2018-10-01 02:37:10Z raasch
[3294]134! changes concerning modularization of ocean option
135!
136! 3274 2018-09-24 15:42:55Z knoop
[3274]137! Modularization of all bulk cloud physics code components
138!
139! 3241 2018-09-12 15:02:00Z raasch
[3241]140! unused variables removed
141!
142! 3198 2018-08-15 09:23:10Z sward
[3198]143! Added multi_agent_system_end; defined start time for MAS relative to
144! time_since_reference_point
145!
146! 3183 2018-07-27 14:25:55Z suehring
[3183]147! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
148! Rename subroutines and variables in COSMO nesting mode
149!
150! 3182 2018-07-27 13:36:03Z suehring
[3159]151! Added multi agent system
152!
153! 3042 2018-05-25 10:44:37Z schwenkel
[3042]154! Changed the name specific humidity to mixing ratio
155!
156! 3040 2018-05-25 10:22:08Z schwenkel
[3014]157! Fixed bug in IF statement
158! Ensure that the time when calling the radiation to be the time step of the
159! pre-calculated time when first calculate the positions of the sun
160!
161! 3004 2018-04-27 12:33:25Z Giersch
[3004]162! First call of flow_statistics has been removed. It is already called in
163! run_control itself
164!
165! 2984 2018-04-18 11:51:30Z hellstea
[2984]166! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
167! as seemingly unnecessary.
[2977]168!
169! 2941 2018-04-03 11:54:58Z kanani
[2941]170! Deduct spinup_time from RUN_CONTROL output of main 3d run
171! (use time_since_reference_point instead of simulated_time)
172!
173! 2938 2018-03-27 15:52:42Z suehring
[2938]174! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
175!
176! 2936 2018-03-27 14:49:27Z suehring
[2934]177! Little formatting adjustment.
178!
179! 2817 2018-02-19 16:32:21Z knoop
[2817]180! Preliminary gust module interface implemented
181!
182! 2801 2018-02-14 16:01:55Z thiele
[2801]183! Changed lpm from subroutine to module.
184! Introduce particle transfer in nested models.
185!
186! 2776 2018-01-31 10:44:42Z Giersch
[2776]187! Variable use_synthetic_turbulence_generator has been abbreviated
188!
189! 2773 2018-01-30 14:12:54Z suehring
[2773]190! - Nesting for chemical species
191!
192! 2766 2018-01-22 17:17:47Z kanani
[2766]193! Removed preprocessor directive __chem
194!
195! 2718 2018-01-02 08:49:38Z maronga
[2716]196! Corrected "Former revisions" section
197!
198! 2696 2017-12-14 17:12:51Z kanani
199! - Change in file header (GPL part)
[2696]200! - Implementation of uv exposure model (FK)
201! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
202! - renamed diffusivities to tcm_diffusivities (TG)
203! - implement prognostic equation for diss (TG)
204! - Moved/commented CALL to chem_emissions (FK)
205! - Added CALL to chem_emissions (FK)
206! - Implementation of chemistry module (FK)
207! - Calls for setting boundary conditions in USM and LSM (MS)
208! - Large-scale forcing with larger-scale models implemented (MS)
209! - Rename usm_radiation into radiation_interactions; merge with branch
210!   radiation (MS)
211! - added call for usm_green_heat_model for green building surfaces (RvT)
212! - added call for usm_temperature_near_surface for use in indoor model (RvT)
213!
214! 2617 2017-11-16 12:47:24Z suehring
[2617]215! Bugfix, assure that the reference state does not become zero.
216!
217! 2563 2017-10-19 15:36:10Z Giersch
[2563]218! Variable wind_turbine moved to module control_parameters
219!
220! 2365 2017-08-21 14:59:59Z kanani
[2365]221! Vertical grid nesting implemented (SadiqHuq)
222!
223! 2320 2017-07-21 12:47:43Z suehring
[2311]224! Set bottom boundary conditions after nesting interpolation and anterpolation
225!
226! 2299 2017-06-29 10:14:38Z maronga
[2299]227! Call of soil model adjusted
228!
229! 2292 2017-06-20 09:51:42Z schwenkel
[2292]230! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
231! includes two more prognostic equations for cloud drop concentration (nc) 
232! and cloud water content (qc).
233!
234! 2271 2017-06-09 12:34:55Z sward
[2271]235! Start timestep message changed
236!
237! 2259 2017-06-08 09:09:11Z gronemeier
[2259]238! Implemented synthetic turbulence generator
[1366]239!
[2259]240! 2233 2017-05-30 18:08:54Z suehring
241!
[2233]242! 2232 2017-05-30 17:47:52Z suehring
243! Adjustments to new topography and surface concept
244! Modify passed parameters for disturb_field
245!
[2179]246! 2178 2017-03-17 11:07:39Z hellstea
247! Setting perturbations at all times near inflow boundary is removed
248! in case of nested boundaries
249!
[2175]250! 2174 2017-03-13 08:18:57Z maronga
251! Added support for nesting with cloud microphysics
252!
[2119]253! 2118 2017-01-17 16:38:49Z raasch
254! OpenACC directives and related code removed
255!
[2051]256! 2050 2016-11-08 15:00:55Z gronemeier
257! Implement turbulent outflow condition
258!
[2032]259! 2031 2016-10-21 15:11:58Z knoop
260! renamed variable rho to rho_ocean
261!
[2012]262! 2011 2016-09-19 17:29:57Z kanani
263! Flag urban_surface is now defined in module control_parameters,
264! removed commented CALLs of global_min_max.
265!
[2008]266! 2007 2016-08-24 15:47:17Z kanani
267! Added CALLs for new urban surface model
268!
[2001]269! 2000 2016-08-20 18:09:15Z knoop
270! Forced header and separation lines into 80 columns
271!
[1977]272! 1976 2016-07-27 13:28:04Z maronga
273! Simplified calls to radiation model
274!
[1961]275! 1960 2016-07-12 16:34:24Z suehring
276! Separate humidity and passive scalar
277!
[1958]278! 1957 2016-07-07 10:43:48Z suehring
279! flight module added
280!
[1933]281! 1919 2016-05-27 14:51:23Z raasch
282! Initial version of purely vertical nesting introduced.
[1928]283!
[1919]284! 1918 2016-05-27 14:35:57Z raasch
285! determination of time step moved to the end of the time step loop,
286! the first time step is now always calculated before the time step loop (i.e.
287! also in case of restart runs)
288!
[1917]289! 1914 2016-05-26 14:44:07Z witha
290! Added call for wind turbine model
291!
[1879]292! 1878 2016-04-19 12:30:36Z hellstea
293! Synchronization for nested runs rewritten
294!
[1854]295! 1853 2016-04-11 09:00:35Z maronga
296! Adjusted for use with radiation_scheme = constant
297!
[1851]298! 1849 2016-04-08 11:33:18Z hoffmann
299! Adapted for modularization of microphysics
300!
[1834]301! 1833 2016-04-07 14:23:03Z raasch
302! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
303!
[1832]304! 1831 2016-04-07 13:15:51Z hoffmann
305! turbulence renamed collision_turbulence
306!
[1823]307! 1822 2016-04-07 07:49:42Z hoffmann
308! icloud_scheme replaced by microphysics_*
309!
[1809]310! 1808 2016-04-05 19:44:00Z raasch
311! output message in case unscheduled radiation calls removed
312!
[1798]313! 1797 2016-03-21 16:50:28Z raasch
314! introduction of different datatransfer modes
315!
[1792]316! 1791 2016-03-11 10:41:25Z raasch
317! call of pmci_update_new removed
318!
[1787]319! 1786 2016-03-08 05:49:27Z raasch
320! +module spectrum
321!
[1784]322! 1783 2016-03-06 18:36:17Z raasch
323! switch back of netcdf data format for mask output moved to the mask output
324! routine
325!
[1782]326! 1781 2016-03-03 15:12:23Z raasch
327! some pmc calls removed at the beginning (before timeloop),
328! pmc initialization moved to the main program
329!
[1765]330! 1764 2016-02-28 12:45:19Z raasch
331! PMC_ACTIVE flags removed,
332! bugfix: nest synchronization after first call of timestep
333!
[1763]334! 1762 2016-02-25 12:31:13Z hellstea
335! Introduction of nested domain feature
336!
[1737]337! 1736 2015-12-04 08:56:33Z raasch
338! no perturbations added to total domain if energy limit has been set zero
339!
[1692]340! 1691 2015-10-26 16:17:44Z maronga
341! Added option for spin-ups without land surface and radiation models. Moved calls
342! for radiation and lan surface schemes.
343!
[1683]344! 1682 2015-10-07 23:56:08Z knoop
345! Code annotations made doxygen readable
346!
[1672]347! 1671 2015-09-25 03:29:37Z raasch
348! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
349! for particles
350!
[1586]351! 1585 2015-04-30 07:05:52Z maronga
352! Moved call of radiation scheme. Added support for RRTM
353!
[1552]354! 1551 2015-03-03 14:18:16Z maronga
355! Added interface for different radiation schemes.
356!
[1497]357! 1496 2014-12-02 17:25:50Z maronga
358! Added calls for the land surface model and radiation scheme
359!
[1403]360! 1402 2014-05-09 14:25:13Z raasch
361! location messages modified
362!
[1385]363! 1384 2014-05-02 14:31:06Z raasch
364! location messages added
365!
[1381]366! 1380 2014-04-28 12:40:45Z heinze
367! CALL of nudge_ref added
368! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
369!
[1366]370! 1365 2014-04-22 15:03:56Z boeske
[1365]371! Reset sums_ls_l to zero at each timestep
372! +sums_ls_l
373! Calculation of reference state (previously in subroutine calc_mean_profile)
374
[1343]375! 1342 2014-03-26 17:04:47Z kanani
376! REAL constants defined as wp-kind
377!
[1321]378! 1320 2014-03-20 08:40:49Z raasch
[1320]379! ONLY-attribute added to USE-statements,
380! kind-parameters added to all INTEGER and REAL declaration statements,
381! kinds are defined in new module kinds,
382! old module precision_kind is removed,
383! revision history before 2012 removed,
384! comment fields (!:) to be used for variable explanations added to
385! all variable declaration statements
[1319]386! 1318 2014-03-17 13:35:16Z raasch
387! module interfaces removed
388!
[1309]389! 1308 2014-03-13 14:58:42Z fricke
390! +netcdf_data_format_save
391! For masked data, parallel netcdf output is not tested so far, hence
392! netcdf_data_format is switched back to non-paralell output.
393!
[1277]394! 1276 2014-01-15 13:40:41Z heinze
395! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
396!
[1258]397! 1257 2013-11-08 15:18:40Z raasch
398! acc-update-host directive for timestep removed
399!
[1242]400! 1241 2013-10-30 11:36:58Z heinze
401! Generalize calc_mean_profile for wider use
402! Determine shf and qsws in dependence on data from LSF_DATA
403! Determine ug and vg in dependence on data from LSF_DATA
[1222]404! 1221 2013-09-10 08:59:13Z raasch
405! host update of arrays before timestep is called
406!
[1182]407! 1179 2013-06-14 05:57:58Z raasch
408! mean profiles for reference state are only calculated if required,
409! small bugfix for background communication
410!
[1172]411! 1171 2013-05-30 11:27:45Z raasch
412! split of prognostic_equations deactivated (comment lines), for the time being
413!
[1132]414! 1128 2013-04-12 06:19:32Z raasch
[1128]415! asynchronous transfer of ghost point data realized for acc-optimized version:
416! prognostic_equations are first called two times for those points required for
417! the left-right and north-south exchange, respectively, and then for the
418! remaining points,
419! those parts requiring global communication moved from prognostic_equations to
420! here
[392]421!
[1116]422! 1115 2013-03-26 18:16:16Z hoffmann
423! calculation of qr and nr is restricted to precipitation
424!
[1114]425! 1113 2013-03-10 02:48:14Z raasch
426! GPU-porting of boundary conditions,
427! openACC directives updated
428! formal parameter removed from routine boundary_conds
429!
[1112]430! 1111 2013-03-08 23:54:10Z raasch
431! +internal timestep counter for cpu statistics added,
432! openACC directives updated
433!
[1093]434! 1092 2013-02-02 11:24:22Z raasch
435! unused variables removed
436!
[1066]437! 1065 2012-11-22 17:42:36Z hoffmann
438! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
439!
[1054]440! 1053 2012-11-13 17:11:03Z hoffmann
441! exchange of ghost points for nr, qr added
442!
[1037]443! 1036 2012-10-22 13:43:42Z raasch
444! code put under GPL (PALM 3.9)
445!
[1020]446! 1019 2012-09-28 06:46:45Z raasch
447! non-optimized version of prognostic_equations removed
448!
[1017]449! 1015 2012-09-27 09:23:24Z raasch
450! +call of prognostic_equations_acc
451!
[1002]452! 1001 2012-09-13 14:08:46Z raasch
453! all actions concerning leapfrog- and upstream-spline-scheme removed
454!
[850]455! 849 2012-03-15 10:35:09Z raasch
456! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
457!
[826]458! 825 2012-02-19 03:03:44Z raasch
459! wang_collision_kernel renamed wang_kernel
460!
[1]461! Revision 1.1  1997/08/11 06:19:04  raasch
462! Initial revision
463!
464!
465! Description:
466! ------------
[1682]467!> Integration in time of the model equations, statistical analysis and graphic
468!> output
[1]469!------------------------------------------------------------------------------!
[1682]470 SUBROUTINE time_integration
471 
[1]472
[3761]473    USE advec_ws,                                                                                  &
[1320]474        ONLY:  ws_statistics
475
[3761]476    USE arrays_3d,                                                                                 &
477        ONLY:  diss, diss_p, dzu, e, e_p, nc, nc_p, nr, nr_p, prho, pt, pt_p, pt_init, q_init, q,  &
478               qc, qc_p, ql, ql_c, ql_v, ql_vp, qr, qr_p, q_p, ref_state, rho_ocean, s, s_p, sa_p, &
479               tend, u, u_p, v, vpt, v_p, w, w_p
[1320]480
[3761]481    USE biometeorology_mod,                                                                        &
482        ONLY:  bio_calculate_thermal_index_maps, thermal_comfort, uvem_calc_exposure, uv_exposure
[3448]483
[3761]484    USE bulk_cloud_model_mod,                                                                      &
485        ONLY: bulk_cloud_model, calc_liquid_water_content, collision_turbulence,                   &
486              microphysics_morrison, microphysics_seifert
[3294]487
[3761]488    USE calc_mean_profile_mod,                                                                     &
[1320]489        ONLY:  calc_mean_profile
490
[3761]491    USE chem_emissions_mod,                                                                        &
[3298]492        ONLY:  chem_emissions_setup
[2696]493
[3833]494    USE chem_gasphase_mod,                                                                         &
495        ONLY:  nvar
496
[3761]497    USE chem_modules,                                                                              &
[3833]498        ONLY:  bc_cs_t_val, cs_name, emissions_anthropogenic, nspec_out
[2696]499
[3761]500    USE chemistry_model_mod,                                                                       &
[3298]501        ONLY:  chem_boundary_conds, chem_species
502
[3761]503    USE control_parameters,                                                                        &
504        ONLY:  advected_distance_x, advected_distance_y, air_chemistry, average_count_3d,          &
505               averaging_interval, averaging_interval_pr, bc_lr_cyc, bc_ns_cyc, bc_pt_t_val,       &
506               bc_q_t_val, biometeorology, call_psolver_at_all_substeps,  child_domain,            &
507               cloud_droplets, constant_flux_layer, constant_heatflux, create_disturbances,        &
508               dopr_n, constant_diffusion, coupling_mode, coupling_start_time,                     &
509               current_timestep_number, disturbance_created, disturbance_energy_limit, dist_range, &
510               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr, dt_coupling,              &
511               dt_data_output_av, dt_disturb, dt_do2d_xy, dt_do2d_xz, dt_do2d_yz, dt_do3d,         &
512               dt_domask,dt_dopts, dt_dopr, dt_dopr_listing, dt_dots, dt_dvrp, dt_run_control,     &
513               end_time, first_call_lpm, first_call_mas, galilei_transformation, humidity,         &
514               indoor_model, intermediate_timestep_count, intermediate_timestep_count_max,         &
515               land_surface, large_scale_forcing, loop_optimization, lsf_surf, lsf_vert, masks,    &
516               mid, multi_agent_system_end, multi_agent_system_start, nesting_offline, neutral,    &
517               nr_timesteps_this_run, nudging, ocean_mode, passive_scalar, pt_reference,           &
518               pt_slope_offset, random_heatflux, rans_mode, rans_tke_e, run_coupled, salsa,        &
519               simulated_time, simulated_time_chr, skip_time_do2d_xy, skip_time_do2d_xz,           &
520               skip_time_do2d_yz, skip_time_do3d, skip_time_domask, skip_time_dopr,                &
521               skip_time_data_output_av, sloping_surface, stop_dt, surface_output,                 &
522               terminate_coupled, terminate_run, timestep_scheme, time_coupling, time_do2d_xy,     &
523               time_do2d_xz, time_do2d_yz, time_do3d, time_domask, time_dopr, time_dopr_av,        &
524               time_dopr_listing, time_dopts, time_dosp, time_dosp_av, time_dots, time_do_av,      &
525               time_do_sla, time_disturb, time_dvrp, time_run_control, time_since_reference_point, &
526               turbulent_inflow, turbulent_outflow, urban_surface,                                 &
527               use_initial_profile_as_reference, use_single_reference_value, u_gtrans, v_gtrans,   &
528               virtual_flight, virtual_measurement, wind_turbine, ws_scheme_mom, ws_scheme_sca
[1320]529
[3761]530    USE cpulog,                                                                                    &
[1320]531        ONLY:  cpu_log, log_point, log_point_s
532
[3761]533    USE date_and_time_mod,                                                                         &
[3298]534        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
535
[3761]536    USE flight_mod,                                                                                &
[1957]537        ONLY:  flight_measurement
538
[3761]539    USE indices,                                                                                   &
540        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nzb, nzt
[1320]541
[3761]542    USE indoor_model_mod,                                                                          &
543        ONLY:  dt_indoor, im_main_heatcool, time_indoor
[3469]544
[3761]545    USE interaction_droplets_ptq_mod,                                                              &
[1320]546        ONLY:  interaction_droplets_ptq
547
[1918]548    USE interfaces
549
[1320]550    USE kinds
551
[3761]552    USE land_surface_model_mod,                                                                    &
553        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model, skip_time_do_lsm
[1496]554
[3761]555    USE lpm_mod,                                                                                   &
556        ONLY:  lpm
557
558    USE lsf_nudging_mod,                                                                           &
[3347]559        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
[1320]560
[3761]561    USE module_interface,                                                                          &
[3684]562        ONLY:  module_interface_actions
563
[3761]564    USE multi_agent_system_mod,                                                                    &
[3198]565        ONLY:  agents_active, multi_agent_system
[3448]566
[3761]567    USE nesting_offl_mod,                                                                          &
[3347]568        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
569       
[3761]570    USE netcdf_data_input_mod,                                                                     &
571        ONLY:  chem_emis, chem_emis_att, nest_offl, netcdf_data_input_offline_nesting
[3298]572
[3761]573    USE ocean_mod,                                                                                 &
[3294]574        ONLY:  prho_reference
575
[3761]576    USE particle_attributes,                                                                       &
577        ONLY:  particle_advection, particle_advection_start, use_sgs_for_particles, wang_kernel
[1320]578
[1]579    USE pegrid
580
[3761]581    USE pmc_interface,                                                                             &
582        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans, pmci_synchronize
[1762]583
[3761]584    USE progress_bar,                                                                              &
[1402]585        ONLY:  finish_progress_bar, output_progress_bar
586
[3761]587    USE prognostic_equations_mod,                                                                  &
[2118]588        ONLY:  prognostic_equations_cache, prognostic_equations_vector
[1320]589
[3761]590    USE radiation_model_mod,                                                                       &
591        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,                    &
592              radiation_interaction, radiation_interactions, skip_time_do_radiation, time_radiation
[3582]593         
[3761]594    USE salsa_mod,                                                                                 &
595        ONLY: aerosol_number, aerosol_mass, nbins, ncc_tot, ngast, salsa_boundary_conds,           &
596              salsa_gas, salsa_gases_from_chem, skip_time_do_salsa
[1496]597
[3761]598    USE spectra_mod,                                                                               &
599        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp, skip_time_dosp
[1786]600
[3761]601    USE statistics,                                                                                &
602        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l
[1320]603
[3761]604
605    USE surface_layer_fluxes_mod,                                                                  &
[1691]606        ONLY:  surface_layer_fluxes
607
[3761]608    USE surface_data_output_mod,                                                                   &
609        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf, dt_dosurf_av,               &
610               surface_data_output, surface_data_output_averaging, skip_time_dosurf,               &
[3648]611               skip_time_dosurf_av, time_dosurf, time_dosurf_av
[2232]612
[3761]613    USE surface_mod,                                                                               &
614        ONLY:  surf_def_h, surf_lsm_h, surf_usm_h
615
616    USE synthetic_turbulence_generator_mod,                                                        &
617        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence, stg_adjust, stg_main,    &
618               time_stg_adjust, time_stg_call, use_syn_turb_gen
619
620    USE turbulence_closure_mod,                                                                    &
[2696]621        ONLY:  tcm_diffusivities, production_e_init
622
[3761]623    USE urban_surface_mod,                                                                         &
624        ONLY:  usm_boundary_condition, usm_material_heat_model, usm_material_model,                &
[3597]625               usm_surface_energy_balance, usm_green_heat_model
[2007]626
[3761]627    USE vertical_nesting_mod,                                                                      &
628        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e, vnest_boundary_conds,              &
629               vnest_boundary_conds_khkm, vnest_deallocate, vnest_init, vnest_init_fine,           &
630               vnest_start_time
631               
632    USE virtual_measurement_mod,                                                                   &
633        ONLY:  vm_data_output, vm_sampling, vm_time_start
[2259]634
[3761]635    USE wind_turbine_model_mod,                                                                    &
[2563]636        ONLY:  wtm_forces
[1914]637
[2801]638
[3761]639#if defined( _OPENACC )
640    USE arrays_3d,                                                             &
641        ONLY:  d, dd2zu, ddzu, ddzw, drho_air, drho_air_zw, dzw, heatflux_output_conversion, kh,   &
642               km, momentumflux_output_conversion, p, ptdf_x, ptdf_y, rdf, rdf_sc, rho_air,        &
643               rho_air_zw, te_m, tpt_m, tu_m, tv_m, tw_m, ug, u_init, u_stokes_zu, vg, v_init,     &
644               v_stokes_zu, zu
[2365]645
[3761]646    USE control_parameters,                                                                        &
647        ONLY:  tsc
648
649    USE indices,                                                                                   &
650        ONLY:  advc_flags_1, advc_flags_2, nyn, nyng, nys, nysg, nz, nzb_max, wall_flags_0
651
652    USE statistics,                                                                                &
653        ONLY:  rmask, statistic_regions, sums_l, sums_l_l, sums_us2_ws_l,                          &
654               sums_wsus_ws_l, sums_vs2_ws_l, sums_wsvs_ws_l, sums_ws2_ws_l, sums_wspts_ws_l,      &
655               sums_wsqs_ws_l, sums_wssas_ws_l, sums_wsqcs_ws_l, sums_wsqrs_ws_l, sums_wsncs_ws_l, &
656               sums_wsnrs_ws_l, sums_wsss_ws_l, weight_substep
657
658    USE salsa_util_mod,                                                                            &
659           ONLY:  sums_salsa_ws_l
660
661    USE surface_mod,                                                                               &
662        ONLY:  bc_h, enter_surface_arrays, exit_surface_arrays
663#endif
664
665
[1]666    IMPLICIT NONE
667
[3298]668    CHARACTER (LEN=9) ::  time_to_string   !<
[3467]669   
670    INTEGER(iwp)      ::  b !< index for aerosol size bins   
671    INTEGER(iwp)      ::  c !< index for chemical compounds in aerosol size bins
672    INTEGER(iwp)      ::  g !< index for gaseous compounds
673    INTEGER(iwp)      ::  lsp
[3298]674    INTEGER(iwp)      ::  lsp_usr   !<
675    INTEGER(iwp)      ::  n         !< loop counter for chemistry species
[3014]676
[1918]677    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
678                            !< steering of run control output interval
[3241]679    REAL(wp) ::  time_since_reference_point_save  !< original value of
680                                                  !< time_since_reference_point
681
[3634]682
[3761]683!
684!-- Copy data from arrays_3d
[3634]685!$ACC DATA &
686!$ACC COPY(d(nzb+1:nzt,nys:nyn,nxl:nxr)) &
687!$ACC COPY(e(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
688!$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
689!$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
690!$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
691!$ACC COPY(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
692!$ACC COPY(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
693!$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
694!$ACC COPY(pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
695
696!$ACC DATA &
697!$ACC COPY(e_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
698!$ACC COPY(u_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
699!$ACC COPY(v_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
700!$ACC COPY(w_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
701!$ACC COPY(pt_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
702!$ACC COPY(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
703!$ACC COPY(te_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
704!$ACC COPY(tu_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
705!$ACC COPY(tv_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
706!$ACC COPY(tw_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
707!$ACC COPY(tpt_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
708
709!$ACC DATA &
710!$ACC COPYIN(rho_air(nzb:nzt+1), drho_air(nzb:nzt+1)) &
711!$ACC COPYIN(rho_air_zw(nzb:nzt+1), drho_air_zw(nzb:nzt+1)) &
712!$ACC COPYIN(zu(nzb:nzt+1)) &
713!$ACC COPYIN(dzu(1:nzt+1), dzw(1:nzt+1)) &
714!$ACC COPYIN(ddzu(1:nzt+1), dd2zu(1:nzt)) &
715!$ACC COPYIN(ddzw(1:nzt+1)) &
[3658]716!$ACC COPYIN(heatflux_output_conversion(nzb:nzt+1)) &
717!$ACC COPYIN(momentumflux_output_conversion(nzb:nzt+1)) &
[3634]718!$ACC COPYIN(rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt)) &
719!$ACC COPYIN(ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng)) &
720!$ACC COPYIN(ref_state(0:nz+1)) &
721!$ACC COPYIN(u_init(0:nz+1), v_init(0:nz+1)) &
722!$ACC COPYIN(u_stokes_zu(nzb:nzt+1), v_stokes_zu(nzb:nzt+1)) &
723!$ACC COPYIN(pt_init(0:nz+1)) &
724!$ACC COPYIN(ug(0:nz+1), vg(0:nz+1))
725
[3761]726!
727!-- Copy data from control_parameters
[3634]728!$ACC DATA &
729!$ACC COPYIN(tsc(1:5))
730
[3761]731!
732!-- Copy data from indices
[3634]733!$ACC DATA &
734!$ACC COPYIN(advc_flags_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
735!$ACC COPYIN(advc_flags_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
736!$ACC COPYIN(wall_flags_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
737
[3761]738!
739!-- Copy data from surface_mod
[3634]740!$ACC DATA &
741!$ACC COPYIN(bc_h(0:1)) &
742!$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) &
743!$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) &
744!$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) &
745!$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) &
746!$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) &
747!$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns))
748
[3761]749!
750!-- Copy data from statistics
[3634]751!$ACC DATA &
[3658]752!$ACC COPYIN(hom(0:nz+1,1:2,1:4,0)) &
[3634]753!$ACC COPYIN(rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions)) &
754!$ACC COPYIN(weight_substep(1:intermediate_timestep_count_max)) &
[3658]755!$ACC COPY(sums_l(nzb:nzt+1,1:pr_palm,0)) &
[3634]756!$ACC COPY(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
757!$ACC COPY(sums_us2_ws_l(nzb:nzt+1,0)) &
758!$ACC COPY(sums_wsus_ws_l(nzb:nzt+1,0)) &
759!$ACC COPY(sums_vs2_ws_l(nzb:nzt+1,0)) &
760!$ACC COPY(sums_wsvs_ws_l(nzb:nzt+1,0)) &
761!$ACC COPY(sums_ws2_ws_l(nzb:nzt+1,0)) &
762!$ACC COPY(sums_wspts_ws_l(nzb:nzt+1,0)) &
763!$ACC COPY(sums_wssas_ws_l(nzb:nzt+1,0)) &
764!$ACC COPY(sums_wsqs_ws_l(nzb:nzt+1,0)) &
765!$ACC COPY(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
766!$ACC COPY(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
767!$ACC COPY(sums_wsncs_ws_l(nzb:nzt+1,0)) &
768!$ACC COPY(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
769!$ACC COPY(sums_wsss_ws_l(nzb:nzt+1,0)) &
770!$ACC COPY(sums_salsa_ws_l(nzb:nzt+1,0))
771
[3761]772#if defined( _OPENACC )
[3658]773    CALL enter_surface_arrays
774#endif
775
[1]776!
[1918]777!-- At beginning determine the first time step
778    CALL timestep
[1764]779!
780!-- Synchronize the timestep in case of nested run.
781    IF ( nested_run )  THEN
[1878]782!
783!--    Synchronization by unifying the time step.
784!--    Global minimum of all time-steps is used for all.
785       CALL pmci_synchronize
[1764]786    ENDIF
787
[1918]788!
789!-- Determine and print out the run control quantities before the first time
790!-- step of this run. For the initial run, some statistics (e.g. divergence)
[3004]791!-- need to be determined first --> CALL flow_statistics at the beginning of
792!-- run_control
[1]793    CALL run_control
[108]794!
795!-- Data exchange between coupled models in case that a call has been omitted
796!-- at the end of the previous run of a job chain.
[3761]797    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND. .NOT. vnested )  THEN
[108]798!
799!--    In case of model termination initiated by the local model the coupler
800!--    must not be called because this would again cause an MPI hang.
[1918]801       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
[108]802          CALL surface_coupler
803          time_coupling = time_coupling - dt_coupling
804       ENDDO
[3761]805       IF (time_coupling == 0.0_wp  .AND.  time_since_reference_point < dt_coupling )  THEN
[348]806          time_coupling = time_since_reference_point
807       ENDIF
[108]808    ENDIF
809
[1]810#if defined( __dvrp_graphics )
811!
812!-- Time measurement with dvrp software 
813    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
814#endif
815
[2271]816    CALL location_message( 'starting timestep-sequence', .TRUE. )
[3761]817
[1]818!
819!-- Start of the time loop
[3761]820    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. .NOT. terminate_run )
[1]821
822       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
823!
[2365]824!--    Vertical nesting: initialize fine grid
825       IF ( vnested ) THEN
826          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
[3719]827             CALL cpu_log( log_point_s(22), 'vnest_init', 'start' )
[2365]828             CALL vnest_init_fine
829             vnest_init = .TRUE.
[3719]830             CALL cpu_log( log_point_s(22), 'vnest_init', 'stop' )
[2365]831          ENDIF
832       ENDIF
833!
[1241]834!--    Determine ug, vg and w_subs in dependence on data from external file
835!--    LSF_DATA
[1365]836       IF ( large_scale_forcing .AND. lsf_vert )  THEN
[1241]837           CALL ls_forcing_vert ( simulated_time )
[1365]838           sums_ls_l = 0.0_wp
[1241]839       ENDIF
840
841!
[1380]842!--    Set pt_init and q_init to the current profiles taken from
843!--    NUDGING_DATA
844       IF ( nudging )  THEN
845           CALL nudge_ref ( simulated_time )
846!
847!--        Store temperature gradient at the top boundary for possible Neumann
848!--        boundary condition
849           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
850           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
[3298]851           IF ( air_chemistry )  THEN
[3833]852              DO  lsp = 1, nvar
[3761]853                 bc_cs_t_val = (  chem_species(lsp)%conc_pr_init(nzt+1)                            &
854                                - chem_species(lsp)%conc_pr_init(nzt) )                            &
[3298]855                               / dzu(nzt+1)
856              ENDDO
857           ENDIF
[1380]858       ENDIF
[2696]859!
860!--    If forcing by larger-scale models is applied, check if new data
861!--    at domain boundaries need to be read.
[3774]862       IF ( nesting_offline ) THEN
863          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point ) &
864               CALL netcdf_data_input_offline_nesting
[2696]865       ENDIF
[1380]866
867!
[3684]868!--    Execute alle other module actions routunes
869       CALL module_interface_actions( 'before_timestep' )
[2817]870
871!
[1914]872!--    Calculate forces by wind turbines
[3719]873       IF ( wind_turbine )  CALL wtm_forces 
[1914]874       
875!
[1]876!--    Start of intermediate step loop
877       intermediate_timestep_count = 0
[3761]878       DO  WHILE ( intermediate_timestep_count < intermediate_timestep_count_max )
[1]879
880          intermediate_timestep_count = intermediate_timestep_count + 1
881
882!
883!--       Set the steering factors for the prognostic equations which depend
884!--       on the timestep scheme
885          CALL timestep_scheme_steering
886
887!
[1128]888!--       Calculate those variables needed in the tendency terms which need
889!--       global communication
[3761]890          IF ( .NOT. use_single_reference_value  .AND.  .NOT. use_initial_profile_as_reference )   &
891          THEN
[1179]892!
893!--          Horizontally averaged profiles to be used as reference state in
894!--          buoyancy terms (WARNING: only the respective last call of
895!--          calc_mean_profile defines the reference state!)
[1365]896             IF ( .NOT. neutral )  THEN
897                CALL calc_mean_profile( pt, 4 )
898                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
899             ENDIF
[3294]900             IF ( ocean_mode )  THEN
[2031]901                CALL calc_mean_profile( rho_ocean, 64 )
[1365]902                ref_state(:)  = hom(:,1,64,0)
903             ENDIF
904             IF ( humidity )  THEN
905                CALL calc_mean_profile( vpt, 44 )
906                ref_state(:)  = hom(:,1,44,0)
907             ENDIF
[2617]908!
909!--          Assure that ref_state does not become zero at any level
910!--          ( might be the case if a vertical level is completely occupied
911!--            with topography ).
[3761]912             ref_state = MERGE( MAXVAL(ref_state), ref_state, ref_state == 0.0_wp )
[1179]913          ENDIF
914
[1128]915          IF ( .NOT. constant_diffusion )  CALL production_e_init
[3761]916          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  intermediate_timestep_count == 1 )     &
917          THEN
918             CALL ws_statistics
919          ENDIF
[1365]920!
921!--       In case of nudging calculate current nudging time scale and horizontal
[1380]922!--       means of u, v, pt and q
[1365]923          IF ( nudging )  THEN
924             CALL calc_tnudge( simulated_time )
925             CALL calc_mean_profile( u, 1 )
926             CALL calc_mean_profile( v, 2 )
927             CALL calc_mean_profile( pt, 4 )
928             CALL calc_mean_profile( q, 41 )
929          ENDIF
[1128]930
931!
[1]932!--       Solve the prognostic equations. A fast cache optimized version with
933!--       only one single loop is used in case of Piascek-Williams advection
934!--       scheme. NEC vector machines use a different version, because
935!--       in the other versions a good vectorization is prohibited due to
936!--       inlining problems.
[1019]937          IF ( loop_optimization == 'cache' )  THEN
938             CALL prognostic_equations_cache
939          ELSEIF ( loop_optimization == 'vector' )  THEN
[63]940             CALL prognostic_equations_vector
[1]941          ENDIF
942
943!
[849]944!--       Particle transport/physics with the Lagrangian particle model
945!--       (only once during intermediate steps, because it uses an Euler-step)
[1128]946!--       ### particle model should be moved before prognostic_equations, in order
947!--       to regard droplet interactions directly
[3761]948          IF ( particle_advection  .AND.  time_since_reference_point >= particle_advection_start   &
949               .AND.  intermediate_timestep_count == 1 )                                           &
950          THEN
[849]951             CALL lpm
952             first_call_lpm = .FALSE.
[1]953          ENDIF
954
955!
[3040]956!--       Interaction of droplets with temperature and mixing ratio.
[1]957!--       Droplet condensation and evaporation is calculated within
958!--       advec_particles.
[3761]959          IF ( cloud_droplets  .AND.  intermediate_timestep_count == intermediate_timestep_count_max ) &
[1]960          THEN
961             CALL interaction_droplets_ptq
962          ENDIF
963
964!
[3159]965!--       Movement of agents in multi agent system
[3761]966          IF ( agents_active  .AND.  time_since_reference_point >= multi_agent_system_start  .AND. &
967               time_since_reference_point <= multi_agent_system_end  .AND.                         &
968               intermediate_timestep_count == 1 )                                                  &
969          THEN
[3159]970             CALL multi_agent_system
971             first_call_mas = .FALSE.
972          ENDIF
973
974!
[1]975!--       Exchange of ghost points (lateral boundary conditions)
[2118]976          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
[1113]977
[2118]978          CALL exchange_horiz( u_p, nbgp )
979          CALL exchange_horiz( v_p, nbgp )
980          CALL exchange_horiz( w_p, nbgp )
981          CALL exchange_horiz( pt_p, nbgp )
982          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
[3761]983          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence                           &
[2696]984               .OR.  use_sgs_for_particles )  THEN
985             IF ( rans_tke_e )  THEN
986                CALL exchange_horiz( diss_p, nbgp )
987             ELSE
988                CALL exchange_horiz( diss, nbgp )
989             ENDIF
990          ENDIF
[3294]991          IF ( ocean_mode )  THEN
[2118]992             CALL exchange_horiz( sa_p, nbgp )
993             CALL exchange_horiz( rho_ocean, nbgp )
994             CALL exchange_horiz( prho, nbgp )
995          ENDIF
996          IF ( humidity )  THEN
997             CALL exchange_horiz( q_p, nbgp )
[3274]998             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
[2292]999                CALL exchange_horiz( qc_p, nbgp )
1000                CALL exchange_horiz( nc_p, nbgp )
1001             ENDIF
[3274]1002             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
[2118]1003                CALL exchange_horiz( qr_p, nbgp )
1004                CALL exchange_horiz( nr_p, nbgp )
[1053]1005             ENDIF
[2118]1006          ENDIF
1007          IF ( cloud_droplets )  THEN
1008             CALL exchange_horiz( ql, nbgp )
1009             CALL exchange_horiz( ql_c, nbgp )
1010             CALL exchange_horiz( ql_v, nbgp )
1011             CALL exchange_horiz( ql_vp, nbgp )
1012          ENDIF
[2696]1013          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
1014          IF ( air_chemistry )  THEN
[3833]1015             DO  lsp = 1, nvar
[3298]1016                CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp )
1017!
1018!--             kanani: Push chem_boundary_conds after CALL boundary_conds
1019                lsp_usr = 1
1020                DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
1021                   IF ( TRIM(chem_species(lsp)%name) == TRIM(cs_name(lsp_usr)) )  THEN
[3761]1022                      CALL chem_boundary_conds( chem_species(lsp)%conc_p,                          &
[3298]1023                                                chem_species(lsp)%conc_pr_init )
1024                   ENDIF
1025                   lsp_usr = lsp_usr + 1
1026                ENDDO
[2696]1027             ENDDO
[2118]1028          ENDIF
[2766]1029
[3467]1030          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )&
1031          THEN
1032             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'start' )
1033             DO  b = 1, nbins
1034                CALL exchange_horiz( aerosol_number(b)%conc_p, nbgp )
1035                CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
[3761]1036                CALL salsa_boundary_conds( aerosol_number(b)%conc_p, aerosol_number(b)%init )
[3467]1037                CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1038                DO  c = 1, ncc_tot
[3761]1039                   CALL exchange_horiz( aerosol_mass((c-1)*nbins+b)%conc_p, nbgp )
[3467]1040                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
[3761]1041                   CALL salsa_boundary_conds( aerosol_mass((c-1)*nbins+b)%conc_p,                  &
[3467]1042                                              aerosol_mass((c-1)*nbins+b)%init )
1043                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1044                ENDDO
1045             ENDDO
1046             IF ( .NOT. salsa_gases_from_chem )  THEN
1047                DO  g = 1, ngast
1048                   CALL exchange_horiz( salsa_gas(g)%conc_p, nbgp ) 
1049                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
[3761]1050                   CALL salsa_boundary_conds( salsa_gas(g)%conc_p, salsa_gas(g)%init )
[3467]1051                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1052             ENDDO
1053             ENDIF
1054             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'stop' )
1055          ENDIF         
[2118]1056          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
[1128]1057
[1]1058!
1059!--       Boundary conditions for the prognostic quantities (except of the
1060!--       velocities at the outflow in case of a non-cyclic lateral wall)
[1113]1061          CALL boundary_conds
[1]1062!
[73]1063!--       Swap the time levels in preparation for the next time step.
1064          CALL swap_timelevel
1065
[2365]1066!
1067!--       Vertical nesting: Interpolate fine grid data to the coarse grid
1068          IF ( vnest_init ) THEN
[3719]1069             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'start' )
[2365]1070             CALL vnest_anterpolate
[3719]1071             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'stop' )
[2365]1072          ENDIF
1073
[1764]1074          IF ( nested_run )  THEN
[1797]1075
[1764]1076             CALL cpu_log( log_point(60), 'nesting', 'start' )
[1762]1077!
[1933]1078!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
1079!--          and pmci_child_datatrans are called inside the wrapper
[1797]1080!--          subroutine pmci_datatrans according to the control parameters
1081!--          nesting_mode and nesting_datatransfer_mode.
1082!--          TO_DO: why is nesting_mode given as a parameter here?
1083             CALL pmci_datatrans( nesting_mode )
[1762]1084
[3761]1085             IF ( TRIM( nesting_mode ) == 'two-way' .OR.  nesting_mode == 'vertical' )  THEN
[1762]1086!
[1933]1087!--             Exchange_horiz is needed for all parent-domains after the
[1764]1088!--             anterpolation
1089                CALL exchange_horiz( u, nbgp )
1090                CALL exchange_horiz( v, nbgp )
1091                CALL exchange_horiz( w, nbgp )
[2174]1092                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
1093
1094                IF ( humidity )  THEN
1095
1096                   CALL exchange_horiz( q, nbgp )
1097
[3274]1098                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
[2292]1099                       CALL exchange_horiz( qc, nbgp )
1100                       CALL exchange_horiz( nc, nbgp )
1101                   ENDIF
[3274]1102                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
[2174]1103                       CALL exchange_horiz( qr, nbgp )
1104                       CALL exchange_horiz( nr, nbgp )
1105                   ENDIF
1106
1107                ENDIF
1108
[3467]1109                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
1110               
[2174]1111                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
[2773]1112
[3761]1113                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.  rans_tke_e )  THEN
[2938]1114                   CALL exchange_horiz( diss, nbgp )
[3761]1115                ENDIF
[2938]1116
[2773]1117                IF ( air_chemistry )  THEN
[3833]1118                   DO  n = 1, nvar     
[2773]1119                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
1120                   ENDDO
1121                ENDIF
1122
[1762]1123             ENDIF
1124!
[2311]1125!--          Set boundary conditions again after interpolation and anterpolation.
1126             CALL pmci_boundary_conds
[1764]1127
1128             CALL cpu_log( log_point(60), 'nesting', 'stop' )
1129
[1762]1130          ENDIF
1131
1132!
[1]1133!--       Temperature offset must be imposed at cyclic boundaries in x-direction
1134!--       when a sloping surface is used
1135          IF ( sloping_surface )  THEN
[3761]1136             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - pt_slope_offset
1137             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + pt_slope_offset
[1]1138          ENDIF
1139
1140!
[151]1141!--       Impose a turbulent inflow using the recycling method
[3719]1142          IF ( turbulent_inflow )  CALL inflow_turbulence
[151]1143
1144!
[2050]1145!--       Set values at outflow boundary using the special outflow condition
[3719]1146          IF ( turbulent_outflow )  CALL outflow_turbulence
[2050]1147
1148!
[1]1149!--       Impose a random perturbation on the horizontal velocity field
[3761]1150          IF ( create_disturbances  .AND.  ( call_psolver_at_all_substeps  .AND.                   &
1151               intermediate_timestep_count == intermediate_timestep_count_max )                    &
1152               .OR. ( .NOT. call_psolver_at_all_substeps  .AND.  intermediate_timestep_count == 1 ) ) &
[1]1153          THEN
1154             time_disturb = time_disturb + dt_3d
1155             IF ( time_disturb >= dt_disturb )  THEN
[3761]1156                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                                     &
[1736]1157                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
[2232]1158                   CALL disturb_field( 'u', tend, u )
1159                   CALL disturb_field( 'v', tend, v )
[3761]1160                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )                                &
1161                         .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )                 &
[3182]1162                THEN
[1]1163!
1164!--                Runs with a non-cyclic lateral wall need perturbations
1165!--                near the inflow throughout the whole simulation
1166                   dist_range = 1
[2232]1167                   CALL disturb_field( 'u', tend, u )
1168                   CALL disturb_field( 'v', tend, v )
[1]1169                   dist_range = 0
1170                ENDIF
1171                time_disturb = time_disturb - dt_disturb
1172             ENDIF
1173          ENDIF
1174
1175!
[2696]1176!--       Map forcing data derived from larger scale model onto domain
1177!--       boundaries.
[3761]1178          IF ( nesting_offline  .AND.  intermediate_timestep_count ==                              &
1179                                       intermediate_timestep_count_max  )                          &
[3347]1180             CALL nesting_offl_bc
[2938]1181!
[3347]1182!--       Impose a turbulent inflow using synthetic generated turbulence,
1183!--       only once per time step.
[3761]1184          IF ( use_syn_turb_gen  .AND.  time_stg_call >= dt_stg_call  .AND.                        &
[3719]1185             intermediate_timestep_count == intermediate_timestep_count_max )  THEN
1186             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
[3347]1187             CALL stg_main
[3719]1188             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
[2696]1189          ENDIF
1190!
[3347]1191!--       Ensure mass conservation. This need to be done after imposing
1192!--       synthetic turbulence and top boundary condition for pressure is set to
1193!--       Neumann conditions.
1194!--       Is this also required in case of Dirichlet?
1195          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1196!
[1]1197!--       Reduce the velocity divergence via the equation for perturbation
1198!--       pressure.
[106]1199          IF ( intermediate_timestep_count == 1  .OR. &
1200                call_psolver_at_all_substeps )  THEN
[2365]1201
1202             IF (  vnest_init ) THEN
1203!
1204!--             Compute pressure in the CG, interpolate top boundary conditions
1205!--             to the FG and then compute pressure in the FG
1206                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1207
[3719]1208                CALL cpu_log( log_point_s(30), 'vnest_bc', 'start' )
[2365]1209                CALL vnest_boundary_conds
[3719]1210                CALL cpu_log( log_point_s(30), 'vnest_bc', 'stop' )
[2365]1211 
1212                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1213
1214!--             Anterpolate TKE, satisfy Germano Identity
[3719]1215                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'start' )
[2365]1216                CALL vnest_anterpolate_e
[3719]1217                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'stop' )
[2365]1218
1219             ELSE
1220
1221                CALL pres
1222
1223             ENDIF
1224
[1]1225          ENDIF
1226
1227!
1228!--       If required, compute liquid water content
[3274]1229          IF ( bulk_cloud_model )  THEN
[1015]1230             CALL calc_liquid_water_content
1231          ENDIF
[2174]1232!
[1115]1233!--       If required, compute virtual potential temperature
1234          IF ( humidity )  THEN
1235             CALL compute_vpt 
1236          ENDIF 
[1585]1237
[1]1238!
1239!--       Compute the diffusion quantities
1240          IF ( .NOT. constant_diffusion )  THEN
1241
1242!
[1276]1243!--          Determine surface fluxes shf and qsws and surface values
1244!--          pt_surface and q_surface in dependence on data from external
1245!--          file LSF_DATA respectively
[3761]1246             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND.                                     &
1247                 intermediate_timestep_count == intermediate_timestep_count_max )                  &
[1276]1248             THEN
[2320]1249                CALL ls_forcing_surf( simulated_time )
[1276]1250             ENDIF
1251
1252!
[2232]1253!--          First the vertical (and horizontal) fluxes in the surface
1254!--          (constant flux) layer are computed
[1691]1255             IF ( constant_flux_layer )  THEN
1256                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1257                CALL surface_layer_fluxes
1258                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
[1]1259             ENDIF
1260!
[1691]1261!--          If required, solve the energy balance for the surface and run soil
[2232]1262!--          model. Call for horizontal as well as vertical surfaces
[2696]1263             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
[1691]1264
1265                CALL cpu_log( log_point(54), 'land_surface', 'start' )
[2232]1266!
1267!--             Call for horizontal upward-facing surfaces
1268                CALL lsm_energy_balance( .TRUE., -1 )
[2299]1269                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
[2232]1270!
1271!--             Call for northward-facing surfaces
1272                CALL lsm_energy_balance( .FALSE., 0 )
[2299]1273                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
[2232]1274!
1275!--             Call for southward-facing surfaces
1276                CALL lsm_energy_balance( .FALSE., 1 )
[2299]1277                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
[2232]1278!
1279!--             Call for eastward-facing surfaces
1280                CALL lsm_energy_balance( .FALSE., 2 )
[2299]1281                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
[2232]1282!
1283!--             Call for westward-facing surfaces
1284                CALL lsm_energy_balance( .FALSE., 3 )
[2299]1285                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
[3597]1286               
[2696]1287!
1288!--             At the end, set boundary conditons for potential temperature
1289!--             and humidity after running the land-surface model. This
1290!--             might be important for the nesting, where arrays are transfered.
1291                CALL lsm_boundary_condition
[2232]1292
[3597]1293               
[1691]1294                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1295             ENDIF
1296!
[2007]1297!--          If required, solve the energy balance for urban surfaces and run
1298!--          the material heat model
1299             IF (urban_surface) THEN
1300                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
[3176]1301               
[3418]1302                CALL usm_surface_energy_balance( .FALSE. )
[2007]1303                IF ( usm_material_model )  THEN
[2696]1304                   CALL usm_green_heat_model
[3418]1305                   CALL usm_material_heat_model ( .FALSE. )
[2007]1306                ENDIF
[2696]1307
1308!
1309!--             At the end, set boundary conditons for potential temperature
1310!--             and humidity after running the urban-surface model. This
1311!--             might be important for the nesting, where arrays are transfered.
1312                CALL usm_boundary_condition
1313
[2007]1314                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1315             ENDIF
1316!
[1]1317!--          Compute the diffusion coefficients
1318             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
[75]1319             IF ( .NOT. humidity ) THEN
[3294]1320                IF ( ocean_mode )  THEN
[2696]1321                   CALL tcm_diffusivities( prho, prho_reference )
[97]1322                ELSE
[2696]1323                   CALL tcm_diffusivities( pt, pt_reference )
[97]1324                ENDIF
[1]1325             ELSE
[2696]1326                CALL tcm_diffusivities( vpt, pt_reference )
[1]1327             ENDIF
1328             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
[2696]1329!
1330!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1331             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
[1]1332
1333          ENDIF
1334
[1691]1335!
1336!--       If required, calculate radiative fluxes and heating rates
[3761]1337          IF ( radiation  .AND.  intermediate_timestep_count == intermediate_timestep_count_max    &
1338               .AND. time_since_reference_point > skip_time_do_radiation )  THEN
[1691]1339
1340               time_radiation = time_radiation + dt_3d
1341
[3761]1342             IF ( time_radiation >= dt_radiation  .OR.  force_radiation_call )  THEN
[1691]1343
1344                CALL cpu_log( log_point(50), 'radiation', 'start' )
1345
1346                IF ( .NOT. force_radiation_call )  THEN
1347                   time_radiation = time_radiation - dt_radiation
1348                ENDIF
1349
[3014]1350!
[3241]1351!--             Adjust the current time to the time step of the radiation model.
[3014]1352!--             Needed since radiation is pre-calculated and stored only on apparent
1353!--             solar positions
[3241]1354                time_since_reference_point_save = time_since_reference_point
[3761]1355                time_since_reference_point = REAL( FLOOR( time_since_reference_point /             &
1356                                                          dt_radiation), wp ) * dt_radiation
[3014]1357
[1976]1358                CALL radiation_control
[1691]1359
[3761]1360                IF ( ( urban_surface  .OR.  land_surface )  .AND.  radiation_interactions )  THEN
[3724]1361                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'start' )
[2696]1362                   CALL radiation_interaction
[3724]1363                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'stop' )
[2007]1364                ENDIF
[3014]1365   
1366!
1367!--             Return the current time to its original value
[3241]1368                time_since_reference_point = time_since_reference_point_save
[2007]1369
[3719]1370                CALL cpu_log( log_point(50), 'radiation', 'stop' )
1371
[1691]1372             ENDIF
1373          ENDIF
1374
[1]1375       ENDDO   ! Intermediate step loop
[3634]1376
[1]1377!
[3634]1378!--    Will be used at some point by flow_statistics.
[3658]1379       !$ACC UPDATE &
[3634]1380       !$ACC HOST(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
1381       !$ACC HOST(sums_us2_ws_l(nzb:nzt+1,0)) &
1382       !$ACC HOST(sums_wsus_ws_l(nzb:nzt+1,0)) &
1383       !$ACC HOST(sums_vs2_ws_l(nzb:nzt+1,0)) &
1384       !$ACC HOST(sums_wsvs_ws_l(nzb:nzt+1,0)) &
1385       !$ACC HOST(sums_ws2_ws_l(nzb:nzt+1,0)) &
1386       !$ACC HOST(sums_wspts_ws_l(nzb:nzt+1,0)) &
1387       !$ACC HOST(sums_wssas_ws_l(nzb:nzt+1,0)) &
1388       !$ACC HOST(sums_wsqs_ws_l(nzb:nzt+1,0)) &
1389       !$ACC HOST(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
1390       !$ACC HOST(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
1391       !$ACC HOST(sums_wsncs_ws_l(nzb:nzt+1,0)) &
1392       !$ACC HOST(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
1393       !$ACC HOST(sums_wsss_ws_l(nzb:nzt+1,0)) &
1394       !$ACC HOST(sums_salsa_ws_l(nzb:nzt+1,0))
1395
1396!
[2766]1397!--    If required, consider chemical emissions
[3820]1398       IF ( air_chemistry  .AND.  emissions_anthropogenic )  THEN
[3298]1399!
1400!--       Update the time --> kanani: revise location of this CALL
1401          CALL calc_date_and_time
1402!
1403!--       Call emission routine only once an hour
1404          IF (hour_of_year  .GT.  hour_call_emis )  THEN
1405             CALL chem_emissions_setup( chem_emis_att, chem_emis, nspec_out )
1406             hour_call_emis = hour_of_year
1407          ENDIF
[2766]1408       ENDIF
[3569]1409
[2696]1410!
[3469]1411!--    If required, calculate indoor temperature, waste heat, heat flux
1412!--    through wall, etc.
[3744]1413!--    dt_indoor steers the frequency of the indoor model calculations.
1414!--    Note, at first timestep indoor model is called, in order to provide
1415!--    a waste heat flux.
[3647]1416       IF ( indoor_model )  THEN
[3469]1417
1418          time_indoor = time_indoor + dt_3d
1419
[3761]1420          IF ( time_indoor >= dt_indoor  .OR.  current_timestep_number == 0 )  THEN
[3469]1421
1422             time_indoor = time_indoor - dt_indoor
1423
1424             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1425             CALL im_main_heatcool
1426             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1427
1428          ENDIF
1429       ENDIF
1430!
[1]1431!--    Increase simulation time and output times
[1111]1432       nr_timesteps_this_run      = nr_timesteps_this_run + 1
[291]1433       current_timestep_number    = current_timestep_number + 1
1434       simulated_time             = simulated_time   + dt_3d
1435       time_since_reference_point = simulated_time - coupling_start_time
[2941]1436       simulated_time_chr         = time_to_string( time_since_reference_point )
[291]1437
[1957]1438
1439
[2941]1440
[3646]1441       IF ( time_since_reference_point >= skip_time_data_output_av )  THEN
[1]1442          time_do_av         = time_do_av       + dt_3d
1443       ENDIF
[3646]1444       IF ( time_since_reference_point >= skip_time_do2d_xy )  THEN
[1]1445          time_do2d_xy       = time_do2d_xy     + dt_3d
1446       ENDIF
[3646]1447       IF ( time_since_reference_point >= skip_time_do2d_xz )  THEN
[1]1448          time_do2d_xz       = time_do2d_xz     + dt_3d
1449       ENDIF
[3646]1450       IF ( time_since_reference_point >= skip_time_do2d_yz )  THEN
[1]1451          time_do2d_yz       = time_do2d_yz     + dt_3d
1452       ENDIF
[3646]1453       IF ( time_since_reference_point >= skip_time_do3d    )  THEN
[1]1454          time_do3d          = time_do3d        + dt_3d
1455       ENDIF
[410]1456       DO  mid = 1, masks
[3646]1457          IF ( time_since_reference_point >= skip_time_domask(mid) )  THEN
[410]1458             time_domask(mid)= time_domask(mid) + dt_3d
1459          ENDIF
1460       ENDDO
[1]1461       time_dvrp          = time_dvrp        + dt_3d
[3646]1462       IF ( time_since_reference_point >= skip_time_dosp )  THEN
[1]1463          time_dosp       = time_dosp        + dt_3d
1464       ENDIF
1465       time_dots          = time_dots        + dt_3d
[849]1466       IF ( .NOT. first_call_lpm )  THEN
[1]1467          time_dopts      = time_dopts       + dt_3d
1468       ENDIF
[3646]1469       IF ( time_since_reference_point >= skip_time_dopr )  THEN
[1]1470          time_dopr       = time_dopr        + dt_3d
1471       ENDIF
[3467]1472       time_dopr_listing  = time_dopr_listing + dt_3d
[1]1473       time_run_control   = time_run_control + dt_3d
[3347]1474!
[3421]1475!--    Increment time-counter for surface output
[3648]1476       IF ( surface_output )  THEN
[3646]1477          IF ( time_since_reference_point >= skip_time_dosurf )  THEN
[3421]1478             time_dosurf    = time_dosurf + dt_3d
1479          ENDIF
[3646]1480          IF ( time_since_reference_point >= skip_time_dosurf_av )  THEN
[3421]1481             time_dosurf_av = time_dosurf_av + dt_3d
1482          ENDIF
1483       ENDIF
1484!
[3347]1485!--    In case of synthetic turbulence generation and parametrized turbulence
1486!--    information, update the time counter and if required, adjust the
1487!--    STG to new atmospheric conditions.
1488       IF ( use_syn_turb_gen  )  THEN
1489          IF ( parametrize_inflow_turbulence )  THEN
1490             time_stg_adjust = time_stg_adjust + dt_3d
[3719]1491             IF ( time_stg_adjust >= dt_stg_adjust )  THEN
1492                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1493                CALL stg_adjust
1494                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1495             ENDIF
[3347]1496          ENDIF
1497          time_stg_call = time_stg_call + dt_3d
1498       ENDIF
[1]1499
1500!
[102]1501!--    Data exchange between coupled models
[3761]1502       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND.  .NOT. vnested )  THEN
[102]1503          time_coupling = time_coupling + dt_3d
[343]1504
[108]1505!
1506!--       In case of model termination initiated by the local model
1507!--       (terminate_coupled > 0), the coupler must be skipped because it would
1508!--       cause an MPI intercomminucation hang.
1509!--       If necessary, the coupler will be called at the beginning of the
1510!--       next restart run.
[3761]1511          DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
[102]1512             CALL surface_coupler
1513             time_coupling = time_coupling - dt_coupling
1514          ENDDO
1515       ENDIF
1516
1517!
[3448]1518!--    Biometeorology calculation of stationary thermal indices
[3647]1519!--    Todo (kanani): biometeorology needs own time_... treatment.
1520!--                   It might be that time_do2d_xy differs from time_do3d,
1521!--                   and then we might get trouble with the biomet output,
1522!--                   because we can have 2d and/or 3d biomet output!!
[3761]1523       IF ( biometeorology                                                                         &
1524            .AND. ( ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  &
1525                  .OR.                                                                             &
1526            ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy ) &
[3647]1527                    ) )  THEN
[3569]1528!
1529!--       If required, do thermal comfort calculations
1530          IF ( thermal_comfort )  THEN
1531             CALL bio_calculate_thermal_index_maps ( .FALSE. )
1532          ENDIF
1533!
1534!--       If required, do UV exposure calculations
1535          IF ( uv_exposure )  THEN
1536             CALL uvem_calc_exposure
1537          ENDIF
[3448]1538       ENDIF
1539
1540!
[3684]1541!--    Execute alle other module actions routunes
1542       CALL module_interface_actions( 'after_integration' )
[2817]1543
1544!
[1]1545!--    If Galilei transformation is used, determine the distance that the
1546!--    model has moved so far
1547       IF ( galilei_transformation )  THEN
1548          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1549          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1550       ENDIF
1551
1552!
1553!--    Check, if restart is necessary (because cpu-time is expiring or
1554!--    because it is forced by user) and set stop flag
[108]1555!--    This call is skipped if the remote model has already initiated a restart.
1556       IF ( .NOT. terminate_run )  CALL check_for_restart
[1]1557
1558!
1559!--    Carry out statistical analysis and output at the requested output times.
1560!--    The MOD function is used for calculating the output time counters (like
1561!--    time_dopr) in order to regard a possible decrease of the output time
1562!--    interval in case of restart runs
1563
1564!
1565!--    Set a flag indicating that so far no statistics have been created
1566!--    for this time step
1567       flow_statistics_called = .FALSE.
1568
1569!
1570!--    If required, call flow_statistics for averaging in time
[3761]1571       IF ( averaging_interval_pr /= 0.0_wp  .AND.                                                 &
1572            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.                                &
[3646]1573            time_since_reference_point >= skip_time_dopr )  THEN
[1]1574          time_dopr_av = time_dopr_av + dt_3d
1575          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1576             do_sum = .TRUE.
[3761]1577             time_dopr_av = MOD( time_dopr_av, MAX( dt_averaging_input_pr, dt_3d ) )
[1]1578          ENDIF
1579       ENDIF
1580       IF ( do_sum )  CALL flow_statistics
1581
1582!
[410]1583!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
[3761]1584       IF ( averaging_interval /= 0.0_wp  .AND.                                                    &
1585            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND.                        &
1586            time_since_reference_point >= skip_time_data_output_av )                               &
[1]1587       THEN
1588          time_do_sla = time_do_sla + dt_3d
1589          IF ( time_do_sla >= dt_averaging_input )  THEN
1590             CALL sum_up_3d_data
1591             average_count_3d = average_count_3d + 1
1592             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1593          ENDIF
1594       ENDIF
[3421]1595!
1596!--    Average surface data
[3648]1597       IF ( surface_output )  THEN
[3761]1598          IF ( averaging_interval_surf /= 0.0_wp                                                   &
1599                .AND.  ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf                &
[3647]1600                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
[3421]1601             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
[3648]1602                CALL surface_data_output_averaging
[3421]1603                average_count_surf = average_count_surf + 1
1604             ENDIF
1605          ENDIF
1606       ENDIF
[1]1607
1608!
1609!--    Calculate spectra for time averaging
[3761]1610       IF ( averaging_interval_sp /= 0.0_wp  .AND. ( dt_dosp - time_dosp ) <= averaging_interval_sp&
1611            .AND.  time_since_reference_point >= skip_time_dosp )  THEN
[1]1612          time_dosp_av = time_dosp_av + dt_3d
1613          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1614             CALL calc_spectra
[3761]1615             time_dosp_av = MOD( time_dosp_av, MAX( dt_averaging_input_pr, dt_3d ) )
[1]1616          ENDIF
1617       ENDIF
1618
1619!
[1957]1620!--    Call flight module and output data
1621       IF ( virtual_flight )  THEN
1622          CALL flight_measurement
1623          CALL data_output_flight
1624       ENDIF
[3472]1625!
1626!--    Take virtual measurements
[3761]1627       IF ( virtual_measurement  .AND.  vm_time_start <= time_since_reference_point )  THEN
[3704]1628          CALL vm_sampling
1629          CALL vm_data_output
1630       ENDIF
[1957]1631
1632!
[1]1633!--    Profile output (ASCII) on file
1634       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1635          CALL print_1d
[3761]1636          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, dt_3d ) )
[1]1637       ENDIF
1638
1639!
1640!--    Graphic output for PROFIL
[3761]1641       IF ( time_dopr >= dt_dopr  .AND.  time_since_reference_point >= skip_time_dopr )  THEN
[1]1642          IF ( dopr_n /= 0 )  CALL data_output_profiles
1643          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
[1342]1644          time_dopr_av = 0.0_wp    ! due to averaging (see above)
[1]1645       ENDIF
1646
1647!
1648!--    Graphic output for time series
1649       IF ( time_dots >= dt_dots )  THEN
[48]1650          CALL data_output_tseries
[1]1651          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1652       ENDIF
1653
1654!
1655!--    Output of spectra (formatted for use with PROFIL), in case of no
1656!--    time averaging, spectra has to be calculated before
[3761]1657       IF ( time_dosp >= dt_dosp  .AND.  time_since_reference_point >= skip_time_dosp )  THEN
[1]1658          IF ( average_count_sp == 0 )  CALL calc_spectra
1659          CALL data_output_spectra
1660          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1661       ENDIF
1662
1663!
1664!--    2d-data output (cross-sections)
[3761]1665       IF ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy )  THEN
[1]1666          CALL data_output_2d( 'xy', 0 )
1667          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1668       ENDIF
[3761]1669       IF ( time_do2d_xz >= dt_do2d_xz  .AND.  time_since_reference_point >= skip_time_do2d_xz )  THEN
[1]1670          CALL data_output_2d( 'xz', 0 )
1671          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1672       ENDIF
[3761]1673       IF ( time_do2d_yz >= dt_do2d_yz  .AND.  time_since_reference_point >= skip_time_do2d_yz )  THEN
[1]1674          CALL data_output_2d( 'yz', 0 )
1675          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1676       ENDIF
1677
1678!
1679!--    3d-data output (volume data)
[3761]1680       IF ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  THEN
[1]1681          CALL data_output_3d( 0 )
1682          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1683       ENDIF
1684
1685!
[1783]1686!--    Masked data output
[410]1687       DO  mid = 1, masks
[3761]1688          IF ( time_domask(mid) >= dt_domask(mid)                                                  &
1689               .AND.  time_since_reference_point >= skip_time_domask(mid) )  THEN
[410]1690             CALL data_output_mask( 0 )
[3761]1691             time_domask(mid) = MOD( time_domask(mid), MAX( dt_domask(mid), dt_3d ) )
[410]1692          ENDIF
1693       ENDDO
1694
1695!
1696!--    Output of time-averaged 2d/3d/masked data
[3761]1697       IF ( time_do_av >= dt_data_output_av                                                        &
1698            .AND.  time_since_reference_point >= skip_time_data_output_av )  THEN
[1]1699          CALL average_3d_data
[3742]1700!
1701!--       Udate thermal comfort indices based on updated averaged input
1702          IF ( biometeorology  .AND.  thermal_comfort )  THEN
1703             CALL bio_calculate_thermal_index_maps ( .TRUE. )
1704          ENDIF
[1]1705          CALL data_output_2d( 'xy', 1 )
1706          CALL data_output_2d( 'xz', 1 )
1707          CALL data_output_2d( 'yz', 1 )
1708          CALL data_output_3d( 1 )
[410]1709          DO  mid = 1, masks
1710             CALL data_output_mask( 1 )
1711          ENDDO
[1]1712          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1713       ENDIF
[3421]1714!
1715!--    Output of surface data, instantaneous and averaged data
[3648]1716       IF ( surface_output )  THEN
[3761]1717          IF ( time_dosurf >= dt_dosurf  .AND.  time_since_reference_point >= skip_time_dosurf )  THEN
[3648]1718             CALL surface_data_output( 0 )
[3421]1719             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1720          ENDIF
[3761]1721          IF ( time_dosurf_av >= dt_dosurf_av  .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
[3648]1722             CALL surface_data_output( 1 )
[3421]1723             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1724          ENDIF
1725       ENDIF
[1]1726
1727!
1728!--    Output of particle time series
[253]1729       IF ( particle_advection )  THEN
[3761]1730          IF ( time_dopts >= dt_dopts  .OR.                                                        &
1731               ( time_since_reference_point >= particle_advection_start  .AND.                     &
[849]1732                 first_call_lpm ) )  THEN
[253]1733             CALL data_output_ptseries
1734             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1735          ENDIF
[1]1736       ENDIF
1737
1738!
1739!--    Output of dvrp-graphics (isosurface, particles, slicer)
1740#if defined( __dvrp_graphics )
1741       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
1742#endif
1743       IF ( time_dvrp >= dt_dvrp )  THEN
1744          CALL data_output_dvrp
1745          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
1746       ENDIF
1747#if defined( __dvrp_graphics )
1748       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
1749#endif
1750
1751!
[3719]1752!--    If required, set the heat flux for the next time step to a random value
[2232]1753       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
[3719]1754          IF ( surf_def_h(0)%ns >= 1 )  THEN
1755             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1756             CALL disturb_heatflux( surf_def_h(0) )
1757             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1758          ENDIF
1759          IF ( surf_lsm_h%ns    >= 1 )  THEN
1760             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1761             CALL disturb_heatflux( surf_lsm_h    )
1762             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1763          ENDIF
1764          IF ( surf_usm_h%ns    >= 1 )  THEN
1765             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1766             CALL disturb_heatflux( surf_usm_h    )
1767             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1768          ENDIF
[2232]1769       ENDIF
[1]1770
1771!
[3684]1772!--    Execute alle other module actions routunes
1773       CALL module_interface_actions( 'after_timestep' )
[2817]1774
1775!
[1918]1776!--    Determine size of next time step. Save timestep dt_3d because it is
1777!--    newly calculated in routine timestep, but required further below for
1778!--    steering the run control output interval
1779       dt_3d_old = dt_3d
1780       CALL timestep
1781
1782!
[1925]1783!--    Synchronize the timestep in case of nested run.
1784       IF ( nested_run )  THEN
1785!
1786!--       Synchronize by unifying the time step.
1787!--       Global minimum of all time-steps is used for all.
1788          CALL pmci_synchronize
1789       ENDIF
1790
1791!
[1918]1792!--    Computation and output of run control parameters.
1793!--    This is also done whenever perturbations have been imposed
[3761]1794       IF ( time_run_control >= dt_run_control  .OR.                                               &
1795            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created )                           &
[1918]1796       THEN
1797          CALL run_control
1798          IF ( time_run_control >= dt_run_control )  THEN
[3761]1799             time_run_control = MOD( time_run_control, MAX( dt_run_control, dt_3d_old ) )
[1918]1800          ENDIF
1801       ENDIF
1802
1803!
[1402]1804!--    Output elapsed simulated time in form of a progress bar on stdout
1805       IF ( myid == 0 )  CALL output_progress_bar
1806
[1]1807       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1808
[667]1809
[1]1810    ENDDO   ! time loop
[3448]1811
[3761]1812#if defined( _OPENACC )
[3658]1813    CALL exit_surface_arrays
1814#endif
[3634]1815!$ACC END DATA
1816!$ACC END DATA
1817!$ACC END DATA
1818!$ACC END DATA
1819!$ACC END DATA
1820!$ACC END DATA
1821!$ACC END DATA
1822
[3347]1823!
[2365]1824!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
1825    IF ( vnest_init )  CALL vnest_deallocate
1826
[1402]1827    IF ( myid == 0 )  CALL finish_progress_bar
1828
[1]1829#if defined( __dvrp_graphics )
1830    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
1831#endif
1832
[1402]1833    CALL location_message( 'finished time-stepping', .TRUE. )
[1384]1834
[1]1835 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.