source: palm/trunk/SOURCE/time_integration.f90 @ 3662

Last change on this file since 3662 was 3658, checked in by knoop, 6 years ago

OpenACC: flow_statistics partly ported to GPU

  • Property svn:keywords set to Id
File size: 71.3 KB
RevLine 
[1682]1!> @file time_integration.f90
[2000]2!------------------------------------------------------------------------------!
[2696]3! This file is part of the PALM model system.
[1036]4!
[2000]5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
[1036]9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
[3647]17! Copyright 1997-2019 Leibniz Universitaet Hannover
[2000]18!------------------------------------------------------------------------------!
[1036]19!
[484]20! Current revisions:
[1092]21! ------------------
[1928]22!
[3589]23!
[1366]24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 3658 2019-01-07 20:28:54Z suehring $
[3648]27! Rename subroutines for surface-data output
28!
29! 3647 2019-01-02 14:10:44Z kanani
[3647]30! Bugfix: add time_since_reference_point to IF clause for data_output calls
31! (otherwise skip_time_* values don't come into affect with dt_do* = 0.0).
32! Clean up indoor_model and biometeorology model call.
33!
34! 3646 2018-12-28 17:58:49Z kanani
[3646]35! Bugfix: use time_since_reference_point instead of simulated_time where
36! required (relevant when using wall/soil spinup)
37!
38! 3634 2018-12-18 12:31:28Z knoop
[3634]39! OpenACC port for SPEC
40!
41! 3597 2018-12-04 08:40:18Z maronga
[3597]42! Removed call to calculation of near air (10 cm) potential temperature (now in
43! surface layer fluxes)
44!
45! 3589 2018-11-30 15:09:51Z suehring
[3589]46! Move the control parameter "salsa" from salsa_mod to control_parameters
47! (M. Kurppa)
48!
49! 3582 2018-11-29 19:16:36Z suehring
[3569]50! dom_dwd_user, Schrempf:
51! Changes due to merge of uv exposure model into biometeorology_mod.
52!
53! 3525 2018-11-14 16:06:14Z kanani
[3525]54! Changes related to clean-up of biometeorology (dom_dwd_user)
55!
56! 3524 2018-11-14 13:36:44Z raasch
[3524]57! unused variables removed
58!
59! 3484 2018-11-02 14:41:25Z hellstea
[3484]60! pmci_ensure_nest_mass_conservation is premanently removed
61!
62! 3473 2018-10-30 20:50:15Z suehring
[3473]63! new module for virtual measurements introduced
64!
65! 3472 2018-10-30 20:43:50Z suehring
[3469]66! Add indoor model (kanani, srissman, tlang)
67!
68! 3467 2018-10-30 19:05:21Z suehring
[3467]69! Implementation of a new aerosol module salsa.
70!
71! 3448 2018-10-29 18:14:31Z kanani
[3448]72! Add biometeorology
73!
74! 3421 2018-10-24 18:39:32Z gronemeier
[3421]75! Surface data output
76!
77! 3418 2018-10-24 16:07:39Z kanani
[3418]78! call to material_heat_model now with check if spinup runs (rvtils)
79!
80! 3378 2018-10-19 12:34:59Z kanani
[3378]81! merge from radiation branch (r3362) into trunk
82! (moh.hefny):
83! Bugfix in the if statement to call radiation_interaction
84!
85! 3347 2018-10-15 14:21:08Z suehring
[3347]86! - offline nesting separated from large-scale forcing module
87! - changes for synthetic turbulence generator
88!
89! 3343 2018-10-15 10:38:52Z suehring
[3298]90! - Formatting, clean-up, comments (kanani)
91! - Added CALL to chem_emissions_setup (Russo)
92! - Code added for decycling chemistry (basit)
93!
94! 3294 2018-10-01 02:37:10Z raasch
[3294]95! changes concerning modularization of ocean option
96!
97! 3274 2018-09-24 15:42:55Z knoop
[3274]98! Modularization of all bulk cloud physics code components
99!
100! 3241 2018-09-12 15:02:00Z raasch
[3241]101! unused variables removed
102!
103! 3198 2018-08-15 09:23:10Z sward
[3198]104! Added multi_agent_system_end; defined start time for MAS relative to
105! time_since_reference_point
106!
107! 3183 2018-07-27 14:25:55Z suehring
[3183]108! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
109! Rename subroutines and variables in COSMO nesting mode
110!
111! 3182 2018-07-27 13:36:03Z suehring
[3159]112! Added multi agent system
113!
114! 3042 2018-05-25 10:44:37Z schwenkel
[3042]115! Changed the name specific humidity to mixing ratio
116!
117! 3040 2018-05-25 10:22:08Z schwenkel
[3014]118! Fixed bug in IF statement
119! Ensure that the time when calling the radiation to be the time step of the
120! pre-calculated time when first calculate the positions of the sun
121!
122! 3004 2018-04-27 12:33:25Z Giersch
[3004]123! First call of flow_statistics has been removed. It is already called in
124! run_control itself
125!
126! 2984 2018-04-18 11:51:30Z hellstea
[2984]127! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
128! as seemingly unnecessary.
[2977]129!
130! 2941 2018-04-03 11:54:58Z kanani
[2941]131! Deduct spinup_time from RUN_CONTROL output of main 3d run
132! (use time_since_reference_point instead of simulated_time)
133!
134! 2938 2018-03-27 15:52:42Z suehring
[2938]135! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
136!
137! 2936 2018-03-27 14:49:27Z suehring
[2934]138! Little formatting adjustment.
139!
140! 2817 2018-02-19 16:32:21Z knoop
[2817]141! Preliminary gust module interface implemented
142!
143! 2801 2018-02-14 16:01:55Z thiele
[2801]144! Changed lpm from subroutine to module.
145! Introduce particle transfer in nested models.
146!
147! 2776 2018-01-31 10:44:42Z Giersch
[2776]148! Variable use_synthetic_turbulence_generator has been abbreviated
149!
150! 2773 2018-01-30 14:12:54Z suehring
[2773]151! - Nesting for chemical species
152!
153! 2766 2018-01-22 17:17:47Z kanani
[2766]154! Removed preprocessor directive __chem
155!
156! 2718 2018-01-02 08:49:38Z maronga
[2716]157! Corrected "Former revisions" section
158!
159! 2696 2017-12-14 17:12:51Z kanani
160! - Change in file header (GPL part)
[2696]161! - Implementation of uv exposure model (FK)
162! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
163! - renamed diffusivities to tcm_diffusivities (TG)
164! - implement prognostic equation for diss (TG)
165! - Moved/commented CALL to chem_emissions (FK)
166! - Added CALL to chem_emissions (FK)
167! - Implementation of chemistry module (FK)
168! - Calls for setting boundary conditions in USM and LSM (MS)
169! - Large-scale forcing with larger-scale models implemented (MS)
170! - Rename usm_radiation into radiation_interactions; merge with branch
171!   radiation (MS)
172! - added call for usm_green_heat_model for green building surfaces (RvT)
173! - added call for usm_temperature_near_surface for use in indoor model (RvT)
174!
175! 2617 2017-11-16 12:47:24Z suehring
[2617]176! Bugfix, assure that the reference state does not become zero.
177!
178! 2563 2017-10-19 15:36:10Z Giersch
[2563]179! Variable wind_turbine moved to module control_parameters
180!
181! 2365 2017-08-21 14:59:59Z kanani
[2365]182! Vertical grid nesting implemented (SadiqHuq)
183!
184! 2320 2017-07-21 12:47:43Z suehring
[2311]185! Set bottom boundary conditions after nesting interpolation and anterpolation
186!
187! 2299 2017-06-29 10:14:38Z maronga
[2299]188! Call of soil model adjusted
189!
190! 2292 2017-06-20 09:51:42Z schwenkel
[2292]191! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
192! includes two more prognostic equations for cloud drop concentration (nc) 
193! and cloud water content (qc).
194!
195! 2271 2017-06-09 12:34:55Z sward
[2271]196! Start timestep message changed
197!
198! 2259 2017-06-08 09:09:11Z gronemeier
[2259]199! Implemented synthetic turbulence generator
[1366]200!
[2259]201! 2233 2017-05-30 18:08:54Z suehring
202!
[2233]203! 2232 2017-05-30 17:47:52Z suehring
204! Adjustments to new topography and surface concept
205! Modify passed parameters for disturb_field
206!
[2179]207! 2178 2017-03-17 11:07:39Z hellstea
208! Setting perturbations at all times near inflow boundary is removed
209! in case of nested boundaries
210!
[2175]211! 2174 2017-03-13 08:18:57Z maronga
212! Added support for nesting with cloud microphysics
213!
[2119]214! 2118 2017-01-17 16:38:49Z raasch
215! OpenACC directives and related code removed
216!
[2051]217! 2050 2016-11-08 15:00:55Z gronemeier
218! Implement turbulent outflow condition
219!
[2032]220! 2031 2016-10-21 15:11:58Z knoop
221! renamed variable rho to rho_ocean
222!
[2012]223! 2011 2016-09-19 17:29:57Z kanani
224! Flag urban_surface is now defined in module control_parameters,
225! removed commented CALLs of global_min_max.
226!
[2008]227! 2007 2016-08-24 15:47:17Z kanani
228! Added CALLs for new urban surface model
229!
[2001]230! 2000 2016-08-20 18:09:15Z knoop
231! Forced header and separation lines into 80 columns
232!
[1977]233! 1976 2016-07-27 13:28:04Z maronga
234! Simplified calls to radiation model
235!
[1961]236! 1960 2016-07-12 16:34:24Z suehring
237! Separate humidity and passive scalar
238!
[1958]239! 1957 2016-07-07 10:43:48Z suehring
240! flight module added
241!
[1933]242! 1919 2016-05-27 14:51:23Z raasch
243! Initial version of purely vertical nesting introduced.
[1928]244!
[1919]245! 1918 2016-05-27 14:35:57Z raasch
246! determination of time step moved to the end of the time step loop,
247! the first time step is now always calculated before the time step loop (i.e.
248! also in case of restart runs)
249!
[1917]250! 1914 2016-05-26 14:44:07Z witha
251! Added call for wind turbine model
252!
[1879]253! 1878 2016-04-19 12:30:36Z hellstea
254! Synchronization for nested runs rewritten
255!
[1854]256! 1853 2016-04-11 09:00:35Z maronga
257! Adjusted for use with radiation_scheme = constant
258!
[1851]259! 1849 2016-04-08 11:33:18Z hoffmann
260! Adapted for modularization of microphysics
261!
[1834]262! 1833 2016-04-07 14:23:03Z raasch
263! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
264!
[1832]265! 1831 2016-04-07 13:15:51Z hoffmann
266! turbulence renamed collision_turbulence
267!
[1823]268! 1822 2016-04-07 07:49:42Z hoffmann
269! icloud_scheme replaced by microphysics_*
270!
[1809]271! 1808 2016-04-05 19:44:00Z raasch
272! output message in case unscheduled radiation calls removed
273!
[1798]274! 1797 2016-03-21 16:50:28Z raasch
275! introduction of different datatransfer modes
276!
[1792]277! 1791 2016-03-11 10:41:25Z raasch
278! call of pmci_update_new removed
279!
[1787]280! 1786 2016-03-08 05:49:27Z raasch
281! +module spectrum
282!
[1784]283! 1783 2016-03-06 18:36:17Z raasch
284! switch back of netcdf data format for mask output moved to the mask output
285! routine
286!
[1782]287! 1781 2016-03-03 15:12:23Z raasch
288! some pmc calls removed at the beginning (before timeloop),
289! pmc initialization moved to the main program
290!
[1765]291! 1764 2016-02-28 12:45:19Z raasch
292! PMC_ACTIVE flags removed,
293! bugfix: nest synchronization after first call of timestep
294!
[1763]295! 1762 2016-02-25 12:31:13Z hellstea
296! Introduction of nested domain feature
297!
[1737]298! 1736 2015-12-04 08:56:33Z raasch
299! no perturbations added to total domain if energy limit has been set zero
300!
[1692]301! 1691 2015-10-26 16:17:44Z maronga
302! Added option for spin-ups without land surface and radiation models. Moved calls
303! for radiation and lan surface schemes.
304!
[1683]305! 1682 2015-10-07 23:56:08Z knoop
306! Code annotations made doxygen readable
307!
[1672]308! 1671 2015-09-25 03:29:37Z raasch
309! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
310! for particles
311!
[1586]312! 1585 2015-04-30 07:05:52Z maronga
313! Moved call of radiation scheme. Added support for RRTM
314!
[1552]315! 1551 2015-03-03 14:18:16Z maronga
316! Added interface for different radiation schemes.
317!
[1497]318! 1496 2014-12-02 17:25:50Z maronga
319! Added calls for the land surface model and radiation scheme
320!
[1403]321! 1402 2014-05-09 14:25:13Z raasch
322! location messages modified
323!
[1385]324! 1384 2014-05-02 14:31:06Z raasch
325! location messages added
326!
[1381]327! 1380 2014-04-28 12:40:45Z heinze
328! CALL of nudge_ref added
329! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
330!
[1366]331! 1365 2014-04-22 15:03:56Z boeske
[1365]332! Reset sums_ls_l to zero at each timestep
333! +sums_ls_l
334! Calculation of reference state (previously in subroutine calc_mean_profile)
335
[1343]336! 1342 2014-03-26 17:04:47Z kanani
337! REAL constants defined as wp-kind
338!
[1321]339! 1320 2014-03-20 08:40:49Z raasch
[1320]340! ONLY-attribute added to USE-statements,
341! kind-parameters added to all INTEGER and REAL declaration statements,
342! kinds are defined in new module kinds,
343! old module precision_kind is removed,
344! revision history before 2012 removed,
345! comment fields (!:) to be used for variable explanations added to
346! all variable declaration statements
[1319]347! 1318 2014-03-17 13:35:16Z raasch
348! module interfaces removed
349!
[1309]350! 1308 2014-03-13 14:58:42Z fricke
351! +netcdf_data_format_save
352! For masked data, parallel netcdf output is not tested so far, hence
353! netcdf_data_format is switched back to non-paralell output.
354!
[1277]355! 1276 2014-01-15 13:40:41Z heinze
356! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
357!
[1258]358! 1257 2013-11-08 15:18:40Z raasch
359! acc-update-host directive for timestep removed
360!
[1242]361! 1241 2013-10-30 11:36:58Z heinze
362! Generalize calc_mean_profile for wider use
363! Determine shf and qsws in dependence on data from LSF_DATA
364! Determine ug and vg in dependence on data from LSF_DATA
[1222]365! 1221 2013-09-10 08:59:13Z raasch
366! host update of arrays before timestep is called
367!
[1182]368! 1179 2013-06-14 05:57:58Z raasch
369! mean profiles for reference state are only calculated if required,
370! small bugfix for background communication
371!
[1172]372! 1171 2013-05-30 11:27:45Z raasch
373! split of prognostic_equations deactivated (comment lines), for the time being
374!
[1132]375! 1128 2013-04-12 06:19:32Z raasch
[1128]376! asynchronous transfer of ghost point data realized for acc-optimized version:
377! prognostic_equations are first called two times for those points required for
378! the left-right and north-south exchange, respectively, and then for the
379! remaining points,
380! those parts requiring global communication moved from prognostic_equations to
381! here
[392]382!
[1116]383! 1115 2013-03-26 18:16:16Z hoffmann
384! calculation of qr and nr is restricted to precipitation
385!
[1114]386! 1113 2013-03-10 02:48:14Z raasch
387! GPU-porting of boundary conditions,
388! openACC directives updated
389! formal parameter removed from routine boundary_conds
390!
[1112]391! 1111 2013-03-08 23:54:10Z raasch
392! +internal timestep counter for cpu statistics added,
393! openACC directives updated
394!
[1093]395! 1092 2013-02-02 11:24:22Z raasch
396! unused variables removed
397!
[1066]398! 1065 2012-11-22 17:42:36Z hoffmann
399! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
400!
[1054]401! 1053 2012-11-13 17:11:03Z hoffmann
402! exchange of ghost points for nr, qr added
403!
[1037]404! 1036 2012-10-22 13:43:42Z raasch
405! code put under GPL (PALM 3.9)
406!
[1020]407! 1019 2012-09-28 06:46:45Z raasch
408! non-optimized version of prognostic_equations removed
409!
[1017]410! 1015 2012-09-27 09:23:24Z raasch
411! +call of prognostic_equations_acc
412!
[1002]413! 1001 2012-09-13 14:08:46Z raasch
414! all actions concerning leapfrog- and upstream-spline-scheme removed
415!
[850]416! 849 2012-03-15 10:35:09Z raasch
417! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
418!
[826]419! 825 2012-02-19 03:03:44Z raasch
420! wang_collision_kernel renamed wang_kernel
421!
[1]422! Revision 1.1  1997/08/11 06:19:04  raasch
423! Initial revision
424!
425!
426! Description:
427! ------------
[1682]428!> Integration in time of the model equations, statistical analysis and graphic
429!> output
[1]430!------------------------------------------------------------------------------!
[1682]431 SUBROUTINE time_integration
432 
[1]433
[1320]434    USE advec_ws,                                                              &
435        ONLY:  ws_statistics
436
437    USE arrays_3d,                                                             &
[3634]438        ONLY:  d, diss, diss_p, ddzu, dd2zu, ddzw, drho_air, drho_air_zw, dzu, &
439               dzw, e, e_p, kh, km, nc, nc_p, nr, nr_p, p, prho, pt, pt_p,     &
440               pt_init, ptdf_x, ptdf_y, q_init, q, qc, qc_p, ql, ql_c, ql_v,   &
441               ql_vp, qr, qr_p, q_p, rdf, rdf_sc, ref_state, rho_air,          &
442               rho_air_zw, rho_ocean, s, s_p, sa_p, te_m, tend, tpt_m, tu_m,   &
443               tv_m, tw_m, u, ug, u_init, u_p, u_stokes_zu, v, vg, v_init, vpt,&
[3658]444               v_p, v_stokes_zu, w, w_p, zu, heatflux_output_conversion,       &
445               momentumflux_output_conversion
[1320]446
[3448]447    USE biometeorology_mod,                                                    &
[3569]448        ONLY:  bio_calculate_thermal_index_maps, time_bio_results,             &
449               thermal_comfort, uvem_calc_exposure, uv_exposure
[3448]450
[3294]451    USE bulk_cloud_model_mod,                                                  &
452        ONLY: bulk_cloud_model, calc_liquid_water_content,                     &
453              collision_turbulence, microphysics_morrison, microphysics_seifert
454
[1365]455    USE calc_mean_profile_mod,                                                 &
[1320]456        ONLY:  calc_mean_profile
457
[3298]458    USE chem_emissions_mod,                                                    &
459        ONLY:  chem_emissions_setup
[2696]460
461    USE chem_modules,                                                          &
[3524]462        ONLY:  bc_cs_t_val, cs_name, do_emis, nspec, nspec_out
[2696]463
[3298]464    USE chemistry_model_mod,                                                   &
465        ONLY:  chem_boundary_conds, chem_species
466
[1320]467    USE control_parameters,                                                    &
[2696]468        ONLY:  advected_distance_x, advected_distance_y, air_chemistry,        &
469               average_count_3d, averaging_interval, averaging_interval_pr,    &
[3448]470               bc_lr_cyc, bc_ns_cyc, bc_pt_t_val, bc_q_t_val, biometeorology,  &
[3182]471               call_psolver_at_all_substeps,  child_domain, cloud_droplets,    &
[3274]472               constant_flux_layer, constant_heatflux,                         &
[1691]473               create_disturbances, dopr_n, constant_diffusion, coupling_mode, &
474               coupling_start_time, current_timestep_number,                   &
475               disturbance_created, disturbance_energy_limit, dist_range,      &
476               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr,       &
477               dt_coupling, dt_data_output_av, dt_disturb, dt_do2d_xy,         &
478               dt_do2d_xz, dt_do2d_yz, dt_do3d, dt_domask,dt_dopts, dt_dopr,   &
[2696]479               dt_dopr_listing, dt_dots, dt_dvrp, dt_run_control, end_time,    &
[3182]480               first_call_lpm, first_call_mas, galilei_transformation,         &
[3469]481               humidity, indoor_model, intermediate_timestep_count,            &
[3182]482               intermediate_timestep_count_max,                                &
483               land_surface, large_scale_forcing,                              &
[3274]484               loop_optimization, lsf_surf, lsf_vert, masks, mid,              &
[3198]485               multi_agent_system_end, multi_agent_system_start,               &
[3182]486               nesting_offline, neutral, nr_timesteps_this_run, nudging,       &
[3294]487               ocean_mode, passive_scalar, pt_reference,                       &
[2938]488               pt_slope_offset, random_heatflux, rans_mode,                    &
[3582]489               rans_tke_e, run_coupled, salsa,                                 &
490               simulated_time, simulated_time_chr,                             &
[1320]491               skip_time_do2d_xy, skip_time_do2d_xz, skip_time_do2d_yz,        &
492               skip_time_do3d, skip_time_domask, skip_time_dopr,               &
[3421]493               skip_time_data_output_av, sloping_surface, stop_dt,             &
[3648]494               surface_output, terminate_coupled, terminate_run,               &
[3421]495               timestep_scheme,                                                &
[1320]496               time_coupling, time_do2d_xy, time_do2d_xz, time_do2d_yz,        &
497               time_do3d, time_domask, time_dopr, time_dopr_av,                &
498               time_dopr_listing, time_dopts, time_dosp, time_dosp_av,         &
499               time_dots, time_do_av, time_do_sla, time_disturb, time_dvrp,    &
[3634]500               time_run_control, time_since_reference_point, tsc,              &
[2050]501               turbulent_inflow, turbulent_outflow, urban_surface,             &
[2011]502               use_initial_profile_as_reference,                               &
[3569]503               use_single_reference_value, u_gtrans, v_gtrans,                 &
[3472]504               virtual_flight, virtual_measurement, wind_turbine,              &
[3582]505               ws_scheme_mom, ws_scheme_sca 
[1320]506
507    USE cpulog,                                                                &
508        ONLY:  cpu_log, log_point, log_point_s
509
[3298]510    USE date_and_time_mod,                                                     &
511        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
512
[1957]513    USE flight_mod,                                                            &
514        ONLY:  flight_measurement
515
[2817]516    USE gust_mod,                                                              &
517        ONLY:  gust_actions, gust_module_enabled
[1957]518
[1320]519    USE indices,                                                               &
[3634]520        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt, &
521               nz, nzb_max, advc_flags_1, advc_flags_2, wall_flags_0
[1320]522
[3469]523    USE indoor_model_mod,                                                      &
524        ONLY:  dt_indoor, im_main_heatcool, skip_time_do_indoor, time_indoor
525
[1320]526    USE interaction_droplets_ptq_mod,                                          &
527        ONLY:  interaction_droplets_ptq
528
[1918]529    USE interfaces
530
[1320]531    USE kinds
532
[1496]533    USE land_surface_model_mod,                                                &
[2696]534        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model,     &
[1691]535               skip_time_do_lsm
[1496]536
[2320]537    USE lsf_nudging_mod,                                                       &
[3347]538        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
[1320]539
[3159]540    USE multi_agent_system_mod,                                                &
[3198]541        ONLY:  agents_active, multi_agent_system
[3448]542
[3347]543    USE nesting_offl_mod,                                                      &
544        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
545       
[3298]546    USE netcdf_data_input_mod,                                                 &
[3347]547        ONLY:  chem_emis, chem_emis_att, nest_offl,                            &
548               netcdf_data_input_offline_nesting
[3298]549
[3294]550    USE ocean_mod,                                                             &
551        ONLY:  prho_reference
552
[1320]553    USE particle_attributes,                                                   &
[1671]554        ONLY:  particle_advection, particle_advection_start,                   &
555               use_sgs_for_particles, wang_kernel
[1320]556
[1]557    USE pegrid
558
[1762]559    USE pmc_interface,                                                         &
[2311]560        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans,  &
[3484]561               pmci_synchronize
[1762]562
[1402]563    USE progress_bar,                                                          &
564        ONLY:  finish_progress_bar, output_progress_bar
565
[1320]566    USE prognostic_equations_mod,                                              &
[2118]567        ONLY:  prognostic_equations_cache, prognostic_equations_vector
[1320]568
[1496]569    USE radiation_model_mod,                                                   &
[1976]570        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,&
[2696]571              radiation_interaction, radiation_interactions,                   &
[1976]572              skip_time_do_radiation, time_radiation
[3582]573         
574    USE salsa_mod,                                                             &
575        ONLY: aerosol_number, aerosol_mass, nbins, ncc_tot, ngast,             &
576              salsa_boundary_conds, salsa_gas, salsa_gases_from_chem,          &
577              skip_time_do_salsa                     
[3634]578   
579    USE salsa_util_mod,                                                        &
580           ONLY:  sums_salsa_ws_l     
[1496]581
[1833]582    USE spectra_mod,                                                           &
583        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp,  &
584              skip_time_dosp
[1786]585
[1320]586    USE statistics,                                                            &
[3634]587        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l,                &
[3658]588               rmask, statistic_regions, weight_substep, sums_l, sums_l_l,     &
[3634]589               sums_us2_ws_l, sums_wsus_ws_l, sums_vs2_ws_l, sums_wsvs_ws_l,   &
590               sums_ws2_ws_l, sums_wspts_ws_l, sums_wsqs_ws_l, sums_wssas_ws_l,&
591               sums_wsqcs_ws_l, sums_wsqrs_ws_l, sums_wsncs_ws_l,              &
592               sums_wsnrs_ws_l, sums_wsss_ws_l
[1320]593
[1691]594    USE surface_layer_fluxes_mod,                                              &
595        ONLY:  surface_layer_fluxes
596
[2232]597    USE surface_mod,                                                           &
[3634]598        ONLY:  bc_h, surf_def_h, surf_lsm_h, surf_usm_h,                       &
599               enter_surface_arrays, exit_surface_arrays
[3448]600
[3648]601    USE surface_data_output_mod,                                               &
[3421]602        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf,         &
[3648]603               dt_dosurf_av, surface_data_output,                              &
604               surface_data_output_averaging, skip_time_dosurf,                &
605               skip_time_dosurf_av, time_dosurf, time_dosurf_av
[2232]606
[2696]607    USE turbulence_closure_mod,                                                &
608        ONLY:  tcm_diffusivities, production_e_init
609
[2007]610    USE urban_surface_mod,                                                     &
[2696]611        ONLY:  usm_boundary_condition, usm_material_heat_model,                &
612               usm_material_model,                                             &
[3597]613               usm_surface_energy_balance, usm_green_heat_model
[2007]614
[2259]615    USE synthetic_turbulence_generator_mod,                                    &
[3347]616        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence,      &
617               stg_adjust, stg_main, time_stg_adjust, time_stg_call,           &
[3582]618               use_syn_turb_gen   
[2259]619
[1320]620    USE user_actions_mod,                                                      &
621        ONLY:  user_actions
622
[2696]623
[1914]624    USE wind_turbine_model_mod,                                                &
[2563]625        ONLY:  wtm_forces
[1914]626
[2801]627    USE lpm_mod,                                                               &
628        ONLY:  lpm
629
[2365]630    USE vertical_nesting_mod,                                                  &
631        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e,                &
632               vnest_boundary_conds, vnest_boundary_conds_khkm,                & 
633               vnest_deallocate, vnest_init, vnest_init_fine,                  &
634               vnest_start_time
[3472]635               
636    USE virtual_measurement_mod,                                               &
637        ONLY:  vm_sampling, vm_time_start
[2365]638
[1]639    IMPLICIT NONE
640
[3298]641    CHARACTER (LEN=9) ::  time_to_string   !<
[3467]642   
643    INTEGER(iwp)      ::  b !< index for aerosol size bins   
644    INTEGER(iwp)      ::  c !< index for chemical compounds in aerosol size bins
645    INTEGER(iwp)      ::  g !< index for gaseous compounds
646    INTEGER(iwp)      ::  lsp
[3298]647    INTEGER(iwp)      ::  lsp_usr   !<
648    INTEGER(iwp)      ::  n         !< loop counter for chemistry species
[3014]649
[1918]650    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
651                            !< steering of run control output interval
[3241]652    REAL(wp) ::  time_since_reference_point_save  !< original value of
653                                                  !< time_since_reference_point
654
[3634]655
656! Copy data from arrays_3d
657!$ACC DATA &
658!$ACC COPY(d(nzb+1:nzt,nys:nyn,nxl:nxr)) &
659!$ACC COPY(e(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
660!$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
661!$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
662!$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
663!$ACC COPY(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
664!$ACC COPY(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
665!$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
666!$ACC COPY(pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
667
668!$ACC DATA &
669!$ACC COPY(e_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
670!$ACC COPY(u_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
671!$ACC COPY(v_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
672!$ACC COPY(w_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
673!$ACC COPY(pt_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
674!$ACC COPY(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
675!$ACC COPY(te_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
676!$ACC COPY(tu_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
677!$ACC COPY(tv_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
678!$ACC COPY(tw_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
679!$ACC COPY(tpt_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
680
681!$ACC DATA &
682!$ACC COPYIN(rho_air(nzb:nzt+1), drho_air(nzb:nzt+1)) &
683!$ACC COPYIN(rho_air_zw(nzb:nzt+1), drho_air_zw(nzb:nzt+1)) &
684!$ACC COPYIN(zu(nzb:nzt+1)) &
685!$ACC COPYIN(dzu(1:nzt+1), dzw(1:nzt+1)) &
686!$ACC COPYIN(ddzu(1:nzt+1), dd2zu(1:nzt)) &
687!$ACC COPYIN(ddzw(1:nzt+1)) &
[3658]688!$ACC COPYIN(heatflux_output_conversion(nzb:nzt+1)) &
689!$ACC COPYIN(momentumflux_output_conversion(nzb:nzt+1)) &
[3634]690!$ACC COPYIN(rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt)) &
691!$ACC COPYIN(ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng)) &
692!$ACC COPYIN(ref_state(0:nz+1)) &
693!$ACC COPYIN(u_init(0:nz+1), v_init(0:nz+1)) &
694!$ACC COPYIN(u_stokes_zu(nzb:nzt+1), v_stokes_zu(nzb:nzt+1)) &
695!$ACC COPYIN(pt_init(0:nz+1)) &
696!$ACC COPYIN(ug(0:nz+1), vg(0:nz+1))
697
698! Copy data from control_parameters
699!$ACC DATA &
700!$ACC COPYIN(tsc(1:5))
701
702! Copy data from indices
703!$ACC DATA &
704!$ACC COPYIN(advc_flags_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
705!$ACC COPYIN(advc_flags_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
706!$ACC COPYIN(wall_flags_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
707
708! Copy data from surface_mod
709!$ACC DATA &
710!$ACC COPYIN(bc_h(0:1)) &
711!$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) &
712!$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) &
713!$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) &
714!$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) &
715!$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) &
716!$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns))
717
718! Copy data from statistics
719!$ACC DATA &
[3658]720!$ACC COPYIN(hom(0:nz+1,1:2,1:4,0)) &
[3634]721!$ACC COPYIN(rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions)) &
722!$ACC COPYIN(weight_substep(1:intermediate_timestep_count_max)) &
[3658]723!$ACC COPY(sums_l(nzb:nzt+1,1:pr_palm,0)) &
[3634]724!$ACC COPY(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
725!$ACC COPY(sums_us2_ws_l(nzb:nzt+1,0)) &
726!$ACC COPY(sums_wsus_ws_l(nzb:nzt+1,0)) &
727!$ACC COPY(sums_vs2_ws_l(nzb:nzt+1,0)) &
728!$ACC COPY(sums_wsvs_ws_l(nzb:nzt+1,0)) &
729!$ACC COPY(sums_ws2_ws_l(nzb:nzt+1,0)) &
730!$ACC COPY(sums_wspts_ws_l(nzb:nzt+1,0)) &
731!$ACC COPY(sums_wssas_ws_l(nzb:nzt+1,0)) &
732!$ACC COPY(sums_wsqs_ws_l(nzb:nzt+1,0)) &
733!$ACC COPY(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
734!$ACC COPY(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
735!$ACC COPY(sums_wsncs_ws_l(nzb:nzt+1,0)) &
736!$ACC COPY(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
737!$ACC COPY(sums_wsss_ws_l(nzb:nzt+1,0)) &
738!$ACC COPY(sums_salsa_ws_l(nzb:nzt+1,0))
739
[3658]740#ifdef _OPENACC
741    CALL enter_surface_arrays
742#endif
743
[1]744!
[1918]745!-- At beginning determine the first time step
746    CALL timestep
[1764]747!
748!-- Synchronize the timestep in case of nested run.
749    IF ( nested_run )  THEN
[1878]750!
751!--    Synchronization by unifying the time step.
752!--    Global minimum of all time-steps is used for all.
753       CALL pmci_synchronize
[1764]754    ENDIF
755
[1918]756!
757!-- Determine and print out the run control quantities before the first time
758!-- step of this run. For the initial run, some statistics (e.g. divergence)
[3004]759!-- need to be determined first --> CALL flow_statistics at the beginning of
760!-- run_control
[1]761    CALL run_control
[108]762!
763!-- Data exchange between coupled models in case that a call has been omitted
764!-- at the end of the previous run of a job chain.
[2365]765    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled .AND. .NOT. vnested)  THEN
[108]766!
767!--    In case of model termination initiated by the local model the coupler
768!--    must not be called because this would again cause an MPI hang.
[1918]769       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
[108]770          CALL surface_coupler
771          time_coupling = time_coupling - dt_coupling
772       ENDDO
[1918]773       IF (time_coupling == 0.0_wp  .AND.                                      &
774           time_since_reference_point < dt_coupling )                          &
[348]775       THEN
776          time_coupling = time_since_reference_point
777       ENDIF
[108]778    ENDIF
779
[1]780#if defined( __dvrp_graphics )
781!
782!-- Time measurement with dvrp software 
783    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
784#endif
785
[2271]786    CALL location_message( 'starting timestep-sequence', .TRUE. )
[1]787!
788!-- Start of the time loop
789    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. &
790                .NOT. terminate_run )
791
792       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
793!
[2365]794!--    Vertical nesting: initialize fine grid
795       IF ( vnested ) THEN
796          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
797             CALL cpu_log( log_point(80), 'vnest_init', 'start' )
798             CALL vnest_init_fine
799             vnest_init = .TRUE.
800             CALL cpu_log( log_point(80), 'vnest_init', 'stop' )
801          ENDIF
802       ENDIF
803!
[1241]804!--    Determine ug, vg and w_subs in dependence on data from external file
805!--    LSF_DATA
[1365]806       IF ( large_scale_forcing .AND. lsf_vert )  THEN
[1241]807           CALL ls_forcing_vert ( simulated_time )
[1365]808           sums_ls_l = 0.0_wp
[1241]809       ENDIF
810
811!
[1380]812!--    Set pt_init and q_init to the current profiles taken from
813!--    NUDGING_DATA
814       IF ( nudging )  THEN
815           CALL nudge_ref ( simulated_time )
816!
817!--        Store temperature gradient at the top boundary for possible Neumann
818!--        boundary condition
819           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
820           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
[3298]821           IF ( air_chemistry )  THEN
822              DO  lsp = 1, nspec
823                 bc_cs_t_val = (  chem_species(lsp)%conc_pr_init(nzt+1)       &
824                                - chem_species(lsp)%conc_pr_init(nzt) )       &
825                               / dzu(nzt+1)
826              ENDDO
827           ENDIF
[1380]828       ENDIF
[2696]829!
830!--    If forcing by larger-scale models is applied, check if new data
831!--    at domain boundaries need to be read.
[3182]832       IF ( nesting_offline )  THEN
833          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point )&
[3347]834             CALL netcdf_data_input_offline_nesting
[2696]835       ENDIF
[1380]836
837!
[2817]838!--    Execute the gust module actions
839       IF ( gust_module_enabled )  THEN
840          CALL gust_actions( 'before_timestep' )
841       ENDIF
842
843!
[1]844!--    Execute the user-defined actions
845       CALL user_actions( 'before_timestep' )
846
847!
[1914]848!--    Calculate forces by wind turbines
849       IF ( wind_turbine )  THEN
850
851          CALL cpu_log( log_point(55), 'wind_turbine', 'start' )
852
853          CALL wtm_forces
854
855          CALL cpu_log( log_point(55), 'wind_turbine', 'stop' )
856
[3467]857       ENDIF   
[1914]858       
859!
[1]860!--    Start of intermediate step loop
861       intermediate_timestep_count = 0
862       DO  WHILE ( intermediate_timestep_count < &
863                   intermediate_timestep_count_max )
864
865          intermediate_timestep_count = intermediate_timestep_count + 1
866
867!
868!--       Set the steering factors for the prognostic equations which depend
869!--       on the timestep scheme
870          CALL timestep_scheme_steering
871
872!
[1128]873!--       Calculate those variables needed in the tendency terms which need
874!--       global communication
[1179]875          IF ( .NOT. use_single_reference_value  .AND. &
876               .NOT. use_initial_profile_as_reference )  THEN
877!
878!--          Horizontally averaged profiles to be used as reference state in
879!--          buoyancy terms (WARNING: only the respective last call of
880!--          calc_mean_profile defines the reference state!)
[1365]881             IF ( .NOT. neutral )  THEN
882                CALL calc_mean_profile( pt, 4 )
883                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
884             ENDIF
[3294]885             IF ( ocean_mode )  THEN
[2031]886                CALL calc_mean_profile( rho_ocean, 64 )
[1365]887                ref_state(:)  = hom(:,1,64,0)
888             ENDIF
889             IF ( humidity )  THEN
890                CALL calc_mean_profile( vpt, 44 )
891                ref_state(:)  = hom(:,1,44,0)
892             ENDIF
[2617]893!
894!--          Assure that ref_state does not become zero at any level
895!--          ( might be the case if a vertical level is completely occupied
896!--            with topography ).
897             ref_state = MERGE( MAXVAL(ref_state), ref_state,                  &
898                                ref_state == 0.0_wp )
[1179]899          ENDIF
900
[1128]901          IF ( .NOT. constant_diffusion )  CALL production_e_init
902          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  &
903               intermediate_timestep_count == 1 )  CALL ws_statistics
[1365]904!
905!--       In case of nudging calculate current nudging time scale and horizontal
[1380]906!--       means of u, v, pt and q
[1365]907          IF ( nudging )  THEN
908             CALL calc_tnudge( simulated_time )
909             CALL calc_mean_profile( u, 1 )
910             CALL calc_mean_profile( v, 2 )
911             CALL calc_mean_profile( pt, 4 )
912             CALL calc_mean_profile( q, 41 )
913          ENDIF
[1128]914
915!
[1]916!--       Solve the prognostic equations. A fast cache optimized version with
917!--       only one single loop is used in case of Piascek-Williams advection
918!--       scheme. NEC vector machines use a different version, because
919!--       in the other versions a good vectorization is prohibited due to
920!--       inlining problems.
[1019]921          IF ( loop_optimization == 'cache' )  THEN
922             CALL prognostic_equations_cache
923          ELSEIF ( loop_optimization == 'vector' )  THEN
[63]924             CALL prognostic_equations_vector
[1]925          ENDIF
926
927!
[849]928!--       Particle transport/physics with the Lagrangian particle model
929!--       (only once during intermediate steps, because it uses an Euler-step)
[1128]930!--       ### particle model should be moved before prognostic_equations, in order
931!--       to regard droplet interactions directly
[63]932          IF ( particle_advection  .AND.                         &
[3646]933               time_since_reference_point >= particle_advection_start  .AND. &
[1]934               intermediate_timestep_count == 1 )  THEN
[849]935             CALL lpm
936             first_call_lpm = .FALSE.
[1]937          ENDIF
938
939!
[3040]940!--       Interaction of droplets with temperature and mixing ratio.
[1]941!--       Droplet condensation and evaporation is calculated within
942!--       advec_particles.
943          IF ( cloud_droplets  .AND.  &
944               intermediate_timestep_count == intermediate_timestep_count_max )&
945          THEN
946             CALL interaction_droplets_ptq
947          ENDIF
948
949!
[3159]950!--       Movement of agents in multi agent system
951          IF ( agents_active  .AND.                                            &
[3198]952               time_since_reference_point >= multi_agent_system_start  .AND.   &
953               time_since_reference_point <= multi_agent_system_end    .AND.   &
[3159]954               intermediate_timestep_count == 1 )  THEN
955             CALL multi_agent_system
956             first_call_mas = .FALSE.
957          ENDIF
958
959!
[1]960!--       Exchange of ghost points (lateral boundary conditions)
[2118]961          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
[1113]962
[2118]963          CALL exchange_horiz( u_p, nbgp )
964          CALL exchange_horiz( v_p, nbgp )
965          CALL exchange_horiz( w_p, nbgp )
966          CALL exchange_horiz( pt_p, nbgp )
967          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
[2696]968          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence       &
969               .OR.  use_sgs_for_particles )  THEN
970             IF ( rans_tke_e )  THEN
971                CALL exchange_horiz( diss_p, nbgp )
972             ELSE
973                CALL exchange_horiz( diss, nbgp )
974             ENDIF
975          ENDIF
[3294]976          IF ( ocean_mode )  THEN
[2118]977             CALL exchange_horiz( sa_p, nbgp )
978             CALL exchange_horiz( rho_ocean, nbgp )
979             CALL exchange_horiz( prho, nbgp )
980          ENDIF
981          IF ( humidity )  THEN
982             CALL exchange_horiz( q_p, nbgp )
[3274]983             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
[2292]984                CALL exchange_horiz( qc_p, nbgp )
985                CALL exchange_horiz( nc_p, nbgp )
986             ENDIF
[3274]987             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
[2118]988                CALL exchange_horiz( qr_p, nbgp )
989                CALL exchange_horiz( nr_p, nbgp )
[1053]990             ENDIF
[2118]991          ENDIF
992          IF ( cloud_droplets )  THEN
993             CALL exchange_horiz( ql, nbgp )
994             CALL exchange_horiz( ql_c, nbgp )
995             CALL exchange_horiz( ql_v, nbgp )
996             CALL exchange_horiz( ql_vp, nbgp )
997          ENDIF
[2696]998          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
999          IF ( air_chemistry )  THEN
[3298]1000             DO  lsp = 1, nspec
1001                CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp )
1002!
1003!--             kanani: Push chem_boundary_conds after CALL boundary_conds
1004                lsp_usr = 1
1005                DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
1006                   IF ( TRIM(chem_species(lsp)%name) == TRIM(cs_name(lsp_usr)) )  THEN
1007                      CALL chem_boundary_conds( chem_species(lsp)%conc_p,              &
1008                                                chem_species(lsp)%conc_pr_init )
1009                   ENDIF
1010                   lsp_usr = lsp_usr + 1
1011                ENDDO
[2696]1012             ENDDO
[2118]1013          ENDIF
[2766]1014
[3467]1015          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )&
1016          THEN
1017             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'start' )
1018             DO  b = 1, nbins
1019                CALL exchange_horiz( aerosol_number(b)%conc_p, nbgp )
1020                CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1021                CALL salsa_boundary_conds( aerosol_number(b)%conc_p,           &
1022                                           aerosol_number(b)%init )
1023                CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1024                DO  c = 1, ncc_tot
1025                   CALL exchange_horiz( aerosol_mass((c-1)*nbins+b)%conc_p,    &
1026                                        nbgp )
1027                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1028                   CALL salsa_boundary_conds( aerosol_mass((c-1)*nbins+b)%conc_p,&
1029                                              aerosol_mass((c-1)*nbins+b)%init )
1030                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1031                ENDDO
1032             ENDDO
1033             IF ( .NOT. salsa_gases_from_chem )  THEN
1034                DO  g = 1, ngast
1035                   CALL exchange_horiz( salsa_gas(g)%conc_p, nbgp ) 
1036                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1037                   CALL salsa_boundary_conds( salsa_gas(g)%conc_p,             &
1038                                              salsa_gas(g)%init )
1039                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1040             ENDDO
1041             ENDIF
1042             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'stop' )
1043          ENDIF         
[2118]1044          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
[1128]1045
[1]1046!
1047!--       Boundary conditions for the prognostic quantities (except of the
1048!--       velocities at the outflow in case of a non-cyclic lateral wall)
[1113]1049          CALL boundary_conds
[1]1050!
[73]1051!--       Swap the time levels in preparation for the next time step.
1052          CALL swap_timelevel
1053
[2365]1054!
1055!--       Vertical nesting: Interpolate fine grid data to the coarse grid
1056          IF ( vnest_init ) THEN
1057             CALL cpu_log( log_point(81), 'vnest_anterpolate', 'start' )
1058             CALL vnest_anterpolate
1059             CALL cpu_log( log_point(81), 'vnest_anterpolate', 'stop' )
1060          ENDIF
1061
[1764]1062          IF ( nested_run )  THEN
[1797]1063
[1764]1064             CALL cpu_log( log_point(60), 'nesting', 'start' )
[1762]1065!
[1933]1066!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
1067!--          and pmci_child_datatrans are called inside the wrapper
[1797]1068!--          subroutine pmci_datatrans according to the control parameters
1069!--          nesting_mode and nesting_datatransfer_mode.
1070!--          TO_DO: why is nesting_mode given as a parameter here?
1071             CALL pmci_datatrans( nesting_mode )
[1762]1072
[2174]1073             IF ( TRIM( nesting_mode ) == 'two-way' .OR.                       &
[1933]1074                  nesting_mode == 'vertical' )  THEN
[1762]1075!
[1933]1076!--             Exchange_horiz is needed for all parent-domains after the
[1764]1077!--             anterpolation
1078                CALL exchange_horiz( u, nbgp )
1079                CALL exchange_horiz( v, nbgp )
1080                CALL exchange_horiz( w, nbgp )
[2174]1081                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
1082
1083                IF ( humidity )  THEN
1084
1085                   CALL exchange_horiz( q, nbgp )
1086
[3274]1087                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
[2292]1088                       CALL exchange_horiz( qc, nbgp )
1089                       CALL exchange_horiz( nc, nbgp )
1090                   ENDIF
[3274]1091                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
[2174]1092                       CALL exchange_horiz( qr, nbgp )
1093                       CALL exchange_horiz( nr, nbgp )
1094                   ENDIF
1095
1096                ENDIF
1097
[3467]1098                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
1099               
[2174]1100                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
[2773]1101
[2938]1102                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.         &
1103                                                      rans_tke_e )             &
1104                   CALL exchange_horiz( diss, nbgp )
1105
[2773]1106                IF ( air_chemistry )  THEN
1107                   DO  n = 1, nspec     
1108                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
1109                   ENDDO
1110                ENDIF
1111
[1762]1112             ENDIF
1113!
[2311]1114!--          Set boundary conditions again after interpolation and anterpolation.
1115             CALL pmci_boundary_conds
[1764]1116
1117             CALL cpu_log( log_point(60), 'nesting', 'stop' )
1118
[1762]1119          ENDIF
1120
1121!
[1]1122!--       Temperature offset must be imposed at cyclic boundaries in x-direction
1123!--       when a sloping surface is used
1124          IF ( sloping_surface )  THEN
[707]1125             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - &
1126                                                    pt_slope_offset
1127             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + &
1128                                                    pt_slope_offset
[1]1129          ENDIF
1130
1131!
[151]1132!--       Impose a turbulent inflow using the recycling method
1133          IF ( turbulent_inflow )  CALL  inflow_turbulence
1134
1135!
[2050]1136!--       Set values at outflow boundary using the special outflow condition
1137          IF ( turbulent_outflow )  CALL  outflow_turbulence
1138
1139!
[1]1140!--       Impose a random perturbation on the horizontal velocity field
[106]1141          IF ( create_disturbances  .AND.                                      &
1142               ( call_psolver_at_all_substeps  .AND.                           &
[1]1143               intermediate_timestep_count == intermediate_timestep_count_max )&
[106]1144          .OR. ( .NOT. call_psolver_at_all_substeps  .AND.                     &
1145               intermediate_timestep_count == 1 ) )                            &
[1]1146          THEN
1147             time_disturb = time_disturb + dt_3d
1148             IF ( time_disturb >= dt_disturb )  THEN
[1736]1149                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                 &
1150                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
[2232]1151                   CALL disturb_field( 'u', tend, u )
1152                   CALL disturb_field( 'v', tend, v )
[2178]1153                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )            &
[3182]1154                     .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )  &
1155                THEN
[1]1156!
1157!--                Runs with a non-cyclic lateral wall need perturbations
1158!--                near the inflow throughout the whole simulation
1159                   dist_range = 1
[2232]1160                   CALL disturb_field( 'u', tend, u )
1161                   CALL disturb_field( 'v', tend, v )
[1]1162                   dist_range = 0
1163                ENDIF
1164                time_disturb = time_disturb - dt_disturb
1165             ENDIF
1166          ENDIF
1167
1168!
[2696]1169!--       Map forcing data derived from larger scale model onto domain
1170!--       boundaries.
[3182]1171          IF ( nesting_offline  .AND.  intermediate_timestep_count ==          &
[3347]1172                                       intermediate_timestep_count_max  )      &
1173             CALL nesting_offl_bc
[2938]1174!
[3347]1175!--       Impose a turbulent inflow using synthetic generated turbulence,
1176!--       only once per time step.
1177          IF ( use_syn_turb_gen  .AND.  time_stg_call >= dt_stg_call  .AND.    &
1178             intermediate_timestep_count == intermediate_timestep_count_max )  THEN! &
1179             CALL stg_main
[2696]1180          ENDIF
1181!
[3347]1182!--       Ensure mass conservation. This need to be done after imposing
1183!--       synthetic turbulence and top boundary condition for pressure is set to
1184!--       Neumann conditions.
1185!--       Is this also required in case of Dirichlet?
1186          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1187!
[1]1188!--       Reduce the velocity divergence via the equation for perturbation
1189!--       pressure.
[106]1190          IF ( intermediate_timestep_count == 1  .OR. &
1191                call_psolver_at_all_substeps )  THEN
[2365]1192
1193             IF (  vnest_init ) THEN
1194!
1195!--             Compute pressure in the CG, interpolate top boundary conditions
1196!--             to the FG and then compute pressure in the FG
1197                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1198
1199                CALL cpu_log( log_point(82), 'vnest_bc', 'start' )
1200                CALL vnest_boundary_conds
1201                CALL cpu_log( log_point(82), 'vnest_bc', 'stop' )
1202 
1203                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1204
1205!--             Anterpolate TKE, satisfy Germano Identity
1206                CALL cpu_log( log_point(83), 'vnest_anter_e', 'start' )
1207                CALL vnest_anterpolate_e
1208                CALL cpu_log( log_point(83), 'vnest_anter_e', 'stop' )
1209
1210             ELSE
1211
1212                CALL pres
1213
1214             ENDIF
1215
[1]1216          ENDIF
1217
1218!
1219!--       If required, compute liquid water content
[3274]1220          IF ( bulk_cloud_model )  THEN
[1015]1221             CALL calc_liquid_water_content
1222          ENDIF
[2174]1223!
[1115]1224!--       If required, compute virtual potential temperature
1225          IF ( humidity )  THEN
1226             CALL compute_vpt 
1227          ENDIF 
[1585]1228
[1]1229!
1230!--       Compute the diffusion quantities
1231          IF ( .NOT. constant_diffusion )  THEN
1232
1233!
[1276]1234!--          Determine surface fluxes shf and qsws and surface values
1235!--          pt_surface and q_surface in dependence on data from external
1236!--          file LSF_DATA respectively
1237             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND. &
1238                 intermediate_timestep_count == intermediate_timestep_count_max )&
1239             THEN
[2320]1240                CALL ls_forcing_surf( simulated_time )
[1276]1241             ENDIF
1242
1243!
[2232]1244!--          First the vertical (and horizontal) fluxes in the surface
1245!--          (constant flux) layer are computed
[1691]1246             IF ( constant_flux_layer )  THEN
1247                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1248                CALL surface_layer_fluxes
1249                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
[1]1250             ENDIF
1251!
[1691]1252!--          If required, solve the energy balance for the surface and run soil
[2232]1253!--          model. Call for horizontal as well as vertical surfaces
[2696]1254             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
[1691]1255
1256                CALL cpu_log( log_point(54), 'land_surface', 'start' )
[2232]1257!
1258!--             Call for horizontal upward-facing surfaces
1259                CALL lsm_energy_balance( .TRUE., -1 )
[2299]1260                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
[2232]1261!
1262!--             Call for northward-facing surfaces
1263                CALL lsm_energy_balance( .FALSE., 0 )
[2299]1264                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
[2232]1265!
1266!--             Call for southward-facing surfaces
1267                CALL lsm_energy_balance( .FALSE., 1 )
[2299]1268                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
[2232]1269!
1270!--             Call for eastward-facing surfaces
1271                CALL lsm_energy_balance( .FALSE., 2 )
[2299]1272                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
[2232]1273!
1274!--             Call for westward-facing surfaces
1275                CALL lsm_energy_balance( .FALSE., 3 )
[2299]1276                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
[3597]1277               
[2696]1278!
1279!--             At the end, set boundary conditons for potential temperature
1280!--             and humidity after running the land-surface model. This
1281!--             might be important for the nesting, where arrays are transfered.
1282                CALL lsm_boundary_condition
[2232]1283
[3597]1284               
[1691]1285                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1286             ENDIF
1287!
[2007]1288!--          If required, solve the energy balance for urban surfaces and run
1289!--          the material heat model
1290             IF (urban_surface) THEN
1291                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
[3176]1292               
[3418]1293                CALL usm_surface_energy_balance( .FALSE. )
[2007]1294                IF ( usm_material_model )  THEN
[2696]1295                   CALL usm_green_heat_model
[3418]1296                   CALL usm_material_heat_model ( .FALSE. )
[2007]1297                ENDIF
[2696]1298
1299!
1300!--             At the end, set boundary conditons for potential temperature
1301!--             and humidity after running the urban-surface model. This
1302!--             might be important for the nesting, where arrays are transfered.
1303                CALL usm_boundary_condition
1304
[2007]1305                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1306             ENDIF
1307!
[1]1308!--          Compute the diffusion coefficients
1309             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
[75]1310             IF ( .NOT. humidity ) THEN
[3294]1311                IF ( ocean_mode )  THEN
[2696]1312                   CALL tcm_diffusivities( prho, prho_reference )
[97]1313                ELSE
[2696]1314                   CALL tcm_diffusivities( pt, pt_reference )
[97]1315                ENDIF
[1]1316             ELSE
[2696]1317                CALL tcm_diffusivities( vpt, pt_reference )
[1]1318             ENDIF
1319             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
[2696]1320!
1321!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1322             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
[1]1323
1324          ENDIF
1325
[1691]1326!
1327!--       If required, calculate radiative fluxes and heating rates
1328          IF ( radiation .AND. intermediate_timestep_count                     &
[2299]1329               == intermediate_timestep_count_max .AND. time_since_reference_point >    &
[1691]1330               skip_time_do_radiation )  THEN
1331
1332               time_radiation = time_radiation + dt_3d
1333
1334             IF ( time_radiation >= dt_radiation .OR. force_radiation_call )   &
1335             THEN
1336
1337                CALL cpu_log( log_point(50), 'radiation', 'start' )
1338
1339                IF ( .NOT. force_radiation_call )  THEN
1340                   time_radiation = time_radiation - dt_radiation
1341                ENDIF
1342
[3014]1343!
[3241]1344!--             Adjust the current time to the time step of the radiation model.
[3014]1345!--             Needed since radiation is pre-calculated and stored only on apparent
1346!--             solar positions
[3241]1347                time_since_reference_point_save = time_since_reference_point
1348                time_since_reference_point =                                   &
1349                                    REAL( FLOOR( time_since_reference_point /  &
1350                                                 dt_radiation), wp )           &
1351                                             * dt_radiation
[3014]1352
[1976]1353                CALL radiation_control
[1691]1354
1355                CALL cpu_log( log_point(50), 'radiation', 'stop' )
[2007]1356
[3378]1357                IF ( ( urban_surface  .OR.  land_surface )  .AND.               &
[2696]1358                     radiation_interactions )  THEN
1359                   CALL cpu_log( log_point(75), 'radiation_interaction', 'start' )
1360                   CALL radiation_interaction
1361                   CALL cpu_log( log_point(75), 'radiation_interaction', 'stop' )
[2007]1362                ENDIF
[3014]1363   
1364!
1365!--             Return the current time to its original value
[3241]1366                time_since_reference_point = time_since_reference_point_save
[2007]1367
[1691]1368             ENDIF
1369          ENDIF
1370
[1]1371       ENDDO   ! Intermediate step loop
[3634]1372
[1]1373!
[3634]1374!--    Will be used at some point by flow_statistics.
[3658]1375       !$ACC UPDATE &
[3634]1376       !$ACC HOST(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
1377       !$ACC HOST(sums_us2_ws_l(nzb:nzt+1,0)) &
1378       !$ACC HOST(sums_wsus_ws_l(nzb:nzt+1,0)) &
1379       !$ACC HOST(sums_vs2_ws_l(nzb:nzt+1,0)) &
1380       !$ACC HOST(sums_wsvs_ws_l(nzb:nzt+1,0)) &
1381       !$ACC HOST(sums_ws2_ws_l(nzb:nzt+1,0)) &
1382       !$ACC HOST(sums_wspts_ws_l(nzb:nzt+1,0)) &
1383       !$ACC HOST(sums_wssas_ws_l(nzb:nzt+1,0)) &
1384       !$ACC HOST(sums_wsqs_ws_l(nzb:nzt+1,0)) &
1385       !$ACC HOST(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
1386       !$ACC HOST(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
1387       !$ACC HOST(sums_wsncs_ws_l(nzb:nzt+1,0)) &
1388       !$ACC HOST(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
1389       !$ACC HOST(sums_wsss_ws_l(nzb:nzt+1,0)) &
1390       !$ACC HOST(sums_salsa_ws_l(nzb:nzt+1,0))
1391
1392!
[2766]1393!--    If required, consider chemical emissions
[3298]1394       IF ( air_chemistry  .AND.  do_emis )  THEN
1395!
1396!--       Update the time --> kanani: revise location of this CALL
1397          CALL calc_date_and_time
1398!
1399!--       Call emission routine only once an hour
1400          IF (hour_of_year  .GT.  hour_call_emis )  THEN
1401             CALL chem_emissions_setup( chem_emis_att, chem_emis, nspec_out )
1402             hour_call_emis = hour_of_year
1403          ENDIF
[2766]1404       ENDIF
[3569]1405
[2696]1406!
[3469]1407!--    If required, calculate indoor temperature, waste heat, heat flux
1408!--    through wall, etc.
1409!--    dt_indoor steers the frequency of the indoor model calculations
[3647]1410       IF ( indoor_model )  THEN
[3469]1411
1412          time_indoor = time_indoor + dt_3d
1413
1414          IF ( time_indoor >= dt_indoor )  THEN
1415
1416             time_indoor = time_indoor - dt_indoor
1417
1418             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1419             CALL im_main_heatcool
1420             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1421
1422          ENDIF
1423       ENDIF
1424!
[1]1425!--    Increase simulation time and output times
[1111]1426       nr_timesteps_this_run      = nr_timesteps_this_run + 1
[291]1427       current_timestep_number    = current_timestep_number + 1
1428       simulated_time             = simulated_time   + dt_3d
1429       time_since_reference_point = simulated_time - coupling_start_time
[2941]1430       simulated_time_chr         = time_to_string( time_since_reference_point )
[291]1431
[1957]1432
1433
[2941]1434
[3646]1435       IF ( time_since_reference_point >= skip_time_data_output_av )  THEN
[1]1436          time_do_av         = time_do_av       + dt_3d
1437       ENDIF
[3646]1438       IF ( time_since_reference_point >= skip_time_do2d_xy )  THEN
[1]1439          time_do2d_xy       = time_do2d_xy     + dt_3d
1440       ENDIF
[3646]1441       IF ( time_since_reference_point >= skip_time_do2d_xz )  THEN
[1]1442          time_do2d_xz       = time_do2d_xz     + dt_3d
1443       ENDIF
[3646]1444       IF ( time_since_reference_point >= skip_time_do2d_yz )  THEN
[1]1445          time_do2d_yz       = time_do2d_yz     + dt_3d
1446       ENDIF
[3646]1447       IF ( time_since_reference_point >= skip_time_do3d    )  THEN
[1]1448          time_do3d          = time_do3d        + dt_3d
1449       ENDIF
[410]1450       DO  mid = 1, masks
[3646]1451          IF ( time_since_reference_point >= skip_time_domask(mid) )  THEN
[410]1452             time_domask(mid)= time_domask(mid) + dt_3d
1453          ENDIF
1454       ENDDO
[1]1455       time_dvrp          = time_dvrp        + dt_3d
[3646]1456       IF ( time_since_reference_point >= skip_time_dosp )  THEN
[1]1457          time_dosp       = time_dosp        + dt_3d
1458       ENDIF
1459       time_dots          = time_dots        + dt_3d
[849]1460       IF ( .NOT. first_call_lpm )  THEN
[1]1461          time_dopts      = time_dopts       + dt_3d
1462       ENDIF
[3646]1463       IF ( time_since_reference_point >= skip_time_dopr )  THEN
[1]1464          time_dopr       = time_dopr        + dt_3d
1465       ENDIF
[3467]1466       time_dopr_listing  = time_dopr_listing + dt_3d
[1]1467       time_run_control   = time_run_control + dt_3d
[3347]1468!
[3421]1469!--    Increment time-counter for surface output
[3648]1470       IF ( surface_output )  THEN
[3646]1471          IF ( time_since_reference_point >= skip_time_dosurf )  THEN
[3421]1472             time_dosurf    = time_dosurf + dt_3d
1473          ENDIF
[3646]1474          IF ( time_since_reference_point >= skip_time_dosurf_av )  THEN
[3421]1475             time_dosurf_av = time_dosurf_av + dt_3d
1476          ENDIF
1477       ENDIF
1478!
[3347]1479!--    In case of synthetic turbulence generation and parametrized turbulence
1480!--    information, update the time counter and if required, adjust the
1481!--    STG to new atmospheric conditions.
1482       IF ( use_syn_turb_gen  )  THEN
1483          IF ( parametrize_inflow_turbulence )  THEN
1484             time_stg_adjust = time_stg_adjust + dt_3d
1485             IF ( time_stg_adjust >= dt_stg_adjust )  CALL stg_adjust
1486          ENDIF
1487          time_stg_call = time_stg_call + dt_3d
1488       ENDIF
[1]1489
1490!
[102]1491!--    Data exchange between coupled models
[2365]1492       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled                   &
1493                                          .AND. .NOT. vnested )  THEN
[102]1494          time_coupling = time_coupling + dt_3d
[343]1495
[108]1496!
1497!--       In case of model termination initiated by the local model
1498!--       (terminate_coupled > 0), the coupler must be skipped because it would
1499!--       cause an MPI intercomminucation hang.
1500!--       If necessary, the coupler will be called at the beginning of the
1501!--       next restart run.
1502          DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 )
[102]1503             CALL surface_coupler
1504             time_coupling = time_coupling - dt_coupling
1505          ENDDO
1506       ENDIF
1507
1508!
[3448]1509!--    Biometeorology calculation of stationary thermal indices
[3647]1510!--    Todo (kanani): biometeorology needs own time_... treatment.
1511!--                   It might be that time_do2d_xy differs from time_do3d,
1512!--                   and then we might get trouble with the biomet output,
1513!--                   because we can have 2d and/or 3d biomet output!!
1514       IF (         biometeorology  &
1515             .AND.  ( ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )          &
1516                      .OR.                                                                                   &
1517                      ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy ) &
1518                    ) )  THEN
[3569]1519!
1520!--       If required, do thermal comfort calculations
1521          IF ( thermal_comfort )  THEN
1522             CALL bio_calculate_thermal_index_maps ( .FALSE. )
1523             time_bio_results = time_since_reference_point
1524          ENDIF
1525!
1526!--       If required, do UV exposure calculations
1527          IF ( uv_exposure )  THEN
1528             CALL uvem_calc_exposure
1529          ENDIF
[3448]1530       ENDIF
1531
1532!
[2817]1533!--    Execute the gust module actions
1534       IF ( gust_module_enabled )  THEN
1535          CALL gust_actions( 'after_integration' )
1536       ENDIF
1537
1538!
[46]1539!--    Execute user-defined actions
1540       CALL user_actions( 'after_integration' )
1541
1542!
[1]1543!--    If Galilei transformation is used, determine the distance that the
1544!--    model has moved so far
1545       IF ( galilei_transformation )  THEN
1546          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1547          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1548       ENDIF
1549
1550!
1551!--    Check, if restart is necessary (because cpu-time is expiring or
1552!--    because it is forced by user) and set stop flag
[108]1553!--    This call is skipped if the remote model has already initiated a restart.
1554       IF ( .NOT. terminate_run )  CALL check_for_restart
[1]1555
1556!
1557!--    Carry out statistical analysis and output at the requested output times.
1558!--    The MOD function is used for calculating the output time counters (like
1559!--    time_dopr) in order to regard a possible decrease of the output time
1560!--    interval in case of restart runs
1561
1562!
1563!--    Set a flag indicating that so far no statistics have been created
1564!--    for this time step
1565       flow_statistics_called = .FALSE.
1566
1567!
1568!--    If required, call flow_statistics for averaging in time
[1342]1569       IF ( averaging_interval_pr /= 0.0_wp  .AND.  &
[1]1570            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.  &
[3646]1571            time_since_reference_point >= skip_time_dopr )  THEN
[1]1572          time_dopr_av = time_dopr_av + dt_3d
1573          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1574             do_sum = .TRUE.
1575             time_dopr_av = MOD( time_dopr_av, &
1576                                    MAX( dt_averaging_input_pr, dt_3d ) )
1577          ENDIF
1578       ENDIF
1579       IF ( do_sum )  CALL flow_statistics
1580
1581!
[410]1582!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
[1342]1583       IF ( averaging_interval /= 0.0_wp  .AND.                                &
[3647]1584            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND.    &
1585            time_since_reference_point >= skip_time_data_output_av )           &
[1]1586       THEN
1587          time_do_sla = time_do_sla + dt_3d
1588          IF ( time_do_sla >= dt_averaging_input )  THEN
1589             CALL sum_up_3d_data
1590             average_count_3d = average_count_3d + 1
1591             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1592          ENDIF
1593       ENDIF
[3421]1594!
1595!--    Average surface data
[3648]1596       IF ( surface_output )  THEN
[3647]1597          IF (         averaging_interval_surf /= 0.0_wp                               &
1598                .AND.  ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf    &
1599                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
[3421]1600             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
[3648]1601                CALL surface_data_output_averaging
[3421]1602                average_count_surf = average_count_surf + 1
1603             ENDIF
1604          ENDIF
1605       ENDIF
[1]1606
1607!
1608!--    Calculate spectra for time averaging
[1342]1609       IF ( averaging_interval_sp /= 0.0_wp  .AND.  &
[1]1610            ( dt_dosp - time_dosp ) <= averaging_interval_sp  .AND.  &
[3646]1611            time_since_reference_point >= skip_time_dosp )  THEN
[1]1612          time_dosp_av = time_dosp_av + dt_3d
1613          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1614             CALL calc_spectra
1615             time_dosp_av = MOD( time_dosp_av, &
1616                                 MAX( dt_averaging_input_pr, dt_3d ) )
1617          ENDIF
1618       ENDIF
1619
1620!
[1957]1621!--    Call flight module and output data
1622       IF ( virtual_flight )  THEN
1623          CALL flight_measurement
1624          CALL data_output_flight
1625       ENDIF
[3472]1626!
1627!--    Take virtual measurements
1628       IF ( virtual_measurement  .AND.                                         &
1629            vm_time_start <= time_since_reference_point )  CALL vm_sampling
[1957]1630
1631!
[1]1632!--    Profile output (ASCII) on file
1633       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1634          CALL print_1d
1635          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, &
1636                                                           dt_3d ) )
1637       ENDIF
1638
1639!
1640!--    Graphic output for PROFIL
[3647]1641       IF (        time_dopr >= dt_dopr                                     &
1642            .AND.  time_since_reference_point >= skip_time_dopr )  THEN
[1]1643          IF ( dopr_n /= 0 )  CALL data_output_profiles
1644          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
[1342]1645          time_dopr_av = 0.0_wp    ! due to averaging (see above)
[1]1646       ENDIF
1647
1648!
1649!--    Graphic output for time series
1650       IF ( time_dots >= dt_dots )  THEN
[48]1651          CALL data_output_tseries
[1]1652          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1653       ENDIF
1654
1655!
1656!--    Output of spectra (formatted for use with PROFIL), in case of no
1657!--    time averaging, spectra has to be calculated before
[3647]1658       IF (         time_dosp >= dt_dosp                                     &
1659             .AND.  time_since_reference_point >= skip_time_dosp )  THEN
[1]1660          IF ( average_count_sp == 0 )  CALL calc_spectra
1661          CALL data_output_spectra
1662          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1663       ENDIF
1664
1665!
1666!--    2d-data output (cross-sections)
[3647]1667       IF (         time_do2d_xy >= dt_do2d_xy                               &
1668             .AND.  time_since_reference_point >= skip_time_do2d_xy )  THEN
[1]1669          CALL data_output_2d( 'xy', 0 )
1670          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1671       ENDIF
[3647]1672       IF (         time_do2d_xz >= dt_do2d_xz                               &
1673             .AND.  time_since_reference_point >= skip_time_do2d_xz )  THEN
[1]1674          CALL data_output_2d( 'xz', 0 )
1675          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1676       ENDIF
[3647]1677       IF (         time_do2d_yz >= dt_do2d_yz                               &
1678             .AND.  time_since_reference_point >= skip_time_do2d_yz )  THEN
[1]1679          CALL data_output_2d( 'yz', 0 )
1680          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1681       ENDIF
1682
1683!
1684!--    3d-data output (volume data)
[3647]1685       IF (         time_do3d >= dt_do3d                                     & 
1686             .AND.  time_since_reference_point >= skip_time_do3d )  THEN
[1]1687          CALL data_output_3d( 0 )
1688          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1689       ENDIF
1690
1691!
[1783]1692!--    Masked data output
[410]1693       DO  mid = 1, masks
[3647]1694          IF (         time_domask(mid) >= dt_domask(mid)                          &
1695                .AND.  time_since_reference_point >= skip_time_domask(mid) )  THEN
[410]1696             CALL data_output_mask( 0 )
[3647]1697             time_domask(mid) = MOD( time_domask(mid),                             &
[410]1698                                     MAX( dt_domask(mid), dt_3d ) )
1699          ENDIF
1700       ENDDO
1701
1702!
1703!--    Output of time-averaged 2d/3d/masked data
[3647]1704       IF (         time_do_av >= dt_data_output_av                                &
1705             .AND.  time_since_reference_point >= skip_time_data_output_av )  THEN
[1]1706          CALL average_3d_data
1707          CALL data_output_2d( 'xy', 1 )
1708          CALL data_output_2d( 'xz', 1 )
1709          CALL data_output_2d( 'yz', 1 )
1710          CALL data_output_3d( 1 )
[410]1711          DO  mid = 1, masks
1712             CALL data_output_mask( 1 )
1713          ENDDO
[1]1714          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1715       ENDIF
[3421]1716!
1717!--    Output of surface data, instantaneous and averaged data
[3648]1718       IF ( surface_output )  THEN
[3647]1719          IF (         time_dosurf >= dt_dosurf                                    &
1720                .AND.  time_since_reference_point >= skip_time_dosurf )  THEN
[3648]1721             CALL surface_data_output( 0 )
[3421]1722             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1723          ENDIF
[3647]1724          IF (         time_dosurf_av >= dt_dosurf_av                              &
1725                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
[3648]1726             CALL surface_data_output( 1 )
[3421]1727             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1728          ENDIF
1729       ENDIF
[1]1730
1731!
1732!--    Output of particle time series
[253]1733       IF ( particle_advection )  THEN
[3647]1734          IF ( time_dopts >= dt_dopts  .OR.                                    &
[3646]1735               ( time_since_reference_point >= particle_advection_start  .AND. &
[849]1736                 first_call_lpm ) )  THEN
[253]1737             CALL data_output_ptseries
1738             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1739          ENDIF
[1]1740       ENDIF
1741
1742!
1743!--    Output of dvrp-graphics (isosurface, particles, slicer)
1744#if defined( __dvrp_graphics )
1745       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
1746#endif
1747       IF ( time_dvrp >= dt_dvrp )  THEN
1748          CALL data_output_dvrp
1749          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
1750       ENDIF
1751#if defined( __dvrp_graphics )
1752       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
1753#endif
1754
1755!
1756!--    If required, set the heat flux for the next time step at a random value
[2232]1757       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
1758          IF ( surf_def_h(0)%ns >= 1 )  CALL disturb_heatflux( surf_def_h(0) )
1759          IF ( surf_lsm_h%ns    >= 1 )  CALL disturb_heatflux( surf_lsm_h    )
1760          IF ( surf_usm_h%ns    >= 1 )  CALL disturb_heatflux( surf_usm_h    )
1761       ENDIF
[1]1762
1763!
[2817]1764!--    Execute the gust module actions
1765       IF ( gust_module_enabled )  THEN
1766          CALL gust_actions( 'after_timestep' )
1767       ENDIF
1768
1769!
[1]1770!--    Execute user-defined actions
1771       CALL user_actions( 'after_timestep' )
1772
[1402]1773!
[1918]1774!--    Determine size of next time step. Save timestep dt_3d because it is
1775!--    newly calculated in routine timestep, but required further below for
1776!--    steering the run control output interval
1777       dt_3d_old = dt_3d
1778       CALL timestep
1779
1780!
[1925]1781!--    Synchronize the timestep in case of nested run.
1782       IF ( nested_run )  THEN
1783!
1784!--       Synchronize by unifying the time step.
1785!--       Global minimum of all time-steps is used for all.
1786          CALL pmci_synchronize
1787       ENDIF
1788
1789!
[1918]1790!--    Computation and output of run control parameters.
1791!--    This is also done whenever perturbations have been imposed
1792       IF ( time_run_control >= dt_run_control  .OR.                     &
1793            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created ) &
1794       THEN
1795          CALL run_control
1796          IF ( time_run_control >= dt_run_control )  THEN
1797             time_run_control = MOD( time_run_control, &
1798                                     MAX( dt_run_control, dt_3d_old ) )
1799          ENDIF
1800       ENDIF
1801
1802!
[1402]1803!--    Output elapsed simulated time in form of a progress bar on stdout
1804       IF ( myid == 0 )  CALL output_progress_bar
1805
[1]1806       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1807
[667]1808
[1]1809    ENDDO   ! time loop
[3448]1810
[3658]1811#ifdef _OPENACC
1812    CALL exit_surface_arrays
1813#endif
[3634]1814!$ACC END DATA
1815!$ACC END DATA
1816!$ACC END DATA
1817!$ACC END DATA
1818!$ACC END DATA
1819!$ACC END DATA
1820!$ACC END DATA
1821
[3347]1822!
[2365]1823!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
1824    IF ( vnest_init )  CALL vnest_deallocate
1825
[1402]1826    IF ( myid == 0 )  CALL finish_progress_bar
1827
[1]1828#if defined( __dvrp_graphics )
1829    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
1830#endif
1831
[1402]1832    CALL location_message( 'finished time-stepping', .TRUE. )
[1384]1833
[1]1834 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.