source: palm/trunk/SOURCE/time_integration.f90 @ 3684

Last change on this file since 3684 was 3684, checked in by knoop, 3 years ago

Enabled module_interface_actions in time_integration and prognostic_equations

  • Property svn:keywords set to Id
File size: 70.9 KB
Line 
1!> @file time_integration.f90
2!------------------------------------------------------------------------------!
3! This file is part of the PALM model system.
4!
5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2019 Leibniz Universitaet Hannover
18!------------------------------------------------------------------------------!
19!
20! Current revisions:
21! ------------------
22!
23!
24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 3684 2019-01-20 20:20:58Z knoop $
27! Rename subroutines for surface-data output
28!
29! 3647 2019-01-02 14:10:44Z kanani
30! Bugfix: add time_since_reference_point to IF clause for data_output calls
31! (otherwise skip_time_* values don't come into affect with dt_do* = 0.0).
32! Clean up indoor_model and biometeorology model call.
33!
34! 3646 2018-12-28 17:58:49Z kanani
35! Bugfix: use time_since_reference_point instead of simulated_time where
36! required (relevant when using wall/soil spinup)
37!
38! 3634 2018-12-18 12:31:28Z knoop
39! OpenACC port for SPEC
40!
41! 3597 2018-12-04 08:40:18Z maronga
42! Removed call to calculation of near air (10 cm) potential temperature (now in
43! surface layer fluxes)
44!
45! 3589 2018-11-30 15:09:51Z suehring
46! Move the control parameter "salsa" from salsa_mod to control_parameters
47! (M. Kurppa)
48!
49! 3582 2018-11-29 19:16:36Z suehring
50! dom_dwd_user, Schrempf:
51! Changes due to merge of uv exposure model into biometeorology_mod.
52!
53! 3525 2018-11-14 16:06:14Z kanani
54! Changes related to clean-up of biometeorology (dom_dwd_user)
55!
56! 3524 2018-11-14 13:36:44Z raasch
57! unused variables removed
58!
59! 3484 2018-11-02 14:41:25Z hellstea
60! pmci_ensure_nest_mass_conservation is premanently removed
61!
62! 3473 2018-10-30 20:50:15Z suehring
63! new module for virtual measurements introduced
64!
65! 3472 2018-10-30 20:43:50Z suehring
66! Add indoor model (kanani, srissman, tlang)
67!
68! 3467 2018-10-30 19:05:21Z suehring
69! Implementation of a new aerosol module salsa.
70!
71! 3448 2018-10-29 18:14:31Z kanani
72! Add biometeorology
73!
74! 3421 2018-10-24 18:39:32Z gronemeier
75! Surface data output
76!
77! 3418 2018-10-24 16:07:39Z kanani
78! call to material_heat_model now with check if spinup runs (rvtils)
79!
80! 3378 2018-10-19 12:34:59Z kanani
81! merge from radiation branch (r3362) into trunk
82! (moh.hefny):
83! Bugfix in the if statement to call radiation_interaction
84!
85! 3347 2018-10-15 14:21:08Z suehring
86! - offline nesting separated from large-scale forcing module
87! - changes for synthetic turbulence generator
88!
89! 3343 2018-10-15 10:38:52Z suehring
90! - Formatting, clean-up, comments (kanani)
91! - Added CALL to chem_emissions_setup (Russo)
92! - Code added for decycling chemistry (basit)
93!
94! 3294 2018-10-01 02:37:10Z raasch
95! changes concerning modularization of ocean option
96!
97! 3274 2018-09-24 15:42:55Z knoop
98! Modularization of all bulk cloud physics code components
99!
100! 3241 2018-09-12 15:02:00Z raasch
101! unused variables removed
102!
103! 3198 2018-08-15 09:23:10Z sward
104! Added multi_agent_system_end; defined start time for MAS relative to
105! time_since_reference_point
106!
107! 3183 2018-07-27 14:25:55Z suehring
108! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
109! Rename subroutines and variables in COSMO nesting mode
110!
111! 3182 2018-07-27 13:36:03Z suehring
112! Added multi agent system
113!
114! 3042 2018-05-25 10:44:37Z schwenkel
115! Changed the name specific humidity to mixing ratio
116!
117! 3040 2018-05-25 10:22:08Z schwenkel
118! Fixed bug in IF statement
119! Ensure that the time when calling the radiation to be the time step of the
120! pre-calculated time when first calculate the positions of the sun
121!
122! 3004 2018-04-27 12:33:25Z Giersch
123! First call of flow_statistics has been removed. It is already called in
124! run_control itself
125!
126! 2984 2018-04-18 11:51:30Z hellstea
127! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
128! as seemingly unnecessary.
129!
130! 2941 2018-04-03 11:54:58Z kanani
131! Deduct spinup_time from RUN_CONTROL output of main 3d run
132! (use time_since_reference_point instead of simulated_time)
133!
134! 2938 2018-03-27 15:52:42Z suehring
135! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
136!
137! 2936 2018-03-27 14:49:27Z suehring
138! Little formatting adjustment.
139!
140! 2817 2018-02-19 16:32:21Z knoop
141! Preliminary gust module interface implemented
142!
143! 2801 2018-02-14 16:01:55Z thiele
144! Changed lpm from subroutine to module.
145! Introduce particle transfer in nested models.
146!
147! 2776 2018-01-31 10:44:42Z Giersch
148! Variable use_synthetic_turbulence_generator has been abbreviated
149!
150! 2773 2018-01-30 14:12:54Z suehring
151! - Nesting for chemical species
152!
153! 2766 2018-01-22 17:17:47Z kanani
154! Removed preprocessor directive __chem
155!
156! 2718 2018-01-02 08:49:38Z maronga
157! Corrected "Former revisions" section
158!
159! 2696 2017-12-14 17:12:51Z kanani
160! - Change in file header (GPL part)
161! - Implementation of uv exposure model (FK)
162! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
163! - renamed diffusivities to tcm_diffusivities (TG)
164! - implement prognostic equation for diss (TG)
165! - Moved/commented CALL to chem_emissions (FK)
166! - Added CALL to chem_emissions (FK)
167! - Implementation of chemistry module (FK)
168! - Calls for setting boundary conditions in USM and LSM (MS)
169! - Large-scale forcing with larger-scale models implemented (MS)
170! - Rename usm_radiation into radiation_interactions; merge with branch
171!   radiation (MS)
172! - added call for usm_green_heat_model for green building surfaces (RvT)
173! - added call for usm_temperature_near_surface for use in indoor model (RvT)
174!
175! 2617 2017-11-16 12:47:24Z suehring
176! Bugfix, assure that the reference state does not become zero.
177!
178! 2563 2017-10-19 15:36:10Z Giersch
179! Variable wind_turbine moved to module control_parameters
180!
181! 2365 2017-08-21 14:59:59Z kanani
182! Vertical grid nesting implemented (SadiqHuq)
183!
184! 2320 2017-07-21 12:47:43Z suehring
185! Set bottom boundary conditions after nesting interpolation and anterpolation
186!
187! 2299 2017-06-29 10:14:38Z maronga
188! Call of soil model adjusted
189!
190! 2292 2017-06-20 09:51:42Z schwenkel
191! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
192! includes two more prognostic equations for cloud drop concentration (nc) 
193! and cloud water content (qc).
194!
195! 2271 2017-06-09 12:34:55Z sward
196! Start timestep message changed
197!
198! 2259 2017-06-08 09:09:11Z gronemeier
199! Implemented synthetic turbulence generator
200!
201! 2233 2017-05-30 18:08:54Z suehring
202!
203! 2232 2017-05-30 17:47:52Z suehring
204! Adjustments to new topography and surface concept
205! Modify passed parameters for disturb_field
206!
207! 2178 2017-03-17 11:07:39Z hellstea
208! Setting perturbations at all times near inflow boundary is removed
209! in case of nested boundaries
210!
211! 2174 2017-03-13 08:18:57Z maronga
212! Added support for nesting with cloud microphysics
213!
214! 2118 2017-01-17 16:38:49Z raasch
215! OpenACC directives and related code removed
216!
217! 2050 2016-11-08 15:00:55Z gronemeier
218! Implement turbulent outflow condition
219!
220! 2031 2016-10-21 15:11:58Z knoop
221! renamed variable rho to rho_ocean
222!
223! 2011 2016-09-19 17:29:57Z kanani
224! Flag urban_surface is now defined in module control_parameters,
225! removed commented CALLs of global_min_max.
226!
227! 2007 2016-08-24 15:47:17Z kanani
228! Added CALLs for new urban surface model
229!
230! 2000 2016-08-20 18:09:15Z knoop
231! Forced header and separation lines into 80 columns
232!
233! 1976 2016-07-27 13:28:04Z maronga
234! Simplified calls to radiation model
235!
236! 1960 2016-07-12 16:34:24Z suehring
237! Separate humidity and passive scalar
238!
239! 1957 2016-07-07 10:43:48Z suehring
240! flight module added
241!
242! 1919 2016-05-27 14:51:23Z raasch
243! Initial version of purely vertical nesting introduced.
244!
245! 1918 2016-05-27 14:35:57Z raasch
246! determination of time step moved to the end of the time step loop,
247! the first time step is now always calculated before the time step loop (i.e.
248! also in case of restart runs)
249!
250! 1914 2016-05-26 14:44:07Z witha
251! Added call for wind turbine model
252!
253! 1878 2016-04-19 12:30:36Z hellstea
254! Synchronization for nested runs rewritten
255!
256! 1853 2016-04-11 09:00:35Z maronga
257! Adjusted for use with radiation_scheme = constant
258!
259! 1849 2016-04-08 11:33:18Z hoffmann
260! Adapted for modularization of microphysics
261!
262! 1833 2016-04-07 14:23:03Z raasch
263! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
264!
265! 1831 2016-04-07 13:15:51Z hoffmann
266! turbulence renamed collision_turbulence
267!
268! 1822 2016-04-07 07:49:42Z hoffmann
269! icloud_scheme replaced by microphysics_*
270!
271! 1808 2016-04-05 19:44:00Z raasch
272! output message in case unscheduled radiation calls removed
273!
274! 1797 2016-03-21 16:50:28Z raasch
275! introduction of different datatransfer modes
276!
277! 1791 2016-03-11 10:41:25Z raasch
278! call of pmci_update_new removed
279!
280! 1786 2016-03-08 05:49:27Z raasch
281! +module spectrum
282!
283! 1783 2016-03-06 18:36:17Z raasch
284! switch back of netcdf data format for mask output moved to the mask output
285! routine
286!
287! 1781 2016-03-03 15:12:23Z raasch
288! some pmc calls removed at the beginning (before timeloop),
289! pmc initialization moved to the main program
290!
291! 1764 2016-02-28 12:45:19Z raasch
292! PMC_ACTIVE flags removed,
293! bugfix: nest synchronization after first call of timestep
294!
295! 1762 2016-02-25 12:31:13Z hellstea
296! Introduction of nested domain feature
297!
298! 1736 2015-12-04 08:56:33Z raasch
299! no perturbations added to total domain if energy limit has been set zero
300!
301! 1691 2015-10-26 16:17:44Z maronga
302! Added option for spin-ups without land surface and radiation models. Moved calls
303! for radiation and lan surface schemes.
304!
305! 1682 2015-10-07 23:56:08Z knoop
306! Code annotations made doxygen readable
307!
308! 1671 2015-09-25 03:29:37Z raasch
309! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
310! for particles
311!
312! 1585 2015-04-30 07:05:52Z maronga
313! Moved call of radiation scheme. Added support for RRTM
314!
315! 1551 2015-03-03 14:18:16Z maronga
316! Added interface for different radiation schemes.
317!
318! 1496 2014-12-02 17:25:50Z maronga
319! Added calls for the land surface model and radiation scheme
320!
321! 1402 2014-05-09 14:25:13Z raasch
322! location messages modified
323!
324! 1384 2014-05-02 14:31:06Z raasch
325! location messages added
326!
327! 1380 2014-04-28 12:40:45Z heinze
328! CALL of nudge_ref added
329! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
330!
331! 1365 2014-04-22 15:03:56Z boeske
332! Reset sums_ls_l to zero at each timestep
333! +sums_ls_l
334! Calculation of reference state (previously in subroutine calc_mean_profile)
335
336! 1342 2014-03-26 17:04:47Z kanani
337! REAL constants defined as wp-kind
338!
339! 1320 2014-03-20 08:40:49Z raasch
340! ONLY-attribute added to USE-statements,
341! kind-parameters added to all INTEGER and REAL declaration statements,
342! kinds are defined in new module kinds,
343! old module precision_kind is removed,
344! revision history before 2012 removed,
345! comment fields (!:) to be used for variable explanations added to
346! all variable declaration statements
347! 1318 2014-03-17 13:35:16Z raasch
348! module interfaces removed
349!
350! 1308 2014-03-13 14:58:42Z fricke
351! +netcdf_data_format_save
352! For masked data, parallel netcdf output is not tested so far, hence
353! netcdf_data_format is switched back to non-paralell output.
354!
355! 1276 2014-01-15 13:40:41Z heinze
356! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
357!
358! 1257 2013-11-08 15:18:40Z raasch
359! acc-update-host directive for timestep removed
360!
361! 1241 2013-10-30 11:36:58Z heinze
362! Generalize calc_mean_profile for wider use
363! Determine shf and qsws in dependence on data from LSF_DATA
364! Determine ug and vg in dependence on data from LSF_DATA
365! 1221 2013-09-10 08:59:13Z raasch
366! host update of arrays before timestep is called
367!
368! 1179 2013-06-14 05:57:58Z raasch
369! mean profiles for reference state are only calculated if required,
370! small bugfix for background communication
371!
372! 1171 2013-05-30 11:27:45Z raasch
373! split of prognostic_equations deactivated (comment lines), for the time being
374!
375! 1128 2013-04-12 06:19:32Z raasch
376! asynchronous transfer of ghost point data realized for acc-optimized version:
377! prognostic_equations are first called two times for those points required for
378! the left-right and north-south exchange, respectively, and then for the
379! remaining points,
380! those parts requiring global communication moved from prognostic_equations to
381! here
382!
383! 1115 2013-03-26 18:16:16Z hoffmann
384! calculation of qr and nr is restricted to precipitation
385!
386! 1113 2013-03-10 02:48:14Z raasch
387! GPU-porting of boundary conditions,
388! openACC directives updated
389! formal parameter removed from routine boundary_conds
390!
391! 1111 2013-03-08 23:54:10Z raasch
392! +internal timestep counter for cpu statistics added,
393! openACC directives updated
394!
395! 1092 2013-02-02 11:24:22Z raasch
396! unused variables removed
397!
398! 1065 2012-11-22 17:42:36Z hoffmann
399! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
400!
401! 1053 2012-11-13 17:11:03Z hoffmann
402! exchange of ghost points for nr, qr added
403!
404! 1036 2012-10-22 13:43:42Z raasch
405! code put under GPL (PALM 3.9)
406!
407! 1019 2012-09-28 06:46:45Z raasch
408! non-optimized version of prognostic_equations removed
409!
410! 1015 2012-09-27 09:23:24Z raasch
411! +call of prognostic_equations_acc
412!
413! 1001 2012-09-13 14:08:46Z raasch
414! all actions concerning leapfrog- and upstream-spline-scheme removed
415!
416! 849 2012-03-15 10:35:09Z raasch
417! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
418!
419! 825 2012-02-19 03:03:44Z raasch
420! wang_collision_kernel renamed wang_kernel
421!
422! Revision 1.1  1997/08/11 06:19:04  raasch
423! Initial revision
424!
425!
426! Description:
427! ------------
428!> Integration in time of the model equations, statistical analysis and graphic
429!> output
430!------------------------------------------------------------------------------!
431 SUBROUTINE time_integration
432 
433
434    USE advec_ws,                                                              &
435        ONLY:  ws_statistics
436
437    USE arrays_3d,                                                             &
438        ONLY:  d, diss, diss_p, ddzu, dd2zu, ddzw, drho_air, drho_air_zw, dzu, &
439               dzw, e, e_p, kh, km, nc, nc_p, nr, nr_p, p, prho, pt, pt_p,     &
440               pt_init, ptdf_x, ptdf_y, q_init, q, qc, qc_p, ql, ql_c, ql_v,   &
441               ql_vp, qr, qr_p, q_p, rdf, rdf_sc, ref_state, rho_air,          &
442               rho_air_zw, rho_ocean, s, s_p, sa_p, te_m, tend, tpt_m, tu_m,   &
443               tv_m, tw_m, u, ug, u_init, u_p, u_stokes_zu, v, vg, v_init, vpt,&
444               v_p, v_stokes_zu, w, w_p, zu, heatflux_output_conversion,       &
445               momentumflux_output_conversion
446
447    USE biometeorology_mod,                                                    &
448        ONLY:  bio_calculate_thermal_index_maps, time_bio_results,             &
449               thermal_comfort, uvem_calc_exposure, uv_exposure
450
451    USE bulk_cloud_model_mod,                                                  &
452        ONLY: bulk_cloud_model, calc_liquid_water_content,                     &
453              collision_turbulence, microphysics_morrison, microphysics_seifert
454
455    USE calc_mean_profile_mod,                                                 &
456        ONLY:  calc_mean_profile
457
458    USE chem_emissions_mod,                                                    &
459        ONLY:  chem_emissions_setup
460
461    USE chem_modules,                                                          &
462        ONLY:  bc_cs_t_val, cs_name, do_emis, nspec, nspec_out
463
464    USE chemistry_model_mod,                                                   &
465        ONLY:  chem_boundary_conds, chem_species
466
467    USE control_parameters,                                                    &
468        ONLY:  advected_distance_x, advected_distance_y, air_chemistry,        &
469               average_count_3d, averaging_interval, averaging_interval_pr,    &
470               bc_lr_cyc, bc_ns_cyc, bc_pt_t_val, bc_q_t_val, biometeorology,  &
471               call_psolver_at_all_substeps,  child_domain, cloud_droplets,    &
472               constant_flux_layer, constant_heatflux,                         &
473               create_disturbances, dopr_n, constant_diffusion, coupling_mode, &
474               coupling_start_time, current_timestep_number,                   &
475               disturbance_created, disturbance_energy_limit, dist_range,      &
476               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr,       &
477               dt_coupling, dt_data_output_av, dt_disturb, dt_do2d_xy,         &
478               dt_do2d_xz, dt_do2d_yz, dt_do3d, dt_domask,dt_dopts, dt_dopr,   &
479               dt_dopr_listing, dt_dots, dt_dvrp, dt_run_control, end_time,    &
480               first_call_lpm, first_call_mas, galilei_transformation,         &
481               humidity, indoor_model, intermediate_timestep_count,            &
482               intermediate_timestep_count_max,                                &
483               land_surface, large_scale_forcing,                              &
484               loop_optimization, lsf_surf, lsf_vert, masks, mid,              &
485               multi_agent_system_end, multi_agent_system_start,               &
486               nesting_offline, neutral, nr_timesteps_this_run, nudging,       &
487               ocean_mode, passive_scalar, pt_reference,                       &
488               pt_slope_offset, random_heatflux, rans_mode,                    &
489               rans_tke_e, run_coupled, salsa,                                 &
490               simulated_time, simulated_time_chr,                             &
491               skip_time_do2d_xy, skip_time_do2d_xz, skip_time_do2d_yz,        &
492               skip_time_do3d, skip_time_domask, skip_time_dopr,               &
493               skip_time_data_output_av, sloping_surface, stop_dt,             &
494               surface_output, terminate_coupled, terminate_run,               &
495               timestep_scheme,                                                &
496               time_coupling, time_do2d_xy, time_do2d_xz, time_do2d_yz,        &
497               time_do3d, time_domask, time_dopr, time_dopr_av,                &
498               time_dopr_listing, time_dopts, time_dosp, time_dosp_av,         &
499               time_dots, time_do_av, time_do_sla, time_disturb, time_dvrp,    &
500               time_run_control, time_since_reference_point, tsc,              &
501               turbulent_inflow, turbulent_outflow, urban_surface,             &
502               use_initial_profile_as_reference,                               &
503               use_single_reference_value, u_gtrans, v_gtrans,                 &
504               virtual_flight, virtual_measurement, wind_turbine,              &
505               ws_scheme_mom, ws_scheme_sca
506
507    USE cpulog,                                                                &
508        ONLY:  cpu_log, log_point, log_point_s
509
510    USE date_and_time_mod,                                                     &
511        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
512
513    USE flight_mod,                                                            &
514        ONLY:  flight_measurement
515
516    USE indices,                                                               &
517        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt, &
518               nz, nzb_max, advc_flags_1, advc_flags_2, wall_flags_0
519
520    USE indoor_model_mod,                                                      &
521        ONLY:  dt_indoor, im_main_heatcool, skip_time_do_indoor, time_indoor
522
523    USE interaction_droplets_ptq_mod,                                          &
524        ONLY:  interaction_droplets_ptq
525
526    USE interfaces
527
528    USE kinds
529
530    USE land_surface_model_mod,                                                &
531        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model,     &
532               skip_time_do_lsm
533
534    USE lsf_nudging_mod,                                                       &
535        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
536
537    USE module_interface,                                                      &
538        ONLY:  module_interface_actions
539
540    USE multi_agent_system_mod,                                                &
541        ONLY:  agents_active, multi_agent_system
542
543    USE nesting_offl_mod,                                                      &
544        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
545       
546    USE netcdf_data_input_mod,                                                 &
547        ONLY:  chem_emis, chem_emis_att, nest_offl,                            &
548               netcdf_data_input_offline_nesting
549
550    USE ocean_mod,                                                             &
551        ONLY:  prho_reference
552
553    USE particle_attributes,                                                   &
554        ONLY:  particle_advection, particle_advection_start,                   &
555               use_sgs_for_particles, wang_kernel
556
557    USE pegrid
558
559    USE pmc_interface,                                                         &
560        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans,  &
561               pmci_synchronize
562
563    USE progress_bar,                                                          &
564        ONLY:  finish_progress_bar, output_progress_bar
565
566    USE prognostic_equations_mod,                                              &
567        ONLY:  prognostic_equations_cache, prognostic_equations_vector
568
569    USE radiation_model_mod,                                                   &
570        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,&
571              radiation_interaction, radiation_interactions,                   &
572              skip_time_do_radiation, time_radiation
573         
574    USE salsa_mod,                                                             &
575        ONLY: aerosol_number, aerosol_mass, nbins, ncc_tot, ngast,             &
576              salsa_boundary_conds, salsa_gas, salsa_gases_from_chem,          &
577              skip_time_do_salsa                     
578   
579    USE salsa_util_mod,                                                        &
580           ONLY:  sums_salsa_ws_l     
581
582    USE spectra_mod,                                                           &
583        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp,  &
584              skip_time_dosp
585
586    USE statistics,                                                            &
587        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l,                &
588               rmask, statistic_regions, weight_substep, sums_l, sums_l_l,     &
589               sums_us2_ws_l, sums_wsus_ws_l, sums_vs2_ws_l, sums_wsvs_ws_l,   &
590               sums_ws2_ws_l, sums_wspts_ws_l, sums_wsqs_ws_l, sums_wssas_ws_l,&
591               sums_wsqcs_ws_l, sums_wsqrs_ws_l, sums_wsncs_ws_l,              &
592               sums_wsnrs_ws_l, sums_wsss_ws_l
593
594    USE surface_layer_fluxes_mod,                                              &
595        ONLY:  surface_layer_fluxes
596
597    USE surface_mod,                                                           &
598        ONLY:  bc_h, surf_def_h, surf_lsm_h, surf_usm_h,                       &
599               enter_surface_arrays, exit_surface_arrays
600
601    USE surface_data_output_mod,                                               &
602        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf,         &
603               dt_dosurf_av, surface_data_output,                              &
604               surface_data_output_averaging, skip_time_dosurf,                &
605               skip_time_dosurf_av, time_dosurf, time_dosurf_av
606
607    USE turbulence_closure_mod,                                                &
608        ONLY:  tcm_diffusivities, production_e_init
609
610    USE urban_surface_mod,                                                     &
611        ONLY:  usm_boundary_condition, usm_material_heat_model,                &
612               usm_material_model,                                             &
613               usm_surface_energy_balance, usm_green_heat_model
614
615    USE synthetic_turbulence_generator_mod,                                    &
616        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence,      &
617               stg_adjust, stg_main, time_stg_adjust, time_stg_call,           &
618               use_syn_turb_gen
619
620
621    USE wind_turbine_model_mod,                                                &
622        ONLY:  wtm_forces
623
624    USE lpm_mod,                                                               &
625        ONLY:  lpm
626
627    USE vertical_nesting_mod,                                                  &
628        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e,                &
629               vnest_boundary_conds, vnest_boundary_conds_khkm,                & 
630               vnest_deallocate, vnest_init, vnest_init_fine,                  &
631               vnest_start_time
632               
633    USE virtual_measurement_mod,                                               &
634        ONLY:  vm_sampling, vm_time_start
635
636    IMPLICIT NONE
637
638    CHARACTER (LEN=9) ::  time_to_string   !<
639   
640    INTEGER(iwp)      ::  b !< index for aerosol size bins   
641    INTEGER(iwp)      ::  c !< index for chemical compounds in aerosol size bins
642    INTEGER(iwp)      ::  g !< index for gaseous compounds
643    INTEGER(iwp)      ::  lsp
644    INTEGER(iwp)      ::  lsp_usr   !<
645    INTEGER(iwp)      ::  n         !< loop counter for chemistry species
646
647    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
648                            !< steering of run control output interval
649    REAL(wp) ::  time_since_reference_point_save  !< original value of
650                                                  !< time_since_reference_point
651
652
653! Copy data from arrays_3d
654!$ACC DATA &
655!$ACC COPY(d(nzb+1:nzt,nys:nyn,nxl:nxr)) &
656!$ACC COPY(e(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
657!$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
658!$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
659!$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
660!$ACC COPY(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
661!$ACC COPY(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
662!$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
663!$ACC COPY(pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
664
665!$ACC DATA &
666!$ACC COPY(e_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
667!$ACC COPY(u_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
668!$ACC COPY(v_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
669!$ACC COPY(w_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
670!$ACC COPY(pt_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
671!$ACC COPY(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
672!$ACC COPY(te_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
673!$ACC COPY(tu_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
674!$ACC COPY(tv_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
675!$ACC COPY(tw_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
676!$ACC COPY(tpt_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
677
678!$ACC DATA &
679!$ACC COPYIN(rho_air(nzb:nzt+1), drho_air(nzb:nzt+1)) &
680!$ACC COPYIN(rho_air_zw(nzb:nzt+1), drho_air_zw(nzb:nzt+1)) &
681!$ACC COPYIN(zu(nzb:nzt+1)) &
682!$ACC COPYIN(dzu(1:nzt+1), dzw(1:nzt+1)) &
683!$ACC COPYIN(ddzu(1:nzt+1), dd2zu(1:nzt)) &
684!$ACC COPYIN(ddzw(1:nzt+1)) &
685!$ACC COPYIN(heatflux_output_conversion(nzb:nzt+1)) &
686!$ACC COPYIN(momentumflux_output_conversion(nzb:nzt+1)) &
687!$ACC COPYIN(rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt)) &
688!$ACC COPYIN(ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng)) &
689!$ACC COPYIN(ref_state(0:nz+1)) &
690!$ACC COPYIN(u_init(0:nz+1), v_init(0:nz+1)) &
691!$ACC COPYIN(u_stokes_zu(nzb:nzt+1), v_stokes_zu(nzb:nzt+1)) &
692!$ACC COPYIN(pt_init(0:nz+1)) &
693!$ACC COPYIN(ug(0:nz+1), vg(0:nz+1))
694
695! Copy data from control_parameters
696!$ACC DATA &
697!$ACC COPYIN(tsc(1:5))
698
699! Copy data from indices
700!$ACC DATA &
701!$ACC COPYIN(advc_flags_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
702!$ACC COPYIN(advc_flags_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
703!$ACC COPYIN(wall_flags_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
704
705! Copy data from surface_mod
706!$ACC DATA &
707!$ACC COPYIN(bc_h(0:1)) &
708!$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) &
709!$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) &
710!$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) &
711!$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) &
712!$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) &
713!$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns))
714
715! Copy data from statistics
716!$ACC DATA &
717!$ACC COPYIN(hom(0:nz+1,1:2,1:4,0)) &
718!$ACC COPYIN(rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions)) &
719!$ACC COPYIN(weight_substep(1:intermediate_timestep_count_max)) &
720!$ACC COPY(sums_l(nzb:nzt+1,1:pr_palm,0)) &
721!$ACC COPY(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
722!$ACC COPY(sums_us2_ws_l(nzb:nzt+1,0)) &
723!$ACC COPY(sums_wsus_ws_l(nzb:nzt+1,0)) &
724!$ACC COPY(sums_vs2_ws_l(nzb:nzt+1,0)) &
725!$ACC COPY(sums_wsvs_ws_l(nzb:nzt+1,0)) &
726!$ACC COPY(sums_ws2_ws_l(nzb:nzt+1,0)) &
727!$ACC COPY(sums_wspts_ws_l(nzb:nzt+1,0)) &
728!$ACC COPY(sums_wssas_ws_l(nzb:nzt+1,0)) &
729!$ACC COPY(sums_wsqs_ws_l(nzb:nzt+1,0)) &
730!$ACC COPY(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
731!$ACC COPY(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
732!$ACC COPY(sums_wsncs_ws_l(nzb:nzt+1,0)) &
733!$ACC COPY(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
734!$ACC COPY(sums_wsss_ws_l(nzb:nzt+1,0)) &
735!$ACC COPY(sums_salsa_ws_l(nzb:nzt+1,0))
736
737#ifdef _OPENACC
738    CALL enter_surface_arrays
739#endif
740
741!
742!-- At beginning determine the first time step
743    CALL timestep
744!
745!-- Synchronize the timestep in case of nested run.
746    IF ( nested_run )  THEN
747!
748!--    Synchronization by unifying the time step.
749!--    Global minimum of all time-steps is used for all.
750       CALL pmci_synchronize
751    ENDIF
752
753!
754!-- Determine and print out the run control quantities before the first time
755!-- step of this run. For the initial run, some statistics (e.g. divergence)
756!-- need to be determined first --> CALL flow_statistics at the beginning of
757!-- run_control
758    CALL run_control
759!
760!-- Data exchange between coupled models in case that a call has been omitted
761!-- at the end of the previous run of a job chain.
762    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled .AND. .NOT. vnested)  THEN
763!
764!--    In case of model termination initiated by the local model the coupler
765!--    must not be called because this would again cause an MPI hang.
766       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
767          CALL surface_coupler
768          time_coupling = time_coupling - dt_coupling
769       ENDDO
770       IF (time_coupling == 0.0_wp  .AND.                                      &
771           time_since_reference_point < dt_coupling )                          &
772       THEN
773          time_coupling = time_since_reference_point
774       ENDIF
775    ENDIF
776
777#if defined( __dvrp_graphics )
778!
779!-- Time measurement with dvrp software 
780    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
781#endif
782
783    CALL location_message( 'starting timestep-sequence', .TRUE. )
784!
785!-- Start of the time loop
786    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. &
787                .NOT. terminate_run )
788
789       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
790!
791!--    Vertical nesting: initialize fine grid
792       IF ( vnested ) THEN
793          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
794             CALL cpu_log( log_point(80), 'vnest_init', 'start' )
795             CALL vnest_init_fine
796             vnest_init = .TRUE.
797             CALL cpu_log( log_point(80), 'vnest_init', 'stop' )
798          ENDIF
799       ENDIF
800!
801!--    Determine ug, vg and w_subs in dependence on data from external file
802!--    LSF_DATA
803       IF ( large_scale_forcing .AND. lsf_vert )  THEN
804           CALL ls_forcing_vert ( simulated_time )
805           sums_ls_l = 0.0_wp
806       ENDIF
807
808!
809!--    Set pt_init and q_init to the current profiles taken from
810!--    NUDGING_DATA
811       IF ( nudging )  THEN
812           CALL nudge_ref ( simulated_time )
813!
814!--        Store temperature gradient at the top boundary for possible Neumann
815!--        boundary condition
816           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
817           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
818           IF ( air_chemistry )  THEN
819              DO  lsp = 1, nspec
820                 bc_cs_t_val = (  chem_species(lsp)%conc_pr_init(nzt+1)       &
821                                - chem_species(lsp)%conc_pr_init(nzt) )       &
822                               / dzu(nzt+1)
823              ENDDO
824           ENDIF
825       ENDIF
826!
827!--    If forcing by larger-scale models is applied, check if new data
828!--    at domain boundaries need to be read.
829       IF ( nesting_offline )  THEN
830          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point )&
831             CALL netcdf_data_input_offline_nesting
832       ENDIF
833
834!
835!--    Execute alle other module actions routunes
836       CALL module_interface_actions( 'before_timestep' )
837
838!
839!--    Calculate forces by wind turbines
840       IF ( wind_turbine )  THEN
841
842          CALL cpu_log( log_point(55), 'wind_turbine', 'start' )
843
844          CALL wtm_forces
845
846          CALL cpu_log( log_point(55), 'wind_turbine', 'stop' )
847
848       ENDIF   
849       
850!
851!--    Start of intermediate step loop
852       intermediate_timestep_count = 0
853       DO  WHILE ( intermediate_timestep_count < &
854                   intermediate_timestep_count_max )
855
856          intermediate_timestep_count = intermediate_timestep_count + 1
857
858!
859!--       Set the steering factors for the prognostic equations which depend
860!--       on the timestep scheme
861          CALL timestep_scheme_steering
862
863!
864!--       Calculate those variables needed in the tendency terms which need
865!--       global communication
866          IF ( .NOT. use_single_reference_value  .AND. &
867               .NOT. use_initial_profile_as_reference )  THEN
868!
869!--          Horizontally averaged profiles to be used as reference state in
870!--          buoyancy terms (WARNING: only the respective last call of
871!--          calc_mean_profile defines the reference state!)
872             IF ( .NOT. neutral )  THEN
873                CALL calc_mean_profile( pt, 4 )
874                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
875             ENDIF
876             IF ( ocean_mode )  THEN
877                CALL calc_mean_profile( rho_ocean, 64 )
878                ref_state(:)  = hom(:,1,64,0)
879             ENDIF
880             IF ( humidity )  THEN
881                CALL calc_mean_profile( vpt, 44 )
882                ref_state(:)  = hom(:,1,44,0)
883             ENDIF
884!
885!--          Assure that ref_state does not become zero at any level
886!--          ( might be the case if a vertical level is completely occupied
887!--            with topography ).
888             ref_state = MERGE( MAXVAL(ref_state), ref_state,                  &
889                                ref_state == 0.0_wp )
890          ENDIF
891
892          IF ( .NOT. constant_diffusion )  CALL production_e_init
893          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  &
894               intermediate_timestep_count == 1 )  CALL ws_statistics
895!
896!--       In case of nudging calculate current nudging time scale and horizontal
897!--       means of u, v, pt and q
898          IF ( nudging )  THEN
899             CALL calc_tnudge( simulated_time )
900             CALL calc_mean_profile( u, 1 )
901             CALL calc_mean_profile( v, 2 )
902             CALL calc_mean_profile( pt, 4 )
903             CALL calc_mean_profile( q, 41 )
904          ENDIF
905
906!
907!--       Solve the prognostic equations. A fast cache optimized version with
908!--       only one single loop is used in case of Piascek-Williams advection
909!--       scheme. NEC vector machines use a different version, because
910!--       in the other versions a good vectorization is prohibited due to
911!--       inlining problems.
912          IF ( loop_optimization == 'cache' )  THEN
913             CALL prognostic_equations_cache
914          ELSEIF ( loop_optimization == 'vector' )  THEN
915             CALL prognostic_equations_vector
916          ENDIF
917
918!
919!--       Particle transport/physics with the Lagrangian particle model
920!--       (only once during intermediate steps, because it uses an Euler-step)
921!--       ### particle model should be moved before prognostic_equations, in order
922!--       to regard droplet interactions directly
923          IF ( particle_advection  .AND.                         &
924               time_since_reference_point >= particle_advection_start  .AND. &
925               intermediate_timestep_count == 1 )  THEN
926             CALL lpm
927             first_call_lpm = .FALSE.
928          ENDIF
929
930!
931!--       Interaction of droplets with temperature and mixing ratio.
932!--       Droplet condensation and evaporation is calculated within
933!--       advec_particles.
934          IF ( cloud_droplets  .AND.  &
935               intermediate_timestep_count == intermediate_timestep_count_max )&
936          THEN
937             CALL interaction_droplets_ptq
938          ENDIF
939
940!
941!--       Movement of agents in multi agent system
942          IF ( agents_active  .AND.                                            &
943               time_since_reference_point >= multi_agent_system_start  .AND.   &
944               time_since_reference_point <= multi_agent_system_end    .AND.   &
945               intermediate_timestep_count == 1 )  THEN
946             CALL multi_agent_system
947             first_call_mas = .FALSE.
948          ENDIF
949
950!
951!--       Exchange of ghost points (lateral boundary conditions)
952          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
953
954          CALL exchange_horiz( u_p, nbgp )
955          CALL exchange_horiz( v_p, nbgp )
956          CALL exchange_horiz( w_p, nbgp )
957          CALL exchange_horiz( pt_p, nbgp )
958          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
959          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence       &
960               .OR.  use_sgs_for_particles )  THEN
961             IF ( rans_tke_e )  THEN
962                CALL exchange_horiz( diss_p, nbgp )
963             ELSE
964                CALL exchange_horiz( diss, nbgp )
965             ENDIF
966          ENDIF
967          IF ( ocean_mode )  THEN
968             CALL exchange_horiz( sa_p, nbgp )
969             CALL exchange_horiz( rho_ocean, nbgp )
970             CALL exchange_horiz( prho, nbgp )
971          ENDIF
972          IF ( humidity )  THEN
973             CALL exchange_horiz( q_p, nbgp )
974             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
975                CALL exchange_horiz( qc_p, nbgp )
976                CALL exchange_horiz( nc_p, nbgp )
977             ENDIF
978             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
979                CALL exchange_horiz( qr_p, nbgp )
980                CALL exchange_horiz( nr_p, nbgp )
981             ENDIF
982          ENDIF
983          IF ( cloud_droplets )  THEN
984             CALL exchange_horiz( ql, nbgp )
985             CALL exchange_horiz( ql_c, nbgp )
986             CALL exchange_horiz( ql_v, nbgp )
987             CALL exchange_horiz( ql_vp, nbgp )
988          ENDIF
989          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
990          IF ( air_chemistry )  THEN
991             DO  lsp = 1, nspec
992                CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp )
993!
994!--             kanani: Push chem_boundary_conds after CALL boundary_conds
995                lsp_usr = 1
996                DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
997                   IF ( TRIM(chem_species(lsp)%name) == TRIM(cs_name(lsp_usr)) )  THEN
998                      CALL chem_boundary_conds( chem_species(lsp)%conc_p,              &
999                                                chem_species(lsp)%conc_pr_init )
1000                   ENDIF
1001                   lsp_usr = lsp_usr + 1
1002                ENDDO
1003             ENDDO
1004          ENDIF
1005
1006          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )&
1007          THEN
1008             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'start' )
1009             DO  b = 1, nbins
1010                CALL exchange_horiz( aerosol_number(b)%conc_p, nbgp )
1011                CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1012                CALL salsa_boundary_conds( aerosol_number(b)%conc_p,           &
1013                                           aerosol_number(b)%init )
1014                CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1015                DO  c = 1, ncc_tot
1016                   CALL exchange_horiz( aerosol_mass((c-1)*nbins+b)%conc_p,    &
1017                                        nbgp )
1018                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1019                   CALL salsa_boundary_conds( aerosol_mass((c-1)*nbins+b)%conc_p,&
1020                                              aerosol_mass((c-1)*nbins+b)%init )
1021                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1022                ENDDO
1023             ENDDO
1024             IF ( .NOT. salsa_gases_from_chem )  THEN
1025                DO  g = 1, ngast
1026                   CALL exchange_horiz( salsa_gas(g)%conc_p, nbgp ) 
1027                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1028                   CALL salsa_boundary_conds( salsa_gas(g)%conc_p,             &
1029                                              salsa_gas(g)%init )
1030                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1031             ENDDO
1032             ENDIF
1033             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'stop' )
1034          ENDIF         
1035          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1036
1037!
1038!--       Boundary conditions for the prognostic quantities (except of the
1039!--       velocities at the outflow in case of a non-cyclic lateral wall)
1040          CALL boundary_conds
1041!
1042!--       Swap the time levels in preparation for the next time step.
1043          CALL swap_timelevel
1044
1045!
1046!--       Vertical nesting: Interpolate fine grid data to the coarse grid
1047          IF ( vnest_init ) THEN
1048             CALL cpu_log( log_point(81), 'vnest_anterpolate', 'start' )
1049             CALL vnest_anterpolate
1050             CALL cpu_log( log_point(81), 'vnest_anterpolate', 'stop' )
1051          ENDIF
1052
1053          IF ( nested_run )  THEN
1054
1055             CALL cpu_log( log_point(60), 'nesting', 'start' )
1056!
1057!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
1058!--          and pmci_child_datatrans are called inside the wrapper
1059!--          subroutine pmci_datatrans according to the control parameters
1060!--          nesting_mode and nesting_datatransfer_mode.
1061!--          TO_DO: why is nesting_mode given as a parameter here?
1062             CALL pmci_datatrans( nesting_mode )
1063
1064             IF ( TRIM( nesting_mode ) == 'two-way' .OR.                       &
1065                  nesting_mode == 'vertical' )  THEN
1066!
1067!--             Exchange_horiz is needed for all parent-domains after the
1068!--             anterpolation
1069                CALL exchange_horiz( u, nbgp )
1070                CALL exchange_horiz( v, nbgp )
1071                CALL exchange_horiz( w, nbgp )
1072                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
1073
1074                IF ( humidity )  THEN
1075
1076                   CALL exchange_horiz( q, nbgp )
1077
1078                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
1079                       CALL exchange_horiz( qc, nbgp )
1080                       CALL exchange_horiz( nc, nbgp )
1081                   ENDIF
1082                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
1083                       CALL exchange_horiz( qr, nbgp )
1084                       CALL exchange_horiz( nr, nbgp )
1085                   ENDIF
1086
1087                ENDIF
1088
1089                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
1090               
1091                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
1092
1093                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.         &
1094                                                      rans_tke_e )             &
1095                   CALL exchange_horiz( diss, nbgp )
1096
1097                IF ( air_chemistry )  THEN
1098                   DO  n = 1, nspec     
1099                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
1100                   ENDDO
1101                ENDIF
1102
1103             ENDIF
1104!
1105!--          Set boundary conditions again after interpolation and anterpolation.
1106             CALL pmci_boundary_conds
1107
1108             CALL cpu_log( log_point(60), 'nesting', 'stop' )
1109
1110          ENDIF
1111
1112!
1113!--       Temperature offset must be imposed at cyclic boundaries in x-direction
1114!--       when a sloping surface is used
1115          IF ( sloping_surface )  THEN
1116             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - &
1117                                                    pt_slope_offset
1118             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + &
1119                                                    pt_slope_offset
1120          ENDIF
1121
1122!
1123!--       Impose a turbulent inflow using the recycling method
1124          IF ( turbulent_inflow )  CALL  inflow_turbulence
1125
1126!
1127!--       Set values at outflow boundary using the special outflow condition
1128          IF ( turbulent_outflow )  CALL  outflow_turbulence
1129
1130!
1131!--       Impose a random perturbation on the horizontal velocity field
1132          IF ( create_disturbances  .AND.                                      &
1133               ( call_psolver_at_all_substeps  .AND.                           &
1134               intermediate_timestep_count == intermediate_timestep_count_max )&
1135          .OR. ( .NOT. call_psolver_at_all_substeps  .AND.                     &
1136               intermediate_timestep_count == 1 ) )                            &
1137          THEN
1138             time_disturb = time_disturb + dt_3d
1139             IF ( time_disturb >= dt_disturb )  THEN
1140                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                 &
1141                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
1142                   CALL disturb_field( 'u', tend, u )
1143                   CALL disturb_field( 'v', tend, v )
1144                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )            &
1145                     .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )  &
1146                THEN
1147!
1148!--                Runs with a non-cyclic lateral wall need perturbations
1149!--                near the inflow throughout the whole simulation
1150                   dist_range = 1
1151                   CALL disturb_field( 'u', tend, u )
1152                   CALL disturb_field( 'v', tend, v )
1153                   dist_range = 0
1154                ENDIF
1155                time_disturb = time_disturb - dt_disturb
1156             ENDIF
1157          ENDIF
1158
1159!
1160!--       Map forcing data derived from larger scale model onto domain
1161!--       boundaries.
1162          IF ( nesting_offline  .AND.  intermediate_timestep_count ==          &
1163                                       intermediate_timestep_count_max  )      &
1164             CALL nesting_offl_bc
1165!
1166!--       Impose a turbulent inflow using synthetic generated turbulence,
1167!--       only once per time step.
1168          IF ( use_syn_turb_gen  .AND.  time_stg_call >= dt_stg_call  .AND.    &
1169             intermediate_timestep_count == intermediate_timestep_count_max )  THEN! &
1170             CALL stg_main
1171          ENDIF
1172!
1173!--       Ensure mass conservation. This need to be done after imposing
1174!--       synthetic turbulence and top boundary condition for pressure is set to
1175!--       Neumann conditions.
1176!--       Is this also required in case of Dirichlet?
1177          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1178!
1179!--       Reduce the velocity divergence via the equation for perturbation
1180!--       pressure.
1181          IF ( intermediate_timestep_count == 1  .OR. &
1182                call_psolver_at_all_substeps )  THEN
1183
1184             IF (  vnest_init ) THEN
1185!
1186!--             Compute pressure in the CG, interpolate top boundary conditions
1187!--             to the FG and then compute pressure in the FG
1188                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1189
1190                CALL cpu_log( log_point(82), 'vnest_bc', 'start' )
1191                CALL vnest_boundary_conds
1192                CALL cpu_log( log_point(82), 'vnest_bc', 'stop' )
1193 
1194                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1195
1196!--             Anterpolate TKE, satisfy Germano Identity
1197                CALL cpu_log( log_point(83), 'vnest_anter_e', 'start' )
1198                CALL vnest_anterpolate_e
1199                CALL cpu_log( log_point(83), 'vnest_anter_e', 'stop' )
1200
1201             ELSE
1202
1203                CALL pres
1204
1205             ENDIF
1206
1207          ENDIF
1208
1209!
1210!--       If required, compute liquid water content
1211          IF ( bulk_cloud_model )  THEN
1212             CALL calc_liquid_water_content
1213          ENDIF
1214!
1215!--       If required, compute virtual potential temperature
1216          IF ( humidity )  THEN
1217             CALL compute_vpt
1218          ENDIF
1219
1220!
1221!--       Compute the diffusion quantities
1222          IF ( .NOT. constant_diffusion )  THEN
1223
1224!
1225!--          Determine surface fluxes shf and qsws and surface values
1226!--          pt_surface and q_surface in dependence on data from external
1227!--          file LSF_DATA respectively
1228             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND. &
1229                 intermediate_timestep_count == intermediate_timestep_count_max )&
1230             THEN
1231                CALL ls_forcing_surf( simulated_time )
1232             ENDIF
1233
1234!
1235!--          First the vertical (and horizontal) fluxes in the surface
1236!--          (constant flux) layer are computed
1237             IF ( constant_flux_layer )  THEN
1238                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1239                CALL surface_layer_fluxes
1240                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
1241             ENDIF
1242!
1243!--          If required, solve the energy balance for the surface and run soil
1244!--          model. Call for horizontal as well as vertical surfaces
1245             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
1246
1247                CALL cpu_log( log_point(54), 'land_surface', 'start' )
1248!
1249!--             Call for horizontal upward-facing surfaces
1250                CALL lsm_energy_balance( .TRUE., -1 )
1251                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
1252!
1253!--             Call for northward-facing surfaces
1254                CALL lsm_energy_balance( .FALSE., 0 )
1255                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
1256!
1257!--             Call for southward-facing surfaces
1258                CALL lsm_energy_balance( .FALSE., 1 )
1259                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
1260!
1261!--             Call for eastward-facing surfaces
1262                CALL lsm_energy_balance( .FALSE., 2 )
1263                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
1264!
1265!--             Call for westward-facing surfaces
1266                CALL lsm_energy_balance( .FALSE., 3 )
1267                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
1268               
1269!
1270!--             At the end, set boundary conditons for potential temperature
1271!--             and humidity after running the land-surface model. This
1272!--             might be important for the nesting, where arrays are transfered.
1273                CALL lsm_boundary_condition
1274
1275               
1276                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1277             ENDIF
1278!
1279!--          If required, solve the energy balance for urban surfaces and run
1280!--          the material heat model
1281             IF (urban_surface) THEN
1282                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
1283               
1284                CALL usm_surface_energy_balance( .FALSE. )
1285                IF ( usm_material_model )  THEN
1286                   CALL usm_green_heat_model
1287                   CALL usm_material_heat_model ( .FALSE. )
1288                ENDIF
1289
1290!
1291!--             At the end, set boundary conditons for potential temperature
1292!--             and humidity after running the urban-surface model. This
1293!--             might be important for the nesting, where arrays are transfered.
1294                CALL usm_boundary_condition
1295
1296                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1297             ENDIF
1298!
1299!--          Compute the diffusion coefficients
1300             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
1301             IF ( .NOT. humidity ) THEN
1302                IF ( ocean_mode )  THEN
1303                   CALL tcm_diffusivities( prho, prho_reference )
1304                ELSE
1305                   CALL tcm_diffusivities( pt, pt_reference )
1306                ENDIF
1307             ELSE
1308                CALL tcm_diffusivities( vpt, pt_reference )
1309             ENDIF
1310             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
1311!
1312!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1313             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
1314
1315          ENDIF
1316
1317!
1318!--       If required, calculate radiative fluxes and heating rates
1319          IF ( radiation .AND. intermediate_timestep_count                     &
1320               == intermediate_timestep_count_max .AND. time_since_reference_point >    &
1321               skip_time_do_radiation )  THEN
1322
1323               time_radiation = time_radiation + dt_3d
1324
1325             IF ( time_radiation >= dt_radiation .OR. force_radiation_call )   &
1326             THEN
1327
1328                CALL cpu_log( log_point(50), 'radiation', 'start' )
1329
1330                IF ( .NOT. force_radiation_call )  THEN
1331                   time_radiation = time_radiation - dt_radiation
1332                ENDIF
1333
1334!
1335!--             Adjust the current time to the time step of the radiation model.
1336!--             Needed since radiation is pre-calculated and stored only on apparent
1337!--             solar positions
1338                time_since_reference_point_save = time_since_reference_point
1339                time_since_reference_point =                                   &
1340                                    REAL( FLOOR( time_since_reference_point /  &
1341                                                 dt_radiation), wp )           &
1342                                             * dt_radiation
1343
1344                CALL radiation_control
1345
1346                CALL cpu_log( log_point(50), 'radiation', 'stop' )
1347
1348                IF ( ( urban_surface  .OR.  land_surface )  .AND.               &
1349                     radiation_interactions )  THEN
1350                   CALL cpu_log( log_point(75), 'radiation_interaction', 'start' )
1351                   CALL radiation_interaction
1352                   CALL cpu_log( log_point(75), 'radiation_interaction', 'stop' )
1353                ENDIF
1354   
1355!
1356!--             Return the current time to its original value
1357                time_since_reference_point = time_since_reference_point_save
1358
1359             ENDIF
1360          ENDIF
1361
1362       ENDDO   ! Intermediate step loop
1363
1364!
1365!--    Will be used at some point by flow_statistics.
1366       !$ACC UPDATE &
1367       !$ACC HOST(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
1368       !$ACC HOST(sums_us2_ws_l(nzb:nzt+1,0)) &
1369       !$ACC HOST(sums_wsus_ws_l(nzb:nzt+1,0)) &
1370       !$ACC HOST(sums_vs2_ws_l(nzb:nzt+1,0)) &
1371       !$ACC HOST(sums_wsvs_ws_l(nzb:nzt+1,0)) &
1372       !$ACC HOST(sums_ws2_ws_l(nzb:nzt+1,0)) &
1373       !$ACC HOST(sums_wspts_ws_l(nzb:nzt+1,0)) &
1374       !$ACC HOST(sums_wssas_ws_l(nzb:nzt+1,0)) &
1375       !$ACC HOST(sums_wsqs_ws_l(nzb:nzt+1,0)) &
1376       !$ACC HOST(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
1377       !$ACC HOST(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
1378       !$ACC HOST(sums_wsncs_ws_l(nzb:nzt+1,0)) &
1379       !$ACC HOST(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
1380       !$ACC HOST(sums_wsss_ws_l(nzb:nzt+1,0)) &
1381       !$ACC HOST(sums_salsa_ws_l(nzb:nzt+1,0))
1382
1383!
1384!--    If required, consider chemical emissions
1385       IF ( air_chemistry  .AND.  do_emis )  THEN
1386!
1387!--       Update the time --> kanani: revise location of this CALL
1388          CALL calc_date_and_time
1389!
1390!--       Call emission routine only once an hour
1391          IF (hour_of_year  .GT.  hour_call_emis )  THEN
1392             CALL chem_emissions_setup( chem_emis_att, chem_emis, nspec_out )
1393             hour_call_emis = hour_of_year
1394          ENDIF
1395       ENDIF
1396
1397!
1398!--    If required, calculate indoor temperature, waste heat, heat flux
1399!--    through wall, etc.
1400!--    dt_indoor steers the frequency of the indoor model calculations
1401       IF ( indoor_model )  THEN
1402
1403          time_indoor = time_indoor + dt_3d
1404
1405          IF ( time_indoor >= dt_indoor )  THEN
1406
1407             time_indoor = time_indoor - dt_indoor
1408
1409             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1410             CALL im_main_heatcool
1411             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1412
1413          ENDIF
1414       ENDIF
1415!
1416!--    Increase simulation time and output times
1417       nr_timesteps_this_run      = nr_timesteps_this_run + 1
1418       current_timestep_number    = current_timestep_number + 1
1419       simulated_time             = simulated_time   + dt_3d
1420       time_since_reference_point = simulated_time - coupling_start_time
1421       simulated_time_chr         = time_to_string( time_since_reference_point )
1422
1423
1424
1425
1426       IF ( time_since_reference_point >= skip_time_data_output_av )  THEN
1427          time_do_av         = time_do_av       + dt_3d
1428       ENDIF
1429       IF ( time_since_reference_point >= skip_time_do2d_xy )  THEN
1430          time_do2d_xy       = time_do2d_xy     + dt_3d
1431       ENDIF
1432       IF ( time_since_reference_point >= skip_time_do2d_xz )  THEN
1433          time_do2d_xz       = time_do2d_xz     + dt_3d
1434       ENDIF
1435       IF ( time_since_reference_point >= skip_time_do2d_yz )  THEN
1436          time_do2d_yz       = time_do2d_yz     + dt_3d
1437       ENDIF
1438       IF ( time_since_reference_point >= skip_time_do3d    )  THEN
1439          time_do3d          = time_do3d        + dt_3d
1440       ENDIF
1441       DO  mid = 1, masks
1442          IF ( time_since_reference_point >= skip_time_domask(mid) )  THEN
1443             time_domask(mid)= time_domask(mid) + dt_3d
1444          ENDIF
1445       ENDDO
1446       time_dvrp          = time_dvrp        + dt_3d
1447       IF ( time_since_reference_point >= skip_time_dosp )  THEN
1448          time_dosp       = time_dosp        + dt_3d
1449       ENDIF
1450       time_dots          = time_dots        + dt_3d
1451       IF ( .NOT. first_call_lpm )  THEN
1452          time_dopts      = time_dopts       + dt_3d
1453       ENDIF
1454       IF ( time_since_reference_point >= skip_time_dopr )  THEN
1455          time_dopr       = time_dopr        + dt_3d
1456       ENDIF
1457       time_dopr_listing  = time_dopr_listing + dt_3d
1458       time_run_control   = time_run_control + dt_3d
1459!
1460!--    Increment time-counter for surface output
1461       IF ( surface_output )  THEN
1462          IF ( time_since_reference_point >= skip_time_dosurf )  THEN
1463             time_dosurf    = time_dosurf + dt_3d
1464          ENDIF
1465          IF ( time_since_reference_point >= skip_time_dosurf_av )  THEN
1466             time_dosurf_av = time_dosurf_av + dt_3d
1467          ENDIF
1468       ENDIF
1469!
1470!--    In case of synthetic turbulence generation and parametrized turbulence
1471!--    information, update the time counter and if required, adjust the
1472!--    STG to new atmospheric conditions.
1473       IF ( use_syn_turb_gen  )  THEN
1474          IF ( parametrize_inflow_turbulence )  THEN
1475             time_stg_adjust = time_stg_adjust + dt_3d
1476             IF ( time_stg_adjust >= dt_stg_adjust )  CALL stg_adjust
1477          ENDIF
1478          time_stg_call = time_stg_call + dt_3d
1479       ENDIF
1480
1481!
1482!--    Data exchange between coupled models
1483       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled                   &
1484                                          .AND. .NOT. vnested )  THEN
1485          time_coupling = time_coupling + dt_3d
1486
1487!
1488!--       In case of model termination initiated by the local model
1489!--       (terminate_coupled > 0), the coupler must be skipped because it would
1490!--       cause an MPI intercomminucation hang.
1491!--       If necessary, the coupler will be called at the beginning of the
1492!--       next restart run.
1493          DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 )
1494             CALL surface_coupler
1495             time_coupling = time_coupling - dt_coupling
1496          ENDDO
1497       ENDIF
1498
1499!
1500!--    Biometeorology calculation of stationary thermal indices
1501!--    Todo (kanani): biometeorology needs own time_... treatment.
1502!--                   It might be that time_do2d_xy differs from time_do3d,
1503!--                   and then we might get trouble with the biomet output,
1504!--                   because we can have 2d and/or 3d biomet output!!
1505       IF (         biometeorology  &
1506             .AND.  ( ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )          &
1507                      .OR.                                                                                   &
1508                      ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy ) &
1509                    ) )  THEN
1510!
1511!--       If required, do thermal comfort calculations
1512          IF ( thermal_comfort )  THEN
1513             CALL bio_calculate_thermal_index_maps ( .FALSE. )
1514             time_bio_results = time_since_reference_point
1515          ENDIF
1516!
1517!--       If required, do UV exposure calculations
1518          IF ( uv_exposure )  THEN
1519             CALL uvem_calc_exposure
1520          ENDIF
1521       ENDIF
1522
1523!
1524!--    Execute alle other module actions routunes
1525       CALL module_interface_actions( 'after_integration' )
1526
1527!
1528!--    If Galilei transformation is used, determine the distance that the
1529!--    model has moved so far
1530       IF ( galilei_transformation )  THEN
1531          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1532          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1533       ENDIF
1534
1535!
1536!--    Check, if restart is necessary (because cpu-time is expiring or
1537!--    because it is forced by user) and set stop flag
1538!--    This call is skipped if the remote model has already initiated a restart.
1539       IF ( .NOT. terminate_run )  CALL check_for_restart
1540
1541!
1542!--    Carry out statistical analysis and output at the requested output times.
1543!--    The MOD function is used for calculating the output time counters (like
1544!--    time_dopr) in order to regard a possible decrease of the output time
1545!--    interval in case of restart runs
1546
1547!
1548!--    Set a flag indicating that so far no statistics have been created
1549!--    for this time step
1550       flow_statistics_called = .FALSE.
1551
1552!
1553!--    If required, call flow_statistics for averaging in time
1554       IF ( averaging_interval_pr /= 0.0_wp  .AND.  &
1555            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.  &
1556            time_since_reference_point >= skip_time_dopr )  THEN
1557          time_dopr_av = time_dopr_av + dt_3d
1558          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1559             do_sum = .TRUE.
1560             time_dopr_av = MOD( time_dopr_av, &
1561                                    MAX( dt_averaging_input_pr, dt_3d ) )
1562          ENDIF
1563       ENDIF
1564       IF ( do_sum )  CALL flow_statistics
1565
1566!
1567!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
1568       IF ( averaging_interval /= 0.0_wp  .AND.                                &
1569            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND.    &
1570            time_since_reference_point >= skip_time_data_output_av )           &
1571       THEN
1572          time_do_sla = time_do_sla + dt_3d
1573          IF ( time_do_sla >= dt_averaging_input )  THEN
1574             CALL sum_up_3d_data
1575             average_count_3d = average_count_3d + 1
1576             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1577          ENDIF
1578       ENDIF
1579!
1580!--    Average surface data
1581       IF ( surface_output )  THEN
1582          IF (         averaging_interval_surf /= 0.0_wp                               &
1583                .AND.  ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf    &
1584                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1585             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
1586                CALL surface_data_output_averaging
1587                average_count_surf = average_count_surf + 1
1588             ENDIF
1589          ENDIF
1590       ENDIF
1591
1592!
1593!--    Calculate spectra for time averaging
1594       IF ( averaging_interval_sp /= 0.0_wp  .AND.  &
1595            ( dt_dosp - time_dosp ) <= averaging_interval_sp  .AND.  &
1596            time_since_reference_point >= skip_time_dosp )  THEN
1597          time_dosp_av = time_dosp_av + dt_3d
1598          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1599             CALL calc_spectra
1600             time_dosp_av = MOD( time_dosp_av, &
1601                                 MAX( dt_averaging_input_pr, dt_3d ) )
1602          ENDIF
1603       ENDIF
1604
1605!
1606!--    Call flight module and output data
1607       IF ( virtual_flight )  THEN
1608          CALL flight_measurement
1609          CALL data_output_flight
1610       ENDIF
1611!
1612!--    Take virtual measurements
1613       IF ( virtual_measurement  .AND.                                         &
1614            vm_time_start <= time_since_reference_point )  CALL vm_sampling
1615
1616!
1617!--    Profile output (ASCII) on file
1618       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1619          CALL print_1d
1620          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, &
1621                                                           dt_3d ) )
1622       ENDIF
1623
1624!
1625!--    Graphic output for PROFIL
1626       IF (        time_dopr >= dt_dopr                                     &
1627            .AND.  time_since_reference_point >= skip_time_dopr )  THEN
1628          IF ( dopr_n /= 0 )  CALL data_output_profiles
1629          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
1630          time_dopr_av = 0.0_wp    ! due to averaging (see above)
1631       ENDIF
1632
1633!
1634!--    Graphic output for time series
1635       IF ( time_dots >= dt_dots )  THEN
1636          CALL data_output_tseries
1637          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1638       ENDIF
1639
1640!
1641!--    Output of spectra (formatted for use with PROFIL), in case of no
1642!--    time averaging, spectra has to be calculated before
1643       IF (         time_dosp >= dt_dosp                                     &
1644             .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1645          IF ( average_count_sp == 0 )  CALL calc_spectra
1646          CALL data_output_spectra
1647          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1648       ENDIF
1649
1650!
1651!--    2d-data output (cross-sections)
1652       IF (         time_do2d_xy >= dt_do2d_xy                               &
1653             .AND.  time_since_reference_point >= skip_time_do2d_xy )  THEN
1654          CALL data_output_2d( 'xy', 0 )
1655          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1656       ENDIF
1657       IF (         time_do2d_xz >= dt_do2d_xz                               &
1658             .AND.  time_since_reference_point >= skip_time_do2d_xz )  THEN
1659          CALL data_output_2d( 'xz', 0 )
1660          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1661       ENDIF
1662       IF (         time_do2d_yz >= dt_do2d_yz                               &
1663             .AND.  time_since_reference_point >= skip_time_do2d_yz )  THEN
1664          CALL data_output_2d( 'yz', 0 )
1665          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1666       ENDIF
1667
1668!
1669!--    3d-data output (volume data)
1670       IF (         time_do3d >= dt_do3d                                     & 
1671             .AND.  time_since_reference_point >= skip_time_do3d )  THEN
1672          CALL data_output_3d( 0 )
1673          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1674       ENDIF
1675
1676!
1677!--    Masked data output
1678       DO  mid = 1, masks
1679          IF (         time_domask(mid) >= dt_domask(mid)                          &
1680                .AND.  time_since_reference_point >= skip_time_domask(mid) )  THEN
1681             CALL data_output_mask( 0 )
1682             time_domask(mid) = MOD( time_domask(mid),                             &
1683                                     MAX( dt_domask(mid), dt_3d ) )
1684          ENDIF
1685       ENDDO
1686
1687!
1688!--    Output of time-averaged 2d/3d/masked data
1689       IF (         time_do_av >= dt_data_output_av                                &
1690             .AND.  time_since_reference_point >= skip_time_data_output_av )  THEN
1691          CALL average_3d_data
1692          CALL data_output_2d( 'xy', 1 )
1693          CALL data_output_2d( 'xz', 1 )
1694          CALL data_output_2d( 'yz', 1 )
1695          CALL data_output_3d( 1 )
1696          DO  mid = 1, masks
1697             CALL data_output_mask( 1 )
1698          ENDDO
1699          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1700       ENDIF
1701!
1702!--    Output of surface data, instantaneous and averaged data
1703       IF ( surface_output )  THEN
1704          IF (         time_dosurf >= dt_dosurf                                    &
1705                .AND.  time_since_reference_point >= skip_time_dosurf )  THEN
1706             CALL surface_data_output( 0 )
1707             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1708          ENDIF
1709          IF (         time_dosurf_av >= dt_dosurf_av                              &
1710                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1711             CALL surface_data_output( 1 )
1712             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1713          ENDIF
1714       ENDIF
1715
1716!
1717!--    Output of particle time series
1718       IF ( particle_advection )  THEN
1719          IF ( time_dopts >= dt_dopts  .OR.                                    &
1720               ( time_since_reference_point >= particle_advection_start  .AND. &
1721                 first_call_lpm ) )  THEN
1722             CALL data_output_ptseries
1723             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1724          ENDIF
1725       ENDIF
1726
1727!
1728!--    Output of dvrp-graphics (isosurface, particles, slicer)
1729#if defined( __dvrp_graphics )
1730       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
1731#endif
1732       IF ( time_dvrp >= dt_dvrp )  THEN
1733          CALL data_output_dvrp
1734          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
1735       ENDIF
1736#if defined( __dvrp_graphics )
1737       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
1738#endif
1739
1740!
1741!--    If required, set the heat flux for the next time step at a random value
1742       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
1743          IF ( surf_def_h(0)%ns >= 1 )  CALL disturb_heatflux( surf_def_h(0) )
1744          IF ( surf_lsm_h%ns    >= 1 )  CALL disturb_heatflux( surf_lsm_h    )
1745          IF ( surf_usm_h%ns    >= 1 )  CALL disturb_heatflux( surf_usm_h    )
1746       ENDIF
1747
1748!
1749!--    Execute alle other module actions routunes
1750       CALL module_interface_actions( 'after_timestep' )
1751
1752!
1753!--    Determine size of next time step. Save timestep dt_3d because it is
1754!--    newly calculated in routine timestep, but required further below for
1755!--    steering the run control output interval
1756       dt_3d_old = dt_3d
1757       CALL timestep
1758
1759!
1760!--    Synchronize the timestep in case of nested run.
1761       IF ( nested_run )  THEN
1762!
1763!--       Synchronize by unifying the time step.
1764!--       Global minimum of all time-steps is used for all.
1765          CALL pmci_synchronize
1766       ENDIF
1767
1768!
1769!--    Computation and output of run control parameters.
1770!--    This is also done whenever perturbations have been imposed
1771       IF ( time_run_control >= dt_run_control  .OR.                     &
1772            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created ) &
1773       THEN
1774          CALL run_control
1775          IF ( time_run_control >= dt_run_control )  THEN
1776             time_run_control = MOD( time_run_control, &
1777                                     MAX( dt_run_control, dt_3d_old ) )
1778          ENDIF
1779       ENDIF
1780
1781!
1782!--    Output elapsed simulated time in form of a progress bar on stdout
1783       IF ( myid == 0 )  CALL output_progress_bar
1784
1785       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1786
1787
1788    ENDDO   ! time loop
1789
1790#ifdef _OPENACC
1791    CALL exit_surface_arrays
1792#endif
1793!$ACC END DATA
1794!$ACC END DATA
1795!$ACC END DATA
1796!$ACC END DATA
1797!$ACC END DATA
1798!$ACC END DATA
1799!$ACC END DATA
1800
1801!
1802!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
1803    IF ( vnest_init )  CALL vnest_deallocate
1804
1805    IF ( myid == 0 )  CALL finish_progress_bar
1806
1807#if defined( __dvrp_graphics )
1808    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
1809#endif
1810
1811    CALL location_message( 'finished time-stepping', .TRUE. )
1812
1813 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.