source: palm/trunk/SOURCE/time_integration.f90 @ 2312

Last change on this file since 2312 was 2311, checked in by suehring, 7 years ago

Set bottom boundary conditions after nesting interpolation and anterpolation

  • Property svn:keywords set to Id
File size: 43.1 KB
RevLine 
[1682]1!> @file time_integration.f90
[2000]2!------------------------------------------------------------------------------!
[1036]3! This file is part of PALM.
4!
[2000]5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
[1036]9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
[2101]17! Copyright 1997-2017 Leibniz Universitaet Hannover
[2000]18!------------------------------------------------------------------------------!
[1036]19!
[484]20! Current revisions:
[1092]21! ------------------
[1928]22!
[2233]23!
[1366]24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 2311 2017-07-13 13:34:42Z hoffmann $
[2311]27! Set bottom boundary conditions after nesting interpolation and anterpolation
28!
29! 2299 2017-06-29 10:14:38Z maronga
[2299]30! Call of soil model adjusted
31!
32! 2292 2017-06-20 09:51:42Z schwenkel
[2292]33! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
34! includes two more prognostic equations for cloud drop concentration (nc) 
35! and cloud water content (qc).
36!
37! 2271 2017-06-09 12:34:55Z sward
[2271]38! Start timestep message changed
39!
40! 2259 2017-06-08 09:09:11Z gronemeier
[2259]41! Implemented synthetic turbulence generator
[1366]42!
[2259]43! 2233 2017-05-30 18:08:54Z suehring
44!
[2233]45! 2232 2017-05-30 17:47:52Z suehring
46! Adjustments to new topography and surface concept
47! Modify passed parameters for disturb_field
48!
[2179]49! 2178 2017-03-17 11:07:39Z hellstea
50! Setting perturbations at all times near inflow boundary is removed
51! in case of nested boundaries
52!
[2175]53! 2174 2017-03-13 08:18:57Z maronga
54! Added support for nesting with cloud microphysics
55!
[2119]56! 2118 2017-01-17 16:38:49Z raasch
57! OpenACC directives and related code removed
58!
[2051]59! 2050 2016-11-08 15:00:55Z gronemeier
60! Implement turbulent outflow condition
61!
[2032]62! 2031 2016-10-21 15:11:58Z knoop
63! renamed variable rho to rho_ocean
64!
[2012]65! 2011 2016-09-19 17:29:57Z kanani
66! Flag urban_surface is now defined in module control_parameters,
67! removed commented CALLs of global_min_max.
68!
[2008]69! 2007 2016-08-24 15:47:17Z kanani
70! Added CALLs for new urban surface model
71!
[2001]72! 2000 2016-08-20 18:09:15Z knoop
73! Forced header and separation lines into 80 columns
74!
[1977]75! 1976 2016-07-27 13:28:04Z maronga
76! Simplified calls to radiation model
77!
[1961]78! 1960 2016-07-12 16:34:24Z suehring
79! Separate humidity and passive scalar
80!
[1958]81! 1957 2016-07-07 10:43:48Z suehring
82! flight module added
83!
[1933]84! 1919 2016-05-27 14:51:23Z raasch
85! Initial version of purely vertical nesting introduced.
[1928]86!
[1919]87! 1918 2016-05-27 14:35:57Z raasch
88! determination of time step moved to the end of the time step loop,
89! the first time step is now always calculated before the time step loop (i.e.
90! also in case of restart runs)
91!
[1917]92! 1914 2016-05-26 14:44:07Z witha
93! Added call for wind turbine model
94!
[1879]95! 1878 2016-04-19 12:30:36Z hellstea
96! Synchronization for nested runs rewritten
97!
[1854]98! 1853 2016-04-11 09:00:35Z maronga
99! Adjusted for use with radiation_scheme = constant
100!
[1851]101! 1849 2016-04-08 11:33:18Z hoffmann
102! Adapted for modularization of microphysics
103!
[1834]104! 1833 2016-04-07 14:23:03Z raasch
105! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
106!
[1832]107! 1831 2016-04-07 13:15:51Z hoffmann
108! turbulence renamed collision_turbulence
109!
[1823]110! 1822 2016-04-07 07:49:42Z hoffmann
111! icloud_scheme replaced by microphysics_*
112!
[1809]113! 1808 2016-04-05 19:44:00Z raasch
114! output message in case unscheduled radiation calls removed
115!
[1798]116! 1797 2016-03-21 16:50:28Z raasch
117! introduction of different datatransfer modes
118!
[1792]119! 1791 2016-03-11 10:41:25Z raasch
120! call of pmci_update_new removed
121!
[1787]122! 1786 2016-03-08 05:49:27Z raasch
123! +module spectrum
124!
[1784]125! 1783 2016-03-06 18:36:17Z raasch
126! switch back of netcdf data format for mask output moved to the mask output
127! routine
128!
[1782]129! 1781 2016-03-03 15:12:23Z raasch
130! some pmc calls removed at the beginning (before timeloop),
131! pmc initialization moved to the main program
132!
[1765]133! 1764 2016-02-28 12:45:19Z raasch
134! PMC_ACTIVE flags removed,
135! bugfix: nest synchronization after first call of timestep
136!
[1763]137! 1762 2016-02-25 12:31:13Z hellstea
138! Introduction of nested domain feature
139!
[1737]140! 1736 2015-12-04 08:56:33Z raasch
141! no perturbations added to total domain if energy limit has been set zero
142!
[1692]143! 1691 2015-10-26 16:17:44Z maronga
144! Added option for spin-ups without land surface and radiation models. Moved calls
145! for radiation and lan surface schemes.
146!
[1683]147! 1682 2015-10-07 23:56:08Z knoop
148! Code annotations made doxygen readable
149!
[1672]150! 1671 2015-09-25 03:29:37Z raasch
151! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
152! for particles
153!
[1586]154! 1585 2015-04-30 07:05:52Z maronga
155! Moved call of radiation scheme. Added support for RRTM
156!
[1552]157! 1551 2015-03-03 14:18:16Z maronga
158! Added interface for different radiation schemes.
159!
[1497]160! 1496 2014-12-02 17:25:50Z maronga
161! Added calls for the land surface model and radiation scheme
162!
[1403]163! 1402 2014-05-09 14:25:13Z raasch
164! location messages modified
165!
[1385]166! 1384 2014-05-02 14:31:06Z raasch
167! location messages added
168!
[1381]169! 1380 2014-04-28 12:40:45Z heinze
170! CALL of nudge_ref added
171! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
172!
[1366]173! 1365 2014-04-22 15:03:56Z boeske
[1365]174! Reset sums_ls_l to zero at each timestep
175! +sums_ls_l
176! Calculation of reference state (previously in subroutine calc_mean_profile)
177
[1343]178! 1342 2014-03-26 17:04:47Z kanani
179! REAL constants defined as wp-kind
180!
[1321]181! 1320 2014-03-20 08:40:49Z raasch
[1320]182! ONLY-attribute added to USE-statements,
183! kind-parameters added to all INTEGER and REAL declaration statements,
184! kinds are defined in new module kinds,
185! old module precision_kind is removed,
186! revision history before 2012 removed,
187! comment fields (!:) to be used for variable explanations added to
188! all variable declaration statements
[1319]189! 1318 2014-03-17 13:35:16Z raasch
190! module interfaces removed
191!
[1309]192! 1308 2014-03-13 14:58:42Z fricke
193! +netcdf_data_format_save
194! For masked data, parallel netcdf output is not tested so far, hence
195! netcdf_data_format is switched back to non-paralell output.
196!
[1277]197! 1276 2014-01-15 13:40:41Z heinze
198! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
199!
[1258]200! 1257 2013-11-08 15:18:40Z raasch
201! acc-update-host directive for timestep removed
202!
[1242]203! 1241 2013-10-30 11:36:58Z heinze
204! Generalize calc_mean_profile for wider use
205! Determine shf and qsws in dependence on data from LSF_DATA
206! Determine ug and vg in dependence on data from LSF_DATA
[1222]207! 1221 2013-09-10 08:59:13Z raasch
208! host update of arrays before timestep is called
209!
[1182]210! 1179 2013-06-14 05:57:58Z raasch
211! mean profiles for reference state are only calculated if required,
212! small bugfix for background communication
213!
[1172]214! 1171 2013-05-30 11:27:45Z raasch
215! split of prognostic_equations deactivated (comment lines), for the time being
216!
[1132]217! 1128 2013-04-12 06:19:32Z raasch
[1128]218! asynchronous transfer of ghost point data realized for acc-optimized version:
219! prognostic_equations are first called two times for those points required for
220! the left-right and north-south exchange, respectively, and then for the
221! remaining points,
222! those parts requiring global communication moved from prognostic_equations to
223! here
[392]224!
[1116]225! 1115 2013-03-26 18:16:16Z hoffmann
226! calculation of qr and nr is restricted to precipitation
227!
[1114]228! 1113 2013-03-10 02:48:14Z raasch
229! GPU-porting of boundary conditions,
230! openACC directives updated
231! formal parameter removed from routine boundary_conds
232!
[1112]233! 1111 2013-03-08 23:54:10Z raasch
234! +internal timestep counter for cpu statistics added,
235! openACC directives updated
236!
[1093]237! 1092 2013-02-02 11:24:22Z raasch
238! unused variables removed
239!
[1066]240! 1065 2012-11-22 17:42:36Z hoffmann
241! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
242!
[1054]243! 1053 2012-11-13 17:11:03Z hoffmann
244! exchange of ghost points for nr, qr added
245!
[1037]246! 1036 2012-10-22 13:43:42Z raasch
247! code put under GPL (PALM 3.9)
248!
[1020]249! 1019 2012-09-28 06:46:45Z raasch
250! non-optimized version of prognostic_equations removed
251!
[1017]252! 1015 2012-09-27 09:23:24Z raasch
253! +call of prognostic_equations_acc
254!
[1002]255! 1001 2012-09-13 14:08:46Z raasch
256! all actions concerning leapfrog- and upstream-spline-scheme removed
257!
[850]258! 849 2012-03-15 10:35:09Z raasch
259! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
260!
[826]261! 825 2012-02-19 03:03:44Z raasch
262! wang_collision_kernel renamed wang_kernel
263!
[1]264! Revision 1.1  1997/08/11 06:19:04  raasch
265! Initial revision
266!
267!
268! Description:
269! ------------
[1682]270!> Integration in time of the model equations, statistical analysis and graphic
271!> output
[1]272!------------------------------------------------------------------------------!
[1682]273 SUBROUTINE time_integration
274 
[1]275
[1320]276    USE advec_ws,                                                              &
277        ONLY:  ws_statistics
278
279    USE arrays_3d,                                                             &
[2292]280        ONLY:  diss, dzu, e, e_p, nc, nc_p, nr, nr_p, prho, pt, pt_p, pt_init, &
281               q_init, q, qc, qc_p, ql, ql_c, ql_v, ql_vp, qr, qr_p, q_p,      &
282               ref_state, rho_ocean, s, s_p, sa_p, tend, u, u_p, v, vpt,       &
283               v_p, w, w_p
[1320]284
[1365]285    USE calc_mean_profile_mod,                                                 &
[1320]286        ONLY:  calc_mean_profile
287
288    USE control_parameters,                                                    &
289        ONLY:  advected_distance_x, advected_distance_y, average_count_3d,     &
[1833]290               averaging_interval, averaging_interval_pr,                      &
291               bc_lr_cyc, bc_ns_cyc, bc_pt_t_val,                              &
[1380]292               bc_q_t_val, call_psolver_at_all_substeps, cloud_droplets,       &
[1691]293               cloud_physics, constant_flux_layer, constant_heatflux,          &
294               create_disturbances, dopr_n, constant_diffusion, coupling_mode, &
295               coupling_start_time, current_timestep_number,                   &
296               disturbance_created, disturbance_energy_limit, dist_range,      &
297               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr,       &
298               dt_coupling, dt_data_output_av, dt_disturb, dt_do2d_xy,         &
299               dt_do2d_xz, dt_do2d_yz, dt_do3d, dt_domask,dt_dopts, dt_dopr,   &
[1833]300               dt_dopr_listing, dt_dots, dt_dvrp, dt_run_control,              &
[1320]301               end_time, first_call_lpm, galilei_transformation, humidity,     &
[2232]302               intermediate_timestep_count, intermediate_timestep_count_max,   &
303               land_surface, large_scale_forcing,                              &
[1822]304               loop_optimization, lsf_surf, lsf_vert, masks,                   &
[2292]305               microphysics_morrison, microphysics_seifert, mid, nest_domain,  &
[1783]306               neutral, nr_timesteps_this_run, nudging,                        &
[2118]307               ocean, passive_scalar,                                          &
[1320]308               prho_reference, pt_reference, pt_slope_offset, random_heatflux, &
309               run_coupled, simulated_time, simulated_time_chr,                &
310               skip_time_do2d_xy, skip_time_do2d_xz, skip_time_do2d_yz,        &
311               skip_time_do3d, skip_time_domask, skip_time_dopr,               &
[1833]312               skip_time_data_output_av, sloping_surface,                      &
[1320]313               stop_dt, terminate_coupled, terminate_run, timestep_scheme,     &
314               time_coupling, time_do2d_xy, time_do2d_xz, time_do2d_yz,        &
315               time_do3d, time_domask, time_dopr, time_dopr_av,                &
316               time_dopr_listing, time_dopts, time_dosp, time_dosp_av,         &
317               time_dots, time_do_av, time_do_sla, time_disturb, time_dvrp,    &
[1496]318               time_run_control, time_since_reference_point,                   &
[2050]319               turbulent_inflow, turbulent_outflow, urban_surface,             &
[2011]320               use_initial_profile_as_reference,                               &
[1957]321               use_single_reference_value, u_gtrans, v_gtrans, virtual_flight, &
322               ws_scheme_mom, ws_scheme_sca
[1320]323
324    USE cpulog,                                                                &
325        ONLY:  cpu_log, log_point, log_point_s
326
[1957]327    USE flight_mod,                                                            &
328        ONLY:  flight_measurement
329
330
[1320]331    USE indices,                                                               &
[2232]332        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt
[1320]333
334    USE interaction_droplets_ptq_mod,                                          &
335        ONLY:  interaction_droplets_ptq
336
[1918]337    USE interfaces
338
[1320]339    USE kinds
340
[1496]341    USE land_surface_model_mod,                                                &
[2232]342        ONLY:  lsm_energy_balance, lsm_soil_model,                             &
[1691]343               skip_time_do_lsm
[1496]344
[1320]345    USE ls_forcing_mod,                                                        &
346        ONLY:  ls_forcing_surf, ls_forcing_vert
347
[1849]348    USE microphysics_mod,                                                      &
349        ONLY: collision_turbulence
350
[1365]351    USE nudge_mod,                                                             &
[1380]352        ONLY:  calc_tnudge, nudge_ref
[1365]353
[1320]354    USE particle_attributes,                                                   &
[1671]355        ONLY:  particle_advection, particle_advection_start,                   &
356               use_sgs_for_particles, wang_kernel
[1320]357
[1]358    USE pegrid
359
[1762]360    USE pmc_interface,                                                         &
[2311]361        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans,  &
[1933]362               pmci_ensure_nest_mass_conservation, pmci_synchronize
[1762]363
[1320]364    USE production_e_mod,                                                      &
365        ONLY:  production_e_init
366
[1402]367    USE progress_bar,                                                          &
368        ONLY:  finish_progress_bar, output_progress_bar
369
[1320]370    USE prognostic_equations_mod,                                              &
[2118]371        ONLY:  prognostic_equations_cache, prognostic_equations_vector
[1320]372
[1496]373    USE radiation_model_mod,                                                   &
[1976]374        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,&
375              skip_time_do_radiation, time_radiation
[1496]376
[1833]377    USE spectra_mod,                                                           &
378        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp,  &
379              skip_time_dosp
[1786]380
[1320]381    USE statistics,                                                            &
[1918]382        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l, u_max,         &
383               u_max_ijk, v_max, v_max_ijk, w_max, w_max_ijk
[1320]384
[1691]385    USE surface_layer_fluxes_mod,                                              &
386        ONLY:  surface_layer_fluxes
387
[2232]388    USE surface_mod,                                                           &
389        ONLY:  surf_def_h, surf_lsm_h, surf_usm_h
390
[2007]391    USE urban_surface_mod,                                                     &
[2232]392        ONLY:  usm_material_heat_model, usm_material_model,                    &
[2259]393               usm_radiation, usm_surface_energy_balance
[2007]394
[2259]395    USE synthetic_turbulence_generator_mod,                                    &
396        ONLY:  stg_main, use_synthetic_turbulence_generator
397
[1320]398    USE user_actions_mod,                                                      &
399        ONLY:  user_actions
400
[1914]401    USE wind_turbine_model_mod,                                                &
402        ONLY:  wind_turbine, wtm_forces
403
[1]404    IMPLICIT NONE
405
[1682]406    CHARACTER (LEN=9) ::  time_to_string          !<
[1]407
[1918]408    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
409                            !< steering of run control output interval
410
[1]411!
[1918]412!-- At beginning determine the first time step
413    CALL timestep
[667]414
[1764]415!
416!-- Synchronize the timestep in case of nested run.
417    IF ( nested_run )  THEN
[1878]418!
419!--    Synchronization by unifying the time step.
420!--    Global minimum of all time-steps is used for all.
421       CALL pmci_synchronize
[1764]422    ENDIF
423
[1918]424!
425!-- Determine and print out the run control quantities before the first time
426!-- step of this run. For the initial run, some statistics (e.g. divergence)
427!-- need to be determined first.
428    IF ( simulated_time == 0.0_wp )  CALL flow_statistics
[1]429    CALL run_control
430
[108]431!
432!-- Data exchange between coupled models in case that a call has been omitted
433!-- at the end of the previous run of a job chain.
[291]434    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled )  THEN
[108]435!
436!--    In case of model termination initiated by the local model the coupler
437!--    must not be called because this would again cause an MPI hang.
[1918]438       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
[108]439          CALL surface_coupler
440          time_coupling = time_coupling - dt_coupling
441       ENDDO
[1918]442       IF (time_coupling == 0.0_wp  .AND.                                      &
443           time_since_reference_point < dt_coupling )                          &
[348]444       THEN
445          time_coupling = time_since_reference_point
446       ENDIF
[108]447    ENDIF
448
[1]449#if defined( __dvrp_graphics )
450!
451!-- Time measurement with dvrp software 
452    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
453#endif
454
[2271]455    CALL location_message( 'starting timestep-sequence', .TRUE. )
[1]456!
457!-- Start of the time loop
458    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. &
459                .NOT. terminate_run )
460
461       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
462!
[1241]463!--    Determine ug, vg and w_subs in dependence on data from external file
464!--    LSF_DATA
[1365]465       IF ( large_scale_forcing .AND. lsf_vert )  THEN
[1241]466           CALL ls_forcing_vert ( simulated_time )
[1365]467           sums_ls_l = 0.0_wp
[1241]468       ENDIF
469
470!
[1380]471!--    Set pt_init and q_init to the current profiles taken from
472!--    NUDGING_DATA
473       IF ( nudging )  THEN
474           CALL nudge_ref ( simulated_time )
475!
476!--        Store temperature gradient at the top boundary for possible Neumann
477!--        boundary condition
478           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
479           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
480       ENDIF
481
482!
[1]483!--    Execute the user-defined actions
484       CALL user_actions( 'before_timestep' )
485
486!
[1914]487!--    Calculate forces by wind turbines
488       IF ( wind_turbine )  THEN
489
490          CALL cpu_log( log_point(55), 'wind_turbine', 'start' )
491
492          CALL wtm_forces
493
494          CALL cpu_log( log_point(55), 'wind_turbine', 'stop' )
495
496       ENDIF       
497       
498!
[1]499!--    Start of intermediate step loop
500       intermediate_timestep_count = 0
501       DO  WHILE ( intermediate_timestep_count < &
502                   intermediate_timestep_count_max )
503
504          intermediate_timestep_count = intermediate_timestep_count + 1
505
506!
507!--       Set the steering factors for the prognostic equations which depend
508!--       on the timestep scheme
509          CALL timestep_scheme_steering
510
511!
[1128]512!--       Calculate those variables needed in the tendency terms which need
513!--       global communication
[1179]514          IF ( .NOT. use_single_reference_value  .AND. &
515               .NOT. use_initial_profile_as_reference )  THEN
516!
517!--          Horizontally averaged profiles to be used as reference state in
518!--          buoyancy terms (WARNING: only the respective last call of
519!--          calc_mean_profile defines the reference state!)
[1365]520             IF ( .NOT. neutral )  THEN
521                CALL calc_mean_profile( pt, 4 )
522                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
523             ENDIF
524             IF ( ocean )  THEN
[2031]525                CALL calc_mean_profile( rho_ocean, 64 )
[1365]526                ref_state(:)  = hom(:,1,64,0)
527             ENDIF
528             IF ( humidity )  THEN
529                CALL calc_mean_profile( vpt, 44 )
530                ref_state(:)  = hom(:,1,44,0)
531             ENDIF
532
[1179]533          ENDIF
534
[1128]535          IF ( .NOT. constant_diffusion )  CALL production_e_init
536          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  &
537               intermediate_timestep_count == 1 )  CALL ws_statistics
[1365]538!
539!--       In case of nudging calculate current nudging time scale and horizontal
[1380]540!--       means of u, v, pt and q
[1365]541          IF ( nudging )  THEN
542             CALL calc_tnudge( simulated_time )
543             CALL calc_mean_profile( u, 1 )
544             CALL calc_mean_profile( v, 2 )
545             CALL calc_mean_profile( pt, 4 )
546             CALL calc_mean_profile( q, 41 )
547          ENDIF
[1128]548
549!
[1]550!--       Solve the prognostic equations. A fast cache optimized version with
551!--       only one single loop is used in case of Piascek-Williams advection
552!--       scheme. NEC vector machines use a different version, because
553!--       in the other versions a good vectorization is prohibited due to
554!--       inlining problems.
[1019]555          IF ( loop_optimization == 'cache' )  THEN
556             CALL prognostic_equations_cache
557          ELSEIF ( loop_optimization == 'vector' )  THEN
[63]558             CALL prognostic_equations_vector
[1]559          ENDIF
560
561!
[849]562!--       Particle transport/physics with the Lagrangian particle model
563!--       (only once during intermediate steps, because it uses an Euler-step)
[1128]564!--       ### particle model should be moved before prognostic_equations, in order
565!--       to regard droplet interactions directly
[63]566          IF ( particle_advection  .AND.                         &
567               simulated_time >= particle_advection_start  .AND. &
[1]568               intermediate_timestep_count == 1 )  THEN
[849]569             CALL lpm
570             first_call_lpm = .FALSE.
[1]571          ENDIF
572
573!
574!--       Interaction of droplets with temperature and specific humidity.
575!--       Droplet condensation and evaporation is calculated within
576!--       advec_particles.
577          IF ( cloud_droplets  .AND.  &
578               intermediate_timestep_count == intermediate_timestep_count_max )&
579          THEN
580             CALL interaction_droplets_ptq
581          ENDIF
582
583!
584!--       Exchange of ghost points (lateral boundary conditions)
[2118]585          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
[1113]586
[2118]587          CALL exchange_horiz( u_p, nbgp )
588          CALL exchange_horiz( v_p, nbgp )
589          CALL exchange_horiz( w_p, nbgp )
590          CALL exchange_horiz( pt_p, nbgp )
591          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
592          IF ( ocean )  THEN
593             CALL exchange_horiz( sa_p, nbgp )
594             CALL exchange_horiz( rho_ocean, nbgp )
595             CALL exchange_horiz( prho, nbgp )
596          ENDIF
597          IF ( humidity )  THEN
598             CALL exchange_horiz( q_p, nbgp )
[2292]599             IF ( cloud_physics .AND. microphysics_morrison )  THEN
600                CALL exchange_horiz( qc_p, nbgp )
601                CALL exchange_horiz( nc_p, nbgp )
602             ENDIF
[2118]603             IF ( cloud_physics .AND. microphysics_seifert )  THEN
604                CALL exchange_horiz( qr_p, nbgp )
605                CALL exchange_horiz( nr_p, nbgp )
[1053]606             ENDIF
[2118]607          ENDIF
608          IF ( cloud_droplets )  THEN
609             CALL exchange_horiz( ql, nbgp )
610             CALL exchange_horiz( ql_c, nbgp )
611             CALL exchange_horiz( ql_v, nbgp )
612             CALL exchange_horiz( ql_vp, nbgp )
613          ENDIF
614          IF ( wang_kernel  .OR.  collision_turbulence  .OR.                &
615               use_sgs_for_particles )  THEN
616             CALL exchange_horiz( diss, nbgp )
617          ENDIF
618          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
[1]619
[2118]620          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
[1128]621
[1]622!
623!--       Boundary conditions for the prognostic quantities (except of the
624!--       velocities at the outflow in case of a non-cyclic lateral wall)
[1113]625          CALL boundary_conds
[1]626!
[73]627!--       Swap the time levels in preparation for the next time step.
628          CALL swap_timelevel
629
[1764]630          IF ( nested_run )  THEN
[1797]631
[1764]632             CALL cpu_log( log_point(60), 'nesting', 'start' )
[1762]633!
[1933]634!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
635!--          and pmci_child_datatrans are called inside the wrapper
[1797]636!--          subroutine pmci_datatrans according to the control parameters
637!--          nesting_mode and nesting_datatransfer_mode.
638!--          TO_DO: why is nesting_mode given as a parameter here?
639             CALL pmci_datatrans( nesting_mode )
[1762]640
[2174]641             IF ( TRIM( nesting_mode ) == 'two-way' .OR.                       &
[1933]642                  nesting_mode == 'vertical' )  THEN
[1762]643!
[1933]644!--             Exchange_horiz is needed for all parent-domains after the
[1764]645!--             anterpolation
646                CALL exchange_horiz( u, nbgp )
647                CALL exchange_horiz( v, nbgp )
648                CALL exchange_horiz( w, nbgp )
[2174]649                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
650
651                IF ( humidity )  THEN
652
653                   CALL exchange_horiz( q, nbgp )
654
[2292]655                   IF ( cloud_physics  .AND.  microphysics_morrison )  THEN
656                       CALL exchange_horiz( qc, nbgp )
657                       CALL exchange_horiz( nc, nbgp )
658                   ENDIF
[2174]659                   IF ( cloud_physics  .AND.  microphysics_seifert )  THEN
660                       CALL exchange_horiz( qr, nbgp )
661                       CALL exchange_horiz( nr, nbgp )
662                   ENDIF
663
664                ENDIF
665
666                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp )
667                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
[1762]668             ENDIF
669!
[2311]670!--          Set boundary conditions again after interpolation and anterpolation.
671             CALL pmci_boundary_conds
672!
[1764]673!--          Correct the w top-BC in nest domains to ensure mass conservation.
[1933]674!--          This action must never be done for the root domain. Vertical
675!--          nesting implies mass conservation.
[1764]676             IF ( nest_domain )  THEN
677                CALL pmci_ensure_nest_mass_conservation
678             ENDIF
679
680             CALL cpu_log( log_point(60), 'nesting', 'stop' )
681
[1762]682          ENDIF
683
684!
[1]685!--       Temperature offset must be imposed at cyclic boundaries in x-direction
686!--       when a sloping surface is used
687          IF ( sloping_surface )  THEN
[707]688             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - &
689                                                    pt_slope_offset
690             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + &
691                                                    pt_slope_offset
[1]692          ENDIF
693
694!
[151]695!--       Impose a turbulent inflow using the recycling method
696          IF ( turbulent_inflow )  CALL  inflow_turbulence
697
698!
[2259]699!--       Impose a turbulent inflow using synthetic generated turbulence
700         IF ( use_synthetic_turbulence_generator ) THEN
701            CALL  stg_main
702         ENDIF
703
704!
[2050]705!--       Set values at outflow boundary using the special outflow condition
706          IF ( turbulent_outflow )  CALL  outflow_turbulence
707
708!
[1]709!--       Impose a random perturbation on the horizontal velocity field
[106]710          IF ( create_disturbances  .AND.                                      &
711               ( call_psolver_at_all_substeps  .AND.                           &
[1]712               intermediate_timestep_count == intermediate_timestep_count_max )&
[106]713          .OR. ( .NOT. call_psolver_at_all_substeps  .AND.                     &
714               intermediate_timestep_count == 1 ) )                            &
[1]715          THEN
716             time_disturb = time_disturb + dt_3d
717             IF ( time_disturb >= dt_disturb )  THEN
[1736]718                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                 &
719                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
[2232]720                   CALL disturb_field( 'u', tend, u )
721                   CALL disturb_field( 'v', tend, v )
[2178]722                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )            &
723                     .AND. .NOT. nest_domain )  THEN
[1]724!
725!--                Runs with a non-cyclic lateral wall need perturbations
726!--                near the inflow throughout the whole simulation
727                   dist_range = 1
[2232]728                   CALL disturb_field( 'u', tend, u )
729                   CALL disturb_field( 'v', tend, v )
[1]730                   dist_range = 0
731                ENDIF
732                time_disturb = time_disturb - dt_disturb
733             ENDIF
734          ENDIF
735
736!
737!--       Reduce the velocity divergence via the equation for perturbation
738!--       pressure.
[106]739          IF ( intermediate_timestep_count == 1  .OR. &
740                call_psolver_at_all_substeps )  THEN
[1]741             CALL pres
742          ENDIF
743
744!
745!--       If required, compute liquid water content
[1015]746          IF ( cloud_physics )  THEN
747             CALL calc_liquid_water_content
748          ENDIF
[2174]749!
[1115]750!--       If required, compute virtual potential temperature
751          IF ( humidity )  THEN
752             CALL compute_vpt 
753          ENDIF 
[1585]754
[1]755!
756!--       Compute the diffusion quantities
757          IF ( .NOT. constant_diffusion )  THEN
758
759!
[1276]760!--          Determine surface fluxes shf and qsws and surface values
761!--          pt_surface and q_surface in dependence on data from external
762!--          file LSF_DATA respectively
763             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND. &
764                 intermediate_timestep_count == intermediate_timestep_count_max )&
765             THEN
766                CALL ls_forcing_surf ( simulated_time )
767             ENDIF
768
769!
[2232]770!--          First the vertical (and horizontal) fluxes in the surface
771!--          (constant flux) layer are computed
[1691]772             IF ( constant_flux_layer )  THEN
773                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
774                CALL surface_layer_fluxes
775                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
[1]776             ENDIF
[1241]777
[1]778!
[1691]779!--          If required, solve the energy balance for the surface and run soil
[2232]780!--          model. Call for horizontal as well as vertical surfaces
[2299]781             IF ( land_surface .AND. time_since_reference_point > skip_time_do_lsm)  THEN
[1691]782
783                CALL cpu_log( log_point(54), 'land_surface', 'start' )
[2232]784!
785!--             Call for horizontal upward-facing surfaces
786                CALL lsm_energy_balance( .TRUE., -1 )
[2299]787                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
[2232]788!
789!--             Call for northward-facing surfaces
790                CALL lsm_energy_balance( .FALSE., 0 )
[2299]791                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
[2232]792!
793!--             Call for southward-facing surfaces
794                CALL lsm_energy_balance( .FALSE., 1 )
[2299]795                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
[2232]796!
797!--             Call for eastward-facing surfaces
798                CALL lsm_energy_balance( .FALSE., 2 )
[2299]799                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
[2232]800!
801!--             Call for westward-facing surfaces
802                CALL lsm_energy_balance( .FALSE., 3 )
[2299]803                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
[2232]804
[1691]805                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
806             ENDIF
[2007]807
[1691]808!
[2007]809!--          If required, solve the energy balance for urban surfaces and run
810!--          the material heat model
811             IF (urban_surface) THEN
812                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
813                CALL usm_surface_energy_balance
814                IF ( usm_material_model )  THEN
815                   CALL usm_material_heat_model
816                ENDIF
817                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
818             ENDIF
819
820!
[1]821!--          Compute the diffusion coefficients
822             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
[75]823             IF ( .NOT. humidity ) THEN
[97]824                IF ( ocean )  THEN
[388]825                   CALL diffusivities( prho, prho_reference )
[97]826                ELSE
827                   CALL diffusivities( pt, pt_reference )
828                ENDIF
[1]829             ELSE
[97]830                CALL diffusivities( vpt, pt_reference )
[1]831             ENDIF
[2232]832
[1]833             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
834
835          ENDIF
836
[1691]837!
838!--       If required, calculate radiative fluxes and heating rates
839          IF ( radiation .AND. intermediate_timestep_count                     &
[2299]840               == intermediate_timestep_count_max .AND. time_since_reference_point >    &
[1691]841               skip_time_do_radiation )  THEN
842
843               time_radiation = time_radiation + dt_3d
844
845             IF ( time_radiation >= dt_radiation .OR. force_radiation_call )   &
846             THEN
847
848                CALL cpu_log( log_point(50), 'radiation', 'start' )
849
850                IF ( .NOT. force_radiation_call )  THEN
851                   time_radiation = time_radiation - dt_radiation
852                ENDIF
853
[1976]854                CALL radiation_control
[1691]855
856                CALL cpu_log( log_point(50), 'radiation', 'stop' )
[2007]857
858                IF (urban_surface)  THEN
859                   CALL cpu_log( log_point(75), 'usm_radiation', 'start' )
860                   CALL usm_radiation
861                   CALL cpu_log( log_point(75), 'usm_radiation', 'stop' )
862                ENDIF
863
[1691]864             ENDIF
865          ENDIF
866
[1]867       ENDDO   ! Intermediate step loop
868
869!
870!--    Increase simulation time and output times
[1111]871       nr_timesteps_this_run      = nr_timesteps_this_run + 1
[291]872       current_timestep_number    = current_timestep_number + 1
873       simulated_time             = simulated_time   + dt_3d
874       simulated_time_chr         = time_to_string( simulated_time )
875       time_since_reference_point = simulated_time - coupling_start_time
876
[1957]877
878
[1]879       IF ( simulated_time >= skip_time_data_output_av )  THEN
880          time_do_av         = time_do_av       + dt_3d
881       ENDIF
882       IF ( simulated_time >= skip_time_do2d_xy )  THEN
883          time_do2d_xy       = time_do2d_xy     + dt_3d
884       ENDIF
885       IF ( simulated_time >= skip_time_do2d_xz )  THEN
886          time_do2d_xz       = time_do2d_xz     + dt_3d
887       ENDIF
888       IF ( simulated_time >= skip_time_do2d_yz )  THEN
889          time_do2d_yz       = time_do2d_yz     + dt_3d
890       ENDIF
891       IF ( simulated_time >= skip_time_do3d    )  THEN
892          time_do3d          = time_do3d        + dt_3d
893       ENDIF
[410]894       DO  mid = 1, masks
895          IF ( simulated_time >= skip_time_domask(mid) )  THEN
896             time_domask(mid)= time_domask(mid) + dt_3d
897          ENDIF
898       ENDDO
[1]899       time_dvrp          = time_dvrp        + dt_3d
900       IF ( simulated_time >= skip_time_dosp )  THEN
901          time_dosp       = time_dosp        + dt_3d
902       ENDIF
903       time_dots          = time_dots        + dt_3d
[849]904       IF ( .NOT. first_call_lpm )  THEN
[1]905          time_dopts      = time_dopts       + dt_3d
906       ENDIF
907       IF ( simulated_time >= skip_time_dopr )  THEN
908          time_dopr       = time_dopr        + dt_3d
909       ENDIF
910       time_dopr_listing          = time_dopr_listing        + dt_3d
911       time_run_control   = time_run_control + dt_3d
912
913!
[102]914!--    Data exchange between coupled models
[291]915       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled )  THEN
[102]916          time_coupling = time_coupling + dt_3d
[343]917
[108]918!
919!--       In case of model termination initiated by the local model
920!--       (terminate_coupled > 0), the coupler must be skipped because it would
921!--       cause an MPI intercomminucation hang.
922!--       If necessary, the coupler will be called at the beginning of the
923!--       next restart run.
924          DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 )
[102]925             CALL surface_coupler
926             time_coupling = time_coupling - dt_coupling
927          ENDDO
928       ENDIF
929
930!
[46]931!--    Execute user-defined actions
932       CALL user_actions( 'after_integration' )
933
934!
[1]935!--    If Galilei transformation is used, determine the distance that the
936!--    model has moved so far
937       IF ( galilei_transformation )  THEN
938          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
939          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
940       ENDIF
941
942!
943!--    Check, if restart is necessary (because cpu-time is expiring or
944!--    because it is forced by user) and set stop flag
[108]945!--    This call is skipped if the remote model has already initiated a restart.
946       IF ( .NOT. terminate_run )  CALL check_for_restart
[1]947
948!
949!--    Carry out statistical analysis and output at the requested output times.
950!--    The MOD function is used for calculating the output time counters (like
951!--    time_dopr) in order to regard a possible decrease of the output time
952!--    interval in case of restart runs
953
954!
955!--    Set a flag indicating that so far no statistics have been created
956!--    for this time step
957       flow_statistics_called = .FALSE.
958
959!
960!--    If required, call flow_statistics for averaging in time
[1342]961       IF ( averaging_interval_pr /= 0.0_wp  .AND.  &
[1]962            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.  &
963            simulated_time >= skip_time_dopr )  THEN
964          time_dopr_av = time_dopr_av + dt_3d
965          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
966             do_sum = .TRUE.
967             time_dopr_av = MOD( time_dopr_av, &
968                                    MAX( dt_averaging_input_pr, dt_3d ) )
969          ENDIF
970       ENDIF
971       IF ( do_sum )  CALL flow_statistics
972
973!
[410]974!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
[1342]975       IF ( averaging_interval /= 0.0_wp  .AND.                                &
[1]976            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND. &
977            simulated_time >= skip_time_data_output_av )                    &
978       THEN
979          time_do_sla = time_do_sla + dt_3d
980          IF ( time_do_sla >= dt_averaging_input )  THEN
981             CALL sum_up_3d_data
982             average_count_3d = average_count_3d + 1
983             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
984          ENDIF
985       ENDIF
986
987!
988!--    Calculate spectra for time averaging
[1342]989       IF ( averaging_interval_sp /= 0.0_wp  .AND.  &
[1]990            ( dt_dosp - time_dosp ) <= averaging_interval_sp  .AND.  &
991            simulated_time >= skip_time_dosp )  THEN
992          time_dosp_av = time_dosp_av + dt_3d
993          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
994             CALL calc_spectra
995             time_dosp_av = MOD( time_dosp_av, &
996                                 MAX( dt_averaging_input_pr, dt_3d ) )
997          ENDIF
998       ENDIF
999
1000!
[1957]1001!--    Call flight module and output data
1002       IF ( virtual_flight )  THEN
1003          CALL flight_measurement
1004          CALL data_output_flight
1005       ENDIF
1006
1007!
[1]1008!--    Profile output (ASCII) on file
1009       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1010          CALL print_1d
1011          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, &
1012                                                           dt_3d ) )
1013       ENDIF
1014
1015!
1016!--    Graphic output for PROFIL
1017       IF ( time_dopr >= dt_dopr )  THEN
1018          IF ( dopr_n /= 0 )  CALL data_output_profiles
1019          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
[1342]1020          time_dopr_av = 0.0_wp    ! due to averaging (see above)
[1]1021       ENDIF
1022
1023!
1024!--    Graphic output for time series
1025       IF ( time_dots >= dt_dots )  THEN
[48]1026          CALL data_output_tseries
[1]1027          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1028       ENDIF
1029
1030!
1031!--    Output of spectra (formatted for use with PROFIL), in case of no
1032!--    time averaging, spectra has to be calculated before
1033       IF ( time_dosp >= dt_dosp )  THEN
1034          IF ( average_count_sp == 0 )  CALL calc_spectra
1035          CALL data_output_spectra
1036          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1037       ENDIF
1038
1039!
1040!--    2d-data output (cross-sections)
1041       IF ( time_do2d_xy >= dt_do2d_xy )  THEN
1042          CALL data_output_2d( 'xy', 0 )
1043          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1044       ENDIF
1045       IF ( time_do2d_xz >= dt_do2d_xz )  THEN
1046          CALL data_output_2d( 'xz', 0 )
1047          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1048       ENDIF
1049       IF ( time_do2d_yz >= dt_do2d_yz )  THEN
1050          CALL data_output_2d( 'yz', 0 )
1051          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1052       ENDIF
1053
1054!
1055!--    3d-data output (volume data)
1056       IF ( time_do3d >= dt_do3d )  THEN
1057          CALL data_output_3d( 0 )
1058          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1059       ENDIF
1060
1061!
[1783]1062!--    Masked data output
[410]1063       DO  mid = 1, masks
1064          IF ( time_domask(mid) >= dt_domask(mid) )  THEN
1065             CALL data_output_mask( 0 )
1066             time_domask(mid) = MOD( time_domask(mid),  &
1067                                     MAX( dt_domask(mid), dt_3d ) )
1068          ENDIF
1069       ENDDO
1070
1071!
1072!--    Output of time-averaged 2d/3d/masked data
[1]1073       IF ( time_do_av >= dt_data_output_av )  THEN
1074          CALL average_3d_data
1075          CALL data_output_2d( 'xy', 1 )
1076          CALL data_output_2d( 'xz', 1 )
1077          CALL data_output_2d( 'yz', 1 )
1078          CALL data_output_3d( 1 )
[410]1079          DO  mid = 1, masks
1080             CALL data_output_mask( 1 )
1081          ENDDO
[1]1082          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1083       ENDIF
1084
1085!
1086!--    Output of particle time series
[253]1087       IF ( particle_advection )  THEN
1088          IF ( time_dopts >= dt_dopts  .OR. &
1089               ( simulated_time >= particle_advection_start  .AND. &
[849]1090                 first_call_lpm ) )  THEN
[253]1091             CALL data_output_ptseries
1092             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1093          ENDIF
[1]1094       ENDIF
1095
1096!
1097!--    Output of dvrp-graphics (isosurface, particles, slicer)
1098#if defined( __dvrp_graphics )
1099       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
1100#endif
1101       IF ( time_dvrp >= dt_dvrp )  THEN
1102          CALL data_output_dvrp
1103          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
1104       ENDIF
1105#if defined( __dvrp_graphics )
1106       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
1107#endif
1108
1109!
1110!--    If required, set the heat flux for the next time step at a random value
[2232]1111       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
1112          IF ( surf_def_h(0)%ns >= 1 )  CALL disturb_heatflux( surf_def_h(0) )
1113          IF ( surf_lsm_h%ns    >= 1 )  CALL disturb_heatflux( surf_lsm_h    )
1114          IF ( surf_usm_h%ns    >= 1 )  CALL disturb_heatflux( surf_usm_h    )
1115       ENDIF
[1]1116
1117!
1118!--    Execute user-defined actions
1119       CALL user_actions( 'after_timestep' )
1120
[1402]1121!
[1918]1122!--    Determine size of next time step. Save timestep dt_3d because it is
1123!--    newly calculated in routine timestep, but required further below for
1124!--    steering the run control output interval
1125       dt_3d_old = dt_3d
1126       CALL timestep
1127
1128!
[1925]1129!--    Synchronize the timestep in case of nested run.
1130       IF ( nested_run )  THEN
1131!
1132!--       Synchronize by unifying the time step.
1133!--       Global minimum of all time-steps is used for all.
1134          CALL pmci_synchronize
1135       ENDIF
1136
1137!
[1918]1138!--    Computation and output of run control parameters.
1139!--    This is also done whenever perturbations have been imposed
1140       IF ( time_run_control >= dt_run_control  .OR.                     &
1141            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created ) &
1142       THEN
1143          CALL run_control
1144          IF ( time_run_control >= dt_run_control )  THEN
1145             time_run_control = MOD( time_run_control, &
1146                                     MAX( dt_run_control, dt_3d_old ) )
1147          ENDIF
1148       ENDIF
1149
1150!
[1402]1151!--    Output elapsed simulated time in form of a progress bar on stdout
1152       IF ( myid == 0 )  CALL output_progress_bar
1153
[1]1154       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1155
[667]1156
[1]1157    ENDDO   ! time loop
1158
[1402]1159    IF ( myid == 0 )  CALL finish_progress_bar
1160
[1]1161#if defined( __dvrp_graphics )
1162    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
1163#endif
1164
[1402]1165    CALL location_message( 'finished time-stepping', .TRUE. )
[1384]1166
[1]1167 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.