source: palm/trunk/SOURCE/time_integration.f90 @ 2320

Last change on this file since 2320 was 2320, checked in by suehring, 4 years ago

large-scale forcing and nudging modularized

  • Property svn:keywords set to Id
File size: 43.0 KB
Line 
1!> @file time_integration.f90
2!------------------------------------------------------------------------------!
3! This file is part of PALM.
4!
5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2017 Leibniz Universitaet Hannover
18!------------------------------------------------------------------------------!
19!
20! Current revisions:
21! ------------------
22!
23!
24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 2320 2017-07-21 12:47:43Z suehring $
27! Set bottom boundary conditions after nesting interpolation and anterpolation
28!
29! 2299 2017-06-29 10:14:38Z maronga
30! Call of soil model adjusted
31!
32! 2292 2017-06-20 09:51:42Z schwenkel
33! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
34! includes two more prognostic equations for cloud drop concentration (nc) 
35! and cloud water content (qc).
36!
37! 2271 2017-06-09 12:34:55Z sward
38! Start timestep message changed
39!
40! 2259 2017-06-08 09:09:11Z gronemeier
41! Implemented synthetic turbulence generator
42!
43! 2233 2017-05-30 18:08:54Z suehring
44!
45! 2232 2017-05-30 17:47:52Z suehring
46! Adjustments to new topography and surface concept
47! Modify passed parameters for disturb_field
48!
49! 2178 2017-03-17 11:07:39Z hellstea
50! Setting perturbations at all times near inflow boundary is removed
51! in case of nested boundaries
52!
53! 2174 2017-03-13 08:18:57Z maronga
54! Added support for nesting with cloud microphysics
55!
56! 2118 2017-01-17 16:38:49Z raasch
57! OpenACC directives and related code removed
58!
59! 2050 2016-11-08 15:00:55Z gronemeier
60! Implement turbulent outflow condition
61!
62! 2031 2016-10-21 15:11:58Z knoop
63! renamed variable rho to rho_ocean
64!
65! 2011 2016-09-19 17:29:57Z kanani
66! Flag urban_surface is now defined in module control_parameters,
67! removed commented CALLs of global_min_max.
68!
69! 2007 2016-08-24 15:47:17Z kanani
70! Added CALLs for new urban surface model
71!
72! 2000 2016-08-20 18:09:15Z knoop
73! Forced header and separation lines into 80 columns
74!
75! 1976 2016-07-27 13:28:04Z maronga
76! Simplified calls to radiation model
77!
78! 1960 2016-07-12 16:34:24Z suehring
79! Separate humidity and passive scalar
80!
81! 1957 2016-07-07 10:43:48Z suehring
82! flight module added
83!
84! 1919 2016-05-27 14:51:23Z raasch
85! Initial version of purely vertical nesting introduced.
86!
87! 1918 2016-05-27 14:35:57Z raasch
88! determination of time step moved to the end of the time step loop,
89! the first time step is now always calculated before the time step loop (i.e.
90! also in case of restart runs)
91!
92! 1914 2016-05-26 14:44:07Z witha
93! Added call for wind turbine model
94!
95! 1878 2016-04-19 12:30:36Z hellstea
96! Synchronization for nested runs rewritten
97!
98! 1853 2016-04-11 09:00:35Z maronga
99! Adjusted for use with radiation_scheme = constant
100!
101! 1849 2016-04-08 11:33:18Z hoffmann
102! Adapted for modularization of microphysics
103!
104! 1833 2016-04-07 14:23:03Z raasch
105! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
106!
107! 1831 2016-04-07 13:15:51Z hoffmann
108! turbulence renamed collision_turbulence
109!
110! 1822 2016-04-07 07:49:42Z hoffmann
111! icloud_scheme replaced by microphysics_*
112!
113! 1808 2016-04-05 19:44:00Z raasch
114! output message in case unscheduled radiation calls removed
115!
116! 1797 2016-03-21 16:50:28Z raasch
117! introduction of different datatransfer modes
118!
119! 1791 2016-03-11 10:41:25Z raasch
120! call of pmci_update_new removed
121!
122! 1786 2016-03-08 05:49:27Z raasch
123! +module spectrum
124!
125! 1783 2016-03-06 18:36:17Z raasch
126! switch back of netcdf data format for mask output moved to the mask output
127! routine
128!
129! 1781 2016-03-03 15:12:23Z raasch
130! some pmc calls removed at the beginning (before timeloop),
131! pmc initialization moved to the main program
132!
133! 1764 2016-02-28 12:45:19Z raasch
134! PMC_ACTIVE flags removed,
135! bugfix: nest synchronization after first call of timestep
136!
137! 1762 2016-02-25 12:31:13Z hellstea
138! Introduction of nested domain feature
139!
140! 1736 2015-12-04 08:56:33Z raasch
141! no perturbations added to total domain if energy limit has been set zero
142!
143! 1691 2015-10-26 16:17:44Z maronga
144! Added option for spin-ups without land surface and radiation models. Moved calls
145! for radiation and lan surface schemes.
146!
147! 1682 2015-10-07 23:56:08Z knoop
148! Code annotations made doxygen readable
149!
150! 1671 2015-09-25 03:29:37Z raasch
151! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
152! for particles
153!
154! 1585 2015-04-30 07:05:52Z maronga
155! Moved call of radiation scheme. Added support for RRTM
156!
157! 1551 2015-03-03 14:18:16Z maronga
158! Added interface for different radiation schemes.
159!
160! 1496 2014-12-02 17:25:50Z maronga
161! Added calls for the land surface model and radiation scheme
162!
163! 1402 2014-05-09 14:25:13Z raasch
164! location messages modified
165!
166! 1384 2014-05-02 14:31:06Z raasch
167! location messages added
168!
169! 1380 2014-04-28 12:40:45Z heinze
170! CALL of nudge_ref added
171! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
172!
173! 1365 2014-04-22 15:03:56Z boeske
174! Reset sums_ls_l to zero at each timestep
175! +sums_ls_l
176! Calculation of reference state (previously in subroutine calc_mean_profile)
177
178! 1342 2014-03-26 17:04:47Z kanani
179! REAL constants defined as wp-kind
180!
181! 1320 2014-03-20 08:40:49Z raasch
182! ONLY-attribute added to USE-statements,
183! kind-parameters added to all INTEGER and REAL declaration statements,
184! kinds are defined in new module kinds,
185! old module precision_kind is removed,
186! revision history before 2012 removed,
187! comment fields (!:) to be used for variable explanations added to
188! all variable declaration statements
189! 1318 2014-03-17 13:35:16Z raasch
190! module interfaces removed
191!
192! 1308 2014-03-13 14:58:42Z fricke
193! +netcdf_data_format_save
194! For masked data, parallel netcdf output is not tested so far, hence
195! netcdf_data_format is switched back to non-paralell output.
196!
197! 1276 2014-01-15 13:40:41Z heinze
198! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
199!
200! 1257 2013-11-08 15:18:40Z raasch
201! acc-update-host directive for timestep removed
202!
203! 1241 2013-10-30 11:36:58Z heinze
204! Generalize calc_mean_profile for wider use
205! Determine shf and qsws in dependence on data from LSF_DATA
206! Determine ug and vg in dependence on data from LSF_DATA
207! 1221 2013-09-10 08:59:13Z raasch
208! host update of arrays before timestep is called
209!
210! 1179 2013-06-14 05:57:58Z raasch
211! mean profiles for reference state are only calculated if required,
212! small bugfix for background communication
213!
214! 1171 2013-05-30 11:27:45Z raasch
215! split of prognostic_equations deactivated (comment lines), for the time being
216!
217! 1128 2013-04-12 06:19:32Z raasch
218! asynchronous transfer of ghost point data realized for acc-optimized version:
219! prognostic_equations are first called two times for those points required for
220! the left-right and north-south exchange, respectively, and then for the
221! remaining points,
222! those parts requiring global communication moved from prognostic_equations to
223! here
224!
225! 1115 2013-03-26 18:16:16Z hoffmann
226! calculation of qr and nr is restricted to precipitation
227!
228! 1113 2013-03-10 02:48:14Z raasch
229! GPU-porting of boundary conditions,
230! openACC directives updated
231! formal parameter removed from routine boundary_conds
232!
233! 1111 2013-03-08 23:54:10Z raasch
234! +internal timestep counter for cpu statistics added,
235! openACC directives updated
236!
237! 1092 2013-02-02 11:24:22Z raasch
238! unused variables removed
239!
240! 1065 2012-11-22 17:42:36Z hoffmann
241! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
242!
243! 1053 2012-11-13 17:11:03Z hoffmann
244! exchange of ghost points for nr, qr added
245!
246! 1036 2012-10-22 13:43:42Z raasch
247! code put under GPL (PALM 3.9)
248!
249! 1019 2012-09-28 06:46:45Z raasch
250! non-optimized version of prognostic_equations removed
251!
252! 1015 2012-09-27 09:23:24Z raasch
253! +call of prognostic_equations_acc
254!
255! 1001 2012-09-13 14:08:46Z raasch
256! all actions concerning leapfrog- and upstream-spline-scheme removed
257!
258! 849 2012-03-15 10:35:09Z raasch
259! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
260!
261! 825 2012-02-19 03:03:44Z raasch
262! wang_collision_kernel renamed wang_kernel
263!
264! Revision 1.1  1997/08/11 06:19:04  raasch
265! Initial revision
266!
267!
268! Description:
269! ------------
270!> Integration in time of the model equations, statistical analysis and graphic
271!> output
272!------------------------------------------------------------------------------!
273 SUBROUTINE time_integration
274 
275
276    USE advec_ws,                                                              &
277        ONLY:  ws_statistics
278
279    USE arrays_3d,                                                             &
280        ONLY:  diss, dzu, e, e_p, nc, nc_p, nr, nr_p, prho, pt, pt_p, pt_init, &
281               q_init, q, qc, qc_p, ql, ql_c, ql_v, ql_vp, qr, qr_p, q_p,      &
282               ref_state, rho_ocean, s, s_p, sa_p, tend, u, u_p, v, vpt,       &
283               v_p, w, w_p
284
285    USE calc_mean_profile_mod,                                                 &
286        ONLY:  calc_mean_profile
287
288    USE control_parameters,                                                    &
289        ONLY:  advected_distance_x, advected_distance_y, average_count_3d,     &
290               averaging_interval, averaging_interval_pr,                      &
291               bc_lr_cyc, bc_ns_cyc, bc_pt_t_val,                              &
292               bc_q_t_val, call_psolver_at_all_substeps, cloud_droplets,       &
293               cloud_physics, constant_flux_layer, constant_heatflux,          &
294               create_disturbances, dopr_n, constant_diffusion, coupling_mode, &
295               coupling_start_time, current_timestep_number,                   &
296               disturbance_created, disturbance_energy_limit, dist_range,      &
297               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr,       &
298               dt_coupling, dt_data_output_av, dt_disturb, dt_do2d_xy,         &
299               dt_do2d_xz, dt_do2d_yz, dt_do3d, dt_domask,dt_dopts, dt_dopr,   &
300               dt_dopr_listing, dt_dots, dt_dvrp, dt_run_control,              &
301               end_time, first_call_lpm, galilei_transformation, humidity,     &
302               intermediate_timestep_count, intermediate_timestep_count_max,   &
303               land_surface, large_scale_forcing,                              &
304               loop_optimization, lsf_surf, lsf_vert, masks,                   &
305               microphysics_morrison, microphysics_seifert, mid, nest_domain,  &
306               neutral, nr_timesteps_this_run, nudging,                        &
307               ocean, passive_scalar,                                          &
308               prho_reference, pt_reference, pt_slope_offset, random_heatflux, &
309               run_coupled, simulated_time, simulated_time_chr,                &
310               skip_time_do2d_xy, skip_time_do2d_xz, skip_time_do2d_yz,        &
311               skip_time_do3d, skip_time_domask, skip_time_dopr,               &
312               skip_time_data_output_av, sloping_surface,                      &
313               stop_dt, terminate_coupled, terminate_run, timestep_scheme,     &
314               time_coupling, time_do2d_xy, time_do2d_xz, time_do2d_yz,        &
315               time_do3d, time_domask, time_dopr, time_dopr_av,                &
316               time_dopr_listing, time_dopts, time_dosp, time_dosp_av,         &
317               time_dots, time_do_av, time_do_sla, time_disturb, time_dvrp,    &
318               time_run_control, time_since_reference_point,                   &
319               turbulent_inflow, turbulent_outflow, urban_surface,             &
320               use_initial_profile_as_reference,                               &
321               use_single_reference_value, u_gtrans, v_gtrans, virtual_flight, &
322               ws_scheme_mom, ws_scheme_sca
323
324    USE cpulog,                                                                &
325        ONLY:  cpu_log, log_point, log_point_s
326
327    USE flight_mod,                                                            &
328        ONLY:  flight_measurement
329
330
331    USE indices,                                                               &
332        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt
333
334    USE interaction_droplets_ptq_mod,                                          &
335        ONLY:  interaction_droplets_ptq
336
337    USE interfaces
338
339    USE kinds
340
341    USE land_surface_model_mod,                                                &
342        ONLY:  lsm_energy_balance, lsm_soil_model,                             &
343               skip_time_do_lsm
344
345    USE lsf_nudging_mod,                                                       &
346        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
347
348    USE microphysics_mod,                                                      &
349        ONLY: collision_turbulence
350
351    USE particle_attributes,                                                   &
352        ONLY:  particle_advection, particle_advection_start,                   &
353               use_sgs_for_particles, wang_kernel
354
355    USE pegrid
356
357    USE pmc_interface,                                                         &
358        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans,  &
359               pmci_ensure_nest_mass_conservation, pmci_synchronize
360
361    USE production_e_mod,                                                      &
362        ONLY:  production_e_init
363
364    USE progress_bar,                                                          &
365        ONLY:  finish_progress_bar, output_progress_bar
366
367    USE prognostic_equations_mod,                                              &
368        ONLY:  prognostic_equations_cache, prognostic_equations_vector
369
370    USE radiation_model_mod,                                                   &
371        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,&
372              skip_time_do_radiation, time_radiation
373
374    USE spectra_mod,                                                           &
375        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp,  &
376              skip_time_dosp
377
378    USE statistics,                                                            &
379        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l, u_max,         &
380               u_max_ijk, v_max, v_max_ijk, w_max, w_max_ijk
381
382    USE surface_layer_fluxes_mod,                                              &
383        ONLY:  surface_layer_fluxes
384
385    USE surface_mod,                                                           &
386        ONLY:  surf_def_h, surf_lsm_h, surf_usm_h
387
388    USE urban_surface_mod,                                                     &
389        ONLY:  usm_material_heat_model, usm_material_model,                    &
390               usm_radiation, usm_surface_energy_balance
391
392    USE synthetic_turbulence_generator_mod,                                    &
393        ONLY:  stg_main, use_synthetic_turbulence_generator
394
395    USE user_actions_mod,                                                      &
396        ONLY:  user_actions
397
398    USE wind_turbine_model_mod,                                                &
399        ONLY:  wind_turbine, wtm_forces
400
401    IMPLICIT NONE
402
403    CHARACTER (LEN=9) ::  time_to_string          !<
404
405    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
406                            !< steering of run control output interval
407
408!
409!-- At beginning determine the first time step
410    CALL timestep
411
412!
413!-- Synchronize the timestep in case of nested run.
414    IF ( nested_run )  THEN
415!
416!--    Synchronization by unifying the time step.
417!--    Global minimum of all time-steps is used for all.
418       CALL pmci_synchronize
419    ENDIF
420
421!
422!-- Determine and print out the run control quantities before the first time
423!-- step of this run. For the initial run, some statistics (e.g. divergence)
424!-- need to be determined first.
425    IF ( simulated_time == 0.0_wp )  CALL flow_statistics
426    CALL run_control
427
428!
429!-- Data exchange between coupled models in case that a call has been omitted
430!-- at the end of the previous run of a job chain.
431    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled )  THEN
432!
433!--    In case of model termination initiated by the local model the coupler
434!--    must not be called because this would again cause an MPI hang.
435       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
436          CALL surface_coupler
437          time_coupling = time_coupling - dt_coupling
438       ENDDO
439       IF (time_coupling == 0.0_wp  .AND.                                      &
440           time_since_reference_point < dt_coupling )                          &
441       THEN
442          time_coupling = time_since_reference_point
443       ENDIF
444    ENDIF
445
446#if defined( __dvrp_graphics )
447!
448!-- Time measurement with dvrp software 
449    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
450#endif
451
452    CALL location_message( 'starting timestep-sequence', .TRUE. )
453!
454!-- Start of the time loop
455    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. &
456                .NOT. terminate_run )
457
458       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
459!
460!--    Determine ug, vg and w_subs in dependence on data from external file
461!--    LSF_DATA
462       IF ( large_scale_forcing .AND. lsf_vert )  THEN
463           CALL ls_forcing_vert ( simulated_time )
464           sums_ls_l = 0.0_wp
465       ENDIF
466
467!
468!--    Set pt_init and q_init to the current profiles taken from
469!--    NUDGING_DATA
470       IF ( nudging )  THEN
471           CALL nudge_ref ( simulated_time )
472!
473!--        Store temperature gradient at the top boundary for possible Neumann
474!--        boundary condition
475           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
476           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
477       ENDIF
478
479!
480!--    Execute the user-defined actions
481       CALL user_actions( 'before_timestep' )
482
483!
484!--    Calculate forces by wind turbines
485       IF ( wind_turbine )  THEN
486
487          CALL cpu_log( log_point(55), 'wind_turbine', 'start' )
488
489          CALL wtm_forces
490
491          CALL cpu_log( log_point(55), 'wind_turbine', 'stop' )
492
493       ENDIF       
494       
495!
496!--    Start of intermediate step loop
497       intermediate_timestep_count = 0
498       DO  WHILE ( intermediate_timestep_count < &
499                   intermediate_timestep_count_max )
500
501          intermediate_timestep_count = intermediate_timestep_count + 1
502
503!
504!--       Set the steering factors for the prognostic equations which depend
505!--       on the timestep scheme
506          CALL timestep_scheme_steering
507
508!
509!--       Calculate those variables needed in the tendency terms which need
510!--       global communication
511          IF ( .NOT. use_single_reference_value  .AND. &
512               .NOT. use_initial_profile_as_reference )  THEN
513!
514!--          Horizontally averaged profiles to be used as reference state in
515!--          buoyancy terms (WARNING: only the respective last call of
516!--          calc_mean_profile defines the reference state!)
517             IF ( .NOT. neutral )  THEN
518                CALL calc_mean_profile( pt, 4 )
519                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
520             ENDIF
521             IF ( ocean )  THEN
522                CALL calc_mean_profile( rho_ocean, 64 )
523                ref_state(:)  = hom(:,1,64,0)
524             ENDIF
525             IF ( humidity )  THEN
526                CALL calc_mean_profile( vpt, 44 )
527                ref_state(:)  = hom(:,1,44,0)
528             ENDIF
529
530          ENDIF
531
532          IF ( .NOT. constant_diffusion )  CALL production_e_init
533          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  &
534               intermediate_timestep_count == 1 )  CALL ws_statistics
535!
536!--       In case of nudging calculate current nudging time scale and horizontal
537!--       means of u, v, pt and q
538          IF ( nudging )  THEN
539             CALL calc_tnudge( simulated_time )
540             CALL calc_mean_profile( u, 1 )
541             CALL calc_mean_profile( v, 2 )
542             CALL calc_mean_profile( pt, 4 )
543             CALL calc_mean_profile( q, 41 )
544          ENDIF
545
546!
547!--       Solve the prognostic equations. A fast cache optimized version with
548!--       only one single loop is used in case of Piascek-Williams advection
549!--       scheme. NEC vector machines use a different version, because
550!--       in the other versions a good vectorization is prohibited due to
551!--       inlining problems.
552          IF ( loop_optimization == 'cache' )  THEN
553             CALL prognostic_equations_cache
554          ELSEIF ( loop_optimization == 'vector' )  THEN
555             CALL prognostic_equations_vector
556          ENDIF
557
558!
559!--       Particle transport/physics with the Lagrangian particle model
560!--       (only once during intermediate steps, because it uses an Euler-step)
561!--       ### particle model should be moved before prognostic_equations, in order
562!--       to regard droplet interactions directly
563          IF ( particle_advection  .AND.                         &
564               simulated_time >= particle_advection_start  .AND. &
565               intermediate_timestep_count == 1 )  THEN
566             CALL lpm
567             first_call_lpm = .FALSE.
568          ENDIF
569
570!
571!--       Interaction of droplets with temperature and specific humidity.
572!--       Droplet condensation and evaporation is calculated within
573!--       advec_particles.
574          IF ( cloud_droplets  .AND.  &
575               intermediate_timestep_count == intermediate_timestep_count_max )&
576          THEN
577             CALL interaction_droplets_ptq
578          ENDIF
579
580!
581!--       Exchange of ghost points (lateral boundary conditions)
582          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
583
584          CALL exchange_horiz( u_p, nbgp )
585          CALL exchange_horiz( v_p, nbgp )
586          CALL exchange_horiz( w_p, nbgp )
587          CALL exchange_horiz( pt_p, nbgp )
588          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
589          IF ( ocean )  THEN
590             CALL exchange_horiz( sa_p, nbgp )
591             CALL exchange_horiz( rho_ocean, nbgp )
592             CALL exchange_horiz( prho, nbgp )
593          ENDIF
594          IF ( humidity )  THEN
595             CALL exchange_horiz( q_p, nbgp )
596             IF ( cloud_physics .AND. microphysics_morrison )  THEN
597                CALL exchange_horiz( qc_p, nbgp )
598                CALL exchange_horiz( nc_p, nbgp )
599             ENDIF
600             IF ( cloud_physics .AND. microphysics_seifert )  THEN
601                CALL exchange_horiz( qr_p, nbgp )
602                CALL exchange_horiz( nr_p, nbgp )
603             ENDIF
604          ENDIF
605          IF ( cloud_droplets )  THEN
606             CALL exchange_horiz( ql, nbgp )
607             CALL exchange_horiz( ql_c, nbgp )
608             CALL exchange_horiz( ql_v, nbgp )
609             CALL exchange_horiz( ql_vp, nbgp )
610          ENDIF
611          IF ( wang_kernel  .OR.  collision_turbulence  .OR.                &
612               use_sgs_for_particles )  THEN
613             CALL exchange_horiz( diss, nbgp )
614          ENDIF
615          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
616
617          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
618
619!
620!--       Boundary conditions for the prognostic quantities (except of the
621!--       velocities at the outflow in case of a non-cyclic lateral wall)
622          CALL boundary_conds
623!
624!--       Swap the time levels in preparation for the next time step.
625          CALL swap_timelevel
626
627          IF ( nested_run )  THEN
628
629             CALL cpu_log( log_point(60), 'nesting', 'start' )
630!
631!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
632!--          and pmci_child_datatrans are called inside the wrapper
633!--          subroutine pmci_datatrans according to the control parameters
634!--          nesting_mode and nesting_datatransfer_mode.
635!--          TO_DO: why is nesting_mode given as a parameter here?
636             CALL pmci_datatrans( nesting_mode )
637
638             IF ( TRIM( nesting_mode ) == 'two-way' .OR.                       &
639                  nesting_mode == 'vertical' )  THEN
640!
641!--             Exchange_horiz is needed for all parent-domains after the
642!--             anterpolation
643                CALL exchange_horiz( u, nbgp )
644                CALL exchange_horiz( v, nbgp )
645                CALL exchange_horiz( w, nbgp )
646                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
647
648                IF ( humidity )  THEN
649
650                   CALL exchange_horiz( q, nbgp )
651
652                   IF ( cloud_physics  .AND.  microphysics_morrison )  THEN
653                       CALL exchange_horiz( qc, nbgp )
654                       CALL exchange_horiz( nc, nbgp )
655                   ENDIF
656                   IF ( cloud_physics  .AND.  microphysics_seifert )  THEN
657                       CALL exchange_horiz( qr, nbgp )
658                       CALL exchange_horiz( nr, nbgp )
659                   ENDIF
660
661                ENDIF
662
663                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp )
664                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
665             ENDIF
666!
667!--          Set boundary conditions again after interpolation and anterpolation.
668             CALL pmci_boundary_conds
669!
670!--          Correct the w top-BC in nest domains to ensure mass conservation.
671!--          This action must never be done for the root domain. Vertical
672!--          nesting implies mass conservation.
673             IF ( nest_domain )  THEN
674                CALL pmci_ensure_nest_mass_conservation
675             ENDIF
676
677             CALL cpu_log( log_point(60), 'nesting', 'stop' )
678
679          ENDIF
680
681!
682!--       Temperature offset must be imposed at cyclic boundaries in x-direction
683!--       when a sloping surface is used
684          IF ( sloping_surface )  THEN
685             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - &
686                                                    pt_slope_offset
687             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + &
688                                                    pt_slope_offset
689          ENDIF
690
691!
692!--       Impose a turbulent inflow using the recycling method
693          IF ( turbulent_inflow )  CALL  inflow_turbulence
694
695!
696!--       Impose a turbulent inflow using synthetic generated turbulence
697         IF ( use_synthetic_turbulence_generator ) THEN
698            CALL  stg_main
699         ENDIF
700
701!
702!--       Set values at outflow boundary using the special outflow condition
703          IF ( turbulent_outflow )  CALL  outflow_turbulence
704
705!
706!--       Impose a random perturbation on the horizontal velocity field
707          IF ( create_disturbances  .AND.                                      &
708               ( call_psolver_at_all_substeps  .AND.                           &
709               intermediate_timestep_count == intermediate_timestep_count_max )&
710          .OR. ( .NOT. call_psolver_at_all_substeps  .AND.                     &
711               intermediate_timestep_count == 1 ) )                            &
712          THEN
713             time_disturb = time_disturb + dt_3d
714             IF ( time_disturb >= dt_disturb )  THEN
715                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                 &
716                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
717                   CALL disturb_field( 'u', tend, u )
718                   CALL disturb_field( 'v', tend, v )
719                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )            &
720                     .AND. .NOT. nest_domain )  THEN
721!
722!--                Runs with a non-cyclic lateral wall need perturbations
723!--                near the inflow throughout the whole simulation
724                   dist_range = 1
725                   CALL disturb_field( 'u', tend, u )
726                   CALL disturb_field( 'v', tend, v )
727                   dist_range = 0
728                ENDIF
729                time_disturb = time_disturb - dt_disturb
730             ENDIF
731          ENDIF
732
733!
734!--       Reduce the velocity divergence via the equation for perturbation
735!--       pressure.
736          IF ( intermediate_timestep_count == 1  .OR. &
737                call_psolver_at_all_substeps )  THEN
738             CALL pres
739          ENDIF
740
741!
742!--       If required, compute liquid water content
743          IF ( cloud_physics )  THEN
744             CALL calc_liquid_water_content
745          ENDIF
746!
747!--       If required, compute virtual potential temperature
748          IF ( humidity )  THEN
749             CALL compute_vpt
750          ENDIF
751
752!
753!--       Compute the diffusion quantities
754          IF ( .NOT. constant_diffusion )  THEN
755
756!
757!--          Determine surface fluxes shf and qsws and surface values
758!--          pt_surface and q_surface in dependence on data from external
759!--          file LSF_DATA respectively
760             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND. &
761                 intermediate_timestep_count == intermediate_timestep_count_max )&
762             THEN
763                CALL ls_forcing_surf( simulated_time )
764             ENDIF
765
766!
767!--          First the vertical (and horizontal) fluxes in the surface
768!--          (constant flux) layer are computed
769             IF ( constant_flux_layer )  THEN
770                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
771                CALL surface_layer_fluxes
772                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
773             ENDIF
774
775!
776!--          If required, solve the energy balance for the surface and run soil
777!--          model. Call for horizontal as well as vertical surfaces
778             IF ( land_surface .AND. time_since_reference_point > skip_time_do_lsm)  THEN
779
780                CALL cpu_log( log_point(54), 'land_surface', 'start' )
781!
782!--             Call for horizontal upward-facing surfaces
783                CALL lsm_energy_balance( .TRUE., -1 )
784                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
785!
786!--             Call for northward-facing surfaces
787                CALL lsm_energy_balance( .FALSE., 0 )
788                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
789!
790!--             Call for southward-facing surfaces
791                CALL lsm_energy_balance( .FALSE., 1 )
792                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
793!
794!--             Call for eastward-facing surfaces
795                CALL lsm_energy_balance( .FALSE., 2 )
796                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
797!
798!--             Call for westward-facing surfaces
799                CALL lsm_energy_balance( .FALSE., 3 )
800                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
801
802                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
803             ENDIF
804
805!
806!--          If required, solve the energy balance for urban surfaces and run
807!--          the material heat model
808             IF (urban_surface) THEN
809                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
810                CALL usm_surface_energy_balance
811                IF ( usm_material_model )  THEN
812                   CALL usm_material_heat_model
813                ENDIF
814                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
815             ENDIF
816
817!
818!--          Compute the diffusion coefficients
819             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
820             IF ( .NOT. humidity ) THEN
821                IF ( ocean )  THEN
822                   CALL diffusivities( prho, prho_reference )
823                ELSE
824                   CALL diffusivities( pt, pt_reference )
825                ENDIF
826             ELSE
827                CALL diffusivities( vpt, pt_reference )
828             ENDIF
829
830             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
831
832          ENDIF
833
834!
835!--       If required, calculate radiative fluxes and heating rates
836          IF ( radiation .AND. intermediate_timestep_count                     &
837               == intermediate_timestep_count_max .AND. time_since_reference_point >    &
838               skip_time_do_radiation )  THEN
839
840               time_radiation = time_radiation + dt_3d
841
842             IF ( time_radiation >= dt_radiation .OR. force_radiation_call )   &
843             THEN
844
845                CALL cpu_log( log_point(50), 'radiation', 'start' )
846
847                IF ( .NOT. force_radiation_call )  THEN
848                   time_radiation = time_radiation - dt_radiation
849                ENDIF
850
851                CALL radiation_control
852
853                CALL cpu_log( log_point(50), 'radiation', 'stop' )
854
855                IF (urban_surface)  THEN
856                   CALL cpu_log( log_point(75), 'usm_radiation', 'start' )
857                   CALL usm_radiation
858                   CALL cpu_log( log_point(75), 'usm_radiation', 'stop' )
859                ENDIF
860
861             ENDIF
862          ENDIF
863
864       ENDDO   ! Intermediate step loop
865
866!
867!--    Increase simulation time and output times
868       nr_timesteps_this_run      = nr_timesteps_this_run + 1
869       current_timestep_number    = current_timestep_number + 1
870       simulated_time             = simulated_time   + dt_3d
871       simulated_time_chr         = time_to_string( simulated_time )
872       time_since_reference_point = simulated_time - coupling_start_time
873
874
875
876       IF ( simulated_time >= skip_time_data_output_av )  THEN
877          time_do_av         = time_do_av       + dt_3d
878       ENDIF
879       IF ( simulated_time >= skip_time_do2d_xy )  THEN
880          time_do2d_xy       = time_do2d_xy     + dt_3d
881       ENDIF
882       IF ( simulated_time >= skip_time_do2d_xz )  THEN
883          time_do2d_xz       = time_do2d_xz     + dt_3d
884       ENDIF
885       IF ( simulated_time >= skip_time_do2d_yz )  THEN
886          time_do2d_yz       = time_do2d_yz     + dt_3d
887       ENDIF
888       IF ( simulated_time >= skip_time_do3d    )  THEN
889          time_do3d          = time_do3d        + dt_3d
890       ENDIF
891       DO  mid = 1, masks
892          IF ( simulated_time >= skip_time_domask(mid) )  THEN
893             time_domask(mid)= time_domask(mid) + dt_3d
894          ENDIF
895       ENDDO
896       time_dvrp          = time_dvrp        + dt_3d
897       IF ( simulated_time >= skip_time_dosp )  THEN
898          time_dosp       = time_dosp        + dt_3d
899       ENDIF
900       time_dots          = time_dots        + dt_3d
901       IF ( .NOT. first_call_lpm )  THEN
902          time_dopts      = time_dopts       + dt_3d
903       ENDIF
904       IF ( simulated_time >= skip_time_dopr )  THEN
905          time_dopr       = time_dopr        + dt_3d
906       ENDIF
907       time_dopr_listing          = time_dopr_listing        + dt_3d
908       time_run_control   = time_run_control + dt_3d
909
910!
911!--    Data exchange between coupled models
912       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled )  THEN
913          time_coupling = time_coupling + dt_3d
914
915!
916!--       In case of model termination initiated by the local model
917!--       (terminate_coupled > 0), the coupler must be skipped because it would
918!--       cause an MPI intercomminucation hang.
919!--       If necessary, the coupler will be called at the beginning of the
920!--       next restart run.
921          DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 )
922             CALL surface_coupler
923             time_coupling = time_coupling - dt_coupling
924          ENDDO
925       ENDIF
926
927!
928!--    Execute user-defined actions
929       CALL user_actions( 'after_integration' )
930
931!
932!--    If Galilei transformation is used, determine the distance that the
933!--    model has moved so far
934       IF ( galilei_transformation )  THEN
935          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
936          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
937       ENDIF
938
939!
940!--    Check, if restart is necessary (because cpu-time is expiring or
941!--    because it is forced by user) and set stop flag
942!--    This call is skipped if the remote model has already initiated a restart.
943       IF ( .NOT. terminate_run )  CALL check_for_restart
944
945!
946!--    Carry out statistical analysis and output at the requested output times.
947!--    The MOD function is used for calculating the output time counters (like
948!--    time_dopr) in order to regard a possible decrease of the output time
949!--    interval in case of restart runs
950
951!
952!--    Set a flag indicating that so far no statistics have been created
953!--    for this time step
954       flow_statistics_called = .FALSE.
955
956!
957!--    If required, call flow_statistics for averaging in time
958       IF ( averaging_interval_pr /= 0.0_wp  .AND.  &
959            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.  &
960            simulated_time >= skip_time_dopr )  THEN
961          time_dopr_av = time_dopr_av + dt_3d
962          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
963             do_sum = .TRUE.
964             time_dopr_av = MOD( time_dopr_av, &
965                                    MAX( dt_averaging_input_pr, dt_3d ) )
966          ENDIF
967       ENDIF
968       IF ( do_sum )  CALL flow_statistics
969
970!
971!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
972       IF ( averaging_interval /= 0.0_wp  .AND.                                &
973            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND. &
974            simulated_time >= skip_time_data_output_av )                    &
975       THEN
976          time_do_sla = time_do_sla + dt_3d
977          IF ( time_do_sla >= dt_averaging_input )  THEN
978             CALL sum_up_3d_data
979             average_count_3d = average_count_3d + 1
980             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
981          ENDIF
982       ENDIF
983
984!
985!--    Calculate spectra for time averaging
986       IF ( averaging_interval_sp /= 0.0_wp  .AND.  &
987            ( dt_dosp - time_dosp ) <= averaging_interval_sp  .AND.  &
988            simulated_time >= skip_time_dosp )  THEN
989          time_dosp_av = time_dosp_av + dt_3d
990          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
991             CALL calc_spectra
992             time_dosp_av = MOD( time_dosp_av, &
993                                 MAX( dt_averaging_input_pr, dt_3d ) )
994          ENDIF
995       ENDIF
996
997!
998!--    Call flight module and output data
999       IF ( virtual_flight )  THEN
1000          CALL flight_measurement
1001          CALL data_output_flight
1002       ENDIF
1003
1004!
1005!--    Profile output (ASCII) on file
1006       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1007          CALL print_1d
1008          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, &
1009                                                           dt_3d ) )
1010       ENDIF
1011
1012!
1013!--    Graphic output for PROFIL
1014       IF ( time_dopr >= dt_dopr )  THEN
1015          IF ( dopr_n /= 0 )  CALL data_output_profiles
1016          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
1017          time_dopr_av = 0.0_wp    ! due to averaging (see above)
1018       ENDIF
1019
1020!
1021!--    Graphic output for time series
1022       IF ( time_dots >= dt_dots )  THEN
1023          CALL data_output_tseries
1024          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1025       ENDIF
1026
1027!
1028!--    Output of spectra (formatted for use with PROFIL), in case of no
1029!--    time averaging, spectra has to be calculated before
1030       IF ( time_dosp >= dt_dosp )  THEN
1031          IF ( average_count_sp == 0 )  CALL calc_spectra
1032          CALL data_output_spectra
1033          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1034       ENDIF
1035
1036!
1037!--    2d-data output (cross-sections)
1038       IF ( time_do2d_xy >= dt_do2d_xy )  THEN
1039          CALL data_output_2d( 'xy', 0 )
1040          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1041       ENDIF
1042       IF ( time_do2d_xz >= dt_do2d_xz )  THEN
1043          CALL data_output_2d( 'xz', 0 )
1044          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1045       ENDIF
1046       IF ( time_do2d_yz >= dt_do2d_yz )  THEN
1047          CALL data_output_2d( 'yz', 0 )
1048          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1049       ENDIF
1050
1051!
1052!--    3d-data output (volume data)
1053       IF ( time_do3d >= dt_do3d )  THEN
1054          CALL data_output_3d( 0 )
1055          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1056       ENDIF
1057
1058!
1059!--    Masked data output
1060       DO  mid = 1, masks
1061          IF ( time_domask(mid) >= dt_domask(mid) )  THEN
1062             CALL data_output_mask( 0 )
1063             time_domask(mid) = MOD( time_domask(mid),  &
1064                                     MAX( dt_domask(mid), dt_3d ) )
1065          ENDIF
1066       ENDDO
1067
1068!
1069!--    Output of time-averaged 2d/3d/masked data
1070       IF ( time_do_av >= dt_data_output_av )  THEN
1071          CALL average_3d_data
1072          CALL data_output_2d( 'xy', 1 )
1073          CALL data_output_2d( 'xz', 1 )
1074          CALL data_output_2d( 'yz', 1 )
1075          CALL data_output_3d( 1 )
1076          DO  mid = 1, masks
1077             CALL data_output_mask( 1 )
1078          ENDDO
1079          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1080       ENDIF
1081
1082!
1083!--    Output of particle time series
1084       IF ( particle_advection )  THEN
1085          IF ( time_dopts >= dt_dopts  .OR. &
1086               ( simulated_time >= particle_advection_start  .AND. &
1087                 first_call_lpm ) )  THEN
1088             CALL data_output_ptseries
1089             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1090          ENDIF
1091       ENDIF
1092
1093!
1094!--    Output of dvrp-graphics (isosurface, particles, slicer)
1095#if defined( __dvrp_graphics )
1096       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
1097#endif
1098       IF ( time_dvrp >= dt_dvrp )  THEN
1099          CALL data_output_dvrp
1100          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
1101       ENDIF
1102#if defined( __dvrp_graphics )
1103       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
1104#endif
1105
1106!
1107!--    If required, set the heat flux for the next time step at a random value
1108       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
1109          IF ( surf_def_h(0)%ns >= 1 )  CALL disturb_heatflux( surf_def_h(0) )
1110          IF ( surf_lsm_h%ns    >= 1 )  CALL disturb_heatflux( surf_lsm_h    )
1111          IF ( surf_usm_h%ns    >= 1 )  CALL disturb_heatflux( surf_usm_h    )
1112       ENDIF
1113
1114!
1115!--    Execute user-defined actions
1116       CALL user_actions( 'after_timestep' )
1117
1118!
1119!--    Determine size of next time step. Save timestep dt_3d because it is
1120!--    newly calculated in routine timestep, but required further below for
1121!--    steering the run control output interval
1122       dt_3d_old = dt_3d
1123       CALL timestep
1124
1125!
1126!--    Synchronize the timestep in case of nested run.
1127       IF ( nested_run )  THEN
1128!
1129!--       Synchronize by unifying the time step.
1130!--       Global minimum of all time-steps is used for all.
1131          CALL pmci_synchronize
1132       ENDIF
1133
1134!
1135!--    Computation and output of run control parameters.
1136!--    This is also done whenever perturbations have been imposed
1137       IF ( time_run_control >= dt_run_control  .OR.                     &
1138            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created ) &
1139       THEN
1140          CALL run_control
1141          IF ( time_run_control >= dt_run_control )  THEN
1142             time_run_control = MOD( time_run_control, &
1143                                     MAX( dt_run_control, dt_3d_old ) )
1144          ENDIF
1145       ENDIF
1146
1147!
1148!--    Output elapsed simulated time in form of a progress bar on stdout
1149       IF ( myid == 0 )  CALL output_progress_bar
1150
1151       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1152
1153
1154    ENDDO   ! time loop
1155
1156    IF ( myid == 0 )  CALL finish_progress_bar
1157
1158#if defined( __dvrp_graphics )
1159    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
1160#endif
1161
1162    CALL location_message( 'finished time-stepping', .TRUE. )
1163
1164 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.