[102] | 1 | SUBROUTINE surface_coupler |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
[258] | 4 | ! Current revisions: |
---|
[102] | 5 | ! ----------------- |
---|
| 6 | ! |
---|
| 7 | ! Former revisions: |
---|
| 8 | ! ------------------ |
---|
| 9 | ! $Id: surface_coupler.f90 668 2010-12-23 13:22:58Z suehring $ |
---|
| 10 | ! |
---|
[668] | 11 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
| 12 | ! additional case for nonequivalent processor and grid topopolgy in ocean and |
---|
| 13 | ! atmosphere added (coupling_topology = 1) |
---|
| 14 | ! Added exchange of u and v from Ocean to Atmosphere |
---|
| 15 | ! |
---|
[392] | 16 | ! 291 2009-04-16 12:07:26Z raasch |
---|
| 17 | ! Coupling with independent precursor runs. |
---|
| 18 | ! Output of messages replaced by message handling routine. |
---|
| 19 | ! |
---|
[226] | 20 | ! 206 2008-10-13 14:59:11Z raasch |
---|
| 21 | ! Implementation of a MPI-1 Coupling: replaced myid with target_id, |
---|
| 22 | ! deleted __mpi2 directives |
---|
| 23 | ! |
---|
[110] | 24 | ! 109 2007-08-28 15:26:47Z letzel |
---|
[102] | 25 | ! Initial revision |
---|
| 26 | ! |
---|
| 27 | ! Description: |
---|
| 28 | ! ------------ |
---|
| 29 | ! Data exchange at the interface between coupled models |
---|
| 30 | !------------------------------------------------------------------------------! |
---|
| 31 | |
---|
| 32 | USE arrays_3d |
---|
| 33 | USE control_parameters |
---|
| 34 | USE cpulog |
---|
| 35 | USE grid_variables |
---|
| 36 | USE indices |
---|
| 37 | USE interfaces |
---|
| 38 | USE pegrid |
---|
| 39 | |
---|
| 40 | IMPLICIT NONE |
---|
| 41 | |
---|
[108] | 42 | INTEGER :: i, j, k |
---|
[102] | 43 | |
---|
[291] | 44 | REAL :: time_since_reference_point_rem |
---|
[667] | 45 | REAL :: total_2d(-nbgp:ny+nbgp,-nbgp:nx+nbgp) |
---|
[102] | 46 | |
---|
[206] | 47 | #if defined( __parallel ) |
---|
[102] | 48 | |
---|
[667] | 49 | CALL cpu_log( log_point(39), 'surface_coupler', 'start' ) |
---|
[102] | 50 | |
---|
[667] | 51 | |
---|
| 52 | |
---|
[102] | 53 | ! |
---|
[108] | 54 | !-- In case of model termination initiated by the remote model |
---|
| 55 | !-- (terminate_coupled_remote > 0), initiate termination of the local model. |
---|
| 56 | !-- The rest of the coupler must then be skipped because it would cause an MPI |
---|
| 57 | !-- intercomminucation hang. |
---|
| 58 | !-- If necessary, the coupler will be called at the beginning of the next |
---|
| 59 | !-- restart run. |
---|
[667] | 60 | |
---|
| 61 | IF ( coupling_topology == 0 ) THEN |
---|
| 62 | CALL MPI_SENDRECV( terminate_coupled, 1, MPI_INTEGER, target_id, & |
---|
| 63 | 0, & |
---|
| 64 | terminate_coupled_remote, 1, MPI_INTEGER, target_id, & |
---|
| 65 | 0, comm_inter, status, ierr ) |
---|
| 66 | ELSE |
---|
| 67 | IF ( myid == 0) THEN |
---|
| 68 | CALL MPI_SENDRECV( terminate_coupled, 1, MPI_INTEGER, & |
---|
| 69 | target_id, 0, & |
---|
| 70 | terminate_coupled_remote, 1, MPI_INTEGER, & |
---|
| 71 | target_id, 0, & |
---|
| 72 | comm_inter, status, ierr ) |
---|
| 73 | ENDIF |
---|
| 74 | CALL MPI_BCAST( terminate_coupled_remote, 1, MPI_INTEGER, 0, comm2d, ierr) |
---|
| 75 | |
---|
| 76 | ALLOCATE( total_2d_a(-nbgp:ny_a+nbgp,-nbgp:nx_a+nbgp), & |
---|
| 77 | total_2d_o(-nbgp:ny_o+nbgp,-nbgp:nx_o+nbgp) ) |
---|
| 78 | |
---|
| 79 | ENDIF |
---|
| 80 | |
---|
[108] | 81 | IF ( terminate_coupled_remote > 0 ) THEN |
---|
[274] | 82 | WRITE( message_string, * ) 'remote model "', & |
---|
| 83 | TRIM( coupling_mode_remote ), & |
---|
| 84 | '" terminated', & |
---|
| 85 | '&with terminate_coupled_remote = ', & |
---|
| 86 | terminate_coupled_remote, & |
---|
| 87 | '&local model "', TRIM( coupling_mode ), & |
---|
| 88 | '" has', & |
---|
| 89 | '&terminate_coupled = ', & |
---|
[667] | 90 | terminate_coupled |
---|
[258] | 91 | CALL message( 'surface_coupler', 'PA0310', 1, 2, 0, 6, 0 ) |
---|
[108] | 92 | RETURN |
---|
| 93 | ENDIF |
---|
[667] | 94 | |
---|
[291] | 95 | |
---|
[108] | 96 | ! |
---|
| 97 | !-- Exchange the current simulated time between the models, |
---|
[667] | 98 | !-- currently just for total_2ding |
---|
| 99 | IF ( coupling_topology == 0 ) THEN |
---|
| 100 | CALL MPI_SEND( time_since_reference_point, 1, MPI_REAL, & |
---|
| 101 | target_id, 11, comm_inter, ierr ) |
---|
| 102 | CALL MPI_RECV( time_since_reference_point_rem, 1, MPI_REAL, & |
---|
| 103 | target_id, 11, comm_inter, status, ierr ) |
---|
| 104 | ELSE |
---|
| 105 | IF ( myid == 0 ) THEN |
---|
| 106 | CALL MPI_SEND( time_since_reference_point, 1, MPI_REAL, & |
---|
| 107 | target_id, 11, comm_inter, ierr ) |
---|
| 108 | CALL MPI_RECV( time_since_reference_point_rem, 1, MPI_REAL, & |
---|
| 109 | target_id, 11, comm_inter, status, ierr ) |
---|
| 110 | ENDIF |
---|
| 111 | CALL MPI_BCAST( time_since_reference_point_rem, 1, MPI_REAL, & |
---|
| 112 | 0, comm2d, ierr ) |
---|
| 113 | ENDIF |
---|
[291] | 114 | WRITE ( 9, * ) 'simulated time: ', simulated_time |
---|
| 115 | WRITE ( 9, * ) 'time since start of coupling: ', & |
---|
[667] | 116 | time_since_reference_point, ' remote: ', & |
---|
| 117 | time_since_reference_point_rem |
---|
| 118 | CALL local_flush( 9 ) |
---|
| 119 | |
---|
[102] | 120 | |
---|
| 121 | ! |
---|
| 122 | !-- Exchange the interface data |
---|
| 123 | IF ( coupling_mode == 'atmosphere_to_ocean' ) THEN |
---|
[667] | 124 | |
---|
| 125 | ! |
---|
| 126 | !-- Horizontal grid size and number of processors is equal |
---|
| 127 | !-- in ocean and atmosphere |
---|
| 128 | IF ( coupling_topology == 0 ) THEN |
---|
[102] | 129 | |
---|
| 130 | ! |
---|
[667] | 131 | !-- Send heat flux at bottom surface to the ocean model |
---|
| 132 | CALL MPI_SEND( shf(nysg,nxlg), ngp_xy, MPI_REAL, & |
---|
| 133 | target_id, 12, comm_inter, ierr ) |
---|
[102] | 134 | |
---|
| 135 | ! |
---|
[667] | 136 | !-- Send humidity flux at bottom surface to the ocean model |
---|
| 137 | IF ( humidity ) THEN |
---|
| 138 | CALL MPI_SEND( qsws(nysg,nxlg), ngp_xy, MPI_REAL, & |
---|
| 139 | target_id, 13, comm_inter, ierr ) |
---|
| 140 | ENDIF |
---|
| 141 | |
---|
| 142 | ! |
---|
| 143 | !-- Receive temperature at the bottom surface from the ocean model |
---|
| 144 | WRITE ( 9, * ) '*** receive pt from ocean' |
---|
[108] | 145 | CALL local_flush( 9 ) |
---|
[667] | 146 | CALL MPI_RECV( pt(0,nysg,nxlg), 1, type_xy, & |
---|
| 147 | target_id, 14, comm_inter, status, ierr ) |
---|
[108] | 148 | |
---|
| 149 | ! |
---|
[667] | 150 | !-- Send the momentum flux (u) at bottom surface to the ocean model |
---|
| 151 | CALL MPI_SEND( usws(nysg,nxlg), ngp_xy, MPI_REAL, & |
---|
| 152 | target_id, 15, comm_inter, ierr ) |
---|
[102] | 153 | |
---|
| 154 | ! |
---|
[667] | 155 | !-- Send the momentum flux (v) at bottom surface to the ocean model |
---|
| 156 | CALL MPI_SEND( vsws(nysg,nxlg), ngp_xy, MPI_REAL, & |
---|
| 157 | target_id, 16, comm_inter, ierr ) |
---|
[102] | 158 | |
---|
| 159 | ! |
---|
[667] | 160 | !-- Receive u at the bottom surface from the ocean model |
---|
| 161 | CALL MPI_RECV( u(0,nysg,nxlg), 1, type_xy, & |
---|
| 162 | target_id, 17, comm_inter, status, ierr ) |
---|
[102] | 163 | |
---|
[667] | 164 | ! |
---|
| 165 | !-- Receive v at the bottom surface from the ocean model |
---|
| 166 | CALL MPI_RECV( v(0,nysg,nxlg), 1, type_xy, & |
---|
| 167 | target_id, 18, comm_inter, status, ierr ) |
---|
| 168 | |
---|
| 169 | ! |
---|
| 170 | !-- Horizontal grid size or number of processors differs between |
---|
| 171 | !-- ocean and atmosphere |
---|
| 172 | ELSE |
---|
| 173 | |
---|
| 174 | ! |
---|
| 175 | !-- Send heat flux at bottom surface to the ocean model |
---|
| 176 | total_2d_a = 0.0 |
---|
| 177 | total_2d = 0.0 |
---|
| 178 | total_2d(nys:nyn,nxl:nxr) = shf(nys:nyn,nxl:nxr) |
---|
| 179 | CALL MPI_REDUCE( total_2d, total_2d_a, ngp_a, MPI_REAL, & |
---|
| 180 | MPI_SUM, 0, comm2d, ierr ) |
---|
| 181 | CALL interpolate_to_ocean(12) |
---|
| 182 | |
---|
| 183 | ! |
---|
| 184 | !-- Send humidity flux at bottom surface to the ocean model |
---|
| 185 | IF ( humidity ) THEN |
---|
| 186 | total_2d_a = 0.0 |
---|
| 187 | total_2d = 0.0 |
---|
| 188 | total_2d(nys:nyn,nxl:nxr) = qsws(nys:nyn,nxl:nxr) |
---|
| 189 | CALL MPI_REDUCE( total_2d, total_2d_a, ngp_a, MPI_REAL, & |
---|
| 190 | MPI_SUM, 0, comm2d, ierr ) |
---|
| 191 | CALL interpolate_to_ocean(13) |
---|
| 192 | ENDIF |
---|
| 193 | |
---|
| 194 | ! |
---|
| 195 | !-- Receive temperature at the bottom surface from the ocean model |
---|
| 196 | IF ( myid == 0 ) THEN |
---|
| 197 | CALL MPI_RECV( total_2d_a(-nbgp,-nbgp), ngp_a, MPI_REAL, & |
---|
| 198 | target_id, 14, comm_inter, status, ierr ) |
---|
| 199 | ENDIF |
---|
| 200 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 201 | CALL MPI_BCAST( total_2d_a(-nbgp,-nbgp), ngp_a, MPI_REAL, & |
---|
| 202 | 0, comm2d, ierr ) |
---|
| 203 | pt(0,nysg:nyng,nxlg:nxrg) = total_2d_a(nysg:nyng,nxlg:nxrg) |
---|
| 204 | |
---|
| 205 | ! |
---|
| 206 | !-- Send momentum flux (u) at bottom surface to the ocean model |
---|
| 207 | total_2d_a = 0.0 |
---|
| 208 | total_2d = 0.0 |
---|
| 209 | total_2d(nys:nyn,nxl:nxr) = usws(nys:nyn,nxl:nxr) |
---|
| 210 | CALL MPI_REDUCE( total_2d, total_2d_a, ngp_a, MPI_REAL, & |
---|
| 211 | MPI_SUM, 0, comm2d, ierr ) |
---|
| 212 | CALL interpolate_to_ocean(15) |
---|
| 213 | |
---|
| 214 | ! |
---|
| 215 | !-- Send momentum flux (v) at bottom surface to the ocean model |
---|
| 216 | total_2d_a = 0.0 |
---|
| 217 | total_2d = 0.0 |
---|
| 218 | total_2d(nys:nyn,nxl:nxr) = vsws(nys:nyn,nxl:nxr) |
---|
| 219 | CALL MPI_REDUCE( total_2d, total_2d_a, ngp_a, MPI_REAL, & |
---|
| 220 | MPI_SUM, 0, comm2d, ierr ) |
---|
| 221 | CALL interpolate_to_ocean(16) |
---|
| 222 | |
---|
| 223 | ! |
---|
| 224 | !-- Receive u at the bottom surface from the ocean model |
---|
| 225 | IF ( myid == 0 ) THEN |
---|
| 226 | CALL MPI_RECV( total_2d_a(-nbgp,-nbgp), ngp_a, MPI_REAL, & |
---|
| 227 | target_id, 17, comm_inter, status, ierr ) |
---|
| 228 | ENDIF |
---|
| 229 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 230 | CALL MPI_BCAST( total_2d_a(-nbgp,-nbgp), ngp_a, MPI_REAL, & |
---|
| 231 | 0, comm2d, ierr ) |
---|
| 232 | u(0,nysg:nyng,nxlg:nxrg) = total_2d_a(nysg:nyng,nxlg:nxrg) |
---|
| 233 | |
---|
| 234 | ! |
---|
| 235 | !-- Receive v at the bottom surface from the ocean model |
---|
| 236 | IF ( myid == 0 ) THEN |
---|
| 237 | CALL MPI_RECV( total_2d_a(-nbgp,-nbgp), ngp_a, MPI_REAL, & |
---|
| 238 | target_id, 18, comm_inter, status, ierr ) |
---|
| 239 | ENDIF |
---|
| 240 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 241 | CALL MPI_BCAST( total_2d_a(-nbgp,-nbgp), ngp_a, MPI_REAL, & |
---|
| 242 | 0, comm2d, ierr ) |
---|
| 243 | v(0,nysg:nyng,nxlg:nxrg) = total_2d_a(nysg:nyng,nxlg:nxrg) |
---|
| 244 | |
---|
| 245 | ENDIF |
---|
| 246 | |
---|
[102] | 247 | ELSEIF ( coupling_mode == 'ocean_to_atmosphere' ) THEN |
---|
| 248 | |
---|
| 249 | ! |
---|
[667] | 250 | !-- Horizontal grid size and number of processors is equal |
---|
| 251 | !-- in ocean and atmosphere |
---|
| 252 | IF ( coupling_topology == 0 ) THEN |
---|
| 253 | ! |
---|
| 254 | !-- Receive heat flux at the sea surface (top) from the atmosphere model |
---|
| 255 | CALL MPI_RECV( tswst(nysg,nxlg), ngp_xy, MPI_REAL, & |
---|
| 256 | target_id, 12, comm_inter, status, ierr ) |
---|
[102] | 257 | |
---|
[667] | 258 | |
---|
[102] | 259 | ! |
---|
[667] | 260 | !-- Receive humidity flux from the atmosphere model (bottom) |
---|
| 261 | !-- and add it to the heat flux at the sea surface (top)... |
---|
| 262 | IF ( humidity_remote ) THEN |
---|
| 263 | CALL MPI_RECV( qswst_remote(nysg,nxlg), ngp_xy, MPI_REAL, & |
---|
| 264 | target_id, 13, comm_inter, status, ierr ) |
---|
| 265 | |
---|
| 266 | ENDIF |
---|
| 267 | |
---|
| 268 | ! |
---|
| 269 | !-- Send sea surface temperature to the atmosphere model |
---|
| 270 | CALL MPI_SEND( pt(nzt,nysg,nxlg), 1, type_xy, & |
---|
| 271 | target_id, 14, comm_inter, ierr ) |
---|
| 272 | |
---|
| 273 | ! |
---|
| 274 | !-- Receive momentum flux (u) at the sea surface (top) from the atmosphere |
---|
| 275 | !-- model |
---|
| 276 | WRITE ( 9, * ) '*** receive uswst from atmosphere' |
---|
[108] | 277 | CALL local_flush( 9 ) |
---|
[667] | 278 | CALL MPI_RECV( uswst(nysg,nxlg), ngp_xy, MPI_REAL, & |
---|
| 279 | target_id, 15, comm_inter, status, ierr ) |
---|
[108] | 280 | |
---|
[667] | 281 | ! |
---|
| 282 | !-- Receive momentum flux (v) at the sea surface (top) from the atmosphere |
---|
| 283 | !-- model |
---|
| 284 | CALL MPI_RECV( vswst(nysg,nxlg), ngp_xy, MPI_REAL, & |
---|
| 285 | target_id, 16, comm_inter, status, ierr ) |
---|
| 286 | |
---|
| 287 | !-- Send u to the atmosphere model |
---|
| 288 | CALL MPI_SEND( u(nzt,nysg,nxlg), 1, type_xy, & |
---|
| 289 | target_id, 17, comm_inter, ierr ) |
---|
| 290 | |
---|
| 291 | ! |
---|
| 292 | !-- Send v to the atmosphere model |
---|
| 293 | CALL MPI_SEND( v(nzt,nysg,nxlg), 1, type_xy, & |
---|
| 294 | target_id, 18, comm_inter, ierr ) |
---|
| 295 | |
---|
| 296 | ! |
---|
| 297 | !-- Horizontal gridsize or number of processors differs between |
---|
| 298 | !-- ocean and atmosphere |
---|
| 299 | ELSE |
---|
| 300 | |
---|
| 301 | ! |
---|
| 302 | !-- Receive heat flux at the sea surface (top) from the atmosphere model |
---|
| 303 | IF ( myid == 0 ) THEN |
---|
| 304 | CALL MPI_RECV( total_2d_o(-nbgp,-nbgp), ngp_o, MPI_REAL, & |
---|
| 305 | target_id, 12, comm_inter, status, ierr ) |
---|
| 306 | ENDIF |
---|
| 307 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 308 | CALL MPI_BCAST( total_2d_o(-nbgp,-nbgp), ngp_o, MPI_REAL, & |
---|
| 309 | 0, comm2d, ierr) |
---|
| 310 | tswst(nysg:nyng,nxlg:nxrg) = total_2d_o(nysg:nyng,nxlg:nxrg) |
---|
| 311 | |
---|
| 312 | ! |
---|
| 313 | !-- Receive humidity flux at the sea surface (top) from the |
---|
| 314 | !-- atmosphere model |
---|
| 315 | IF ( humidity_remote ) THEN |
---|
| 316 | IF ( myid == 0 ) THEN |
---|
| 317 | CALL MPI_RECV( total_2d_o(-nbgp,-nbgp), ngp_o, MPI_REAL, & |
---|
| 318 | target_id, 13, comm_inter, status, ierr ) |
---|
| 319 | ENDIF |
---|
| 320 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 321 | CALL MPI_BCAST( total_2d_o(-nbgp,-nbgp), ngp_o, MPI_REAL, & |
---|
| 322 | 0, comm2d, ierr) |
---|
| 323 | qswst_remote(nysg:nyng,nxlg:nxrg) = total_2d_o(nysg:nyng,nxlg:nxrg) |
---|
| 324 | ENDIF |
---|
| 325 | |
---|
| 326 | ! |
---|
| 327 | !-- Send surface temperature to atmosphere |
---|
| 328 | total_2d_o = 0.0 |
---|
| 329 | total_2d = 0.0 |
---|
| 330 | total_2d(nys:nyn,nxl:nxr) = pt(nzt,nys:nyn,nxl:nxr) |
---|
| 331 | |
---|
| 332 | CALL MPI_REDUCE(total_2d, total_2d_o, ngp_o, & |
---|
| 333 | MPI_REAL, MPI_SUM, 0, comm2d, ierr) |
---|
| 334 | |
---|
| 335 | CALL interpolate_to_atmos(14) |
---|
| 336 | |
---|
| 337 | ! |
---|
| 338 | !-- Receive momentum flux (u) at the sea surface (top) from the |
---|
| 339 | !-- atmosphere model |
---|
| 340 | IF ( myid == 0 ) THEN |
---|
| 341 | CALL MPI_RECV( total_2d_o(-nbgp,-nbgp), ngp_o, MPI_REAL, & |
---|
| 342 | target_id, 15, comm_inter, status, ierr ) |
---|
| 343 | ENDIF |
---|
| 344 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 345 | CALL MPI_BCAST( total_2d_o(-nbgp,-nbgp), ngp_o, MPI_REAL, & |
---|
| 346 | 0, comm2d, ierr) |
---|
| 347 | uswst(nysg:nyng,nxlg:nxrg) = total_2d_o(nysg:nyng,nxlg:nxrg) |
---|
| 348 | |
---|
| 349 | ! |
---|
| 350 | !-- Receive momentum flux (v) at the sea surface (top) from the |
---|
| 351 | !-- atmosphere model |
---|
| 352 | IF ( myid == 0 ) THEN |
---|
| 353 | CALL MPI_RECV( total_2d_o(-nbgp,-nbgp), ngp_o, MPI_REAL, & |
---|
| 354 | target_id, 16, comm_inter, status, ierr ) |
---|
| 355 | ENDIF |
---|
| 356 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 357 | CALL MPI_BCAST( total_2d_o(-nbgp,-nbgp), ngp_o, MPI_REAL, & |
---|
| 358 | 0, comm2d, ierr) |
---|
| 359 | vswst(nysg:nyng,nxlg:nxrg) = total_2d_o(nysg:nyng,nxlg:nxrg) |
---|
| 360 | |
---|
| 361 | ! |
---|
| 362 | !-- Send u to atmosphere |
---|
| 363 | total_2d_o = 0.0 |
---|
| 364 | total_2d = 0.0 |
---|
| 365 | total_2d(nys:nyn,nxl:nxr) = u(nzt,nys:nyn,nxl:nxr) |
---|
| 366 | CALL MPI_REDUCE(total_2d, total_2d_o, ngp_o, MPI_REAL, & |
---|
| 367 | MPI_SUM, 0, comm2d, ierr) |
---|
| 368 | CALL interpolate_to_atmos(17) |
---|
| 369 | |
---|
| 370 | ! |
---|
| 371 | !-- Send v to atmosphere |
---|
| 372 | total_2d_o = 0.0 |
---|
| 373 | total_2d = 0.0 |
---|
| 374 | total_2d(nys:nyn,nxl:nxr) = v(nzt,nys:nyn,nxl:nxr) |
---|
| 375 | CALL MPI_REDUCE(total_2d, total_2d_o, ngp_o, MPI_REAL, & |
---|
| 376 | MPI_SUM, 0, comm2d, ierr) |
---|
| 377 | CALL interpolate_to_atmos(18) |
---|
| 378 | |
---|
| 379 | ENDIF |
---|
| 380 | |
---|
| 381 | ! |
---|
| 382 | !-- Conversions of fluxes received from atmosphere |
---|
| 383 | IF ( humidity_remote ) THEN |
---|
[109] | 384 | !here tswst is still the sum of atmospheric bottom heat fluxes |
---|
| 385 | tswst = tswst + qswst_remote * 2.2626108e6 / 1005.0 |
---|
| 386 | !*latent heat of vaporization in m2/s2, or 540 cal/g, or 40.65 kJ/mol |
---|
| 387 | !/(rho_atm(=1.0)*c_p) |
---|
[108] | 388 | ! |
---|
[667] | 389 | !-- ...and convert it to a salinity flux at the sea surface (top) |
---|
[108] | 390 | !-- following Steinhorn (1991), JPO 21, pp. 1681-1683: |
---|
| 391 | !-- S'w' = -S * evaporation / ( rho_water * ( 1 - S ) ) |
---|
| 392 | saswst = -1.0 * sa(nzt,:,:) * qswst_remote / & |
---|
[667] | 393 | ( rho(nzt,:,:) * ( 1.0 - sa(nzt,:,:) ) ) |
---|
[108] | 394 | ENDIF |
---|
| 395 | |
---|
| 396 | ! |
---|
[102] | 397 | !-- Adjust the kinematic heat flux with respect to ocean density |
---|
| 398 | !-- (constants are the specific heat capacities for air and water) |
---|
[667] | 399 | !-- now tswst is the ocean top heat flux |
---|
[108] | 400 | tswst = tswst / rho(nzt,:,:) * 1005.0 / 4218.0 |
---|
[102] | 401 | |
---|
| 402 | ! |
---|
[667] | 403 | !-- Adjust the momentum fluxes with respect to ocean density |
---|
| 404 | uswst = uswst / rho(nzt,:,:) |
---|
| 405 | vswst = vswst / rho(nzt,:,:) |
---|
[102] | 406 | |
---|
[667] | 407 | |
---|
| 408 | ENDIF |
---|
| 409 | |
---|
| 410 | IF ( coupling_topology == 1 ) THEN |
---|
| 411 | DEALLOCATE( total_2d_o, total_2d_a ) |
---|
| 412 | ENDIF |
---|
| 413 | |
---|
| 414 | CALL cpu_log( log_point(39), 'surface_coupler', 'stop' ) |
---|
| 415 | |
---|
| 416 | #endif |
---|
| 417 | |
---|
| 418 | END SUBROUTINE surface_coupler |
---|
| 419 | |
---|
| 420 | |
---|
| 421 | |
---|
| 422 | SUBROUTINE interpolate_to_atmos(tag) |
---|
| 423 | |
---|
| 424 | USE arrays_3d |
---|
| 425 | USE control_parameters |
---|
| 426 | USE grid_variables |
---|
| 427 | USE indices |
---|
| 428 | USE pegrid |
---|
| 429 | |
---|
| 430 | IMPLICIT NONE |
---|
| 431 | |
---|
| 432 | |
---|
| 433 | INTEGER :: dnx, dnx2, dny, dny2, i, ii, j, jj |
---|
| 434 | INTEGER, intent(in) :: tag |
---|
| 435 | |
---|
| 436 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 437 | |
---|
| 438 | IF ( myid == 0 ) THEN |
---|
| 439 | |
---|
| 440 | ! |
---|
| 441 | !-- cyclic boundary conditions for the total 2D-grid |
---|
| 442 | total_2d_o(-nbgp:-1,:) = total_2d_o(ny+1-nbgp:ny,:) |
---|
| 443 | total_2d_o(:,-nbgp:-1) = total_2d_o(:,nx+1-nbgp:nx) |
---|
| 444 | |
---|
| 445 | total_2d_o(ny+1:ny+nbgp,:) = total_2d_o(0:nbgp-1,:) |
---|
| 446 | total_2d_o(:,nx+1:nx+nbgp) = total_2d_o(:,0:nbgp-1) |
---|
| 447 | |
---|
[102] | 448 | ! |
---|
[667] | 449 | !-- Number of gridpoints of the fine grid within one mesh of the coarse grid |
---|
| 450 | dnx = (nx_o+1) / (nx_a+1) |
---|
| 451 | dny = (ny_o+1) / (ny_a+1) |
---|
[102] | 452 | |
---|
| 453 | ! |
---|
[667] | 454 | !-- Distance for interpolation around coarse grid points within the fine grid |
---|
| 455 | !-- (note: 2*dnx2 must not be equal with dnx) |
---|
| 456 | dnx2 = 2 * ( dnx / 2 ) |
---|
| 457 | dny2 = 2 * ( dny / 2 ) |
---|
[102] | 458 | |
---|
[667] | 459 | total_2d_a = 0.0 |
---|
[102] | 460 | ! |
---|
[667] | 461 | !-- Interpolation from ocean-grid-layer to atmosphere-grid-layer |
---|
| 462 | DO j = 0, ny_a |
---|
| 463 | DO i = 0, nx_a |
---|
| 464 | DO jj = 0, dny2 |
---|
| 465 | DO ii = 0, dnx2 |
---|
| 466 | total_2d_a(j,i) = total_2d_a(j,i) & |
---|
| 467 | + total_2d_o(j*dny+jj,i*dnx+ii) |
---|
| 468 | ENDDO |
---|
| 469 | ENDDO |
---|
| 470 | total_2d_a(j,i) = total_2d_a(j,i) / ( ( dnx2 + 1 ) * ( dny2 + 1 ) ) |
---|
| 471 | ENDDO |
---|
| 472 | ENDDO |
---|
| 473 | ! |
---|
| 474 | !-- cyclic boundary conditions for atmosphere grid |
---|
| 475 | total_2d_a(-nbgp:-1,:) = total_2d_a(ny_a+1-nbgp:ny_a,:) |
---|
| 476 | total_2d_a(:,-nbgp:-1) = total_2d_a(:,nx_a+1-nbgp:nx_a) |
---|
| 477 | |
---|
| 478 | total_2d_a(ny_a+1:ny_a+nbgp,:) = total_2d_a(0:nbgp-1,:) |
---|
| 479 | total_2d_a(:,nx_a+1:nx_a+nbgp) = total_2d_a(:,0:nbgp-1) |
---|
| 480 | ! |
---|
| 481 | !-- Transfer of the atmosphere-grid-layer to the atmosphere |
---|
| 482 | CALL MPI_SEND( total_2d_a(-nbgp,-nbgp), ngp_a, MPI_REAL, & |
---|
| 483 | target_id, tag, comm_inter, ierr ) |
---|
[102] | 484 | |
---|
| 485 | ENDIF |
---|
| 486 | |
---|
[667] | 487 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
[102] | 488 | |
---|
[667] | 489 | END SUBROUTINE interpolate_to_atmos |
---|
[102] | 490 | |
---|
[667] | 491 | |
---|
| 492 | SUBROUTINE interpolate_to_ocean(tag) |
---|
| 493 | |
---|
| 494 | USE arrays_3d |
---|
| 495 | USE control_parameters |
---|
| 496 | USE grid_variables |
---|
| 497 | USE indices |
---|
| 498 | USE pegrid |
---|
| 499 | |
---|
| 500 | IMPLICIT NONE |
---|
| 501 | |
---|
| 502 | REAL :: fl, fr, myl, myr |
---|
| 503 | INTEGER :: dnx, dny, i, ii, j, jj |
---|
| 504 | INTEGER, intent(in) :: tag |
---|
| 505 | |
---|
| 506 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 507 | |
---|
| 508 | IF ( myid == 0 ) THEN |
---|
| 509 | |
---|
| 510 | ! |
---|
| 511 | ! Number of gridpoints of the fine grid within one mesh of the coarse grid |
---|
| 512 | dnx = ( nx_o + 1 ) / ( nx_a + 1 ) |
---|
| 513 | dny = ( ny_o + 1 ) / ( ny_a + 1 ) |
---|
| 514 | |
---|
| 515 | ! |
---|
| 516 | !-- cyclic boundary conditions for atmosphere grid |
---|
| 517 | total_2d_a(-nbgp:-1,:) = total_2d_a(ny+1-nbgp:ny,:) |
---|
| 518 | total_2d_a(:,-nbgp:-1) = total_2d_a(:,nx+1-nbgp:nx) |
---|
| 519 | |
---|
| 520 | total_2d_a(ny+1:ny+nbgp,:) = total_2d_a(0:nbgp-1,:) |
---|
| 521 | total_2d_a(:,nx+1:nx+nbgp) = total_2d_a(:,0:nbgp-1) |
---|
| 522 | ! |
---|
| 523 | !-- Bilinear Interpolation from atmosphere-grid-layer to ocean-grid-layer |
---|
| 524 | DO j = 0, ny |
---|
| 525 | DO i = 0, nx |
---|
| 526 | myl = ( total_2d_a(j+1,i) - total_2d_a(j,i) ) / dny |
---|
| 527 | myr = ( total_2d_a(j+1,i+1) - total_2d_a(j,i+1) ) / dny |
---|
| 528 | DO jj = 0, dny-1 |
---|
| 529 | fl = myl*jj + total_2d_a(j,i) |
---|
| 530 | fr = myr*jj + total_2d_a(j,i+1) |
---|
| 531 | DO ii = 0, dnx-1 |
---|
| 532 | total_2d_o(j*dny+jj,i*dnx+ii) = ( fr - fl ) / dnx * ii + fl |
---|
| 533 | ENDDO |
---|
| 534 | ENDDO |
---|
| 535 | ENDDO |
---|
| 536 | ENDDO |
---|
| 537 | ! |
---|
| 538 | !-- cyclic boundary conditions for ocean grid |
---|
| 539 | total_2d_o(-nbgp:-1,:) = total_2d_o(ny_o+1-nbgp:ny_o,:) |
---|
| 540 | total_2d_o(:,-nbgp:-1) = total_2d_o(:,nx_o+1-nbgp:nx_o) |
---|
| 541 | |
---|
| 542 | total_2d_o(ny_o+1:ny_o+nbgp,:) = total_2d_o(0:nbgp-1,:) |
---|
| 543 | total_2d_o(:,nx_o+1:nx_o+nbgp) = total_2d_o(:,0:nbgp-1) |
---|
| 544 | |
---|
| 545 | |
---|
| 546 | CALL MPI_SEND( total_2d_o(-nbgp,-nbgp), ngp_o, MPI_REAL, & |
---|
| 547 | target_id, tag, comm_inter, ierr ) |
---|
| 548 | |
---|
| 549 | ENDIF |
---|
| 550 | |
---|
| 551 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 552 | |
---|
| 553 | END SUBROUTINE interpolate_to_ocean |
---|