Ignore:
Timestamp:
Dec 23, 2010 12:06:00 PM (10 years ago)
Author:
suehring
Message:

summary:


Gryschka:

  • Coupling with different resolution and different numbers of PEs in ocean and atmosphere is available
  • Exchange of u and v from ocean surface to atmosphere surface
  • Mirror boundary condition for u and v at the bottom are replaced by dirichlet boundary conditions
  • Inflow turbulence is now defined by flucuations around spanwise mean
  • Bugfixes for cyclic_fill and constant_volume_flow

Suehring:

  • New advection added ( Wicker and Skamarock 5th order ), therefore:
    • New module advec_ws.f90
    • Modified exchange of ghost boundaries.
    • Modified evaluation of turbulent fluxes
    • New index bounds nxlg, nxrg, nysg, nyng

advec_ws.f90


Advection scheme for scalars and momentum using the flux formulation of
Wicker and Skamarock 5th order.
Additionally the module contains of a routine using for initialisation and
steering of the statical evaluation. The computation of turbulent fluxes takes
place inside the advection routines.
In case of vector architectures Dirichlet and Radiation boundary conditions are
outstanding and not available. Furthermore simulations within topography are
not possible so far. A further routine local_diss_ij is available and is used
if a control of dissipative fluxes is desired.

check_parameters.f90


Exchange of parameters between ocean and atmosphere via PE0
Check for illegal combination of ws-scheme and timestep scheme.
Check for topography and ws-scheme.
Check for not cyclic boundary conditions in combination with ws-scheme and
loop_optimization = 'vector'.
Check for call_psolver_at_all_substeps and ws-scheme for momentum_advec.

Different processor/grid topology in atmosphere and ocean is now allowed!
Bugfixes in checking for conserve_volume_flow_mode.

exchange_horiz.f90


Dynamic exchange of ghost points with nbgp_local to ensure that no useless
ghost points exchanged in case of multigrid. type_yz(0) and type_xz(0) used for
normal grid, the remaining types used for the several grid levels.
Exchange is done via MPI-Vectors with a dynamic value of ghost points which
depend on the advection scheme. Exchange of left and right PEs is 10% faster
with MPI-Vectors than without.

flow_statistics.f90


When advection is computed with ws-scheme, turbulent fluxes are already
computed in the respective advection routines and buffered in arrays
sums_xxxx_ws_l(). This is due to a consistent treatment of statistics
with the numerics and to avoid unphysical kinks near the surface. So some if-
requests has to be done to dicern between fluxes from ws-scheme other advection
schemes. Furthermore the computation of z_i is only done if the heat flux
exceeds a minimum value. This affects only simulations of a neutral boundary
layer and is due to reasons of computations in the advection scheme.

inflow_turbulence.f90


Using nbgp recycling planes for a better resolution of the turbulent flow near
the inflow.

init_grid.f90


Definition of new array bounds nxlg, nxrg, nysg, nyng on each PE.
Furthermore the allocation of arrays and steering of loops is done with these
parameters. Call of exchange_horiz are modified.
In case of dirichlet bounday condition at the bottom zu(0)=0.0
dzu_mg has to be set explicitly for a equally spaced grid near bottom.
ddzu_pres added to use a equally spaced grid near bottom.

init_pegrid.f90


Moved determination of target_id's from init_coupling
Determination of parameters needed for coupling (coupling_topology, ngp_a, ngp_o)
with different grid/processor-topology in ocean and atmosphere

Adaption of ngp_xy, ngp_y to a dynamic number of ghost points.
The maximum_grid_level changed from 1 to 0. 0 is the normal grid, 1 to
maximum_grid_level the grids for multigrid, in which 0 and 1 are normal grids.
This distinction is due to reasons of data exchange and performance for the
normal grid and grids in poismg.
The definition of MPI-Vectors adapted to a dynamic numer of ghost points.
New MPI-Vectors for data exchange between left and right boundaries added.
This is due to reasons of performance (10% faster).

ATTENTION: nnz_x undefined problem still has to be solved!!!!!!!!
TEST OUTPUT (TO BE REMOVED) logging mpi2 ierr values

parin.f90


Steering parameter dissipation_control added in inipar.

Makefile


Module advec_ws added.

Modules


Removed u_nzb_p1_for_vfc and v_nzb_p1_for_vfc

For coupling with different resolution in ocean and atmophere:
+nx_a, +nx_o, ny_a, +ny_o, ngp_a, ngp_o, +total_2d_o, +total_2d_a,
+coupling_topology

Buffer arrays for the left sided advective fluxes added in arrays_3d.
+flux_s_u, +flux_s_v, +flux_s_w, +diss_s_u, +diss_s_v, +diss_s_w,
+flux_s_pt, +diss_s_pt, +flux_s_e, +diss_s_e, +flux_s_q, +diss_s_q,
+flux_s_sa, +diss_s_sa
3d arrays for dissipation control added. (only necessary for vector arch.)
+var_x, +var_y, +var_z, +gamma_x, +gamma_y, +gamma_z
Default of momentum_advec and scalar_advec changed to 'ws-scheme' .
+exchange_mg added in control_parameters to steer the data exchange.
Parameters +nbgp, +nxlg, +nxrg, +nysg, +nyng added in indices.
flag array +boundary_flags added in indices to steer the degradation of order
of the advective fluxes when non-cyclic boundaries are used.
MPI-datatypes +type_y, +type_y_int and +type_yz for data_exchange added in
pegrid.
+sums_wsus_ws_l, +sums_wsvs_ws_l, +sums_us2_ws_l, +sums_vs2_ws_l,
+sums_ws2_ws_l, +sums_wspts_ws_l, +sums_wssas_ws_l, +sums_wsqs_ws_l
and +weight_substep added in statistics to steer the statistical evaluation
of turbulent fluxes in the advection routines.
LOGICALS +ws_scheme_sca and +ws_scheme_mom added to get a better performance
in prognostic_equations.
LOGICAL +dissipation_control control added to steer numerical dissipation
in ws-scheme.

Changed length of string run_description_header

pres.f90


New allocation of tend when ws-scheme and multigrid is used. This is due to
reasons of perforance of the data_exchange. The same is done with p after
poismg is called.
nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng when no
multigrid is used. Calls of exchange_horiz are modified.

bugfix: After pressure correction no volume flow correction in case of
non-cyclic boundary conditions
(has to be done only before pressure correction)

Call of SOR routine is referenced with ddzu_pres.

prognostic_equations.f90


Calls of the advection routines with WS5 added.
Calls of ws_statistics added to set the statistical arrays to zero after each
time step.

advec_particles.f90


Declaration of de_dx, de_dy, de_dz adapted to additional ghost points.
Furthermore the calls of exchange_horiz were modified.

asselin_filter.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

average_3d_data.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

boundary_conds.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng
Removed mirror boundary conditions for u and v at the bottom in case of
ibc_uv_b == 0. Instead, dirichelt boundary conditions (u=v=0) are set
in init_3d_model

calc_liquid_water_content.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

calc_spectra.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng for
allocation of tend.

check_open.f90


Output of total array size was adapted to nbgp.

data_output_2d.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng in loops and
allocation of arrays local_2d and total_2d.
Calls of exchange_horiz are modified.

data_output_2d.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng in loops and
allocation of arrays. Calls of exchange_horiz are modified.
Skip-value skip_do_avs changed to a dynamic adaption of ghost points.

data_output_mask.f90


Calls of exchange_horiz are modified.

diffusion_e.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusion_s.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusion_u.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusion_v.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusion_w.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusivities.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusivities.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.
Calls of exchange_horiz are modified.

exchange_horiz_2d.f90


Dynamic exchange of ghost points with nbgp, which depends on the advection
scheme. Exchange between left and right PEs is now done with MPI-vectors.

global_min_max.f90


Adapting of the index arrays, because MINLOC assumes lowerbound
at 1 and not at nbgp.

init_3d_model.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng in loops and
allocation of arrays. Calls of exchange_horiz are modified.
Call ws_init to initialize arrays needed for statistical evaluation and
optimization when ws-scheme is used.
Initial volume flow is now calculated by using the variable hom_sum.
Therefore the correction of initial volume flow for non-flat topography
removed (removed u_nzb_p1_for_vfc and v_nzb_p1_for_vfc)
Changed surface boundary conditions for u and v in case of ibc_uv_b == 0 from
mirror bc to dirichlet boundary conditions (u=v=0), so that k=nzb is
representative for the height z0

Bugfix: type conversion of '1' to 64bit for the MAX function (ngp_3d_inner)

init_coupling.f90


determination of target_id's moved to init_pegrid

init_pt_anomaly.f90


Call of exchange_horiz are modified.

init_rankine.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.
Calls of exchange_horiz are modified.

init_slope.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

header.f90


Output of advection scheme.

poismg.f90


Calls of exchange_horiz are modified.

prandtl_fluxes.f90


Changed surface boundary conditions for u and v from mirror bc to dirichelt bc,
therefore u(uzb,:,:) and v(nzb,:,:) is now representative for the height z0
nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

production_e.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

read_3d_binary.f90


+/- 1 replaced with +/- nbgp when swapping and allocating variables.

sor.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.
Call of exchange_horiz are modified.
bug removed in declaration of ddzw(), nz replaced by nzt+1

subsidence.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

sum_up_3d_data.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

surface_coupler.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng in
MPI_SEND() and MPI_RECV.
additional case for nonequivalent processor and grid topopolgy in ocean and
atmosphere added (coupling_topology = 1)

Added exchange of u and v from Ocean to Atmosphere

time_integration.f90


Calls of exchange_horiz are modified.
Adaption to slooping surface.

timestep.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

user_3d_data_averaging.f90, user_data_output_2d.f90, user_data_output_3d.f90,
user_actions.f90, user_init.f90, user_init_plant_canopy.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

user_read_restart_data.f90


Allocation with nbgp.

wall_fluxes.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

write_compressed.f90


Array bounds and nx, ny adapted with nbgp.

sor.f90


bug removed in declaration of ddzw(), nz replaced by nzt+1

Location:
palm/trunk/SOURCE
Files:
2 edited

Legend:

Unmodified
Added
Removed
  • palm/trunk/SOURCE

    • Property svn:mergeinfo set to (toggle deleted branches)
      /palm/branches/suehring423-666
      /palm/branches/letzel/masked_output/SOURCE296-409
  • palm/trunk/SOURCE/surface_coupler.f90

    r392 r667  
    55! -----------------
    66!
     7! additional case for nonequivalent processor and grid topopolgy in ocean and
     8! atmosphere added (coupling_topology = 1)
     9!
     10!
     11! Added exchange of u and v from Ocean to Atmosphere
     12!
    713!
    814! Former revisions:
     
    3945
    4046    REAL    ::  time_since_reference_point_rem
     47    REAL    ::  total_2d(-nbgp:ny+nbgp,-nbgp:nx+nbgp)
    4148
    4249#if defined( __parallel )
    4350
    44        CALL cpu_log( log_point(39), 'surface_coupler', 'start' )
     51    CALL cpu_log( log_point(39), 'surface_coupler', 'start' )
     52
     53
    4554
    4655!
     
    5160!-- If necessary, the coupler will be called at the beginning of the next
    5261!-- restart run.
    53     CALL MPI_SENDRECV( terminate_coupled,        1, MPI_INTEGER, target_id,  &
    54                        0, &
    55                        terminate_coupled_remote, 1, MPI_INTEGER, target_id,  &
    56                        0, comm_inter, status, ierr )
     62
     63    IF ( coupling_topology == 0 ) THEN
     64       CALL MPI_SENDRECV( terminate_coupled,        1, MPI_INTEGER, target_id,  &
     65                          0,                                                    &
     66                          terminate_coupled_remote, 1, MPI_INTEGER, target_id,  &
     67                          0, comm_inter, status, ierr )
     68    ELSE
     69       IF ( myid == 0) THEN
     70          CALL MPI_SENDRECV( terminate_coupled,        1, MPI_INTEGER, &
     71                             target_id, 0,                             &
     72                             terminate_coupled_remote, 1, MPI_INTEGER, &
     73                             target_id, 0,                             &
     74                             comm_inter, status, ierr )
     75       ENDIF
     76       CALL MPI_BCAST( terminate_coupled_remote, 1, MPI_INTEGER, 0, comm2d, ierr)
     77
     78       ALLOCATE( total_2d_a(-nbgp:ny_a+nbgp,-nbgp:nx_a+nbgp),       &
     79                 total_2d_o(-nbgp:ny_o+nbgp,-nbgp:nx_o+nbgp) )
     80
     81    ENDIF
     82
    5783    IF ( terminate_coupled_remote > 0 )  THEN
    5884       WRITE( message_string, * ) 'remote model "',                         &
     
    6490                                  '" has',                                  &
    6591                                  '&terminate_coupled = ',                  &
    66                                   terminate_coupled
     92                                   terminate_coupled
    6793       CALL message( 'surface_coupler', 'PA0310', 1, 2, 0, 6, 0 )
    6894       RETURN
    6995    ENDIF
     96 
    7097
    7198!
    7299!-- Exchange the current simulated time between the models,
    73 !-- currently just for testing
    74     CALL MPI_SEND( time_since_reference_point, 1, MPI_REAL, target_id, 11, &
    75                    comm_inter, ierr )
    76     CALL MPI_RECV( time_since_reference_point_rem, 1, MPI_REAL, target_id, 11, &
    77                    comm_inter, status, ierr )
     100!-- currently just for total_2ding
     101    IF ( coupling_topology == 0 ) THEN   
     102       CALL MPI_SEND( time_since_reference_point, 1, MPI_REAL, &
     103                      target_id, 11, comm_inter, ierr )
     104       CALL MPI_RECV( time_since_reference_point_rem, 1, MPI_REAL, &
     105                      target_id, 11, comm_inter, status, ierr )
     106    ELSE
     107       IF ( myid == 0 ) THEN
     108          CALL MPI_SEND( time_since_reference_point, 1, MPI_REAL, &
     109                         target_id, 11, comm_inter, ierr )
     110          CALL MPI_RECV( time_since_reference_point_rem, 1, MPI_REAL, &
     111                         target_id, 11, comm_inter, status, ierr )
     112       ENDIF
     113       CALL MPI_BCAST( time_since_reference_point_rem, 1, MPI_REAL, &
     114                       0, comm2d, ierr )
     115    ENDIF
    78116    WRITE ( 9, * ) 'simulated time: ', simulated_time
    79117    WRITE ( 9, * ) 'time since start of coupling: ', &
    80                    time_since_reference_point, ' remote: ', &
    81                    time_since_reference_point_rem
    82     CALL local_flush( 9 )
     118                  time_since_reference_point, ' remote: ', &
     119                  time_since_reference_point_rem
     120   CALL local_flush( 9 )
     121 
    83122
    84123!
    85124!-- Exchange the interface data
    86125    IF ( coupling_mode == 'atmosphere_to_ocean' )  THEN
    87 
    88 !
    89 !--    Send heat flux at bottom surface to the ocean model
    90        WRITE ( 9, * )  '*** send shf to ocean'
    91        CALL local_flush( 9 )
    92        CALL MPI_SEND( shf(nys-1,nxl-1), ngp_xy, MPI_REAL, target_id, 12, &
    93                       comm_inter, ierr )
    94 
    95 !
    96 !--    Send humidity flux at bottom surface to the ocean model
    97        IF ( humidity )  THEN
    98           WRITE ( 9, * )  '*** send qsws to ocean'
     126   
     127!
     128!--    Horizontal grid size and number of processors is equal
     129!--    in ocean and atmosphere
     130       IF ( coupling_topology == 0 ) THEN
     131
     132!
     133!--       Send heat flux at bottom surface to the ocean model
     134          CALL MPI_SEND( shf(nysg,nxlg), ngp_xy, MPI_REAL, &
     135                         target_id, 12, comm_inter, ierr )
     136
     137!
     138!--       Send humidity flux at bottom surface to the ocean model
     139          IF ( humidity )  THEN
     140             CALL MPI_SEND( qsws(nysg,nxlg), ngp_xy, MPI_REAL, &
     141                            target_id, 13, comm_inter, ierr )
     142          ENDIF
     143
     144!
     145!--       Receive temperature at the bottom surface from the ocean model
     146          WRITE ( 9, * )  '*** receive pt from ocean'
    99147          CALL local_flush( 9 )
    100           CALL MPI_SEND( qsws(nys-1,nxl-1), ngp_xy, MPI_REAL, target_id, 13, &
    101                comm_inter, ierr )
     148          CALL MPI_RECV( pt(0,nysg,nxlg), 1, type_xy, &
     149                         target_id, 14, comm_inter, status, ierr )
     150
     151!
     152!--       Send the momentum flux (u) at bottom surface to the ocean model
     153          CALL MPI_SEND( usws(nysg,nxlg), ngp_xy, MPI_REAL, &
     154                         target_id, 15, comm_inter, ierr )
     155
     156!
     157!--       Send the momentum flux (v) at bottom surface to the ocean model
     158          CALL MPI_SEND( vsws(nysg,nxlg), ngp_xy, MPI_REAL, &
     159                         target_id, 16, comm_inter, ierr )
     160
     161!
     162!--       Receive u at the bottom surface from the ocean model
     163          CALL MPI_RECV( u(0,nysg,nxlg), 1, type_xy, &
     164                         target_id, 17, comm_inter, status, ierr )
     165
     166!
     167!--       Receive v at the bottom surface from the ocean model
     168          CALL MPI_RECV( v(0,nysg,nxlg), 1, type_xy, &
     169                         target_id, 18,  comm_inter, status, ierr )
     170
     171!
     172!--    Horizontal grid size or number of processors differs between
     173!--    ocean and atmosphere
     174       ELSE
     175     
     176!
     177!--       Send heat flux at bottom surface to the ocean model
     178          total_2d_a = 0.0
     179          total_2d = 0.0
     180          total_2d(nys:nyn,nxl:nxr) = shf(nys:nyn,nxl:nxr)
     181          CALL MPI_REDUCE( total_2d, total_2d_a, ngp_a, MPI_REAL, &
     182                           MPI_SUM, 0, comm2d, ierr )
     183          CALL interpolate_to_ocean(12)
     184   
     185!
     186!--       Send humidity flux at bottom surface to the ocean model
     187          IF ( humidity ) THEN
     188             total_2d_a = 0.0
     189             total_2d = 0.0
     190             total_2d(nys:nyn,nxl:nxr) = qsws(nys:nyn,nxl:nxr)
     191             CALL MPI_REDUCE( total_2d, total_2d_a, ngp_a, MPI_REAL, &
     192                              MPI_SUM, 0, comm2d, ierr )
     193             CALL interpolate_to_ocean(13)
     194          ENDIF
     195
     196!
     197!--       Receive temperature at the bottom surface from the ocean model
     198          IF ( myid == 0 ) THEN
     199             CALL MPI_RECV( total_2d_a(-nbgp,-nbgp), ngp_a, MPI_REAL, &
     200                            target_id, 14, comm_inter, status, ierr )   
     201          ENDIF
     202          CALL MPI_BARRIER( comm2d, ierr )
     203          CALL MPI_BCAST( total_2d_a(-nbgp,-nbgp), ngp_a, MPI_REAL, &
     204                          0, comm2d, ierr )
     205          pt(0,nysg:nyng,nxlg:nxrg) = total_2d_a(nysg:nyng,nxlg:nxrg)
     206
     207!
     208!--       Send momentum flux (u) at bottom surface to the ocean model
     209          total_2d_a = 0.0
     210          total_2d = 0.0
     211          total_2d(nys:nyn,nxl:nxr) = usws(nys:nyn,nxl:nxr)
     212          CALL MPI_REDUCE( total_2d, total_2d_a, ngp_a, MPI_REAL, &
     213                           MPI_SUM, 0, comm2d, ierr )
     214          CALL interpolate_to_ocean(15)
     215
     216!
     217!--       Send momentum flux (v) at bottom surface to the ocean model
     218          total_2d_a = 0.0
     219          total_2d = 0.0
     220          total_2d(nys:nyn,nxl:nxr) = vsws(nys:nyn,nxl:nxr)
     221          CALL MPI_REDUCE( total_2d, total_2d_a, ngp_a, MPI_REAL, &
     222                           MPI_SUM, 0, comm2d, ierr )
     223          CALL interpolate_to_ocean(16)
     224
     225!
     226!--       Receive u at the bottom surface from the ocean model
     227          IF ( myid == 0 ) THEN
     228             CALL MPI_RECV( total_2d_a(-nbgp,-nbgp), ngp_a, MPI_REAL, &
     229                            target_id, 17, comm_inter, status, ierr )           
     230          ENDIF
     231          CALL MPI_BARRIER( comm2d, ierr )
     232          CALL MPI_BCAST( total_2d_a(-nbgp,-nbgp), ngp_a, MPI_REAL, &
     233                          0, comm2d, ierr )
     234          u(0,nysg:nyng,nxlg:nxrg) = total_2d_a(nysg:nyng,nxlg:nxrg)
     235   
     236!
     237!--       Receive v at the bottom surface from the ocean model
     238          IF ( myid == 0 ) THEN
     239             CALL MPI_RECV( total_2d_a(-nbgp,-nbgp), ngp_a, MPI_REAL, &
     240                            target_id, 18, comm_inter, status, ierr )           
     241          ENDIF
     242          CALL MPI_BARRIER( comm2d, ierr )
     243          CALL MPI_BCAST( total_2d_a(-nbgp,-nbgp), ngp_a, MPI_REAL, &
     244                          0, comm2d, ierr )
     245          v(0,nysg:nyng,nxlg:nxrg) = total_2d_a(nysg:nyng,nxlg:nxrg)
     246
    102247       ENDIF
    103248
    104 !
    105 !--    Receive temperature at the bottom surface from the ocean model
    106        WRITE ( 9, * )  '*** receive pt from ocean'
    107        CALL local_flush( 9 )
    108        CALL MPI_RECV( pt(0,nys-1,nxl-1), 1, type_xy, target_id, 14, &
    109                       comm_inter, status, ierr )
    110 
    111 !
    112 !--    Send the momentum flux (u) at bottom surface to the ocean model
    113        WRITE ( 9, * )  '*** send usws to ocean'
    114        CALL local_flush( 9 )
    115        CALL MPI_SEND( usws(nys-1,nxl-1), ngp_xy, MPI_REAL, target_id, 15, &
    116                       comm_inter, ierr )
    117 
    118 !
    119 !--    Send the momentum flux (v) at bottom surface to the ocean model
    120        WRITE ( 9, * )  '*** send vsws to ocean'
    121        CALL local_flush( 9 )
    122        CALL MPI_SEND( vsws(nys-1,nxl-1), ngp_xy, MPI_REAL, target_id, 16, &
    123                       comm_inter, ierr )
    124 
    125249    ELSEIF ( coupling_mode == 'ocean_to_atmosphere' )  THEN
    126250
    127251!
    128 !--    Receive heat flux at the sea surface (top) from the atmosphere model
    129        WRITE ( 9, * )  '*** receive tswst from atmosphere'
    130        CALL local_flush( 9 )
    131        CALL MPI_RECV( tswst(nys-1,nxl-1), ngp_xy, MPI_REAL, target_id, 12, &
    132                       comm_inter, status, ierr )
    133 
    134 !
    135 !--    Receive humidity flux from the atmosphere model (bottom)
    136 !--    and add it to the heat flux at the sea surface (top)...
     252!--    Horizontal grid size and number of processors is equal
     253!--    in ocean and atmosphere
     254       IF ( coupling_topology == 0 ) THEN
     255!
     256!--       Receive heat flux at the sea surface (top) from the atmosphere model
     257          CALL MPI_RECV( tswst(nysg,nxlg), ngp_xy, MPI_REAL, &
     258                         target_id, 12, comm_inter, status, ierr )
     259
     260
     261!
     262!--       Receive humidity flux from the atmosphere model (bottom)
     263!--       and add it to the heat flux at the sea surface (top)...
     264          IF ( humidity_remote )  THEN
     265             CALL MPI_RECV( qswst_remote(nysg,nxlg), ngp_xy, MPI_REAL, &
     266                            target_id, 13, comm_inter, status, ierr )
     267
     268          ENDIF
     269
     270!
     271!--       Send sea surface temperature to the atmosphere model
     272          CALL MPI_SEND( pt(nzt,nysg,nxlg), 1, type_xy, &
     273                         target_id, 14, comm_inter, ierr )
     274
     275!
     276!--       Receive momentum flux (u) at the sea surface (top) from the atmosphere
     277!--       model
     278          WRITE ( 9, * )  '*** receive uswst from atmosphere'
     279          CALL local_flush( 9 )
     280          CALL MPI_RECV( uswst(nysg,nxlg), ngp_xy, MPI_REAL, &
     281                         target_id, 15, comm_inter, status, ierr )
     282
     283!
     284!--       Receive momentum flux (v) at the sea surface (top) from the atmosphere
     285!--       model
     286          CALL MPI_RECV( vswst(nysg,nxlg), ngp_xy, MPI_REAL, &
     287                         target_id, 16, comm_inter, status, ierr )
     288
     289!--       Send u to the atmosphere model
     290          CALL MPI_SEND( u(nzt,nysg,nxlg), 1, type_xy, &
     291                         target_id, 17, comm_inter, ierr )
     292
     293!
     294!--       Send v to the atmosphere model
     295          CALL MPI_SEND( v(nzt,nysg,nxlg), 1, type_xy, &
     296                         target_id, 18, comm_inter, ierr )
     297
     298!
     299!--    Horizontal gridsize or number of processors differs between
     300!--    ocean and atmosphere
     301       ELSE
     302
     303!
     304!--       Receive heat flux at the sea surface (top) from the atmosphere model
     305          IF ( myid == 0 ) THEN
     306             CALL MPI_RECV( total_2d_o(-nbgp,-nbgp), ngp_o, MPI_REAL, &
     307                            target_id, 12, comm_inter, status, ierr )           
     308          ENDIF
     309          CALL MPI_BARRIER( comm2d, ierr )
     310          CALL MPI_BCAST( total_2d_o(-nbgp,-nbgp), ngp_o, MPI_REAL, &
     311                          0, comm2d, ierr)
     312          tswst(nysg:nyng,nxlg:nxrg) = total_2d_o(nysg:nyng,nxlg:nxrg)
     313
     314!
     315!--       Receive humidity flux at the sea surface (top) from the
     316!--       atmosphere model
     317          IF ( humidity_remote ) THEN
     318             IF ( myid == 0 ) THEN
     319                CALL MPI_RECV( total_2d_o(-nbgp,-nbgp), ngp_o, MPI_REAL, &
     320                               target_id, 13, comm_inter, status, ierr )           
     321             ENDIF
     322             CALL MPI_BARRIER( comm2d, ierr )
     323             CALL MPI_BCAST( total_2d_o(-nbgp,-nbgp), ngp_o, MPI_REAL, &
     324                             0, comm2d, ierr)
     325             qswst_remote(nysg:nyng,nxlg:nxrg) = total_2d_o(nysg:nyng,nxlg:nxrg)
     326          ENDIF
     327
     328!
     329!--       Send surface temperature to atmosphere
     330          total_2d_o = 0.0
     331          total_2d = 0.0
     332          total_2d(nys:nyn,nxl:nxr) = pt(nzt,nys:nyn,nxl:nxr)
     333
     334          CALL MPI_REDUCE(total_2d, total_2d_o, ngp_o, &
     335                          MPI_REAL, MPI_SUM, 0, comm2d, ierr)
     336
     337          CALL interpolate_to_atmos(14)
     338
     339!
     340!--       Receive momentum flux (u) at the sea surface (top) from the
     341!--       atmosphere model
     342          IF ( myid == 0 ) THEN
     343             CALL MPI_RECV( total_2d_o(-nbgp,-nbgp), ngp_o, MPI_REAL, &
     344                            target_id, 15, comm_inter, status, ierr )           
     345          ENDIF
     346          CALL MPI_BARRIER( comm2d, ierr )
     347          CALL MPI_BCAST( total_2d_o(-nbgp,-nbgp), ngp_o, MPI_REAL, &
     348                          0, comm2d, ierr)
     349          uswst(nysg:nyng,nxlg:nxrg) = total_2d_o(nysg:nyng,nxlg:nxrg)
     350
     351!
     352!--       Receive momentum flux (v) at the sea surface (top) from the
     353!--       atmosphere model
     354          IF ( myid == 0 ) THEN
     355             CALL MPI_RECV( total_2d_o(-nbgp,-nbgp), ngp_o, MPI_REAL, &
     356                            target_id, 16, comm_inter, status, ierr )           
     357          ENDIF
     358          CALL MPI_BARRIER( comm2d, ierr )
     359          CALL MPI_BCAST( total_2d_o(-nbgp,-nbgp), ngp_o, MPI_REAL, &
     360                          0, comm2d, ierr)
     361          vswst(nysg:nyng,nxlg:nxrg) = total_2d_o(nysg:nyng,nxlg:nxrg)
     362
     363!
     364!--       Send u to atmosphere
     365          total_2d_o = 0.0 
     366          total_2d = 0.0
     367          total_2d(nys:nyn,nxl:nxr) = u(nzt,nys:nyn,nxl:nxr)
     368          CALL MPI_REDUCE(total_2d, total_2d_o, ngp_o, MPI_REAL, &
     369                          MPI_SUM, 0, comm2d, ierr) 
     370          CALL interpolate_to_atmos(17)
     371
     372!
     373!--       Send v to atmosphere
     374          total_2d_o = 0.0
     375          total_2d = 0.0
     376          total_2d(nys:nyn,nxl:nxr) = v(nzt,nys:nyn,nxl:nxr)
     377          CALL MPI_REDUCE(total_2d, total_2d_o, ngp_o, MPI_REAL, &
     378                          MPI_SUM, 0, comm2d, ierr) 
     379          CALL interpolate_to_atmos(18)
     380       
     381       ENDIF
     382
     383!
     384!--    Conversions of fluxes received from atmosphere
    137385       IF ( humidity_remote )  THEN
    138           WRITE ( 9, * )  '*** receive qswst_remote from atmosphere'
    139           CALL local_flush( 9 )
    140           CALL MPI_RECV( qswst_remote(nys-1,nxl-1), ngp_xy, MPI_REAL, &
    141                          target_id, 13, comm_inter, status, ierr )
    142 
    143386          !here tswst is still the sum of atmospheric bottom heat fluxes
    144387          tswst = tswst + qswst_remote * 2.2626108e6 / 1005.0
     
    146389          !/(rho_atm(=1.0)*c_p)
    147390!
    148 !--    ...and convert it to a salinity flux at the sea surface (top)
     391!--        ...and convert it to a salinity flux at the sea surface (top)
    149392!--       following Steinhorn (1991), JPO 21, pp. 1681-1683:
    150393!--       S'w' = -S * evaporation / ( rho_water * ( 1 - S ) )
    151394          saswst = -1.0 * sa(nzt,:,:) * qswst_remote /  &
    152                ( rho(nzt,:,:) * ( 1.0 - sa(nzt,:,:) ) )
     395                    ( rho(nzt,:,:) * ( 1.0 - sa(nzt,:,:) ) )
    153396       ENDIF
    154397
     
    156399!--    Adjust the kinematic heat flux with respect to ocean density
    157400!--    (constants are the specific heat capacities for air and water)
    158        !now tswst is the ocean top heat flux
     401!--    now tswst is the ocean top heat flux
    159402       tswst = tswst / rho(nzt,:,:) * 1005.0 / 4218.0
    160 
    161 !
    162 !--    Send sea surface temperature to the atmosphere model
    163        WRITE ( 9, * )  '*** send pt to atmosphere'
    164        CALL local_flush( 9 )
    165        CALL MPI_SEND( pt(nzt,nys-1,nxl-1), 1, type_xy, target_id, 14, &
    166                       comm_inter, ierr )
    167 
    168 !
    169 !--    Receive momentum flux (u) at the sea surface (top) from the atmosphere
    170 !--    model
    171        WRITE ( 9, * )  '*** receive uswst from atmosphere'
    172        CALL local_flush( 9 )
    173        CALL MPI_RECV( uswst(nys-1,nxl-1), ngp_xy, MPI_REAL, target_id, 15, &
    174                       comm_inter, status, ierr )
    175 
    176 !
    177 !--    Receive momentum flux (v) at the sea surface (top) from the atmosphere
    178 !--    model
    179        WRITE ( 9, * )  '*** receive vswst from atmosphere'
    180        CALL local_flush( 9 )
    181        CALL MPI_RECV( vswst(nys-1,nxl-1), ngp_xy, MPI_REAL, target_id, 16, &
    182                       comm_inter, status, ierr )
    183403
    184404!
     
    187407       vswst = vswst / rho(nzt,:,:)
    188408
     409
     410    ENDIF
     411
     412    IF ( coupling_topology == 1 ) THEN
     413       DEALLOCATE( total_2d_o, total_2d_a )
    189414    ENDIF
    190415
     
    193418#endif
    194419
    195  END SUBROUTINE surface_coupler
     420  END SUBROUTINE surface_coupler
     421
     422
     423
     424  SUBROUTINE interpolate_to_atmos(tag)
     425
     426    USE arrays_3d
     427    USE control_parameters
     428    USE grid_variables
     429    USE indices
     430    USE pegrid
     431
     432    IMPLICIT NONE
     433
     434 
     435    INTEGER             ::  dnx, dnx2, dny, dny2, i, ii, j, jj
     436    INTEGER, intent(in) ::  tag
     437
     438    CALL MPI_BARRIER( comm2d, ierr )
     439
     440    IF ( myid == 0 ) THEN
     441
     442!
     443!--    cyclic boundary conditions for the total 2D-grid
     444       total_2d_o(-nbgp:-1,:) = total_2d_o(ny+1-nbgp:ny,:)
     445       total_2d_o(:,-nbgp:-1) = total_2d_o(:,nx+1-nbgp:nx)
     446
     447       total_2d_o(ny+1:ny+nbgp,:) = total_2d_o(0:nbgp-1,:)
     448       total_2d_o(:,nx+1:nx+nbgp) = total_2d_o(:,0:nbgp-1)
     449
     450!
     451!--    Number of gridpoints of the fine grid within one mesh of the coarse grid
     452       dnx = (nx_o+1) / (nx_a+1)
     453       dny = (ny_o+1) / (ny_a+1)
     454
     455!
     456!--    Distance for interpolation around coarse grid points within the fine grid
     457!--    (note: 2*dnx2 must not be equal with dnx) 
     458       dnx2 = 2 * ( dnx / 2 )
     459       dny2 = 2 * ( dny / 2 )
     460
     461       total_2d_a = 0.0
     462!
     463!--    Interpolation from ocean-grid-layer to atmosphere-grid-layer
     464       DO  j = 0, ny_a
     465          DO  i = 0, nx_a
     466             DO  jj = 0, dny2
     467                DO  ii = 0, dnx2
     468                   total_2d_a(j,i) = total_2d_a(j,i) &
     469                                     + total_2d_o(j*dny+jj,i*dnx+ii)
     470                ENDDO
     471             ENDDO
     472             total_2d_a(j,i) = total_2d_a(j,i) / ( ( dnx2 + 1 ) * ( dny2 + 1 ) )
     473          ENDDO
     474       ENDDO
     475!
     476!--    cyclic boundary conditions for atmosphere grid
     477       total_2d_a(-nbgp:-1,:) = total_2d_a(ny_a+1-nbgp:ny_a,:)
     478       total_2d_a(:,-nbgp:-1) = total_2d_a(:,nx_a+1-nbgp:nx_a)
     479       
     480       total_2d_a(ny_a+1:ny_a+nbgp,:) = total_2d_a(0:nbgp-1,:)
     481       total_2d_a(:,nx_a+1:nx_a+nbgp) = total_2d_a(:,0:nbgp-1)
     482!
     483!--    Transfer of the atmosphere-grid-layer to the atmosphere
     484       CALL MPI_SEND( total_2d_a(-nbgp,-nbgp), ngp_a, MPI_REAL, &
     485                      target_id, tag, comm_inter, ierr )
     486
     487    ENDIF
     488
     489    CALL MPI_BARRIER( comm2d, ierr )
     490
     491  END SUBROUTINE interpolate_to_atmos
     492
     493
     494  SUBROUTINE interpolate_to_ocean(tag)
     495
     496    USE arrays_3d
     497    USE control_parameters
     498    USE grid_variables
     499    USE indices
     500    USE pegrid
     501
     502    IMPLICIT NONE
     503
     504    REAL                ::  fl, fr, myl, myr
     505    INTEGER             ::  dnx, dny, i, ii, j, jj
     506    INTEGER, intent(in) ::  tag
     507
     508    CALL MPI_BARRIER( comm2d, ierr )
     509
     510    IF ( myid == 0 ) THEN   
     511
     512!
     513!      Number of gridpoints of the fine grid within one mesh of the coarse grid
     514       dnx = ( nx_o + 1 ) / ( nx_a + 1 )
     515       dny = ( ny_o + 1 ) / ( ny_a + 1 )
     516
     517!
     518!--    cyclic boundary conditions for atmosphere grid
     519       total_2d_a(-nbgp:-1,:) = total_2d_a(ny+1-nbgp:ny,:)
     520       total_2d_a(:,-nbgp:-1) = total_2d_a(:,nx+1-nbgp:nx)
     521       
     522       total_2d_a(ny+1:ny+nbgp,:) = total_2d_a(0:nbgp-1,:)
     523       total_2d_a(:,nx+1:nx+nbgp) = total_2d_a(:,0:nbgp-1)
     524!
     525!--    Bilinear Interpolation from atmosphere-grid-layer to ocean-grid-layer
     526       DO  j = 0, ny
     527          DO  i = 0, nx
     528             myl = ( total_2d_a(j+1,i)   - total_2d_a(j,i)   ) / dny
     529             myr = ( total_2d_a(j+1,i+1) - total_2d_a(j,i+1) ) / dny
     530             DO  jj = 0, dny-1
     531                fl = myl*jj  + total_2d_a(j,i) 
     532                fr = myr*jj  + total_2d_a(j,i+1) 
     533                DO  ii = 0, dnx-1
     534                   total_2d_o(j*dny+jj,i*dnx+ii) = ( fr - fl ) / dnx * ii + fl
     535                ENDDO
     536             ENDDO
     537          ENDDO
     538       ENDDO
     539!
     540!--    cyclic boundary conditions for ocean grid
     541       total_2d_o(-nbgp:-1,:) = total_2d_o(ny_o+1-nbgp:ny_o,:)
     542       total_2d_o(:,-nbgp:-1) = total_2d_o(:,nx_o+1-nbgp:nx_o)
     543
     544       total_2d_o(ny_o+1:ny_o+nbgp,:) = total_2d_o(0:nbgp-1,:)
     545       total_2d_o(:,nx_o+1:nx_o+nbgp) = total_2d_o(:,0:nbgp-1)
     546       
     547
     548       CALL MPI_SEND( total_2d_o(-nbgp,-nbgp), ngp_o, MPI_REAL, &
     549                      target_id, tag, comm_inter, ierr )
     550
     551    ENDIF
     552
     553    CALL MPI_BARRIER( comm2d, ierr ) 
     554
     555  END SUBROUTINE interpolate_to_ocean
Note: See TracChangeset for help on using the changeset viewer.