[1682] | 1 | !> @file surface_coupler.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[4360] | 17 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[258] | 20 | ! Current revisions: |
---|
[1092] | 21 | ! ------------------ |
---|
[1321] | 22 | ! |
---|
[3049] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: surface_coupler.f90 4360 2020-01-07 11:25:50Z banzhafs $ |
---|
[4182] | 27 | ! Corrected "Former revisions" section |
---|
| 28 | ! |
---|
| 29 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
[3274] | 30 | ! Modularization of all bulk cloud physics code components |
---|
[1321] | 31 | ! |
---|
[4182] | 32 | ! 109 2007-08-28 15:26:47Z letzel |
---|
| 33 | ! Initial revision |
---|
| 34 | ! |
---|
[102] | 35 | ! Description: |
---|
| 36 | ! ------------ |
---|
[1682] | 37 | !> Data exchange at the interface between coupled models |
---|
[102] | 38 | !------------------------------------------------------------------------------! |
---|
[1682] | 39 | SUBROUTINE surface_coupler |
---|
| 40 | |
---|
[102] | 41 | |
---|
[1320] | 42 | USE arrays_3d, & |
---|
[2232] | 43 | ONLY: pt, rho_ocean, sa, total_2d_a, total_2d_o, u, v |
---|
[1320] | 44 | |
---|
[3274] | 45 | USE basic_constants_and_equations_mod, & |
---|
| 46 | ONLY: c_p, l_v |
---|
[1427] | 47 | |
---|
[1320] | 48 | USE control_parameters, & |
---|
| 49 | ONLY: coupling_mode, coupling_mode_remote, coupling_topology, & |
---|
[2232] | 50 | humidity, humidity_remote, land_surface, message_string, & |
---|
| 51 | terminate_coupled, terminate_coupled_remote, & |
---|
| 52 | time_since_reference_point, urban_surface |
---|
[1320] | 53 | |
---|
| 54 | USE cpulog, & |
---|
| 55 | ONLY: cpu_log, log_point |
---|
| 56 | |
---|
| 57 | USE indices, & |
---|
| 58 | ONLY: nbgp, nx, nxl, nxlg, nxr, nxrg, nx_a, nx_o, ny, nyn, nyng, nys, & |
---|
| 59 | nysg, ny_a, ny_o, nzt |
---|
| 60 | |
---|
| 61 | USE kinds |
---|
| 62 | |
---|
[102] | 63 | USE pegrid |
---|
| 64 | |
---|
[2232] | 65 | USE surface_mod, & |
---|
| 66 | ONLY : surf_def_h, surf_lsm_h, surf_type, surf_usm_h |
---|
| 67 | |
---|
[102] | 68 | IMPLICIT NONE |
---|
| 69 | |
---|
[2232] | 70 | INTEGER(iwp) :: i !< index variable x-direction |
---|
| 71 | INTEGER(iwp) :: j !< index variable y-direction |
---|
| 72 | INTEGER(iwp) :: m !< running index for surface elements |
---|
| 73 | |
---|
| 74 | REAL(wp) :: cpw = 4218.0_wp !< heat capacity of water at constant pressure |
---|
[1682] | 75 | REAL(wp) :: time_since_reference_point_rem !< |
---|
| 76 | REAL(wp) :: total_2d(-nbgp:ny+nbgp,-nbgp:nx+nbgp) !< |
---|
[102] | 77 | |
---|
[2232] | 78 | REAL(wp), DIMENSION(nysg:nyng,nxlg:nxrg) :: surface_flux !< dummy array for surface fluxes on 2D grid |
---|
[1427] | 79 | |
---|
[2232] | 80 | |
---|
[206] | 81 | #if defined( __parallel ) |
---|
[102] | 82 | |
---|
[667] | 83 | CALL cpu_log( log_point(39), 'surface_coupler', 'start' ) |
---|
[102] | 84 | |
---|
[667] | 85 | |
---|
| 86 | |
---|
[102] | 87 | ! |
---|
[108] | 88 | !-- In case of model termination initiated by the remote model |
---|
| 89 | !-- (terminate_coupled_remote > 0), initiate termination of the local model. |
---|
| 90 | !-- The rest of the coupler must then be skipped because it would cause an MPI |
---|
| 91 | !-- intercomminucation hang. |
---|
| 92 | !-- If necessary, the coupler will be called at the beginning of the next |
---|
| 93 | !-- restart run. |
---|
[667] | 94 | |
---|
| 95 | IF ( coupling_topology == 0 ) THEN |
---|
[709] | 96 | CALL MPI_SENDRECV( terminate_coupled, 1, MPI_INTEGER, target_id, & |
---|
| 97 | 0, & |
---|
| 98 | terminate_coupled_remote, 1, MPI_INTEGER, target_id, & |
---|
[667] | 99 | 0, comm_inter, status, ierr ) |
---|
| 100 | ELSE |
---|
| 101 | IF ( myid == 0) THEN |
---|
| 102 | CALL MPI_SENDRECV( terminate_coupled, 1, MPI_INTEGER, & |
---|
| 103 | target_id, 0, & |
---|
| 104 | terminate_coupled_remote, 1, MPI_INTEGER, & |
---|
| 105 | target_id, 0, & |
---|
| 106 | comm_inter, status, ierr ) |
---|
| 107 | ENDIF |
---|
[709] | 108 | CALL MPI_BCAST( terminate_coupled_remote, 1, MPI_INTEGER, 0, comm2d, & |
---|
| 109 | ierr ) |
---|
[667] | 110 | |
---|
| 111 | ALLOCATE( total_2d_a(-nbgp:ny_a+nbgp,-nbgp:nx_a+nbgp), & |
---|
| 112 | total_2d_o(-nbgp:ny_o+nbgp,-nbgp:nx_o+nbgp) ) |
---|
| 113 | |
---|
| 114 | ENDIF |
---|
| 115 | |
---|
[108] | 116 | IF ( terminate_coupled_remote > 0 ) THEN |
---|
[3045] | 117 | WRITE( message_string, * ) 'remote model "', & |
---|
| 118 | TRIM( coupling_mode_remote ), & |
---|
| 119 | '" terminated', & |
---|
[3046] | 120 | '&with terminate_coupled_remote = ', & |
---|
[3045] | 121 | terminate_coupled_remote, & |
---|
[3046] | 122 | '&local model "', TRIM( coupling_mode ), & |
---|
[3045] | 123 | '" has', & |
---|
[3046] | 124 | '&terminate_coupled = ', & |
---|
[667] | 125 | terminate_coupled |
---|
[258] | 126 | CALL message( 'surface_coupler', 'PA0310', 1, 2, 0, 6, 0 ) |
---|
[108] | 127 | RETURN |
---|
| 128 | ENDIF |
---|
[667] | 129 | |
---|
[291] | 130 | |
---|
[108] | 131 | ! |
---|
| 132 | !-- Exchange the current simulated time between the models, |
---|
[2232] | 133 | !-- currently just for total_2d |
---|
[709] | 134 | IF ( coupling_topology == 0 ) THEN |
---|
| 135 | |
---|
| 136 | CALL MPI_SEND( time_since_reference_point, 1, MPI_REAL, target_id, 11, & |
---|
| 137 | comm_inter, ierr ) |
---|
| 138 | CALL MPI_RECV( time_since_reference_point_rem, 1, MPI_REAL, target_id, & |
---|
| 139 | 11, comm_inter, status, ierr ) |
---|
[667] | 140 | ELSE |
---|
[709] | 141 | |
---|
[667] | 142 | IF ( myid == 0 ) THEN |
---|
[709] | 143 | |
---|
| 144 | CALL MPI_SEND( time_since_reference_point, 1, MPI_REAL, target_id, & |
---|
| 145 | 11, comm_inter, ierr ) |
---|
| 146 | CALL MPI_RECV( time_since_reference_point_rem, 1, MPI_REAL, & |
---|
[667] | 147 | target_id, 11, comm_inter, status, ierr ) |
---|
[709] | 148 | |
---|
[667] | 149 | ENDIF |
---|
[709] | 150 | |
---|
| 151 | CALL MPI_BCAST( time_since_reference_point_rem, 1, MPI_REAL, 0, comm2d, & |
---|
| 152 | ierr ) |
---|
| 153 | |
---|
[667] | 154 | ENDIF |
---|
[102] | 155 | |
---|
| 156 | ! |
---|
| 157 | !-- Exchange the interface data |
---|
| 158 | IF ( coupling_mode == 'atmosphere_to_ocean' ) THEN |
---|
[667] | 159 | |
---|
| 160 | ! |
---|
[709] | 161 | !-- Horizontal grid size and number of processors is equal in ocean and |
---|
| 162 | !-- atmosphere |
---|
| 163 | IF ( coupling_topology == 0 ) THEN |
---|
[102] | 164 | |
---|
| 165 | ! |
---|
[2232] | 166 | !-- Send heat flux at bottom surface to the ocean. First, transfer from |
---|
| 167 | !-- 1D surface type to 2D grid. |
---|
| 168 | CALL transfer_1D_to_2D_equal( surf_def_h(0)%shf, surf_lsm_h%shf, & |
---|
| 169 | surf_usm_h%shf ) |
---|
| 170 | CALL MPI_SEND( surface_flux(nysg,nxlg), ngp_xy, MPI_REAL, target_id, & |
---|
| 171 | 12, comm_inter, ierr ) |
---|
[102] | 172 | ! |
---|
[2232] | 173 | !-- Send humidity flux at bottom surface to the ocean. First, transfer |
---|
| 174 | !-- from 1D surface type to 2D grid. |
---|
| 175 | CALL transfer_1D_to_2D_equal( surf_def_h(0)%qsws, surf_lsm_h%qsws, & |
---|
| 176 | surf_usm_h%qsws ) |
---|
[667] | 177 | IF ( humidity ) THEN |
---|
[2232] | 178 | CALL MPI_SEND( surface_flux(nysg,nxlg), ngp_xy, MPI_REAL, & |
---|
| 179 | target_id, 13, comm_inter, ierr ) |
---|
[667] | 180 | ENDIF |
---|
| 181 | ! |
---|
[709] | 182 | !-- Receive temperature at the bottom surface from the ocean |
---|
[2232] | 183 | CALL MPI_RECV( pt(0,nysg,nxlg), 1, type_xy, target_id, 14, & |
---|
[709] | 184 | comm_inter, status, ierr ) |
---|
[108] | 185 | ! |
---|
[2232] | 186 | !-- Send the momentum flux (u) at bottom surface to the ocean. First, |
---|
| 187 | !-- transfer from 1D surface type to 2D grid. |
---|
| 188 | CALL transfer_1D_to_2D_equal( surf_def_h(0)%usws, surf_lsm_h%usws, & |
---|
| 189 | surf_usm_h%usws ) |
---|
| 190 | CALL MPI_SEND( surface_flux(nysg,nxlg), ngp_xy, MPI_REAL, target_id, & |
---|
| 191 | 15, comm_inter, ierr ) |
---|
[102] | 192 | ! |
---|
[2232] | 193 | !-- Send the momentum flux (v) at bottom surface to the ocean. First, |
---|
| 194 | !-- transfer from 1D surface type to 2D grid. |
---|
| 195 | CALL transfer_1D_to_2D_equal( surf_def_h(0)%vsws, surf_lsm_h%vsws, & |
---|
| 196 | surf_usm_h%vsws ) |
---|
| 197 | CALL MPI_SEND( surface_flux(nysg,nxlg), ngp_xy, MPI_REAL, target_id, & |
---|
| 198 | 16, comm_inter, ierr ) |
---|
[102] | 199 | ! |
---|
[709] | 200 | !-- Receive u at the bottom surface from the ocean |
---|
[2232] | 201 | CALL MPI_RECV( u(0,nysg,nxlg), 1, type_xy, target_id, 17, & |
---|
[709] | 202 | comm_inter, status, ierr ) |
---|
[667] | 203 | ! |
---|
[709] | 204 | !-- Receive v at the bottom surface from the ocean |
---|
[2232] | 205 | CALL MPI_RECV( v(0,nysg,nxlg), 1, type_xy, target_id, 18, & |
---|
[709] | 206 | comm_inter, status, ierr ) |
---|
[667] | 207 | ! |
---|
| 208 | !-- Horizontal grid size or number of processors differs between |
---|
| 209 | !-- ocean and atmosphere |
---|
| 210 | ELSE |
---|
| 211 | |
---|
| 212 | ! |
---|
[709] | 213 | !-- Send heat flux at bottom surface to the ocean |
---|
[1353] | 214 | total_2d_a = 0.0_wp |
---|
| 215 | total_2d = 0.0_wp |
---|
[2232] | 216 | ! |
---|
| 217 | !-- Transfer from 1D surface type to 2D grid. |
---|
| 218 | CALL transfer_1D_to_2D_unequal( surf_def_h(0)%shf, surf_lsm_h%shf, & |
---|
| 219 | surf_usm_h%shf ) |
---|
[709] | 220 | |
---|
[2232] | 221 | CALL MPI_REDUCE( total_2d, total_2d_a, ngp_a, MPI_REAL, MPI_SUM, 0, & |
---|
[709] | 222 | comm2d, ierr ) |
---|
| 223 | CALL interpolate_to_ocean( 12 ) |
---|
[667] | 224 | ! |
---|
[709] | 225 | !-- Send humidity flux at bottom surface to the ocean |
---|
| 226 | IF ( humidity ) THEN |
---|
[1353] | 227 | total_2d_a = 0.0_wp |
---|
| 228 | total_2d = 0.0_wp |
---|
[2232] | 229 | ! |
---|
| 230 | !-- Transfer from 1D surface type to 2D grid. |
---|
| 231 | CALL transfer_1D_to_2D_unequal( surf_def_h(0)%qsws, & |
---|
| 232 | surf_lsm_h%qsws, & |
---|
| 233 | surf_usm_h%qsws ) |
---|
[709] | 234 | |
---|
| 235 | CALL MPI_REDUCE( total_2d, total_2d_a, ngp_a, MPI_REAL, MPI_SUM, & |
---|
| 236 | 0, comm2d, ierr ) |
---|
| 237 | CALL interpolate_to_ocean( 13 ) |
---|
[667] | 238 | ENDIF |
---|
| 239 | ! |
---|
[709] | 240 | !-- Receive temperature at the bottom surface from the ocean |
---|
| 241 | IF ( myid == 0 ) THEN |
---|
[2232] | 242 | CALL MPI_RECV( total_2d_a(-nbgp,-nbgp), ngp_a, MPI_REAL, & |
---|
[667] | 243 | target_id, 14, comm_inter, status, ierr ) |
---|
| 244 | ENDIF |
---|
| 245 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
[709] | 246 | CALL MPI_BCAST( total_2d_a(-nbgp,-nbgp), ngp_a, MPI_REAL, 0, comm2d, & |
---|
| 247 | ierr ) |
---|
[667] | 248 | pt(0,nysg:nyng,nxlg:nxrg) = total_2d_a(nysg:nyng,nxlg:nxrg) |
---|
| 249 | ! |
---|
[709] | 250 | !-- Send momentum flux (u) at bottom surface to the ocean |
---|
[1353] | 251 | total_2d_a = 0.0_wp |
---|
| 252 | total_2d = 0.0_wp |
---|
[2232] | 253 | ! |
---|
| 254 | !-- Transfer from 1D surface type to 2D grid. |
---|
| 255 | CALL transfer_1D_to_2D_unequal( surf_def_h(0)%usws, surf_lsm_h%usws, & |
---|
| 256 | surf_usm_h%usws ) |
---|
[709] | 257 | CALL MPI_REDUCE( total_2d, total_2d_a, ngp_a, MPI_REAL, MPI_SUM, 0, & |
---|
| 258 | comm2d, ierr ) |
---|
| 259 | CALL interpolate_to_ocean( 15 ) |
---|
[667] | 260 | ! |
---|
[709] | 261 | !-- Send momentum flux (v) at bottom surface to the ocean |
---|
[1353] | 262 | total_2d_a = 0.0_wp |
---|
| 263 | total_2d = 0.0_wp |
---|
[2232] | 264 | ! |
---|
| 265 | !-- Transfer from 1D surface type to 2D grid. |
---|
| 266 | CALL transfer_1D_to_2D_unequal( surf_def_h(0)%usws, surf_lsm_h%usws, & |
---|
| 267 | surf_usm_h%usws ) |
---|
[709] | 268 | CALL MPI_REDUCE( total_2d, total_2d_a, ngp_a, MPI_REAL, MPI_SUM, 0, & |
---|
| 269 | comm2d, ierr ) |
---|
| 270 | CALL interpolate_to_ocean( 16 ) |
---|
[667] | 271 | ! |
---|
[709] | 272 | !-- Receive u at the bottom surface from the ocean |
---|
| 273 | IF ( myid == 0 ) THEN |
---|
[667] | 274 | CALL MPI_RECV( total_2d_a(-nbgp,-nbgp), ngp_a, MPI_REAL, & |
---|
[709] | 275 | target_id, 17, comm_inter, status, ierr ) |
---|
[667] | 276 | ENDIF |
---|
| 277 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
[709] | 278 | CALL MPI_BCAST( total_2d_a(-nbgp,-nbgp), ngp_a, MPI_REAL, 0, comm2d, & |
---|
| 279 | ierr ) |
---|
[667] | 280 | u(0,nysg:nyng,nxlg:nxrg) = total_2d_a(nysg:nyng,nxlg:nxrg) |
---|
| 281 | ! |
---|
[709] | 282 | !-- Receive v at the bottom surface from the ocean |
---|
| 283 | IF ( myid == 0 ) THEN |
---|
[667] | 284 | CALL MPI_RECV( total_2d_a(-nbgp,-nbgp), ngp_a, MPI_REAL, & |
---|
[709] | 285 | target_id, 18, comm_inter, status, ierr ) |
---|
[667] | 286 | ENDIF |
---|
| 287 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
[709] | 288 | CALL MPI_BCAST( total_2d_a(-nbgp,-nbgp), ngp_a, MPI_REAL, 0, comm2d, & |
---|
| 289 | ierr ) |
---|
[667] | 290 | v(0,nysg:nyng,nxlg:nxrg) = total_2d_a(nysg:nyng,nxlg:nxrg) |
---|
| 291 | |
---|
| 292 | ENDIF |
---|
| 293 | |
---|
[102] | 294 | ELSEIF ( coupling_mode == 'ocean_to_atmosphere' ) THEN |
---|
| 295 | |
---|
| 296 | ! |
---|
[667] | 297 | !-- Horizontal grid size and number of processors is equal |
---|
| 298 | !-- in ocean and atmosphere |
---|
| 299 | IF ( coupling_topology == 0 ) THEN |
---|
| 300 | ! |
---|
[709] | 301 | !-- Receive heat flux at the sea surface (top) from the atmosphere |
---|
[2232] | 302 | CALL MPI_RECV( surface_flux(nysg,nxlg), ngp_xy, MPI_REAL, target_id, 12, & |
---|
[709] | 303 | comm_inter, status, ierr ) |
---|
[2232] | 304 | CALL transfer_2D_to_1D_equal( surf_def_h(2)%shf ) |
---|
[102] | 305 | ! |
---|
[709] | 306 | !-- Receive humidity flux from the atmosphere (bottom) |
---|
[667] | 307 | !-- and add it to the heat flux at the sea surface (top)... |
---|
| 308 | IF ( humidity_remote ) THEN |
---|
[2232] | 309 | CALL MPI_RECV( surface_flux(nysg,nxlg), ngp_xy, MPI_REAL, & |
---|
[667] | 310 | target_id, 13, comm_inter, status, ierr ) |
---|
[2232] | 311 | CALL transfer_2D_to_1D_equal( surf_def_h(2)%qsws ) |
---|
[667] | 312 | ENDIF |
---|
| 313 | ! |
---|
| 314 | !-- Send sea surface temperature to the atmosphere model |
---|
[709] | 315 | CALL MPI_SEND( pt(nzt,nysg,nxlg), 1, type_xy, target_id, 14, & |
---|
| 316 | comm_inter, ierr ) |
---|
[667] | 317 | ! |
---|
| 318 | !-- Receive momentum flux (u) at the sea surface (top) from the atmosphere |
---|
[2232] | 319 | CALL MPI_RECV( surface_flux(nysg,nxlg), ngp_xy, MPI_REAL, target_id, 15, & |
---|
[709] | 320 | comm_inter, status, ierr ) |
---|
[2232] | 321 | CALL transfer_2D_to_1D_equal( surf_def_h(2)%usws ) |
---|
[667] | 322 | ! |
---|
| 323 | !-- Receive momentum flux (v) at the sea surface (top) from the atmosphere |
---|
[2232] | 324 | CALL MPI_RECV( surface_flux(nysg,nxlg), ngp_xy, MPI_REAL, target_id, 16, & |
---|
[709] | 325 | comm_inter, status, ierr ) |
---|
[2232] | 326 | CALL transfer_2D_to_1D_equal( surf_def_h(2)%vsws ) |
---|
[667] | 327 | ! |
---|
[709] | 328 | !-- Send u to the atmosphere |
---|
| 329 | CALL MPI_SEND( u(nzt,nysg,nxlg), 1, type_xy, target_id, 17, & |
---|
| 330 | comm_inter, ierr ) |
---|
[667] | 331 | ! |
---|
[709] | 332 | !-- Send v to the atmosphere |
---|
| 333 | CALL MPI_SEND( v(nzt,nysg,nxlg), 1, type_xy, target_id, 18, & |
---|
| 334 | comm_inter, ierr ) |
---|
| 335 | ! |
---|
[667] | 336 | !-- Horizontal gridsize or number of processors differs between |
---|
| 337 | !-- ocean and atmosphere |
---|
| 338 | ELSE |
---|
| 339 | ! |
---|
[709] | 340 | !-- Receive heat flux at the sea surface (top) from the atmosphere |
---|
| 341 | IF ( myid == 0 ) THEN |
---|
[667] | 342 | CALL MPI_RECV( total_2d_o(-nbgp,-nbgp), ngp_o, MPI_REAL, & |
---|
[709] | 343 | target_id, 12, comm_inter, status, ierr ) |
---|
[667] | 344 | ENDIF |
---|
| 345 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
[709] | 346 | CALL MPI_BCAST( total_2d_o(-nbgp,-nbgp), ngp_o, MPI_REAL, 0, comm2d, & |
---|
| 347 | ierr ) |
---|
[2232] | 348 | CALL transfer_2D_to_1D_unequal( surf_def_h(2)%shf ) |
---|
[667] | 349 | ! |
---|
[709] | 350 | !-- Receive humidity flux at the sea surface (top) from the atmosphere |
---|
| 351 | IF ( humidity_remote ) THEN |
---|
| 352 | IF ( myid == 0 ) THEN |
---|
[667] | 353 | CALL MPI_RECV( total_2d_o(-nbgp,-nbgp), ngp_o, MPI_REAL, & |
---|
[709] | 354 | target_id, 13, comm_inter, status, ierr ) |
---|
[667] | 355 | ENDIF |
---|
| 356 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
[709] | 357 | CALL MPI_BCAST( total_2d_o(-nbgp,-nbgp), ngp_o, MPI_REAL, 0, & |
---|
| 358 | comm2d, ierr) |
---|
[2232] | 359 | CALL transfer_2D_to_1D_unequal( surf_def_h(2)%qsws ) |
---|
[667] | 360 | ENDIF |
---|
| 361 | ! |
---|
| 362 | !-- Send surface temperature to atmosphere |
---|
[1353] | 363 | total_2d_o = 0.0_wp |
---|
| 364 | total_2d = 0.0_wp |
---|
[667] | 365 | total_2d(nys:nyn,nxl:nxr) = pt(nzt,nys:nyn,nxl:nxr) |
---|
| 366 | |
---|
[709] | 367 | CALL MPI_REDUCE( total_2d, total_2d_o, ngp_o, MPI_REAL, MPI_SUM, 0, & |
---|
| 368 | comm2d, ierr) |
---|
| 369 | CALL interpolate_to_atmos( 14 ) |
---|
[667] | 370 | ! |
---|
[709] | 371 | !-- Receive momentum flux (u) at the sea surface (top) from the atmosphere |
---|
| 372 | IF ( myid == 0 ) THEN |
---|
[667] | 373 | CALL MPI_RECV( total_2d_o(-nbgp,-nbgp), ngp_o, MPI_REAL, & |
---|
[709] | 374 | target_id, 15, comm_inter, status, ierr ) |
---|
[667] | 375 | ENDIF |
---|
| 376 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 377 | CALL MPI_BCAST( total_2d_o(-nbgp,-nbgp), ngp_o, MPI_REAL, & |
---|
[709] | 378 | 0, comm2d, ierr ) |
---|
[2232] | 379 | CALL transfer_2D_to_1D_unequal( surf_def_h(2)%usws ) |
---|
[667] | 380 | ! |
---|
[709] | 381 | !-- Receive momentum flux (v) at the sea surface (top) from the atmosphere |
---|
| 382 | IF ( myid == 0 ) THEN |
---|
[667] | 383 | CALL MPI_RECV( total_2d_o(-nbgp,-nbgp), ngp_o, MPI_REAL, & |
---|
[709] | 384 | target_id, 16, comm_inter, status, ierr ) |
---|
[667] | 385 | ENDIF |
---|
| 386 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
[709] | 387 | CALL MPI_BCAST( total_2d_o(-nbgp,-nbgp), ngp_o, MPI_REAL, 0, comm2d, & |
---|
| 388 | ierr ) |
---|
[2232] | 389 | CALL transfer_2D_to_1D_unequal( surf_def_h(2)%vsws ) |
---|
[667] | 390 | ! |
---|
| 391 | !-- Send u to atmosphere |
---|
[1353] | 392 | total_2d_o = 0.0_wp |
---|
| 393 | total_2d = 0.0_wp |
---|
[667] | 394 | total_2d(nys:nyn,nxl:nxr) = u(nzt,nys:nyn,nxl:nxr) |
---|
[709] | 395 | CALL MPI_REDUCE( total_2d, total_2d_o, ngp_o, MPI_REAL, MPI_SUM, 0, & |
---|
| 396 | comm2d, ierr ) |
---|
| 397 | CALL interpolate_to_atmos( 17 ) |
---|
[667] | 398 | ! |
---|
| 399 | !-- Send v to atmosphere |
---|
[1353] | 400 | total_2d_o = 0.0_wp |
---|
| 401 | total_2d = 0.0_wp |
---|
[667] | 402 | total_2d(nys:nyn,nxl:nxr) = v(nzt,nys:nyn,nxl:nxr) |
---|
[709] | 403 | CALL MPI_REDUCE( total_2d, total_2d_o, ngp_o, MPI_REAL, MPI_SUM, 0, & |
---|
| 404 | comm2d, ierr ) |
---|
| 405 | CALL interpolate_to_atmos( 18 ) |
---|
[667] | 406 | |
---|
| 407 | ENDIF |
---|
| 408 | |
---|
| 409 | ! |
---|
| 410 | !-- Conversions of fluxes received from atmosphere |
---|
| 411 | IF ( humidity_remote ) THEN |
---|
[108] | 412 | ! |
---|
[2232] | 413 | !-- Here top heat flux is still the sum of atmospheric bottom heat fluxes, |
---|
[709] | 414 | !-- * latent heat of vaporization in m2/s2, or 540 cal/g, or 40.65 kJ/mol |
---|
| 415 | !-- /(rho_atm(=1.0)*c_p) |
---|
[2232] | 416 | DO m = 1, surf_def_h(2)%ns |
---|
| 417 | i = surf_def_h(2)%i(m) |
---|
| 418 | j = surf_def_h(2)%j(m) |
---|
| 419 | |
---|
| 420 | surf_def_h(2)%shf(m) = surf_def_h(2)%shf(m) + & |
---|
[3274] | 421 | surf_def_h(2)%qsws(m) * l_v / c_p |
---|
[709] | 422 | ! |
---|
[2232] | 423 | !-- ...and convert it to a salinity flux at the sea surface (top) |
---|
| 424 | !-- following Steinhorn (1991), JPO 21, pp. 1681-1683: |
---|
| 425 | !-- S'w' = -S * evaporation / ( rho_water * ( 1 - S ) ) |
---|
| 426 | surf_def_h(2)%sasws(m) = -1.0_wp * sa(nzt,j,i) * 0.001_wp * & |
---|
| 427 | surf_def_h(2)%qsws(m) / & |
---|
| 428 | ( rho_ocean(nzt,j,i) * & |
---|
| 429 | ( 1.0_wp - sa(nzt,j,i) * 0.001_wp ) & |
---|
| 430 | ) |
---|
| 431 | ENDDO |
---|
[108] | 432 | ENDIF |
---|
| 433 | |
---|
| 434 | ! |
---|
[102] | 435 | !-- Adjust the kinematic heat flux with respect to ocean density |
---|
[2232] | 436 | !-- (constants are the specific heat capacities for air and water), as well |
---|
| 437 | !-- as momentum fluxes |
---|
| 438 | DO m = 1, surf_def_h(2)%ns |
---|
| 439 | i = surf_def_h(2)%i(m) |
---|
| 440 | j = surf_def_h(2)%j(m) |
---|
| 441 | surf_def_h(2)%shf(m) = surf_def_h(2)%shf(m) / rho_ocean(nzt,j,i) * & |
---|
[3274] | 442 | c_p / cpw |
---|
[102] | 443 | |
---|
[2232] | 444 | surf_def_h(2)%usws(m) = surf_def_h(2)%usws(m) / rho_ocean(nzt,j,i) |
---|
| 445 | surf_def_h(2)%vsws(m) = surf_def_h(2)%vsws(m) / rho_ocean(nzt,j,i) |
---|
| 446 | ENDDO |
---|
[102] | 447 | |
---|
[667] | 448 | ENDIF |
---|
| 449 | |
---|
[709] | 450 | IF ( coupling_topology == 1 ) THEN |
---|
[667] | 451 | DEALLOCATE( total_2d_o, total_2d_a ) |
---|
| 452 | ENDIF |
---|
| 453 | |
---|
| 454 | CALL cpu_log( log_point(39), 'surface_coupler', 'stop' ) |
---|
| 455 | |
---|
| 456 | #endif |
---|
| 457 | |
---|
[2232] | 458 | CONTAINS |
---|
| 459 | |
---|
| 460 | ! Description: |
---|
| 461 | !------------------------------------------------------------------------------! |
---|
| 462 | !> Data transfer from 1D surface-data type to 2D dummy array for equal |
---|
| 463 | !> grids in atmosphere and ocean. |
---|
| 464 | !------------------------------------------------------------------------------! |
---|
| 465 | SUBROUTINE transfer_1D_to_2D_equal( def_1d, lsm_1d, usm_1d ) |
---|
| 466 | |
---|
| 467 | IMPLICIT NONE |
---|
| 468 | |
---|
| 469 | INTEGER(iwp) :: i !< running index x |
---|
| 470 | INTEGER(iwp) :: j !< running index y |
---|
| 471 | INTEGER(iwp) :: m !< running index surface type |
---|
| 472 | |
---|
| 473 | REAL(wp), DIMENSION(1:surf_def_h(0)%ns) :: def_1d !< 1D surface flux, default surfaces |
---|
| 474 | REAL(wp), DIMENSION(1:surf_lsm_h%ns) :: lsm_1d !< 1D surface flux, natural surfaces |
---|
| 475 | REAL(wp), DIMENSION(1:surf_usm_h%ns) :: usm_1d !< 1D surface flux, urban surfaces |
---|
| 476 | ! |
---|
| 477 | !-- Transfer surface flux at default surfaces to 2D grid |
---|
| 478 | DO m = 1, surf_def_h(0)%ns |
---|
| 479 | i = surf_def_h(0)%i(m) |
---|
| 480 | j = surf_def_h(0)%j(m) |
---|
| 481 | surface_flux(j,i) = def_1d(m) |
---|
| 482 | ENDDO |
---|
| 483 | ! |
---|
| 484 | !-- Transfer surface flux at natural surfaces to 2D grid |
---|
| 485 | IF ( land_surface ) THEN |
---|
| 486 | DO m = 1, SIZE(lsm_1d) |
---|
| 487 | i = surf_lsm_h%i(m) |
---|
| 488 | j = surf_lsm_h%j(m) |
---|
| 489 | surface_flux(j,i) = lsm_1d(m) |
---|
| 490 | ENDDO |
---|
| 491 | ENDIF |
---|
| 492 | ! |
---|
| 493 | !-- Transfer surface flux at natural surfaces to 2D grid |
---|
| 494 | IF ( urban_surface ) THEN |
---|
| 495 | DO m = 1, SIZE(usm_1d) |
---|
| 496 | i = surf_usm_h%i(m) |
---|
| 497 | j = surf_usm_h%j(m) |
---|
| 498 | surface_flux(j,i) = usm_1d(m) |
---|
| 499 | ENDDO |
---|
| 500 | ENDIF |
---|
| 501 | |
---|
| 502 | END SUBROUTINE transfer_1D_to_2D_equal |
---|
| 503 | |
---|
| 504 | ! Description: |
---|
| 505 | !------------------------------------------------------------------------------! |
---|
| 506 | !> Data transfer from 2D array for equal grids onto 1D surface-data type |
---|
| 507 | !> array. |
---|
| 508 | !------------------------------------------------------------------------------! |
---|
| 509 | SUBROUTINE transfer_2D_to_1D_equal( def_1d ) |
---|
| 510 | |
---|
| 511 | IMPLICIT NONE |
---|
| 512 | |
---|
| 513 | INTEGER(iwp) :: i !< running index x |
---|
| 514 | INTEGER(iwp) :: j !< running index y |
---|
| 515 | INTEGER(iwp) :: m !< running index surface type |
---|
| 516 | |
---|
| 517 | REAL(wp), DIMENSION(1:surf_def_h(2)%ns) :: def_1d !< 1D surface flux, default surfaces |
---|
| 518 | ! |
---|
| 519 | !-- Transfer surface flux to 1D surface type, only for default surfaces |
---|
| 520 | DO m = 1, surf_def_h(2)%ns |
---|
| 521 | i = surf_def_h(2)%i(m) |
---|
| 522 | j = surf_def_h(2)%j(m) |
---|
| 523 | def_1d(m) = surface_flux(j,i) |
---|
| 524 | ENDDO |
---|
| 525 | |
---|
| 526 | END SUBROUTINE transfer_2D_to_1D_equal |
---|
| 527 | |
---|
| 528 | ! Description: |
---|
| 529 | !------------------------------------------------------------------------------! |
---|
| 530 | !> Data transfer from 1D surface-data type to 2D dummy array from unequal |
---|
| 531 | !> grids in atmosphere and ocean. |
---|
| 532 | !------------------------------------------------------------------------------! |
---|
| 533 | SUBROUTINE transfer_1D_to_2D_unequal( def_1d, lsm_1d, usm_1d ) |
---|
| 534 | |
---|
| 535 | IMPLICIT NONE |
---|
| 536 | |
---|
| 537 | INTEGER(iwp) :: i !< running index x |
---|
| 538 | INTEGER(iwp) :: j !< running index y |
---|
| 539 | INTEGER(iwp) :: m !< running index surface type |
---|
| 540 | |
---|
| 541 | REAL(wp), DIMENSION(1:surf_def_h(0)%ns) :: def_1d !< 1D surface flux, default surfaces |
---|
| 542 | REAL(wp), DIMENSION(1:surf_lsm_h%ns) :: lsm_1d !< 1D surface flux, natural surfaces |
---|
| 543 | REAL(wp), DIMENSION(1:surf_usm_h%ns) :: usm_1d !< 1D surface flux, urban surfaces |
---|
| 544 | ! |
---|
| 545 | !-- Transfer surface flux at default surfaces to 2D grid. Transfer no |
---|
| 546 | !-- ghost-grid points since total_2d is a global array. |
---|
| 547 | DO m = 1, SIZE(def_1d) |
---|
| 548 | i = surf_def_h(0)%i(m) |
---|
| 549 | j = surf_def_h(0)%j(m) |
---|
| 550 | |
---|
| 551 | IF ( i >= nxl .AND. i <= nxr .AND. & |
---|
| 552 | j >= nys .AND. j <= nyn ) THEN |
---|
| 553 | total_2d(j,i) = def_1d(m) |
---|
| 554 | ENDIF |
---|
| 555 | ENDDO |
---|
| 556 | ! |
---|
| 557 | !-- Transfer surface flux at natural surfaces to 2D grid |
---|
| 558 | IF ( land_surface ) THEN |
---|
| 559 | DO m = 1, SIZE(lsm_1d) |
---|
| 560 | i = surf_lsm_h%i(m) |
---|
| 561 | j = surf_lsm_h%j(m) |
---|
| 562 | |
---|
| 563 | IF ( i >= nxl .AND. i <= nxr .AND. & |
---|
| 564 | j >= nys .AND. j <= nyn ) THEN |
---|
| 565 | total_2d(j,i) = lsm_1d(m) |
---|
| 566 | ENDIF |
---|
| 567 | ENDDO |
---|
| 568 | ENDIF |
---|
| 569 | ! |
---|
| 570 | !-- Transfer surface flux at natural surfaces to 2D grid |
---|
| 571 | IF ( urban_surface ) THEN |
---|
| 572 | DO m = 1, SIZE(usm_1d) |
---|
| 573 | i = surf_usm_h%i(m) |
---|
| 574 | j = surf_usm_h%j(m) |
---|
| 575 | |
---|
| 576 | IF ( i >= nxl .AND. i <= nxr .AND. & |
---|
| 577 | j >= nys .AND. j <= nyn ) THEN |
---|
| 578 | total_2d(j,i) = usm_1d(m) |
---|
| 579 | ENDIF |
---|
| 580 | ENDDO |
---|
| 581 | ENDIF |
---|
| 582 | |
---|
| 583 | END SUBROUTINE transfer_1D_to_2D_unequal |
---|
| 584 | |
---|
| 585 | ! Description: |
---|
| 586 | !------------------------------------------------------------------------------! |
---|
| 587 | !> Data transfer from 2D dummy array from unequal grids to 1D surface-data |
---|
| 588 | !> type. |
---|
| 589 | !------------------------------------------------------------------------------! |
---|
| 590 | SUBROUTINE transfer_2D_to_1D_unequal( def_1d ) |
---|
| 591 | |
---|
| 592 | IMPLICIT NONE |
---|
| 593 | |
---|
| 594 | INTEGER(iwp) :: i !< running index x |
---|
| 595 | INTEGER(iwp) :: j !< running index y |
---|
| 596 | INTEGER(iwp) :: m !< running index surface type |
---|
| 597 | |
---|
| 598 | REAL(wp), DIMENSION(1:surf_def_h(2)%ns) :: def_1d !< 1D surface flux, default surfaces |
---|
| 599 | ! |
---|
| 600 | !-- Transfer 2D surface flux to default surfaces data type. Transfer no |
---|
| 601 | !-- ghost-grid points since total_2d is a global array. |
---|
| 602 | DO m = 1, SIZE(def_1d) |
---|
| 603 | i = surf_def_h(2)%i(m) |
---|
| 604 | j = surf_def_h(2)%j(m) |
---|
| 605 | |
---|
| 606 | IF ( i >= nxl .AND. i <= nxr .AND. & |
---|
| 607 | j >= nys .AND. j <= nyn ) THEN |
---|
| 608 | def_1d(m) = total_2d_o(j,i) |
---|
| 609 | ENDIF |
---|
| 610 | ENDDO |
---|
| 611 | |
---|
| 612 | |
---|
| 613 | END SUBROUTINE transfer_2D_to_1D_unequal |
---|
| 614 | |
---|
[667] | 615 | END SUBROUTINE surface_coupler |
---|
| 616 | |
---|
| 617 | |
---|
| 618 | |
---|
[1682] | 619 | !------------------------------------------------------------------------------! |
---|
| 620 | ! Description: |
---|
| 621 | ! ------------ |
---|
| 622 | !> @todo Missing subroutine description. |
---|
| 623 | !------------------------------------------------------------------------------! |
---|
[709] | 624 | SUBROUTINE interpolate_to_atmos( tag ) |
---|
[667] | 625 | |
---|
[880] | 626 | #if defined( __parallel ) |
---|
| 627 | |
---|
[1320] | 628 | USE arrays_3d, & |
---|
| 629 | ONLY: total_2d_a, total_2d_o |
---|
[667] | 630 | |
---|
[1320] | 631 | USE indices, & |
---|
| 632 | ONLY: nbgp, nx, nx_a, nx_o, ny, ny_a, ny_o |
---|
| 633 | |
---|
| 634 | USE kinds |
---|
| 635 | |
---|
[1324] | 636 | USE pegrid |
---|
[1320] | 637 | |
---|
[667] | 638 | IMPLICIT NONE |
---|
| 639 | |
---|
[1682] | 640 | INTEGER(iwp) :: dnx !< |
---|
| 641 | INTEGER(iwp) :: dnx2 !< |
---|
| 642 | INTEGER(iwp) :: dny !< |
---|
| 643 | INTEGER(iwp) :: dny2 !< |
---|
| 644 | INTEGER(iwp) :: i !< |
---|
| 645 | INTEGER(iwp) :: ii !< |
---|
| 646 | INTEGER(iwp) :: j !< |
---|
| 647 | INTEGER(iwp) :: jj !< |
---|
[667] | 648 | |
---|
[1682] | 649 | INTEGER(iwp), intent(in) :: tag !< |
---|
[1320] | 650 | |
---|
[667] | 651 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 652 | |
---|
[709] | 653 | IF ( myid == 0 ) THEN |
---|
| 654 | ! |
---|
| 655 | !-- Cyclic boundary conditions for the total 2D-grid |
---|
[667] | 656 | total_2d_o(-nbgp:-1,:) = total_2d_o(ny+1-nbgp:ny,:) |
---|
| 657 | total_2d_o(:,-nbgp:-1) = total_2d_o(:,nx+1-nbgp:nx) |
---|
| 658 | |
---|
| 659 | total_2d_o(ny+1:ny+nbgp,:) = total_2d_o(0:nbgp-1,:) |
---|
| 660 | total_2d_o(:,nx+1:nx+nbgp) = total_2d_o(:,0:nbgp-1) |
---|
| 661 | |
---|
[102] | 662 | ! |
---|
[667] | 663 | !-- Number of gridpoints of the fine grid within one mesh of the coarse grid |
---|
| 664 | dnx = (nx_o+1) / (nx_a+1) |
---|
| 665 | dny = (ny_o+1) / (ny_a+1) |
---|
[102] | 666 | |
---|
| 667 | ! |
---|
[709] | 668 | !-- Distance for interpolation around coarse grid points within the fine |
---|
| 669 | !-- grid (note: 2*dnx2 must not be equal with dnx) |
---|
[667] | 670 | dnx2 = 2 * ( dnx / 2 ) |
---|
| 671 | dny2 = 2 * ( dny / 2 ) |
---|
[102] | 672 | |
---|
[1353] | 673 | total_2d_a = 0.0_wp |
---|
[102] | 674 | ! |
---|
[667] | 675 | !-- Interpolation from ocean-grid-layer to atmosphere-grid-layer |
---|
| 676 | DO j = 0, ny_a |
---|
| 677 | DO i = 0, nx_a |
---|
| 678 | DO jj = 0, dny2 |
---|
| 679 | DO ii = 0, dnx2 |
---|
| 680 | total_2d_a(j,i) = total_2d_a(j,i) & |
---|
| 681 | + total_2d_o(j*dny+jj,i*dnx+ii) |
---|
| 682 | ENDDO |
---|
| 683 | ENDDO |
---|
| 684 | total_2d_a(j,i) = total_2d_a(j,i) / ( ( dnx2 + 1 ) * ( dny2 + 1 ) ) |
---|
| 685 | ENDDO |
---|
| 686 | ENDDO |
---|
| 687 | ! |
---|
[709] | 688 | !-- Cyclic boundary conditions for atmosphere grid |
---|
[667] | 689 | total_2d_a(-nbgp:-1,:) = total_2d_a(ny_a+1-nbgp:ny_a,:) |
---|
| 690 | total_2d_a(:,-nbgp:-1) = total_2d_a(:,nx_a+1-nbgp:nx_a) |
---|
| 691 | |
---|
| 692 | total_2d_a(ny_a+1:ny_a+nbgp,:) = total_2d_a(0:nbgp-1,:) |
---|
| 693 | total_2d_a(:,nx_a+1:nx_a+nbgp) = total_2d_a(:,0:nbgp-1) |
---|
| 694 | ! |
---|
| 695 | !-- Transfer of the atmosphere-grid-layer to the atmosphere |
---|
[709] | 696 | CALL MPI_SEND( total_2d_a(-nbgp,-nbgp), ngp_a, MPI_REAL, target_id, & |
---|
| 697 | tag, comm_inter, ierr ) |
---|
[102] | 698 | |
---|
| 699 | ENDIF |
---|
| 700 | |
---|
[667] | 701 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
[102] | 702 | |
---|
[880] | 703 | #endif |
---|
| 704 | |
---|
[667] | 705 | END SUBROUTINE interpolate_to_atmos |
---|
[102] | 706 | |
---|
[667] | 707 | |
---|
[1682] | 708 | !------------------------------------------------------------------------------! |
---|
| 709 | ! Description: |
---|
| 710 | ! ------------ |
---|
| 711 | !> @todo Missing subroutine description. |
---|
| 712 | !------------------------------------------------------------------------------! |
---|
[709] | 713 | SUBROUTINE interpolate_to_ocean( tag ) |
---|
[667] | 714 | |
---|
[880] | 715 | #if defined( __parallel ) |
---|
| 716 | |
---|
[1320] | 717 | USE arrays_3d, & |
---|
| 718 | ONLY: total_2d_a, total_2d_o |
---|
[667] | 719 | |
---|
[1320] | 720 | USE indices, & |
---|
| 721 | ONLY: nbgp, nx, nx_a, nx_o, ny, ny_a, ny_o |
---|
| 722 | |
---|
| 723 | USE kinds |
---|
| 724 | |
---|
[1324] | 725 | USE pegrid |
---|
[1320] | 726 | |
---|
[667] | 727 | IMPLICIT NONE |
---|
| 728 | |
---|
[1682] | 729 | INTEGER(iwp) :: dnx !< |
---|
| 730 | INTEGER(iwp) :: dny !< |
---|
| 731 | INTEGER(iwp) :: i !< |
---|
| 732 | INTEGER(iwp) :: ii !< |
---|
| 733 | INTEGER(iwp) :: j !< |
---|
| 734 | INTEGER(iwp) :: jj !< |
---|
| 735 | INTEGER(iwp), intent(in) :: tag !< |
---|
[667] | 736 | |
---|
[1682] | 737 | REAL(wp) :: fl !< |
---|
| 738 | REAL(wp) :: fr !< |
---|
| 739 | REAL(wp) :: myl !< |
---|
| 740 | REAL(wp) :: myr !< |
---|
[709] | 741 | |
---|
[667] | 742 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 743 | |
---|
[709] | 744 | IF ( myid == 0 ) THEN |
---|
[667] | 745 | |
---|
| 746 | ! |
---|
[709] | 747 | !-- Number of gridpoints of the fine grid within one mesh of the coarse grid |
---|
[667] | 748 | dnx = ( nx_o + 1 ) / ( nx_a + 1 ) |
---|
| 749 | dny = ( ny_o + 1 ) / ( ny_a + 1 ) |
---|
| 750 | |
---|
| 751 | ! |
---|
[709] | 752 | !-- Cyclic boundary conditions for atmosphere grid |
---|
[667] | 753 | total_2d_a(-nbgp:-1,:) = total_2d_a(ny+1-nbgp:ny,:) |
---|
| 754 | total_2d_a(:,-nbgp:-1) = total_2d_a(:,nx+1-nbgp:nx) |
---|
| 755 | |
---|
| 756 | total_2d_a(ny+1:ny+nbgp,:) = total_2d_a(0:nbgp-1,:) |
---|
| 757 | total_2d_a(:,nx+1:nx+nbgp) = total_2d_a(:,0:nbgp-1) |
---|
| 758 | ! |
---|
[709] | 759 | !-- Bilinear Interpolation from atmosphere grid-layer to ocean grid-layer |
---|
[667] | 760 | DO j = 0, ny |
---|
| 761 | DO i = 0, nx |
---|
| 762 | myl = ( total_2d_a(j+1,i) - total_2d_a(j,i) ) / dny |
---|
| 763 | myr = ( total_2d_a(j+1,i+1) - total_2d_a(j,i+1) ) / dny |
---|
| 764 | DO jj = 0, dny-1 |
---|
[709] | 765 | fl = myl*jj + total_2d_a(j,i) |
---|
| 766 | fr = myr*jj + total_2d_a(j,i+1) |
---|
[667] | 767 | DO ii = 0, dnx-1 |
---|
| 768 | total_2d_o(j*dny+jj,i*dnx+ii) = ( fr - fl ) / dnx * ii + fl |
---|
| 769 | ENDDO |
---|
| 770 | ENDDO |
---|
| 771 | ENDDO |
---|
| 772 | ENDDO |
---|
| 773 | ! |
---|
[709] | 774 | !-- Cyclic boundary conditions for ocean grid |
---|
[667] | 775 | total_2d_o(-nbgp:-1,:) = total_2d_o(ny_o+1-nbgp:ny_o,:) |
---|
| 776 | total_2d_o(:,-nbgp:-1) = total_2d_o(:,nx_o+1-nbgp:nx_o) |
---|
| 777 | |
---|
| 778 | total_2d_o(ny_o+1:ny_o+nbgp,:) = total_2d_o(0:nbgp-1,:) |
---|
| 779 | total_2d_o(:,nx_o+1:nx_o+nbgp) = total_2d_o(:,0:nbgp-1) |
---|
| 780 | |
---|
| 781 | CALL MPI_SEND( total_2d_o(-nbgp,-nbgp), ngp_o, MPI_REAL, & |
---|
| 782 | target_id, tag, comm_inter, ierr ) |
---|
| 783 | |
---|
| 784 | ENDIF |
---|
| 785 | |
---|
| 786 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 787 | |
---|
[880] | 788 | #endif |
---|
| 789 | |
---|
[667] | 790 | END SUBROUTINE interpolate_to_ocean |
---|