1 | !> @file plant_canopy_model_mod.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2019 Leibniz Universitaet Hannover |
---|
18 | ! Copyright 2017-2019 Institute of Computer Science of the |
---|
19 | ! Czech Academy of Sciences, Prague |
---|
20 | !------------------------------------------------------------------------------! |
---|
21 | ! |
---|
22 | ! Current revisions: |
---|
23 | ! ------------------ |
---|
24 | ! |
---|
25 | ! |
---|
26 | ! Former revisions: |
---|
27 | ! ----------------- |
---|
28 | ! $Id: plant_canopy_model_mod.f90 4226 2019-09-10 17:03:24Z suehring $ |
---|
29 | ! Bugfix, missing initialization of heating rate |
---|
30 | ! |
---|
31 | ! 4221 2019-09-09 08:50:35Z suehring |
---|
32 | ! Further bugfix in 3d data output for plant canopy |
---|
33 | ! |
---|
34 | ! 4216 2019-09-04 09:09:03Z suehring |
---|
35 | ! Bugfixes in 3d data output |
---|
36 | ! |
---|
37 | ! 4205 2019-08-30 13:25:00Z suehring |
---|
38 | ! Missing working precision + bugfix in calculation of wind speed |
---|
39 | ! |
---|
40 | ! 4188 2019-08-26 14:15:47Z suehring |
---|
41 | ! Minor adjustment in error number |
---|
42 | ! |
---|
43 | ! 4187 2019-08-26 12:43:15Z suehring |
---|
44 | ! Give specific error numbers instead of PA0999 |
---|
45 | ! |
---|
46 | ! 4182 2019-08-22 15:20:23Z scharf |
---|
47 | ! Corrected "Former revisions" section |
---|
48 | ! |
---|
49 | ! 4168 2019-08-16 13:50:17Z suehring |
---|
50 | ! Replace function get_topography_top_index by topo_top_ind |
---|
51 | ! |
---|
52 | ! 4127 2019-07-30 14:47:10Z suehring |
---|
53 | ! Output of 3D plant canopy variables changed. It is now relative to the local |
---|
54 | ! terrain rather than located at the acutal vertical level in the model. This |
---|
55 | ! way, the vertical dimension of the output can be significantly reduced. |
---|
56 | ! (merge from branch resler) |
---|
57 | ! |
---|
58 | ! 3885 2019-04-11 11:29:34Z kanani |
---|
59 | ! Changes related to global restructuring of location messages and introduction |
---|
60 | ! of additional debug messages |
---|
61 | ! |
---|
62 | ! 3864 2019-04-05 09:01:56Z monakurppa |
---|
63 | ! unsed variables removed |
---|
64 | ! |
---|
65 | ! 3745 2019-02-15 18:57:56Z suehring |
---|
66 | ! Bugfix in transpiration, floating invalid when temperature |
---|
67 | ! becomes > 40 degrees |
---|
68 | ! |
---|
69 | ! 3744 2019-02-15 18:38:58Z suehring |
---|
70 | ! Some interface calls moved to module_interface + cleanup |
---|
71 | ! |
---|
72 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
73 | ! unused variables removed |
---|
74 | ! |
---|
75 | ! 138 2007-11-28 10:03:58Z letzel |
---|
76 | ! Initial revision |
---|
77 | ! |
---|
78 | ! Description: |
---|
79 | ! ------------ |
---|
80 | !> 1) Initialization of the canopy model, e.g. construction of leaf area density |
---|
81 | !> profile (subroutine pcm_init). |
---|
82 | !> 2) Calculation of sinks and sources of momentum, heat and scalar concentration |
---|
83 | !> due to canopy elements (subroutine pcm_tendency). |
---|
84 | ! |
---|
85 | ! @todo - precalculate constant terms in pcm_calc_transpiration_rate |
---|
86 | ! @todo - unify variable names (pcm_, pc_, ...) |
---|
87 | !------------------------------------------------------------------------------! |
---|
88 | MODULE plant_canopy_model_mod |
---|
89 | |
---|
90 | USE arrays_3d, & |
---|
91 | ONLY: dzu, dzw, e, exner, hyp, pt, q, s, tend, u, v, w, zu, zw |
---|
92 | |
---|
93 | USE basic_constants_and_equations_mod, & |
---|
94 | ONLY: c_p, degc_to_k, l_v, lv_d_cp, r_d, rd_d_rv |
---|
95 | |
---|
96 | USE control_parameters, & |
---|
97 | ONLY: debug_output, humidity |
---|
98 | |
---|
99 | USE indices, & |
---|
100 | ONLY: nbgp, nxl, nxlg, nxlu, nxr, nxrg, nyn, nyng, nys, nysg, nysv, & |
---|
101 | nz, nzb, nzt, topo_top_ind |
---|
102 | |
---|
103 | USE kinds |
---|
104 | |
---|
105 | USE pegrid |
---|
106 | |
---|
107 | |
---|
108 | IMPLICIT NONE |
---|
109 | |
---|
110 | |
---|
111 | CHARACTER (LEN=30) :: canopy_mode = 'block' !< canopy coverage |
---|
112 | LOGICAL :: plant_canopy_transpiration = .FALSE. !< flag to switch calculation of transpiration and corresponding latent heat |
---|
113 | !< for resolved plant canopy inside radiation model |
---|
114 | !< (calls subroutine pcm_calc_transpiration_rate from module plant_canopy_mod) |
---|
115 | |
---|
116 | INTEGER(iwp) :: pch_index = 0 !< plant canopy height/top index |
---|
117 | INTEGER(iwp) :: lad_vertical_gradient_level_ind(10) = -9999 !< lad-profile levels (index) |
---|
118 | |
---|
119 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: pch_index_ji !< local plant canopy top |
---|
120 | |
---|
121 | LOGICAL :: calc_beta_lad_profile = .FALSE. !< switch for calc. of lad from beta func. |
---|
122 | |
---|
123 | REAL(wp) :: alpha_lad = 9999999.9_wp !< coefficient for lad calculation |
---|
124 | REAL(wp) :: beta_lad = 9999999.9_wp !< coefficient for lad calculation |
---|
125 | REAL(wp) :: canopy_drag_coeff = 0.0_wp !< canopy drag coefficient (parameter) |
---|
126 | REAL(wp) :: cdc = 0.0_wp !< canopy drag coeff. (abbreviation used in equations) |
---|
127 | REAL(wp) :: cthf = 0.0_wp !< canopy top heat flux |
---|
128 | REAL(wp) :: dt_plant_canopy = 0.0_wp !< timestep account. for canopy drag |
---|
129 | REAL(wp) :: ext_coef = 0.6_wp !< extinction coefficient |
---|
130 | REAL(wp) :: lad_surface = 0.0_wp !< lad surface value |
---|
131 | REAL(wp) :: lai_beta = 0.0_wp !< leaf area index (lai) for lad calc. |
---|
132 | REAL(wp) :: leaf_scalar_exch_coeff = 0.0_wp !< canopy scalar exchange coeff. |
---|
133 | REAL(wp) :: leaf_surface_conc = 0.0_wp !< leaf surface concentration |
---|
134 | REAL(wp) :: lsc = 0.0_wp !< leaf surface concentration |
---|
135 | REAL(wp) :: lsec = 0.0_wp !< leaf scalar exchange coeff. |
---|
136 | |
---|
137 | REAL(wp) :: lad_vertical_gradient(10) = 0.0_wp !< lad gradient |
---|
138 | REAL(wp) :: lad_vertical_gradient_level(10) = -9999999.9_wp !< lad-prof. levels (in m) |
---|
139 | |
---|
140 | REAL(wp) :: lad_type_coef(0:10) = 1.0_wp !< multiplicative coeficients for particular types |
---|
141 | !< of plant canopy (e.g. deciduous tree during winter) |
---|
142 | |
---|
143 | REAL(wp), DIMENSION(:), ALLOCATABLE :: lad !< leaf area density |
---|
144 | REAL(wp), DIMENSION(:), ALLOCATABLE :: pre_lad !< preliminary lad |
---|
145 | |
---|
146 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: cum_lai_hf !< cumulative lai for heatflux calc. |
---|
147 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: lad_s !< lad on scalar-grid |
---|
148 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pc_heating_rate !< plant canopy heating rate |
---|
149 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pc_transpiration_rate !< plant canopy transpiration rate |
---|
150 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pc_latent_rate !< plant canopy latent heating rate |
---|
151 | |
---|
152 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pcm_heatrate_av !< array for averaging plant canopy sensible heating rate |
---|
153 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pcm_latentrate_av !< array for averaging plant canopy latent heating rate |
---|
154 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pcm_transpirationrate_av !< array for averaging plant canopy transpiration rate |
---|
155 | |
---|
156 | SAVE |
---|
157 | |
---|
158 | |
---|
159 | PRIVATE |
---|
160 | |
---|
161 | ! |
---|
162 | !-- Public functions |
---|
163 | PUBLIC pcm_calc_transpiration_rate, pcm_check_data_output, & |
---|
164 | pcm_check_parameters, pcm_3d_data_averaging, & |
---|
165 | pcm_data_output_3d, pcm_define_netcdf_grid, & |
---|
166 | pcm_header, pcm_init, pcm_parin, pcm_tendency |
---|
167 | |
---|
168 | ! |
---|
169 | !-- Public variables and constants |
---|
170 | PUBLIC cdc, pc_heating_rate, pc_transpiration_rate, pc_latent_rate, & |
---|
171 | canopy_mode, cthf, dt_plant_canopy, lad, lad_s, pch_index, & |
---|
172 | plant_canopy_transpiration |
---|
173 | |
---|
174 | INTERFACE pcm_calc_transpiration_rate |
---|
175 | MODULE PROCEDURE pcm_calc_transpiration_rate |
---|
176 | END INTERFACE pcm_calc_transpiration_rate |
---|
177 | |
---|
178 | INTERFACE pcm_check_data_output |
---|
179 | MODULE PROCEDURE pcm_check_data_output |
---|
180 | END INTERFACE pcm_check_data_output |
---|
181 | |
---|
182 | INTERFACE pcm_check_parameters |
---|
183 | MODULE PROCEDURE pcm_check_parameters |
---|
184 | END INTERFACE pcm_check_parameters |
---|
185 | |
---|
186 | INTERFACE pcm_3d_data_averaging |
---|
187 | MODULE PROCEDURE pcm_3d_data_averaging |
---|
188 | END INTERFACE pcm_3d_data_averaging |
---|
189 | |
---|
190 | INTERFACE pcm_data_output_3d |
---|
191 | MODULE PROCEDURE pcm_data_output_3d |
---|
192 | END INTERFACE pcm_data_output_3d |
---|
193 | |
---|
194 | INTERFACE pcm_define_netcdf_grid |
---|
195 | MODULE PROCEDURE pcm_define_netcdf_grid |
---|
196 | END INTERFACE pcm_define_netcdf_grid |
---|
197 | |
---|
198 | INTERFACE pcm_header |
---|
199 | MODULE PROCEDURE pcm_header |
---|
200 | END INTERFACE pcm_header |
---|
201 | |
---|
202 | INTERFACE pcm_init |
---|
203 | MODULE PROCEDURE pcm_init |
---|
204 | END INTERFACE pcm_init |
---|
205 | |
---|
206 | INTERFACE pcm_parin |
---|
207 | MODULE PROCEDURE pcm_parin |
---|
208 | END INTERFACE pcm_parin |
---|
209 | |
---|
210 | INTERFACE pcm_read_plant_canopy_3d |
---|
211 | MODULE PROCEDURE pcm_read_plant_canopy_3d |
---|
212 | END INTERFACE pcm_read_plant_canopy_3d |
---|
213 | |
---|
214 | INTERFACE pcm_tendency |
---|
215 | MODULE PROCEDURE pcm_tendency |
---|
216 | MODULE PROCEDURE pcm_tendency_ij |
---|
217 | END INTERFACE pcm_tendency |
---|
218 | |
---|
219 | |
---|
220 | CONTAINS |
---|
221 | |
---|
222 | |
---|
223 | |
---|
224 | !------------------------------------------------------------------------------! |
---|
225 | ! Description: |
---|
226 | ! ------------ |
---|
227 | !> Calculation of the plant canopy transpiration rate based on the Jarvis-Stewart |
---|
228 | !> with parametrizations described in Daudet et al. (1999; Agricult. and Forest |
---|
229 | !> Meteorol. 97) and Ngao, Adam and Saudreau (2017; Agricult. and Forest Meteorol |
---|
230 | !> 237-238). Model functions f1-f4 were adapted from Stewart (1998; Agric. |
---|
231 | !> and Forest. Meteorol. 43) instead, because they are valid for broader intervals |
---|
232 | !> of values. Funcion f4 used in form present in van Wijk et al. (1998; |
---|
233 | !> Tree Physiology 20). |
---|
234 | !> |
---|
235 | !> This subroutine is called from subroutine radiation_interaction |
---|
236 | !> after the calculation of radiation in plant canopy boxes. |
---|
237 | !> (arrays pcbinsw and pcbinlw). |
---|
238 | !> |
---|
239 | !------------------------------------------------------------------------------! |
---|
240 | SUBROUTINE pcm_calc_transpiration_rate(i, j, k, kk, pcbsw, pcblw, pcbtr, pcblh) |
---|
241 | |
---|
242 | USE control_parameters, & |
---|
243 | ONLY: dz |
---|
244 | |
---|
245 | USE grid_variables, & |
---|
246 | ONLY: dx, dy |
---|
247 | |
---|
248 | IMPLICIT NONE |
---|
249 | !-- input parameters |
---|
250 | INTEGER(iwp), INTENT(IN) :: i, j, k, kk !< indices of the pc gridbox |
---|
251 | REAL(wp), INTENT(IN) :: pcbsw !< sw radiation in gridbox (W) |
---|
252 | REAL(wp), INTENT(IN) :: pcblw !< lw radiation in gridbox (W) |
---|
253 | REAL(wp), INTENT(OUT) :: pcbtr !< transpiration rate dq/dt (kg/kg/s) |
---|
254 | REAL(wp), INTENT(OUT) :: pcblh !< latent heat from transpiration dT/dt (K/s) |
---|
255 | |
---|
256 | !-- variables and parameters for calculation of transpiration rate |
---|
257 | REAL(wp) :: sat_press, sat_press_d, temp, v_lad |
---|
258 | REAL(wp) :: d_fact, g_b, g_s, wind_speed, evapor_rate |
---|
259 | REAL(wp) :: f1, f2, f3, f4, vpd, rswc, e_eq, e_imp, rad |
---|
260 | REAL(wp), PARAMETER :: gama_psychr = 66.0_wp !< psychrometric constant (Pa/K) |
---|
261 | REAL(wp), PARAMETER :: g_s_max = 0.01 !< maximum stomatal conductivity (m/s) |
---|
262 | REAL(wp), PARAMETER :: m_soil = 0.4_wp !< soil water content (needs to adjust or take from LSM) |
---|
263 | REAL(wp), PARAMETER :: m_wilt = 0.01_wp !< wilting point soil water content (needs to adjust or take from LSM) |
---|
264 | REAL(wp), PARAMETER :: m_sat = 0.51_wp !< saturation soil water content (needs to adjust or take from LSM) |
---|
265 | REAL(wp), PARAMETER :: t2_min = 0.0_wp !< minimal temperature for calculation of f2 |
---|
266 | REAL(wp), PARAMETER :: t2_max = 40.0_wp !< maximal temperature for calculation of f2 |
---|
267 | |
---|
268 | |
---|
269 | !-- Temperature (deg C) |
---|
270 | temp = pt(k,j,i) * exner(k) - degc_to_k |
---|
271 | !-- Coefficient for conversion of radiation to grid to radiation to unit leaves surface |
---|
272 | v_lad = 1.0_wp / ( MAX( lad_s(kk,j,i), 1.0E-10_wp ) * dx * dy * dz(1) ) |
---|
273 | !-- Magnus formula for the saturation pressure (see Ngao, Adam and Saudreau (2017) eq. 1) |
---|
274 | !-- There are updated formulas available, kept consistent with the rest of the parametrization |
---|
275 | sat_press = 610.8_wp * exp(17.27_wp * temp/(temp + 237.3_wp)) |
---|
276 | !-- Saturation pressure derivative (derivative of the above) |
---|
277 | sat_press_d = sat_press * 17.27_wp * 237.3_wp / (temp + 237.3_wp)**2 |
---|
278 | !-- Wind speed |
---|
279 | wind_speed = SQRT( ( 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) )**2 + & |
---|
280 | ( 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) )**2 + & |
---|
281 | ( 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) )**2 ) |
---|
282 | !-- Aerodynamic conductivity (Daudet et al. (1999) eq. 14 |
---|
283 | g_b = 0.01_wp * wind_speed + 0.0071_wp |
---|
284 | !-- Radiation flux per leaf surface unit |
---|
285 | rad = pcbsw * v_lad |
---|
286 | !-- First function for calculation of stomatal conductivity (radiation dependency) |
---|
287 | !-- Stewart (1988; Agric. and Forest. Meteorol. 43) eq. 17 |
---|
288 | f1 = rad * (1000.0_wp+42.1_wp) / 1000.0_wp / (rad+42.1_wp) |
---|
289 | !-- Second function for calculation of stomatal conductivity (temperature dependency) |
---|
290 | !-- Stewart (1988; Agric. and Forest. Meteorol. 43) eq. 21 |
---|
291 | f2 = MAX(t2_min, (temp-t2_min) * MAX(0.0_wp,t2_max-temp)**((t2_max-16.9_wp)/(16.9_wp-t2_min)) / & |
---|
292 | ((16.9_wp-t2_min) * (t2_max-16.9_wp)**((t2_max-16.9_wp)/(16.9_wp-t2_min))) ) |
---|
293 | !-- Water pressure deficit |
---|
294 | !-- Ngao, Adam and Saudreau (2017) eq. 6 but with water vapour partial pressure |
---|
295 | vpd = max( sat_press - q(k,j,i) * hyp(k) / rd_d_rv, 0._wp ) |
---|
296 | !-- Third function for calculation of stomatal conductivity (water pressure deficit dependency) |
---|
297 | !-- Ngao, Adam and Saudreau (2017) Table 1, limited from below according to Stewart (1988) |
---|
298 | !-- The coefficients of the linear dependence should better correspond to broad-leaved trees |
---|
299 | !-- than the coefficients from Stewart (1988) which correspond to conifer trees. |
---|
300 | vpd = MIN(MAX(vpd,770.0_wp),3820.0_wp) |
---|
301 | f3 = -2E-4_wp * vpd + 1.154_wp |
---|
302 | !-- Fourth function for calculation of stomatal conductivity (soil moisture dependency) |
---|
303 | !-- Residual soil water content |
---|
304 | !-- van Wijk et al. (1998; Tree Physiology 20) eq. 7 |
---|
305 | !-- TODO - over LSM surface might be calculated from LSM parameters |
---|
306 | rswc = ( m_sat - m_soil ) / ( m_sat - m_wilt ) |
---|
307 | !-- van Wijk et al. (1998; Tree Physiology 20) eq. 5-6 (it is a reformulation of eq. 22-23 of Stewart(1988)) |
---|
308 | f4 = MAX(0.0_wp, MIN(1.0_wp - 0.041_wp * EXP(3.2_wp * rswc), 1.0_wp - 0.041_wp)) |
---|
309 | !-- Stomatal conductivity |
---|
310 | !-- Stewart (1988; Agric. and Forest. Meteorol. 43) eq. 12 |
---|
311 | !-- (notation according to Ngao, Adam and Saudreau (2017) and others) |
---|
312 | g_s = g_s_max * f1 * f2 * f3 * f4 + 1.0E-10_wp |
---|
313 | !-- Decoupling factor |
---|
314 | !-- Daudet et al. (1999) eq. 6 |
---|
315 | d_fact = (sat_press_d / gama_psychr + 2.0_wp ) / & |
---|
316 | (sat_press_d / gama_psychr + 2.0_wp + 2.0_wp * g_b / g_s ) |
---|
317 | !-- Equilibrium evaporation rate |
---|
318 | !-- Daudet et al. (1999) eq. 4 |
---|
319 | e_eq = (pcbsw + pcblw) * v_lad * sat_press_d / & |
---|
320 | gama_psychr /( sat_press_d / gama_psychr + 2.0_wp ) / l_v |
---|
321 | !-- Imposed evaporation rate |
---|
322 | !-- Daudet et al. (1999) eq. 5 |
---|
323 | e_imp = r_d * pt(k,j,i) * exner(k) / hyp(k) * c_p * g_s * vpd / gama_psychr / l_v |
---|
324 | !-- Evaporation rate |
---|
325 | !-- Daudet et al. (1999) eq. 3 |
---|
326 | !-- (evaporation rate is limited to non-negative values) |
---|
327 | evapor_rate = MAX(d_fact * e_eq + ( 1.0_wp - d_fact ) * e_imp, 0.0_wp) |
---|
328 | !-- Conversion of evaporation rate to q tendency in gridbox |
---|
329 | !-- dq/dt = E * LAD * V_g / (rho_air * V_g) |
---|
330 | pcbtr = evapor_rate * r_d * pt(k,j,i) * exner(k) * lad_s(kk,j,i) / hyp(k) !-- = dq/dt |
---|
331 | !-- latent heat from evaporation |
---|
332 | pcblh = pcbtr * lv_d_cp !-- = - dT/dt |
---|
333 | |
---|
334 | END SUBROUTINE pcm_calc_transpiration_rate |
---|
335 | |
---|
336 | |
---|
337 | !------------------------------------------------------------------------------! |
---|
338 | ! Description: |
---|
339 | ! ------------ |
---|
340 | !> Check data output for plant canopy model |
---|
341 | !------------------------------------------------------------------------------! |
---|
342 | SUBROUTINE pcm_check_data_output( var, unit ) |
---|
343 | |
---|
344 | |
---|
345 | USE control_parameters, & |
---|
346 | ONLY: message_string, urban_surface |
---|
347 | |
---|
348 | IMPLICIT NONE |
---|
349 | |
---|
350 | CHARACTER (LEN=*) :: unit !< |
---|
351 | CHARACTER (LEN=*) :: var !< |
---|
352 | |
---|
353 | |
---|
354 | SELECT CASE ( TRIM( var ) ) |
---|
355 | |
---|
356 | CASE ( 'pcm_heatrate' ) |
---|
357 | IF ( cthf == 0.0_wp .AND. .NOT. urban_surface ) THEN |
---|
358 | message_string = 'output of "' // TRIM( var ) // '" requi' // & |
---|
359 | 'res setting of parameter cthf /= 0.0' |
---|
360 | CALL message( 'pcm_check_data_output', 'PA1000', 1, 2, 0, 6, 0 ) |
---|
361 | ENDIF |
---|
362 | unit = 'K s-1' |
---|
363 | |
---|
364 | CASE ( 'pcm_transpirationrate' ) |
---|
365 | unit = 'kg kg-1 s-1' |
---|
366 | |
---|
367 | CASE ( 'pcm_latentrate' ) |
---|
368 | unit = 'K s-1' |
---|
369 | |
---|
370 | CASE ( 'pcm_bowenratio' ) |
---|
371 | unit = 'K s-1' |
---|
372 | |
---|
373 | CASE ( 'pcm_lad' ) |
---|
374 | unit = 'm2 m-3' |
---|
375 | |
---|
376 | |
---|
377 | CASE DEFAULT |
---|
378 | unit = 'illegal' |
---|
379 | |
---|
380 | END SELECT |
---|
381 | |
---|
382 | |
---|
383 | END SUBROUTINE pcm_check_data_output |
---|
384 | |
---|
385 | |
---|
386 | !------------------------------------------------------------------------------! |
---|
387 | ! Description: |
---|
388 | ! ------------ |
---|
389 | !> Check parameters routine for plant canopy model |
---|
390 | !------------------------------------------------------------------------------! |
---|
391 | SUBROUTINE pcm_check_parameters |
---|
392 | |
---|
393 | USE control_parameters, & |
---|
394 | ONLY: coupling_char, message_string |
---|
395 | |
---|
396 | USE bulk_cloud_model_mod, & |
---|
397 | ONLY: bulk_cloud_model, microphysics_seifert |
---|
398 | |
---|
399 | USE netcdf_data_input_mod, & |
---|
400 | ONLY: input_file_static, input_pids_static |
---|
401 | |
---|
402 | |
---|
403 | IMPLICIT NONE |
---|
404 | |
---|
405 | |
---|
406 | IF ( canopy_drag_coeff == 0.0_wp ) THEN |
---|
407 | message_string = 'plant_canopy = .TRUE. requires a non-zero drag '// & |
---|
408 | 'coefficient & given value is canopy_drag_coeff = 0.0' |
---|
409 | CALL message( 'pcm_check_parameters', 'PA0041', 1, 2, 0, 6, 0 ) |
---|
410 | ENDIF |
---|
411 | |
---|
412 | IF ( ( alpha_lad /= 9999999.9_wp .AND. beta_lad == 9999999.9_wp ) .OR.& |
---|
413 | beta_lad /= 9999999.9_wp .AND. alpha_lad == 9999999.9_wp ) THEN |
---|
414 | message_string = 'using the beta function for the construction ' // & |
---|
415 | 'of the leaf area density profile requires ' // & |
---|
416 | 'both alpha_lad and beta_lad to be /= 9999999.9' |
---|
417 | CALL message( 'pcm_check_parameters', 'PA0118', 1, 2, 0, 6, 0 ) |
---|
418 | ENDIF |
---|
419 | |
---|
420 | IF ( calc_beta_lad_profile .AND. lai_beta == 0.0_wp ) THEN |
---|
421 | message_string = 'using the beta function for the construction ' // & |
---|
422 | 'of the leaf area density profile requires ' // & |
---|
423 | 'a non-zero lai_beta, but given value is ' // & |
---|
424 | 'lai_beta = 0.0' |
---|
425 | CALL message( 'pcm_check_parameters', 'PA0119', 1, 2, 0, 6, 0 ) |
---|
426 | ENDIF |
---|
427 | |
---|
428 | IF ( calc_beta_lad_profile .AND. lad_surface /= 0.0_wp ) THEN |
---|
429 | message_string = 'simultaneous setting of alpha_lad /= 9999999.9 '// & |
---|
430 | 'combined with beta_lad /= 9999999.9 ' // & |
---|
431 | 'and lad_surface /= 0.0 is not possible, ' // & |
---|
432 | 'use either vertical gradients or the beta ' // & |
---|
433 | 'function for the construction of the leaf area '// & |
---|
434 | 'density profile' |
---|
435 | CALL message( 'pcm_check_parameters', 'PA0120', 1, 2, 0, 6, 0 ) |
---|
436 | ENDIF |
---|
437 | |
---|
438 | IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN |
---|
439 | message_string = 'plant_canopy = .TRUE. requires cloud_scheme /=' // & |
---|
440 | ' seifert_beheng' |
---|
441 | CALL message( 'pcm_check_parameters', 'PA0360', 1, 2, 0, 6, 0 ) |
---|
442 | ENDIF |
---|
443 | ! |
---|
444 | !-- If dynamic input file is used, canopy need to be read from file |
---|
445 | IF ( input_pids_static .AND. & |
---|
446 | TRIM( canopy_mode ) /= 'read_from_file_3d' ) THEN |
---|
447 | message_string = 'Usage of dynamic input file ' // & |
---|
448 | TRIM( input_file_static ) // & |
---|
449 | TRIM( coupling_char ) // ' requires ' // & |
---|
450 | 'canopy_mode = read_from_file_3d' |
---|
451 | CALL message( 'pcm_check_parameters', 'PA0672', 1, 2, 0, 6, 0 ) |
---|
452 | ENDIF |
---|
453 | |
---|
454 | |
---|
455 | END SUBROUTINE pcm_check_parameters |
---|
456 | |
---|
457 | |
---|
458 | !------------------------------------------------------------------------------! |
---|
459 | ! |
---|
460 | ! Description: |
---|
461 | ! ------------ |
---|
462 | !> Subroutine for averaging 3D data |
---|
463 | !------------------------------------------------------------------------------! |
---|
464 | SUBROUTINE pcm_3d_data_averaging( mode, variable ) |
---|
465 | |
---|
466 | |
---|
467 | USE control_parameters |
---|
468 | |
---|
469 | USE indices |
---|
470 | |
---|
471 | USE kinds |
---|
472 | |
---|
473 | IMPLICIT NONE |
---|
474 | |
---|
475 | CHARACTER (LEN=*) :: mode !< |
---|
476 | CHARACTER (LEN=*) :: variable !< |
---|
477 | |
---|
478 | INTEGER(iwp) :: i !< |
---|
479 | INTEGER(iwp) :: j !< |
---|
480 | INTEGER(iwp) :: k !< |
---|
481 | |
---|
482 | |
---|
483 | IF ( mode == 'allocate' ) THEN |
---|
484 | |
---|
485 | SELECT CASE ( TRIM( variable ) ) |
---|
486 | |
---|
487 | CASE ( 'pcm_heatrate' ) |
---|
488 | IF ( .NOT. ALLOCATED( pcm_heatrate_av ) ) THEN |
---|
489 | ALLOCATE( pcm_heatrate_av(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
490 | ENDIF |
---|
491 | pcm_heatrate_av = 0.0_wp |
---|
492 | |
---|
493 | |
---|
494 | CASE ( 'pcm_latentrate' ) |
---|
495 | IF ( .NOT. ALLOCATED( pcm_latentrate_av ) ) THEN |
---|
496 | ALLOCATE( pcm_latentrate_av(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
497 | ENDIF |
---|
498 | pcm_latentrate_av = 0.0_wp |
---|
499 | |
---|
500 | |
---|
501 | CASE ( 'pcm_transpirationrate' ) |
---|
502 | IF ( .NOT. ALLOCATED( pcm_transpirationrate_av ) ) THEN |
---|
503 | ALLOCATE( pcm_transpirationrate_av(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
504 | ENDIF |
---|
505 | pcm_transpirationrate_av = 0.0_wp |
---|
506 | |
---|
507 | CASE DEFAULT |
---|
508 | CONTINUE |
---|
509 | |
---|
510 | END SELECT |
---|
511 | |
---|
512 | ELSEIF ( mode == 'sum' ) THEN |
---|
513 | |
---|
514 | SELECT CASE ( TRIM( variable ) ) |
---|
515 | |
---|
516 | CASE ( 'pcm_heatrate' ) |
---|
517 | IF ( ALLOCATED( pcm_heatrate_av ) ) THEN |
---|
518 | DO i = nxl, nxr |
---|
519 | DO j = nys, nyn |
---|
520 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
521 | DO k = 0, pch_index_ji(j,i) |
---|
522 | pcm_heatrate_av(k,j,i) = pcm_heatrate_av(k,j,i) + pc_heating_rate(k,j,i) |
---|
523 | ENDDO |
---|
524 | ENDIF |
---|
525 | ENDDO |
---|
526 | ENDDO |
---|
527 | ENDIF |
---|
528 | |
---|
529 | |
---|
530 | CASE ( 'pcm_latentrate' ) |
---|
531 | IF ( ALLOCATED( pcm_latentrate_av ) ) THEN |
---|
532 | DO i = nxl, nxr |
---|
533 | DO j = nys, nyn |
---|
534 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
535 | DO k = 0, pch_index_ji(j,i) |
---|
536 | pcm_latentrate_av(k,j,i) = pcm_latentrate_av(k,j,i) + pc_latent_rate(k,j,i) |
---|
537 | ENDDO |
---|
538 | ENDIF |
---|
539 | ENDDO |
---|
540 | ENDDO |
---|
541 | ENDIF |
---|
542 | |
---|
543 | |
---|
544 | CASE ( 'pcm_transpirationrate' ) |
---|
545 | IF ( ALLOCATED( pcm_transpirationrate_av ) ) THEN |
---|
546 | DO i = nxl, nxr |
---|
547 | DO j = nys, nyn |
---|
548 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
549 | DO k = 0, pch_index_ji(j,i) |
---|
550 | pcm_transpirationrate_av(k,j,i) = pcm_transpirationrate_av(k,j,i) + pc_transpiration_rate(k,j,i) |
---|
551 | ENDDO |
---|
552 | ENDIF |
---|
553 | ENDDO |
---|
554 | ENDDO |
---|
555 | ENDIF |
---|
556 | |
---|
557 | CASE DEFAULT |
---|
558 | CONTINUE |
---|
559 | |
---|
560 | END SELECT |
---|
561 | |
---|
562 | ELSEIF ( mode == 'average' ) THEN |
---|
563 | |
---|
564 | SELECT CASE ( TRIM( variable ) ) |
---|
565 | |
---|
566 | CASE ( 'pcm_heatrate' ) |
---|
567 | IF ( ALLOCATED( pcm_heatrate_av ) ) THEN |
---|
568 | DO i = nxlg, nxrg |
---|
569 | DO j = nysg, nyng |
---|
570 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
571 | DO k = 0, pch_index_ji(j,i) |
---|
572 | pcm_heatrate_av(k,j,i) = pcm_heatrate_av(k,j,i) & |
---|
573 | / REAL( average_count_3d, KIND=wp ) |
---|
574 | ENDDO |
---|
575 | ENDIF |
---|
576 | ENDDO |
---|
577 | ENDDO |
---|
578 | ENDIF |
---|
579 | |
---|
580 | |
---|
581 | CASE ( 'pcm_latentrate' ) |
---|
582 | IF ( ALLOCATED( pcm_latentrate_av ) ) THEN |
---|
583 | DO i = nxlg, nxrg |
---|
584 | DO j = nysg, nyng |
---|
585 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
586 | DO k = 0, pch_index_ji(j,i) |
---|
587 | pcm_latentrate_av(k,j,i) = pcm_latentrate_av(k,j,i) & |
---|
588 | / REAL( average_count_3d, KIND=wp ) |
---|
589 | ENDDO |
---|
590 | ENDIF |
---|
591 | ENDDO |
---|
592 | ENDDO |
---|
593 | ENDIF |
---|
594 | |
---|
595 | |
---|
596 | CASE ( 'pcm_transpirationrate' ) |
---|
597 | IF ( ALLOCATED( pcm_transpirationrate_av ) ) THEN |
---|
598 | DO i = nxlg, nxrg |
---|
599 | DO j = nysg, nyng |
---|
600 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
601 | DO k = 0, pch_index_ji(j,i) |
---|
602 | pcm_transpirationrate_av(k,j,i) = pcm_transpirationrate_av(k,j,i) & |
---|
603 | / REAL( average_count_3d, KIND=wp ) |
---|
604 | ENDDO |
---|
605 | ENDIF |
---|
606 | ENDDO |
---|
607 | ENDDO |
---|
608 | ENDIF |
---|
609 | |
---|
610 | END SELECT |
---|
611 | |
---|
612 | ENDIF |
---|
613 | |
---|
614 | END SUBROUTINE pcm_3d_data_averaging |
---|
615 | |
---|
616 | !------------------------------------------------------------------------------! |
---|
617 | ! |
---|
618 | ! Description: |
---|
619 | ! ------------ |
---|
620 | !> Subroutine defining 3D output variables. |
---|
621 | !> Note, 3D plant-canopy output has it's own vertical output dimension, meaning |
---|
622 | !> that 3D output is relative to the model surface now rather than at the actual |
---|
623 | !> grid point where the plant canopy is located. |
---|
624 | !------------------------------------------------------------------------------! |
---|
625 | SUBROUTINE pcm_data_output_3d( av, variable, found, local_pf, fill_value, & |
---|
626 | nzb_do, nzt_do ) |
---|
627 | |
---|
628 | USE indices |
---|
629 | |
---|
630 | USE kinds |
---|
631 | |
---|
632 | |
---|
633 | IMPLICIT NONE |
---|
634 | |
---|
635 | CHARACTER (LEN=*) :: variable !< treated variable |
---|
636 | |
---|
637 | INTEGER(iwp) :: av !< flag indicating instantaneous or averaged data output |
---|
638 | INTEGER(iwp) :: i !< grid index x-direction |
---|
639 | INTEGER(iwp) :: j !< grid index y-direction |
---|
640 | INTEGER(iwp) :: k !< grid index z-direction |
---|
641 | INTEGER(iwp) :: nzb_do !< lower limit of the data output (usually 0) |
---|
642 | INTEGER(iwp) :: nzt_do !< vertical upper limit of the data output (usually nz_do3d) |
---|
643 | |
---|
644 | LOGICAL :: found !< flag indicating if variable is found |
---|
645 | |
---|
646 | REAL(wp) :: fill_value !< fill value |
---|
647 | REAL(sp), DIMENSION(nxl:nxr,nys:nyn,nzb_do:nzt_do) :: local_pf !< data output array |
---|
648 | |
---|
649 | |
---|
650 | found = .TRUE. |
---|
651 | |
---|
652 | local_pf = REAL( fill_value, KIND = 4 ) |
---|
653 | |
---|
654 | SELECT CASE ( TRIM( variable ) ) |
---|
655 | ! |
---|
656 | !-- Note, to save memory arrays for heating are allocated from 0:pch_index. |
---|
657 | !-- Thus, output must be relative to these array indices. Further, check |
---|
658 | !-- whether the output is within the vertical output range, |
---|
659 | !-- i.e. nzb_do:nzt_do, which is necessary as local_pf is only allocated |
---|
660 | !-- for this index space. Note, plant-canopy output has a separate |
---|
661 | !-- vertical output coordinate zlad, so that output is mapped down to the |
---|
662 | !-- surface. |
---|
663 | CASE ( 'pcm_heatrate' ) |
---|
664 | IF ( av == 0 ) THEN |
---|
665 | DO i = nxl, nxr |
---|
666 | DO j = nys, nyn |
---|
667 | DO k = MAX( 1, nzb_do ), MIN( pch_index, nzt_do ) |
---|
668 | local_pf(i,j,k) = pc_heating_rate(k,j,i) |
---|
669 | ENDDO |
---|
670 | ENDDO |
---|
671 | ENDDO |
---|
672 | ELSE |
---|
673 | DO i = nxl, nxr |
---|
674 | DO j = nys, nyn |
---|
675 | DO k = MAX( 1, nzb_do ), MIN( pch_index, nzt_do ) |
---|
676 | local_pf(i,j,k) = pcm_heatrate_av(k,j,i) |
---|
677 | ENDDO |
---|
678 | ENDDO |
---|
679 | ENDDO |
---|
680 | ENDIF |
---|
681 | |
---|
682 | CASE ( 'pcm_latentrate' ) |
---|
683 | IF ( av == 0 ) THEN |
---|
684 | DO i = nxl, nxr |
---|
685 | DO j = nys, nyn |
---|
686 | DO k = MAX( 1, nzb_do ), MIN( pch_index, nzt_do ) |
---|
687 | local_pf(i,j,k) = pc_latent_rate(k,j,i) |
---|
688 | ENDDO |
---|
689 | ENDDO |
---|
690 | ENDDO |
---|
691 | ELSE |
---|
692 | DO i = nxl, nxr |
---|
693 | DO j = nys, nyn |
---|
694 | DO k = MAX( 1, nzb_do ), MIN( pch_index, nzt_do ) |
---|
695 | local_pf(i,j,k) = pcm_latentrate_av(k,j,i) |
---|
696 | ENDDO |
---|
697 | ENDDO |
---|
698 | ENDDO |
---|
699 | ENDIF |
---|
700 | |
---|
701 | CASE ( 'pcm_transpirationrate' ) |
---|
702 | IF ( av == 0 ) THEN |
---|
703 | DO i = nxl, nxr |
---|
704 | DO j = nys, nyn |
---|
705 | DO k = MAX( 1, nzb_do ), MIN( pch_index, nzt_do ) |
---|
706 | local_pf(i,j,k) = pc_transpiration_rate(k,j,i) |
---|
707 | ENDDO |
---|
708 | ENDDO |
---|
709 | ENDDO |
---|
710 | ELSE |
---|
711 | DO i = nxl, nxr |
---|
712 | DO j = nys, nyn |
---|
713 | DO k = MAX( 1, nzb_do ), MIN( pch_index, nzt_do ) |
---|
714 | local_pf(i,j,k) = pcm_transpirationrate_av(k,j,i) |
---|
715 | ENDDO |
---|
716 | ENDDO |
---|
717 | ENDDO |
---|
718 | ENDIF |
---|
719 | |
---|
720 | CASE ( 'pcm_bowenratio' ) |
---|
721 | IF ( av == 0 ) THEN |
---|
722 | DO i = nxl, nxr |
---|
723 | DO j = nys, nyn |
---|
724 | DO k = MAX( 1, nzb_do ), MIN( pch_index, nzt_do ) |
---|
725 | IF ( pc_latent_rate(k,j,i) /= 0.0_wp ) THEN |
---|
726 | local_pf(i,j,k) = pc_heating_rate(k,j,i) / & |
---|
727 | pc_latent_rate(k,j,i) |
---|
728 | ENDIF |
---|
729 | ENDDO |
---|
730 | ENDDO |
---|
731 | ENDDO |
---|
732 | ELSE |
---|
733 | DO i = nxl, nxr |
---|
734 | DO j = nys, nyn |
---|
735 | DO k = MAX( 1, nzb_do ), MIN( pch_index, nzt_do ) |
---|
736 | IF ( pcm_latentrate_av(k,j,i) /= 0.0_wp ) THEN |
---|
737 | local_pf(i,j,k) = pcm_heatrate_av(k,j,i) / & |
---|
738 | pcm_latentrate_av(k,j,i) |
---|
739 | ENDIF |
---|
740 | ENDDO |
---|
741 | ENDDO |
---|
742 | ENDDO |
---|
743 | ENDIF |
---|
744 | |
---|
745 | CASE ( 'pcm_lad' ) |
---|
746 | IF ( av == 0 ) THEN |
---|
747 | DO i = nxl, nxr |
---|
748 | DO j = nys, nyn |
---|
749 | DO k = MAX( 1, nzb_do ), MIN( pch_index, nzt_do ) |
---|
750 | local_pf(i,j,k) = lad_s(k,j,i) |
---|
751 | ENDDO |
---|
752 | ENDDO |
---|
753 | ENDDO |
---|
754 | ENDIF |
---|
755 | |
---|
756 | CASE DEFAULT |
---|
757 | found = .FALSE. |
---|
758 | |
---|
759 | END SELECT |
---|
760 | |
---|
761 | |
---|
762 | END SUBROUTINE pcm_data_output_3d |
---|
763 | |
---|
764 | !------------------------------------------------------------------------------! |
---|
765 | ! |
---|
766 | ! Description: |
---|
767 | ! ------------ |
---|
768 | !> Subroutine defining appropriate grid for netcdf variables. |
---|
769 | !> It is called from subroutine netcdf. |
---|
770 | !------------------------------------------------------------------------------! |
---|
771 | SUBROUTINE pcm_define_netcdf_grid( var, found, grid_x, grid_y, grid_z ) |
---|
772 | |
---|
773 | IMPLICIT NONE |
---|
774 | |
---|
775 | CHARACTER (LEN=*), INTENT(IN) :: var !< |
---|
776 | LOGICAL, INTENT(OUT) :: found !< |
---|
777 | CHARACTER (LEN=*), INTENT(OUT) :: grid_x !< |
---|
778 | CHARACTER (LEN=*), INTENT(OUT) :: grid_y !< |
---|
779 | CHARACTER (LEN=*), INTENT(OUT) :: grid_z !< |
---|
780 | |
---|
781 | found = .TRUE. |
---|
782 | |
---|
783 | ! |
---|
784 | !-- Check for the grid |
---|
785 | SELECT CASE ( TRIM( var ) ) |
---|
786 | |
---|
787 | CASE ( 'pcm_heatrate', 'pcm_lad', 'pcm_transpirationrate', 'pcm_latentrate', 'pcm_bowenratio') |
---|
788 | grid_x = 'x' |
---|
789 | grid_y = 'y' |
---|
790 | grid_z = 'zpc' |
---|
791 | |
---|
792 | CASE DEFAULT |
---|
793 | found = .FALSE. |
---|
794 | grid_x = 'none' |
---|
795 | grid_y = 'none' |
---|
796 | grid_z = 'none' |
---|
797 | END SELECT |
---|
798 | |
---|
799 | END SUBROUTINE pcm_define_netcdf_grid |
---|
800 | |
---|
801 | |
---|
802 | !------------------------------------------------------------------------------! |
---|
803 | ! Description: |
---|
804 | ! ------------ |
---|
805 | !> Header output for plant canopy model |
---|
806 | !------------------------------------------------------------------------------! |
---|
807 | SUBROUTINE pcm_header ( io ) |
---|
808 | |
---|
809 | USE control_parameters, & |
---|
810 | ONLY: passive_scalar |
---|
811 | |
---|
812 | |
---|
813 | IMPLICIT NONE |
---|
814 | |
---|
815 | CHARACTER (LEN=10) :: coor_chr !< |
---|
816 | |
---|
817 | CHARACTER (LEN=86) :: coordinates !< |
---|
818 | CHARACTER (LEN=86) :: gradients !< |
---|
819 | CHARACTER (LEN=86) :: leaf_area_density !< |
---|
820 | CHARACTER (LEN=86) :: slices !< |
---|
821 | |
---|
822 | INTEGER(iwp) :: i !< |
---|
823 | INTEGER(iwp), INTENT(IN) :: io !< Unit of the output file |
---|
824 | INTEGER(iwp) :: k !< |
---|
825 | |
---|
826 | REAL(wp) :: canopy_height !< canopy height (in m) |
---|
827 | |
---|
828 | canopy_height = zw(pch_index) |
---|
829 | |
---|
830 | WRITE ( io, 1 ) canopy_mode, canopy_height, pch_index, & |
---|
831 | canopy_drag_coeff |
---|
832 | IF ( passive_scalar ) THEN |
---|
833 | WRITE ( io, 2 ) leaf_scalar_exch_coeff, & |
---|
834 | leaf_surface_conc |
---|
835 | ENDIF |
---|
836 | |
---|
837 | ! |
---|
838 | !-- Heat flux at the top of vegetation |
---|
839 | WRITE ( io, 3 ) cthf |
---|
840 | |
---|
841 | ! |
---|
842 | !-- Leaf area density profile, calculated either from given vertical |
---|
843 | !-- gradients or from beta probability density function. |
---|
844 | IF ( .NOT. calc_beta_lad_profile ) THEN |
---|
845 | |
---|
846 | !-- Building output strings, starting with surface value |
---|
847 | WRITE ( leaf_area_density, '(F7.4)' ) lad_surface |
---|
848 | gradients = '------' |
---|
849 | slices = ' 0' |
---|
850 | coordinates = ' 0.0' |
---|
851 | i = 1 |
---|
852 | DO WHILE ( i < 11 .AND. lad_vertical_gradient_level_ind(i) & |
---|
853 | /= -9999 ) |
---|
854 | |
---|
855 | WRITE (coor_chr,'(F7.2)') lad(lad_vertical_gradient_level_ind(i)) |
---|
856 | leaf_area_density = TRIM( leaf_area_density ) // ' ' // & |
---|
857 | TRIM( coor_chr ) |
---|
858 | |
---|
859 | WRITE (coor_chr,'(F7.2)') lad_vertical_gradient(i) |
---|
860 | gradients = TRIM( gradients ) // ' ' // TRIM( coor_chr ) |
---|
861 | |
---|
862 | WRITE (coor_chr,'(I7)') lad_vertical_gradient_level_ind(i) |
---|
863 | slices = TRIM( slices ) // ' ' // TRIM( coor_chr ) |
---|
864 | |
---|
865 | WRITE (coor_chr,'(F7.1)') lad_vertical_gradient_level(i) |
---|
866 | coordinates = TRIM( coordinates ) // ' ' // TRIM( coor_chr ) |
---|
867 | |
---|
868 | i = i + 1 |
---|
869 | ENDDO |
---|
870 | |
---|
871 | WRITE ( io, 4 ) TRIM( coordinates ), TRIM( leaf_area_density ), & |
---|
872 | TRIM( gradients ), TRIM( slices ) |
---|
873 | |
---|
874 | ELSE |
---|
875 | |
---|
876 | WRITE ( leaf_area_density, '(F7.4)' ) lad_surface |
---|
877 | coordinates = ' 0.0' |
---|
878 | |
---|
879 | DO k = 1, pch_index |
---|
880 | |
---|
881 | WRITE (coor_chr,'(F7.2)') lad(k) |
---|
882 | leaf_area_density = TRIM( leaf_area_density ) // ' ' // & |
---|
883 | TRIM( coor_chr ) |
---|
884 | |
---|
885 | WRITE (coor_chr,'(F7.1)') zu(k) |
---|
886 | coordinates = TRIM( coordinates ) // ' ' // TRIM( coor_chr ) |
---|
887 | |
---|
888 | ENDDO |
---|
889 | |
---|
890 | WRITE ( io, 5 ) TRIM( coordinates ), TRIM( leaf_area_density ), & |
---|
891 | alpha_lad, beta_lad, lai_beta |
---|
892 | |
---|
893 | ENDIF |
---|
894 | |
---|
895 | 1 FORMAT (//' Vegetation canopy (drag) model:'/ & |
---|
896 | ' ------------------------------'// & |
---|
897 | ' Canopy mode: ', A / & |
---|
898 | ' Canopy height: ',F6.2,'m (',I4,' grid points)' / & |
---|
899 | ' Leaf drag coefficient: ',F6.2 /) |
---|
900 | 2 FORMAT (/ ' Scalar exchange coefficient: ',F6.2 / & |
---|
901 | ' Scalar concentration at leaf surfaces in kg/m**3: ',F6.2 /) |
---|
902 | 3 FORMAT (' Predefined constant heatflux at the top of the vegetation: ',F6.2, & |
---|
903 | ' K m/s') |
---|
904 | 4 FORMAT (/ ' Characteristic levels of the leaf area density:'// & |
---|
905 | ' Height: ',A,' m'/ & |
---|
906 | ' Leaf area density: ',A,' m**2/m**3'/ & |
---|
907 | ' Gradient: ',A,' m**2/m**4'/ & |
---|
908 | ' Gridpoint: ',A) |
---|
909 | 5 FORMAT (//' Characteristic levels of the leaf area density and coefficients:'& |
---|
910 | // ' Height: ',A,' m'/ & |
---|
911 | ' Leaf area density: ',A,' m**2/m**3'/ & |
---|
912 | ' Coefficient alpha: ',F6.2 / & |
---|
913 | ' Coefficient beta: ',F6.2 / & |
---|
914 | ' Leaf area index: ',F6.2,' m**2/m**2' /) |
---|
915 | |
---|
916 | END SUBROUTINE pcm_header |
---|
917 | |
---|
918 | |
---|
919 | !------------------------------------------------------------------------------! |
---|
920 | ! Description: |
---|
921 | ! ------------ |
---|
922 | !> Initialization of the plant canopy model |
---|
923 | !------------------------------------------------------------------------------! |
---|
924 | SUBROUTINE pcm_init |
---|
925 | |
---|
926 | |
---|
927 | USE control_parameters, & |
---|
928 | ONLY: message_string, ocean_mode |
---|
929 | |
---|
930 | USE netcdf_data_input_mod, & |
---|
931 | ONLY: leaf_area_density_f |
---|
932 | |
---|
933 | USE surface_mod, & |
---|
934 | ONLY: surf_def_h, surf_lsm_h, surf_usm_h |
---|
935 | |
---|
936 | IMPLICIT NONE |
---|
937 | |
---|
938 | INTEGER(iwp) :: i !< running index |
---|
939 | INTEGER(iwp) :: j !< running index |
---|
940 | INTEGER(iwp) :: k !< running index |
---|
941 | INTEGER(iwp) :: m !< running index |
---|
942 | |
---|
943 | REAL(wp) :: int_bpdf !< vertical integral for lad-profile construction |
---|
944 | REAL(wp) :: gradient !< gradient for lad-profile construction |
---|
945 | REAL(wp) :: canopy_height !< canopy height for lad-profile construction |
---|
946 | |
---|
947 | IF ( debug_output ) CALL debug_message( 'pcm_init', 'start' ) |
---|
948 | ! |
---|
949 | !-- Allocate one-dimensional arrays for the computation of the |
---|
950 | !-- leaf area density (lad) profile |
---|
951 | ALLOCATE( lad(0:nz+1), pre_lad(0:nz+1) ) |
---|
952 | lad = 0.0_wp |
---|
953 | pre_lad = 0.0_wp |
---|
954 | |
---|
955 | ! |
---|
956 | !-- Set flag that indicates that the lad-profile shall be calculated by using |
---|
957 | !-- a beta probability density function |
---|
958 | IF ( alpha_lad /= 9999999.9_wp .AND. beta_lad /= 9999999.9_wp ) THEN |
---|
959 | calc_beta_lad_profile = .TRUE. |
---|
960 | ENDIF |
---|
961 | |
---|
962 | |
---|
963 | ! |
---|
964 | !-- Compute the profile of leaf area density used in the plant |
---|
965 | !-- canopy model. The profile can either be constructed from |
---|
966 | !-- prescribed vertical gradients of the leaf area density or by |
---|
967 | !-- using a beta probability density function (see e.g. Markkanen et al., |
---|
968 | !-- 2003: Boundary-Layer Meteorology, 106, 437-459) |
---|
969 | IF ( .NOT. calc_beta_lad_profile ) THEN |
---|
970 | |
---|
971 | ! |
---|
972 | !-- Use vertical gradients for lad-profile construction |
---|
973 | i = 1 |
---|
974 | gradient = 0.0_wp |
---|
975 | |
---|
976 | IF ( .NOT. ocean_mode ) THEN |
---|
977 | |
---|
978 | lad(0) = lad_surface |
---|
979 | lad_vertical_gradient_level_ind(1) = 0 |
---|
980 | |
---|
981 | DO k = 1, pch_index |
---|
982 | IF ( i < 11 ) THEN |
---|
983 | IF ( lad_vertical_gradient_level(i) < zu(k) .AND. & |
---|
984 | lad_vertical_gradient_level(i) >= 0.0_wp ) THEN |
---|
985 | gradient = lad_vertical_gradient(i) |
---|
986 | lad_vertical_gradient_level_ind(i) = k - 1 |
---|
987 | i = i + 1 |
---|
988 | ENDIF |
---|
989 | ENDIF |
---|
990 | IF ( gradient /= 0.0_wp ) THEN |
---|
991 | IF ( k /= 1 ) THEN |
---|
992 | lad(k) = lad(k-1) + dzu(k) * gradient |
---|
993 | ELSE |
---|
994 | lad(k) = lad_surface + dzu(k) * gradient |
---|
995 | ENDIF |
---|
996 | ELSE |
---|
997 | lad(k) = lad(k-1) |
---|
998 | ENDIF |
---|
999 | ENDDO |
---|
1000 | |
---|
1001 | ENDIF |
---|
1002 | |
---|
1003 | ! |
---|
1004 | !-- In case of no given leaf area density gradients, choose a vanishing |
---|
1005 | !-- gradient. This information is used for the HEADER and the RUN_CONTROL |
---|
1006 | !-- file. |
---|
1007 | IF ( lad_vertical_gradient_level(1) == -9999999.9_wp ) THEN |
---|
1008 | lad_vertical_gradient_level(1) = 0.0_wp |
---|
1009 | ENDIF |
---|
1010 | |
---|
1011 | ELSE |
---|
1012 | |
---|
1013 | ! |
---|
1014 | !-- Use beta function for lad-profile construction |
---|
1015 | int_bpdf = 0.0_wp |
---|
1016 | canopy_height = zw(pch_index) |
---|
1017 | |
---|
1018 | DO k = 0, pch_index |
---|
1019 | int_bpdf = int_bpdf + & |
---|
1020 | ( ( ( zw(k) / canopy_height )**( alpha_lad-1.0_wp ) ) * & |
---|
1021 | ( ( 1.0_wp - ( zw(k) / canopy_height ) )**( & |
---|
1022 | beta_lad-1.0_wp ) ) & |
---|
1023 | * ( ( zw(k+1)-zw(k) ) / canopy_height ) ) |
---|
1024 | ENDDO |
---|
1025 | |
---|
1026 | ! |
---|
1027 | !-- Preliminary lad profile (defined on w-grid) |
---|
1028 | DO k = 0, pch_index |
---|
1029 | pre_lad(k) = lai_beta * & |
---|
1030 | ( ( ( zw(k) / canopy_height )**( alpha_lad-1.0_wp ) ) & |
---|
1031 | * ( ( 1.0_wp - ( zw(k) / canopy_height ) )**( & |
---|
1032 | beta_lad-1.0_wp ) ) / int_bpdf & |
---|
1033 | ) / canopy_height |
---|
1034 | ENDDO |
---|
1035 | |
---|
1036 | ! |
---|
1037 | !-- Final lad profile (defined on scalar-grid level, since most prognostic |
---|
1038 | !-- quantities are defined there, hence, less interpolation is required |
---|
1039 | !-- when calculating the canopy tendencies) |
---|
1040 | lad(0) = pre_lad(0) |
---|
1041 | DO k = 1, pch_index |
---|
1042 | lad(k) = 0.5 * ( pre_lad(k-1) + pre_lad(k) ) |
---|
1043 | ENDDO |
---|
1044 | |
---|
1045 | ENDIF |
---|
1046 | |
---|
1047 | ! |
---|
1048 | !-- Allocate 3D-array for the leaf area density (lad_s). |
---|
1049 | ALLOCATE( lad_s(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1050 | |
---|
1051 | ! |
---|
1052 | !-- Initialize canopy parameters cdc (canopy drag coefficient), |
---|
1053 | !-- lsec (leaf scalar exchange coefficient), lsc (leaf surface concentration) |
---|
1054 | !-- with the prescribed values |
---|
1055 | cdc = canopy_drag_coeff |
---|
1056 | lsec = leaf_scalar_exch_coeff |
---|
1057 | lsc = leaf_surface_conc |
---|
1058 | |
---|
1059 | ! |
---|
1060 | !-- Initialization of the canopy coverage in the model domain: |
---|
1061 | !-- Setting the parameter canopy_mode = 'block' initializes a canopy, which |
---|
1062 | !-- fully covers the domain surface |
---|
1063 | SELECT CASE ( TRIM( canopy_mode ) ) |
---|
1064 | |
---|
1065 | CASE( 'block' ) |
---|
1066 | |
---|
1067 | DO i = nxlg, nxrg |
---|
1068 | DO j = nysg, nyng |
---|
1069 | lad_s(:,j,i) = lad(:) |
---|
1070 | ENDDO |
---|
1071 | ENDDO |
---|
1072 | |
---|
1073 | CASE ( 'read_from_file_3d' ) |
---|
1074 | ! |
---|
1075 | !-- Initialize LAD with data from file. If LAD is given in NetCDF file, |
---|
1076 | !-- use these values, else take LAD profiles from ASCII file. |
---|
1077 | !-- Please note, in NetCDF file LAD is only given up to the maximum |
---|
1078 | !-- canopy top, indicated by leaf_area_density_f%nz. |
---|
1079 | lad_s = 0.0_wp |
---|
1080 | IF ( leaf_area_density_f%from_file ) THEN |
---|
1081 | ! |
---|
1082 | !-- Set also pch_index, used to be the upper bound of the vertical |
---|
1083 | !-- loops. Therefore, use the global top of the canopy layer. |
---|
1084 | pch_index = leaf_area_density_f%nz - 1 |
---|
1085 | |
---|
1086 | DO i = nxl, nxr |
---|
1087 | DO j = nys, nyn |
---|
1088 | DO k = 0, leaf_area_density_f%nz - 1 |
---|
1089 | IF ( leaf_area_density_f%var(k,j,i) /= & |
---|
1090 | leaf_area_density_f%fill ) & |
---|
1091 | lad_s(k,j,i) = leaf_area_density_f%var(k,j,i) |
---|
1092 | ENDDO |
---|
1093 | ENDDO |
---|
1094 | ENDDO |
---|
1095 | |
---|
1096 | CALL exchange_horiz( lad_s, nbgp ) |
---|
1097 | ! |
---|
1098 | ! ASCII file |
---|
1099 | !-- Initialize canopy parameters cdc (canopy drag coefficient), |
---|
1100 | !-- lsec (leaf scalar exchange coefficient), lsc (leaf surface concentration) |
---|
1101 | !-- from file which contains complete 3D data (separate vertical profiles for |
---|
1102 | !-- each location). |
---|
1103 | ELSE |
---|
1104 | CALL pcm_read_plant_canopy_3d |
---|
1105 | ENDIF |
---|
1106 | |
---|
1107 | CASE DEFAULT |
---|
1108 | ! |
---|
1109 | !-- The DEFAULT case is reached either if the parameter |
---|
1110 | !-- canopy mode contains a wrong character string or if the |
---|
1111 | !-- user has coded a special case in the user interface. |
---|
1112 | !-- There, the subroutine user_init_plant_canopy checks |
---|
1113 | !-- which of these two conditions applies. |
---|
1114 | CALL user_init_plant_canopy |
---|
1115 | |
---|
1116 | END SELECT |
---|
1117 | ! |
---|
1118 | !-- Initialize 2D index array indicating canopy top index. |
---|
1119 | ALLOCATE( pch_index_ji(nysg:nyng,nxlg:nxrg) ) |
---|
1120 | pch_index_ji = 0 |
---|
1121 | |
---|
1122 | DO i = nxl, nxr |
---|
1123 | DO j = nys, nyn |
---|
1124 | DO k = 0, pch_index |
---|
1125 | IF ( lad_s(k,j,i) /= 0 ) pch_index_ji(j,i) = k |
---|
1126 | ENDDO |
---|
1127 | ! |
---|
1128 | !-- Check whether topography and local vegetation on top exceed |
---|
1129 | !-- height of the model domain. |
---|
1130 | k = topo_top_ind(j,i,0) |
---|
1131 | IF ( k + pch_index_ji(j,i) >= nzt + 1 ) THEN |
---|
1132 | message_string = 'Local vegetation height on top of ' // & |
---|
1133 | 'topography exceeds height of model domain.' |
---|
1134 | CALL message( 'pcm_init', 'PA0674', 2, 2, 0, 6, 0 ) |
---|
1135 | ENDIF |
---|
1136 | |
---|
1137 | ENDDO |
---|
1138 | ENDDO |
---|
1139 | |
---|
1140 | CALL exchange_horiz_2d_int( pch_index_ji, nys, nyn, nxl, nxr, nbgp ) |
---|
1141 | ! |
---|
1142 | !-- Calculate global pch_index value (index of top of plant canopy from ground) |
---|
1143 | pch_index = MAXVAL( pch_index_ji ) |
---|
1144 | |
---|
1145 | |
---|
1146 | ! |
---|
1147 | !-- Exchange pch_index from all processors |
---|
1148 | #if defined( __parallel ) |
---|
1149 | CALL MPI_ALLREDUCE( MPI_IN_PLACE, pch_index, 1, MPI_INTEGER, & |
---|
1150 | MPI_MAX, comm2d, ierr) |
---|
1151 | #endif |
---|
1152 | |
---|
1153 | !-- Allocation of arrays pc_heating_rate, pc_transpiration_rate and pc_latent_rate |
---|
1154 | ALLOCATE( pc_heating_rate(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
1155 | pc_heating_rate = 0.0_wp |
---|
1156 | |
---|
1157 | IF ( humidity ) THEN |
---|
1158 | ALLOCATE( pc_transpiration_rate(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
1159 | pc_transpiration_rate = 0.0_wp |
---|
1160 | ALLOCATE( pc_latent_rate(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
1161 | pc_latent_rate = 0.0_wp |
---|
1162 | ENDIF |
---|
1163 | ! |
---|
1164 | !-- Initialization of the canopy heat source distribution due to heating |
---|
1165 | !-- of the canopy layers by incoming solar radiation, in case that a non-zero |
---|
1166 | !-- value is set for the canopy top heat flux (cthf), which equals the |
---|
1167 | !-- available net radiation at canopy top. |
---|
1168 | !-- The heat source distribution is calculated by a decaying exponential |
---|
1169 | !-- function of the downward cumulative leaf area index (cum_lai_hf), |
---|
1170 | !-- assuming that the foliage inside the plant canopy is heated by solar |
---|
1171 | !-- radiation penetrating the canopy layers according to the distribution |
---|
1172 | !-- of net radiation as suggested by Brown & Covey (1966; Agric. Meteorol. 3, |
---|
1173 | !-- 73â96). This approach has been applied e.g. by Shaw & Schumann (1992; |
---|
1174 | !-- Bound.-Layer Meteorol. 61, 47â64). |
---|
1175 | !-- When using the radiation_interactions, canopy heating (pc_heating_rate) |
---|
1176 | !-- and plant canopy transpiration (pc_transpiration_rate, pc_latent_rate) |
---|
1177 | !-- are calculated in the RTM after the calculation of radiation. |
---|
1178 | !-- We cannot use variable radiation_interactions here to determine the situation |
---|
1179 | !-- as it is assigned in init_3d_model after the call of pcm_init. |
---|
1180 | IF ( cthf /= 0.0_wp ) THEN |
---|
1181 | |
---|
1182 | ALLOCATE( cum_lai_hf(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1183 | ! |
---|
1184 | !-- Piecewise calculation of the cumulative leaf area index by vertical |
---|
1185 | !-- integration of the leaf area density |
---|
1186 | cum_lai_hf(:,:,:) = 0.0_wp |
---|
1187 | DO i = nxlg, nxrg |
---|
1188 | DO j = nysg, nyng |
---|
1189 | DO k = pch_index_ji(j,i)-1, 0, -1 |
---|
1190 | IF ( k == pch_index_ji(j,i)-1 ) THEN |
---|
1191 | cum_lai_hf(k,j,i) = cum_lai_hf(k+1,j,i) + & |
---|
1192 | ( 0.5_wp * lad_s(k+1,j,i) * & |
---|
1193 | ( zw(k+1) - zu(k+1) ) ) + & |
---|
1194 | ( 0.5_wp * ( 0.5_wp * ( lad_s(k+1,j,i) + & |
---|
1195 | lad_s(k,j,i) ) + & |
---|
1196 | lad_s(k+1,j,i) ) * & |
---|
1197 | ( zu(k+1) - zw(k) ) ) |
---|
1198 | ELSE |
---|
1199 | cum_lai_hf(k,j,i) = cum_lai_hf(k+1,j,i) + & |
---|
1200 | ( 0.5_wp * ( 0.5_wp * ( lad_s(k+2,j,i) + & |
---|
1201 | lad_s(k+1,j,i) ) + & |
---|
1202 | lad_s(k+1,j,i) ) * & |
---|
1203 | ( zw(k+1) - zu(k+1) ) ) + & |
---|
1204 | ( 0.5_wp * ( 0.5_wp * ( lad_s(k+1,j,i) + & |
---|
1205 | lad_s(k,j,i) ) + & |
---|
1206 | lad_s(k+1,j,i) ) * & |
---|
1207 | ( zu(k+1) - zw(k) ) ) |
---|
1208 | ENDIF |
---|
1209 | ENDDO |
---|
1210 | ENDDO |
---|
1211 | ENDDO |
---|
1212 | |
---|
1213 | ! |
---|
1214 | !-- In areas with canopy the surface value of the canopy heat |
---|
1215 | !-- flux distribution overrides the surface heat flux (shf) |
---|
1216 | !-- Start with default surface type |
---|
1217 | DO m = 1, surf_def_h(0)%ns |
---|
1218 | k = surf_def_h(0)%k(m) |
---|
1219 | IF ( cum_lai_hf(0,j,i) /= 0.0_wp ) & |
---|
1220 | surf_def_h(0)%shf(m) = cthf * exp( -ext_coef * cum_lai_hf(0,j,i) ) |
---|
1221 | ENDDO |
---|
1222 | ! |
---|
1223 | !-- Natural surfaces |
---|
1224 | DO m = 1, surf_lsm_h%ns |
---|
1225 | k = surf_lsm_h%k(m) |
---|
1226 | IF ( cum_lai_hf(0,j,i) /= 0.0_wp ) & |
---|
1227 | surf_lsm_h%shf(m) = cthf * exp( -ext_coef * cum_lai_hf(0,j,i) ) |
---|
1228 | ENDDO |
---|
1229 | ! |
---|
1230 | !-- Urban surfaces |
---|
1231 | DO m = 1, surf_usm_h%ns |
---|
1232 | k = surf_usm_h%k(m) |
---|
1233 | IF ( cum_lai_hf(0,j,i) /= 0.0_wp ) & |
---|
1234 | surf_usm_h%shf(m) = cthf * exp( -ext_coef * cum_lai_hf(0,j,i) ) |
---|
1235 | ENDDO |
---|
1236 | ! |
---|
1237 | ! |
---|
1238 | !-- Calculation of the heating rate (K/s) within the different layers of |
---|
1239 | !-- the plant canopy. Calculation is only necessary in areas covered with |
---|
1240 | !-- canopy. |
---|
1241 | !-- Within the different canopy layers the plant-canopy heating |
---|
1242 | !-- rate (pc_heating_rate) is calculated as the vertical |
---|
1243 | !-- divergence of the canopy heat fluxes at the top and bottom |
---|
1244 | !-- of the respective layer |
---|
1245 | DO i = nxlg, nxrg |
---|
1246 | DO j = nysg, nyng |
---|
1247 | DO k = 1, pch_index_ji(j,i) |
---|
1248 | IF ( cum_lai_hf(0,j,i) /= 0.0_wp ) THEN |
---|
1249 | pc_heating_rate(k,j,i) = cthf * & |
---|
1250 | ( exp(-ext_coef*cum_lai_hf(k,j,i)) - & |
---|
1251 | exp(-ext_coef*cum_lai_hf(k-1,j,i) ) ) / dzw(k) |
---|
1252 | ENDIF |
---|
1253 | ENDDO |
---|
1254 | ENDDO |
---|
1255 | ENDDO |
---|
1256 | |
---|
1257 | ENDIF |
---|
1258 | |
---|
1259 | IF ( debug_output ) CALL debug_message( 'pcm_init', 'end' ) |
---|
1260 | |
---|
1261 | |
---|
1262 | END SUBROUTINE pcm_init |
---|
1263 | |
---|
1264 | |
---|
1265 | !------------------------------------------------------------------------------! |
---|
1266 | ! Description: |
---|
1267 | ! ------------ |
---|
1268 | !> Parin for &plant_canopy_parameters for plant canopy model |
---|
1269 | !------------------------------------------------------------------------------! |
---|
1270 | SUBROUTINE pcm_parin |
---|
1271 | |
---|
1272 | USE control_parameters, & |
---|
1273 | ONLY: message_string, plant_canopy |
---|
1274 | |
---|
1275 | IMPLICIT NONE |
---|
1276 | |
---|
1277 | CHARACTER (LEN=80) :: line !< dummy string that contains the current line of the parameter file |
---|
1278 | |
---|
1279 | NAMELIST /plant_canopy_parameters/ & |
---|
1280 | alpha_lad, beta_lad, canopy_drag_coeff, & |
---|
1281 | canopy_mode, cthf, & |
---|
1282 | lad_surface, lad_type_coef, & |
---|
1283 | lad_vertical_gradient, & |
---|
1284 | lad_vertical_gradient_level, & |
---|
1285 | lai_beta, & |
---|
1286 | leaf_scalar_exch_coeff, & |
---|
1287 | leaf_surface_conc, pch_index, & |
---|
1288 | plant_canopy_transpiration |
---|
1289 | |
---|
1290 | NAMELIST /canopy_par/ alpha_lad, beta_lad, canopy_drag_coeff, & |
---|
1291 | canopy_mode, cthf, & |
---|
1292 | lad_surface, lad_type_coef, & |
---|
1293 | lad_vertical_gradient, & |
---|
1294 | lad_vertical_gradient_level, & |
---|
1295 | lai_beta, & |
---|
1296 | leaf_scalar_exch_coeff, & |
---|
1297 | leaf_surface_conc, pch_index, & |
---|
1298 | plant_canopy_transpiration |
---|
1299 | |
---|
1300 | line = ' ' |
---|
1301 | |
---|
1302 | ! |
---|
1303 | !-- Try to find radiation model package |
---|
1304 | REWIND ( 11 ) |
---|
1305 | line = ' ' |
---|
1306 | DO WHILE ( INDEX( line, '&plant_canopy_parameters' ) == 0 ) |
---|
1307 | READ ( 11, '(A)', END=12 ) line |
---|
1308 | ENDDO |
---|
1309 | BACKSPACE ( 11 ) |
---|
1310 | |
---|
1311 | ! |
---|
1312 | !-- Read user-defined namelist |
---|
1313 | READ ( 11, plant_canopy_parameters, ERR = 10 ) |
---|
1314 | |
---|
1315 | ! |
---|
1316 | !-- Set flag that indicates that the radiation model is switched on |
---|
1317 | plant_canopy = .TRUE. |
---|
1318 | |
---|
1319 | GOTO 14 |
---|
1320 | |
---|
1321 | 10 BACKSPACE( 11 ) |
---|
1322 | READ( 11 , '(A)') line |
---|
1323 | CALL parin_fail_message( 'plant_canopy_parameters', line ) |
---|
1324 | ! |
---|
1325 | !-- Try to find old namelist |
---|
1326 | 12 REWIND ( 11 ) |
---|
1327 | line = ' ' |
---|
1328 | DO WHILE ( INDEX( line, '&canopy_par' ) == 0 ) |
---|
1329 | READ ( 11, '(A)', END=14 ) line |
---|
1330 | ENDDO |
---|
1331 | BACKSPACE ( 11 ) |
---|
1332 | |
---|
1333 | ! |
---|
1334 | !-- Read user-defined namelist |
---|
1335 | READ ( 11, canopy_par, ERR = 13, END = 14 ) |
---|
1336 | |
---|
1337 | message_string = 'namelist canopy_par is deprecated and will be ' // & |
---|
1338 | 'removed in near future. Please use namelist ' // & |
---|
1339 | 'plant_canopy_parameters instead' |
---|
1340 | CALL message( 'pcm_parin', 'PA0487', 0, 1, 0, 6, 0 ) |
---|
1341 | |
---|
1342 | ! |
---|
1343 | !-- Set flag that indicates that the radiation model is switched on |
---|
1344 | plant_canopy = .TRUE. |
---|
1345 | |
---|
1346 | GOTO 14 |
---|
1347 | |
---|
1348 | 13 BACKSPACE( 11 ) |
---|
1349 | READ( 11 , '(A)') line |
---|
1350 | CALL parin_fail_message( 'canopy_par', line ) |
---|
1351 | |
---|
1352 | 14 CONTINUE |
---|
1353 | |
---|
1354 | |
---|
1355 | END SUBROUTINE pcm_parin |
---|
1356 | |
---|
1357 | |
---|
1358 | |
---|
1359 | !------------------------------------------------------------------------------! |
---|
1360 | ! Description: |
---|
1361 | ! ------------ |
---|
1362 | ! |
---|
1363 | !> Loads 3D plant canopy data from file. File format is as follows: |
---|
1364 | !> |
---|
1365 | !> num_levels |
---|
1366 | !> dtype,x,y,pctype,value(nzb),value(nzb+1), ... ,value(nzb+num_levels-1) |
---|
1367 | !> dtype,x,y,pctype,value(nzb),value(nzb+1), ... ,value(nzb+num_levels-1) |
---|
1368 | !> dtype,x,y,pctype,value(nzb),value(nzb+1), ... ,value(nzb+num_levels-1) |
---|
1369 | !> ... |
---|
1370 | !> |
---|
1371 | !> i.e. first line determines number of levels and further lines represent plant |
---|
1372 | !> canopy data, one line per column and variable. In each data line, |
---|
1373 | !> dtype represents variable to be set: |
---|
1374 | !> |
---|
1375 | !> dtype=1: leaf area density (lad_s) |
---|
1376 | !> dtype=2....n: some additional plant canopy input data quantity |
---|
1377 | !> |
---|
1378 | !> Zeros are added automatically above num_levels until top of domain. Any |
---|
1379 | !> non-specified (x,y) columns have zero values as default. |
---|
1380 | !------------------------------------------------------------------------------! |
---|
1381 | SUBROUTINE pcm_read_plant_canopy_3d |
---|
1382 | |
---|
1383 | USE control_parameters, & |
---|
1384 | ONLY: coupling_char, message_string |
---|
1385 | |
---|
1386 | USE indices, & |
---|
1387 | ONLY: nbgp |
---|
1388 | |
---|
1389 | IMPLICIT NONE |
---|
1390 | |
---|
1391 | INTEGER(iwp) :: dtype !< type of input data (1=lad) |
---|
1392 | INTEGER(iwp) :: pctype !< type of plant canopy (deciduous,non-deciduous,...) |
---|
1393 | INTEGER(iwp) :: i, j !< running index |
---|
1394 | INTEGER(iwp) :: nzp !< number of vertical layers of plant canopy |
---|
1395 | INTEGER(iwp) :: nzpltop !< |
---|
1396 | INTEGER(iwp) :: nzpl !< |
---|
1397 | INTEGER(iwp) :: kk !< |
---|
1398 | |
---|
1399 | REAL(wp), DIMENSION(:), ALLOCATABLE :: col !< vertical column of input data |
---|
1400 | |
---|
1401 | ! |
---|
1402 | !-- Initialize lad_s array |
---|
1403 | lad_s = 0.0_wp |
---|
1404 | |
---|
1405 | ! |
---|
1406 | !-- Open and read plant canopy input data |
---|
1407 | OPEN(152, FILE='PLANT_CANOPY_DATA_3D' // TRIM( coupling_char ), & |
---|
1408 | ACCESS='SEQUENTIAL', ACTION='READ', STATUS='OLD', & |
---|
1409 | FORM='FORMATTED', ERR=515) |
---|
1410 | READ(152, *, ERR=516, END=517) nzp !< read first line = number of vertical layers |
---|
1411 | nzpltop = MIN(nzt+1, nzb+nzp-1) |
---|
1412 | nzpl = nzpltop - nzb + 1 !< no. of layers to assign |
---|
1413 | ALLOCATE( col(0:nzp-1) ) |
---|
1414 | |
---|
1415 | DO |
---|
1416 | READ(152, *, ERR=516, END=517) dtype, i, j, pctype, col(:) |
---|
1417 | IF ( i < nxlg .OR. i > nxrg .OR. j < nysg .OR. j > nyng ) CYCLE |
---|
1418 | |
---|
1419 | SELECT CASE (dtype) |
---|
1420 | CASE( 1 ) !< leaf area density |
---|
1421 | ! |
---|
1422 | !-- This is just the pure canopy layer assumed to be grounded to |
---|
1423 | !-- a flat domain surface. At locations where plant canopy sits |
---|
1424 | !-- on top of any kind of topography, the vertical plant column |
---|
1425 | !-- must be "lifted", which is done in SUBROUTINE pcm_tendency. |
---|
1426 | IF ( pctype < 0 .OR. pctype > 10 ) THEN !< incorrect plant canopy type |
---|
1427 | WRITE( message_string, * ) 'Incorrect type of plant canopy. ' // & |
---|
1428 | 'Allowed values 0 <= pctype <= 10, ' // & |
---|
1429 | 'but pctype is ', pctype |
---|
1430 | CALL message( 'pcm_read_plant_canopy_3d', 'PA0349', 1, 2, 0, 6, 0 ) |
---|
1431 | ENDIF |
---|
1432 | kk = topo_top_ind(j,i,0) |
---|
1433 | lad_s(nzb:nzpltop-kk, j, i) = col(kk:nzpl-1)*lad_type_coef(pctype) |
---|
1434 | CASE DEFAULT |
---|
1435 | WRITE(message_string, '(a,i2,a)') & |
---|
1436 | 'Unknown record type in file PLANT_CANOPY_DATA_3D: "', dtype, '"' |
---|
1437 | CALL message( 'pcm_read_plant_canopy_3d', 'PA0530', 1, 2, 0, 6, 0 ) |
---|
1438 | END SELECT |
---|
1439 | ENDDO |
---|
1440 | |
---|
1441 | 515 message_string = 'error opening file PLANT_CANOPY_DATA_3D' |
---|
1442 | CALL message( 'pcm_read_plant_canopy_3d', 'PA0531', 1, 2, 0, 6, 0 ) |
---|
1443 | |
---|
1444 | 516 message_string = 'error reading file PLANT_CANOPY_DATA_3D' |
---|
1445 | CALL message( 'pcm_read_plant_canopy_3d', 'PA0532', 1, 2, 0, 6, 0 ) |
---|
1446 | |
---|
1447 | 517 CLOSE(152) |
---|
1448 | DEALLOCATE( col ) |
---|
1449 | |
---|
1450 | CALL exchange_horiz( lad_s, nbgp ) |
---|
1451 | |
---|
1452 | END SUBROUTINE pcm_read_plant_canopy_3d |
---|
1453 | |
---|
1454 | |
---|
1455 | |
---|
1456 | !------------------------------------------------------------------------------! |
---|
1457 | ! Description: |
---|
1458 | ! ------------ |
---|
1459 | !> Calculation of the tendency terms, accounting for the effect of the plant |
---|
1460 | !> canopy on momentum and scalar quantities. |
---|
1461 | !> |
---|
1462 | !> The canopy is located where the leaf area density lad_s(k,j,i) > 0.0 |
---|
1463 | !> (defined on scalar grid), as initialized in subroutine pcm_init. |
---|
1464 | !> The lad on the w-grid is vertically interpolated from the surrounding |
---|
1465 | !> lad_s. The upper boundary of the canopy is defined on the w-grid at |
---|
1466 | !> k = pch_index. Here, the lad is zero. |
---|
1467 | !> |
---|
1468 | !> The canopy drag must be limited (previously accounted for by calculation of |
---|
1469 | !> a limiting canopy timestep for the determination of the maximum LES timestep |
---|
1470 | !> in subroutine timestep), since it is physically impossible that the canopy |
---|
1471 | !> drag alone can locally change the sign of a velocity component. This |
---|
1472 | !> limitation is realized by calculating preliminary tendencies and velocities. |
---|
1473 | !> It is subsequently checked if the preliminary new velocity has a different |
---|
1474 | !> sign than the current velocity. If so, the tendency is limited in a way that |
---|
1475 | !> the velocity can at maximum be reduced to zero by the canopy drag. |
---|
1476 | !> |
---|
1477 | !> |
---|
1478 | !> Call for all grid points |
---|
1479 | !------------------------------------------------------------------------------! |
---|
1480 | SUBROUTINE pcm_tendency( component ) |
---|
1481 | |
---|
1482 | |
---|
1483 | USE control_parameters, & |
---|
1484 | ONLY: dt_3d, message_string |
---|
1485 | |
---|
1486 | USE kinds |
---|
1487 | |
---|
1488 | IMPLICIT NONE |
---|
1489 | |
---|
1490 | INTEGER(iwp) :: component !< prognostic variable (u,v,w,pt,q,e) |
---|
1491 | INTEGER(iwp) :: i !< running index |
---|
1492 | INTEGER(iwp) :: j !< running index |
---|
1493 | INTEGER(iwp) :: k !< running index |
---|
1494 | INTEGER(iwp) :: k_wall !< vertical index of topography top |
---|
1495 | INTEGER(iwp) :: kk !< running index for flat lad arrays |
---|
1496 | |
---|
1497 | REAL(wp) :: ddt_3d !< inverse of the LES timestep (dt_3d) |
---|
1498 | REAL(wp) :: lad_local !< local lad value |
---|
1499 | REAL(wp) :: pre_tend !< preliminary tendency |
---|
1500 | REAL(wp) :: pre_u !< preliminary u-value |
---|
1501 | REAL(wp) :: pre_v !< preliminary v-value |
---|
1502 | REAL(wp) :: pre_w !< preliminary w-value |
---|
1503 | |
---|
1504 | |
---|
1505 | ddt_3d = 1.0_wp / dt_3d |
---|
1506 | |
---|
1507 | ! |
---|
1508 | !-- Compute drag for the three velocity components and the SGS-TKE: |
---|
1509 | SELECT CASE ( component ) |
---|
1510 | |
---|
1511 | ! |
---|
1512 | !-- u-component |
---|
1513 | CASE ( 1 ) |
---|
1514 | DO i = nxlu, nxr |
---|
1515 | DO j = nys, nyn |
---|
1516 | ! |
---|
1517 | !-- Determine topography-top index on u-grid |
---|
1518 | k_wall = topo_top_ind(j,i,1) |
---|
1519 | DO k = k_wall+1, k_wall + pch_index_ji(j,i) |
---|
1520 | |
---|
1521 | kk = k - k_wall !- lad arrays are defined flat |
---|
1522 | ! |
---|
1523 | !-- In order to create sharp boundaries of the plant canopy, |
---|
1524 | !-- the lad on the u-grid at index (k,j,i) is equal to |
---|
1525 | !-- lad_s(k,j,i), rather than being interpolated from the |
---|
1526 | !-- surrounding lad_s, because this would yield smaller lad |
---|
1527 | !-- at the canopy boundaries than inside of the canopy. |
---|
1528 | !-- For the same reason, the lad at the rightmost(i+1)canopy |
---|
1529 | !-- boundary on the u-grid equals lad_s(k,j,i). |
---|
1530 | lad_local = lad_s(kk,j,i) |
---|
1531 | IF ( lad_local == 0.0_wp .AND. lad_s(kk,j,i-1) > 0.0_wp )& |
---|
1532 | THEN |
---|
1533 | lad_local = lad_s(kk,j,i-1) |
---|
1534 | ENDIF |
---|
1535 | |
---|
1536 | pre_tend = 0.0_wp |
---|
1537 | pre_u = 0.0_wp |
---|
1538 | ! |
---|
1539 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
1540 | pre_tend = - cdc * & |
---|
1541 | lad_local * & |
---|
1542 | SQRT( u(k,j,i)**2 + & |
---|
1543 | ( 0.25_wp * ( v(k,j,i-1) + & |
---|
1544 | v(k,j,i) + & |
---|
1545 | v(k,j+1,i) + & |
---|
1546 | v(k,j+1,i-1) ) & |
---|
1547 | )**2 + & |
---|
1548 | ( 0.25_wp * ( w(k-1,j,i-1) + & |
---|
1549 | w(k-1,j,i) + & |
---|
1550 | w(k,j,i-1) + & |
---|
1551 | w(k,j,i) ) & |
---|
1552 | )**2 & |
---|
1553 | ) * & |
---|
1554 | u(k,j,i) |
---|
1555 | |
---|
1556 | ! |
---|
1557 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
1558 | pre_u = u(k,j,i) + dt_3d * pre_tend |
---|
1559 | ! |
---|
1560 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
1561 | !-- and in case the signs are different, limit the tendency |
---|
1562 | IF ( SIGN(pre_u,u(k,j,i)) /= pre_u ) THEN |
---|
1563 | pre_tend = - u(k,j,i) * ddt_3d |
---|
1564 | ELSE |
---|
1565 | pre_tend = pre_tend |
---|
1566 | ENDIF |
---|
1567 | ! |
---|
1568 | !-- Calculate final tendency |
---|
1569 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
1570 | |
---|
1571 | ENDDO |
---|
1572 | ENDDO |
---|
1573 | ENDDO |
---|
1574 | |
---|
1575 | ! |
---|
1576 | !-- v-component |
---|
1577 | CASE ( 2 ) |
---|
1578 | DO i = nxl, nxr |
---|
1579 | DO j = nysv, nyn |
---|
1580 | ! |
---|
1581 | !-- Determine topography-top index on v-grid |
---|
1582 | k_wall = topo_top_ind(j,i,2) |
---|
1583 | |
---|
1584 | DO k = k_wall+1, k_wall + pch_index_ji(j,i) |
---|
1585 | |
---|
1586 | kk = k - k_wall !- lad arrays are defined flat |
---|
1587 | ! |
---|
1588 | !-- In order to create sharp boundaries of the plant canopy, |
---|
1589 | !-- the lad on the v-grid at index (k,j,i) is equal to |
---|
1590 | !-- lad_s(k,j,i), rather than being interpolated from the |
---|
1591 | !-- surrounding lad_s, because this would yield smaller lad |
---|
1592 | !-- at the canopy boundaries than inside of the canopy. |
---|
1593 | !-- For the same reason, the lad at the northmost(j+1) canopy |
---|
1594 | !-- boundary on the v-grid equals lad_s(k,j,i). |
---|
1595 | lad_local = lad_s(kk,j,i) |
---|
1596 | IF ( lad_local == 0.0_wp .AND. lad_s(kk,j-1,i) > 0.0_wp )& |
---|
1597 | THEN |
---|
1598 | lad_local = lad_s(kk,j-1,i) |
---|
1599 | ENDIF |
---|
1600 | |
---|
1601 | pre_tend = 0.0_wp |
---|
1602 | pre_v = 0.0_wp |
---|
1603 | ! |
---|
1604 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
1605 | pre_tend = - cdc * & |
---|
1606 | lad_local * & |
---|
1607 | SQRT( ( 0.25_wp * ( u(k,j-1,i) + & |
---|
1608 | u(k,j-1,i+1) + & |
---|
1609 | u(k,j,i) + & |
---|
1610 | u(k,j,i+1) ) & |
---|
1611 | )**2 + & |
---|
1612 | v(k,j,i)**2 + & |
---|
1613 | ( 0.25_wp * ( w(k-1,j-1,i) + & |
---|
1614 | w(k-1,j,i) + & |
---|
1615 | w(k,j-1,i) + & |
---|
1616 | w(k,j,i) ) & |
---|
1617 | )**2 & |
---|
1618 | ) * & |
---|
1619 | v(k,j,i) |
---|
1620 | |
---|
1621 | ! |
---|
1622 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
1623 | pre_v = v(k,j,i) + dt_3d * pre_tend |
---|
1624 | ! |
---|
1625 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
1626 | !-- and in case the signs are different, limit the tendency |
---|
1627 | IF ( SIGN(pre_v,v(k,j,i)) /= pre_v ) THEN |
---|
1628 | pre_tend = - v(k,j,i) * ddt_3d |
---|
1629 | ELSE |
---|
1630 | pre_tend = pre_tend |
---|
1631 | ENDIF |
---|
1632 | ! |
---|
1633 | !-- Calculate final tendency |
---|
1634 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
1635 | |
---|
1636 | ENDDO |
---|
1637 | ENDDO |
---|
1638 | ENDDO |
---|
1639 | |
---|
1640 | ! |
---|
1641 | !-- w-component |
---|
1642 | CASE ( 3 ) |
---|
1643 | DO i = nxl, nxr |
---|
1644 | DO j = nys, nyn |
---|
1645 | ! |
---|
1646 | !-- Determine topography-top index on w-grid |
---|
1647 | k_wall = topo_top_ind(j,i,3) |
---|
1648 | |
---|
1649 | DO k = k_wall+1, k_wall + pch_index_ji(j,i) - 1 |
---|
1650 | |
---|
1651 | kk = k - k_wall !- lad arrays are defined flat |
---|
1652 | |
---|
1653 | pre_tend = 0.0_wp |
---|
1654 | pre_w = 0.0_wp |
---|
1655 | ! |
---|
1656 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
1657 | pre_tend = - cdc * & |
---|
1658 | (0.5_wp * & |
---|
1659 | ( lad_s(kk+1,j,i) + lad_s(kk,j,i) )) * & |
---|
1660 | SQRT( ( 0.25_wp * ( u(k,j,i) + & |
---|
1661 | u(k,j,i+1) + & |
---|
1662 | u(k+1,j,i) + & |
---|
1663 | u(k+1,j,i+1) ) & |
---|
1664 | )**2 + & |
---|
1665 | ( 0.25_wp * ( v(k,j,i) + & |
---|
1666 | v(k,j+1,i) + & |
---|
1667 | v(k+1,j,i) + & |
---|
1668 | v(k+1,j+1,i) ) & |
---|
1669 | )**2 + & |
---|
1670 | w(k,j,i)**2 & |
---|
1671 | ) * & |
---|
1672 | w(k,j,i) |
---|
1673 | ! |
---|
1674 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
1675 | pre_w = w(k,j,i) + dt_3d * pre_tend |
---|
1676 | ! |
---|
1677 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
1678 | !-- and in case the signs are different, limit the tendency |
---|
1679 | IF ( SIGN(pre_w,w(k,j,i)) /= pre_w ) THEN |
---|
1680 | pre_tend = - w(k,j,i) * ddt_3d |
---|
1681 | ELSE |
---|
1682 | pre_tend = pre_tend |
---|
1683 | ENDIF |
---|
1684 | ! |
---|
1685 | !-- Calculate final tendency |
---|
1686 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
1687 | |
---|
1688 | ENDDO |
---|
1689 | ENDDO |
---|
1690 | ENDDO |
---|
1691 | |
---|
1692 | ! |
---|
1693 | !-- potential temperature |
---|
1694 | CASE ( 4 ) |
---|
1695 | IF ( humidity ) THEN |
---|
1696 | DO i = nxl, nxr |
---|
1697 | DO j = nys, nyn |
---|
1698 | !-- Determine topography-top index on scalar-grid |
---|
1699 | k_wall = topo_top_ind(j,i,0) |
---|
1700 | DO k = k_wall+1, k_wall + pch_index_ji(j,i) |
---|
1701 | kk = k - k_wall !- lad arrays are defined flat |
---|
1702 | tend(k,j,i) = tend(k,j,i) + pc_heating_rate(kk,j,i) - pc_latent_rate(kk,j,i) |
---|
1703 | ENDDO |
---|
1704 | ENDDO |
---|
1705 | ENDDO |
---|
1706 | ELSE |
---|
1707 | DO i = nxl, nxr |
---|
1708 | DO j = nys, nyn |
---|
1709 | !-- Determine topography-top index on scalar-grid |
---|
1710 | k_wall = topo_top_ind(j,i,0) |
---|
1711 | DO k = k_wall+1, k_wall + pch_index_ji(j,i) |
---|
1712 | kk = k - k_wall !- lad arrays are defined flat |
---|
1713 | tend(k,j,i) = tend(k,j,i) + pc_heating_rate(kk,j,i) |
---|
1714 | ENDDO |
---|
1715 | ENDDO |
---|
1716 | ENDDO |
---|
1717 | ENDIF |
---|
1718 | |
---|
1719 | ! |
---|
1720 | !-- humidity |
---|
1721 | CASE ( 5 ) |
---|
1722 | DO i = nxl, nxr |
---|
1723 | DO j = nys, nyn |
---|
1724 | ! |
---|
1725 | !-- Determine topography-top index on scalar-grid |
---|
1726 | k_wall = topo_top_ind(j,i,0) |
---|
1727 | |
---|
1728 | DO k = k_wall+1, k_wall + pch_index_ji(j,i) |
---|
1729 | |
---|
1730 | kk = k - k_wall !- lad arrays are defined flat |
---|
1731 | |
---|
1732 | IF ( .NOT. plant_canopy_transpiration ) THEN |
---|
1733 | ! pc_transpiration_rate is calculated in radiation model |
---|
1734 | ! in case of plant_canopy_transpiration = .T. |
---|
1735 | ! to include also the dependecy to the radiation |
---|
1736 | ! in the plant canopy box |
---|
1737 | pc_transpiration_rate(kk,j,i) = - lsec & |
---|
1738 | * lad_s(kk,j,i) * & |
---|
1739 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
1740 | u(k,j,i+1) ) & |
---|
1741 | )**2 + & |
---|
1742 | ( 0.5_wp * ( v(k,j,i) + & |
---|
1743 | v(k,j+1,i) ) & |
---|
1744 | )**2 + & |
---|
1745 | ( 0.5_wp * ( w(k-1,j,i) + & |
---|
1746 | w(k,j,i) ) & |
---|
1747 | )**2 & |
---|
1748 | ) * & |
---|
1749 | ( q(k,j,i) - lsc ) |
---|
1750 | ENDIF |
---|
1751 | |
---|
1752 | tend(k,j,i) = tend(k,j,i) + pc_transpiration_rate(kk,j,i) |
---|
1753 | ENDDO |
---|
1754 | ENDDO |
---|
1755 | ENDDO |
---|
1756 | |
---|
1757 | ! |
---|
1758 | !-- sgs-tke |
---|
1759 | CASE ( 6 ) |
---|
1760 | DO i = nxl, nxr |
---|
1761 | DO j = nys, nyn |
---|
1762 | ! |
---|
1763 | !-- Determine topography-top index on scalar-grid |
---|
1764 | k_wall = topo_top_ind(j,i,0) |
---|
1765 | |
---|
1766 | DO k = k_wall+1, k_wall + pch_index_ji(j,i) |
---|
1767 | |
---|
1768 | kk = k - k_wall !- lad arrays are defined flat |
---|
1769 | tend(k,j,i) = tend(k,j,i) - & |
---|
1770 | 2.0_wp * cdc * & |
---|
1771 | lad_s(kk,j,i) * & |
---|
1772 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
1773 | u(k,j,i+1) ) & |
---|
1774 | )**2 + & |
---|
1775 | ( 0.5_wp * ( v(k,j,i) + & |
---|
1776 | v(k,j+1,i) ) & |
---|
1777 | )**2 + & |
---|
1778 | ( 0.5_wp * ( w(k,j,i) + & |
---|
1779 | w(k+1,j,i) ) & |
---|
1780 | )**2 & |
---|
1781 | ) * & |
---|
1782 | e(k,j,i) |
---|
1783 | ENDDO |
---|
1784 | ENDDO |
---|
1785 | ENDDO |
---|
1786 | ! |
---|
1787 | !-- scalar concentration |
---|
1788 | CASE ( 7 ) |
---|
1789 | DO i = nxl, nxr |
---|
1790 | DO j = nys, nyn |
---|
1791 | ! |
---|
1792 | !-- Determine topography-top index on scalar-grid |
---|
1793 | k_wall = topo_top_ind(j,i,0) |
---|
1794 | |
---|
1795 | DO k = k_wall+1, k_wall + pch_index_ji(j,i) |
---|
1796 | |
---|
1797 | kk = k - k_wall !- lad arrays are defined flat |
---|
1798 | tend(k,j,i) = tend(k,j,i) - & |
---|
1799 | lsec * & |
---|
1800 | lad_s(kk,j,i) * & |
---|
1801 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
1802 | u(k,j,i+1) ) & |
---|
1803 | )**2 + & |
---|
1804 | ( 0.5_wp * ( v(k,j,i) + & |
---|
1805 | v(k,j+1,i) ) & |
---|
1806 | )**2 + & |
---|
1807 | ( 0.5_wp * ( w(k-1,j,i) + & |
---|
1808 | w(k,j,i) ) & |
---|
1809 | )**2 & |
---|
1810 | ) * & |
---|
1811 | ( s(k,j,i) - lsc ) |
---|
1812 | ENDDO |
---|
1813 | ENDDO |
---|
1814 | ENDDO |
---|
1815 | |
---|
1816 | |
---|
1817 | |
---|
1818 | CASE DEFAULT |
---|
1819 | |
---|
1820 | WRITE( message_string, * ) 'wrong component: ', component |
---|
1821 | CALL message( 'pcm_tendency', 'PA0279', 1, 2, 0, 6, 0 ) |
---|
1822 | |
---|
1823 | END SELECT |
---|
1824 | |
---|
1825 | END SUBROUTINE pcm_tendency |
---|
1826 | |
---|
1827 | |
---|
1828 | !------------------------------------------------------------------------------! |
---|
1829 | ! Description: |
---|
1830 | ! ------------ |
---|
1831 | !> Calculation of the tendency terms, accounting for the effect of the plant |
---|
1832 | !> canopy on momentum and scalar quantities. |
---|
1833 | !> |
---|
1834 | !> The canopy is located where the leaf area density lad_s(k,j,i) > 0.0 |
---|
1835 | !> (defined on scalar grid), as initialized in subroutine pcm_init. |
---|
1836 | !> The lad on the w-grid is vertically interpolated from the surrounding |
---|
1837 | !> lad_s. The upper boundary of the canopy is defined on the w-grid at |
---|
1838 | !> k = pch_index. Here, the lad is zero. |
---|
1839 | !> |
---|
1840 | !> The canopy drag must be limited (previously accounted for by calculation of |
---|
1841 | !> a limiting canopy timestep for the determination of the maximum LES timestep |
---|
1842 | !> in subroutine timestep), since it is physically impossible that the canopy |
---|
1843 | !> drag alone can locally change the sign of a velocity component. This |
---|
1844 | !> limitation is realized by calculating preliminary tendencies and velocities. |
---|
1845 | !> It is subsequently checked if the preliminary new velocity has a different |
---|
1846 | !> sign than the current velocity. If so, the tendency is limited in a way that |
---|
1847 | !> the velocity can at maximum be reduced to zero by the canopy drag. |
---|
1848 | !> |
---|
1849 | !> |
---|
1850 | !> Call for grid point i,j |
---|
1851 | !------------------------------------------------------------------------------! |
---|
1852 | SUBROUTINE pcm_tendency_ij( i, j, component ) |
---|
1853 | |
---|
1854 | |
---|
1855 | USE control_parameters, & |
---|
1856 | ONLY: dt_3d, message_string |
---|
1857 | |
---|
1858 | USE kinds |
---|
1859 | |
---|
1860 | IMPLICIT NONE |
---|
1861 | |
---|
1862 | INTEGER(iwp) :: component !< prognostic variable (u,v,w,pt,q,e) |
---|
1863 | INTEGER(iwp) :: i !< running index |
---|
1864 | INTEGER(iwp) :: j !< running index |
---|
1865 | INTEGER(iwp) :: k !< running index |
---|
1866 | INTEGER(iwp) :: k_wall !< vertical index of topography top |
---|
1867 | INTEGER(iwp) :: kk !< running index for flat lad arrays |
---|
1868 | |
---|
1869 | REAL(wp) :: ddt_3d !< inverse of the LES timestep (dt_3d) |
---|
1870 | REAL(wp) :: lad_local !< local lad value |
---|
1871 | REAL(wp) :: pre_tend !< preliminary tendency |
---|
1872 | REAL(wp) :: pre_u !< preliminary u-value |
---|
1873 | REAL(wp) :: pre_v !< preliminary v-value |
---|
1874 | REAL(wp) :: pre_w !< preliminary w-value |
---|
1875 | |
---|
1876 | |
---|
1877 | ddt_3d = 1.0_wp / dt_3d |
---|
1878 | ! |
---|
1879 | !-- Compute drag for the three velocity components and the SGS-TKE |
---|
1880 | SELECT CASE ( component ) |
---|
1881 | |
---|
1882 | ! |
---|
1883 | !-- u-component |
---|
1884 | CASE ( 1 ) |
---|
1885 | ! |
---|
1886 | !-- Determine topography-top index on u-grid |
---|
1887 | k_wall = topo_top_ind(j,i,1) |
---|
1888 | DO k = k_wall + 1, k_wall + pch_index_ji(j,i) |
---|
1889 | |
---|
1890 | kk = k - k_wall !- lad arrays are defined flat |
---|
1891 | |
---|
1892 | ! |
---|
1893 | !-- In order to create sharp boundaries of the plant canopy, |
---|
1894 | !-- the lad on the u-grid at index (k,j,i) is equal to lad_s(k,j,i), |
---|
1895 | !-- rather than being interpolated from the surrounding lad_s, |
---|
1896 | !-- because this would yield smaller lad at the canopy boundaries |
---|
1897 | !-- than inside of the canopy. |
---|
1898 | !-- For the same reason, the lad at the rightmost(i+1)canopy |
---|
1899 | !-- boundary on the u-grid equals lad_s(k,j,i). |
---|
1900 | lad_local = lad_s(kk,j,i) |
---|
1901 | IF ( lad_local == 0.0_wp .AND. lad_s(kk,j,i-1) > 0.0_wp ) THEN |
---|
1902 | lad_local = lad_s(kk,j,i-1) |
---|
1903 | ENDIF |
---|
1904 | |
---|
1905 | pre_tend = 0.0_wp |
---|
1906 | pre_u = 0.0_wp |
---|
1907 | ! |
---|
1908 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
1909 | pre_tend = - cdc * & |
---|
1910 | lad_local * & |
---|
1911 | SQRT( u(k,j,i)**2 + & |
---|
1912 | ( 0.25_wp * ( v(k,j,i-1) + & |
---|
1913 | v(k,j,i) + & |
---|
1914 | v(k,j+1,i) + & |
---|
1915 | v(k,j+1,i-1) ) & |
---|
1916 | )**2 + & |
---|
1917 | ( 0.25_wp * ( w(k-1,j,i-1) + & |
---|
1918 | w(k-1,j,i) + & |
---|
1919 | w(k,j,i-1) + & |
---|
1920 | w(k,j,i) ) & |
---|
1921 | )**2 & |
---|
1922 | ) * & |
---|
1923 | u(k,j,i) |
---|
1924 | |
---|
1925 | ! |
---|
1926 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
1927 | pre_u = u(k,j,i) + dt_3d * pre_tend |
---|
1928 | ! |
---|
1929 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
1930 | !-- and in case the signs are different, limit the tendency |
---|
1931 | IF ( SIGN(pre_u,u(k,j,i)) /= pre_u ) THEN |
---|
1932 | pre_tend = - u(k,j,i) * ddt_3d |
---|
1933 | ELSE |
---|
1934 | pre_tend = pre_tend |
---|
1935 | ENDIF |
---|
1936 | ! |
---|
1937 | !-- Calculate final tendency |
---|
1938 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
1939 | ENDDO |
---|
1940 | |
---|
1941 | |
---|
1942 | ! |
---|
1943 | !-- v-component |
---|
1944 | CASE ( 2 ) |
---|
1945 | ! |
---|
1946 | !-- Determine topography-top index on v-grid |
---|
1947 | k_wall = topo_top_ind(j,i,2) |
---|
1948 | |
---|
1949 | DO k = k_wall + 1, k_wall + pch_index_ji(j,i) |
---|
1950 | |
---|
1951 | kk = k - k_wall !- lad arrays are defined flat |
---|
1952 | ! |
---|
1953 | !-- In order to create sharp boundaries of the plant canopy, |
---|
1954 | !-- the lad on the v-grid at index (k,j,i) is equal to lad_s(k,j,i), |
---|
1955 | !-- rather than being interpolated from the surrounding lad_s, |
---|
1956 | !-- because this would yield smaller lad at the canopy boundaries |
---|
1957 | !-- than inside of the canopy. |
---|
1958 | !-- For the same reason, the lad at the northmost(j+1)canopy |
---|
1959 | !-- boundary on the v-grid equals lad_s(k,j,i). |
---|
1960 | lad_local = lad_s(kk,j,i) |
---|
1961 | IF ( lad_local == 0.0_wp .AND. lad_s(kk,j-1,i) > 0.0_wp ) THEN |
---|
1962 | lad_local = lad_s(kk,j-1,i) |
---|
1963 | ENDIF |
---|
1964 | |
---|
1965 | pre_tend = 0.0_wp |
---|
1966 | pre_v = 0.0_wp |
---|
1967 | ! |
---|
1968 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
1969 | pre_tend = - cdc * & |
---|
1970 | lad_local * & |
---|
1971 | SQRT( ( 0.25_wp * ( u(k,j-1,i) + & |
---|
1972 | u(k,j-1,i+1) + & |
---|
1973 | u(k,j,i) + & |
---|
1974 | u(k,j,i+1) ) & |
---|
1975 | )**2 + & |
---|
1976 | v(k,j,i)**2 + & |
---|
1977 | ( 0.25_wp * ( w(k-1,j-1,i) + & |
---|
1978 | w(k-1,j,i) + & |
---|
1979 | w(k,j-1,i) + & |
---|
1980 | w(k,j,i) ) & |
---|
1981 | )**2 & |
---|
1982 | ) * & |
---|
1983 | v(k,j,i) |
---|
1984 | |
---|
1985 | ! |
---|
1986 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
1987 | pre_v = v(k,j,i) + dt_3d * pre_tend |
---|
1988 | ! |
---|
1989 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
1990 | !-- and in case the signs are different, limit the tendency |
---|
1991 | IF ( SIGN(pre_v,v(k,j,i)) /= pre_v ) THEN |
---|
1992 | pre_tend = - v(k,j,i) * ddt_3d |
---|
1993 | ELSE |
---|
1994 | pre_tend = pre_tend |
---|
1995 | ENDIF |
---|
1996 | ! |
---|
1997 | !-- Calculate final tendency |
---|
1998 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
1999 | ENDDO |
---|
2000 | |
---|
2001 | |
---|
2002 | ! |
---|
2003 | !-- w-component |
---|
2004 | CASE ( 3 ) |
---|
2005 | ! |
---|
2006 | !-- Determine topography-top index on w-grid |
---|
2007 | k_wall = topo_top_ind(j,i,3) |
---|
2008 | |
---|
2009 | DO k = k_wall + 1, k_wall + pch_index_ji(j,i) - 1 |
---|
2010 | |
---|
2011 | kk = k - k_wall !- lad arrays are defined flat |
---|
2012 | |
---|
2013 | pre_tend = 0.0_wp |
---|
2014 | pre_w = 0.0_wp |
---|
2015 | ! |
---|
2016 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
2017 | pre_tend = - cdc * & |
---|
2018 | (0.5_wp * & |
---|
2019 | ( lad_s(kk+1,j,i) + lad_s(kk,j,i) )) * & |
---|
2020 | SQRT( ( 0.25_wp * ( u(k,j,i) + & |
---|
2021 | u(k,j,i+1) + & |
---|
2022 | u(k+1,j,i) + & |
---|
2023 | u(k+1,j,i+1) ) & |
---|
2024 | )**2 + & |
---|
2025 | ( 0.25_wp * ( v(k,j,i) + & |
---|
2026 | v(k,j+1,i) + & |
---|
2027 | v(k+1,j,i) + & |
---|
2028 | v(k+1,j+1,i) ) & |
---|
2029 | )**2 + & |
---|
2030 | w(k,j,i)**2 & |
---|
2031 | ) * & |
---|
2032 | w(k,j,i) |
---|
2033 | ! |
---|
2034 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
2035 | pre_w = w(k,j,i) + dt_3d * pre_tend |
---|
2036 | ! |
---|
2037 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
2038 | !-- and in case the signs are different, limit the tendency |
---|
2039 | IF ( SIGN(pre_w,w(k,j,i)) /= pre_w ) THEN |
---|
2040 | pre_tend = - w(k,j,i) * ddt_3d |
---|
2041 | ELSE |
---|
2042 | pre_tend = pre_tend |
---|
2043 | ENDIF |
---|
2044 | ! |
---|
2045 | !-- Calculate final tendency |
---|
2046 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
2047 | ENDDO |
---|
2048 | |
---|
2049 | ! |
---|
2050 | !-- potential temperature |
---|
2051 | CASE ( 4 ) |
---|
2052 | ! |
---|
2053 | !-- Determine topography-top index on scalar grid |
---|
2054 | k_wall = topo_top_ind(j,i,0) |
---|
2055 | |
---|
2056 | IF ( humidity ) THEN |
---|
2057 | DO k = k_wall + 1, k_wall + pch_index_ji(j,i) |
---|
2058 | kk = k - k_wall !- lad arrays are defined flat |
---|
2059 | tend(k,j,i) = tend(k,j,i) + pc_heating_rate(kk,j,i) - & |
---|
2060 | pc_latent_rate(kk,j,i) |
---|
2061 | ENDDO |
---|
2062 | ELSE |
---|
2063 | DO k = k_wall + 1, k_wall + pch_index_ji(j,i) |
---|
2064 | kk = k - k_wall !- lad arrays are defined flat |
---|
2065 | tend(k,j,i) = tend(k,j,i) + pc_heating_rate(kk,j,i) |
---|
2066 | ENDDO |
---|
2067 | ENDIF |
---|
2068 | |
---|
2069 | ! |
---|
2070 | !-- humidity |
---|
2071 | CASE ( 5 ) |
---|
2072 | ! |
---|
2073 | !-- Determine topography-top index on scalar grid |
---|
2074 | k_wall = topo_top_ind(j,i,0) |
---|
2075 | |
---|
2076 | DO k = k_wall + 1, k_wall + pch_index_ji(j,i) |
---|
2077 | kk = k - k_wall !- lad arrays are defined flat |
---|
2078 | IF ( .NOT. plant_canopy_transpiration ) THEN |
---|
2079 | ! pc_transpiration_rate is calculated in radiation model |
---|
2080 | ! in case of plant_canopy_transpiration = .T. |
---|
2081 | ! to include also the dependecy to the radiation |
---|
2082 | ! in the plant canopy box |
---|
2083 | pc_transpiration_rate(kk,j,i) = - lsec & |
---|
2084 | * lad_s(kk,j,i) * & |
---|
2085 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
2086 | u(k,j,i+1) ) & |
---|
2087 | )**2 + & |
---|
2088 | ( 0.5_wp * ( v(k,j,i) + & |
---|
2089 | v(k,j+1,i) ) & |
---|
2090 | )**2 + & |
---|
2091 | ( 0.5_wp * ( w(k-1,j,i) + & |
---|
2092 | w(k,j,i) ) & |
---|
2093 | )**2 & |
---|
2094 | ) * & |
---|
2095 | ( q(k,j,i) - lsc ) |
---|
2096 | ENDIF |
---|
2097 | |
---|
2098 | tend(k,j,i) = tend(k,j,i) + pc_transpiration_rate(kk,j,i) |
---|
2099 | |
---|
2100 | ENDDO |
---|
2101 | |
---|
2102 | ! |
---|
2103 | !-- sgs-tke |
---|
2104 | CASE ( 6 ) |
---|
2105 | ! |
---|
2106 | !-- Determine topography-top index on scalar grid |
---|
2107 | k_wall = topo_top_ind(j,i,0) |
---|
2108 | |
---|
2109 | DO k = k_wall + 1, k_wall + pch_index_ji(j,i) |
---|
2110 | |
---|
2111 | kk = k - k_wall |
---|
2112 | tend(k,j,i) = tend(k,j,i) - & |
---|
2113 | 2.0_wp * cdc * & |
---|
2114 | lad_s(kk,j,i) * & |
---|
2115 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
2116 | u(k,j,i+1) ) & |
---|
2117 | )**2 + & |
---|
2118 | ( 0.5_wp * ( v(k,j,i) + & |
---|
2119 | v(k,j+1,i) ) & |
---|
2120 | )**2 + & |
---|
2121 | ( 0.5_wp * ( w(k,j,i) + & |
---|
2122 | w(k+1,j,i) ) & |
---|
2123 | )**2 & |
---|
2124 | ) * & |
---|
2125 | e(k,j,i) |
---|
2126 | ENDDO |
---|
2127 | |
---|
2128 | ! |
---|
2129 | !-- scalar concentration |
---|
2130 | CASE ( 7 ) |
---|
2131 | ! |
---|
2132 | !-- Determine topography-top index on scalar grid |
---|
2133 | k_wall = topo_top_ind(j,i,0) |
---|
2134 | |
---|
2135 | DO k = k_wall + 1, k_wall + pch_index_ji(j,i) |
---|
2136 | |
---|
2137 | kk = k - k_wall |
---|
2138 | tend(k,j,i) = tend(k,j,i) - & |
---|
2139 | lsec * & |
---|
2140 | lad_s(kk,j,i) * & |
---|
2141 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
2142 | u(k,j,i+1) ) & |
---|
2143 | )**2 + & |
---|
2144 | ( 0.5_wp * ( v(k,j,i) + & |
---|
2145 | v(k,j+1,i) ) & |
---|
2146 | )**2 + & |
---|
2147 | ( 0.5_wp * ( w(k-1,j,i) + & |
---|
2148 | w(k,j,i) ) & |
---|
2149 | )**2 & |
---|
2150 | ) * & |
---|
2151 | ( s(k,j,i) - lsc ) |
---|
2152 | ENDDO |
---|
2153 | |
---|
2154 | CASE DEFAULT |
---|
2155 | |
---|
2156 | WRITE( message_string, * ) 'wrong component: ', component |
---|
2157 | CALL message( 'pcm_tendency', 'PA0279', 1, 2, 0, 6, 0 ) |
---|
2158 | |
---|
2159 | END SELECT |
---|
2160 | |
---|
2161 | END SUBROUTINE pcm_tendency_ij |
---|
2162 | |
---|
2163 | |
---|
2164 | |
---|
2165 | END MODULE plant_canopy_model_mod |
---|