[1826] | 1 | !> @file plant_canopy_model_mod.f90 |
---|
[4803] | 2 | !--------------------------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[4803] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General |
---|
| 6 | ! Public License as published by the Free Software Foundation, either version 3 of the License, or |
---|
| 7 | ! (at your option) any later version. |
---|
[1036] | 8 | ! |
---|
[4803] | 9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the |
---|
| 10 | ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General |
---|
| 11 | ! Public License for more details. |
---|
[1036] | 12 | ! |
---|
[4803] | 13 | ! You should have received a copy of the GNU General Public License along with PALM. If not, see |
---|
| 14 | ! <http://www.gnu.org/licenses/>. |
---|
[1036] | 15 | ! |
---|
[4828] | 16 | ! Copyright 1997-2021 Leibniz Universitaet Hannover |
---|
| 17 | ! Copyright 2017-2021 Institute of Computer Science of the |
---|
[3885] | 18 | ! Czech Academy of Sciences, Prague |
---|
[4803] | 19 | !--------------------------------------------------------------------------------------------------! |
---|
[1036] | 20 | ! |
---|
[257] | 21 | ! Current revisions: |
---|
[2977] | 22 | ! ------------------ |
---|
[4671] | 23 | ! |
---|
| 24 | ! |
---|
[2214] | 25 | ! Former revisions: |
---|
| 26 | ! ----------------- |
---|
[4495] | 27 | ! $Id: plant_canopy_model_mod.f90 4843 2021-01-15 15:22:11Z raasch $ |
---|
[4843] | 28 | ! local namelist parameter added to switch off the module although the respective module namelist |
---|
| 29 | ! appears in the namelist file |
---|
| 30 | ! |
---|
| 31 | ! 4842 2021-01-14 10:42:28Z raasch |
---|
[4842] | 32 | ! reading of namelist file and actions in case of namelist errors revised so that statement labels |
---|
| 33 | ! and goto statements are not required any more, |
---|
| 34 | ! deprecaed namelist name removed |
---|
| 35 | ! |
---|
| 36 | ! 4828 2021-01-05 11:21:41Z Giersch |
---|
[4803] | 37 | ! file re-formatted to follow the PALM coding standard |
---|
[4770] | 38 | ! |
---|
[4803] | 39 | ! 4770 2020-11-03 14:04:53Z suehring |
---|
| 40 | ! Consider basal-area density as an additional sink for momentum in the prognostic equations for |
---|
| 41 | ! momentum and SGS TKE |
---|
| 42 | ! |
---|
[4770] | 43 | ! 4768 2020-11-02 19:11:23Z suehring |
---|
[4768] | 44 | ! Enable 3D data output also with 64-bit precision |
---|
| 45 | ! |
---|
| 46 | ! 4671 2020-09-09 20:27:58Z pavelkrc |
---|
[4671] | 47 | ! Implementation of downward facing USM and LSM surfaces |
---|
[4803] | 48 | ! |
---|
[4671] | 49 | ! 4535 2020-05-15 12:07:23Z raasch |
---|
[4535] | 50 | ! bugfix for restart data format query |
---|
[4803] | 51 | ! |
---|
[4535] | 52 | ! 4525 2020-05-10 17:05:07Z raasch |
---|
[4525] | 53 | ! bugfix for reading/writing pcm_...rate_av with MPI-IO |
---|
[4803] | 54 | ! |
---|
[4525] | 55 | ! 4517 2020-05-03 14:29:30Z raasch |
---|
[4517] | 56 | ! added restart with MPI-IO for reading local arrays |
---|
[4803] | 57 | ! |
---|
[4517] | 58 | ! 4515 2020-04-30 16:37:18Z suehring |
---|
[4515] | 59 | ! Rename error number again since this was recently given in -r 4511 |
---|
[4803] | 60 | ! |
---|
[4515] | 61 | ! 4514 2020-04-30 16:29:59Z suehring |
---|
[4803] | 62 | ! - Bugfix in output of pcm_heatrate_av in a restart run. In order to fix this, pch_index is now |
---|
| 63 | ! output for a restart run. Therefore, define global restart routines. |
---|
| 64 | ! - Error message number renamed and check for PA0505 revised in order to also consider natural |
---|
| 65 | ! surfaces with plant-canopy. |
---|
| 66 | ! |
---|
[4514] | 67 | ! 4495 2020-04-13 20:11:20Z raasch |
---|
[4495] | 68 | ! restart data handling with MPI-IO added |
---|
[4448] | 69 | ! |
---|
[4495] | 70 | ! 4457 2020-03-11 14:20:43Z raasch |
---|
| 71 | ! |
---|
[4457] | 72 | ! use statement for exchange horiz added |
---|
[4448] | 73 | ! (salim) removed the error message PA0672 to consider PC 3d data via ascii file |
---|
| 74 | ! |
---|
[4803] | 75 | ! 4392 2020-01-31 16:14:57Z pavelkrc (resler) |
---|
| 76 | ! Make pcm_heatrate_av, pcm_latentrate_av public to allow calculation of averaged Bowen ratio in the |
---|
| 77 | ! user procedure |
---|
[4392] | 78 | ! |
---|
| 79 | ! 4381 2020-01-20 13:51:46Z suehring |
---|
[4381] | 80 | ! Give error message 313 only once |
---|
[4803] | 81 | ! |
---|
[4381] | 82 | ! 4363 2020-01-07 18:11:28Z suehring |
---|
[4363] | 83 | ! Fix for last commit |
---|
[4803] | 84 | ! |
---|
[4363] | 85 | ! 4362 2020-01-07 17:15:02Z suehring |
---|
[4803] | 86 | ! Input of plant canopy variables from static driver moved to plant-canopy model |
---|
| 87 | ! |
---|
[4362] | 88 | ! 4361 2020-01-07 12:22:38Z suehring |
---|
[4361] | 89 | ! - Remove unused arrays in pmc_rrd_local |
---|
| 90 | ! - Remove one exchange of ghost points |
---|
[4803] | 91 | ! |
---|
[4361] | 92 | ! 4360 2020-01-07 11:25:50Z suehring |
---|
[4360] | 93 | ! - Bugfix, read restart data for time-averaged pcm output quantities |
---|
| 94 | ! - Output of plant-canopy quantities will fill values |
---|
[4803] | 95 | ! |
---|
[4360] | 96 | ! 4356 2019-12-20 17:09:33Z suehring |
---|
[4803] | 97 | ! Correct single message call, local check must be given by the respective mpi rank. |
---|
| 98 | ! |
---|
[4356] | 99 | ! 4346 2019-12-18 11:55:56Z motisi |
---|
[4803] | 100 | ! Introduction of wall_flags_total_0, which currently sets bits based on static topography |
---|
| 101 | ! information used in wall_flags_static_0 |
---|
| 102 | ! |
---|
[4346] | 103 | ! 4342 2019-12-16 13:49:14Z Giersch |
---|
[4803] | 104 | ! Use statements moved to module level, ocean dependency removed, redundant variables removed |
---|
| 105 | ! |
---|
[4342] | 106 | ! 4341 2019-12-16 10:43:49Z motisi |
---|
[4803] | 107 | ! - Unification of variable names: pc_-variables now pcm_-variables (pc_latent_rate, |
---|
| 108 | ! pc_heating_rate, pc_transpiration_rate) |
---|
[4341] | 109 | ! - Removal of pcm_bowenratio output |
---|
| 110 | ! - Renamed canopy-mode 'block' to 'homogeneous' |
---|
| 111 | ! - Renamed value 'read_from_file_3d' to 'read_from_file' |
---|
| 112 | ! - Removal of confusing comment lines |
---|
| 113 | ! - Replacement of k_wall by topo_top_ind |
---|
| 114 | ! - Removal of Else-Statement in tendency-calculation |
---|
[4803] | 115 | ! |
---|
[4341] | 116 | ! 4335 2019-12-12 16:39:05Z suehring |
---|
[4335] | 117 | ! Fix for LAD at building edges also implemented in vector branch. |
---|
[4803] | 118 | ! |
---|
[4335] | 119 | ! 4331 2019-12-10 18:25:02Z suehring |
---|
[4331] | 120 | ! Typo corrected |
---|
[4803] | 121 | ! |
---|
[4331] | 122 | ! 4329 2019-12-10 15:46:36Z motisi |
---|
[4329] | 123 | ! Renamed wall_flags_0 to wall_flags_static_0 |
---|
[4803] | 124 | ! |
---|
[4329] | 125 | ! 4314 2019-11-29 10:29:20Z suehring |
---|
[4803] | 126 | ! - Bugfix, plant canopy was still considered at building edges on for the u- and v-component. |
---|
| 127 | ! - Relax restriction of LAD on building tops. LAD is only omitted at locations where building grid |
---|
| 128 | ! points emerged artificially by the topography filtering. |
---|
| 129 | ! |
---|
[4314] | 130 | ! 4309 2019-11-26 18:49:59Z suehring |
---|
[4309] | 131 | ! Typo |
---|
[4803] | 132 | ! |
---|
[4309] | 133 | ! 4302 2019-11-22 13:15:56Z suehring |
---|
[4302] | 134 | ! Omit tall canopy mapped on top of buildings |
---|
[4803] | 135 | ! |
---|
[4302] | 136 | ! 4279 2019-10-29 08:48:17Z scharf |
---|
[4279] | 137 | ! unused variables removed |
---|
[4803] | 138 | ! |
---|
[4279] | 139 | ! 4258 2019-10-07 13:29:08Z scharf |
---|
[4278] | 140 | ! changed check for static driver and fixed bugs in initialization and header |
---|
[4803] | 141 | ! |
---|
[4278] | 142 | ! 4258 2019-10-07 13:29:08Z suehring |
---|
[4258] | 143 | ! Check if any LAD is prescribed when plant-canopy model is applied. |
---|
[4803] | 144 | ! |
---|
[4258] | 145 | ! 4226 2019-09-10 17:03:24Z suehring |
---|
[4226] | 146 | ! Bugfix, missing initialization of heating rate |
---|
[4803] | 147 | ! |
---|
[4226] | 148 | ! 4221 2019-09-09 08:50:35Z suehring |
---|
[4220] | 149 | ! Further bugfix in 3d data output for plant canopy |
---|
[4803] | 150 | ! |
---|
[4220] | 151 | ! 4216 2019-09-04 09:09:03Z suehring |
---|
[4216] | 152 | ! Bugfixes in 3d data output |
---|
[4803] | 153 | ! |
---|
[4216] | 154 | ! 4205 2019-08-30 13:25:00Z suehring |
---|
[4205] | 155 | ! Missing working precision + bugfix in calculation of wind speed |
---|
[4803] | 156 | ! |
---|
[4205] | 157 | ! 4188 2019-08-26 14:15:47Z suehring |
---|
[4188] | 158 | ! Minor adjustment in error number |
---|
[4803] | 159 | ! |
---|
[4188] | 160 | ! 4187 2019-08-26 12:43:15Z suehring |
---|
[4187] | 161 | ! Give specific error numbers instead of PA0999 |
---|
[4803] | 162 | ! |
---|
[4187] | 163 | ! 4182 2019-08-22 15:20:23Z scharf |
---|
[4182] | 164 | ! Corrected "Former revisions" section |
---|
[4803] | 165 | ! |
---|
[4182] | 166 | ! 4168 2019-08-16 13:50:17Z suehring |
---|
[4168] | 167 | ! Replace function get_topography_top_index by topo_top_ind |
---|
[4803] | 168 | ! |
---|
[4168] | 169 | ! 4127 2019-07-30 14:47:10Z suehring |
---|
[4803] | 170 | ! Output of 3D plant canopy variables changed. It is now relative to the local terrain rather than |
---|
| 171 | ! located at the acutal vertical level in the model. This way, the vertical dimension of the output |
---|
| 172 | ! can be significantly reduced. |
---|
| 173 | ! (merge from branch resler) |
---|
| 174 | ! |
---|
[4127] | 175 | ! 3885 2019-04-11 11:29:34Z kanani |
---|
[4803] | 176 | ! Changes related to global restructuring of location messages and introduction of additional debug |
---|
| 177 | ! messages |
---|
| 178 | ! |
---|
[3885] | 179 | ! 3864 2019-04-05 09:01:56Z monakurppa |
---|
[3761] | 180 | ! unsed variables removed |
---|
[4803] | 181 | ! |
---|
[3761] | 182 | ! 3745 2019-02-15 18:57:56Z suehring |
---|
[4803] | 183 | ! Bugfix in transpiration, floating invalid when temperature becomes > 40 degrees |
---|
| 184 | ! |
---|
[3745] | 185 | ! 3744 2019-02-15 18:38:58Z suehring |
---|
[3685] | 186 | ! Some interface calls moved to module_interface + cleanup |
---|
[4803] | 187 | ! |
---|
[3685] | 188 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
[3614] | 189 | ! unused variables removed |
---|
[3498] | 190 | ! |
---|
[4182] | 191 | ! 138 2007-11-28 10:03:58Z letzel |
---|
| 192 | ! Initial revision |
---|
| 193 | ! |
---|
[138] | 194 | ! Description: |
---|
| 195 | ! ------------ |
---|
[4803] | 196 | !> 1) Initialization of the canopy model, e.g. construction of leaf area density profile |
---|
| 197 | !> (subroutine pcm_init). |
---|
| 198 | !> 2) Calculation of sinks and sources of momentum, heat and scalar concentration due to canopy |
---|
| 199 | !> elements (subroutine pcm_tendency). |
---|
[3744] | 200 | ! |
---|
| 201 | ! @todo - precalculate constant terms in pcm_calc_transpiration_rate |
---|
[4216] | 202 | ! @todo - unify variable names (pcm_, pc_, ...) |
---|
[4514] | 203 | ! @todo - get rid-off dependency on radiation model |
---|
[4803] | 204 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 205 | MODULE plant_canopy_model_mod |
---|
[4360] | 206 | |
---|
[4803] | 207 | USE arrays_3d, & |
---|
[3449] | 208 | ONLY: dzu, dzw, e, exner, hyp, pt, q, s, tend, u, v, w, zu, zw |
---|
[138] | 209 | |
---|
[4803] | 210 | USE basic_constants_and_equations_mod, & |
---|
[3449] | 211 | ONLY: c_p, degc_to_k, l_v, lv_d_cp, r_d, rd_d_rv |
---|
[4360] | 212 | |
---|
[4803] | 213 | USE bulk_cloud_model_mod, & |
---|
[4342] | 214 | ONLY: bulk_cloud_model, microphysics_seifert |
---|
[3449] | 215 | |
---|
[4803] | 216 | USE control_parameters, & |
---|
| 217 | ONLY: average_count_3d, & |
---|
| 218 | coupling_char, & |
---|
| 219 | debug_output, & |
---|
| 220 | dt_3d, & |
---|
| 221 | dz, & |
---|
| 222 | humidity, & |
---|
| 223 | land_surface, & |
---|
| 224 | length, & |
---|
| 225 | message_string, & |
---|
| 226 | ocean_mode, & |
---|
| 227 | passive_scalar, & |
---|
| 228 | plant_canopy, & |
---|
| 229 | restart_data_format_output, & |
---|
| 230 | restart_string, & |
---|
[4360] | 231 | urban_surface |
---|
| 232 | |
---|
[4803] | 233 | USE grid_variables, & |
---|
[4342] | 234 | ONLY: dx, dy |
---|
[3449] | 235 | |
---|
[4803] | 236 | USE indices, & |
---|
| 237 | ONLY: nbgp, nxl, nxlg, nxlu, nxr, nxrg, nyn, nyng, nys, nysg, nysv, nz, nzb, nzt, & |
---|
| 238 | topo_top_ind, wall_flags_total_0 |
---|
[1484] | 239 | |
---|
| 240 | USE kinds |
---|
[4360] | 241 | |
---|
[4803] | 242 | USE netcdf_data_input_mod, & |
---|
| 243 | ONLY: char_fill, & |
---|
| 244 | check_existence, & |
---|
| 245 | close_input_file, & |
---|
| 246 | get_attribute, & |
---|
| 247 | get_dimension_length, & |
---|
| 248 | get_variable, & |
---|
| 249 | input_file_static, & |
---|
| 250 | input_pids_static, & |
---|
| 251 | inquire_num_variables, & |
---|
| 252 | inquire_variable_names, & |
---|
| 253 | num_var_pids, & |
---|
| 254 | open_read_file, & |
---|
| 255 | pids_id, & |
---|
| 256 | real_3d, & |
---|
[4362] | 257 | vars_pids |
---|
[1484] | 258 | |
---|
[3449] | 259 | USE pegrid |
---|
[4360] | 260 | |
---|
[4495] | 261 | USE restart_data_mpi_io_mod, & |
---|
[4517] | 262 | ONLY: rd_mpi_io_check_array, & |
---|
| 263 | rrd_mpi_io, & |
---|
[4514] | 264 | wrd_mpi_io |
---|
[4495] | 265 | |
---|
[4803] | 266 | USE surface_mod, & |
---|
[4342] | 267 | ONLY: surf_def_h, surf_lsm_h, surf_usm_h |
---|
[3449] | 268 | |
---|
[1484] | 269 | |
---|
| 270 | IMPLICIT NONE |
---|
| 271 | |
---|
[4803] | 272 | CHARACTER (LEN=30) :: canopy_mode = 'homogeneous' !< canopy coverage |
---|
| 273 | INTEGER(iwp) :: pch_index = 0 !< plant canopy height/top index |
---|
[1484] | 274 | |
---|
[3449] | 275 | INTEGER(iwp) :: lad_vertical_gradient_level_ind(10) = -9999 !< lad-profile levels (index) |
---|
[1484] | 276 | |
---|
[3449] | 277 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: pch_index_ji !< local plant canopy top |
---|
[2696] | 278 | |
---|
[4803] | 279 | LOGICAL :: calc_beta_lad_profile = .FALSE. !< switch for calc. of lad from beta func. |
---|
| 280 | LOGICAL :: plant_canopy_transpiration = .FALSE. !< flag to switch calculation of transpiration and corresponding latent heat |
---|
| 281 | !< for resolved plant canopy inside radiation model |
---|
| 282 | !< (calls subroutine pcm_calc_transpiration_rate from module plant_canopy_mod) |
---|
[1484] | 283 | |
---|
[4803] | 284 | REAL(wp) :: alpha_lad = 9999999.9_wp !< coefficient for lad calculation |
---|
| 285 | REAL(wp) :: beta_lad = 9999999.9_wp !< coefficient for lad calculation |
---|
| 286 | REAL(wp) :: canopy_drag_coeff = 0.0_wp !< canopy drag coefficient (parameter) |
---|
| 287 | REAL(wp) :: cthf = 0.0_wp !< canopy top heat flux |
---|
| 288 | REAL(wp) :: dt_plant_canopy = 0.0_wp !< timestep account. for canopy drag |
---|
| 289 | REAL(wp) :: ext_coef = 0.6_wp !< extinction coefficient |
---|
| 290 | REAL(wp) :: lad_surface = 0.0_wp !< lad surface value |
---|
| 291 | REAL(wp) :: lad_type_coef(0:10) = 1.0_wp !< multiplicative coeficients for particular types |
---|
| 292 | !< of plant canopy (e.g. deciduous tree during winter) |
---|
[2696] | 293 | REAL(wp) :: lad_vertical_gradient(10) = 0.0_wp !< lad gradient |
---|
| 294 | REAL(wp) :: lad_vertical_gradient_level(10) = -9999999.9_wp !< lad-prof. levels (in m) |
---|
[4803] | 295 | REAL(wp) :: lai_beta = 0.0_wp !< leaf area index (lai) for lad calc. |
---|
| 296 | REAL(wp) :: leaf_scalar_exch_coeff = 0.0_wp !< canopy scalar exchange coeff. |
---|
| 297 | REAL(wp) :: leaf_surface_conc = 0.0_wp !< leaf surface concentration |
---|
[1484] | 298 | |
---|
[1682] | 299 | REAL(wp), DIMENSION(:), ALLOCATABLE :: lad !< leaf area density |
---|
| 300 | REAL(wp), DIMENSION(:), ALLOCATABLE :: pre_lad !< preliminary lad |
---|
[4770] | 301 | |
---|
| 302 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: bad_s !< basal-area density on scalar-grid |
---|
[4127] | 303 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: cum_lai_hf !< cumulative lai for heatflux calc. |
---|
| 304 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: lad_s !< lad on scalar-grid |
---|
[4341] | 305 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pcm_heating_rate !< plant canopy heating rate |
---|
[4803] | 306 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pcm_heatrate_av !< array for averaging plant canopy sensible heating rate |
---|
[4341] | 307 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pcm_latent_rate !< plant canopy latent heating rate |
---|
[4127] | 308 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pcm_latentrate_av !< array for averaging plant canopy latent heating rate |
---|
[4803] | 309 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pcm_transpiration_rate !< plant canopy transpiration rate |
---|
[4127] | 310 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pcm_transpirationrate_av !< array for averaging plant canopy transpiration rate |
---|
| 311 | |
---|
[4362] | 312 | TYPE(real_3d) :: basal_area_density_f !< input variable for basal area density - resolved vegetation |
---|
| 313 | TYPE(real_3d) :: leaf_area_density_f !< input variable for leaf area density - resolved vegetation |
---|
| 314 | TYPE(real_3d) :: root_area_density_lad_f !< input variable for root area density - resolved vegetation |
---|
| 315 | |
---|
[1484] | 316 | SAVE |
---|
| 317 | |
---|
[138] | 318 | PRIVATE |
---|
[4803] | 319 | |
---|
[1826] | 320 | ! |
---|
| 321 | !-- Public functions |
---|
[4803] | 322 | PUBLIC pcm_calc_transpiration_rate, & |
---|
| 323 | pcm_check_data_output, & |
---|
| 324 | pcm_check_parameters, & |
---|
| 325 | pcm_3d_data_averaging, & |
---|
| 326 | pcm_data_output_3d, & |
---|
| 327 | pcm_define_netcdf_grid, & |
---|
| 328 | pcm_header, & |
---|
| 329 | pcm_init, & |
---|
| 330 | pcm_parin, & |
---|
| 331 | pcm_rrd_global, & |
---|
| 332 | pcm_rrd_local, & |
---|
| 333 | pcm_tendency, & |
---|
| 334 | pcm_wrd_global, & |
---|
[4360] | 335 | pcm_wrd_local |
---|
[138] | 336 | |
---|
[1826] | 337 | ! |
---|
| 338 | !-- Public variables and constants |
---|
[4803] | 339 | PUBLIC canopy_drag_coeff, pcm_heating_rate, pcm_transpiration_rate, pcm_latent_rate, & |
---|
| 340 | canopy_mode, cthf, dt_plant_canopy, lad, lad_s, pch_index, plant_canopy_transpiration, & |
---|
[4392] | 341 | pcm_heatrate_av, pcm_latentrate_av |
---|
[1484] | 342 | |
---|
[3449] | 343 | INTERFACE pcm_calc_transpiration_rate |
---|
| 344 | MODULE PROCEDURE pcm_calc_transpiration_rate |
---|
| 345 | END INTERFACE pcm_calc_transpiration_rate |
---|
| 346 | |
---|
[2209] | 347 | INTERFACE pcm_check_data_output |
---|
| 348 | MODULE PROCEDURE pcm_check_data_output |
---|
| 349 | END INTERFACE pcm_check_data_output |
---|
[4803] | 350 | |
---|
[1826] | 351 | INTERFACE pcm_check_parameters |
---|
| 352 | MODULE PROCEDURE pcm_check_parameters |
---|
[2209] | 353 | END INTERFACE pcm_check_parameters |
---|
| 354 | |
---|
[4127] | 355 | INTERFACE pcm_3d_data_averaging |
---|
| 356 | MODULE PROCEDURE pcm_3d_data_averaging |
---|
| 357 | END INTERFACE pcm_3d_data_averaging |
---|
| 358 | |
---|
[2209] | 359 | INTERFACE pcm_data_output_3d |
---|
| 360 | MODULE PROCEDURE pcm_data_output_3d |
---|
| 361 | END INTERFACE pcm_data_output_3d |
---|
| 362 | |
---|
| 363 | INTERFACE pcm_define_netcdf_grid |
---|
| 364 | MODULE PROCEDURE pcm_define_netcdf_grid |
---|
| 365 | END INTERFACE pcm_define_netcdf_grid |
---|
[4803] | 366 | |
---|
[1826] | 367 | INTERFACE pcm_header |
---|
| 368 | MODULE PROCEDURE pcm_header |
---|
[4803] | 369 | END INTERFACE pcm_header |
---|
| 370 | |
---|
[1826] | 371 | INTERFACE pcm_init |
---|
| 372 | MODULE PROCEDURE pcm_init |
---|
| 373 | END INTERFACE pcm_init |
---|
[138] | 374 | |
---|
[1826] | 375 | INTERFACE pcm_parin |
---|
| 376 | MODULE PROCEDURE pcm_parin |
---|
[2007] | 377 | END INTERFACE pcm_parin |
---|
| 378 | |
---|
| 379 | INTERFACE pcm_read_plant_canopy_3d |
---|
| 380 | MODULE PROCEDURE pcm_read_plant_canopy_3d |
---|
| 381 | END INTERFACE pcm_read_plant_canopy_3d |
---|
[4360] | 382 | |
---|
| 383 | INTERFACE pcm_rrd_local |
---|
[4517] | 384 | MODULE PROCEDURE pcm_rrd_local_ftn |
---|
| 385 | MODULE PROCEDURE pcm_rrd_local_mpi |
---|
[4360] | 386 | END INTERFACE pcm_rrd_local |
---|
| 387 | |
---|
[4514] | 388 | INTERFACE pcm_rrd_global |
---|
| 389 | MODULE PROCEDURE pcm_rrd_global_ftn |
---|
| 390 | MODULE PROCEDURE pcm_rrd_global_mpi |
---|
| 391 | END INTERFACE pcm_rrd_global |
---|
| 392 | |
---|
[1826] | 393 | INTERFACE pcm_tendency |
---|
| 394 | MODULE PROCEDURE pcm_tendency |
---|
| 395 | MODULE PROCEDURE pcm_tendency_ij |
---|
| 396 | END INTERFACE pcm_tendency |
---|
[1484] | 397 | |
---|
[4360] | 398 | INTERFACE pcm_wrd_local |
---|
| 399 | MODULE PROCEDURE pcm_wrd_local |
---|
| 400 | END INTERFACE pcm_wrd_local |
---|
[1484] | 401 | |
---|
[4514] | 402 | INTERFACE pcm_wrd_global |
---|
| 403 | MODULE PROCEDURE pcm_wrd_global |
---|
| 404 | END INTERFACE pcm_wrd_global |
---|
[4360] | 405 | |
---|
[4514] | 406 | |
---|
[138] | 407 | CONTAINS |
---|
[4803] | 408 | |
---|
| 409 | |
---|
| 410 | !--------------------------------------------------------------------------------------------------! |
---|
[2209] | 411 | ! Description: |
---|
| 412 | ! ------------ |
---|
[4803] | 413 | !> Calculation of the plant canopy transpiration rate based on the Jarvis-Stewart with |
---|
| 414 | !> parametrizations described in Daudet et al. (1999; Agricult. and Forest Meteorol. 97) and Ngao, |
---|
| 415 | !> Adam and Saudreau (2017; Agricult. and Forest Meteorol 237-238). Model functions f1-f4 were |
---|
| 416 | !> adapted from Stewart (1998; Agric. and Forest. Meteorol. 43) instead, because they are valid for |
---|
| 417 | !> broader intervals of values. Funcion f4 used in form present in van Wijk et al. (1998; Tree |
---|
| 418 | !> Physiology 20). |
---|
[3449] | 419 | !> |
---|
[4803] | 420 | !> This subroutine is called from subroutine radiation_interaction after the calculation of |
---|
| 421 | !> radiation in plant canopy boxes. |
---|
[3449] | 422 | !> (arrays pcbinsw and pcbinlw). |
---|
| 423 | !> |
---|
[4803] | 424 | !--------------------------------------------------------------------------------------------------! |
---|
[3449] | 425 | SUBROUTINE pcm_calc_transpiration_rate(i, j, k, kk, pcbsw, pcblw, pcbtr, pcblh) |
---|
| 426 | |
---|
[4342] | 427 | ! |
---|
[4803] | 428 | !-- Input parameters |
---|
[4205] | 429 | INTEGER(iwp), INTENT(IN) :: i, j, k, kk !< indices of the pc gridbox |
---|
[4803] | 430 | REAL(wp), INTENT(IN) :: pcblw !< lw radiation in gridbox (W) |
---|
[4205] | 431 | REAL(wp), INTENT(IN) :: pcbsw !< sw radiation in gridbox (W) |
---|
[4803] | 432 | REAL(wp), INTENT(OUT) :: pcblh !< latent heat from transpiration dT/dt (K/s) |
---|
[4205] | 433 | REAL(wp), INTENT(OUT) :: pcbtr !< transpiration rate dq/dt (kg/kg/s) |
---|
[3449] | 434 | |
---|
[4803] | 435 | !-- Variables and parameters for calculation of transpiration rate |
---|
| 436 | REAL(wp), PARAMETER :: gama_psychr = 66.0_wp !< psychrometric constant (Pa/K) |
---|
| 437 | REAL(wp), PARAMETER :: g_s_max = 0.01 !< maximum stomatal conductivity (m/s) |
---|
| 438 | REAL(wp), PARAMETER :: m_soil = 0.4_wp !< soil water content (needs to adjust or take from LSM) |
---|
| 439 | REAL(wp), PARAMETER :: m_wilt = 0.01_wp !< wilting point soil water content (needs to adjust or take from LSM) |
---|
| 440 | REAL(wp), PARAMETER :: m_sat = 0.51_wp !< saturation soil water content (needs to adjust or take from LSM) |
---|
| 441 | REAL(wp), PARAMETER :: t2_min = 0.0_wp !< minimal temperature for calculation of f2 |
---|
| 442 | REAL(wp), PARAMETER :: t2_max = 40.0_wp !< maximal temperature for calculation of f2 |
---|
[3449] | 443 | |
---|
[4803] | 444 | REAL(wp) :: d_fact |
---|
| 445 | REAL(wp) :: e_eq |
---|
| 446 | REAL(wp) :: e_imp |
---|
| 447 | REAL(wp) :: evapor_rate |
---|
| 448 | REAL(wp) :: f1 |
---|
| 449 | REAL(wp) :: f2 |
---|
| 450 | REAL(wp) :: f3 |
---|
| 451 | REAL(wp) :: f4 |
---|
| 452 | REAL(wp) :: g_b |
---|
| 453 | REAL(wp) :: g_s |
---|
| 454 | REAL(wp) :: rad |
---|
| 455 | REAL(wp) :: rswc |
---|
| 456 | REAL(wp) :: sat_press |
---|
| 457 | REAL(wp) :: sat_press_d |
---|
| 458 | REAL(wp) :: temp |
---|
| 459 | REAL(wp) :: v_lad |
---|
| 460 | REAL(wp) :: vpd |
---|
| 461 | REAL(wp) :: wind_speed |
---|
[3449] | 462 | |
---|
[4803] | 463 | ! |
---|
[3449] | 464 | !-- Temperature (deg C) |
---|
| 465 | temp = pt(k,j,i) * exner(k) - degc_to_k |
---|
[4803] | 466 | ! |
---|
[3449] | 467 | !-- Coefficient for conversion of radiation to grid to radiation to unit leaves surface |
---|
[4205] | 468 | v_lad = 1.0_wp / ( MAX( lad_s(kk,j,i), 1.0E-10_wp ) * dx * dy * dz(1) ) |
---|
[4803] | 469 | ! |
---|
[3449] | 470 | !-- Magnus formula for the saturation pressure (see Ngao, Adam and Saudreau (2017) eq. 1) |
---|
| 471 | !-- There are updated formulas available, kept consistent with the rest of the parametrization |
---|
[4803] | 472 | sat_press = 610.8_wp * EXP( 17.27_wp * temp / ( temp + 237.3_wp ) ) |
---|
| 473 | ! |
---|
[3449] | 474 | !-- Saturation pressure derivative (derivative of the above) |
---|
[4803] | 475 | sat_press_d = sat_press * 17.27_wp * 237.3_wp / ( temp + 237.3_wp )**2 |
---|
| 476 | ! |
---|
[3449] | 477 | !-- Wind speed |
---|
[4803] | 478 | wind_speed = SQRT( ( 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) )**2 + & |
---|
| 479 | ( 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) )**2 + & |
---|
[4205] | 480 | ( 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) )**2 ) |
---|
[4803] | 481 | ! |
---|
[3449] | 482 | !-- Aerodynamic conductivity (Daudet et al. (1999) eq. 14 |
---|
| 483 | g_b = 0.01_wp * wind_speed + 0.0071_wp |
---|
[4803] | 484 | ! |
---|
[3449] | 485 | !-- Radiation flux per leaf surface unit |
---|
| 486 | rad = pcbsw * v_lad |
---|
[4803] | 487 | ! |
---|
[3449] | 488 | !-- First function for calculation of stomatal conductivity (radiation dependency) |
---|
| 489 | !-- Stewart (1988; Agric. and Forest. Meteorol. 43) eq. 17 |
---|
[4803] | 490 | f1 = rad * ( 1000.0_wp + 42.1_wp ) / 1000.0_wp / ( rad + 42.1_wp ) |
---|
| 491 | ! |
---|
[3449] | 492 | !-- Second function for calculation of stomatal conductivity (temperature dependency) |
---|
| 493 | !-- Stewart (1988; Agric. and Forest. Meteorol. 43) eq. 21 |
---|
[4803] | 494 | f2 = MAX( t2_min, ( temp - t2_min ) * MAX( 0.0_wp, t2_max - temp )**( ( t2_max - 16.9_wp ) / & |
---|
| 495 | ( 16.9_wp - t2_min ) ) & |
---|
| 496 | / ( ( 16.9_wp - t2_min ) * ( t2_max - 16.9_wp )**( ( t2_max - 16.9_wp ) / & |
---|
| 497 | ( 16.9_wp - t2_min ) ) ) ) |
---|
| 498 | ! |
---|
[3449] | 499 | !-- Water pressure deficit |
---|
| 500 | !-- Ngao, Adam and Saudreau (2017) eq. 6 but with water vapour partial pressure |
---|
[4803] | 501 | vpd = MAX( sat_press - q(k,j,i) * hyp(k) / rd_d_rv, 0._wp ) |
---|
| 502 | ! |
---|
[3449] | 503 | !-- Third function for calculation of stomatal conductivity (water pressure deficit dependency) |
---|
| 504 | !-- Ngao, Adam and Saudreau (2017) Table 1, limited from below according to Stewart (1988) |
---|
[4803] | 505 | !-- The coefficients of the linear dependence should better correspond to broad-leaved trees than |
---|
| 506 | !-- the coefficients from Stewart (1988) which correspond to conifer trees. |
---|
| 507 | vpd = MIN( MAX( vpd, 770.0_wp ), 3820.0_wp ) |
---|
[4205] | 508 | f3 = -2E-4_wp * vpd + 1.154_wp |
---|
[4803] | 509 | ! |
---|
[3449] | 510 | !-- Fourth function for calculation of stomatal conductivity (soil moisture dependency) |
---|
| 511 | !-- Residual soil water content |
---|
| 512 | !-- van Wijk et al. (1998; Tree Physiology 20) eq. 7 |
---|
| 513 | !-- TODO - over LSM surface might be calculated from LSM parameters |
---|
| 514 | rswc = ( m_sat - m_soil ) / ( m_sat - m_wilt ) |
---|
[4803] | 515 | ! |
---|
| 516 | !-- van Wijk et al. (1998; Tree Physiology 20) eq. 5-6 (it is a reformulation of eq. 22-23 of |
---|
| 517 | !-- Stewart(1988)) |
---|
| 518 | f4 = MAX( 0.0_wp, MIN( 1.0_wp - 0.041_wp * EXP( 3.2_wp * rswc ), 1.0_wp - 0.041_wp ) ) |
---|
| 519 | ! |
---|
[3449] | 520 | !-- Stomatal conductivity |
---|
| 521 | !-- Stewart (1988; Agric. and Forest. Meteorol. 43) eq. 12 |
---|
| 522 | !-- (notation according to Ngao, Adam and Saudreau (2017) and others) |
---|
[4205] | 523 | g_s = g_s_max * f1 * f2 * f3 * f4 + 1.0E-10_wp |
---|
[4803] | 524 | ! |
---|
[3449] | 525 | !-- Decoupling factor |
---|
| 526 | !-- Daudet et al. (1999) eq. 6 |
---|
[4803] | 527 | d_fact = ( sat_press_d / gama_psychr + 2.0_wp ) / & |
---|
| 528 | ( sat_press_d / gama_psychr + 2.0_wp + 2.0_wp * g_b / g_s ) |
---|
| 529 | ! |
---|
[3449] | 530 | !-- Equilibrium evaporation rate |
---|
| 531 | !-- Daudet et al. (1999) eq. 4 |
---|
[4803] | 532 | e_eq = ( pcbsw + pcblw ) * v_lad * sat_press_d / & |
---|
| 533 | gama_psychr / ( sat_press_d / gama_psychr + 2.0_wp ) / l_v |
---|
| 534 | ! |
---|
[3449] | 535 | !-- Imposed evaporation rate |
---|
| 536 | !-- Daudet et al. (1999) eq. 5 |
---|
| 537 | e_imp = r_d * pt(k,j,i) * exner(k) / hyp(k) * c_p * g_s * vpd / gama_psychr / l_v |
---|
[4803] | 538 | ! |
---|
[3449] | 539 | !-- Evaporation rate |
---|
| 540 | !-- Daudet et al. (1999) eq. 3 |
---|
| 541 | !-- (evaporation rate is limited to non-negative values) |
---|
[4803] | 542 | evapor_rate = MAX( d_fact * e_eq + ( 1.0_wp - d_fact ) * e_imp, 0.0_wp ) |
---|
| 543 | ! |
---|
[3449] | 544 | !-- Conversion of evaporation rate to q tendency in gridbox |
---|
| 545 | !-- dq/dt = E * LAD * V_g / (rho_air * V_g) |
---|
| 546 | pcbtr = evapor_rate * r_d * pt(k,j,i) * exner(k) * lad_s(kk,j,i) / hyp(k) !-- = dq/dt |
---|
[4803] | 547 | ! |
---|
[3449] | 548 | !-- latent heat from evaporation |
---|
| 549 | pcblh = pcbtr * lv_d_cp !-- = - dT/dt |
---|
| 550 | |
---|
| 551 | END SUBROUTINE pcm_calc_transpiration_rate |
---|
| 552 | |
---|
| 553 | |
---|
[4803] | 554 | !--------------------------------------------------------------------------------------------------! |
---|
[3449] | 555 | ! Description: |
---|
| 556 | ! ------------ |
---|
[2209] | 557 | !> Check data output for plant canopy model |
---|
[4803] | 558 | !--------------------------------------------------------------------------------------------------! |
---|
[2209] | 559 | SUBROUTINE pcm_check_data_output( var, unit ) |
---|
[4279] | 560 | |
---|
[4803] | 561 | CHARACTER (LEN=*) :: unit !< |
---|
[2209] | 562 | CHARACTER (LEN=*) :: var !< |
---|
| 563 | |
---|
| 564 | |
---|
| 565 | SELECT CASE ( TRIM( var ) ) |
---|
| 566 | |
---|
| 567 | CASE ( 'pcm_heatrate' ) |
---|
[4514] | 568 | ! |
---|
[4803] | 569 | !-- Output of heatrate can be only done if it is explicitely set by cthf, or parametrized by |
---|
| 570 | !-- absorption of radiation. The latter, however, is only available if radiation_interactions |
---|
| 571 | !-- are on. Note, these are enabled if land-surface or urban-surface is switched-on. Using |
---|
| 572 | !-- radiation_interactions_on directly is not possible since it belongs to the |
---|
| 573 | !-- radition_model, which in turn depends on the plant-canopy model, creating circular |
---|
| 574 | !-- dependencies. |
---|
| 575 | IF ( cthf == 0.0_wp .AND. ( .NOT. urban_surface .AND. .NOT. land_surface ) ) THEN |
---|
| 576 | message_string = 'output of "' // TRIM( var ) // '" requi' // & |
---|
[2768] | 577 | 'res setting of parameter cthf /= 0.0' |
---|
[4515] | 578 | CALL message( 'pcm_check_data_output', 'PA0718', 1, 2, 0, 6, 0 ) |
---|
[2768] | 579 | ENDIF |
---|
[2209] | 580 | unit = 'K s-1' |
---|
[4803] | 581 | |
---|
[3014] | 582 | CASE ( 'pcm_transpirationrate' ) |
---|
| 583 | unit = 'kg kg-1 s-1' |
---|
| 584 | |
---|
[3449] | 585 | CASE ( 'pcm_latentrate' ) |
---|
| 586 | unit = 'K s-1' |
---|
| 587 | |
---|
[4770] | 588 | CASE ( 'pcm_bad', 'pcm_lad' ) |
---|
[2209] | 589 | unit = 'm2 m-3' |
---|
| 590 | |
---|
| 591 | |
---|
| 592 | CASE DEFAULT |
---|
| 593 | unit = 'illegal' |
---|
| 594 | |
---|
| 595 | END SELECT |
---|
| 596 | |
---|
| 597 | |
---|
| 598 | END SUBROUTINE pcm_check_data_output |
---|
[4803] | 599 | |
---|
| 600 | |
---|
| 601 | !--------------------------------------------------------------------------------------------------! |
---|
[1826] | 602 | ! Description: |
---|
| 603 | ! ------------ |
---|
| 604 | !> Check parameters routine for plant canopy model |
---|
[4803] | 605 | !--------------------------------------------------------------------------------------------------! |
---|
[1826] | 606 | SUBROUTINE pcm_check_parameters |
---|
[4803] | 607 | |
---|
[4342] | 608 | IF ( ocean_mode ) THEN |
---|
[4803] | 609 | message_string = 'plant_canopy = .TRUE. is not allowed in the ocean' |
---|
[4342] | 610 | CALL message( 'pcm_check_parameters', 'PA0696', 1, 2, 0, 6, 0 ) |
---|
| 611 | ENDIF |
---|
[4803] | 612 | |
---|
[1826] | 613 | IF ( canopy_drag_coeff == 0.0_wp ) THEN |
---|
[4803] | 614 | message_string = 'plant_canopy = .TRUE. requires a non-zero drag ' // & |
---|
[3046] | 615 | 'coefficient & given value is canopy_drag_coeff = 0.0' |
---|
[2768] | 616 | CALL message( 'pcm_check_parameters', 'PA0041', 1, 2, 0, 6, 0 ) |
---|
[1826] | 617 | ENDIF |
---|
[4279] | 618 | |
---|
[4803] | 619 | IF ( ( alpha_lad /= 9999999.9_wp .AND. beta_lad == 9999999.9_wp ) .OR. & |
---|
| 620 | beta_lad /= 9999999.9_wp .AND. alpha_lad == 9999999.9_wp ) THEN |
---|
| 621 | message_string = 'using the beta function for the construction ' // & |
---|
| 622 | 'of the leaf area density profile requires ' // & |
---|
[1826] | 623 | 'both alpha_lad and beta_lad to be /= 9999999.9' |
---|
[2768] | 624 | CALL message( 'pcm_check_parameters', 'PA0118', 1, 2, 0, 6, 0 ) |
---|
[1826] | 625 | ENDIF |
---|
[4279] | 626 | |
---|
[1826] | 627 | IF ( calc_beta_lad_profile .AND. lai_beta == 0.0_wp ) THEN |
---|
[4803] | 628 | message_string = 'using the beta function for the construction ' // & |
---|
| 629 | 'of the leaf area density profile requires ' // & |
---|
| 630 | 'a non-zero lai_beta, but given value is ' // & |
---|
[1826] | 631 | 'lai_beta = 0.0' |
---|
[2768] | 632 | CALL message( 'pcm_check_parameters', 'PA0119', 1, 2, 0, 6, 0 ) |
---|
[1826] | 633 | ENDIF |
---|
| 634 | |
---|
| 635 | IF ( calc_beta_lad_profile .AND. lad_surface /= 0.0_wp ) THEN |
---|
[4803] | 636 | message_string = 'simultaneous setting of alpha_lad /= 9999999.9 '// & |
---|
| 637 | 'combined with beta_lad /= 9999999.9 ' // & |
---|
| 638 | 'and lad_surface /= 0.0 is not possible, ' // & |
---|
| 639 | 'use either vertical gradients or the beta ' // & |
---|
| 640 | 'function for the construction of the leaf area '// & |
---|
[1826] | 641 | 'density profile' |
---|
[2768] | 642 | CALL message( 'pcm_check_parameters', 'PA0120', 1, 2, 0, 6, 0 ) |
---|
[4803] | 643 | ENDIF |
---|
[1826] | 644 | |
---|
[3274] | 645 | IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN |
---|
[4803] | 646 | message_string = 'plant_canopy = .TRUE. requires cloud_scheme /= seifert_beheng' |
---|
[2768] | 647 | CALL message( 'pcm_check_parameters', 'PA0360', 1, 2, 0, 6, 0 ) |
---|
[1826] | 648 | ENDIF |
---|
| 649 | |
---|
[4803] | 650 | END SUBROUTINE pcm_check_parameters |
---|
[1826] | 651 | |
---|
[4803] | 652 | |
---|
| 653 | !--------------------------------------------------------------------------------------------------! |
---|
[2209] | 654 | ! |
---|
[1484] | 655 | ! Description: |
---|
| 656 | ! ------------ |
---|
[4127] | 657 | !> Subroutine for averaging 3D data |
---|
[4803] | 658 | !--------------------------------------------------------------------------------------------------! |
---|
[4216] | 659 | SUBROUTINE pcm_3d_data_averaging( mode, variable ) |
---|
[4127] | 660 | |
---|
| 661 | CHARACTER (LEN=*) :: mode !< |
---|
[4803] | 662 | CHARACTER (LEN=*) :: variable !< |
---|
[4127] | 663 | |
---|
| 664 | INTEGER(iwp) :: i !< |
---|
| 665 | INTEGER(iwp) :: j !< |
---|
| 666 | INTEGER(iwp) :: k !< |
---|
| 667 | |
---|
| 668 | |
---|
| 669 | IF ( mode == 'allocate' ) THEN |
---|
| 670 | |
---|
| 671 | SELECT CASE ( TRIM( variable ) ) |
---|
| 672 | |
---|
| 673 | CASE ( 'pcm_heatrate' ) |
---|
| 674 | IF ( .NOT. ALLOCATED( pcm_heatrate_av ) ) THEN |
---|
| 675 | ALLOCATE( pcm_heatrate_av(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 676 | ENDIF |
---|
| 677 | pcm_heatrate_av = 0.0_wp |
---|
| 678 | |
---|
| 679 | |
---|
| 680 | CASE ( 'pcm_latentrate' ) |
---|
| 681 | IF ( .NOT. ALLOCATED( pcm_latentrate_av ) ) THEN |
---|
| 682 | ALLOCATE( pcm_latentrate_av(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 683 | ENDIF |
---|
| 684 | pcm_latentrate_av = 0.0_wp |
---|
| 685 | |
---|
| 686 | |
---|
| 687 | CASE ( 'pcm_transpirationrate' ) |
---|
| 688 | IF ( .NOT. ALLOCATED( pcm_transpirationrate_av ) ) THEN |
---|
| 689 | ALLOCATE( pcm_transpirationrate_av(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 690 | ENDIF |
---|
| 691 | pcm_transpirationrate_av = 0.0_wp |
---|
| 692 | |
---|
| 693 | CASE DEFAULT |
---|
| 694 | CONTINUE |
---|
| 695 | |
---|
| 696 | END SELECT |
---|
| 697 | |
---|
[4803] | 698 | ELSE IF ( mode == 'sum' ) THEN |
---|
[4127] | 699 | |
---|
| 700 | SELECT CASE ( TRIM( variable ) ) |
---|
| 701 | |
---|
| 702 | CASE ( 'pcm_heatrate' ) |
---|
[4803] | 703 | IF ( ALLOCATED( pcm_heatrate_av ) ) THEN |
---|
[4127] | 704 | DO i = nxl, nxr |
---|
| 705 | DO j = nys, nyn |
---|
| 706 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
| 707 | DO k = 0, pch_index_ji(j,i) |
---|
[4803] | 708 | pcm_heatrate_av(k,j,i) = pcm_heatrate_av(k,j,i) + & |
---|
| 709 | pcm_heating_rate(k,j,i) |
---|
[4127] | 710 | ENDDO |
---|
| 711 | ENDIF |
---|
| 712 | ENDDO |
---|
| 713 | ENDDO |
---|
| 714 | ENDIF |
---|
| 715 | |
---|
| 716 | |
---|
| 717 | CASE ( 'pcm_latentrate' ) |
---|
[4803] | 718 | IF ( ALLOCATED( pcm_latentrate_av ) ) THEN |
---|
[4127] | 719 | DO i = nxl, nxr |
---|
| 720 | DO j = nys, nyn |
---|
| 721 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
| 722 | DO k = 0, pch_index_ji(j,i) |
---|
[4803] | 723 | pcm_latentrate_av(k,j,i) = pcm_latentrate_av(k,j,i) + & |
---|
| 724 | pcm_latent_rate(k,j,i) |
---|
[4127] | 725 | ENDDO |
---|
| 726 | ENDIF |
---|
| 727 | ENDDO |
---|
| 728 | ENDDO |
---|
| 729 | ENDIF |
---|
| 730 | |
---|
| 731 | |
---|
| 732 | CASE ( 'pcm_transpirationrate' ) |
---|
[4803] | 733 | IF ( ALLOCATED( pcm_transpirationrate_av ) ) THEN |
---|
[4127] | 734 | DO i = nxl, nxr |
---|
| 735 | DO j = nys, nyn |
---|
| 736 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
| 737 | DO k = 0, pch_index_ji(j,i) |
---|
[4803] | 738 | pcm_transpirationrate_av(k,j,i) = pcm_transpirationrate_av(k,j,i) + & |
---|
| 739 | pcm_transpiration_rate(k,j,i) |
---|
[4127] | 740 | ENDDO |
---|
| 741 | ENDIF |
---|
| 742 | ENDDO |
---|
| 743 | ENDDO |
---|
| 744 | ENDIF |
---|
| 745 | |
---|
| 746 | CASE DEFAULT |
---|
| 747 | CONTINUE |
---|
| 748 | |
---|
| 749 | END SELECT |
---|
| 750 | |
---|
[4803] | 751 | ELSE IF ( mode == 'average' ) THEN |
---|
[4127] | 752 | |
---|
| 753 | SELECT CASE ( TRIM( variable ) ) |
---|
| 754 | |
---|
| 755 | CASE ( 'pcm_heatrate' ) |
---|
[4803] | 756 | IF ( ALLOCATED( pcm_heatrate_av ) ) THEN |
---|
[4127] | 757 | DO i = nxlg, nxrg |
---|
| 758 | DO j = nysg, nyng |
---|
| 759 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
| 760 | DO k = 0, pch_index_ji(j,i) |
---|
[4803] | 761 | pcm_heatrate_av(k,j,i) = pcm_heatrate_av(k,j,i) & |
---|
[4127] | 762 | / REAL( average_count_3d, KIND=wp ) |
---|
| 763 | ENDDO |
---|
| 764 | ENDIF |
---|
| 765 | ENDDO |
---|
| 766 | ENDDO |
---|
| 767 | ENDIF |
---|
| 768 | |
---|
| 769 | |
---|
| 770 | CASE ( 'pcm_latentrate' ) |
---|
[4803] | 771 | IF ( ALLOCATED( pcm_latentrate_av ) ) THEN |
---|
[4127] | 772 | DO i = nxlg, nxrg |
---|
| 773 | DO j = nysg, nyng |
---|
| 774 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
| 775 | DO k = 0, pch_index_ji(j,i) |
---|
[4803] | 776 | pcm_latentrate_av(k,j,i) = pcm_latentrate_av(k,j,i) & |
---|
[4127] | 777 | / REAL( average_count_3d, KIND=wp ) |
---|
| 778 | ENDDO |
---|
| 779 | ENDIF |
---|
| 780 | ENDDO |
---|
| 781 | ENDDO |
---|
| 782 | ENDIF |
---|
| 783 | |
---|
| 784 | |
---|
| 785 | CASE ( 'pcm_transpirationrate' ) |
---|
[4803] | 786 | IF ( ALLOCATED( pcm_transpirationrate_av ) ) THEN |
---|
[4127] | 787 | DO i = nxlg, nxrg |
---|
| 788 | DO j = nysg, nyng |
---|
| 789 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
| 790 | DO k = 0, pch_index_ji(j,i) |
---|
[4803] | 791 | pcm_transpirationrate_av(k,j,i) = pcm_transpirationrate_av(k,j,i) & |
---|
[4127] | 792 | / REAL( average_count_3d, KIND=wp ) |
---|
| 793 | ENDDO |
---|
| 794 | ENDIF |
---|
| 795 | ENDDO |
---|
| 796 | ENDDO |
---|
| 797 | ENDIF |
---|
| 798 | |
---|
| 799 | END SELECT |
---|
| 800 | |
---|
| 801 | ENDIF |
---|
| 802 | |
---|
[4216] | 803 | END SUBROUTINE pcm_3d_data_averaging |
---|
[4127] | 804 | |
---|
[4803] | 805 | !--------------------------------------------------------------------------------------------------! |
---|
[4127] | 806 | ! |
---|
| 807 | ! Description: |
---|
| 808 | ! ------------ |
---|
[4803] | 809 | !> Subroutine defining 3D output variables. |
---|
| 810 | !> Note, 3D plant-canopy output has it's own vertical output dimension, meaning that 3D output is |
---|
| 811 | !> relative to the model surface now rather than at the actual grid point where the plant canopy is |
---|
| 812 | !> located. |
---|
| 813 | !--------------------------------------------------------------------------------------------------! |
---|
| 814 | SUBROUTINE pcm_data_output_3d( av, variable, found, local_pf, fill_value, nzb_do, nzt_do ) |
---|
[2209] | 815 | |
---|
[4216] | 816 | CHARACTER (LEN=*) :: variable !< treated variable |
---|
[2209] | 817 | |
---|
[4216] | 818 | INTEGER(iwp) :: av !< flag indicating instantaneous or averaged data output |
---|
| 819 | INTEGER(iwp) :: i !< grid index x-direction |
---|
| 820 | INTEGER(iwp) :: j !< grid index y-direction |
---|
| 821 | INTEGER(iwp) :: k !< grid index z-direction |
---|
[3014] | 822 | INTEGER(iwp) :: nzb_do !< lower limit of the data output (usually 0) |
---|
| 823 | INTEGER(iwp) :: nzt_do !< vertical upper limit of the data output (usually nz_do3d) |
---|
[2209] | 824 | |
---|
[4216] | 825 | LOGICAL :: found !< flag indicating if variable is found |
---|
[2209] | 826 | |
---|
[4216] | 827 | REAL(wp) :: fill_value !< fill value |
---|
[4803] | 828 | |
---|
[4768] | 829 | REAL(wp), DIMENSION(nxl:nxr,nys:nyn,nzb_do:nzt_do) :: local_pf !< data output array |
---|
[2209] | 830 | |
---|
| 831 | |
---|
| 832 | found = .TRUE. |
---|
| 833 | |
---|
[2696] | 834 | local_pf = REAL( fill_value, KIND = 4 ) |
---|
[2209] | 835 | |
---|
| 836 | SELECT CASE ( TRIM( variable ) ) |
---|
[4216] | 837 | ! |
---|
| 838 | !-- Note, to save memory arrays for heating are allocated from 0:pch_index. |
---|
[4803] | 839 | !-- Thus, output must be relative to these array indices. Further, check whether the output is |
---|
| 840 | !-- within the vertical output range, i.e. nzb_do:nzt_do, which is necessary as local_pf is only |
---|
| 841 | !-- allocated for this index space. Note, plant-canopy output has a separate vertical output |
---|
| 842 | !-- coordinate zlad, so that output is mapped down to the surface. |
---|
[4127] | 843 | CASE ( 'pcm_heatrate' ) |
---|
| 844 | IF ( av == 0 ) THEN |
---|
| 845 | DO i = nxl, nxr |
---|
| 846 | DO j = nys, nyn |
---|
[4360] | 847 | DO k = MAX( 1, nzb_do ), MIN( pch_index_ji(j,i), nzt_do ) |
---|
[4341] | 848 | local_pf(i,j,k) = pcm_heating_rate(k,j,i) |
---|
[4216] | 849 | ENDDO |
---|
[4127] | 850 | ENDDO |
---|
| 851 | ENDDO |
---|
| 852 | ELSE |
---|
| 853 | DO i = nxl, nxr |
---|
| 854 | DO j = nys, nyn |
---|
[4360] | 855 | DO k = MAX( 1, nzb_do ), MIN( pch_index_ji(j,i), nzt_do ) |
---|
[4220] | 856 | local_pf(i,j,k) = pcm_heatrate_av(k,j,i) |
---|
[4127] | 857 | ENDDO |
---|
| 858 | ENDDO |
---|
| 859 | ENDDO |
---|
| 860 | ENDIF |
---|
[3449] | 861 | |
---|
| 862 | CASE ( 'pcm_latentrate' ) |
---|
[4127] | 863 | IF ( av == 0 ) THEN |
---|
| 864 | DO i = nxl, nxr |
---|
| 865 | DO j = nys, nyn |
---|
[4360] | 866 | DO k = MAX( 1, nzb_do ), MIN( pch_index_ji(j,i), nzt_do ) |
---|
[4341] | 867 | local_pf(i,j,k) = pcm_latent_rate(k,j,i) |
---|
[4216] | 868 | ENDDO |
---|
[4127] | 869 | ENDDO |
---|
| 870 | ENDDO |
---|
| 871 | ELSE |
---|
| 872 | DO i = nxl, nxr |
---|
| 873 | DO j = nys, nyn |
---|
[4360] | 874 | DO k = MAX( 1, nzb_do ), MIN( pch_index_ji(j,i), nzt_do ) |
---|
[4220] | 875 | local_pf(i,j,k) = pcm_latentrate_av(k,j,i) |
---|
[4127] | 876 | ENDDO |
---|
| 877 | ENDDO |
---|
| 878 | ENDDO |
---|
| 879 | ENDIF |
---|
[3449] | 880 | |
---|
[4127] | 881 | CASE ( 'pcm_transpirationrate' ) |
---|
| 882 | IF ( av == 0 ) THEN |
---|
| 883 | DO i = nxl, nxr |
---|
| 884 | DO j = nys, nyn |
---|
[4360] | 885 | DO k = MAX( 1, nzb_do ), MIN( pch_index_ji(j,i), nzt_do ) |
---|
[4341] | 886 | local_pf(i,j,k) = pcm_transpiration_rate(k,j,i) |
---|
[4216] | 887 | ENDDO |
---|
[4127] | 888 | ENDDO |
---|
| 889 | ENDDO |
---|
| 890 | ELSE |
---|
| 891 | DO i = nxl, nxr |
---|
| 892 | DO j = nys, nyn |
---|
[4360] | 893 | DO k = MAX( 1, nzb_do ), MIN( pch_index_ji(j,i), nzt_do ) |
---|
[4220] | 894 | local_pf(i,j,k) = pcm_transpirationrate_av(k,j,i) |
---|
[4127] | 895 | ENDDO |
---|
| 896 | ENDDO |
---|
| 897 | ENDDO |
---|
| 898 | ENDIF |
---|
| 899 | |
---|
| 900 | CASE ( 'pcm_lad' ) |
---|
| 901 | IF ( av == 0 ) THEN |
---|
| 902 | DO i = nxl, nxr |
---|
| 903 | DO j = nys, nyn |
---|
[4360] | 904 | DO k = MAX( 1, nzb_do ), MIN( pch_index_ji(j,i), nzt_do ) |
---|
[4220] | 905 | local_pf(i,j,k) = lad_s(k,j,i) |
---|
[4216] | 906 | ENDDO |
---|
[4127] | 907 | ENDDO |
---|
| 908 | ENDDO |
---|
| 909 | ENDIF |
---|
| 910 | |
---|
[4770] | 911 | CASE ( 'pcm_bad' ) |
---|
| 912 | IF ( av == 0 ) THEN |
---|
| 913 | DO i = nxl, nxr |
---|
| 914 | DO j = nys, nyn |
---|
| 915 | DO k = MAX( 1, nzb_do ), MIN( pch_index_ji(j,i), nzt_do ) |
---|
| 916 | local_pf(i,j,k) = bad_s(k,j,i) |
---|
| 917 | ENDDO |
---|
| 918 | ENDDO |
---|
| 919 | ENDDO |
---|
| 920 | ENDIF |
---|
| 921 | |
---|
[2209] | 922 | CASE DEFAULT |
---|
| 923 | found = .FALSE. |
---|
| 924 | |
---|
| 925 | END SELECT |
---|
| 926 | |
---|
[4803] | 927 | END SUBROUTINE pcm_data_output_3d |
---|
| 928 | |
---|
| 929 | !--------------------------------------------------------------------------------------------------! |
---|
[2209] | 930 | ! |
---|
| 931 | ! Description: |
---|
| 932 | ! ------------ |
---|
| 933 | !> Subroutine defining appropriate grid for netcdf variables. |
---|
| 934 | !> It is called from subroutine netcdf. |
---|
[4803] | 935 | !--------------------------------------------------------------------------------------------------! |
---|
[2209] | 936 | SUBROUTINE pcm_define_netcdf_grid( var, found, grid_x, grid_y, grid_z ) |
---|
| 937 | |
---|
[4803] | 938 | CHARACTER (LEN=*), INTENT(IN) :: var !< |
---|
| 939 | CHARACTER (LEN=*), INTENT(OUT) :: grid_x !< |
---|
| 940 | CHARACTER (LEN=*), INTENT(OUT) :: grid_y !< |
---|
| 941 | CHARACTER (LEN=*), INTENT(OUT) :: grid_z !< |
---|
[2209] | 942 | |
---|
[4803] | 943 | LOGICAL, INTENT(OUT) :: found !< |
---|
| 944 | |
---|
| 945 | |
---|
[2209] | 946 | found = .TRUE. |
---|
| 947 | |
---|
| 948 | ! |
---|
[4342] | 949 | !-- Check for the grid. zpc is zu(nzb:nzb+pch_index) |
---|
[2209] | 950 | SELECT CASE ( TRIM( var ) ) |
---|
| 951 | |
---|
[4803] | 952 | CASE ( 'pcm_heatrate', 'pcm_bad', 'pcm_lad', 'pcm_transpirationrate', 'pcm_latentrate' ) |
---|
[2209] | 953 | grid_x = 'x' |
---|
| 954 | grid_y = 'y' |
---|
[4127] | 955 | grid_z = 'zpc' |
---|
[2209] | 956 | |
---|
| 957 | CASE DEFAULT |
---|
| 958 | found = .FALSE. |
---|
| 959 | grid_x = 'none' |
---|
| 960 | grid_y = 'none' |
---|
| 961 | grid_z = 'none' |
---|
| 962 | END SELECT |
---|
| 963 | |
---|
| 964 | END SUBROUTINE pcm_define_netcdf_grid |
---|
[4803] | 965 | |
---|
| 966 | |
---|
| 967 | !--------------------------------------------------------------------------------------------------! |
---|
[2209] | 968 | ! Description: |
---|
| 969 | ! ------------ |
---|
[1826] | 970 | !> Header output for plant canopy model |
---|
[4803] | 971 | !--------------------------------------------------------------------------------------------------! |
---|
[4362] | 972 | SUBROUTINE pcm_header ( io ) |
---|
[4803] | 973 | |
---|
[4362] | 974 | CHARACTER (LEN=10) :: coor_chr !< |
---|
| 975 | CHARACTER (LEN=86) :: coordinates !< |
---|
| 976 | CHARACTER (LEN=86) :: gradients !< |
---|
| 977 | CHARACTER (LEN=86) :: leaf_area_density !< |
---|
| 978 | CHARACTER (LEN=86) :: slices !< |
---|
[4803] | 979 | |
---|
| 980 | INTEGER(iwp) :: i !< |
---|
| 981 | INTEGER(iwp), INTENT(IN) :: io !< Unit of the output file |
---|
| 982 | INTEGER(iwp) :: k !< |
---|
| 983 | |
---|
[4362] | 984 | REAL(wp) :: canopy_height !< canopy height (in m) |
---|
[4803] | 985 | |
---|
| 986 | |
---|
[4362] | 987 | canopy_height = zw(pch_index) |
---|
[1826] | 988 | |
---|
[4803] | 989 | WRITE( io, 1 ) canopy_mode, canopy_height, pch_index, canopy_drag_coeff |
---|
| 990 | IF ( passive_scalar ) THEN |
---|
| 991 | WRITE( io, 2 ) leaf_scalar_exch_coeff, leaf_surface_conc |
---|
[4362] | 992 | ENDIF |
---|
[1826] | 993 | |
---|
| 994 | ! |
---|
[4803] | 995 | !-- Heat flux at the top of vegetation |
---|
| 996 | WRITE( io, 3 ) cthf |
---|
[1826] | 997 | |
---|
| 998 | ! |
---|
[4803] | 999 | !-- Leaf area density profile, calculated either from given vertical gradients or from beta |
---|
| 1000 | !-- probability density function. |
---|
| 1001 | IF ( .NOT. calc_beta_lad_profile ) THEN |
---|
[1826] | 1002 | |
---|
[4362] | 1003 | ! Building output strings, starting with surface value |
---|
[4803] | 1004 | WRITE( leaf_area_density, '(F7.4)' ) lad_surface |
---|
[4362] | 1005 | gradients = '------' |
---|
| 1006 | slices = ' 0' |
---|
| 1007 | coordinates = ' 0.0' |
---|
[4803] | 1008 | DO i = 1, UBOUND( lad_vertical_gradient_level_ind, DIM=1 ) |
---|
| 1009 | IF ( lad_vertical_gradient_level_ind(i) /= -9999 ) THEN |
---|
[1826] | 1010 | |
---|
[4803] | 1011 | WRITE( coor_chr, '(F7.2)' ) lad(lad_vertical_gradient_level_ind(i)) |
---|
[4362] | 1012 | leaf_area_density = TRIM( leaf_area_density ) // ' ' // TRIM( coor_chr ) |
---|
[1826] | 1013 | |
---|
[4803] | 1014 | WRITE( coor_chr, '(F7.2)' ) lad_vertical_gradient(i) |
---|
[4362] | 1015 | gradients = TRIM( gradients ) // ' ' // TRIM( coor_chr ) |
---|
[1826] | 1016 | |
---|
[4803] | 1017 | WRITE( coor_chr, '(I7)' ) lad_vertical_gradient_level_ind(i) |
---|
[4362] | 1018 | slices = TRIM( slices ) // ' ' // TRIM( coor_chr ) |
---|
[1826] | 1019 | |
---|
[4803] | 1020 | WRITE( coor_chr, '(F7.1)' ) lad_vertical_gradient_level(i) |
---|
[4362] | 1021 | coordinates = TRIM( coordinates ) // ' ' // TRIM( coor_chr ) |
---|
| 1022 | ELSE |
---|
| 1023 | EXIT |
---|
| 1024 | ENDIF |
---|
| 1025 | ENDDO |
---|
[1826] | 1026 | |
---|
[4803] | 1027 | WRITE( io, 4 ) TRIM( coordinates ), TRIM( leaf_area_density ), TRIM( gradients ), & |
---|
| 1028 | TRIM( slices ) |
---|
[1826] | 1029 | |
---|
[4362] | 1030 | ELSE |
---|
[4803] | 1031 | |
---|
| 1032 | WRITE( leaf_area_density, '(F7.4)' ) lad_surface |
---|
[4362] | 1033 | coordinates = ' 0.0' |
---|
[4803] | 1034 | |
---|
[4362] | 1035 | DO k = 1, pch_index |
---|
[1826] | 1036 | |
---|
[4803] | 1037 | WRITE( coor_chr,'(F7.2)' ) lad(k) |
---|
| 1038 | leaf_area_density = TRIM( leaf_area_density ) // ' ' // TRIM( coor_chr ) |
---|
[1826] | 1039 | |
---|
[4803] | 1040 | WRITE(coor_chr,'(F7.1)') zu(k) |
---|
| 1041 | coordinates = TRIM( coordinates ) // ' ' // TRIM( coor_chr ) |
---|
[1826] | 1042 | |
---|
[4803] | 1043 | ENDDO |
---|
| 1044 | |
---|
| 1045 | WRITE( io, 5 ) TRIM( coordinates ), TRIM( leaf_area_density ), alpha_lad, beta_lad, lai_beta |
---|
| 1046 | |
---|
| 1047 | ENDIF |
---|
| 1048 | |
---|
| 1049 | 1 FORMAT (/ /' Vegetation canopy (drag) model:' / ' ------------------------------' // & |
---|
| 1050 | ' Canopy mode: ', A / ' Canopy height: ', F6.2, 'm (',I4,' grid points)' / & |
---|
| 1051 | ' Leaf drag coefficient: ', F6.2 /) |
---|
| 1052 | 2 FORMAT (/ ' Scalar exchange coefficient: ',F6.2 / & |
---|
| 1053 | ' Scalar concentration at leaf surfaces in kg/m**3: ', F6.2 /) |
---|
| 1054 | 3 FORMAT ( ' Predefined constant heatflux at the top of the vegetation: ', F6.2, ' K m/s') |
---|
| 1055 | 4 FORMAT (/ ' Characteristic levels of the leaf area density:' // & |
---|
| 1056 | ' Height: ', A, ' m' / & |
---|
| 1057 | ' Leaf area density: ', A, ' m**2/m**3' / & |
---|
| 1058 | ' Gradient: ', A, ' m**2/m**4' / & |
---|
| 1059 | ' Gridpoint: ', A ) |
---|
| 1060 | 5 FORMAT (//' Characteristic levels of the leaf area density and coefficients:' // & |
---|
| 1061 | ' Height: ', A, ' m' / & |
---|
| 1062 | ' Leaf area density: ', A, ' m**2/m**3' / & |
---|
| 1063 | ' Coefficient alpha: ',F6.2 / & |
---|
| 1064 | ' Coefficient beta: ',F6.2 / & |
---|
| 1065 | ' Leaf area index: ',F6.2,' m**2/m**2' /) |
---|
| 1066 | |
---|
[1826] | 1067 | END SUBROUTINE pcm_header |
---|
[4803] | 1068 | |
---|
| 1069 | |
---|
| 1070 | !--------------------------------------------------------------------------------------------------! |
---|
[1826] | 1071 | ! Description: |
---|
| 1072 | ! ------------ |
---|
[1682] | 1073 | !> Initialization of the plant canopy model |
---|
[4803] | 1074 | !--------------------------------------------------------------------------------------------------! |
---|
[1826] | 1075 | SUBROUTINE pcm_init |
---|
[1484] | 1076 | |
---|
[4803] | 1077 | USE exchange_horiz_mod, & |
---|
[4457] | 1078 | ONLY: exchange_horiz |
---|
| 1079 | |
---|
[2007] | 1080 | INTEGER(iwp) :: i !< running index |
---|
| 1081 | INTEGER(iwp) :: j !< running index |
---|
| 1082 | INTEGER(iwp) :: k !< running index |
---|
[2232] | 1083 | INTEGER(iwp) :: m !< running index |
---|
[1484] | 1084 | |
---|
[4803] | 1085 | LOGICAL :: lad_on_top = .FALSE. !< dummy flag to indicate that LAD is defined on a building roof |
---|
| 1086 | LOGICAL :: bad_on_top = .FALSE. !< dummy flag to indicate that BAD is defined on a building roof |
---|
[4381] | 1087 | |
---|
[4258] | 1088 | REAL(wp) :: canopy_height !< canopy height for lad-profile construction |
---|
[2007] | 1089 | REAL(wp) :: gradient !< gradient for lad-profile construction |
---|
[4803] | 1090 | REAL(wp) :: int_bpdf !< vertical integral for lad-profile construction |
---|
[4258] | 1091 | REAL(wp) :: lad_max !< maximum LAD value in the model domain, used to perform a check |
---|
[3241] | 1092 | |
---|
[4803] | 1093 | |
---|
[3885] | 1094 | IF ( debug_output ) CALL debug_message( 'pcm_init', 'start' ) |
---|
[1484] | 1095 | ! |
---|
[4803] | 1096 | !-- Allocate one-dimensional arrays for the computation of the leaf area density (lad) profile |
---|
[1484] | 1097 | ALLOCATE( lad(0:nz+1), pre_lad(0:nz+1) ) |
---|
| 1098 | lad = 0.0_wp |
---|
| 1099 | pre_lad = 0.0_wp |
---|
| 1100 | |
---|
| 1101 | ! |
---|
[4803] | 1102 | !-- Set flag that indicates that the lad-profile shall be calculated by using a beta probability |
---|
| 1103 | !-- density function |
---|
[1826] | 1104 | IF ( alpha_lad /= 9999999.9_wp .AND. beta_lad /= 9999999.9_wp ) THEN |
---|
| 1105 | calc_beta_lad_profile = .TRUE. |
---|
| 1106 | ENDIF |
---|
[4803] | 1107 | |
---|
| 1108 | |
---|
[1826] | 1109 | ! |
---|
[4803] | 1110 | !-- Compute the profile of leaf area density used in the plant canopy model. The profile can |
---|
| 1111 | !-- either be constructed from prescribed vertical gradients of the leaf area density or by using |
---|
| 1112 | !-- a beta probability density function (see e.g. Markkanen et al., 2003: Boundary-Layer |
---|
| 1113 | !-- Meteorology, 106, 437-459) |
---|
| 1114 | IF ( .NOT. calc_beta_lad_profile ) THEN |
---|
[1484] | 1115 | |
---|
| 1116 | ! |
---|
[4803] | 1117 | !-- Use vertical gradients for lad-profile construction |
---|
[1484] | 1118 | i = 1 |
---|
| 1119 | gradient = 0.0_wp |
---|
| 1120 | |
---|
[4342] | 1121 | lad(0) = lad_surface |
---|
| 1122 | lad_vertical_gradient_level_ind(1) = 0 |
---|
[1484] | 1123 | |
---|
[4803] | 1124 | DO k = 1, pch_index |
---|
[4342] | 1125 | IF ( i < 11 ) THEN |
---|
[4803] | 1126 | IF ( lad_vertical_gradient_level(i) < zu(k) .AND. & |
---|
[4342] | 1127 | lad_vertical_gradient_level(i) >= 0.0_wp ) THEN |
---|
| 1128 | gradient = lad_vertical_gradient(i) |
---|
| 1129 | lad_vertical_gradient_level_ind(i) = k - 1 |
---|
| 1130 | i = i + 1 |
---|
[1484] | 1131 | ENDIF |
---|
[4342] | 1132 | ENDIF |
---|
| 1133 | IF ( gradient /= 0.0_wp ) THEN |
---|
| 1134 | IF ( k /= 1 ) THEN |
---|
| 1135 | lad(k) = lad(k-1) + dzu(k) * gradient |
---|
[1484] | 1136 | ELSE |
---|
[4342] | 1137 | lad(k) = lad_surface + dzu(k) * gradient |
---|
[1484] | 1138 | ENDIF |
---|
[4342] | 1139 | ELSE |
---|
| 1140 | lad(k) = lad(k-1) |
---|
| 1141 | ENDIF |
---|
| 1142 | ENDDO |
---|
[1484] | 1143 | |
---|
| 1144 | ! |
---|
[4803] | 1145 | !-- In case of no given leaf area density gradients, choose a vanishing gradient. This |
---|
| 1146 | !-- information is used for the HEADER and the RUN_CONTROL file. |
---|
[1484] | 1147 | IF ( lad_vertical_gradient_level(1) == -9999999.9_wp ) THEN |
---|
| 1148 | lad_vertical_gradient_level(1) = 0.0_wp |
---|
| 1149 | ENDIF |
---|
| 1150 | |
---|
| 1151 | ELSE |
---|
| 1152 | |
---|
[4803] | 1153 | ! |
---|
[1484] | 1154 | !-- Use beta function for lad-profile construction |
---|
| 1155 | int_bpdf = 0.0_wp |
---|
[3065] | 1156 | canopy_height = zw(pch_index) |
---|
[1484] | 1157 | |
---|
[4803] | 1158 | DO k = 0, pch_index |
---|
| 1159 | int_bpdf = int_bpdf + & |
---|
| 1160 | ( ( ( zw(k) / canopy_height )**( alpha_lad-1.0_wp ) ) * & |
---|
| 1161 | ( ( 1.0_wp - ( zw(k) / canopy_height ) )**( beta_lad-1.0_wp ) ) & |
---|
| 1162 | * ( ( zw(k+1)-zw(k) ) / canopy_height ) ) |
---|
[1484] | 1163 | ENDDO |
---|
| 1164 | |
---|
| 1165 | ! |
---|
| 1166 | !-- Preliminary lad profile (defined on w-grid) |
---|
[4803] | 1167 | DO k = 0, pch_index |
---|
| 1168 | pre_lad(k) = lai_beta * & |
---|
| 1169 | ( ( ( zw(k) / canopy_height )**( alpha_lad-1.0_wp ) ) & |
---|
| 1170 | * ( ( 1.0_wp - ( zw(k) / canopy_height ) )**( beta_lad-1.0_wp ) ) & |
---|
| 1171 | / int_bpdf & |
---|
| 1172 | ) / canopy_height |
---|
[1484] | 1173 | ENDDO |
---|
| 1174 | |
---|
| 1175 | ! |
---|
[4803] | 1176 | !-- Final lad profile (defined on scalar-grid level, since most prognostic quantities are |
---|
| 1177 | !-- defined there, hence, less interpolation is required when calculating the canopy |
---|
| 1178 | !-- tendencies) |
---|
[1484] | 1179 | lad(0) = pre_lad(0) |
---|
[4803] | 1180 | DO k = 1, pch_index |
---|
[1484] | 1181 | lad(k) = 0.5 * ( pre_lad(k-1) + pre_lad(k) ) |
---|
[4302] | 1182 | ENDDO |
---|
[1484] | 1183 | |
---|
| 1184 | ENDIF |
---|
| 1185 | |
---|
| 1186 | ! |
---|
[4803] | 1187 | !-- Allocate 3D-array for the leaf-area density (lad_s) as well as for basal-area densitiy |
---|
| 1188 | !-- (bad_s). Note, by default bad_s is zero. |
---|
[1484] | 1189 | ALLOCATE( lad_s(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[4770] | 1190 | ALLOCATE( bad_s(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 1191 | bad_s = 0.0_wp |
---|
[1484] | 1192 | ! |
---|
| 1193 | !-- Initialization of the canopy coverage in the model domain: |
---|
[4803] | 1194 | !-- Setting the parameter canopy_mode = 'homogeneous' initializes a canopy, which fully covers |
---|
| 1195 | !-- the domain surface |
---|
[1484] | 1196 | SELECT CASE ( TRIM( canopy_mode ) ) |
---|
| 1197 | |
---|
[4803] | 1198 | CASE ( 'homogeneous' ) |
---|
[1484] | 1199 | |
---|
| 1200 | DO i = nxlg, nxrg |
---|
| 1201 | DO j = nysg, nyng |
---|
| 1202 | lad_s(:,j,i) = lad(:) |
---|
| 1203 | ENDDO |
---|
| 1204 | ENDDO |
---|
| 1205 | |
---|
[4341] | 1206 | CASE ( 'read_from_file' ) |
---|
[2007] | 1207 | ! |
---|
[4362] | 1208 | !-- Read plant canopy |
---|
| 1209 | IF ( input_pids_static ) THEN |
---|
| 1210 | ! |
---|
| 1211 | !-- Open the static input file |
---|
| 1212 | #if defined( __netcdf ) |
---|
[4803] | 1213 | CALL open_read_file( TRIM( input_file_static ) // & |
---|
| 1214 | TRIM( coupling_char ), & |
---|
[4362] | 1215 | pids_id ) |
---|
| 1216 | |
---|
| 1217 | CALL inquire_num_variables( pids_id, num_var_pids ) |
---|
| 1218 | ! |
---|
| 1219 | !-- Allocate memory to store variable names and read them |
---|
| 1220 | ALLOCATE( vars_pids(1:num_var_pids) ) |
---|
| 1221 | CALL inquire_variable_names( pids_id, vars_pids ) |
---|
| 1222 | ! |
---|
| 1223 | !-- Read leaf area density - resolved vegetation |
---|
| 1224 | IF ( check_existence( vars_pids, 'lad' ) ) THEN |
---|
| 1225 | leaf_area_density_f%from_file = .TRUE. |
---|
[4803] | 1226 | CALL get_attribute( pids_id, char_fill, & |
---|
| 1227 | leaf_area_density_f%fill, & |
---|
[4362] | 1228 | .FALSE., 'lad' ) |
---|
| 1229 | ! |
---|
| 1230 | !-- Inquire number of vertical vegetation layer |
---|
[4803] | 1231 | CALL get_dimension_length( pids_id, & |
---|
| 1232 | leaf_area_density_f%nz, & |
---|
[4362] | 1233 | 'zlad' ) |
---|
| 1234 | ! |
---|
| 1235 | !-- Allocate variable for leaf-area density |
---|
[4803] | 1236 | ALLOCATE( leaf_area_density_f%var & |
---|
| 1237 | (0:leaf_area_density_f%nz-1,nys:nyn,nxl:nxr) ) |
---|
[4362] | 1238 | |
---|
[4803] | 1239 | CALL get_variable( pids_id, 'lad', leaf_area_density_f%var, nxl, nxr, nys, nyn, & |
---|
[4362] | 1240 | 0, leaf_area_density_f%nz-1 ) |
---|
| 1241 | |
---|
| 1242 | ELSE |
---|
| 1243 | leaf_area_density_f%from_file = .FALSE. |
---|
| 1244 | ENDIF |
---|
| 1245 | ! |
---|
| 1246 | !-- Read basal area density - resolved vegetation |
---|
| 1247 | IF ( check_existence( vars_pids, 'bad' ) ) THEN |
---|
| 1248 | basal_area_density_f%from_file = .TRUE. |
---|
[4803] | 1249 | CALL get_attribute( pids_id, char_fill, & |
---|
| 1250 | basal_area_density_f%fill, & |
---|
[4362] | 1251 | .FALSE., 'bad' ) |
---|
| 1252 | ! |
---|
| 1253 | !-- Inquire number of vertical vegetation layer |
---|
[4803] | 1254 | CALL get_dimension_length( pids_id, & |
---|
| 1255 | basal_area_density_f%nz, & |
---|
[4362] | 1256 | 'zlad' ) |
---|
| 1257 | ! |
---|
| 1258 | !-- Allocate variable |
---|
[4803] | 1259 | ALLOCATE( basal_area_density_f%var & |
---|
| 1260 | (0:basal_area_density_f%nz-1,nys:nyn,nxl:nxr) ) |
---|
[4362] | 1261 | |
---|
[4803] | 1262 | CALL get_variable( pids_id, 'bad', basal_area_density_f%var, nxl, nxr, nys, nyn,& |
---|
| 1263 | 0, basal_area_density_f%nz-1 ) |
---|
[4362] | 1264 | ELSE |
---|
| 1265 | basal_area_density_f%from_file = .FALSE. |
---|
| 1266 | ENDIF |
---|
| 1267 | ! |
---|
| 1268 | !-- Read root area density - resolved vegetation |
---|
| 1269 | IF ( check_existence( vars_pids, 'root_area_dens_r' ) ) THEN |
---|
| 1270 | root_area_density_lad_f%from_file = .TRUE. |
---|
[4803] | 1271 | CALL get_attribute( pids_id, char_fill, & |
---|
| 1272 | root_area_density_lad_f%fill, & |
---|
[4362] | 1273 | .FALSE., 'root_area_dens_r' ) |
---|
| 1274 | ! |
---|
| 1275 | !-- Inquire number of vertical soil layers |
---|
[4803] | 1276 | CALL get_dimension_length( pids_id, & |
---|
| 1277 | root_area_density_lad_f%nz, & |
---|
[4362] | 1278 | 'zsoil' ) |
---|
| 1279 | ! |
---|
| 1280 | !-- Allocate variable |
---|
[4803] | 1281 | ALLOCATE( root_area_density_lad_f%var & |
---|
| 1282 | (0:root_area_density_lad_f%nz-1,nys:nyn,nxl:nxr) ) |
---|
[4362] | 1283 | |
---|
[4803] | 1284 | CALL get_variable( pids_id, 'root_area_dens_r', root_area_density_lad_f%var, & |
---|
| 1285 | nxl, nxr, nys, nyn, 0, root_area_density_lad_f%nz-1 ) |
---|
[4362] | 1286 | ELSE |
---|
| 1287 | root_area_density_lad_f%from_file = .FALSE. |
---|
| 1288 | ENDIF |
---|
| 1289 | |
---|
| 1290 | DEALLOCATE( vars_pids ) |
---|
| 1291 | ! |
---|
[4363] | 1292 | !-- Finally, close the input file and deallocate temporary array |
---|
| 1293 | CALL close_input_file( pids_id ) |
---|
[4362] | 1294 | #endif |
---|
[4363] | 1295 | ENDIF |
---|
| 1296 | |
---|
[4362] | 1297 | ! |
---|
[4803] | 1298 | !-- Initialize LAD with data from file. If LAD is given in NetCDF file, use these values, |
---|
| 1299 | !-- else take LAD profiles from ASCII file. |
---|
| 1300 | !-- Please note, in NetCDF file LAD is only given up to the maximum canopy top, indicated |
---|
| 1301 | !-- by leaf_area_density_f%nz. |
---|
[2696] | 1302 | lad_s = 0.0_wp |
---|
| 1303 | IF ( leaf_area_density_f%from_file ) THEN |
---|
| 1304 | ! |
---|
[4803] | 1305 | !-- Set also pch_index, used to be the upper bound of the vertical loops. Therefore, use |
---|
| 1306 | !-- the global top of the canopy layer. |
---|
[2696] | 1307 | pch_index = leaf_area_density_f%nz - 1 |
---|
| 1308 | |
---|
| 1309 | DO i = nxl, nxr |
---|
| 1310 | DO j = nys, nyn |
---|
| 1311 | DO k = 0, leaf_area_density_f%nz - 1 |
---|
[4803] | 1312 | IF ( leaf_area_density_f%var(k,j,i) /= leaf_area_density_f%fill ) & |
---|
| 1313 | lad_s(k,j,i) = leaf_area_density_f%var(k,j,i) |
---|
[2696] | 1314 | ENDDO |
---|
[4302] | 1315 | ! |
---|
| 1316 | !-- Check if resolved vegetation is mapped onto buildings. |
---|
[4803] | 1317 | !-- In general, this is allowed and also meaningful, e.g. when trees carry across |
---|
| 1318 | !-- roofs. However, due to the topography filtering, new building grid points can |
---|
| 1319 | !-- emerge at locations where also plant canopy is defined. As a result, plant |
---|
| 1320 | !-- canopy is mapped on top of roofs, with siginficant impact on the downstream |
---|
| 1321 | !-- flow field and the nearby surface radiation. In order to avoid that plant |
---|
| 1322 | !-- canopy is mistakenly mapped onto building roofs, check for building grid |
---|
| 1323 | !-- points (bit 6) that emerge from the filtering (bit 4) and set LAD to zero at |
---|
| 1324 | !-- these artificially created building grid points. This case, an informative |
---|
| 1325 | !-- message is given. |
---|
| 1326 | IF ( ANY( lad_s(:,j,i) /= 0.0_wp ) .AND. & |
---|
| 1327 | ANY( BTEST( wall_flags_total_0(:,j,i), 6 ) ) .AND. & |
---|
[4346] | 1328 | ANY( BTEST( wall_flags_total_0(:,j,i), 4 ) ) ) THEN |
---|
[4302] | 1329 | lad_s(:,j,i) = 0.0_wp |
---|
[4381] | 1330 | lad_on_top = .TRUE. |
---|
| 1331 | ENDIF |
---|
| 1332 | ENDDO |
---|
| 1333 | ENDDO |
---|
| 1334 | #if defined( __parallel ) |
---|
[4803] | 1335 | CALL MPI_ALLREDUCE( MPI_IN_PLACE, lad_on_top, 1, MPI_LOGICAL, MPI_LOR, comm2d, ierr) |
---|
[4381] | 1336 | #endif |
---|
| 1337 | IF ( lad_on_top ) THEN |
---|
[4770] | 1338 | WRITE( message_string, * ) & |
---|
| 1339 | 'Resolved plant-canopy is defined on top of an ' // & |
---|
| 1340 | 'artificially created building grid point(s) '// & |
---|
| 1341 | 'the filtering) - LAD/BAD profile is omitted at this / ' //& |
---|
[4381] | 1342 | 'these grid point(s).' |
---|
| 1343 | CALL message( 'pcm_init', 'PA0313', 0, 0, 0, 6, 0 ) |
---|
| 1344 | ENDIF |
---|
[2696] | 1345 | CALL exchange_horiz( lad_s, nbgp ) |
---|
| 1346 | ! |
---|
| 1347 | ! ASCII file |
---|
[4803] | 1348 | !-- Initialize canopy parameters canopy_drag_coeff, leaf_scalar_exch_coeff, |
---|
| 1349 | !-- leaf_surface_conc from file which contains complete 3D data (separate vertical profiles |
---|
| 1350 | !-- for each location). |
---|
[2696] | 1351 | ELSE |
---|
| 1352 | CALL pcm_read_plant_canopy_3d |
---|
| 1353 | ENDIF |
---|
[4770] | 1354 | ! |
---|
[4803] | 1355 | !-- Initialize LAD with data from file. If LAD is given in NetCDF file, use these values, |
---|
| 1356 | !-- else take LAD profiles from ASCII file. |
---|
| 1357 | !-- Please note, in NetCDF file LAD is only given up to the maximum canopy top, indicated |
---|
| 1358 | !-- by basal_area_density_f%nz. |
---|
[4770] | 1359 | bad_s = 0.0_wp |
---|
| 1360 | IF ( basal_area_density_f%from_file ) THEN |
---|
| 1361 | ! |
---|
[4803] | 1362 | !-- Set also pch_index, used to be the upper bound of the vertical loops. Therefore, use |
---|
| 1363 | !-- the global top of the canopy layer. |
---|
[4770] | 1364 | pch_index = basal_area_density_f%nz - 1 |
---|
[2007] | 1365 | |
---|
[4770] | 1366 | DO i = nxl, nxr |
---|
| 1367 | DO j = nys, nyn |
---|
| 1368 | DO k = 0, basal_area_density_f%nz - 1 |
---|
| 1369 | IF ( basal_area_density_f%var(k,j,i) /= basal_area_density_f%fill ) & |
---|
| 1370 | bad_s(k,j,i) = basal_area_density_f%var(k,j,i) |
---|
| 1371 | ENDDO |
---|
| 1372 | ! |
---|
| 1373 | !-- Check if resolved vegetation is mapped onto buildings. |
---|
| 1374 | !-- Please see comment for leaf_area density |
---|
[4803] | 1375 | IF ( ANY( bad_s(:,j,i) /= 0.0_wp ) .AND. & |
---|
| 1376 | ANY( BTEST( wall_flags_total_0(:,j,i), 6 ) ) .AND. & |
---|
[4770] | 1377 | ANY( BTEST( wall_flags_total_0(:,j,i), 4 ) ) ) THEN |
---|
| 1378 | bad_s(:,j,i) = 0.0_wp |
---|
| 1379 | bad_on_top = .TRUE. |
---|
| 1380 | ENDIF |
---|
| 1381 | ENDDO |
---|
| 1382 | ENDDO |
---|
| 1383 | #if defined( __parallel ) |
---|
[4803] | 1384 | CALL MPI_ALLREDUCE( MPI_IN_PLACE, bad_on_top, 1, MPI_LOGICAL, MPI_LOR, comm2d, ierr) |
---|
[4770] | 1385 | #endif |
---|
| 1386 | IF ( bad_on_top ) THEN |
---|
| 1387 | WRITE( message_string, * ) & |
---|
| 1388 | 'Resolved plant-canopy is defined on top of an ' // & |
---|
| 1389 | 'artificially created building grid point(s) '// & |
---|
| 1390 | 'the filtering) - LAD/BAD profile is omitted at this / ' //& |
---|
| 1391 | 'these grid point(s).' |
---|
| 1392 | CALL message( 'pcm_init', 'PA0313', 0, 0, 0, 6, 0 ) |
---|
| 1393 | ENDIF |
---|
| 1394 | CALL exchange_horiz( bad_s, nbgp ) |
---|
| 1395 | ENDIF |
---|
| 1396 | |
---|
[1484] | 1397 | CASE DEFAULT |
---|
| 1398 | ! |
---|
[4803] | 1399 | !-- The DEFAULT case is reached either if the parameter canopy mode contains a wrong |
---|
| 1400 | !-- character string or if the user has coded a special case in the user interface. |
---|
| 1401 | !-- There, the subroutine user_init_plant_canopy checks which of these two conditions |
---|
| 1402 | !-- applies. |
---|
[2007] | 1403 | CALL user_init_plant_canopy |
---|
[4803] | 1404 | |
---|
[1484] | 1405 | END SELECT |
---|
[2696] | 1406 | ! |
---|
[4803] | 1407 | !-- Check that at least one grid point has an LAD /= 0, else this may cause errors in the |
---|
| 1408 | !-- radiation model. |
---|
[4258] | 1409 | lad_max = MAXVAL( lad_s ) |
---|
| 1410 | #if defined( __parallel ) |
---|
[4803] | 1411 | CALL MPI_ALLREDUCE( MPI_IN_PLACE, lad_max, 1, MPI_REAL, MPI_MAX, comm2d, ierr) |
---|
[4258] | 1412 | #endif |
---|
| 1413 | IF ( lad_max <= 0.0_wp ) THEN |
---|
[4803] | 1414 | message_string = 'Plant-canopy model is switched-on but no ' // & |
---|
[4258] | 1415 | 'plant canopy is present in the model domain.' |
---|
| 1416 | CALL message( 'pcm_init', 'PA0685', 1, 2, 0, 6, 0 ) |
---|
| 1417 | ENDIF |
---|
[4803] | 1418 | |
---|
[4258] | 1419 | ! |
---|
[4803] | 1420 | !-- Initialize 2D index array indicating canopy top index. |
---|
[2696] | 1421 | ALLOCATE( pch_index_ji(nysg:nyng,nxlg:nxrg) ) |
---|
| 1422 | pch_index_ji = 0 |
---|
[4803] | 1423 | |
---|
[4361] | 1424 | DO i = nxlg, nxrg |
---|
| 1425 | DO j = nysg, nyng |
---|
[2696] | 1426 | DO k = 0, pch_index |
---|
[4770] | 1427 | IF ( lad_s(k,j,i) /= 0.0_wp .OR. bad_s(k,j,i) /= 0.0_wp ) pch_index_ji(j,i) = k |
---|
[2696] | 1428 | ENDDO |
---|
[1484] | 1429 | ! |
---|
[4803] | 1430 | !-- Check whether topography and local vegetation on top exceed height of the model domain. |
---|
[4356] | 1431 | IF ( topo_top_ind(j,i,0) + pch_index_ji(j,i) >= nzt + 1 ) THEN |
---|
[4803] | 1432 | message_string = 'Local vegetation height on top of ' // & |
---|
[2696] | 1433 | 'topography exceeds height of model domain.' |
---|
[4356] | 1434 | CALL message( 'pcm_init', 'PA0674', 2, 2, myid, 6, 0 ) |
---|
[2696] | 1435 | ENDIF |
---|
| 1436 | |
---|
| 1437 | ENDDO |
---|
| 1438 | ENDDO |
---|
[3497] | 1439 | ! |
---|
[3449] | 1440 | !-- Calculate global pch_index value (index of top of plant canopy from ground) |
---|
[3497] | 1441 | pch_index = MAXVAL( pch_index_ji ) |
---|
| 1442 | ! |
---|
[3449] | 1443 | !-- Exchange pch_index from all processors |
---|
| 1444 | #if defined( __parallel ) |
---|
[4803] | 1445 | CALL MPI_ALLREDUCE( MPI_IN_PLACE, pch_index, 1, MPI_INTEGER, MPI_MAX, comm2d, ierr) |
---|
[3449] | 1446 | #endif |
---|
[4360] | 1447 | ! |
---|
[4341] | 1448 | !-- Allocation of arrays pcm_heating_rate, pcm_transpiration_rate and pcm_latent_rate |
---|
| 1449 | ALLOCATE( pcm_heating_rate(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 1450 | pcm_heating_rate = 0.0_wp |
---|
[4803] | 1451 | |
---|
[3449] | 1452 | IF ( humidity ) THEN |
---|
[4341] | 1453 | ALLOCATE( pcm_transpiration_rate(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 1454 | pcm_transpiration_rate = 0.0_wp |
---|
| 1455 | ALLOCATE( pcm_latent_rate(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 1456 | pcm_latent_rate = 0.0_wp |
---|
[3449] | 1457 | ENDIF |
---|
[2696] | 1458 | ! |
---|
[4803] | 1459 | !-- Initialization of the canopy heat source distribution due to heating of the canopy layers by |
---|
| 1460 | !-- incoming solar radiation, in case that a non-zero |
---|
| 1461 | !-- value is set for the canopy top heat flux (cthf), which equals the available net radiation at |
---|
| 1462 | !-- canopy top. |
---|
| 1463 | !-- The heat source distribution is calculated by a decaying exponential function of the downward |
---|
| 1464 | !-- cumulative leaf area index (cum_lai_hf), assuming that the foliage inside the plant canopy is |
---|
| 1465 | !-- heated by solar radiation penetrating the canopy layers according to the distribution of net |
---|
| 1466 | !-- radiation as suggested by Brown & Covey (1966; Agric. Meteorol. 3, 73â96). This approach has |
---|
| 1467 | !-- been applied e.g. by Shaw & Schumann (1992; Bound.-Layer Meteorol. 61, 47â64). |
---|
| 1468 | !-- When using the radiation_interactions, canopy heating (pcm_heating_rate) and plant canopy |
---|
| 1469 | !-- transpiration (pcm_transpiration_rate, pcm_latent_rate) are calculated in the RTM after the |
---|
| 1470 | !-- calculation of radiation. |
---|
[3449] | 1471 | IF ( cthf /= 0.0_wp ) THEN |
---|
[2213] | 1472 | |
---|
[3449] | 1473 | ALLOCATE( cum_lai_hf(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1484] | 1474 | ! |
---|
[4803] | 1475 | !-- Piecewise calculation of the cumulative leaf area index by vertical integration of the |
---|
| 1476 | !-- leaf area density |
---|
[1484] | 1477 | cum_lai_hf(:,:,:) = 0.0_wp |
---|
| 1478 | DO i = nxlg, nxrg |
---|
| 1479 | DO j = nysg, nyng |
---|
[2696] | 1480 | DO k = pch_index_ji(j,i)-1, 0, -1 |
---|
| 1481 | IF ( k == pch_index_ji(j,i)-1 ) THEN |
---|
[4803] | 1482 | cum_lai_hf(k,j,i) = cum_lai_hf(k+1,j,i) + & |
---|
| 1483 | ( 0.5_wp * lad_s(k+1,j,i) * & |
---|
| 1484 | ( zw(k+1) - zu(k+1) ) ) + & |
---|
| 1485 | ( 0.5_wp * ( 0.5_wp * ( lad_s(k+1,j,i) + & |
---|
| 1486 | lad_s(k,j,i) ) + & |
---|
| 1487 | lad_s(k+1,j,i) ) * & |
---|
| 1488 | ( zu(k+1) - zw(k) ) ) |
---|
[1484] | 1489 | ELSE |
---|
[4803] | 1490 | cum_lai_hf(k,j,i) = cum_lai_hf(k+1,j,i) + & |
---|
| 1491 | ( 0.5_wp * ( 0.5_wp * ( lad_s(k+2,j,i) + & |
---|
| 1492 | lad_s(k+1,j,i) ) + & |
---|
| 1493 | lad_s(k+1,j,i) ) * & |
---|
| 1494 | ( zw(k+1) - zu(k+1) ) ) + & |
---|
| 1495 | ( 0.5_wp * ( 0.5_wp * ( lad_s(k+1,j,i) + & |
---|
| 1496 | lad_s(k,j,i) ) + & |
---|
| 1497 | lad_s(k+1,j,i) ) * & |
---|
| 1498 | ( zu(k+1) - zw(k) ) ) |
---|
[1484] | 1499 | ENDIF |
---|
| 1500 | ENDDO |
---|
| 1501 | ENDDO |
---|
| 1502 | ENDDO |
---|
| 1503 | |
---|
[4278] | 1504 | ! |
---|
[4803] | 1505 | !-- In areas with canopy the surface value of the canopy heat flux distribution overrides the |
---|
| 1506 | !-- surface heat flux (shf), |
---|
[2232] | 1507 | !-- Start with default surface type |
---|
| 1508 | DO m = 1, surf_def_h(0)%ns |
---|
[4278] | 1509 | i = surf_def_h(0)%i(m) |
---|
| 1510 | j = surf_def_h(0)%j(m) |
---|
[4803] | 1511 | IF ( cum_lai_hf(0,j,i) /= 0.0_wp ) & |
---|
| 1512 | surf_def_h(0)%shf(m) = cthf * EXP( -ext_coef * cum_lai_hf(0,j,i) ) |
---|
[2232] | 1513 | ENDDO |
---|
[1484] | 1514 | ! |
---|
[2232] | 1515 | !-- Natural surfaces |
---|
[4671] | 1516 | DO m = 1, surf_lsm_h(0)%ns |
---|
| 1517 | i = surf_lsm_h(0)%i(m) |
---|
| 1518 | j = surf_lsm_h(0)%j(m) |
---|
[4803] | 1519 | IF ( cum_lai_hf(0,j,i) /= 0.0_wp ) & |
---|
| 1520 | surf_lsm_h(0)%shf(m) = cthf * EXP( -ext_coef * cum_lai_hf(0,j,i) ) |
---|
[2232] | 1521 | ENDDO |
---|
| 1522 | ! |
---|
| 1523 | !-- Urban surfaces |
---|
[4671] | 1524 | DO m = 1, surf_usm_h(0)%ns |
---|
| 1525 | i = surf_usm_h(0)%i(m) |
---|
| 1526 | j = surf_usm_h(0)%j(m) |
---|
[4803] | 1527 | IF ( cum_lai_hf(0,j,i) /= 0.0_wp ) & |
---|
| 1528 | surf_usm_h(0)%shf(m) = cthf * EXP( -ext_coef * cum_lai_hf(0,j,i) ) |
---|
[2232] | 1529 | ENDDO |
---|
| 1530 | ! |
---|
| 1531 | ! |
---|
[4803] | 1532 | !-- Calculation of the heating rate (K/s) within the different layers of the plant canopy. |
---|
| 1533 | !-- Calculation is only necessary in areas covered with canopy. |
---|
| 1534 | !-- Within the different canopy layers the plant-canopy heating rate (pcm_heating_rate) is |
---|
| 1535 | !-- calculated as the vertical divergence of the canopy heat fluxes at the top and bottom of |
---|
| 1536 | !-- the respective layer. |
---|
[1484] | 1537 | DO i = nxlg, nxrg |
---|
| 1538 | DO j = nysg, nyng |
---|
[2696] | 1539 | DO k = 1, pch_index_ji(j,i) |
---|
[2232] | 1540 | IF ( cum_lai_hf(0,j,i) /= 0.0_wp ) THEN |
---|
[4803] | 1541 | pcm_heating_rate(k,j,i) = cthf * & |
---|
| 1542 | ( EXP( -ext_coef * cum_lai_hf(k,j,i) ) - & |
---|
| 1543 | EXP( -ext_coef * cum_lai_hf(k-1,j,i) ) ) / dzw(k) |
---|
[2232] | 1544 | ENDIF |
---|
| 1545 | ENDDO |
---|
[1721] | 1546 | ENDDO |
---|
| 1547 | ENDDO |
---|
[1484] | 1548 | |
---|
| 1549 | ENDIF |
---|
| 1550 | |
---|
[3885] | 1551 | IF ( debug_output ) CALL debug_message( 'pcm_init', 'end' ) |
---|
[1484] | 1552 | |
---|
[1826] | 1553 | END SUBROUTINE pcm_init |
---|
[1484] | 1554 | |
---|
| 1555 | |
---|
[4803] | 1556 | !--------------------------------------------------------------------------------------------------! |
---|
[2007] | 1557 | ! Description: |
---|
| 1558 | ! ------------ |
---|
[2932] | 1559 | !> Parin for &plant_canopy_parameters for plant canopy model |
---|
[4803] | 1560 | !--------------------------------------------------------------------------------------------------! |
---|
[4842] | 1561 | SUBROUTINE pcm_parin |
---|
[1484] | 1562 | |
---|
[4842] | 1563 | CHARACTER(LEN=100) :: line !< dummy string that contains the current line of the parameter file |
---|
[2932] | 1564 | |
---|
[4842] | 1565 | INTEGER(iwp) :: io_status !< status after reading the namelist file |
---|
[3246] | 1566 | |
---|
[4843] | 1567 | LOGICAL :: switch_off_module = .FALSE. !< local namelist parameter to switch off the module |
---|
| 1568 | !< although the respective module namelist appears in |
---|
| 1569 | !< the namelist file |
---|
[4803] | 1570 | |
---|
[4842] | 1571 | NAMELIST /plant_canopy_parameters/ alpha_lad, & |
---|
| 1572 | beta_lad, & |
---|
| 1573 | canopy_drag_coeff, & |
---|
| 1574 | canopy_mode, & |
---|
| 1575 | cthf, & |
---|
| 1576 | lad_surface, & |
---|
| 1577 | lad_type_coef, & |
---|
| 1578 | lad_vertical_gradient, & |
---|
| 1579 | lad_vertical_gradient_level, & |
---|
| 1580 | lai_beta, & |
---|
| 1581 | leaf_scalar_exch_coeff, & |
---|
| 1582 | leaf_surface_conc, & |
---|
| 1583 | pch_index, & |
---|
[4843] | 1584 | plant_canopy_transpiration, & |
---|
| 1585 | switch_off_module |
---|
[3246] | 1586 | |
---|
[2007] | 1587 | ! |
---|
[4842] | 1588 | !-- Move to the beginning of the namelist file and try to find and read the user-defined namelist |
---|
| 1589 | !-- plant_canopy_parameters. |
---|
| 1590 | REWIND( 11 ) |
---|
| 1591 | READ( 11, plant_canopy_parameters, IOSTAT=io_status ) |
---|
[2007] | 1592 | |
---|
| 1593 | ! |
---|
[4842] | 1594 | !-- Action depending on the READ status |
---|
| 1595 | IF ( io_status == 0 ) THEN |
---|
[2932] | 1596 | ! |
---|
[4842] | 1597 | !-- plant_canopy_parameters namelist was found and read correctly. Set flag that indicates that |
---|
| 1598 | !-- the plant-canopy model is switched on. |
---|
[4843] | 1599 | IF ( .NOT. switch_off_module ) plant_canopy = .TRUE. |
---|
[3246] | 1600 | |
---|
[4842] | 1601 | ELSEIF ( io_status > 0 ) THEN |
---|
[2932] | 1602 | ! |
---|
[4842] | 1603 | !-- plant_canopy_parameters namelist was found but contained errors. Print an error message |
---|
| 1604 | !-- including the line that caused the problem. |
---|
[4803] | 1605 | BACKSPACE( 11 ) |
---|
[4842] | 1606 | READ( 11 , '(A)' ) line |
---|
| 1607 | CALL parin_fail_message( 'plant_canopy_parameters', line ) |
---|
[2932] | 1608 | |
---|
[4842] | 1609 | ENDIF |
---|
[2007] | 1610 | |
---|
[4842] | 1611 | END SUBROUTINE pcm_parin |
---|
[3246] | 1612 | |
---|
[2007] | 1613 | |
---|
[4803] | 1614 | !--------------------------------------------------------------------------------------------------! |
---|
[1484] | 1615 | ! Description: |
---|
| 1616 | ! ------------ |
---|
[2007] | 1617 | ! |
---|
| 1618 | !> Loads 3D plant canopy data from file. File format is as follows: |
---|
| 1619 | !> |
---|
| 1620 | !> num_levels |
---|
[2977] | 1621 | !> dtype,x,y,pctype,value(nzb),value(nzb+1), ... ,value(nzb+num_levels-1) |
---|
| 1622 | !> dtype,x,y,pctype,value(nzb),value(nzb+1), ... ,value(nzb+num_levels-1) |
---|
| 1623 | !> dtype,x,y,pctype,value(nzb),value(nzb+1), ... ,value(nzb+num_levels-1) |
---|
[2007] | 1624 | !> ... |
---|
| 1625 | !> |
---|
[4803] | 1626 | !> i.e. first line determines number of levels and further lines represent plant canopy data, one |
---|
| 1627 | !> line per column and variable. In each data line, dtype represents variable to be set: |
---|
[2007] | 1628 | !> |
---|
| 1629 | !> dtype=1: leaf area density (lad_s) |
---|
[2213] | 1630 | !> dtype=2....n: some additional plant canopy input data quantity |
---|
[2007] | 1631 | !> |
---|
[4803] | 1632 | !> Zeros are added automatically above num_levels until top of domain. Any non-specified (x,y) |
---|
| 1633 | !> columns have zero values as default. |
---|
| 1634 | !--------------------------------------------------------------------------------------------------! |
---|
[2007] | 1635 | SUBROUTINE pcm_read_plant_canopy_3d |
---|
| 1636 | |
---|
[4803] | 1637 | USE exchange_horiz_mod, & |
---|
[4457] | 1638 | ONLY: exchange_horiz |
---|
| 1639 | |
---|
[4803] | 1640 | INTEGER(iwp) :: dtype !< type of input data (1=lad) |
---|
| 1641 | INTEGER(iwp) :: i !< running index |
---|
| 1642 | INTEGER(iwp) :: j !< running index |
---|
| 1643 | INTEGER(iwp) :: kk !< |
---|
| 1644 | INTEGER(iwp) :: nzp !< number of vertical layers of plant canopy |
---|
| 1645 | INTEGER(iwp) :: nzpltop !< |
---|
| 1646 | INTEGER(iwp) :: nzpl !< |
---|
| 1647 | INTEGER(iwp) :: pctype !< type of plant canopy (deciduous,non-deciduous,...) |
---|
| 1648 | |
---|
[2213] | 1649 | REAL(wp), DIMENSION(:), ALLOCATABLE :: col !< vertical column of input data |
---|
[2007] | 1650 | |
---|
[2213] | 1651 | ! |
---|
| 1652 | !-- Initialize lad_s array |
---|
| 1653 | lad_s = 0.0_wp |
---|
[4803] | 1654 | |
---|
[2213] | 1655 | ! |
---|
| 1656 | !-- Open and read plant canopy input data |
---|
[4803] | 1657 | OPEN( 152, FILE='PLANT_CANOPY_DATA_3D' // TRIM( coupling_char ), ACCESS='SEQUENTIAL', & |
---|
| 1658 | ACTION='READ', STATUS='OLD', FORM='FORMATTED', ERR=515 ) |
---|
| 1659 | READ( 152, *, ERR=516, END=517 ) nzp !< read first line = number of vertical layers |
---|
[3337] | 1660 | nzpltop = MIN(nzt+1, nzb+nzp-1) |
---|
| 1661 | nzpl = nzpltop - nzb + 1 !< no. of layers to assign |
---|
[2977] | 1662 | ALLOCATE( col(0:nzp-1) ) |
---|
[2007] | 1663 | |
---|
[2213] | 1664 | DO |
---|
[4803] | 1665 | READ( 152, *, ERR=516, END=517 ) dtype, i, j, pctype, col(:) |
---|
[2977] | 1666 | IF ( i < nxlg .OR. i > nxrg .OR. j < nysg .OR. j > nyng ) CYCLE |
---|
[4803] | 1667 | |
---|
| 1668 | SELECT CASE ( dtype ) |
---|
[2977] | 1669 | CASE( 1 ) !< leaf area density |
---|
[2213] | 1670 | ! |
---|
[4803] | 1671 | !-- This is just the pure canopy layer assumed to be grounded to a flat domain surface. |
---|
| 1672 | !-- At locations where plant canopy sits on top of any kind of topography, the vertical |
---|
| 1673 | !-- plant column must be "lifted", which is done in SUBROUTINE pcm_tendency. |
---|
[2977] | 1674 | IF ( pctype < 0 .OR. pctype > 10 ) THEN !< incorrect plant canopy type |
---|
[4803] | 1675 | WRITE( message_string, * ) 'Incorrect type of plant canopy. ' // & |
---|
| 1676 | 'Allowed values 0 <= pctype <= 10, ' // & |
---|
[2977] | 1677 | 'but pctype is ', pctype |
---|
| 1678 | CALL message( 'pcm_read_plant_canopy_3d', 'PA0349', 1, 2, 0, 6, 0 ) |
---|
| 1679 | ENDIF |
---|
[4168] | 1680 | kk = topo_top_ind(j,i,0) |
---|
[3337] | 1681 | lad_s(nzb:nzpltop-kk, j, i) = col(kk:nzpl-1)*lad_type_coef(pctype) |
---|
[2977] | 1682 | CASE DEFAULT |
---|
[4803] | 1683 | WRITE( message_string, '(a,i2,a)' ) & |
---|
[2977] | 1684 | 'Unknown record type in file PLANT_CANOPY_DATA_3D: "', dtype, '"' |
---|
| 1685 | CALL message( 'pcm_read_plant_canopy_3d', 'PA0530', 1, 2, 0, 6, 0 ) |
---|
| 1686 | END SELECT |
---|
[2213] | 1687 | ENDDO |
---|
[2007] | 1688 | |
---|
[2213] | 1689 | 515 message_string = 'error opening file PLANT_CANOPY_DATA_3D' |
---|
| 1690 | CALL message( 'pcm_read_plant_canopy_3d', 'PA0531', 1, 2, 0, 6, 0 ) |
---|
[2007] | 1691 | |
---|
[2213] | 1692 | 516 message_string = 'error reading file PLANT_CANOPY_DATA_3D' |
---|
| 1693 | CALL message( 'pcm_read_plant_canopy_3d', 'PA0532', 1, 2, 0, 6, 0 ) |
---|
| 1694 | |
---|
[4803] | 1695 | 517 CLOSE( 152 ) |
---|
[2977] | 1696 | DEALLOCATE( col ) |
---|
[4803] | 1697 | |
---|
[2213] | 1698 | CALL exchange_horiz( lad_s, nbgp ) |
---|
[4803] | 1699 | |
---|
[2007] | 1700 | END SUBROUTINE pcm_read_plant_canopy_3d |
---|
[4360] | 1701 | |
---|
[4803] | 1702 | !--------------------------------------------------------------------------------------------------! |
---|
[2007] | 1703 | ! Description: |
---|
| 1704 | ! ------------ |
---|
[4514] | 1705 | !> Read module-specific global restart data (Fortran binary format). |
---|
[4803] | 1706 | !--------------------------------------------------------------------------------------------------! |
---|
[4514] | 1707 | SUBROUTINE pcm_rrd_global_ftn( found ) |
---|
| 1708 | |
---|
[4803] | 1709 | LOGICAL, INTENT(OUT) :: found |
---|
[4514] | 1710 | |
---|
[4803] | 1711 | |
---|
[4514] | 1712 | found = .TRUE. |
---|
| 1713 | |
---|
| 1714 | SELECT CASE ( restart_string(1:length) ) |
---|
| 1715 | |
---|
| 1716 | CASE ( 'pch_index' ) |
---|
[4803] | 1717 | READ( 13 ) pch_index |
---|
[4514] | 1718 | |
---|
| 1719 | CASE DEFAULT |
---|
| 1720 | |
---|
| 1721 | found = .FALSE. |
---|
| 1722 | |
---|
| 1723 | END SELECT |
---|
| 1724 | |
---|
| 1725 | END SUBROUTINE pcm_rrd_global_ftn |
---|
| 1726 | |
---|
[4803] | 1727 | !--------------------------------------------------------------------------------------------------! |
---|
[4514] | 1728 | ! Description: |
---|
| 1729 | ! ------------ |
---|
| 1730 | !> Read module-specific global restart data (MPI-IO). |
---|
[4803] | 1731 | !--------------------------------------------------------------------------------------------------! |
---|
[4514] | 1732 | SUBROUTINE pcm_rrd_global_mpi |
---|
| 1733 | |
---|
| 1734 | CALL rrd_mpi_io( 'pch_index', pch_index ) |
---|
| 1735 | |
---|
| 1736 | END SUBROUTINE pcm_rrd_global_mpi |
---|
| 1737 | |
---|
[4517] | 1738 | |
---|
[4803] | 1739 | !--------------------------------------------------------------------------------------------------! |
---|
[4514] | 1740 | ! Description: |
---|
| 1741 | ! ------------ |
---|
[4517] | 1742 | !> Read module-specific local restart data arrays (Fortran binary format). |
---|
[4803] | 1743 | !--------------------------------------------------------------------------------------------------! |
---|
| 1744 | SUBROUTINE pcm_rrd_local_ftn( k, nxlf, nxlc, nxl_on_file, nxrf, nxrc, nxr_on_file, nynf, nync, & |
---|
| 1745 | nyn_on_file, nysf, nysc, nys_on_file, found ) |
---|
[4360] | 1746 | |
---|
[4803] | 1747 | INTEGER(iwp) :: k !< |
---|
| 1748 | INTEGER(iwp) :: nxl_on_file !< |
---|
| 1749 | INTEGER(iwp) :: nxlc !< |
---|
| 1750 | INTEGER(iwp) :: nxlf !< |
---|
| 1751 | INTEGER(iwp) :: nxr_on_file !< |
---|
| 1752 | INTEGER(iwp) :: nxrc !< |
---|
| 1753 | INTEGER(iwp) :: nxrf !< |
---|
| 1754 | INTEGER(iwp) :: nyn_on_file !< |
---|
| 1755 | INTEGER(iwp) :: nync !< |
---|
| 1756 | INTEGER(iwp) :: nynf !< |
---|
| 1757 | INTEGER(iwp) :: nys_on_file !< |
---|
| 1758 | INTEGER(iwp) :: nysc !< |
---|
| 1759 | INTEGER(iwp) :: nysf !< |
---|
[4360] | 1760 | |
---|
[4803] | 1761 | LOGICAL, INTENT(OUT) :: found |
---|
[4360] | 1762 | |
---|
[4803] | 1763 | REAL(wp), DIMENSION( 0:pch_index, & |
---|
| 1764 | nys_on_file-nbgp:nyn_on_file+nbgp, & |
---|
| 1765 | nxl_on_file-nbgp:nxr_on_file+nbgp) :: tmp_3d2 !< temporary 3D array for entire vertical |
---|
| 1766 | !< extension of canopy layer |
---|
[4360] | 1767 | found = .TRUE. |
---|
| 1768 | |
---|
[4803] | 1769 | |
---|
[4360] | 1770 | SELECT CASE ( restart_string(1:length) ) |
---|
| 1771 | |
---|
| 1772 | CASE ( 'pcm_heatrate_av' ) |
---|
| 1773 | IF ( .NOT. ALLOCATED( pcm_heatrate_av ) ) THEN |
---|
| 1774 | ALLOCATE( pcm_heatrate_av(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 1775 | pcm_heatrate_av = 0.0_wp |
---|
[4803] | 1776 | ENDIF |
---|
| 1777 | IF ( k == 1 ) READ( 13 ) tmp_3d2 |
---|
| 1778 | pcm_heatrate_av(0:pch_index,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
[4360] | 1779 | tmp_3d2(0:pch_index,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
| 1780 | |
---|
| 1781 | CASE ( 'pcm_latentrate_av' ) |
---|
| 1782 | IF ( .NOT. ALLOCATED( pcm_latentrate_av ) ) THEN |
---|
| 1783 | ALLOCATE( pcm_latentrate_av(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 1784 | pcm_latentrate_av = 0.0_wp |
---|
[4803] | 1785 | ENDIF |
---|
| 1786 | IF ( k == 1 ) READ( 13 ) tmp_3d2 |
---|
| 1787 | pcm_latentrate_av(0:pch_index,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
[4360] | 1788 | tmp_3d2(0:pch_index,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
| 1789 | |
---|
| 1790 | CASE ( 'pcm_transpirationrate_av' ) |
---|
| 1791 | IF ( .NOT. ALLOCATED( pcm_transpirationrate_av ) ) THEN |
---|
| 1792 | ALLOCATE( pcm_transpirationrate_av(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 1793 | pcm_transpirationrate_av = 0.0_wp |
---|
[4803] | 1794 | ENDIF |
---|
| 1795 | IF ( k == 1 ) READ( 13 ) tmp_3d2 |
---|
| 1796 | pcm_transpirationrate_av(0:pch_index,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
[4360] | 1797 | tmp_3d2(0:pch_index,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
| 1798 | |
---|
| 1799 | CASE DEFAULT |
---|
| 1800 | |
---|
| 1801 | found = .FALSE. |
---|
| 1802 | |
---|
| 1803 | END SELECT |
---|
| 1804 | |
---|
[4517] | 1805 | END SUBROUTINE pcm_rrd_local_ftn |
---|
[4360] | 1806 | |
---|
[4517] | 1807 | |
---|
[4803] | 1808 | !--------------------------------------------------------------------------------------------------! |
---|
[4360] | 1809 | ! Description: |
---|
| 1810 | ! ------------ |
---|
[4517] | 1811 | !> Read module-specific local restart data arrays (MPI-IO). |
---|
[4803] | 1812 | !--------------------------------------------------------------------------------------------------! |
---|
[4517] | 1813 | SUBROUTINE pcm_rrd_local_mpi |
---|
| 1814 | |
---|
| 1815 | IMPLICIT NONE |
---|
| 1816 | |
---|
| 1817 | LOGICAL :: array_found !< |
---|
| 1818 | |
---|
[4525] | 1819 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: tmp_3d !< temporary array to store pcm data with |
---|
| 1820 | !< non-standard vertical index bounds |
---|
[4517] | 1821 | |
---|
[4525] | 1822 | ! |
---|
| 1823 | !-- Plant canopy arrays have non standard reduced vertical index bounds. They are stored with |
---|
| 1824 | !-- full vertical bounds (bzb:nzt+1) in the restart file and must be re-stored after reading. |
---|
[4517] | 1825 | CALL rd_mpi_io_check_array( 'pcm_heatrate_av' , found = array_found ) |
---|
| 1826 | IF ( array_found ) THEN |
---|
[4525] | 1827 | IF ( .NOT. ALLOCATED( pcm_heatrate_av ) ) THEN |
---|
| 1828 | ALLOCATE( pcm_heatrate_av(nzb:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 1829 | ENDIF |
---|
| 1830 | ALLOCATE( tmp_3d(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 1831 | CALL rrd_mpi_io( 'pcm_heatrate_av', tmp_3d ) |
---|
| 1832 | pcm_heatrate_av = tmp_3d(nzb:pch_index,:,:) |
---|
| 1833 | DEALLOCATE( tmp_3d ) |
---|
[4517] | 1834 | ENDIF |
---|
| 1835 | |
---|
| 1836 | CALL rd_mpi_io_check_array( 'pcm_latentrate_av' , found = array_found ) |
---|
| 1837 | IF ( array_found ) THEN |
---|
[4525] | 1838 | IF ( .NOT. ALLOCATED( pcm_latentrate_av ) ) THEN |
---|
| 1839 | ALLOCATE( pcm_latentrate_av(nzb:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 1840 | ENDIF |
---|
| 1841 | ALLOCATE( tmp_3d(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 1842 | CALL rrd_mpi_io( 'pcm_latentrate_av', tmp_3d ) |
---|
| 1843 | pcm_latentrate_av = tmp_3d(nzb:pch_index,:,:) |
---|
| 1844 | DEALLOCATE( tmp_3d ) |
---|
[4517] | 1845 | ENDIF |
---|
| 1846 | |
---|
| 1847 | CALL rd_mpi_io_check_array( 'pcm_transpirationrate_av' , found = array_found ) |
---|
| 1848 | IF ( array_found ) THEN |
---|
[4525] | 1849 | IF ( .NOT. ALLOCATED( pcm_transpirationrate_av ) ) THEN |
---|
| 1850 | ALLOCATE( pcm_transpirationrate_av(nzb:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 1851 | ENDIF |
---|
| 1852 | ALLOCATE( tmp_3d(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 1853 | CALL rrd_mpi_io( 'pcm_transpirationrate_av', tmp_3d ) |
---|
| 1854 | pcm_transpirationrate_av = tmp_3d(nzb:pch_index,:,:) |
---|
| 1855 | DEALLOCATE( tmp_3d ) |
---|
[4517] | 1856 | ENDIF |
---|
| 1857 | |
---|
| 1858 | END SUBROUTINE pcm_rrd_local_mpi |
---|
| 1859 | |
---|
| 1860 | |
---|
[4803] | 1861 | !--------------------------------------------------------------------------------------------------! |
---|
[4517] | 1862 | ! Description: |
---|
| 1863 | ! ------------ |
---|
[4803] | 1864 | !> Calculation of the tendency terms, accounting for the effect of the plant canopy on momentum and |
---|
| 1865 | !> scalar quantities. |
---|
[1682] | 1866 | !> |
---|
[4803] | 1867 | !> The canopy is located where the leaf area density lad_s(k,j,i) > 0.0 (defined on scalar grid), as |
---|
| 1868 | !> initialized in subroutine pcm_init. |
---|
| 1869 | !> The lad on the w-grid is vertically interpolated from the surrounding lad_s. The upper boundary |
---|
| 1870 | !> of the canopy is defined on the w-grid at k = pch_index. Here, the lad is zero. |
---|
[1682] | 1871 | !> |
---|
[4803] | 1872 | !> The canopy drag must be limited (previously accounted for by calculation of a limiting canopy |
---|
| 1873 | !> timestep for the determination of the maximum LES timestep in subroutine timestep), since it is |
---|
| 1874 | !> physically impossible that the canopy drag alone can locally change the sign of a velocity |
---|
| 1875 | !> component. This limitation is realized by calculating preliminary tendencies and velocities. It |
---|
| 1876 | !> is subsequently checked if the preliminary new velocity has a different sign than the current |
---|
| 1877 | !> velocity. If so, the tendency is limited in a way that the velocity can at maximum be reduced to |
---|
| 1878 | !> zero by the canopy drag. |
---|
[1682] | 1879 | !> |
---|
| 1880 | !> |
---|
| 1881 | !> Call for all grid points |
---|
[4803] | 1882 | !--------------------------------------------------------------------------------------------------! |
---|
[1826] | 1883 | SUBROUTINE pcm_tendency( component ) |
---|
[138] | 1884 | |
---|
[1682] | 1885 | INTEGER(iwp) :: component !< prognostic variable (u,v,w,pt,q,e) |
---|
| 1886 | INTEGER(iwp) :: i !< running index |
---|
| 1887 | INTEGER(iwp) :: j !< running index |
---|
| 1888 | INTEGER(iwp) :: k !< running index |
---|
[1721] | 1889 | INTEGER(iwp) :: kk !< running index for flat lad arrays |
---|
[1484] | 1890 | |
---|
[4335] | 1891 | LOGICAL :: building_edge_e !< control flag indicating an eastward-facing building edge |
---|
| 1892 | LOGICAL :: building_edge_n !< control flag indicating a north-facing building edge |
---|
| 1893 | LOGICAL :: building_edge_s !< control flag indicating a south-facing building edge |
---|
| 1894 | LOGICAL :: building_edge_w !< control flag indicating a westward-facing building edge |
---|
| 1895 | |
---|
[4770] | 1896 | REAL(wp) :: bad_local !< local bad value |
---|
[1682] | 1897 | REAL(wp) :: ddt_3d !< inverse of the LES timestep (dt_3d) |
---|
| 1898 | REAL(wp) :: lad_local !< local lad value |
---|
| 1899 | REAL(wp) :: pre_tend !< preliminary tendency |
---|
[4803] | 1900 | REAL(wp) :: pre_u !< preliminary u-value |
---|
| 1901 | REAL(wp) :: pre_v !< preliminary v-value |
---|
| 1902 | REAL(wp) :: pre_w !< preliminary w-value |
---|
[1484] | 1903 | |
---|
| 1904 | |
---|
| 1905 | ddt_3d = 1.0_wp / dt_3d |
---|
[4803] | 1906 | |
---|
[138] | 1907 | ! |
---|
[1484] | 1908 | !-- Compute drag for the three velocity components and the SGS-TKE: |
---|
[138] | 1909 | SELECT CASE ( component ) |
---|
| 1910 | |
---|
| 1911 | ! |
---|
| 1912 | !-- u-component |
---|
| 1913 | CASE ( 1 ) |
---|
| 1914 | DO i = nxlu, nxr |
---|
| 1915 | DO j = nys, nyn |
---|
[2232] | 1916 | ! |
---|
[4803] | 1917 | !-- Set control flags indicating east- and westward-orientated building edges. Note, |
---|
| 1918 | !-- building_egde_w is set from the perspective of the potential rooftop grid point, |
---|
| 1919 | !-- while building_edge_e is set from the perspective of the non-building grid point. |
---|
| 1920 | building_edge_w = ANY( BTEST( wall_flags_total_0(:,j,i), 6 ) ) & |
---|
| 1921 | .AND. .NOT. ANY( BTEST( wall_flags_total_0(:,j,i-1), 6 ) ) |
---|
| 1922 | building_edge_e = ANY( BTEST( wall_flags_total_0(:,j,i-1), 6 ) ) & |
---|
| 1923 | .AND. .NOT. ANY( BTEST( wall_flags_total_0(:,j,i), 6 ) ) |
---|
[4335] | 1924 | ! |
---|
[2232] | 1925 | !-- Determine topography-top index on u-grid |
---|
[4341] | 1926 | DO k = topo_top_ind(j,i,1)+1, topo_top_ind(j,i,1) + pch_index_ji(j,i) |
---|
[1484] | 1927 | |
---|
[4341] | 1928 | kk = k - topo_top_ind(j,i,1) !- lad arrays are defined flat |
---|
[1484] | 1929 | ! |
---|
[4803] | 1930 | !-- In order to create sharp boundaries of the plant canopy, the lad on the u-grid |
---|
| 1931 | !-- at index (k,j,i) is equal to lad_s(k,j,i), rather than being interpolated from |
---|
| 1932 | !-- the surrounding lad_s, because this would yield smaller lad at the canopy |
---|
| 1933 | !-- boundaries than inside of the canopy. |
---|
| 1934 | !-- For the same reason, the lad at the rightmost(i+1)canopy boundary on the |
---|
| 1935 | !-- u-grid equals lad_s(k,j,i), which is considered in the next if-statement. |
---|
| 1936 | !-- Note, at left-sided building edges this is not applied, here the LAD equals |
---|
| 1937 | !-- the LAD at grid point (k,j,i), in order to avoid that LAD is mistakenly mapped |
---|
| 1938 | !-- on top of a roof where (usually) no LAD is defined. The same is also valid for |
---|
| 1939 | !-- bad_s. |
---|
[1721] | 1940 | lad_local = lad_s(kk,j,i) |
---|
[4770] | 1941 | IF ( lad_local == 0.0_wp .AND. lad_s(kk,j,i-1) > 0.0_wp & |
---|
[4335] | 1942 | .AND. .NOT. building_edge_w ) lad_local = lad_s(kk,j,i-1) |
---|
[4770] | 1943 | |
---|
| 1944 | bad_local = bad_s(kk,j,i) |
---|
| 1945 | IF ( bad_local == 0.0_wp .AND. bad_s(kk,j,i-1) > 0.0_wp & |
---|
| 1946 | .AND. .NOT. building_edge_w ) bad_local = bad_s(kk,j,i-1) |
---|
[4335] | 1947 | ! |
---|
[4803] | 1948 | !-- In order to avoid that LAD is mistakenly considered at right-sided building |
---|
| 1949 | !-- edges (here the topography-top index for the u-component at index j,i is still |
---|
| 1950 | !-- on the building while the topography top for the scalar isn't), LAD is taken |
---|
| 1951 | !-- from grid point (j,i-1). The same is also valid for bad_s. |
---|
[4770] | 1952 | IF ( lad_local > 0.0_wp .AND. lad_s(kk,j,i-1) == 0.0_wp & |
---|
[4335] | 1953 | .AND. building_edge_e ) lad_local = lad_s(kk,j,i-1) |
---|
[4770] | 1954 | IF ( bad_local > 0.0_wp .AND. bad_s(kk,j,i-1) == 0.0_wp & |
---|
| 1955 | .AND. building_edge_e ) bad_local = bad_s(kk,j,i-1) |
---|
[1484] | 1956 | |
---|
| 1957 | pre_tend = 0.0_wp |
---|
| 1958 | pre_u = 0.0_wp |
---|
| 1959 | ! |
---|
| 1960 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
[4803] | 1961 | pre_tend = - canopy_drag_coeff * & |
---|
| 1962 | ( lad_local + bad_local ) * & |
---|
| 1963 | SQRT( u(k,j,i)**2 + & |
---|
| 1964 | ( 0.25_wp * ( v(k,j,i-1) + & |
---|
| 1965 | v(k,j,i) + & |
---|
| 1966 | v(k,j+1,i) + & |
---|
| 1967 | v(k,j+1,i-1) ) & |
---|
| 1968 | )**2 + & |
---|
| 1969 | ( 0.25_wp * ( w(k-1,j,i-1) + & |
---|
| 1970 | w(k-1,j,i) + & |
---|
| 1971 | w(k,j,i-1) + & |
---|
| 1972 | w(k,j,i) ) & |
---|
| 1973 | )**2 & |
---|
| 1974 | ) * & |
---|
[1484] | 1975 | u(k,j,i) |
---|
| 1976 | |
---|
| 1977 | ! |
---|
| 1978 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 1979 | pre_u = u(k,j,i) + dt_3d * pre_tend |
---|
| 1980 | ! |
---|
| 1981 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
| 1982 | !-- and in case the signs are different, limit the tendency |
---|
[4803] | 1983 | IF ( SIGN( pre_u,u(k,j,i) ) /= pre_u ) THEN |
---|
[1484] | 1984 | pre_tend = - u(k,j,i) * ddt_3d |
---|
| 1985 | ENDIF |
---|
| 1986 | ! |
---|
| 1987 | !-- Calculate final tendency |
---|
| 1988 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 1989 | |
---|
[138] | 1990 | ENDDO |
---|
| 1991 | ENDDO |
---|
| 1992 | ENDDO |
---|
| 1993 | |
---|
| 1994 | ! |
---|
| 1995 | !-- v-component |
---|
| 1996 | CASE ( 2 ) |
---|
| 1997 | DO i = nxl, nxr |
---|
| 1998 | DO j = nysv, nyn |
---|
[2232] | 1999 | ! |
---|
[4803] | 2000 | !-- Set control flags indicating north- and southward-orientated building edges. |
---|
| 2001 | !-- Note, building_egde_s is set from the perspective of the potential rooftop grid |
---|
| 2002 | !-- point, while building_edge_n is set from the perspective of the non-building grid |
---|
| 2003 | !-- point. |
---|
| 2004 | building_edge_s = ANY( BTEST( wall_flags_total_0(:,j,i), 6 ) ) & |
---|
| 2005 | .AND. .NOT. ANY( BTEST( wall_flags_total_0(:,j-1,i), 6 ) ) |
---|
| 2006 | building_edge_n = ANY( BTEST( wall_flags_total_0(:,j-1,i), 6 ) ) & |
---|
| 2007 | .AND. .NOT. ANY( BTEST( wall_flags_total_0(:,j,i), 6 ) ) |
---|
[4335] | 2008 | ! |
---|
[2232] | 2009 | !-- Determine topography-top index on v-grid |
---|
[4341] | 2010 | DO k = topo_top_ind(j,i,2)+1, topo_top_ind(j,i,2) + pch_index_ji(j,i) |
---|
[2317] | 2011 | |
---|
[4341] | 2012 | kk = k - topo_top_ind(j,i,2) !- lad arrays are defined flat |
---|
[1484] | 2013 | ! |
---|
[4803] | 2014 | !-- In order to create sharp boundaries of the plant canopy, the lad on the v-grid |
---|
| 2015 | !-- at index (k,j,i) is equal to lad_s(k,j,i), rather than being interpolated from |
---|
| 2016 | !-- the surrounding lad_s, because this would yield smaller lad at the canopy |
---|
| 2017 | !-- boundaries than inside of the canopy. |
---|
| 2018 | !-- For the same reason, the lad at the northmost (j+1) canopy boundary on the |
---|
| 2019 | !-- v-grid equals lad_s(k,j,i), which is considered in the next if-statement. |
---|
| 2020 | !-- Note, at left-sided building edges this is not applied, here the LAD equals |
---|
| 2021 | !-- the LAD at grid point (k,j,i), in order to avoid that LAD is mistakenly mapped |
---|
| 2022 | !-- on top of a roof where (usually) no LAD is defined. |
---|
[4770] | 2023 | !-- The same is also valid for bad_s. |
---|
[1721] | 2024 | lad_local = lad_s(kk,j,i) |
---|
[4770] | 2025 | IF ( lad_local == 0.0_wp .AND. lad_s(kk,j-1,i) > 0.0_wp & |
---|
[4803] | 2026 | .AND. .NOT. building_edge_s ) lad_local = lad_s(kk,j-1,i) |
---|
[4770] | 2027 | |
---|
| 2028 | bad_local = bad_s(kk,j,i) |
---|
| 2029 | IF ( bad_local == 0.0_wp .AND. bad_s(kk,j-1,i) > 0.0_wp & |
---|
[4803] | 2030 | .AND. .NOT. building_edge_s ) bad_local = bad_s(kk,j-1,i) |
---|
[4335] | 2031 | ! |
---|
[4803] | 2032 | !-- In order to avoid that LAD is mistakenly considered at right-sided building |
---|
| 2033 | !-- edges (here the topography-top index for the u-component at index j,i is still |
---|
| 2034 | !-- on the building while the topography top for the scalar isn't), LAD is taken |
---|
| 2035 | !-- from grid point (j,i-1). The same is also valid for bad_s. |
---|
[4770] | 2036 | IF ( lad_local > 0.0_wp .AND. lad_s(kk,j-1,i) == 0.0_wp & |
---|
[4803] | 2037 | .AND. building_edge_n ) lad_local = lad_s(kk,j-1,i) |
---|
[1484] | 2038 | |
---|
[4770] | 2039 | IF ( bad_local > 0.0_wp .AND. bad_s(kk,j-1,i) == 0.0_wp & |
---|
[4803] | 2040 | .AND. building_edge_n ) bad_local = bad_s(kk,j-1,i) |
---|
[4770] | 2041 | |
---|
[1484] | 2042 | pre_tend = 0.0_wp |
---|
| 2043 | pre_v = 0.0_wp |
---|
| 2044 | ! |
---|
| 2045 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
[4803] | 2046 | pre_tend = - canopy_drag_coeff * & |
---|
| 2047 | ( lad_local + bad_local ) * & |
---|
| 2048 | SQRT( ( 0.25_wp * ( u(k,j-1,i) + & |
---|
| 2049 | u(k,j-1,i+1) + & |
---|
| 2050 | u(k,j,i) + & |
---|
| 2051 | u(k,j,i+1) ) & |
---|
| 2052 | )**2 + & |
---|
| 2053 | v(k,j,i)**2 + & |
---|
| 2054 | ( 0.25_wp * ( w(k-1,j-1,i) + & |
---|
| 2055 | w(k-1,j,i) + & |
---|
| 2056 | w(k,j-1,i) + & |
---|
| 2057 | w(k,j,i) ) & |
---|
| 2058 | )**2 & |
---|
| 2059 | ) * & |
---|
[1484] | 2060 | v(k,j,i) |
---|
| 2061 | |
---|
| 2062 | ! |
---|
| 2063 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 2064 | pre_v = v(k,j,i) + dt_3d * pre_tend |
---|
| 2065 | ! |
---|
[4803] | 2066 | !-- Compare sign of old velocity and new preliminary velocity, and in case the |
---|
| 2067 | !-- signs are different, limit the tendency. |
---|
| 2068 | IF ( SIGN( pre_v,v(k,j,i) ) /= pre_v ) THEN |
---|
[1484] | 2069 | pre_tend = - v(k,j,i) * ddt_3d |
---|
| 2070 | ELSE |
---|
| 2071 | pre_tend = pre_tend |
---|
| 2072 | ENDIF |
---|
| 2073 | ! |
---|
| 2074 | !-- Calculate final tendency |
---|
| 2075 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 2076 | |
---|
[138] | 2077 | ENDDO |
---|
| 2078 | ENDDO |
---|
| 2079 | ENDDO |
---|
| 2080 | |
---|
| 2081 | ! |
---|
| 2082 | !-- w-component |
---|
| 2083 | CASE ( 3 ) |
---|
| 2084 | DO i = nxl, nxr |
---|
| 2085 | DO j = nys, nyn |
---|
[2232] | 2086 | ! |
---|
| 2087 | !-- Determine topography-top index on w-grid |
---|
[4341] | 2088 | DO k = topo_top_ind(j,i,3)+1, topo_top_ind(j,i,3) + pch_index_ji(j,i) - 1 |
---|
[2317] | 2089 | |
---|
[4341] | 2090 | kk = k - topo_top_ind(j,i,3) !- lad arrays are defined flat |
---|
[1484] | 2091 | |
---|
| 2092 | pre_tend = 0.0_wp |
---|
| 2093 | pre_w = 0.0_wp |
---|
| 2094 | ! |
---|
| 2095 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
[4803] | 2096 | pre_tend = - canopy_drag_coeff * & |
---|
| 2097 | ( 0.5_wp * ( lad_s(kk+1,j,i) + lad_s(kk,j,i) ) + & |
---|
| 2098 | 0.5_wp * ( bad_s(kk+1,j,i) + bad_s(kk,j,i) ) ) * & |
---|
| 2099 | SQRT( ( 0.25_wp * ( u(k,j,i) + & |
---|
| 2100 | u(k,j,i+1) + & |
---|
| 2101 | u(k+1,j,i) + & |
---|
| 2102 | u(k+1,j,i+1) ) & |
---|
| 2103 | )**2 + & |
---|
| 2104 | ( 0.25_wp * ( v(k,j,i) + & |
---|
| 2105 | v(k,j+1,i) + & |
---|
| 2106 | v(k+1,j,i) + & |
---|
| 2107 | v(k+1,j+1,i) ) & |
---|
| 2108 | )**2 + & |
---|
| 2109 | w(k,j,i)**2 & |
---|
| 2110 | ) * & |
---|
[1484] | 2111 | w(k,j,i) |
---|
| 2112 | ! |
---|
| 2113 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 2114 | pre_w = w(k,j,i) + dt_3d * pre_tend |
---|
| 2115 | ! |
---|
[4803] | 2116 | !-- Compare sign of old velocity and new preliminary velocity, and in case the |
---|
| 2117 | !-- signs are different, limit the tendency |
---|
| 2118 | IF ( SIGN( pre_w,w(k,j,i) ) /= pre_w ) THEN |
---|
[1484] | 2119 | pre_tend = - w(k,j,i) * ddt_3d |
---|
| 2120 | ELSE |
---|
| 2121 | pre_tend = pre_tend |
---|
| 2122 | ENDIF |
---|
| 2123 | ! |
---|
| 2124 | !-- Calculate final tendency |
---|
| 2125 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 2126 | |
---|
[138] | 2127 | ENDDO |
---|
| 2128 | ENDDO |
---|
| 2129 | ENDDO |
---|
| 2130 | |
---|
| 2131 | ! |
---|
[153] | 2132 | !-- potential temperature |
---|
[138] | 2133 | CASE ( 4 ) |
---|
[4803] | 2134 | IF ( humidity ) THEN |
---|
[3449] | 2135 | DO i = nxl, nxr |
---|
| 2136 | DO j = nys, nyn |
---|
| 2137 | !-- Determine topography-top index on scalar-grid |
---|
[4341] | 2138 | DO k = topo_top_ind(j,i,0)+1, topo_top_ind(j,i,0) + pch_index_ji(j,i) |
---|
| 2139 | kk = k - topo_top_ind(j,i,0) !- lad arrays are defined flat |
---|
| 2140 | tend(k,j,i) = tend(k,j,i) + pcm_heating_rate(kk,j,i) - pcm_latent_rate(kk,j,i) |
---|
[3449] | 2141 | ENDDO |
---|
[153] | 2142 | ENDDO |
---|
| 2143 | ENDDO |
---|
[3449] | 2144 | ELSE |
---|
| 2145 | DO i = nxl, nxr |
---|
| 2146 | DO j = nys, nyn |
---|
| 2147 | !-- Determine topography-top index on scalar-grid |
---|
[4341] | 2148 | DO k = topo_top_ind(j,i,0)+1, topo_top_ind(j,i,0) + pch_index_ji(j,i) |
---|
| 2149 | kk = k - topo_top_ind(j,i,0) !- lad arrays are defined flat |
---|
| 2150 | tend(k,j,i) = tend(k,j,i) + pcm_heating_rate(kk,j,i) |
---|
[3449] | 2151 | ENDDO |
---|
| 2152 | ENDDO |
---|
| 2153 | ENDDO |
---|
| 2154 | ENDIF |
---|
[153] | 2155 | |
---|
| 2156 | ! |
---|
[1960] | 2157 | !-- humidity |
---|
[153] | 2158 | CASE ( 5 ) |
---|
| 2159 | DO i = nxl, nxr |
---|
| 2160 | DO j = nys, nyn |
---|
[2232] | 2161 | ! |
---|
| 2162 | !-- Determine topography-top index on scalar-grid |
---|
[4341] | 2163 | DO k = topo_top_ind(j,i,0)+1, topo_top_ind(j,i,0) + pch_index_ji(j,i) |
---|
[2317] | 2164 | |
---|
[4341] | 2165 | kk = k - topo_top_ind(j,i,0) !- lad arrays are defined flat |
---|
[2232] | 2166 | |
---|
[4803] | 2167 | IF ( .NOT. plant_canopy_transpiration ) THEN |
---|
[4341] | 2168 | ! pcm_transpiration_rate is calculated in radiation model |
---|
[3449] | 2169 | ! in case of plant_canopy_transpiration = .T. |
---|
| 2170 | ! to include also the dependecy to the radiation |
---|
| 2171 | ! in the plant canopy box |
---|
[4803] | 2172 | pcm_transpiration_rate(kk,j,i) = - leaf_scalar_exch_coeff & |
---|
| 2173 | * lad_s(kk,j,i) * & |
---|
| 2174 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 2175 | u(k,j,i+1) ) & |
---|
| 2176 | )**2 + & |
---|
| 2177 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 2178 | v(k,j+1,i) ) & |
---|
| 2179 | )**2 + & |
---|
| 2180 | ( 0.5_wp * ( w(k-1,j,i) + & |
---|
| 2181 | w(k,j,i) ) & |
---|
| 2182 | )**2 & |
---|
| 2183 | ) * & |
---|
| 2184 | ( q(k,j,i) - leaf_surface_conc ) |
---|
[3449] | 2185 | ENDIF |
---|
| 2186 | |
---|
[4341] | 2187 | tend(k,j,i) = tend(k,j,i) + pcm_transpiration_rate(kk,j,i) |
---|
[153] | 2188 | ENDDO |
---|
| 2189 | ENDDO |
---|
| 2190 | ENDDO |
---|
| 2191 | |
---|
| 2192 | ! |
---|
| 2193 | !-- sgs-tke |
---|
| 2194 | CASE ( 6 ) |
---|
| 2195 | DO i = nxl, nxr |
---|
| 2196 | DO j = nys, nyn |
---|
[2232] | 2197 | ! |
---|
| 2198 | !-- Determine topography-top index on scalar-grid |
---|
[4341] | 2199 | DO k = topo_top_ind(j,i,0)+1, topo_top_ind(j,i,0) + pch_index_ji(j,i) |
---|
[2317] | 2200 | |
---|
[4341] | 2201 | kk = k - topo_top_ind(j,i,0) !- lad arrays are defined flat |
---|
[4803] | 2202 | tend(k,j,i) = tend(k,j,i) - 2.0_wp * canopy_drag_coeff * & |
---|
| 2203 | ( lad_s(kk,j,i) + bad_s(kk,j,i) ) * & |
---|
| 2204 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 2205 | u(k,j,i+1) ) & |
---|
| 2206 | )**2 + & |
---|
| 2207 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 2208 | v(k,j+1,i) ) & |
---|
| 2209 | )**2 + & |
---|
| 2210 | ( 0.5_wp * ( w(k,j,i) + & |
---|
| 2211 | w(k+1,j,i) ) & |
---|
| 2212 | )**2 & |
---|
| 2213 | ) * & |
---|
| 2214 | e(k,j,i) |
---|
[138] | 2215 | ENDDO |
---|
| 2216 | ENDDO |
---|
[4803] | 2217 | ENDDO |
---|
[1960] | 2218 | ! |
---|
| 2219 | !-- scalar concentration |
---|
| 2220 | CASE ( 7 ) |
---|
| 2221 | DO i = nxl, nxr |
---|
| 2222 | DO j = nys, nyn |
---|
[2232] | 2223 | ! |
---|
| 2224 | !-- Determine topography-top index on scalar-grid |
---|
[4341] | 2225 | DO k = topo_top_ind(j,i,0)+1, topo_top_ind(j,i,0) + pch_index_ji(j,i) |
---|
[2317] | 2226 | |
---|
[4341] | 2227 | kk = k - topo_top_ind(j,i,0) !- lad arrays are defined flat |
---|
[4803] | 2228 | tend(k,j,i) = tend(k,j,i) - leaf_scalar_exch_coeff * & |
---|
| 2229 | lad_s(kk,j,i) * & |
---|
| 2230 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 2231 | u(k,j,i+1) ) & |
---|
| 2232 | )**2 + & |
---|
| 2233 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 2234 | v(k,j+1,i) ) & |
---|
| 2235 | )**2 + & |
---|
| 2236 | ( 0.5_wp * ( w(k-1,j,i) + & |
---|
| 2237 | w(k,j,i) ) & |
---|
| 2238 | )**2 & |
---|
| 2239 | ) * & |
---|
| 2240 | ( s(k,j,i) - leaf_surface_conc ) |
---|
[1960] | 2241 | ENDDO |
---|
| 2242 | ENDDO |
---|
[4803] | 2243 | ENDDO |
---|
[1484] | 2244 | |
---|
| 2245 | |
---|
[1960] | 2246 | |
---|
[138] | 2247 | CASE DEFAULT |
---|
| 2248 | |
---|
[257] | 2249 | WRITE( message_string, * ) 'wrong component: ', component |
---|
[4803] | 2250 | CALL message( 'pcm_tendency', 'PA0279', 1, 2, 0, 6, 0 ) |
---|
[138] | 2251 | |
---|
| 2252 | END SELECT |
---|
| 2253 | |
---|
[1826] | 2254 | END SUBROUTINE pcm_tendency |
---|
[138] | 2255 | |
---|
| 2256 | |
---|
[4803] | 2257 | !--------------------------------------------------------------------------------------------------! |
---|
[1484] | 2258 | ! Description: |
---|
| 2259 | ! ------------ |
---|
[4803] | 2260 | !> Calculation of the tendency terms, accounting for the effect of the plant canopy on momentum and |
---|
| 2261 | !> scalar quantities. |
---|
[1682] | 2262 | !> |
---|
[4803] | 2263 | !> The canopy is located where the leaf area density lad_s(k,j,i) > 0.0 (defined on scalar grid), as |
---|
| 2264 | !> initialized in subroutine pcm_init. |
---|
| 2265 | !> The lad on the w-grid is vertically interpolated from the surrounding lad_s. The upper boundary |
---|
| 2266 | !> of the canopy is defined on the w-grid at k = pch_index. Here, the lad is zero. |
---|
[1682] | 2267 | !> |
---|
[4803] | 2268 | !> The canopy drag must be limited (previously accounted for by calculation of a limiting canopy |
---|
| 2269 | !> timestep for the determination of the maximum LES timestep in subroutine timestep), since it is |
---|
| 2270 | !> physically impossible that the canopy drag alone can locally change the sign of a velocity |
---|
| 2271 | !> component. This limitation is realized by calculating preliminary tendencies and velocities. It |
---|
| 2272 | !> is subsequently checked if the preliminary new velocity has a different sign than the current |
---|
| 2273 | !> velocity. If so, the tendency is limited in a way that the velocity can at maximum be reduced to |
---|
| 2274 | !> zero by the canopy drag. |
---|
[1682] | 2275 | !> |
---|
| 2276 | !> |
---|
| 2277 | !> Call for grid point i,j |
---|
[4803] | 2278 | !--------------------------------------------------------------------------------------------------! |
---|
[1826] | 2279 | SUBROUTINE pcm_tendency_ij( i, j, component ) |
---|
[138] | 2280 | |
---|
[1682] | 2281 | INTEGER(iwp) :: component !< prognostic variable (u,v,w,pt,q,e) |
---|
| 2282 | INTEGER(iwp) :: i !< running index |
---|
| 2283 | INTEGER(iwp) :: j !< running index |
---|
| 2284 | INTEGER(iwp) :: k !< running index |
---|
[1721] | 2285 | INTEGER(iwp) :: kk !< running index for flat lad arrays |
---|
[138] | 2286 | |
---|
[4314] | 2287 | LOGICAL :: building_edge_e !< control flag indicating an eastward-facing building edge |
---|
| 2288 | LOGICAL :: building_edge_n !< control flag indicating a north-facing building edge |
---|
| 2289 | LOGICAL :: building_edge_s !< control flag indicating a south-facing building edge |
---|
| 2290 | LOGICAL :: building_edge_w !< control flag indicating a westward-facing building edge |
---|
| 2291 | |
---|
[4770] | 2292 | REAL(wp) :: bad_local !< local lad value |
---|
[1682] | 2293 | REAL(wp) :: ddt_3d !< inverse of the LES timestep (dt_3d) |
---|
| 2294 | REAL(wp) :: lad_local !< local lad value |
---|
| 2295 | REAL(wp) :: pre_tend !< preliminary tendency |
---|
[4803] | 2296 | REAL(wp) :: pre_u !< preliminary u-value |
---|
| 2297 | REAL(wp) :: pre_v !< preliminary v-value |
---|
| 2298 | REAL(wp) :: pre_w !< preliminary w-value |
---|
[1484] | 2299 | |
---|
| 2300 | |
---|
| 2301 | ddt_3d = 1.0_wp / dt_3d |
---|
[138] | 2302 | ! |
---|
[1484] | 2303 | !-- Compute drag for the three velocity components and the SGS-TKE |
---|
[142] | 2304 | SELECT CASE ( component ) |
---|
[138] | 2305 | |
---|
| 2306 | ! |
---|
[142] | 2307 | !-- u-component |
---|
[1484] | 2308 | CASE ( 1 ) |
---|
[2232] | 2309 | ! |
---|
[4803] | 2310 | !-- Set control flags indicating east- and westward-orientated building edges. Note, |
---|
| 2311 | !-- building_egde_w is set from the perspective of the potential rooftop grid point, while |
---|
| 2312 | !-- building_edge_e is set from the perspective of the non-building grid point. |
---|
| 2313 | building_edge_w = ANY( BTEST( wall_flags_total_0(:,j,i), 6 ) ) .AND. & |
---|
| 2314 | .NOT. ANY( BTEST( wall_flags_total_0(:,j,i-1), 6 ) ) |
---|
| 2315 | building_edge_e = ANY( BTEST( wall_flags_total_0(:,j,i-1), 6 ) ) .AND. & |
---|
| 2316 | .NOT. ANY( BTEST( wall_flags_total_0(:,j,i), 6 ) ) |
---|
[4314] | 2317 | ! |
---|
[2232] | 2318 | !-- Determine topography-top index on u-grid |
---|
[4341] | 2319 | DO k = topo_top_ind(j,i,1) + 1, topo_top_ind(j,i,1) + pch_index_ji(j,i) |
---|
[2317] | 2320 | |
---|
[4341] | 2321 | kk = k - topo_top_ind(j,i,1) !- lad arrays are defined flat |
---|
[138] | 2322 | |
---|
| 2323 | ! |
---|
[4803] | 2324 | !-- In order to create sharp boundaries of the plant canopy, the lad on the u-grid at |
---|
| 2325 | !-- index (k,j,i) is equal to lad_s(k,j,i), rather than being interpolated from the |
---|
| 2326 | !-- surrounding lad_s, because this would yield smaller lad at the canopy boundaries |
---|
[1484] | 2327 | !-- than inside of the canopy. |
---|
[4803] | 2328 | !-- For the same reason, the lad at the rightmost(i+1)canopy boundary on the u-grid |
---|
| 2329 | !-- equals lad_s(k,j,i), which is considered in the next if-statement. Note, at |
---|
| 2330 | !-- left-sided building edges this is not applied, here the LAD is equals the LAD at |
---|
| 2331 | !-- grid point (k,j,i), in order to avoid that LAD is mistakenly mapped on top of a roof |
---|
| 2332 | !-- where (usually) is no LAD is defined. |
---|
[4770] | 2333 | !-- The same is also valid for bad_s. |
---|
[1721] | 2334 | lad_local = lad_s(kk,j,i) |
---|
[4770] | 2335 | IF ( lad_local == 0.0_wp .AND. lad_s(kk,j,i-1) > 0.0_wp .AND. & |
---|
[4314] | 2336 | .NOT. building_edge_w ) lad_local = lad_s(kk,j,i-1) |
---|
[4770] | 2337 | |
---|
| 2338 | bad_local = bad_s(kk,j,i) |
---|
| 2339 | IF ( bad_local == 0.0_wp .AND. bad_s(kk,j,i-1) > 0.0_wp .AND. & |
---|
| 2340 | .NOT. building_edge_w ) bad_local = bad_s(kk,j,i-1) |
---|
[4314] | 2341 | ! |
---|
[4803] | 2342 | !-- In order to avoid that LAD is mistakenly considered at right-sided building edges |
---|
| 2343 | !-- (here the topography-top index for the u-component at index j,i is still on the |
---|
| 2344 | !-- building while the topography top for the scalar isn't), LAD is taken from grid |
---|
[4770] | 2345 | !-- point (j,i-1). The same is also valid for bad_s. |
---|
| 2346 | IF ( lad_local > 0.0_wp .AND. lad_s(kk,j,i-1) == 0.0_wp .AND. & |
---|
[4314] | 2347 | building_edge_e ) lad_local = lad_s(kk,j,i-1) |
---|
[4770] | 2348 | IF ( bad_local > 0.0_wp .AND. bad_s(kk,j,i-1) == 0.0_wp .AND. & |
---|
| 2349 | building_edge_e ) bad_local = bad_s(kk,j,i-1) |
---|
[1484] | 2350 | |
---|
| 2351 | pre_tend = 0.0_wp |
---|
| 2352 | pre_u = 0.0_wp |
---|
| 2353 | ! |
---|
| 2354 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
[4803] | 2355 | pre_tend = - canopy_drag_coeff * & |
---|
| 2356 | ( lad_local + bad_local ) * & |
---|
| 2357 | SQRT( u(k,j,i)**2 + & |
---|
| 2358 | ( 0.25_wp * ( v(k,j,i-1) + & |
---|
| 2359 | v(k,j,i) + & |
---|
| 2360 | v(k,j+1,i) + & |
---|
| 2361 | v(k,j+1,i-1) ) & |
---|
| 2362 | )**2 + & |
---|
| 2363 | ( 0.25_wp * ( w(k-1,j,i-1) + & |
---|
| 2364 | w(k-1,j,i) + & |
---|
| 2365 | w(k,j,i-1) + & |
---|
| 2366 | w(k,j,i) ) & |
---|
| 2367 | )**2 & |
---|
| 2368 | ) * & |
---|
[1484] | 2369 | u(k,j,i) |
---|
| 2370 | |
---|
| 2371 | ! |
---|
| 2372 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 2373 | pre_u = u(k,j,i) + dt_3d * pre_tend |
---|
| 2374 | ! |
---|
[4803] | 2375 | !-- Compare sign of old velocity and new preliminary velocity, and in case the signs are |
---|
| 2376 | !-- different, limit the tendency. |
---|
| 2377 | IF ( SIGN( pre_u,u(k,j,i) ) /= pre_u ) THEN |
---|
[1484] | 2378 | pre_tend = - u(k,j,i) * ddt_3d |
---|
| 2379 | ELSE |
---|
| 2380 | pre_tend = pre_tend |
---|
| 2381 | ENDIF |
---|
| 2382 | ! |
---|
| 2383 | !-- Calculate final tendency |
---|
| 2384 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 2385 | ENDDO |
---|
| 2386 | |
---|
| 2387 | |
---|
| 2388 | ! |
---|
[142] | 2389 | !-- v-component |
---|
[1484] | 2390 | CASE ( 2 ) |
---|
[2232] | 2391 | ! |
---|
[4803] | 2392 | !-- Set control flags indicating north- and southward-orientated building edges. Note, |
---|
| 2393 | !-- building_egde_s is set from the perspective of the potential rooftop grid point, while |
---|
| 2394 | !-- building_edge_n is set from the perspective of the non-building grid point. |
---|
| 2395 | building_edge_s = ANY( BTEST( wall_flags_total_0(:,j,i), 6 ) ) .AND. & |
---|
| 2396 | .NOT. ANY( BTEST( wall_flags_total_0(:,j-1,i), 6 ) ) |
---|
| 2397 | building_edge_n = ANY( BTEST( wall_flags_total_0(:,j-1,i), 6 ) ) .AND. & |
---|
| 2398 | .NOT. ANY( BTEST( wall_flags_total_0(:,j,i), 6 ) ) |
---|
[4314] | 2399 | ! |
---|
[2232] | 2400 | !-- Determine topography-top index on v-grid |
---|
[4341] | 2401 | DO k = topo_top_ind(j,i,2) + 1, topo_top_ind(j,i,2) + pch_index_ji(j,i) |
---|
[138] | 2402 | |
---|
[4341] | 2403 | kk = k - topo_top_ind(j,i,2) !- lad arrays are defined flat |
---|
[138] | 2404 | ! |
---|
[4803] | 2405 | !-- In order to create sharp boundaries of the plant canopy, the lad on the v-grid at |
---|
| 2406 | !-- index (k,j,i) is equal to lad_s(k,j,i), rather than being interpolated from the |
---|
| 2407 | !-- surrounding lad_s, because this would yield smaller lad at the canopy boundaries |
---|
[1484] | 2408 | !-- than inside of the canopy. |
---|
[4803] | 2409 | !-- For the same reason, the lad at the northmost (j+1) canopy boundary on the v-grid |
---|
| 2410 | !-- equals lad_s(k,j,i), which is considered in the next if-statement. Note, at |
---|
| 2411 | !-- left-sided building edges this is not applied, here the LAD is equals the LAD at |
---|
| 2412 | !-- grid point (k,j,i), in order to avoid that LAD is mistakenly mapped on top of a roof |
---|
| 2413 | !-- where (usually) is no LAD is defined. |
---|
[4770] | 2414 | !-- The same is also valid for bad_s. |
---|
[1721] | 2415 | lad_local = lad_s(kk,j,i) |
---|
[4770] | 2416 | IF ( lad_local == 0.0_wp .AND. lad_s(kk,j-1,i) > 0.0_wp .AND. & |
---|
[4314] | 2417 | .NOT. building_edge_s ) lad_local = lad_s(kk,j-1,i) |
---|
[4770] | 2418 | |
---|
| 2419 | bad_local = bad_s(kk,j,i) |
---|
| 2420 | IF ( bad_local == 0.0_wp .AND. bad_s(kk,j-1,i) > 0.0_wp .AND. & |
---|
| 2421 | .NOT. building_edge_s ) bad_local = bad_s(kk,j-1,i) |
---|
[4314] | 2422 | ! |
---|
[4803] | 2423 | !-- In order to avoid that LAD is mistakenly considered at right-sided building edges |
---|
| 2424 | !-- (here the topography-top index for the u-component at index j,i is still on the |
---|
| 2425 | !-- building while the topography top for the scalar isn't), LAD is taken from grid |
---|
[4770] | 2426 | !-- point (j,i-1). The same is also valid for bad_s. |
---|
| 2427 | IF ( lad_local > 0.0_wp .AND. lad_s(kk,j-1,i) == 0.0_wp .AND. & |
---|
[4314] | 2428 | building_edge_n ) lad_local = lad_s(kk,j-1,i) |
---|
[4770] | 2429 | IF ( bad_local > 0.0_wp .AND. bad_s(kk,j-1,i) == 0.0_wp .AND. & |
---|
| 2430 | building_edge_n ) bad_local = bad_s(kk,j-1,i) |
---|
[1484] | 2431 | |
---|
| 2432 | pre_tend = 0.0_wp |
---|
| 2433 | pre_v = 0.0_wp |
---|
| 2434 | ! |
---|
| 2435 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
[4803] | 2436 | pre_tend = - canopy_drag_coeff * & |
---|
| 2437 | ( lad_local + bad_local ) * & |
---|
| 2438 | SQRT( ( 0.25_wp * ( u(k,j-1,i) + & |
---|
| 2439 | u(k,j-1,i+1) + & |
---|
| 2440 | u(k,j,i) + & |
---|
| 2441 | u(k,j,i+1) ) & |
---|
| 2442 | )**2 + & |
---|
| 2443 | v(k,j,i)**2 + & |
---|
| 2444 | ( 0.25_wp * ( w(k-1,j-1,i) + & |
---|
| 2445 | w(k-1,j,i) + & |
---|
| 2446 | w(k,j-1,i) + & |
---|
| 2447 | w(k,j,i) ) & |
---|
| 2448 | )**2 & |
---|
| 2449 | ) * & |
---|
[1484] | 2450 | v(k,j,i) |
---|
| 2451 | |
---|
| 2452 | ! |
---|
| 2453 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 2454 | pre_v = v(k,j,i) + dt_3d * pre_tend |
---|
| 2455 | ! |
---|
| 2456 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
| 2457 | !-- and in case the signs are different, limit the tendency |
---|
[4803] | 2458 | IF ( SIGN( pre_v,v(k,j,i) ) /= pre_v ) THEN |
---|
[1484] | 2459 | pre_tend = - v(k,j,i) * ddt_3d |
---|
| 2460 | ELSE |
---|
| 2461 | pre_tend = pre_tend |
---|
| 2462 | ENDIF |
---|
| 2463 | ! |
---|
| 2464 | !-- Calculate final tendency |
---|
| 2465 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 2466 | ENDDO |
---|
| 2467 | |
---|
| 2468 | |
---|
| 2469 | ! |
---|
[142] | 2470 | !-- w-component |
---|
[1484] | 2471 | CASE ( 3 ) |
---|
[2232] | 2472 | ! |
---|
| 2473 | !-- Determine topography-top index on w-grid |
---|
[4341] | 2474 | DO k = topo_top_ind(j,i,3) + 1, topo_top_ind(j,i,3) + pch_index_ji(j,i) - 1 |
---|
[2317] | 2475 | |
---|
[4341] | 2476 | kk = k - topo_top_ind(j,i,3) !- lad arrays are defined flat |
---|
[138] | 2477 | |
---|
[1484] | 2478 | pre_tend = 0.0_wp |
---|
| 2479 | pre_w = 0.0_wp |
---|
[138] | 2480 | ! |
---|
[1484] | 2481 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
[4803] | 2482 | pre_tend = - canopy_drag_coeff * & |
---|
| 2483 | ( 0.5_wp * ( lad_s(kk+1,j,i) + lad_s(kk,j,i) ) + & |
---|
| 2484 | 0.5_wp * ( bad_s(kk+1,j,i) + bad_s(kk,j,i) ) ) * & |
---|
| 2485 | SQRT( ( 0.25_wp * ( u(k,j,i) + & |
---|
| 2486 | u(k,j,i+1) + & |
---|
| 2487 | u(k+1,j,i) + & |
---|
| 2488 | u(k+1,j,i+1) ) & |
---|
| 2489 | )**2 + & |
---|
| 2490 | ( 0.25_wp * ( v(k,j,i) + & |
---|
| 2491 | v(k,j+1,i) + & |
---|
| 2492 | v(k+1,j,i) + & |
---|
| 2493 | v(k+1,j+1,i) ) & |
---|
| 2494 | )**2 + & |
---|
| 2495 | w(k,j,i)**2 & |
---|
| 2496 | ) * & |
---|
[1484] | 2497 | w(k,j,i) |
---|
| 2498 | ! |
---|
| 2499 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 2500 | pre_w = w(k,j,i) + dt_3d * pre_tend |
---|
| 2501 | ! |
---|
[4803] | 2502 | !-- Compare sign of old velocity and new preliminary velocity, and in case the signs are |
---|
| 2503 | !-- different, limit the tendency. |
---|
| 2504 | IF ( SIGN( pre_w,w(k,j,i) ) /= pre_w ) THEN |
---|
[1484] | 2505 | pre_tend = - w(k,j,i) * ddt_3d |
---|
| 2506 | ELSE |
---|
| 2507 | pre_tend = pre_tend |
---|
| 2508 | ENDIF |
---|
| 2509 | ! |
---|
| 2510 | !-- Calculate final tendency |
---|
| 2511 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 2512 | ENDDO |
---|
| 2513 | |
---|
| 2514 | ! |
---|
[153] | 2515 | !-- potential temperature |
---|
| 2516 | CASE ( 4 ) |
---|
[2232] | 2517 | ! |
---|
| 2518 | !-- Determine topography-top index on scalar grid |
---|
[4803] | 2519 | IF ( humidity ) THEN |
---|
[4341] | 2520 | DO k = topo_top_ind(j,i,0) + 1, topo_top_ind(j,i,0) + pch_index_ji(j,i) |
---|
| 2521 | kk = k - topo_top_ind(j,i,0) !- lad arrays are defined flat |
---|
[4803] | 2522 | tend(k,j,i) = tend(k,j,i) + pcm_heating_rate(kk,j,i) - pcm_latent_rate(kk,j,i) |
---|
[3449] | 2523 | ENDDO |
---|
| 2524 | ELSE |
---|
[4341] | 2525 | DO k = topo_top_ind(j,i,0) + 1, topo_top_ind(j,i,0) + pch_index_ji(j,i) |
---|
| 2526 | kk = k - topo_top_ind(j,i,0) !- lad arrays are defined flat |
---|
| 2527 | tend(k,j,i) = tend(k,j,i) + pcm_heating_rate(kk,j,i) |
---|
[3449] | 2528 | ENDDO |
---|
| 2529 | ENDIF |
---|
[153] | 2530 | |
---|
| 2531 | ! |
---|
[1960] | 2532 | !-- humidity |
---|
[153] | 2533 | CASE ( 5 ) |
---|
[2232] | 2534 | ! |
---|
| 2535 | !-- Determine topography-top index on scalar grid |
---|
[4341] | 2536 | DO k = topo_top_ind(j,i,0) + 1, topo_top_ind(j,i,0) + pch_index_ji(j,i) |
---|
| 2537 | kk = k - topo_top_ind(j,i,0) !- lad arrays are defined flat |
---|
[4803] | 2538 | IF ( .NOT. plant_canopy_transpiration ) THEN |
---|
[4341] | 2539 | ! pcm_transpiration_rate is calculated in radiation model |
---|
[3449] | 2540 | ! in case of plant_canopy_transpiration = .T. |
---|
| 2541 | ! to include also the dependecy to the radiation |
---|
| 2542 | ! in the plant canopy box |
---|
[4803] | 2543 | pcm_transpiration_rate(kk,j,i) = - leaf_scalar_exch_coeff & |
---|
| 2544 | * lad_s(kk,j,i) * & |
---|
| 2545 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 2546 | u(k,j,i+1) ) & |
---|
| 2547 | )**2 + & |
---|
| 2548 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 2549 | v(k,j+1,i) ) & |
---|
| 2550 | )**2 + & |
---|
| 2551 | ( 0.5_wp * ( w(k-1,j,i) + & |
---|
| 2552 | w(k,j,i) ) & |
---|
| 2553 | )**2 & |
---|
| 2554 | ) * & |
---|
| 2555 | ( q(k,j,i) - leaf_surface_conc ) |
---|
[3449] | 2556 | ENDIF |
---|
[2232] | 2557 | |
---|
[4341] | 2558 | tend(k,j,i) = tend(k,j,i) + pcm_transpiration_rate(kk,j,i) |
---|
[3014] | 2559 | |
---|
[4803] | 2560 | ENDDO |
---|
[153] | 2561 | |
---|
| 2562 | ! |
---|
[142] | 2563 | !-- sgs-tke |
---|
[1484] | 2564 | CASE ( 6 ) |
---|
[2232] | 2565 | ! |
---|
| 2566 | !-- Determine topography-top index on scalar grid |
---|
[4341] | 2567 | DO k = topo_top_ind(j,i,0) + 1, topo_top_ind(j,i,0) + pch_index_ji(j,i) |
---|
[2317] | 2568 | |
---|
[4341] | 2569 | kk = k - topo_top_ind(j,i,0) |
---|
[4803] | 2570 | tend(k,j,i) = tend(k,j,i) - 2.0_wp * canopy_drag_coeff * & |
---|
| 2571 | ( lad_s(kk,j,i) + bad_s(kk,j,i) ) * & |
---|
| 2572 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 2573 | u(k,j,i+1) ) & |
---|
| 2574 | )**2 + & |
---|
| 2575 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 2576 | v(k,j+1,i) ) & |
---|
| 2577 | )**2 + & |
---|
| 2578 | ( 0.5_wp * ( w(k,j,i) + & |
---|
| 2579 | w(k+1,j,i) ) & |
---|
| 2580 | )**2 & |
---|
| 2581 | ) * & |
---|
| 2582 | e(k,j,i) |
---|
[1484] | 2583 | ENDDO |
---|
[1960] | 2584 | ! |
---|
[4803] | 2585 | !-- scalar concentration |
---|
[1960] | 2586 | CASE ( 7 ) |
---|
[2232] | 2587 | ! |
---|
| 2588 | !-- Determine topography-top index on scalar grid |
---|
[4341] | 2589 | DO k = topo_top_ind(j,i,0) + 1, topo_top_ind(j,i,0) + pch_index_ji(j,i) |
---|
[2317] | 2590 | |
---|
[4341] | 2591 | kk = k - topo_top_ind(j,i,0) |
---|
[4803] | 2592 | tend(k,j,i) = tend(k,j,i) - leaf_scalar_exch_coeff * & |
---|
| 2593 | lad_s(kk,j,i) * & |
---|
| 2594 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 2595 | u(k,j,i+1) ) & |
---|
| 2596 | )**2 + & |
---|
| 2597 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 2598 | v(k,j+1,i) ) & |
---|
| 2599 | )**2 + & |
---|
| 2600 | ( 0.5_wp * ( w(k-1,j,i) + & |
---|
| 2601 | w(k,j,i) ) & |
---|
| 2602 | )**2 & |
---|
| 2603 | ) * & |
---|
| 2604 | ( s(k,j,i) - leaf_surface_conc ) |
---|
| 2605 | ENDDO |
---|
[138] | 2606 | |
---|
[142] | 2607 | CASE DEFAULT |
---|
[138] | 2608 | |
---|
[257] | 2609 | WRITE( message_string, * ) 'wrong component: ', component |
---|
[4803] | 2610 | CALL message( 'pcm_tendency', 'PA0279', 1, 2, 0, 6, 0 ) |
---|
[138] | 2611 | |
---|
[142] | 2612 | END SELECT |
---|
[138] | 2613 | |
---|
[1826] | 2614 | END SUBROUTINE pcm_tendency_ij |
---|
[138] | 2615 | |
---|
[4803] | 2616 | !--------------------------------------------------------------------------------------------------! |
---|
[4360] | 2617 | ! Description: |
---|
| 2618 | ! ------------ |
---|
[4514] | 2619 | !> Subroutine writes global restart data |
---|
[4803] | 2620 | !--------------------------------------------------------------------------------------------------! |
---|
[4514] | 2621 | SUBROUTINE pcm_wrd_global |
---|
| 2622 | |
---|
| 2623 | IF ( TRIM( restart_data_format_output ) == 'fortran_binary' ) THEN |
---|
| 2624 | |
---|
| 2625 | CALL wrd_write_string( 'pch_index' ) |
---|
[4803] | 2626 | WRITE( 14 ) pch_index |
---|
[4514] | 2627 | |
---|
[4803] | 2628 | ELSE IF ( restart_data_format_output(1:3) == 'mpi' ) THEN |
---|
[4514] | 2629 | |
---|
| 2630 | CALL wrd_mpi_io( 'pch_index', pch_index ) |
---|
| 2631 | |
---|
| 2632 | ENDIF |
---|
| 2633 | |
---|
| 2634 | END SUBROUTINE pcm_wrd_global |
---|
| 2635 | |
---|
[4803] | 2636 | !--------------------------------------------------------------------------------------------------! |
---|
[4514] | 2637 | ! Description: |
---|
| 2638 | ! ------------ |
---|
[4360] | 2639 | !> Subroutine writes local (subdomain) restart data |
---|
[4803] | 2640 | !--------------------------------------------------------------------------------------------------! |
---|
[4360] | 2641 | SUBROUTINE pcm_wrd_local |
---|
[2007] | 2642 | |
---|
[4525] | 2643 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: tmp_3d !< temporary array to store pcm data with |
---|
| 2644 | !< non-standard vertical index bounds |
---|
| 2645 | |
---|
[4803] | 2646 | |
---|
[4495] | 2647 | IF ( TRIM( restart_data_format_output ) == 'fortran_binary' ) THEN |
---|
[4360] | 2648 | |
---|
[4495] | 2649 | IF ( ALLOCATED( pcm_heatrate_av ) ) THEN |
---|
| 2650 | CALL wrd_write_string( 'pcm_heatrate_av' ) |
---|
[4803] | 2651 | WRITE( 14 ) pcm_heatrate_av |
---|
[4495] | 2652 | ENDIF |
---|
[4360] | 2653 | |
---|
[4495] | 2654 | IF ( ALLOCATED( pcm_latentrate_av ) ) THEN |
---|
| 2655 | CALL wrd_write_string( 'pcm_latentrate_av' ) |
---|
[4803] | 2656 | WRITE( 14 ) pcm_latentrate_av |
---|
[4495] | 2657 | ENDIF |
---|
| 2658 | |
---|
| 2659 | IF ( ALLOCATED( pcm_transpirationrate_av ) ) THEN |
---|
| 2660 | CALL wrd_write_string( 'pcm_transpirationrate_av' ) |
---|
[4803] | 2661 | WRITE( 14 ) pcm_transpirationrate_av |
---|
[4495] | 2662 | ENDIF |
---|
| 2663 | |
---|
[4803] | 2664 | ELSE IF ( restart_data_format_output(1:3) == 'mpi' ) THEN |
---|
[4495] | 2665 | |
---|
[4525] | 2666 | ! |
---|
| 2667 | !-- Plant canopy arrays have non standard reduced vertical index bounds. They are stored with |
---|
| 2668 | !-- full vertical bounds (bzb:nzt+1) in the restart file and must be re-stored before writing. |
---|
| 2669 | IF ( ALLOCATED( pcm_heatrate_av ) ) THEN |
---|
| 2670 | ALLOCATE( tmp_3d(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 2671 | tmp_3d(nzb:pch_index,:,:) = pcm_heatrate_av |
---|
| 2672 | tmp_3d(pch_index+1:nzt+1,:,:) = 0.0_wp |
---|
| 2673 | CALL wrd_mpi_io( 'pcm_heatrate_av', tmp_3d ) |
---|
| 2674 | DEALLOCATE( tmp_3d ) |
---|
| 2675 | ENDIF |
---|
[4495] | 2676 | IF ( ALLOCATED( pcm_latentrate_av ) ) THEN |
---|
[4525] | 2677 | ALLOCATE( tmp_3d(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 2678 | tmp_3d(nzb:pch_index,:,:) = pcm_latentrate_av |
---|
| 2679 | tmp_3d(pch_index+1:nzt+1,:,:) = 0.0_wp |
---|
| 2680 | CALL wrd_mpi_io( 'pcm_latentrate_av', tmp_3d ) |
---|
| 2681 | DEALLOCATE( tmp_3d ) |
---|
[4495] | 2682 | ENDIF |
---|
| 2683 | IF ( ALLOCATED( pcm_transpirationrate_av ) ) THEN |
---|
[4525] | 2684 | ALLOCATE( tmp_3d(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 2685 | tmp_3d(nzb:pch_index,:,:) = pcm_transpirationrate_av |
---|
| 2686 | tmp_3d(pch_index+1:nzt+1,:,:) = 0.0_wp |
---|
| 2687 | CALL wrd_mpi_io( 'pcm_transpirationrate_av', tmp_3d ) |
---|
| 2688 | DEALLOCATE( tmp_3d ) |
---|
[4495] | 2689 | ENDIF |
---|
| 2690 | |
---|
[4360] | 2691 | ENDIF |
---|
| 2692 | |
---|
| 2693 | END SUBROUTINE pcm_wrd_local |
---|
| 2694 | |
---|
| 2695 | |
---|
[138] | 2696 | END MODULE plant_canopy_model_mod |
---|