[1826] | 1 | !> @file plant_canopy_model_mod.f90 |
---|
[4803] | 2 | !--------------------------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[4803] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General |
---|
| 6 | ! Public License as published by the Free Software Foundation, either version 3 of the License, or |
---|
| 7 | ! (at your option) any later version. |
---|
[1036] | 8 | ! |
---|
[4803] | 9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the |
---|
| 10 | ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General |
---|
| 11 | ! Public License for more details. |
---|
[1036] | 12 | ! |
---|
[4803] | 13 | ! You should have received a copy of the GNU General Public License along with PALM. If not, see |
---|
| 14 | ! <http://www.gnu.org/licenses/>. |
---|
[1036] | 15 | ! |
---|
[4360] | 16 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
[4392] | 17 | ! Copyright 2017-2020 Institute of Computer Science of the |
---|
[3885] | 18 | ! Czech Academy of Sciences, Prague |
---|
[4803] | 19 | !--------------------------------------------------------------------------------------------------! |
---|
[1036] | 20 | ! |
---|
[257] | 21 | ! Current revisions: |
---|
[2977] | 22 | ! ------------------ |
---|
[4671] | 23 | ! |
---|
| 24 | ! |
---|
[2214] | 25 | ! Former revisions: |
---|
| 26 | ! ----------------- |
---|
[4495] | 27 | ! $Id: plant_canopy_model_mod.f90 4803 2020-11-30 16:57:54Z gronemeier $ |
---|
[4803] | 28 | ! file re-formatted to follow the PALM coding standard |
---|
[4770] | 29 | ! |
---|
[4803] | 30 | ! 4770 2020-11-03 14:04:53Z suehring |
---|
| 31 | ! Consider basal-area density as an additional sink for momentum in the prognostic equations for |
---|
| 32 | ! momentum and SGS TKE |
---|
| 33 | ! |
---|
[4770] | 34 | ! 4768 2020-11-02 19:11:23Z suehring |
---|
[4768] | 35 | ! Enable 3D data output also with 64-bit precision |
---|
| 36 | ! |
---|
| 37 | ! 4671 2020-09-09 20:27:58Z pavelkrc |
---|
[4671] | 38 | ! Implementation of downward facing USM and LSM surfaces |
---|
[4803] | 39 | ! |
---|
[4671] | 40 | ! 4535 2020-05-15 12:07:23Z raasch |
---|
[4535] | 41 | ! bugfix for restart data format query |
---|
[4803] | 42 | ! |
---|
[4535] | 43 | ! 4525 2020-05-10 17:05:07Z raasch |
---|
[4525] | 44 | ! bugfix for reading/writing pcm_...rate_av with MPI-IO |
---|
[4803] | 45 | ! |
---|
[4525] | 46 | ! 4517 2020-05-03 14:29:30Z raasch |
---|
[4517] | 47 | ! added restart with MPI-IO for reading local arrays |
---|
[4803] | 48 | ! |
---|
[4517] | 49 | ! 4515 2020-04-30 16:37:18Z suehring |
---|
[4515] | 50 | ! Rename error number again since this was recently given in -r 4511 |
---|
[4803] | 51 | ! |
---|
[4515] | 52 | ! 4514 2020-04-30 16:29:59Z suehring |
---|
[4803] | 53 | ! - Bugfix in output of pcm_heatrate_av in a restart run. In order to fix this, pch_index is now |
---|
| 54 | ! output for a restart run. Therefore, define global restart routines. |
---|
| 55 | ! - Error message number renamed and check for PA0505 revised in order to also consider natural |
---|
| 56 | ! surfaces with plant-canopy. |
---|
| 57 | ! |
---|
[4514] | 58 | ! 4495 2020-04-13 20:11:20Z raasch |
---|
[4495] | 59 | ! restart data handling with MPI-IO added |
---|
[4448] | 60 | ! |
---|
[4495] | 61 | ! 4457 2020-03-11 14:20:43Z raasch |
---|
| 62 | ! |
---|
[4457] | 63 | ! use statement for exchange horiz added |
---|
[4448] | 64 | ! (salim) removed the error message PA0672 to consider PC 3d data via ascii file |
---|
| 65 | ! |
---|
[4803] | 66 | ! 4392 2020-01-31 16:14:57Z pavelkrc (resler) |
---|
| 67 | ! Make pcm_heatrate_av, pcm_latentrate_av public to allow calculation of averaged Bowen ratio in the |
---|
| 68 | ! user procedure |
---|
[4392] | 69 | ! |
---|
| 70 | ! 4381 2020-01-20 13:51:46Z suehring |
---|
[4381] | 71 | ! Give error message 313 only once |
---|
[4803] | 72 | ! |
---|
[4381] | 73 | ! 4363 2020-01-07 18:11:28Z suehring |
---|
[4363] | 74 | ! Fix for last commit |
---|
[4803] | 75 | ! |
---|
[4363] | 76 | ! 4362 2020-01-07 17:15:02Z suehring |
---|
[4803] | 77 | ! Input of plant canopy variables from static driver moved to plant-canopy model |
---|
| 78 | ! |
---|
[4362] | 79 | ! 4361 2020-01-07 12:22:38Z suehring |
---|
[4361] | 80 | ! - Remove unused arrays in pmc_rrd_local |
---|
| 81 | ! - Remove one exchange of ghost points |
---|
[4803] | 82 | ! |
---|
[4361] | 83 | ! 4360 2020-01-07 11:25:50Z suehring |
---|
[4360] | 84 | ! - Bugfix, read restart data for time-averaged pcm output quantities |
---|
| 85 | ! - Output of plant-canopy quantities will fill values |
---|
[4803] | 86 | ! |
---|
[4360] | 87 | ! 4356 2019-12-20 17:09:33Z suehring |
---|
[4803] | 88 | ! Correct single message call, local check must be given by the respective mpi rank. |
---|
| 89 | ! |
---|
[4356] | 90 | ! 4346 2019-12-18 11:55:56Z motisi |
---|
[4803] | 91 | ! Introduction of wall_flags_total_0, which currently sets bits based on static topography |
---|
| 92 | ! information used in wall_flags_static_0 |
---|
| 93 | ! |
---|
[4346] | 94 | ! 4342 2019-12-16 13:49:14Z Giersch |
---|
[4803] | 95 | ! Use statements moved to module level, ocean dependency removed, redundant variables removed |
---|
| 96 | ! |
---|
[4342] | 97 | ! 4341 2019-12-16 10:43:49Z motisi |
---|
[4803] | 98 | ! - Unification of variable names: pc_-variables now pcm_-variables (pc_latent_rate, |
---|
| 99 | ! pc_heating_rate, pc_transpiration_rate) |
---|
[4341] | 100 | ! - Removal of pcm_bowenratio output |
---|
| 101 | ! - Renamed canopy-mode 'block' to 'homogeneous' |
---|
| 102 | ! - Renamed value 'read_from_file_3d' to 'read_from_file' |
---|
| 103 | ! - Removal of confusing comment lines |
---|
| 104 | ! - Replacement of k_wall by topo_top_ind |
---|
| 105 | ! - Removal of Else-Statement in tendency-calculation |
---|
[4803] | 106 | ! |
---|
[4341] | 107 | ! 4335 2019-12-12 16:39:05Z suehring |
---|
[4335] | 108 | ! Fix for LAD at building edges also implemented in vector branch. |
---|
[4803] | 109 | ! |
---|
[4335] | 110 | ! 4331 2019-12-10 18:25:02Z suehring |
---|
[4331] | 111 | ! Typo corrected |
---|
[4803] | 112 | ! |
---|
[4331] | 113 | ! 4329 2019-12-10 15:46:36Z motisi |
---|
[4329] | 114 | ! Renamed wall_flags_0 to wall_flags_static_0 |
---|
[4803] | 115 | ! |
---|
[4329] | 116 | ! 4314 2019-11-29 10:29:20Z suehring |
---|
[4803] | 117 | ! - Bugfix, plant canopy was still considered at building edges on for the u- and v-component. |
---|
| 118 | ! - Relax restriction of LAD on building tops. LAD is only omitted at locations where building grid |
---|
| 119 | ! points emerged artificially by the topography filtering. |
---|
| 120 | ! |
---|
[4314] | 121 | ! 4309 2019-11-26 18:49:59Z suehring |
---|
[4309] | 122 | ! Typo |
---|
[4803] | 123 | ! |
---|
[4309] | 124 | ! 4302 2019-11-22 13:15:56Z suehring |
---|
[4302] | 125 | ! Omit tall canopy mapped on top of buildings |
---|
[4803] | 126 | ! |
---|
[4302] | 127 | ! 4279 2019-10-29 08:48:17Z scharf |
---|
[4279] | 128 | ! unused variables removed |
---|
[4803] | 129 | ! |
---|
[4279] | 130 | ! 4258 2019-10-07 13:29:08Z scharf |
---|
[4278] | 131 | ! changed check for static driver and fixed bugs in initialization and header |
---|
[4803] | 132 | ! |
---|
[4278] | 133 | ! 4258 2019-10-07 13:29:08Z suehring |
---|
[4258] | 134 | ! Check if any LAD is prescribed when plant-canopy model is applied. |
---|
[4803] | 135 | ! |
---|
[4258] | 136 | ! 4226 2019-09-10 17:03:24Z suehring |
---|
[4226] | 137 | ! Bugfix, missing initialization of heating rate |
---|
[4803] | 138 | ! |
---|
[4226] | 139 | ! 4221 2019-09-09 08:50:35Z suehring |
---|
[4220] | 140 | ! Further bugfix in 3d data output for plant canopy |
---|
[4803] | 141 | ! |
---|
[4220] | 142 | ! 4216 2019-09-04 09:09:03Z suehring |
---|
[4216] | 143 | ! Bugfixes in 3d data output |
---|
[4803] | 144 | ! |
---|
[4216] | 145 | ! 4205 2019-08-30 13:25:00Z suehring |
---|
[4205] | 146 | ! Missing working precision + bugfix in calculation of wind speed |
---|
[4803] | 147 | ! |
---|
[4205] | 148 | ! 4188 2019-08-26 14:15:47Z suehring |
---|
[4188] | 149 | ! Minor adjustment in error number |
---|
[4803] | 150 | ! |
---|
[4188] | 151 | ! 4187 2019-08-26 12:43:15Z suehring |
---|
[4187] | 152 | ! Give specific error numbers instead of PA0999 |
---|
[4803] | 153 | ! |
---|
[4187] | 154 | ! 4182 2019-08-22 15:20:23Z scharf |
---|
[4182] | 155 | ! Corrected "Former revisions" section |
---|
[4803] | 156 | ! |
---|
[4182] | 157 | ! 4168 2019-08-16 13:50:17Z suehring |
---|
[4168] | 158 | ! Replace function get_topography_top_index by topo_top_ind |
---|
[4803] | 159 | ! |
---|
[4168] | 160 | ! 4127 2019-07-30 14:47:10Z suehring |
---|
[4803] | 161 | ! Output of 3D plant canopy variables changed. It is now relative to the local terrain rather than |
---|
| 162 | ! located at the acutal vertical level in the model. This way, the vertical dimension of the output |
---|
| 163 | ! can be significantly reduced. |
---|
| 164 | ! (merge from branch resler) |
---|
| 165 | ! |
---|
[4127] | 166 | ! 3885 2019-04-11 11:29:34Z kanani |
---|
[4803] | 167 | ! Changes related to global restructuring of location messages and introduction of additional debug |
---|
| 168 | ! messages |
---|
| 169 | ! |
---|
[3885] | 170 | ! 3864 2019-04-05 09:01:56Z monakurppa |
---|
[3761] | 171 | ! unsed variables removed |
---|
[4803] | 172 | ! |
---|
[3761] | 173 | ! 3745 2019-02-15 18:57:56Z suehring |
---|
[4803] | 174 | ! Bugfix in transpiration, floating invalid when temperature becomes > 40 degrees |
---|
| 175 | ! |
---|
[3745] | 176 | ! 3744 2019-02-15 18:38:58Z suehring |
---|
[3685] | 177 | ! Some interface calls moved to module_interface + cleanup |
---|
[4803] | 178 | ! |
---|
[3685] | 179 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
[3614] | 180 | ! unused variables removed |
---|
[3498] | 181 | ! |
---|
[4182] | 182 | ! 138 2007-11-28 10:03:58Z letzel |
---|
| 183 | ! Initial revision |
---|
| 184 | ! |
---|
[138] | 185 | ! Description: |
---|
| 186 | ! ------------ |
---|
[4803] | 187 | !> 1) Initialization of the canopy model, e.g. construction of leaf area density profile |
---|
| 188 | !> (subroutine pcm_init). |
---|
| 189 | !> 2) Calculation of sinks and sources of momentum, heat and scalar concentration due to canopy |
---|
| 190 | !> elements (subroutine pcm_tendency). |
---|
[3744] | 191 | ! |
---|
| 192 | ! @todo - precalculate constant terms in pcm_calc_transpiration_rate |
---|
[4216] | 193 | ! @todo - unify variable names (pcm_, pc_, ...) |
---|
[4514] | 194 | ! @todo - get rid-off dependency on radiation model |
---|
[4803] | 195 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 196 | MODULE plant_canopy_model_mod |
---|
[4360] | 197 | |
---|
[4803] | 198 | USE arrays_3d, & |
---|
[3449] | 199 | ONLY: dzu, dzw, e, exner, hyp, pt, q, s, tend, u, v, w, zu, zw |
---|
[138] | 200 | |
---|
[4803] | 201 | USE basic_constants_and_equations_mod, & |
---|
[3449] | 202 | ONLY: c_p, degc_to_k, l_v, lv_d_cp, r_d, rd_d_rv |
---|
[4360] | 203 | |
---|
[4803] | 204 | USE bulk_cloud_model_mod, & |
---|
[4342] | 205 | ONLY: bulk_cloud_model, microphysics_seifert |
---|
[3449] | 206 | |
---|
[4803] | 207 | USE control_parameters, & |
---|
| 208 | ONLY: average_count_3d, & |
---|
| 209 | coupling_char, & |
---|
| 210 | debug_output, & |
---|
| 211 | dt_3d, & |
---|
| 212 | dz, & |
---|
| 213 | humidity, & |
---|
| 214 | land_surface, & |
---|
| 215 | length, & |
---|
| 216 | message_string, & |
---|
| 217 | ocean_mode, & |
---|
| 218 | passive_scalar, & |
---|
| 219 | plant_canopy, & |
---|
| 220 | restart_data_format_output, & |
---|
| 221 | restart_string, & |
---|
[4360] | 222 | urban_surface |
---|
| 223 | |
---|
[4803] | 224 | USE grid_variables, & |
---|
[4342] | 225 | ONLY: dx, dy |
---|
[3449] | 226 | |
---|
[4803] | 227 | USE indices, & |
---|
| 228 | ONLY: nbgp, nxl, nxlg, nxlu, nxr, nxrg, nyn, nyng, nys, nysg, nysv, nz, nzb, nzt, & |
---|
| 229 | topo_top_ind, wall_flags_total_0 |
---|
[1484] | 230 | |
---|
| 231 | USE kinds |
---|
[4360] | 232 | |
---|
[4803] | 233 | USE netcdf_data_input_mod, & |
---|
| 234 | ONLY: char_fill, & |
---|
| 235 | check_existence, & |
---|
| 236 | close_input_file, & |
---|
| 237 | get_attribute, & |
---|
| 238 | get_dimension_length, & |
---|
| 239 | get_variable, & |
---|
| 240 | input_file_static, & |
---|
| 241 | input_pids_static, & |
---|
| 242 | inquire_num_variables, & |
---|
| 243 | inquire_variable_names, & |
---|
| 244 | num_var_pids, & |
---|
| 245 | open_read_file, & |
---|
| 246 | pids_id, & |
---|
| 247 | real_3d, & |
---|
[4362] | 248 | vars_pids |
---|
[1484] | 249 | |
---|
[3449] | 250 | USE pegrid |
---|
[4360] | 251 | |
---|
[4495] | 252 | USE restart_data_mpi_io_mod, & |
---|
[4517] | 253 | ONLY: rd_mpi_io_check_array, & |
---|
| 254 | rrd_mpi_io, & |
---|
[4514] | 255 | wrd_mpi_io |
---|
[4495] | 256 | |
---|
[4803] | 257 | USE surface_mod, & |
---|
[4342] | 258 | ONLY: surf_def_h, surf_lsm_h, surf_usm_h |
---|
[3449] | 259 | |
---|
[1484] | 260 | |
---|
| 261 | IMPLICIT NONE |
---|
| 262 | |
---|
[4803] | 263 | CHARACTER (LEN=30) :: canopy_mode = 'homogeneous' !< canopy coverage |
---|
| 264 | INTEGER(iwp) :: pch_index = 0 !< plant canopy height/top index |
---|
[1484] | 265 | |
---|
[3449] | 266 | INTEGER(iwp) :: lad_vertical_gradient_level_ind(10) = -9999 !< lad-profile levels (index) |
---|
[1484] | 267 | |
---|
[3449] | 268 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: pch_index_ji !< local plant canopy top |
---|
[2696] | 269 | |
---|
[4803] | 270 | LOGICAL :: calc_beta_lad_profile = .FALSE. !< switch for calc. of lad from beta func. |
---|
| 271 | LOGICAL :: plant_canopy_transpiration = .FALSE. !< flag to switch calculation of transpiration and corresponding latent heat |
---|
| 272 | !< for resolved plant canopy inside radiation model |
---|
| 273 | !< (calls subroutine pcm_calc_transpiration_rate from module plant_canopy_mod) |
---|
[1484] | 274 | |
---|
[4803] | 275 | REAL(wp) :: alpha_lad = 9999999.9_wp !< coefficient for lad calculation |
---|
| 276 | REAL(wp) :: beta_lad = 9999999.9_wp !< coefficient for lad calculation |
---|
| 277 | REAL(wp) :: canopy_drag_coeff = 0.0_wp !< canopy drag coefficient (parameter) |
---|
| 278 | REAL(wp) :: cthf = 0.0_wp !< canopy top heat flux |
---|
| 279 | REAL(wp) :: dt_plant_canopy = 0.0_wp !< timestep account. for canopy drag |
---|
| 280 | REAL(wp) :: ext_coef = 0.6_wp !< extinction coefficient |
---|
| 281 | REAL(wp) :: lad_surface = 0.0_wp !< lad surface value |
---|
| 282 | REAL(wp) :: lad_type_coef(0:10) = 1.0_wp !< multiplicative coeficients for particular types |
---|
| 283 | !< of plant canopy (e.g. deciduous tree during winter) |
---|
[2696] | 284 | REAL(wp) :: lad_vertical_gradient(10) = 0.0_wp !< lad gradient |
---|
| 285 | REAL(wp) :: lad_vertical_gradient_level(10) = -9999999.9_wp !< lad-prof. levels (in m) |
---|
[4803] | 286 | REAL(wp) :: lai_beta = 0.0_wp !< leaf area index (lai) for lad calc. |
---|
| 287 | REAL(wp) :: leaf_scalar_exch_coeff = 0.0_wp !< canopy scalar exchange coeff. |
---|
| 288 | REAL(wp) :: leaf_surface_conc = 0.0_wp !< leaf surface concentration |
---|
[1484] | 289 | |
---|
[1682] | 290 | REAL(wp), DIMENSION(:), ALLOCATABLE :: lad !< leaf area density |
---|
| 291 | REAL(wp), DIMENSION(:), ALLOCATABLE :: pre_lad !< preliminary lad |
---|
[4770] | 292 | |
---|
| 293 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: bad_s !< basal-area density on scalar-grid |
---|
[4127] | 294 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: cum_lai_hf !< cumulative lai for heatflux calc. |
---|
| 295 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: lad_s !< lad on scalar-grid |
---|
[4341] | 296 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pcm_heating_rate !< plant canopy heating rate |
---|
[4803] | 297 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pcm_heatrate_av !< array for averaging plant canopy sensible heating rate |
---|
[4341] | 298 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pcm_latent_rate !< plant canopy latent heating rate |
---|
[4127] | 299 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pcm_latentrate_av !< array for averaging plant canopy latent heating rate |
---|
[4803] | 300 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pcm_transpiration_rate !< plant canopy transpiration rate |
---|
[4127] | 301 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pcm_transpirationrate_av !< array for averaging plant canopy transpiration rate |
---|
| 302 | |
---|
[4362] | 303 | TYPE(real_3d) :: basal_area_density_f !< input variable for basal area density - resolved vegetation |
---|
| 304 | TYPE(real_3d) :: leaf_area_density_f !< input variable for leaf area density - resolved vegetation |
---|
| 305 | TYPE(real_3d) :: root_area_density_lad_f !< input variable for root area density - resolved vegetation |
---|
| 306 | |
---|
[1484] | 307 | SAVE |
---|
| 308 | |
---|
[138] | 309 | PRIVATE |
---|
[4803] | 310 | |
---|
[1826] | 311 | ! |
---|
| 312 | !-- Public functions |
---|
[4803] | 313 | PUBLIC pcm_calc_transpiration_rate, & |
---|
| 314 | pcm_check_data_output, & |
---|
| 315 | pcm_check_parameters, & |
---|
| 316 | pcm_3d_data_averaging, & |
---|
| 317 | pcm_data_output_3d, & |
---|
| 318 | pcm_define_netcdf_grid, & |
---|
| 319 | pcm_header, & |
---|
| 320 | pcm_init, & |
---|
| 321 | pcm_parin, & |
---|
| 322 | pcm_rrd_global, & |
---|
| 323 | pcm_rrd_local, & |
---|
| 324 | pcm_tendency, & |
---|
| 325 | pcm_wrd_global, & |
---|
[4360] | 326 | pcm_wrd_local |
---|
[138] | 327 | |
---|
[1826] | 328 | ! |
---|
| 329 | !-- Public variables and constants |
---|
[4803] | 330 | PUBLIC canopy_drag_coeff, pcm_heating_rate, pcm_transpiration_rate, pcm_latent_rate, & |
---|
| 331 | canopy_mode, cthf, dt_plant_canopy, lad, lad_s, pch_index, plant_canopy_transpiration, & |
---|
[4392] | 332 | pcm_heatrate_av, pcm_latentrate_av |
---|
[1484] | 333 | |
---|
[3449] | 334 | INTERFACE pcm_calc_transpiration_rate |
---|
| 335 | MODULE PROCEDURE pcm_calc_transpiration_rate |
---|
| 336 | END INTERFACE pcm_calc_transpiration_rate |
---|
| 337 | |
---|
[2209] | 338 | INTERFACE pcm_check_data_output |
---|
| 339 | MODULE PROCEDURE pcm_check_data_output |
---|
| 340 | END INTERFACE pcm_check_data_output |
---|
[4803] | 341 | |
---|
[1826] | 342 | INTERFACE pcm_check_parameters |
---|
| 343 | MODULE PROCEDURE pcm_check_parameters |
---|
[2209] | 344 | END INTERFACE pcm_check_parameters |
---|
| 345 | |
---|
[4127] | 346 | INTERFACE pcm_3d_data_averaging |
---|
| 347 | MODULE PROCEDURE pcm_3d_data_averaging |
---|
| 348 | END INTERFACE pcm_3d_data_averaging |
---|
| 349 | |
---|
[2209] | 350 | INTERFACE pcm_data_output_3d |
---|
| 351 | MODULE PROCEDURE pcm_data_output_3d |
---|
| 352 | END INTERFACE pcm_data_output_3d |
---|
| 353 | |
---|
| 354 | INTERFACE pcm_define_netcdf_grid |
---|
| 355 | MODULE PROCEDURE pcm_define_netcdf_grid |
---|
| 356 | END INTERFACE pcm_define_netcdf_grid |
---|
[4803] | 357 | |
---|
[1826] | 358 | INTERFACE pcm_header |
---|
| 359 | MODULE PROCEDURE pcm_header |
---|
[4803] | 360 | END INTERFACE pcm_header |
---|
| 361 | |
---|
[1826] | 362 | INTERFACE pcm_init |
---|
| 363 | MODULE PROCEDURE pcm_init |
---|
| 364 | END INTERFACE pcm_init |
---|
[138] | 365 | |
---|
[1826] | 366 | INTERFACE pcm_parin |
---|
| 367 | MODULE PROCEDURE pcm_parin |
---|
[2007] | 368 | END INTERFACE pcm_parin |
---|
| 369 | |
---|
| 370 | INTERFACE pcm_read_plant_canopy_3d |
---|
| 371 | MODULE PROCEDURE pcm_read_plant_canopy_3d |
---|
| 372 | END INTERFACE pcm_read_plant_canopy_3d |
---|
[4360] | 373 | |
---|
| 374 | INTERFACE pcm_rrd_local |
---|
[4517] | 375 | MODULE PROCEDURE pcm_rrd_local_ftn |
---|
| 376 | MODULE PROCEDURE pcm_rrd_local_mpi |
---|
[4360] | 377 | END INTERFACE pcm_rrd_local |
---|
| 378 | |
---|
[4514] | 379 | INTERFACE pcm_rrd_global |
---|
| 380 | MODULE PROCEDURE pcm_rrd_global_ftn |
---|
| 381 | MODULE PROCEDURE pcm_rrd_global_mpi |
---|
| 382 | END INTERFACE pcm_rrd_global |
---|
| 383 | |
---|
[1826] | 384 | INTERFACE pcm_tendency |
---|
| 385 | MODULE PROCEDURE pcm_tendency |
---|
| 386 | MODULE PROCEDURE pcm_tendency_ij |
---|
| 387 | END INTERFACE pcm_tendency |
---|
[1484] | 388 | |
---|
[4360] | 389 | INTERFACE pcm_wrd_local |
---|
| 390 | MODULE PROCEDURE pcm_wrd_local |
---|
| 391 | END INTERFACE pcm_wrd_local |
---|
[1484] | 392 | |
---|
[4514] | 393 | INTERFACE pcm_wrd_global |
---|
| 394 | MODULE PROCEDURE pcm_wrd_global |
---|
| 395 | END INTERFACE pcm_wrd_global |
---|
[4360] | 396 | |
---|
[4514] | 397 | |
---|
[138] | 398 | CONTAINS |
---|
[4803] | 399 | |
---|
| 400 | |
---|
| 401 | !--------------------------------------------------------------------------------------------------! |
---|
[2209] | 402 | ! Description: |
---|
| 403 | ! ------------ |
---|
[4803] | 404 | !> Calculation of the plant canopy transpiration rate based on the Jarvis-Stewart with |
---|
| 405 | !> parametrizations described in Daudet et al. (1999; Agricult. and Forest Meteorol. 97) and Ngao, |
---|
| 406 | !> Adam and Saudreau (2017; Agricult. and Forest Meteorol 237-238). Model functions f1-f4 were |
---|
| 407 | !> adapted from Stewart (1998; Agric. and Forest. Meteorol. 43) instead, because they are valid for |
---|
| 408 | !> broader intervals of values. Funcion f4 used in form present in van Wijk et al. (1998; Tree |
---|
| 409 | !> Physiology 20). |
---|
[3449] | 410 | !> |
---|
[4803] | 411 | !> This subroutine is called from subroutine radiation_interaction after the calculation of |
---|
| 412 | !> radiation in plant canopy boxes. |
---|
[3449] | 413 | !> (arrays pcbinsw and pcbinlw). |
---|
| 414 | !> |
---|
[4803] | 415 | !--------------------------------------------------------------------------------------------------! |
---|
[3449] | 416 | SUBROUTINE pcm_calc_transpiration_rate(i, j, k, kk, pcbsw, pcblw, pcbtr, pcblh) |
---|
| 417 | |
---|
[4342] | 418 | ! |
---|
[4803] | 419 | !-- Input parameters |
---|
[4205] | 420 | INTEGER(iwp), INTENT(IN) :: i, j, k, kk !< indices of the pc gridbox |
---|
[4803] | 421 | REAL(wp), INTENT(IN) :: pcblw !< lw radiation in gridbox (W) |
---|
[4205] | 422 | REAL(wp), INTENT(IN) :: pcbsw !< sw radiation in gridbox (W) |
---|
[4803] | 423 | REAL(wp), INTENT(OUT) :: pcblh !< latent heat from transpiration dT/dt (K/s) |
---|
[4205] | 424 | REAL(wp), INTENT(OUT) :: pcbtr !< transpiration rate dq/dt (kg/kg/s) |
---|
[3449] | 425 | |
---|
[4803] | 426 | !-- Variables and parameters for calculation of transpiration rate |
---|
| 427 | REAL(wp), PARAMETER :: gama_psychr = 66.0_wp !< psychrometric constant (Pa/K) |
---|
| 428 | REAL(wp), PARAMETER :: g_s_max = 0.01 !< maximum stomatal conductivity (m/s) |
---|
| 429 | REAL(wp), PARAMETER :: m_soil = 0.4_wp !< soil water content (needs to adjust or take from LSM) |
---|
| 430 | REAL(wp), PARAMETER :: m_wilt = 0.01_wp !< wilting point soil water content (needs to adjust or take from LSM) |
---|
| 431 | REAL(wp), PARAMETER :: m_sat = 0.51_wp !< saturation soil water content (needs to adjust or take from LSM) |
---|
| 432 | REAL(wp), PARAMETER :: t2_min = 0.0_wp !< minimal temperature for calculation of f2 |
---|
| 433 | REAL(wp), PARAMETER :: t2_max = 40.0_wp !< maximal temperature for calculation of f2 |
---|
[3449] | 434 | |
---|
[4803] | 435 | REAL(wp) :: d_fact |
---|
| 436 | REAL(wp) :: e_eq |
---|
| 437 | REAL(wp) :: e_imp |
---|
| 438 | REAL(wp) :: evapor_rate |
---|
| 439 | REAL(wp) :: f1 |
---|
| 440 | REAL(wp) :: f2 |
---|
| 441 | REAL(wp) :: f3 |
---|
| 442 | REAL(wp) :: f4 |
---|
| 443 | REAL(wp) :: g_b |
---|
| 444 | REAL(wp) :: g_s |
---|
| 445 | REAL(wp) :: rad |
---|
| 446 | REAL(wp) :: rswc |
---|
| 447 | REAL(wp) :: sat_press |
---|
| 448 | REAL(wp) :: sat_press_d |
---|
| 449 | REAL(wp) :: temp |
---|
| 450 | REAL(wp) :: v_lad |
---|
| 451 | REAL(wp) :: vpd |
---|
| 452 | REAL(wp) :: wind_speed |
---|
[3449] | 453 | |
---|
[4803] | 454 | ! |
---|
[3449] | 455 | !-- Temperature (deg C) |
---|
| 456 | temp = pt(k,j,i) * exner(k) - degc_to_k |
---|
[4803] | 457 | ! |
---|
[3449] | 458 | !-- Coefficient for conversion of radiation to grid to radiation to unit leaves surface |
---|
[4205] | 459 | v_lad = 1.0_wp / ( MAX( lad_s(kk,j,i), 1.0E-10_wp ) * dx * dy * dz(1) ) |
---|
[4803] | 460 | ! |
---|
[3449] | 461 | !-- Magnus formula for the saturation pressure (see Ngao, Adam and Saudreau (2017) eq. 1) |
---|
| 462 | !-- There are updated formulas available, kept consistent with the rest of the parametrization |
---|
[4803] | 463 | sat_press = 610.8_wp * EXP( 17.27_wp * temp / ( temp + 237.3_wp ) ) |
---|
| 464 | ! |
---|
[3449] | 465 | !-- Saturation pressure derivative (derivative of the above) |
---|
[4803] | 466 | sat_press_d = sat_press * 17.27_wp * 237.3_wp / ( temp + 237.3_wp )**2 |
---|
| 467 | ! |
---|
[3449] | 468 | !-- Wind speed |
---|
[4803] | 469 | wind_speed = SQRT( ( 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) )**2 + & |
---|
| 470 | ( 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) )**2 + & |
---|
[4205] | 471 | ( 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) )**2 ) |
---|
[4803] | 472 | ! |
---|
[3449] | 473 | !-- Aerodynamic conductivity (Daudet et al. (1999) eq. 14 |
---|
| 474 | g_b = 0.01_wp * wind_speed + 0.0071_wp |
---|
[4803] | 475 | ! |
---|
[3449] | 476 | !-- Radiation flux per leaf surface unit |
---|
| 477 | rad = pcbsw * v_lad |
---|
[4803] | 478 | ! |
---|
[3449] | 479 | !-- First function for calculation of stomatal conductivity (radiation dependency) |
---|
| 480 | !-- Stewart (1988; Agric. and Forest. Meteorol. 43) eq. 17 |
---|
[4803] | 481 | f1 = rad * ( 1000.0_wp + 42.1_wp ) / 1000.0_wp / ( rad + 42.1_wp ) |
---|
| 482 | ! |
---|
[3449] | 483 | !-- Second function for calculation of stomatal conductivity (temperature dependency) |
---|
| 484 | !-- Stewart (1988; Agric. and Forest. Meteorol. 43) eq. 21 |
---|
[4803] | 485 | f2 = MAX( t2_min, ( temp - t2_min ) * MAX( 0.0_wp, t2_max - temp )**( ( t2_max - 16.9_wp ) / & |
---|
| 486 | ( 16.9_wp - t2_min ) ) & |
---|
| 487 | / ( ( 16.9_wp - t2_min ) * ( t2_max - 16.9_wp )**( ( t2_max - 16.9_wp ) / & |
---|
| 488 | ( 16.9_wp - t2_min ) ) ) ) |
---|
| 489 | ! |
---|
[3449] | 490 | !-- Water pressure deficit |
---|
| 491 | !-- Ngao, Adam and Saudreau (2017) eq. 6 but with water vapour partial pressure |
---|
[4803] | 492 | vpd = MAX( sat_press - q(k,j,i) * hyp(k) / rd_d_rv, 0._wp ) |
---|
| 493 | ! |
---|
[3449] | 494 | !-- Third function for calculation of stomatal conductivity (water pressure deficit dependency) |
---|
| 495 | !-- Ngao, Adam and Saudreau (2017) Table 1, limited from below according to Stewart (1988) |
---|
[4803] | 496 | !-- The coefficients of the linear dependence should better correspond to broad-leaved trees than |
---|
| 497 | !-- the coefficients from Stewart (1988) which correspond to conifer trees. |
---|
| 498 | vpd = MIN( MAX( vpd, 770.0_wp ), 3820.0_wp ) |
---|
[4205] | 499 | f3 = -2E-4_wp * vpd + 1.154_wp |
---|
[4803] | 500 | ! |
---|
[3449] | 501 | !-- Fourth function for calculation of stomatal conductivity (soil moisture dependency) |
---|
| 502 | !-- Residual soil water content |
---|
| 503 | !-- van Wijk et al. (1998; Tree Physiology 20) eq. 7 |
---|
| 504 | !-- TODO - over LSM surface might be calculated from LSM parameters |
---|
| 505 | rswc = ( m_sat - m_soil ) / ( m_sat - m_wilt ) |
---|
[4803] | 506 | ! |
---|
| 507 | !-- van Wijk et al. (1998; Tree Physiology 20) eq. 5-6 (it is a reformulation of eq. 22-23 of |
---|
| 508 | !-- Stewart(1988)) |
---|
| 509 | f4 = MAX( 0.0_wp, MIN( 1.0_wp - 0.041_wp * EXP( 3.2_wp * rswc ), 1.0_wp - 0.041_wp ) ) |
---|
| 510 | ! |
---|
[3449] | 511 | !-- Stomatal conductivity |
---|
| 512 | !-- Stewart (1988; Agric. and Forest. Meteorol. 43) eq. 12 |
---|
| 513 | !-- (notation according to Ngao, Adam and Saudreau (2017) and others) |
---|
[4205] | 514 | g_s = g_s_max * f1 * f2 * f3 * f4 + 1.0E-10_wp |
---|
[4803] | 515 | ! |
---|
[3449] | 516 | !-- Decoupling factor |
---|
| 517 | !-- Daudet et al. (1999) eq. 6 |
---|
[4803] | 518 | d_fact = ( sat_press_d / gama_psychr + 2.0_wp ) / & |
---|
| 519 | ( sat_press_d / gama_psychr + 2.0_wp + 2.0_wp * g_b / g_s ) |
---|
| 520 | ! |
---|
[3449] | 521 | !-- Equilibrium evaporation rate |
---|
| 522 | !-- Daudet et al. (1999) eq. 4 |
---|
[4803] | 523 | e_eq = ( pcbsw + pcblw ) * v_lad * sat_press_d / & |
---|
| 524 | gama_psychr / ( sat_press_d / gama_psychr + 2.0_wp ) / l_v |
---|
| 525 | ! |
---|
[3449] | 526 | !-- Imposed evaporation rate |
---|
| 527 | !-- Daudet et al. (1999) eq. 5 |
---|
| 528 | e_imp = r_d * pt(k,j,i) * exner(k) / hyp(k) * c_p * g_s * vpd / gama_psychr / l_v |
---|
[4803] | 529 | ! |
---|
[3449] | 530 | !-- Evaporation rate |
---|
| 531 | !-- Daudet et al. (1999) eq. 3 |
---|
| 532 | !-- (evaporation rate is limited to non-negative values) |
---|
[4803] | 533 | evapor_rate = MAX( d_fact * e_eq + ( 1.0_wp - d_fact ) * e_imp, 0.0_wp ) |
---|
| 534 | ! |
---|
[3449] | 535 | !-- Conversion of evaporation rate to q tendency in gridbox |
---|
| 536 | !-- dq/dt = E * LAD * V_g / (rho_air * V_g) |
---|
| 537 | pcbtr = evapor_rate * r_d * pt(k,j,i) * exner(k) * lad_s(kk,j,i) / hyp(k) !-- = dq/dt |
---|
[4803] | 538 | ! |
---|
[3449] | 539 | !-- latent heat from evaporation |
---|
| 540 | pcblh = pcbtr * lv_d_cp !-- = - dT/dt |
---|
| 541 | |
---|
| 542 | END SUBROUTINE pcm_calc_transpiration_rate |
---|
| 543 | |
---|
| 544 | |
---|
[4803] | 545 | !--------------------------------------------------------------------------------------------------! |
---|
[3449] | 546 | ! Description: |
---|
| 547 | ! ------------ |
---|
[2209] | 548 | !> Check data output for plant canopy model |
---|
[4803] | 549 | !--------------------------------------------------------------------------------------------------! |
---|
[2209] | 550 | SUBROUTINE pcm_check_data_output( var, unit ) |
---|
[4279] | 551 | |
---|
[4803] | 552 | CHARACTER (LEN=*) :: unit !< |
---|
[2209] | 553 | CHARACTER (LEN=*) :: var !< |
---|
| 554 | |
---|
| 555 | |
---|
| 556 | SELECT CASE ( TRIM( var ) ) |
---|
| 557 | |
---|
| 558 | CASE ( 'pcm_heatrate' ) |
---|
[4514] | 559 | ! |
---|
[4803] | 560 | !-- Output of heatrate can be only done if it is explicitely set by cthf, or parametrized by |
---|
| 561 | !-- absorption of radiation. The latter, however, is only available if radiation_interactions |
---|
| 562 | !-- are on. Note, these are enabled if land-surface or urban-surface is switched-on. Using |
---|
| 563 | !-- radiation_interactions_on directly is not possible since it belongs to the |
---|
| 564 | !-- radition_model, which in turn depends on the plant-canopy model, creating circular |
---|
| 565 | !-- dependencies. |
---|
| 566 | IF ( cthf == 0.0_wp .AND. ( .NOT. urban_surface .AND. .NOT. land_surface ) ) THEN |
---|
| 567 | message_string = 'output of "' // TRIM( var ) // '" requi' // & |
---|
[2768] | 568 | 'res setting of parameter cthf /= 0.0' |
---|
[4515] | 569 | CALL message( 'pcm_check_data_output', 'PA0718', 1, 2, 0, 6, 0 ) |
---|
[2768] | 570 | ENDIF |
---|
[2209] | 571 | unit = 'K s-1' |
---|
[4803] | 572 | |
---|
[3014] | 573 | CASE ( 'pcm_transpirationrate' ) |
---|
| 574 | unit = 'kg kg-1 s-1' |
---|
| 575 | |
---|
[3449] | 576 | CASE ( 'pcm_latentrate' ) |
---|
| 577 | unit = 'K s-1' |
---|
| 578 | |
---|
[4770] | 579 | CASE ( 'pcm_bad', 'pcm_lad' ) |
---|
[2209] | 580 | unit = 'm2 m-3' |
---|
| 581 | |
---|
| 582 | |
---|
| 583 | CASE DEFAULT |
---|
| 584 | unit = 'illegal' |
---|
| 585 | |
---|
| 586 | END SELECT |
---|
| 587 | |
---|
| 588 | |
---|
| 589 | END SUBROUTINE pcm_check_data_output |
---|
[4803] | 590 | |
---|
| 591 | |
---|
| 592 | !--------------------------------------------------------------------------------------------------! |
---|
[1826] | 593 | ! Description: |
---|
| 594 | ! ------------ |
---|
| 595 | !> Check parameters routine for plant canopy model |
---|
[4803] | 596 | !--------------------------------------------------------------------------------------------------! |
---|
[1826] | 597 | SUBROUTINE pcm_check_parameters |
---|
[4803] | 598 | |
---|
[4342] | 599 | IF ( ocean_mode ) THEN |
---|
[4803] | 600 | message_string = 'plant_canopy = .TRUE. is not allowed in the ocean' |
---|
[4342] | 601 | CALL message( 'pcm_check_parameters', 'PA0696', 1, 2, 0, 6, 0 ) |
---|
| 602 | ENDIF |
---|
[4803] | 603 | |
---|
[1826] | 604 | IF ( canopy_drag_coeff == 0.0_wp ) THEN |
---|
[4803] | 605 | message_string = 'plant_canopy = .TRUE. requires a non-zero drag ' // & |
---|
[3046] | 606 | 'coefficient & given value is canopy_drag_coeff = 0.0' |
---|
[2768] | 607 | CALL message( 'pcm_check_parameters', 'PA0041', 1, 2, 0, 6, 0 ) |
---|
[1826] | 608 | ENDIF |
---|
[4279] | 609 | |
---|
[4803] | 610 | IF ( ( alpha_lad /= 9999999.9_wp .AND. beta_lad == 9999999.9_wp ) .OR. & |
---|
| 611 | beta_lad /= 9999999.9_wp .AND. alpha_lad == 9999999.9_wp ) THEN |
---|
| 612 | message_string = 'using the beta function for the construction ' // & |
---|
| 613 | 'of the leaf area density profile requires ' // & |
---|
[1826] | 614 | 'both alpha_lad and beta_lad to be /= 9999999.9' |
---|
[2768] | 615 | CALL message( 'pcm_check_parameters', 'PA0118', 1, 2, 0, 6, 0 ) |
---|
[1826] | 616 | ENDIF |
---|
[4279] | 617 | |
---|
[1826] | 618 | IF ( calc_beta_lad_profile .AND. lai_beta == 0.0_wp ) THEN |
---|
[4803] | 619 | message_string = 'using the beta function for the construction ' // & |
---|
| 620 | 'of the leaf area density profile requires ' // & |
---|
| 621 | 'a non-zero lai_beta, but given value is ' // & |
---|
[1826] | 622 | 'lai_beta = 0.0' |
---|
[2768] | 623 | CALL message( 'pcm_check_parameters', 'PA0119', 1, 2, 0, 6, 0 ) |
---|
[1826] | 624 | ENDIF |
---|
| 625 | |
---|
| 626 | IF ( calc_beta_lad_profile .AND. lad_surface /= 0.0_wp ) THEN |
---|
[4803] | 627 | message_string = 'simultaneous setting of alpha_lad /= 9999999.9 '// & |
---|
| 628 | 'combined with beta_lad /= 9999999.9 ' // & |
---|
| 629 | 'and lad_surface /= 0.0 is not possible, ' // & |
---|
| 630 | 'use either vertical gradients or the beta ' // & |
---|
| 631 | 'function for the construction of the leaf area '// & |
---|
[1826] | 632 | 'density profile' |
---|
[2768] | 633 | CALL message( 'pcm_check_parameters', 'PA0120', 1, 2, 0, 6, 0 ) |
---|
[4803] | 634 | ENDIF |
---|
[1826] | 635 | |
---|
[3274] | 636 | IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN |
---|
[4803] | 637 | message_string = 'plant_canopy = .TRUE. requires cloud_scheme /= seifert_beheng' |
---|
[2768] | 638 | CALL message( 'pcm_check_parameters', 'PA0360', 1, 2, 0, 6, 0 ) |
---|
[1826] | 639 | ENDIF |
---|
| 640 | |
---|
[4803] | 641 | END SUBROUTINE pcm_check_parameters |
---|
[1826] | 642 | |
---|
[4803] | 643 | |
---|
| 644 | !--------------------------------------------------------------------------------------------------! |
---|
[2209] | 645 | ! |
---|
[1484] | 646 | ! Description: |
---|
| 647 | ! ------------ |
---|
[4127] | 648 | !> Subroutine for averaging 3D data |
---|
[4803] | 649 | !--------------------------------------------------------------------------------------------------! |
---|
[4216] | 650 | SUBROUTINE pcm_3d_data_averaging( mode, variable ) |
---|
[4127] | 651 | |
---|
| 652 | CHARACTER (LEN=*) :: mode !< |
---|
[4803] | 653 | CHARACTER (LEN=*) :: variable !< |
---|
[4127] | 654 | |
---|
| 655 | INTEGER(iwp) :: i !< |
---|
| 656 | INTEGER(iwp) :: j !< |
---|
| 657 | INTEGER(iwp) :: k !< |
---|
| 658 | |
---|
| 659 | |
---|
| 660 | IF ( mode == 'allocate' ) THEN |
---|
| 661 | |
---|
| 662 | SELECT CASE ( TRIM( variable ) ) |
---|
| 663 | |
---|
| 664 | CASE ( 'pcm_heatrate' ) |
---|
| 665 | IF ( .NOT. ALLOCATED( pcm_heatrate_av ) ) THEN |
---|
| 666 | ALLOCATE( pcm_heatrate_av(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 667 | ENDIF |
---|
| 668 | pcm_heatrate_av = 0.0_wp |
---|
| 669 | |
---|
| 670 | |
---|
| 671 | CASE ( 'pcm_latentrate' ) |
---|
| 672 | IF ( .NOT. ALLOCATED( pcm_latentrate_av ) ) THEN |
---|
| 673 | ALLOCATE( pcm_latentrate_av(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 674 | ENDIF |
---|
| 675 | pcm_latentrate_av = 0.0_wp |
---|
| 676 | |
---|
| 677 | |
---|
| 678 | CASE ( 'pcm_transpirationrate' ) |
---|
| 679 | IF ( .NOT. ALLOCATED( pcm_transpirationrate_av ) ) THEN |
---|
| 680 | ALLOCATE( pcm_transpirationrate_av(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 681 | ENDIF |
---|
| 682 | pcm_transpirationrate_av = 0.0_wp |
---|
| 683 | |
---|
| 684 | CASE DEFAULT |
---|
| 685 | CONTINUE |
---|
| 686 | |
---|
| 687 | END SELECT |
---|
| 688 | |
---|
[4803] | 689 | ELSE IF ( mode == 'sum' ) THEN |
---|
[4127] | 690 | |
---|
| 691 | SELECT CASE ( TRIM( variable ) ) |
---|
| 692 | |
---|
| 693 | CASE ( 'pcm_heatrate' ) |
---|
[4803] | 694 | IF ( ALLOCATED( pcm_heatrate_av ) ) THEN |
---|
[4127] | 695 | DO i = nxl, nxr |
---|
| 696 | DO j = nys, nyn |
---|
| 697 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
| 698 | DO k = 0, pch_index_ji(j,i) |
---|
[4803] | 699 | pcm_heatrate_av(k,j,i) = pcm_heatrate_av(k,j,i) + & |
---|
| 700 | pcm_heating_rate(k,j,i) |
---|
[4127] | 701 | ENDDO |
---|
| 702 | ENDIF |
---|
| 703 | ENDDO |
---|
| 704 | ENDDO |
---|
| 705 | ENDIF |
---|
| 706 | |
---|
| 707 | |
---|
| 708 | CASE ( 'pcm_latentrate' ) |
---|
[4803] | 709 | IF ( ALLOCATED( pcm_latentrate_av ) ) THEN |
---|
[4127] | 710 | DO i = nxl, nxr |
---|
| 711 | DO j = nys, nyn |
---|
| 712 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
| 713 | DO k = 0, pch_index_ji(j,i) |
---|
[4803] | 714 | pcm_latentrate_av(k,j,i) = pcm_latentrate_av(k,j,i) + & |
---|
| 715 | pcm_latent_rate(k,j,i) |
---|
[4127] | 716 | ENDDO |
---|
| 717 | ENDIF |
---|
| 718 | ENDDO |
---|
| 719 | ENDDO |
---|
| 720 | ENDIF |
---|
| 721 | |
---|
| 722 | |
---|
| 723 | CASE ( 'pcm_transpirationrate' ) |
---|
[4803] | 724 | IF ( ALLOCATED( pcm_transpirationrate_av ) ) THEN |
---|
[4127] | 725 | DO i = nxl, nxr |
---|
| 726 | DO j = nys, nyn |
---|
| 727 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
| 728 | DO k = 0, pch_index_ji(j,i) |
---|
[4803] | 729 | pcm_transpirationrate_av(k,j,i) = pcm_transpirationrate_av(k,j,i) + & |
---|
| 730 | pcm_transpiration_rate(k,j,i) |
---|
[4127] | 731 | ENDDO |
---|
| 732 | ENDIF |
---|
| 733 | ENDDO |
---|
| 734 | ENDDO |
---|
| 735 | ENDIF |
---|
| 736 | |
---|
| 737 | CASE DEFAULT |
---|
| 738 | CONTINUE |
---|
| 739 | |
---|
| 740 | END SELECT |
---|
| 741 | |
---|
[4803] | 742 | ELSE IF ( mode == 'average' ) THEN |
---|
[4127] | 743 | |
---|
| 744 | SELECT CASE ( TRIM( variable ) ) |
---|
| 745 | |
---|
| 746 | CASE ( 'pcm_heatrate' ) |
---|
[4803] | 747 | IF ( ALLOCATED( pcm_heatrate_av ) ) THEN |
---|
[4127] | 748 | DO i = nxlg, nxrg |
---|
| 749 | DO j = nysg, nyng |
---|
| 750 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
| 751 | DO k = 0, pch_index_ji(j,i) |
---|
[4803] | 752 | pcm_heatrate_av(k,j,i) = pcm_heatrate_av(k,j,i) & |
---|
[4127] | 753 | / REAL( average_count_3d, KIND=wp ) |
---|
| 754 | ENDDO |
---|
| 755 | ENDIF |
---|
| 756 | ENDDO |
---|
| 757 | ENDDO |
---|
| 758 | ENDIF |
---|
| 759 | |
---|
| 760 | |
---|
| 761 | CASE ( 'pcm_latentrate' ) |
---|
[4803] | 762 | IF ( ALLOCATED( pcm_latentrate_av ) ) THEN |
---|
[4127] | 763 | DO i = nxlg, nxrg |
---|
| 764 | DO j = nysg, nyng |
---|
| 765 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
| 766 | DO k = 0, pch_index_ji(j,i) |
---|
[4803] | 767 | pcm_latentrate_av(k,j,i) = pcm_latentrate_av(k,j,i) & |
---|
[4127] | 768 | / REAL( average_count_3d, KIND=wp ) |
---|
| 769 | ENDDO |
---|
| 770 | ENDIF |
---|
| 771 | ENDDO |
---|
| 772 | ENDDO |
---|
| 773 | ENDIF |
---|
| 774 | |
---|
| 775 | |
---|
| 776 | CASE ( 'pcm_transpirationrate' ) |
---|
[4803] | 777 | IF ( ALLOCATED( pcm_transpirationrate_av ) ) THEN |
---|
[4127] | 778 | DO i = nxlg, nxrg |
---|
| 779 | DO j = nysg, nyng |
---|
| 780 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
| 781 | DO k = 0, pch_index_ji(j,i) |
---|
[4803] | 782 | pcm_transpirationrate_av(k,j,i) = pcm_transpirationrate_av(k,j,i) & |
---|
[4127] | 783 | / REAL( average_count_3d, KIND=wp ) |
---|
| 784 | ENDDO |
---|
| 785 | ENDIF |
---|
| 786 | ENDDO |
---|
| 787 | ENDDO |
---|
| 788 | ENDIF |
---|
| 789 | |
---|
| 790 | END SELECT |
---|
| 791 | |
---|
| 792 | ENDIF |
---|
| 793 | |
---|
[4216] | 794 | END SUBROUTINE pcm_3d_data_averaging |
---|
[4127] | 795 | |
---|
[4803] | 796 | !--------------------------------------------------------------------------------------------------! |
---|
[4127] | 797 | ! |
---|
| 798 | ! Description: |
---|
| 799 | ! ------------ |
---|
[4803] | 800 | !> Subroutine defining 3D output variables. |
---|
| 801 | !> Note, 3D plant-canopy output has it's own vertical output dimension, meaning that 3D output is |
---|
| 802 | !> relative to the model surface now rather than at the actual grid point where the plant canopy is |
---|
| 803 | !> located. |
---|
| 804 | !--------------------------------------------------------------------------------------------------! |
---|
| 805 | SUBROUTINE pcm_data_output_3d( av, variable, found, local_pf, fill_value, nzb_do, nzt_do ) |
---|
[2209] | 806 | |
---|
[4216] | 807 | CHARACTER (LEN=*) :: variable !< treated variable |
---|
[2209] | 808 | |
---|
[4216] | 809 | INTEGER(iwp) :: av !< flag indicating instantaneous or averaged data output |
---|
| 810 | INTEGER(iwp) :: i !< grid index x-direction |
---|
| 811 | INTEGER(iwp) :: j !< grid index y-direction |
---|
| 812 | INTEGER(iwp) :: k !< grid index z-direction |
---|
[3014] | 813 | INTEGER(iwp) :: nzb_do !< lower limit of the data output (usually 0) |
---|
| 814 | INTEGER(iwp) :: nzt_do !< vertical upper limit of the data output (usually nz_do3d) |
---|
[2209] | 815 | |
---|
[4216] | 816 | LOGICAL :: found !< flag indicating if variable is found |
---|
[2209] | 817 | |
---|
[4216] | 818 | REAL(wp) :: fill_value !< fill value |
---|
[4803] | 819 | |
---|
[4768] | 820 | REAL(wp), DIMENSION(nxl:nxr,nys:nyn,nzb_do:nzt_do) :: local_pf !< data output array |
---|
[2209] | 821 | |
---|
| 822 | |
---|
| 823 | found = .TRUE. |
---|
| 824 | |
---|
[2696] | 825 | local_pf = REAL( fill_value, KIND = 4 ) |
---|
[2209] | 826 | |
---|
| 827 | SELECT CASE ( TRIM( variable ) ) |
---|
[4216] | 828 | ! |
---|
| 829 | !-- Note, to save memory arrays for heating are allocated from 0:pch_index. |
---|
[4803] | 830 | !-- Thus, output must be relative to these array indices. Further, check whether the output is |
---|
| 831 | !-- within the vertical output range, i.e. nzb_do:nzt_do, which is necessary as local_pf is only |
---|
| 832 | !-- allocated for this index space. Note, plant-canopy output has a separate vertical output |
---|
| 833 | !-- coordinate zlad, so that output is mapped down to the surface. |
---|
[4127] | 834 | CASE ( 'pcm_heatrate' ) |
---|
| 835 | IF ( av == 0 ) THEN |
---|
| 836 | DO i = nxl, nxr |
---|
| 837 | DO j = nys, nyn |
---|
[4360] | 838 | DO k = MAX( 1, nzb_do ), MIN( pch_index_ji(j,i), nzt_do ) |
---|
[4341] | 839 | local_pf(i,j,k) = pcm_heating_rate(k,j,i) |
---|
[4216] | 840 | ENDDO |
---|
[4127] | 841 | ENDDO |
---|
| 842 | ENDDO |
---|
| 843 | ELSE |
---|
| 844 | DO i = nxl, nxr |
---|
| 845 | DO j = nys, nyn |
---|
[4360] | 846 | DO k = MAX( 1, nzb_do ), MIN( pch_index_ji(j,i), nzt_do ) |
---|
[4220] | 847 | local_pf(i,j,k) = pcm_heatrate_av(k,j,i) |
---|
[4127] | 848 | ENDDO |
---|
| 849 | ENDDO |
---|
| 850 | ENDDO |
---|
| 851 | ENDIF |
---|
[3449] | 852 | |
---|
| 853 | CASE ( 'pcm_latentrate' ) |
---|
[4127] | 854 | IF ( av == 0 ) THEN |
---|
| 855 | DO i = nxl, nxr |
---|
| 856 | DO j = nys, nyn |
---|
[4360] | 857 | DO k = MAX( 1, nzb_do ), MIN( pch_index_ji(j,i), nzt_do ) |
---|
[4341] | 858 | local_pf(i,j,k) = pcm_latent_rate(k,j,i) |
---|
[4216] | 859 | ENDDO |
---|
[4127] | 860 | ENDDO |
---|
| 861 | ENDDO |
---|
| 862 | ELSE |
---|
| 863 | DO i = nxl, nxr |
---|
| 864 | DO j = nys, nyn |
---|
[4360] | 865 | DO k = MAX( 1, nzb_do ), MIN( pch_index_ji(j,i), nzt_do ) |
---|
[4220] | 866 | local_pf(i,j,k) = pcm_latentrate_av(k,j,i) |
---|
[4127] | 867 | ENDDO |
---|
| 868 | ENDDO |
---|
| 869 | ENDDO |
---|
| 870 | ENDIF |
---|
[3449] | 871 | |
---|
[4127] | 872 | CASE ( 'pcm_transpirationrate' ) |
---|
| 873 | IF ( av == 0 ) THEN |
---|
| 874 | DO i = nxl, nxr |
---|
| 875 | DO j = nys, nyn |
---|
[4360] | 876 | DO k = MAX( 1, nzb_do ), MIN( pch_index_ji(j,i), nzt_do ) |
---|
[4341] | 877 | local_pf(i,j,k) = pcm_transpiration_rate(k,j,i) |
---|
[4216] | 878 | ENDDO |
---|
[4127] | 879 | ENDDO |
---|
| 880 | ENDDO |
---|
| 881 | ELSE |
---|
| 882 | DO i = nxl, nxr |
---|
| 883 | DO j = nys, nyn |
---|
[4360] | 884 | DO k = MAX( 1, nzb_do ), MIN( pch_index_ji(j,i), nzt_do ) |
---|
[4220] | 885 | local_pf(i,j,k) = pcm_transpirationrate_av(k,j,i) |
---|
[4127] | 886 | ENDDO |
---|
| 887 | ENDDO |
---|
| 888 | ENDDO |
---|
| 889 | ENDIF |
---|
| 890 | |
---|
| 891 | CASE ( 'pcm_lad' ) |
---|
| 892 | IF ( av == 0 ) THEN |
---|
| 893 | DO i = nxl, nxr |
---|
| 894 | DO j = nys, nyn |
---|
[4360] | 895 | DO k = MAX( 1, nzb_do ), MIN( pch_index_ji(j,i), nzt_do ) |
---|
[4220] | 896 | local_pf(i,j,k) = lad_s(k,j,i) |
---|
[4216] | 897 | ENDDO |
---|
[4127] | 898 | ENDDO |
---|
| 899 | ENDDO |
---|
| 900 | ENDIF |
---|
| 901 | |
---|
[4770] | 902 | CASE ( 'pcm_bad' ) |
---|
| 903 | IF ( av == 0 ) THEN |
---|
| 904 | DO i = nxl, nxr |
---|
| 905 | DO j = nys, nyn |
---|
| 906 | DO k = MAX( 1, nzb_do ), MIN( pch_index_ji(j,i), nzt_do ) |
---|
| 907 | local_pf(i,j,k) = bad_s(k,j,i) |
---|
| 908 | ENDDO |
---|
| 909 | ENDDO |
---|
| 910 | ENDDO |
---|
| 911 | ENDIF |
---|
| 912 | |
---|
[2209] | 913 | CASE DEFAULT |
---|
| 914 | found = .FALSE. |
---|
| 915 | |
---|
| 916 | END SELECT |
---|
| 917 | |
---|
[4803] | 918 | END SUBROUTINE pcm_data_output_3d |
---|
| 919 | |
---|
| 920 | !--------------------------------------------------------------------------------------------------! |
---|
[2209] | 921 | ! |
---|
| 922 | ! Description: |
---|
| 923 | ! ------------ |
---|
| 924 | !> Subroutine defining appropriate grid for netcdf variables. |
---|
| 925 | !> It is called from subroutine netcdf. |
---|
[4803] | 926 | !--------------------------------------------------------------------------------------------------! |
---|
[2209] | 927 | SUBROUTINE pcm_define_netcdf_grid( var, found, grid_x, grid_y, grid_z ) |
---|
| 928 | |
---|
[4803] | 929 | CHARACTER (LEN=*), INTENT(IN) :: var !< |
---|
| 930 | CHARACTER (LEN=*), INTENT(OUT) :: grid_x !< |
---|
| 931 | CHARACTER (LEN=*), INTENT(OUT) :: grid_y !< |
---|
| 932 | CHARACTER (LEN=*), INTENT(OUT) :: grid_z !< |
---|
[2209] | 933 | |
---|
[4803] | 934 | LOGICAL, INTENT(OUT) :: found !< |
---|
| 935 | |
---|
| 936 | |
---|
[2209] | 937 | found = .TRUE. |
---|
| 938 | |
---|
| 939 | ! |
---|
[4342] | 940 | !-- Check for the grid. zpc is zu(nzb:nzb+pch_index) |
---|
[2209] | 941 | SELECT CASE ( TRIM( var ) ) |
---|
| 942 | |
---|
[4803] | 943 | CASE ( 'pcm_heatrate', 'pcm_bad', 'pcm_lad', 'pcm_transpirationrate', 'pcm_latentrate' ) |
---|
[2209] | 944 | grid_x = 'x' |
---|
| 945 | grid_y = 'y' |
---|
[4127] | 946 | grid_z = 'zpc' |
---|
[2209] | 947 | |
---|
| 948 | CASE DEFAULT |
---|
| 949 | found = .FALSE. |
---|
| 950 | grid_x = 'none' |
---|
| 951 | grid_y = 'none' |
---|
| 952 | grid_z = 'none' |
---|
| 953 | END SELECT |
---|
| 954 | |
---|
| 955 | END SUBROUTINE pcm_define_netcdf_grid |
---|
[4803] | 956 | |
---|
| 957 | |
---|
| 958 | !--------------------------------------------------------------------------------------------------! |
---|
[2209] | 959 | ! Description: |
---|
| 960 | ! ------------ |
---|
[1826] | 961 | !> Header output for plant canopy model |
---|
[4803] | 962 | !--------------------------------------------------------------------------------------------------! |
---|
[4362] | 963 | SUBROUTINE pcm_header ( io ) |
---|
[4803] | 964 | |
---|
[4362] | 965 | CHARACTER (LEN=10) :: coor_chr !< |
---|
| 966 | CHARACTER (LEN=86) :: coordinates !< |
---|
| 967 | CHARACTER (LEN=86) :: gradients !< |
---|
| 968 | CHARACTER (LEN=86) :: leaf_area_density !< |
---|
| 969 | CHARACTER (LEN=86) :: slices !< |
---|
[4803] | 970 | |
---|
| 971 | INTEGER(iwp) :: i !< |
---|
| 972 | INTEGER(iwp), INTENT(IN) :: io !< Unit of the output file |
---|
| 973 | INTEGER(iwp) :: k !< |
---|
| 974 | |
---|
[4362] | 975 | REAL(wp) :: canopy_height !< canopy height (in m) |
---|
[4803] | 976 | |
---|
| 977 | |
---|
[4362] | 978 | canopy_height = zw(pch_index) |
---|
[1826] | 979 | |
---|
[4803] | 980 | WRITE( io, 1 ) canopy_mode, canopy_height, pch_index, canopy_drag_coeff |
---|
| 981 | IF ( passive_scalar ) THEN |
---|
| 982 | WRITE( io, 2 ) leaf_scalar_exch_coeff, leaf_surface_conc |
---|
[4362] | 983 | ENDIF |
---|
[1826] | 984 | |
---|
| 985 | ! |
---|
[4803] | 986 | !-- Heat flux at the top of vegetation |
---|
| 987 | WRITE( io, 3 ) cthf |
---|
[1826] | 988 | |
---|
| 989 | ! |
---|
[4803] | 990 | !-- Leaf area density profile, calculated either from given vertical gradients or from beta |
---|
| 991 | !-- probability density function. |
---|
| 992 | IF ( .NOT. calc_beta_lad_profile ) THEN |
---|
[1826] | 993 | |
---|
[4362] | 994 | ! Building output strings, starting with surface value |
---|
[4803] | 995 | WRITE( leaf_area_density, '(F7.4)' ) lad_surface |
---|
[4362] | 996 | gradients = '------' |
---|
| 997 | slices = ' 0' |
---|
| 998 | coordinates = ' 0.0' |
---|
[4803] | 999 | DO i = 1, UBOUND( lad_vertical_gradient_level_ind, DIM=1 ) |
---|
| 1000 | IF ( lad_vertical_gradient_level_ind(i) /= -9999 ) THEN |
---|
[1826] | 1001 | |
---|
[4803] | 1002 | WRITE( coor_chr, '(F7.2)' ) lad(lad_vertical_gradient_level_ind(i)) |
---|
[4362] | 1003 | leaf_area_density = TRIM( leaf_area_density ) // ' ' // TRIM( coor_chr ) |
---|
[1826] | 1004 | |
---|
[4803] | 1005 | WRITE( coor_chr, '(F7.2)' ) lad_vertical_gradient(i) |
---|
[4362] | 1006 | gradients = TRIM( gradients ) // ' ' // TRIM( coor_chr ) |
---|
[1826] | 1007 | |
---|
[4803] | 1008 | WRITE( coor_chr, '(I7)' ) lad_vertical_gradient_level_ind(i) |
---|
[4362] | 1009 | slices = TRIM( slices ) // ' ' // TRIM( coor_chr ) |
---|
[1826] | 1010 | |
---|
[4803] | 1011 | WRITE( coor_chr, '(F7.1)' ) lad_vertical_gradient_level(i) |
---|
[4362] | 1012 | coordinates = TRIM( coordinates ) // ' ' // TRIM( coor_chr ) |
---|
| 1013 | ELSE |
---|
| 1014 | EXIT |
---|
| 1015 | ENDIF |
---|
| 1016 | ENDDO |
---|
[1826] | 1017 | |
---|
[4803] | 1018 | WRITE( io, 4 ) TRIM( coordinates ), TRIM( leaf_area_density ), TRIM( gradients ), & |
---|
| 1019 | TRIM( slices ) |
---|
[1826] | 1020 | |
---|
[4362] | 1021 | ELSE |
---|
[4803] | 1022 | |
---|
| 1023 | WRITE( leaf_area_density, '(F7.4)' ) lad_surface |
---|
[4362] | 1024 | coordinates = ' 0.0' |
---|
[4803] | 1025 | |
---|
[4362] | 1026 | DO k = 1, pch_index |
---|
[1826] | 1027 | |
---|
[4803] | 1028 | WRITE( coor_chr,'(F7.2)' ) lad(k) |
---|
| 1029 | leaf_area_density = TRIM( leaf_area_density ) // ' ' // TRIM( coor_chr ) |
---|
[1826] | 1030 | |
---|
[4803] | 1031 | WRITE(coor_chr,'(F7.1)') zu(k) |
---|
| 1032 | coordinates = TRIM( coordinates ) // ' ' // TRIM( coor_chr ) |
---|
[1826] | 1033 | |
---|
[4803] | 1034 | ENDDO |
---|
| 1035 | |
---|
| 1036 | WRITE( io, 5 ) TRIM( coordinates ), TRIM( leaf_area_density ), alpha_lad, beta_lad, lai_beta |
---|
| 1037 | |
---|
| 1038 | ENDIF |
---|
| 1039 | |
---|
| 1040 | 1 FORMAT (/ /' Vegetation canopy (drag) model:' / ' ------------------------------' // & |
---|
| 1041 | ' Canopy mode: ', A / ' Canopy height: ', F6.2, 'm (',I4,' grid points)' / & |
---|
| 1042 | ' Leaf drag coefficient: ', F6.2 /) |
---|
| 1043 | 2 FORMAT (/ ' Scalar exchange coefficient: ',F6.2 / & |
---|
| 1044 | ' Scalar concentration at leaf surfaces in kg/m**3: ', F6.2 /) |
---|
| 1045 | 3 FORMAT ( ' Predefined constant heatflux at the top of the vegetation: ', F6.2, ' K m/s') |
---|
| 1046 | 4 FORMAT (/ ' Characteristic levels of the leaf area density:' // & |
---|
| 1047 | ' Height: ', A, ' m' / & |
---|
| 1048 | ' Leaf area density: ', A, ' m**2/m**3' / & |
---|
| 1049 | ' Gradient: ', A, ' m**2/m**4' / & |
---|
| 1050 | ' Gridpoint: ', A ) |
---|
| 1051 | 5 FORMAT (//' Characteristic levels of the leaf area density and coefficients:' // & |
---|
| 1052 | ' Height: ', A, ' m' / & |
---|
| 1053 | ' Leaf area density: ', A, ' m**2/m**3' / & |
---|
| 1054 | ' Coefficient alpha: ',F6.2 / & |
---|
| 1055 | ' Coefficient beta: ',F6.2 / & |
---|
| 1056 | ' Leaf area index: ',F6.2,' m**2/m**2' /) |
---|
| 1057 | |
---|
[1826] | 1058 | END SUBROUTINE pcm_header |
---|
[4803] | 1059 | |
---|
| 1060 | |
---|
| 1061 | !--------------------------------------------------------------------------------------------------! |
---|
[1826] | 1062 | ! Description: |
---|
| 1063 | ! ------------ |
---|
[1682] | 1064 | !> Initialization of the plant canopy model |
---|
[4803] | 1065 | !--------------------------------------------------------------------------------------------------! |
---|
[1826] | 1066 | SUBROUTINE pcm_init |
---|
[1484] | 1067 | |
---|
[4803] | 1068 | USE exchange_horiz_mod, & |
---|
[4457] | 1069 | ONLY: exchange_horiz |
---|
| 1070 | |
---|
[2007] | 1071 | INTEGER(iwp) :: i !< running index |
---|
| 1072 | INTEGER(iwp) :: j !< running index |
---|
| 1073 | INTEGER(iwp) :: k !< running index |
---|
[2232] | 1074 | INTEGER(iwp) :: m !< running index |
---|
[1484] | 1075 | |
---|
[4803] | 1076 | LOGICAL :: lad_on_top = .FALSE. !< dummy flag to indicate that LAD is defined on a building roof |
---|
| 1077 | LOGICAL :: bad_on_top = .FALSE. !< dummy flag to indicate that BAD is defined on a building roof |
---|
[4381] | 1078 | |
---|
[4258] | 1079 | REAL(wp) :: canopy_height !< canopy height for lad-profile construction |
---|
[2007] | 1080 | REAL(wp) :: gradient !< gradient for lad-profile construction |
---|
[4803] | 1081 | REAL(wp) :: int_bpdf !< vertical integral for lad-profile construction |
---|
[4258] | 1082 | REAL(wp) :: lad_max !< maximum LAD value in the model domain, used to perform a check |
---|
[3241] | 1083 | |
---|
[4803] | 1084 | |
---|
[3885] | 1085 | IF ( debug_output ) CALL debug_message( 'pcm_init', 'start' ) |
---|
[1484] | 1086 | ! |
---|
[4803] | 1087 | !-- Allocate one-dimensional arrays for the computation of the leaf area density (lad) profile |
---|
[1484] | 1088 | ALLOCATE( lad(0:nz+1), pre_lad(0:nz+1) ) |
---|
| 1089 | lad = 0.0_wp |
---|
| 1090 | pre_lad = 0.0_wp |
---|
| 1091 | |
---|
| 1092 | ! |
---|
[4803] | 1093 | !-- Set flag that indicates that the lad-profile shall be calculated by using a beta probability |
---|
| 1094 | !-- density function |
---|
[1826] | 1095 | IF ( alpha_lad /= 9999999.9_wp .AND. beta_lad /= 9999999.9_wp ) THEN |
---|
| 1096 | calc_beta_lad_profile = .TRUE. |
---|
| 1097 | ENDIF |
---|
[4803] | 1098 | |
---|
| 1099 | |
---|
[1826] | 1100 | ! |
---|
[4803] | 1101 | !-- Compute the profile of leaf area density used in the plant canopy model. The profile can |
---|
| 1102 | !-- either be constructed from prescribed vertical gradients of the leaf area density or by using |
---|
| 1103 | !-- a beta probability density function (see e.g. Markkanen et al., 2003: Boundary-Layer |
---|
| 1104 | !-- Meteorology, 106, 437-459) |
---|
| 1105 | IF ( .NOT. calc_beta_lad_profile ) THEN |
---|
[1484] | 1106 | |
---|
| 1107 | ! |
---|
[4803] | 1108 | !-- Use vertical gradients for lad-profile construction |
---|
[1484] | 1109 | i = 1 |
---|
| 1110 | gradient = 0.0_wp |
---|
| 1111 | |
---|
[4342] | 1112 | lad(0) = lad_surface |
---|
| 1113 | lad_vertical_gradient_level_ind(1) = 0 |
---|
[1484] | 1114 | |
---|
[4803] | 1115 | DO k = 1, pch_index |
---|
[4342] | 1116 | IF ( i < 11 ) THEN |
---|
[4803] | 1117 | IF ( lad_vertical_gradient_level(i) < zu(k) .AND. & |
---|
[4342] | 1118 | lad_vertical_gradient_level(i) >= 0.0_wp ) THEN |
---|
| 1119 | gradient = lad_vertical_gradient(i) |
---|
| 1120 | lad_vertical_gradient_level_ind(i) = k - 1 |
---|
| 1121 | i = i + 1 |
---|
[1484] | 1122 | ENDIF |
---|
[4342] | 1123 | ENDIF |
---|
| 1124 | IF ( gradient /= 0.0_wp ) THEN |
---|
| 1125 | IF ( k /= 1 ) THEN |
---|
| 1126 | lad(k) = lad(k-1) + dzu(k) * gradient |
---|
[1484] | 1127 | ELSE |
---|
[4342] | 1128 | lad(k) = lad_surface + dzu(k) * gradient |
---|
[1484] | 1129 | ENDIF |
---|
[4342] | 1130 | ELSE |
---|
| 1131 | lad(k) = lad(k-1) |
---|
| 1132 | ENDIF |
---|
| 1133 | ENDDO |
---|
[1484] | 1134 | |
---|
| 1135 | ! |
---|
[4803] | 1136 | !-- In case of no given leaf area density gradients, choose a vanishing gradient. This |
---|
| 1137 | !-- information is used for the HEADER and the RUN_CONTROL file. |
---|
[1484] | 1138 | IF ( lad_vertical_gradient_level(1) == -9999999.9_wp ) THEN |
---|
| 1139 | lad_vertical_gradient_level(1) = 0.0_wp |
---|
| 1140 | ENDIF |
---|
| 1141 | |
---|
| 1142 | ELSE |
---|
| 1143 | |
---|
[4803] | 1144 | ! |
---|
[1484] | 1145 | !-- Use beta function for lad-profile construction |
---|
| 1146 | int_bpdf = 0.0_wp |
---|
[3065] | 1147 | canopy_height = zw(pch_index) |
---|
[1484] | 1148 | |
---|
[4803] | 1149 | DO k = 0, pch_index |
---|
| 1150 | int_bpdf = int_bpdf + & |
---|
| 1151 | ( ( ( zw(k) / canopy_height )**( alpha_lad-1.0_wp ) ) * & |
---|
| 1152 | ( ( 1.0_wp - ( zw(k) / canopy_height ) )**( beta_lad-1.0_wp ) ) & |
---|
| 1153 | * ( ( zw(k+1)-zw(k) ) / canopy_height ) ) |
---|
[1484] | 1154 | ENDDO |
---|
| 1155 | |
---|
| 1156 | ! |
---|
| 1157 | !-- Preliminary lad profile (defined on w-grid) |
---|
[4803] | 1158 | DO k = 0, pch_index |
---|
| 1159 | pre_lad(k) = lai_beta * & |
---|
| 1160 | ( ( ( zw(k) / canopy_height )**( alpha_lad-1.0_wp ) ) & |
---|
| 1161 | * ( ( 1.0_wp - ( zw(k) / canopy_height ) )**( beta_lad-1.0_wp ) ) & |
---|
| 1162 | / int_bpdf & |
---|
| 1163 | ) / canopy_height |
---|
[1484] | 1164 | ENDDO |
---|
| 1165 | |
---|
| 1166 | ! |
---|
[4803] | 1167 | !-- Final lad profile (defined on scalar-grid level, since most prognostic quantities are |
---|
| 1168 | !-- defined there, hence, less interpolation is required when calculating the canopy |
---|
| 1169 | !-- tendencies) |
---|
[1484] | 1170 | lad(0) = pre_lad(0) |
---|
[4803] | 1171 | DO k = 1, pch_index |
---|
[1484] | 1172 | lad(k) = 0.5 * ( pre_lad(k-1) + pre_lad(k) ) |
---|
[4302] | 1173 | ENDDO |
---|
[1484] | 1174 | |
---|
| 1175 | ENDIF |
---|
| 1176 | |
---|
| 1177 | ! |
---|
[4803] | 1178 | !-- Allocate 3D-array for the leaf-area density (lad_s) as well as for basal-area densitiy |
---|
| 1179 | !-- (bad_s). Note, by default bad_s is zero. |
---|
[1484] | 1180 | ALLOCATE( lad_s(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[4770] | 1181 | ALLOCATE( bad_s(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 1182 | bad_s = 0.0_wp |
---|
[1484] | 1183 | ! |
---|
| 1184 | !-- Initialization of the canopy coverage in the model domain: |
---|
[4803] | 1185 | !-- Setting the parameter canopy_mode = 'homogeneous' initializes a canopy, which fully covers |
---|
| 1186 | !-- the domain surface |
---|
[1484] | 1187 | SELECT CASE ( TRIM( canopy_mode ) ) |
---|
| 1188 | |
---|
[4803] | 1189 | CASE ( 'homogeneous' ) |
---|
[1484] | 1190 | |
---|
| 1191 | DO i = nxlg, nxrg |
---|
| 1192 | DO j = nysg, nyng |
---|
| 1193 | lad_s(:,j,i) = lad(:) |
---|
| 1194 | ENDDO |
---|
| 1195 | ENDDO |
---|
| 1196 | |
---|
[4341] | 1197 | CASE ( 'read_from_file' ) |
---|
[2007] | 1198 | ! |
---|
[4362] | 1199 | !-- Read plant canopy |
---|
| 1200 | IF ( input_pids_static ) THEN |
---|
| 1201 | ! |
---|
| 1202 | !-- Open the static input file |
---|
| 1203 | #if defined( __netcdf ) |
---|
[4803] | 1204 | CALL open_read_file( TRIM( input_file_static ) // & |
---|
| 1205 | TRIM( coupling_char ), & |
---|
[4362] | 1206 | pids_id ) |
---|
| 1207 | |
---|
| 1208 | CALL inquire_num_variables( pids_id, num_var_pids ) |
---|
| 1209 | ! |
---|
| 1210 | !-- Allocate memory to store variable names and read them |
---|
| 1211 | ALLOCATE( vars_pids(1:num_var_pids) ) |
---|
| 1212 | CALL inquire_variable_names( pids_id, vars_pids ) |
---|
| 1213 | ! |
---|
| 1214 | !-- Read leaf area density - resolved vegetation |
---|
| 1215 | IF ( check_existence( vars_pids, 'lad' ) ) THEN |
---|
| 1216 | leaf_area_density_f%from_file = .TRUE. |
---|
[4803] | 1217 | CALL get_attribute( pids_id, char_fill, & |
---|
| 1218 | leaf_area_density_f%fill, & |
---|
[4362] | 1219 | .FALSE., 'lad' ) |
---|
| 1220 | ! |
---|
| 1221 | !-- Inquire number of vertical vegetation layer |
---|
[4803] | 1222 | CALL get_dimension_length( pids_id, & |
---|
| 1223 | leaf_area_density_f%nz, & |
---|
[4362] | 1224 | 'zlad' ) |
---|
| 1225 | ! |
---|
| 1226 | !-- Allocate variable for leaf-area density |
---|
[4803] | 1227 | ALLOCATE( leaf_area_density_f%var & |
---|
| 1228 | (0:leaf_area_density_f%nz-1,nys:nyn,nxl:nxr) ) |
---|
[4362] | 1229 | |
---|
[4803] | 1230 | CALL get_variable( pids_id, 'lad', leaf_area_density_f%var, nxl, nxr, nys, nyn, & |
---|
[4362] | 1231 | 0, leaf_area_density_f%nz-1 ) |
---|
| 1232 | |
---|
| 1233 | ELSE |
---|
| 1234 | leaf_area_density_f%from_file = .FALSE. |
---|
| 1235 | ENDIF |
---|
| 1236 | ! |
---|
| 1237 | !-- Read basal area density - resolved vegetation |
---|
| 1238 | IF ( check_existence( vars_pids, 'bad' ) ) THEN |
---|
| 1239 | basal_area_density_f%from_file = .TRUE. |
---|
[4803] | 1240 | CALL get_attribute( pids_id, char_fill, & |
---|
| 1241 | basal_area_density_f%fill, & |
---|
[4362] | 1242 | .FALSE., 'bad' ) |
---|
| 1243 | ! |
---|
| 1244 | !-- Inquire number of vertical vegetation layer |
---|
[4803] | 1245 | CALL get_dimension_length( pids_id, & |
---|
| 1246 | basal_area_density_f%nz, & |
---|
[4362] | 1247 | 'zlad' ) |
---|
| 1248 | ! |
---|
| 1249 | !-- Allocate variable |
---|
[4803] | 1250 | ALLOCATE( basal_area_density_f%var & |
---|
| 1251 | (0:basal_area_density_f%nz-1,nys:nyn,nxl:nxr) ) |
---|
[4362] | 1252 | |
---|
[4803] | 1253 | CALL get_variable( pids_id, 'bad', basal_area_density_f%var, nxl, nxr, nys, nyn,& |
---|
| 1254 | 0, basal_area_density_f%nz-1 ) |
---|
[4362] | 1255 | ELSE |
---|
| 1256 | basal_area_density_f%from_file = .FALSE. |
---|
| 1257 | ENDIF |
---|
| 1258 | ! |
---|
| 1259 | !-- Read root area density - resolved vegetation |
---|
| 1260 | IF ( check_existence( vars_pids, 'root_area_dens_r' ) ) THEN |
---|
| 1261 | root_area_density_lad_f%from_file = .TRUE. |
---|
[4803] | 1262 | CALL get_attribute( pids_id, char_fill, & |
---|
| 1263 | root_area_density_lad_f%fill, & |
---|
[4362] | 1264 | .FALSE., 'root_area_dens_r' ) |
---|
| 1265 | ! |
---|
| 1266 | !-- Inquire number of vertical soil layers |
---|
[4803] | 1267 | CALL get_dimension_length( pids_id, & |
---|
| 1268 | root_area_density_lad_f%nz, & |
---|
[4362] | 1269 | 'zsoil' ) |
---|
| 1270 | ! |
---|
| 1271 | !-- Allocate variable |
---|
[4803] | 1272 | ALLOCATE( root_area_density_lad_f%var & |
---|
| 1273 | (0:root_area_density_lad_f%nz-1,nys:nyn,nxl:nxr) ) |
---|
[4362] | 1274 | |
---|
[4803] | 1275 | CALL get_variable( pids_id, 'root_area_dens_r', root_area_density_lad_f%var, & |
---|
| 1276 | nxl, nxr, nys, nyn, 0, root_area_density_lad_f%nz-1 ) |
---|
[4362] | 1277 | ELSE |
---|
| 1278 | root_area_density_lad_f%from_file = .FALSE. |
---|
| 1279 | ENDIF |
---|
| 1280 | |
---|
| 1281 | DEALLOCATE( vars_pids ) |
---|
| 1282 | ! |
---|
[4363] | 1283 | !-- Finally, close the input file and deallocate temporary array |
---|
| 1284 | CALL close_input_file( pids_id ) |
---|
[4362] | 1285 | #endif |
---|
[4363] | 1286 | ENDIF |
---|
| 1287 | |
---|
[4362] | 1288 | ! |
---|
[4803] | 1289 | !-- Initialize LAD with data from file. If LAD is given in NetCDF file, use these values, |
---|
| 1290 | !-- else take LAD profiles from ASCII file. |
---|
| 1291 | !-- Please note, in NetCDF file LAD is only given up to the maximum canopy top, indicated |
---|
| 1292 | !-- by leaf_area_density_f%nz. |
---|
[2696] | 1293 | lad_s = 0.0_wp |
---|
| 1294 | IF ( leaf_area_density_f%from_file ) THEN |
---|
| 1295 | ! |
---|
[4803] | 1296 | !-- Set also pch_index, used to be the upper bound of the vertical loops. Therefore, use |
---|
| 1297 | !-- the global top of the canopy layer. |
---|
[2696] | 1298 | pch_index = leaf_area_density_f%nz - 1 |
---|
| 1299 | |
---|
| 1300 | DO i = nxl, nxr |
---|
| 1301 | DO j = nys, nyn |
---|
| 1302 | DO k = 0, leaf_area_density_f%nz - 1 |
---|
[4803] | 1303 | IF ( leaf_area_density_f%var(k,j,i) /= leaf_area_density_f%fill ) & |
---|
| 1304 | lad_s(k,j,i) = leaf_area_density_f%var(k,j,i) |
---|
[2696] | 1305 | ENDDO |
---|
[4302] | 1306 | ! |
---|
| 1307 | !-- Check if resolved vegetation is mapped onto buildings. |
---|
[4803] | 1308 | !-- In general, this is allowed and also meaningful, e.g. when trees carry across |
---|
| 1309 | !-- roofs. However, due to the topography filtering, new building grid points can |
---|
| 1310 | !-- emerge at locations where also plant canopy is defined. As a result, plant |
---|
| 1311 | !-- canopy is mapped on top of roofs, with siginficant impact on the downstream |
---|
| 1312 | !-- flow field and the nearby surface radiation. In order to avoid that plant |
---|
| 1313 | !-- canopy is mistakenly mapped onto building roofs, check for building grid |
---|
| 1314 | !-- points (bit 6) that emerge from the filtering (bit 4) and set LAD to zero at |
---|
| 1315 | !-- these artificially created building grid points. This case, an informative |
---|
| 1316 | !-- message is given. |
---|
| 1317 | IF ( ANY( lad_s(:,j,i) /= 0.0_wp ) .AND. & |
---|
| 1318 | ANY( BTEST( wall_flags_total_0(:,j,i), 6 ) ) .AND. & |
---|
[4346] | 1319 | ANY( BTEST( wall_flags_total_0(:,j,i), 4 ) ) ) THEN |
---|
[4302] | 1320 | lad_s(:,j,i) = 0.0_wp |
---|
[4381] | 1321 | lad_on_top = .TRUE. |
---|
| 1322 | ENDIF |
---|
| 1323 | ENDDO |
---|
| 1324 | ENDDO |
---|
| 1325 | #if defined( __parallel ) |
---|
[4803] | 1326 | CALL MPI_ALLREDUCE( MPI_IN_PLACE, lad_on_top, 1, MPI_LOGICAL, MPI_LOR, comm2d, ierr) |
---|
[4381] | 1327 | #endif |
---|
| 1328 | IF ( lad_on_top ) THEN |
---|
[4770] | 1329 | WRITE( message_string, * ) & |
---|
| 1330 | 'Resolved plant-canopy is defined on top of an ' // & |
---|
| 1331 | 'artificially created building grid point(s) '// & |
---|
| 1332 | 'the filtering) - LAD/BAD profile is omitted at this / ' //& |
---|
[4381] | 1333 | 'these grid point(s).' |
---|
| 1334 | CALL message( 'pcm_init', 'PA0313', 0, 0, 0, 6, 0 ) |
---|
| 1335 | ENDIF |
---|
[2696] | 1336 | CALL exchange_horiz( lad_s, nbgp ) |
---|
| 1337 | ! |
---|
| 1338 | ! ASCII file |
---|
[4803] | 1339 | !-- Initialize canopy parameters canopy_drag_coeff, leaf_scalar_exch_coeff, |
---|
| 1340 | !-- leaf_surface_conc from file which contains complete 3D data (separate vertical profiles |
---|
| 1341 | !-- for each location). |
---|
[2696] | 1342 | ELSE |
---|
| 1343 | CALL pcm_read_plant_canopy_3d |
---|
| 1344 | ENDIF |
---|
[4770] | 1345 | ! |
---|
[4803] | 1346 | !-- Initialize LAD with data from file. If LAD is given in NetCDF file, use these values, |
---|
| 1347 | !-- else take LAD profiles from ASCII file. |
---|
| 1348 | !-- Please note, in NetCDF file LAD is only given up to the maximum canopy top, indicated |
---|
| 1349 | !-- by basal_area_density_f%nz. |
---|
[4770] | 1350 | bad_s = 0.0_wp |
---|
| 1351 | IF ( basal_area_density_f%from_file ) THEN |
---|
| 1352 | ! |
---|
[4803] | 1353 | !-- Set also pch_index, used to be the upper bound of the vertical loops. Therefore, use |
---|
| 1354 | !-- the global top of the canopy layer. |
---|
[4770] | 1355 | pch_index = basal_area_density_f%nz - 1 |
---|
[2007] | 1356 | |
---|
[4770] | 1357 | DO i = nxl, nxr |
---|
| 1358 | DO j = nys, nyn |
---|
| 1359 | DO k = 0, basal_area_density_f%nz - 1 |
---|
| 1360 | IF ( basal_area_density_f%var(k,j,i) /= basal_area_density_f%fill ) & |
---|
| 1361 | bad_s(k,j,i) = basal_area_density_f%var(k,j,i) |
---|
| 1362 | ENDDO |
---|
| 1363 | ! |
---|
| 1364 | !-- Check if resolved vegetation is mapped onto buildings. |
---|
| 1365 | !-- Please see comment for leaf_area density |
---|
[4803] | 1366 | IF ( ANY( bad_s(:,j,i) /= 0.0_wp ) .AND. & |
---|
| 1367 | ANY( BTEST( wall_flags_total_0(:,j,i), 6 ) ) .AND. & |
---|
[4770] | 1368 | ANY( BTEST( wall_flags_total_0(:,j,i), 4 ) ) ) THEN |
---|
| 1369 | bad_s(:,j,i) = 0.0_wp |
---|
| 1370 | bad_on_top = .TRUE. |
---|
| 1371 | ENDIF |
---|
| 1372 | ENDDO |
---|
| 1373 | ENDDO |
---|
| 1374 | #if defined( __parallel ) |
---|
[4803] | 1375 | CALL MPI_ALLREDUCE( MPI_IN_PLACE, bad_on_top, 1, MPI_LOGICAL, MPI_LOR, comm2d, ierr) |
---|
[4770] | 1376 | #endif |
---|
| 1377 | IF ( bad_on_top ) THEN |
---|
| 1378 | WRITE( message_string, * ) & |
---|
| 1379 | 'Resolved plant-canopy is defined on top of an ' // & |
---|
| 1380 | 'artificially created building grid point(s) '// & |
---|
| 1381 | 'the filtering) - LAD/BAD profile is omitted at this / ' //& |
---|
| 1382 | 'these grid point(s).' |
---|
| 1383 | CALL message( 'pcm_init', 'PA0313', 0, 0, 0, 6, 0 ) |
---|
| 1384 | ENDIF |
---|
| 1385 | CALL exchange_horiz( bad_s, nbgp ) |
---|
| 1386 | ENDIF |
---|
| 1387 | |
---|
[1484] | 1388 | CASE DEFAULT |
---|
| 1389 | ! |
---|
[4803] | 1390 | !-- The DEFAULT case is reached either if the parameter canopy mode contains a wrong |
---|
| 1391 | !-- character string or if the user has coded a special case in the user interface. |
---|
| 1392 | !-- There, the subroutine user_init_plant_canopy checks which of these two conditions |
---|
| 1393 | !-- applies. |
---|
[2007] | 1394 | CALL user_init_plant_canopy |
---|
[4803] | 1395 | |
---|
[1484] | 1396 | END SELECT |
---|
[2696] | 1397 | ! |
---|
[4803] | 1398 | !-- Check that at least one grid point has an LAD /= 0, else this may cause errors in the |
---|
| 1399 | !-- radiation model. |
---|
[4258] | 1400 | lad_max = MAXVAL( lad_s ) |
---|
| 1401 | #if defined( __parallel ) |
---|
[4803] | 1402 | CALL MPI_ALLREDUCE( MPI_IN_PLACE, lad_max, 1, MPI_REAL, MPI_MAX, comm2d, ierr) |
---|
[4258] | 1403 | #endif |
---|
| 1404 | IF ( lad_max <= 0.0_wp ) THEN |
---|
[4803] | 1405 | message_string = 'Plant-canopy model is switched-on but no ' // & |
---|
[4258] | 1406 | 'plant canopy is present in the model domain.' |
---|
| 1407 | CALL message( 'pcm_init', 'PA0685', 1, 2, 0, 6, 0 ) |
---|
| 1408 | ENDIF |
---|
[4803] | 1409 | |
---|
[4258] | 1410 | ! |
---|
[4803] | 1411 | !-- Initialize 2D index array indicating canopy top index. |
---|
[2696] | 1412 | ALLOCATE( pch_index_ji(nysg:nyng,nxlg:nxrg) ) |
---|
| 1413 | pch_index_ji = 0 |
---|
[4803] | 1414 | |
---|
[4361] | 1415 | DO i = nxlg, nxrg |
---|
| 1416 | DO j = nysg, nyng |
---|
[2696] | 1417 | DO k = 0, pch_index |
---|
[4770] | 1418 | IF ( lad_s(k,j,i) /= 0.0_wp .OR. bad_s(k,j,i) /= 0.0_wp ) pch_index_ji(j,i) = k |
---|
[2696] | 1419 | ENDDO |
---|
[1484] | 1420 | ! |
---|
[4803] | 1421 | !-- Check whether topography and local vegetation on top exceed height of the model domain. |
---|
[4356] | 1422 | IF ( topo_top_ind(j,i,0) + pch_index_ji(j,i) >= nzt + 1 ) THEN |
---|
[4803] | 1423 | message_string = 'Local vegetation height on top of ' // & |
---|
[2696] | 1424 | 'topography exceeds height of model domain.' |
---|
[4356] | 1425 | CALL message( 'pcm_init', 'PA0674', 2, 2, myid, 6, 0 ) |
---|
[2696] | 1426 | ENDIF |
---|
| 1427 | |
---|
| 1428 | ENDDO |
---|
| 1429 | ENDDO |
---|
[3497] | 1430 | ! |
---|
[3449] | 1431 | !-- Calculate global pch_index value (index of top of plant canopy from ground) |
---|
[3497] | 1432 | pch_index = MAXVAL( pch_index_ji ) |
---|
| 1433 | ! |
---|
[3449] | 1434 | !-- Exchange pch_index from all processors |
---|
| 1435 | #if defined( __parallel ) |
---|
[4803] | 1436 | CALL MPI_ALLREDUCE( MPI_IN_PLACE, pch_index, 1, MPI_INTEGER, MPI_MAX, comm2d, ierr) |
---|
[3449] | 1437 | #endif |
---|
[4360] | 1438 | ! |
---|
[4341] | 1439 | !-- Allocation of arrays pcm_heating_rate, pcm_transpiration_rate and pcm_latent_rate |
---|
| 1440 | ALLOCATE( pcm_heating_rate(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 1441 | pcm_heating_rate = 0.0_wp |
---|
[4803] | 1442 | |
---|
[3449] | 1443 | IF ( humidity ) THEN |
---|
[4341] | 1444 | ALLOCATE( pcm_transpiration_rate(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 1445 | pcm_transpiration_rate = 0.0_wp |
---|
| 1446 | ALLOCATE( pcm_latent_rate(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 1447 | pcm_latent_rate = 0.0_wp |
---|
[3449] | 1448 | ENDIF |
---|
[2696] | 1449 | ! |
---|
[4803] | 1450 | !-- Initialization of the canopy heat source distribution due to heating of the canopy layers by |
---|
| 1451 | !-- incoming solar radiation, in case that a non-zero |
---|
| 1452 | !-- value is set for the canopy top heat flux (cthf), which equals the available net radiation at |
---|
| 1453 | !-- canopy top. |
---|
| 1454 | !-- The heat source distribution is calculated by a decaying exponential function of the downward |
---|
| 1455 | !-- cumulative leaf area index (cum_lai_hf), assuming that the foliage inside the plant canopy is |
---|
| 1456 | !-- heated by solar radiation penetrating the canopy layers according to the distribution of net |
---|
| 1457 | !-- radiation as suggested by Brown & Covey (1966; Agric. Meteorol. 3, 73â96). This approach has |
---|
| 1458 | !-- been applied e.g. by Shaw & Schumann (1992; Bound.-Layer Meteorol. 61, 47â64). |
---|
| 1459 | !-- When using the radiation_interactions, canopy heating (pcm_heating_rate) and plant canopy |
---|
| 1460 | !-- transpiration (pcm_transpiration_rate, pcm_latent_rate) are calculated in the RTM after the |
---|
| 1461 | !-- calculation of radiation. |
---|
[3449] | 1462 | IF ( cthf /= 0.0_wp ) THEN |
---|
[2213] | 1463 | |
---|
[3449] | 1464 | ALLOCATE( cum_lai_hf(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1484] | 1465 | ! |
---|
[4803] | 1466 | !-- Piecewise calculation of the cumulative leaf area index by vertical integration of the |
---|
| 1467 | !-- leaf area density |
---|
[1484] | 1468 | cum_lai_hf(:,:,:) = 0.0_wp |
---|
| 1469 | DO i = nxlg, nxrg |
---|
| 1470 | DO j = nysg, nyng |
---|
[2696] | 1471 | DO k = pch_index_ji(j,i)-1, 0, -1 |
---|
| 1472 | IF ( k == pch_index_ji(j,i)-1 ) THEN |
---|
[4803] | 1473 | cum_lai_hf(k,j,i) = cum_lai_hf(k+1,j,i) + & |
---|
| 1474 | ( 0.5_wp * lad_s(k+1,j,i) * & |
---|
| 1475 | ( zw(k+1) - zu(k+1) ) ) + & |
---|
| 1476 | ( 0.5_wp * ( 0.5_wp * ( lad_s(k+1,j,i) + & |
---|
| 1477 | lad_s(k,j,i) ) + & |
---|
| 1478 | lad_s(k+1,j,i) ) * & |
---|
| 1479 | ( zu(k+1) - zw(k) ) ) |
---|
[1484] | 1480 | ELSE |
---|
[4803] | 1481 | cum_lai_hf(k,j,i) = cum_lai_hf(k+1,j,i) + & |
---|
| 1482 | ( 0.5_wp * ( 0.5_wp * ( lad_s(k+2,j,i) + & |
---|
| 1483 | lad_s(k+1,j,i) ) + & |
---|
| 1484 | lad_s(k+1,j,i) ) * & |
---|
| 1485 | ( zw(k+1) - zu(k+1) ) ) + & |
---|
| 1486 | ( 0.5_wp * ( 0.5_wp * ( lad_s(k+1,j,i) + & |
---|
| 1487 | lad_s(k,j,i) ) + & |
---|
| 1488 | lad_s(k+1,j,i) ) * & |
---|
| 1489 | ( zu(k+1) - zw(k) ) ) |
---|
[1484] | 1490 | ENDIF |
---|
| 1491 | ENDDO |
---|
| 1492 | ENDDO |
---|
| 1493 | ENDDO |
---|
| 1494 | |
---|
[4278] | 1495 | ! |
---|
[4803] | 1496 | !-- In areas with canopy the surface value of the canopy heat flux distribution overrides the |
---|
| 1497 | !-- surface heat flux (shf), |
---|
[2232] | 1498 | !-- Start with default surface type |
---|
| 1499 | DO m = 1, surf_def_h(0)%ns |
---|
[4278] | 1500 | i = surf_def_h(0)%i(m) |
---|
| 1501 | j = surf_def_h(0)%j(m) |
---|
[4803] | 1502 | IF ( cum_lai_hf(0,j,i) /= 0.0_wp ) & |
---|
| 1503 | surf_def_h(0)%shf(m) = cthf * EXP( -ext_coef * cum_lai_hf(0,j,i) ) |
---|
[2232] | 1504 | ENDDO |
---|
[1484] | 1505 | ! |
---|
[2232] | 1506 | !-- Natural surfaces |
---|
[4671] | 1507 | DO m = 1, surf_lsm_h(0)%ns |
---|
| 1508 | i = surf_lsm_h(0)%i(m) |
---|
| 1509 | j = surf_lsm_h(0)%j(m) |
---|
[4803] | 1510 | IF ( cum_lai_hf(0,j,i) /= 0.0_wp ) & |
---|
| 1511 | surf_lsm_h(0)%shf(m) = cthf * EXP( -ext_coef * cum_lai_hf(0,j,i) ) |
---|
[2232] | 1512 | ENDDO |
---|
| 1513 | ! |
---|
| 1514 | !-- Urban surfaces |
---|
[4671] | 1515 | DO m = 1, surf_usm_h(0)%ns |
---|
| 1516 | i = surf_usm_h(0)%i(m) |
---|
| 1517 | j = surf_usm_h(0)%j(m) |
---|
[4803] | 1518 | IF ( cum_lai_hf(0,j,i) /= 0.0_wp ) & |
---|
| 1519 | surf_usm_h(0)%shf(m) = cthf * EXP( -ext_coef * cum_lai_hf(0,j,i) ) |
---|
[2232] | 1520 | ENDDO |
---|
| 1521 | ! |
---|
| 1522 | ! |
---|
[4803] | 1523 | !-- Calculation of the heating rate (K/s) within the different layers of the plant canopy. |
---|
| 1524 | !-- Calculation is only necessary in areas covered with canopy. |
---|
| 1525 | !-- Within the different canopy layers the plant-canopy heating rate (pcm_heating_rate) is |
---|
| 1526 | !-- calculated as the vertical divergence of the canopy heat fluxes at the top and bottom of |
---|
| 1527 | !-- the respective layer. |
---|
[1484] | 1528 | DO i = nxlg, nxrg |
---|
| 1529 | DO j = nysg, nyng |
---|
[2696] | 1530 | DO k = 1, pch_index_ji(j,i) |
---|
[2232] | 1531 | IF ( cum_lai_hf(0,j,i) /= 0.0_wp ) THEN |
---|
[4803] | 1532 | pcm_heating_rate(k,j,i) = cthf * & |
---|
| 1533 | ( EXP( -ext_coef * cum_lai_hf(k,j,i) ) - & |
---|
| 1534 | EXP( -ext_coef * cum_lai_hf(k-1,j,i) ) ) / dzw(k) |
---|
[2232] | 1535 | ENDIF |
---|
| 1536 | ENDDO |
---|
[1721] | 1537 | ENDDO |
---|
| 1538 | ENDDO |
---|
[1484] | 1539 | |
---|
| 1540 | ENDIF |
---|
| 1541 | |
---|
[3885] | 1542 | IF ( debug_output ) CALL debug_message( 'pcm_init', 'end' ) |
---|
[1484] | 1543 | |
---|
[1826] | 1544 | END SUBROUTINE pcm_init |
---|
[1484] | 1545 | |
---|
| 1546 | |
---|
[4803] | 1547 | !--------------------------------------------------------------------------------------------------! |
---|
[2007] | 1548 | ! Description: |
---|
| 1549 | ! ------------ |
---|
[2932] | 1550 | !> Parin for &plant_canopy_parameters for plant canopy model |
---|
[4803] | 1551 | !--------------------------------------------------------------------------------------------------! |
---|
[2007] | 1552 | SUBROUTINE pcm_parin |
---|
[1484] | 1553 | |
---|
[4803] | 1554 | CHARACTER (LEN=80) :: line !< dummy string that contains the current line of the parameter file |
---|
[2932] | 1555 | |
---|
[4803] | 1556 | NAMELIST /plant_canopy_parameters/ alpha_lad, & |
---|
| 1557 | beta_lad, & |
---|
| 1558 | canopy_drag_coeff, & |
---|
| 1559 | canopy_mode, & |
---|
| 1560 | cthf, & |
---|
| 1561 | lad_surface, & |
---|
| 1562 | lad_type_coef, & |
---|
| 1563 | lad_vertical_gradient, & |
---|
| 1564 | lad_vertical_gradient_level, & |
---|
| 1565 | lai_beta, & |
---|
| 1566 | leaf_scalar_exch_coeff, & |
---|
| 1567 | leaf_surface_conc, & |
---|
| 1568 | pch_index, & |
---|
| 1569 | plant_canopy_transpiration |
---|
[3246] | 1570 | |
---|
[4803] | 1571 | NAMELIST /canopy_par/ alpha_lad, & |
---|
| 1572 | beta_lad, & |
---|
| 1573 | canopy_drag_coeff, & |
---|
| 1574 | canopy_mode, & |
---|
| 1575 | cthf, & |
---|
| 1576 | lad_surface, & |
---|
| 1577 | lad_type_coef, & |
---|
| 1578 | lad_vertical_gradient, & |
---|
| 1579 | lad_vertical_gradient_level, & |
---|
| 1580 | lai_beta, & |
---|
| 1581 | leaf_scalar_exch_coeff, & |
---|
| 1582 | leaf_surface_conc, & |
---|
| 1583 | pch_index, & |
---|
| 1584 | plant_canopy_transpiration |
---|
| 1585 | |
---|
[2007] | 1586 | line = ' ' |
---|
[3246] | 1587 | |
---|
[2007] | 1588 | ! |
---|
[4258] | 1589 | !-- Try to find plant-canopy model package |
---|
[4803] | 1590 | REWIND( 11 ) |
---|
[2007] | 1591 | line = ' ' |
---|
[3248] | 1592 | DO WHILE ( INDEX( line, '&plant_canopy_parameters' ) == 0 ) |
---|
[4803] | 1593 | READ( 11, '(A)', END=12 ) line |
---|
[2007] | 1594 | ENDDO |
---|
[4803] | 1595 | BACKSPACE( 11 ) |
---|
[2007] | 1596 | |
---|
| 1597 | ! |
---|
| 1598 | !-- Read user-defined namelist |
---|
[4803] | 1599 | READ( 11, plant_canopy_parameters, ERR = 10 ) |
---|
[2932] | 1600 | |
---|
| 1601 | ! |
---|
[4258] | 1602 | !-- Set flag that indicates that the plant-canopy model is switched on |
---|
[2932] | 1603 | plant_canopy = .TRUE. |
---|
[3246] | 1604 | |
---|
| 1605 | GOTO 14 |
---|
| 1606 | |
---|
| 1607 | 10 BACKSPACE( 11 ) |
---|
[3248] | 1608 | READ( 11 , '(A)') line |
---|
| 1609 | CALL parin_fail_message( 'plant_canopy_parameters', line ) |
---|
[2932] | 1610 | ! |
---|
| 1611 | !-- Try to find old namelist |
---|
[4803] | 1612 | 12 REWIND( 11 ) |
---|
[2932] | 1613 | line = ' ' |
---|
[3248] | 1614 | DO WHILE ( INDEX( line, '&canopy_par' ) == 0 ) |
---|
[4803] | 1615 | READ( 11, '(A)', END=14 ) line |
---|
[2932] | 1616 | ENDDO |
---|
[4803] | 1617 | BACKSPACE( 11 ) |
---|
[2932] | 1618 | |
---|
| 1619 | ! |
---|
| 1620 | !-- Read user-defined namelist |
---|
[4803] | 1621 | READ( 11, canopy_par, ERR = 13, END = 14 ) |
---|
[2007] | 1622 | |
---|
[4803] | 1623 | message_string = 'namelist canopy_par is deprecated and will be ' // & |
---|
| 1624 | 'removed in near future. Please use namelist ' // & |
---|
| 1625 | 'plant_canopy_parameters instead' |
---|
[2932] | 1626 | CALL message( 'pcm_parin', 'PA0487', 0, 1, 0, 6, 0 ) |
---|
[3246] | 1627 | |
---|
[2007] | 1628 | ! |
---|
[4258] | 1629 | !-- Set flag that indicates that the plant-canopy model is switched on |
---|
[2007] | 1630 | plant_canopy = .TRUE. |
---|
| 1631 | |
---|
[3246] | 1632 | GOTO 14 |
---|
[2007] | 1633 | |
---|
[3246] | 1634 | 13 BACKSPACE( 11 ) |
---|
[3248] | 1635 | READ( 11 , '(A)') line |
---|
| 1636 | CALL parin_fail_message( 'canopy_par', line ) |
---|
[3246] | 1637 | |
---|
| 1638 | 14 CONTINUE |
---|
| 1639 | |
---|
[2007] | 1640 | END SUBROUTINE pcm_parin |
---|
| 1641 | |
---|
| 1642 | |
---|
[4803] | 1643 | !--------------------------------------------------------------------------------------------------! |
---|
[1484] | 1644 | ! Description: |
---|
| 1645 | ! ------------ |
---|
[2007] | 1646 | ! |
---|
| 1647 | !> Loads 3D plant canopy data from file. File format is as follows: |
---|
| 1648 | !> |
---|
| 1649 | !> num_levels |
---|
[2977] | 1650 | !> dtype,x,y,pctype,value(nzb),value(nzb+1), ... ,value(nzb+num_levels-1) |
---|
| 1651 | !> dtype,x,y,pctype,value(nzb),value(nzb+1), ... ,value(nzb+num_levels-1) |
---|
| 1652 | !> dtype,x,y,pctype,value(nzb),value(nzb+1), ... ,value(nzb+num_levels-1) |
---|
[2007] | 1653 | !> ... |
---|
| 1654 | !> |
---|
[4803] | 1655 | !> i.e. first line determines number of levels and further lines represent plant canopy data, one |
---|
| 1656 | !> line per column and variable. In each data line, dtype represents variable to be set: |
---|
[2007] | 1657 | !> |
---|
| 1658 | !> dtype=1: leaf area density (lad_s) |
---|
[2213] | 1659 | !> dtype=2....n: some additional plant canopy input data quantity |
---|
[2007] | 1660 | !> |
---|
[4803] | 1661 | !> Zeros are added automatically above num_levels until top of domain. Any non-specified (x,y) |
---|
| 1662 | !> columns have zero values as default. |
---|
| 1663 | !--------------------------------------------------------------------------------------------------! |
---|
[2007] | 1664 | SUBROUTINE pcm_read_plant_canopy_3d |
---|
| 1665 | |
---|
[4803] | 1666 | USE exchange_horiz_mod, & |
---|
[4457] | 1667 | ONLY: exchange_horiz |
---|
| 1668 | |
---|
[4803] | 1669 | INTEGER(iwp) :: dtype !< type of input data (1=lad) |
---|
| 1670 | INTEGER(iwp) :: i !< running index |
---|
| 1671 | INTEGER(iwp) :: j !< running index |
---|
| 1672 | INTEGER(iwp) :: kk !< |
---|
| 1673 | INTEGER(iwp) :: nzp !< number of vertical layers of plant canopy |
---|
| 1674 | INTEGER(iwp) :: nzpltop !< |
---|
| 1675 | INTEGER(iwp) :: nzpl !< |
---|
| 1676 | INTEGER(iwp) :: pctype !< type of plant canopy (deciduous,non-deciduous,...) |
---|
| 1677 | |
---|
[2213] | 1678 | REAL(wp), DIMENSION(:), ALLOCATABLE :: col !< vertical column of input data |
---|
[2007] | 1679 | |
---|
[2213] | 1680 | ! |
---|
| 1681 | !-- Initialize lad_s array |
---|
| 1682 | lad_s = 0.0_wp |
---|
[4803] | 1683 | |
---|
[2213] | 1684 | ! |
---|
| 1685 | !-- Open and read plant canopy input data |
---|
[4803] | 1686 | OPEN( 152, FILE='PLANT_CANOPY_DATA_3D' // TRIM( coupling_char ), ACCESS='SEQUENTIAL', & |
---|
| 1687 | ACTION='READ', STATUS='OLD', FORM='FORMATTED', ERR=515 ) |
---|
| 1688 | READ( 152, *, ERR=516, END=517 ) nzp !< read first line = number of vertical layers |
---|
[3337] | 1689 | nzpltop = MIN(nzt+1, nzb+nzp-1) |
---|
| 1690 | nzpl = nzpltop - nzb + 1 !< no. of layers to assign |
---|
[2977] | 1691 | ALLOCATE( col(0:nzp-1) ) |
---|
[2007] | 1692 | |
---|
[2213] | 1693 | DO |
---|
[4803] | 1694 | READ( 152, *, ERR=516, END=517 ) dtype, i, j, pctype, col(:) |
---|
[2977] | 1695 | IF ( i < nxlg .OR. i > nxrg .OR. j < nysg .OR. j > nyng ) CYCLE |
---|
[4803] | 1696 | |
---|
| 1697 | SELECT CASE ( dtype ) |
---|
[2977] | 1698 | CASE( 1 ) !< leaf area density |
---|
[2213] | 1699 | ! |
---|
[4803] | 1700 | !-- This is just the pure canopy layer assumed to be grounded to a flat domain surface. |
---|
| 1701 | !-- At locations where plant canopy sits on top of any kind of topography, the vertical |
---|
| 1702 | !-- plant column must be "lifted", which is done in SUBROUTINE pcm_tendency. |
---|
[2977] | 1703 | IF ( pctype < 0 .OR. pctype > 10 ) THEN !< incorrect plant canopy type |
---|
[4803] | 1704 | WRITE( message_string, * ) 'Incorrect type of plant canopy. ' // & |
---|
| 1705 | 'Allowed values 0 <= pctype <= 10, ' // & |
---|
[2977] | 1706 | 'but pctype is ', pctype |
---|
| 1707 | CALL message( 'pcm_read_plant_canopy_3d', 'PA0349', 1, 2, 0, 6, 0 ) |
---|
| 1708 | ENDIF |
---|
[4168] | 1709 | kk = topo_top_ind(j,i,0) |
---|
[3337] | 1710 | lad_s(nzb:nzpltop-kk, j, i) = col(kk:nzpl-1)*lad_type_coef(pctype) |
---|
[2977] | 1711 | CASE DEFAULT |
---|
[4803] | 1712 | WRITE( message_string, '(a,i2,a)' ) & |
---|
[2977] | 1713 | 'Unknown record type in file PLANT_CANOPY_DATA_3D: "', dtype, '"' |
---|
| 1714 | CALL message( 'pcm_read_plant_canopy_3d', 'PA0530', 1, 2, 0, 6, 0 ) |
---|
| 1715 | END SELECT |
---|
[2213] | 1716 | ENDDO |
---|
[2007] | 1717 | |
---|
[2213] | 1718 | 515 message_string = 'error opening file PLANT_CANOPY_DATA_3D' |
---|
| 1719 | CALL message( 'pcm_read_plant_canopy_3d', 'PA0531', 1, 2, 0, 6, 0 ) |
---|
[2007] | 1720 | |
---|
[2213] | 1721 | 516 message_string = 'error reading file PLANT_CANOPY_DATA_3D' |
---|
| 1722 | CALL message( 'pcm_read_plant_canopy_3d', 'PA0532', 1, 2, 0, 6, 0 ) |
---|
| 1723 | |
---|
[4803] | 1724 | 517 CLOSE( 152 ) |
---|
[2977] | 1725 | DEALLOCATE( col ) |
---|
[4803] | 1726 | |
---|
[2213] | 1727 | CALL exchange_horiz( lad_s, nbgp ) |
---|
[4803] | 1728 | |
---|
[2007] | 1729 | END SUBROUTINE pcm_read_plant_canopy_3d |
---|
[4360] | 1730 | |
---|
[4803] | 1731 | !--------------------------------------------------------------------------------------------------! |
---|
[2007] | 1732 | ! Description: |
---|
| 1733 | ! ------------ |
---|
[4514] | 1734 | !> Read module-specific global restart data (Fortran binary format). |
---|
[4803] | 1735 | !--------------------------------------------------------------------------------------------------! |
---|
[4514] | 1736 | SUBROUTINE pcm_rrd_global_ftn( found ) |
---|
| 1737 | |
---|
[4803] | 1738 | LOGICAL, INTENT(OUT) :: found |
---|
[4514] | 1739 | |
---|
[4803] | 1740 | |
---|
[4514] | 1741 | found = .TRUE. |
---|
| 1742 | |
---|
| 1743 | SELECT CASE ( restart_string(1:length) ) |
---|
| 1744 | |
---|
| 1745 | CASE ( 'pch_index' ) |
---|
[4803] | 1746 | READ( 13 ) pch_index |
---|
[4514] | 1747 | |
---|
| 1748 | CASE DEFAULT |
---|
| 1749 | |
---|
| 1750 | found = .FALSE. |
---|
| 1751 | |
---|
| 1752 | END SELECT |
---|
| 1753 | |
---|
| 1754 | END SUBROUTINE pcm_rrd_global_ftn |
---|
| 1755 | |
---|
[4803] | 1756 | !--------------------------------------------------------------------------------------------------! |
---|
[4514] | 1757 | ! Description: |
---|
| 1758 | ! ------------ |
---|
| 1759 | !> Read module-specific global restart data (MPI-IO). |
---|
[4803] | 1760 | !--------------------------------------------------------------------------------------------------! |
---|
[4514] | 1761 | SUBROUTINE pcm_rrd_global_mpi |
---|
| 1762 | |
---|
| 1763 | CALL rrd_mpi_io( 'pch_index', pch_index ) |
---|
| 1764 | |
---|
| 1765 | END SUBROUTINE pcm_rrd_global_mpi |
---|
| 1766 | |
---|
[4517] | 1767 | |
---|
[4803] | 1768 | !--------------------------------------------------------------------------------------------------! |
---|
[4514] | 1769 | ! Description: |
---|
| 1770 | ! ------------ |
---|
[4517] | 1771 | !> Read module-specific local restart data arrays (Fortran binary format). |
---|
[4803] | 1772 | !--------------------------------------------------------------------------------------------------! |
---|
| 1773 | SUBROUTINE pcm_rrd_local_ftn( k, nxlf, nxlc, nxl_on_file, nxrf, nxrc, nxr_on_file, nynf, nync, & |
---|
| 1774 | nyn_on_file, nysf, nysc, nys_on_file, found ) |
---|
[4360] | 1775 | |
---|
[4803] | 1776 | INTEGER(iwp) :: k !< |
---|
| 1777 | INTEGER(iwp) :: nxl_on_file !< |
---|
| 1778 | INTEGER(iwp) :: nxlc !< |
---|
| 1779 | INTEGER(iwp) :: nxlf !< |
---|
| 1780 | INTEGER(iwp) :: nxr_on_file !< |
---|
| 1781 | INTEGER(iwp) :: nxrc !< |
---|
| 1782 | INTEGER(iwp) :: nxrf !< |
---|
| 1783 | INTEGER(iwp) :: nyn_on_file !< |
---|
| 1784 | INTEGER(iwp) :: nync !< |
---|
| 1785 | INTEGER(iwp) :: nynf !< |
---|
| 1786 | INTEGER(iwp) :: nys_on_file !< |
---|
| 1787 | INTEGER(iwp) :: nysc !< |
---|
| 1788 | INTEGER(iwp) :: nysf !< |
---|
[4360] | 1789 | |
---|
[4803] | 1790 | LOGICAL, INTENT(OUT) :: found |
---|
[4360] | 1791 | |
---|
[4803] | 1792 | REAL(wp), DIMENSION( 0:pch_index, & |
---|
| 1793 | nys_on_file-nbgp:nyn_on_file+nbgp, & |
---|
| 1794 | nxl_on_file-nbgp:nxr_on_file+nbgp) :: tmp_3d2 !< temporary 3D array for entire vertical |
---|
| 1795 | !< extension of canopy layer |
---|
[4360] | 1796 | found = .TRUE. |
---|
| 1797 | |
---|
[4803] | 1798 | |
---|
[4360] | 1799 | SELECT CASE ( restart_string(1:length) ) |
---|
| 1800 | |
---|
| 1801 | CASE ( 'pcm_heatrate_av' ) |
---|
| 1802 | IF ( .NOT. ALLOCATED( pcm_heatrate_av ) ) THEN |
---|
| 1803 | ALLOCATE( pcm_heatrate_av(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 1804 | pcm_heatrate_av = 0.0_wp |
---|
[4803] | 1805 | ENDIF |
---|
| 1806 | IF ( k == 1 ) READ( 13 ) tmp_3d2 |
---|
| 1807 | pcm_heatrate_av(0:pch_index,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
[4360] | 1808 | tmp_3d2(0:pch_index,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
| 1809 | |
---|
| 1810 | CASE ( 'pcm_latentrate_av' ) |
---|
| 1811 | IF ( .NOT. ALLOCATED( pcm_latentrate_av ) ) THEN |
---|
| 1812 | ALLOCATE( pcm_latentrate_av(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 1813 | pcm_latentrate_av = 0.0_wp |
---|
[4803] | 1814 | ENDIF |
---|
| 1815 | IF ( k == 1 ) READ( 13 ) tmp_3d2 |
---|
| 1816 | pcm_latentrate_av(0:pch_index,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
[4360] | 1817 | tmp_3d2(0:pch_index,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
| 1818 | |
---|
| 1819 | CASE ( 'pcm_transpirationrate_av' ) |
---|
| 1820 | IF ( .NOT. ALLOCATED( pcm_transpirationrate_av ) ) THEN |
---|
| 1821 | ALLOCATE( pcm_transpirationrate_av(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 1822 | pcm_transpirationrate_av = 0.0_wp |
---|
[4803] | 1823 | ENDIF |
---|
| 1824 | IF ( k == 1 ) READ( 13 ) tmp_3d2 |
---|
| 1825 | pcm_transpirationrate_av(0:pch_index,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
[4360] | 1826 | tmp_3d2(0:pch_index,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
| 1827 | |
---|
| 1828 | CASE DEFAULT |
---|
| 1829 | |
---|
| 1830 | found = .FALSE. |
---|
| 1831 | |
---|
| 1832 | END SELECT |
---|
| 1833 | |
---|
[4517] | 1834 | END SUBROUTINE pcm_rrd_local_ftn |
---|
[4360] | 1835 | |
---|
[4517] | 1836 | |
---|
[4803] | 1837 | !--------------------------------------------------------------------------------------------------! |
---|
[4360] | 1838 | ! Description: |
---|
| 1839 | ! ------------ |
---|
[4517] | 1840 | !> Read module-specific local restart data arrays (MPI-IO). |
---|
[4803] | 1841 | !--------------------------------------------------------------------------------------------------! |
---|
[4517] | 1842 | SUBROUTINE pcm_rrd_local_mpi |
---|
| 1843 | |
---|
| 1844 | IMPLICIT NONE |
---|
| 1845 | |
---|
| 1846 | LOGICAL :: array_found !< |
---|
| 1847 | |
---|
[4525] | 1848 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: tmp_3d !< temporary array to store pcm data with |
---|
| 1849 | !< non-standard vertical index bounds |
---|
[4517] | 1850 | |
---|
[4525] | 1851 | ! |
---|
| 1852 | !-- Plant canopy arrays have non standard reduced vertical index bounds. They are stored with |
---|
| 1853 | !-- full vertical bounds (bzb:nzt+1) in the restart file and must be re-stored after reading. |
---|
[4517] | 1854 | CALL rd_mpi_io_check_array( 'pcm_heatrate_av' , found = array_found ) |
---|
| 1855 | IF ( array_found ) THEN |
---|
[4525] | 1856 | IF ( .NOT. ALLOCATED( pcm_heatrate_av ) ) THEN |
---|
| 1857 | ALLOCATE( pcm_heatrate_av(nzb:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 1858 | ENDIF |
---|
| 1859 | ALLOCATE( tmp_3d(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 1860 | CALL rrd_mpi_io( 'pcm_heatrate_av', tmp_3d ) |
---|
| 1861 | pcm_heatrate_av = tmp_3d(nzb:pch_index,:,:) |
---|
| 1862 | DEALLOCATE( tmp_3d ) |
---|
[4517] | 1863 | ENDIF |
---|
| 1864 | |
---|
| 1865 | CALL rd_mpi_io_check_array( 'pcm_latentrate_av' , found = array_found ) |
---|
| 1866 | IF ( array_found ) THEN |
---|
[4525] | 1867 | IF ( .NOT. ALLOCATED( pcm_latentrate_av ) ) THEN |
---|
| 1868 | ALLOCATE( pcm_latentrate_av(nzb:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 1869 | ENDIF |
---|
| 1870 | ALLOCATE( tmp_3d(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 1871 | CALL rrd_mpi_io( 'pcm_latentrate_av', tmp_3d ) |
---|
| 1872 | pcm_latentrate_av = tmp_3d(nzb:pch_index,:,:) |
---|
| 1873 | DEALLOCATE( tmp_3d ) |
---|
[4517] | 1874 | ENDIF |
---|
| 1875 | |
---|
| 1876 | CALL rd_mpi_io_check_array( 'pcm_transpirationrate_av' , found = array_found ) |
---|
| 1877 | IF ( array_found ) THEN |
---|
[4525] | 1878 | IF ( .NOT. ALLOCATED( pcm_transpirationrate_av ) ) THEN |
---|
| 1879 | ALLOCATE( pcm_transpirationrate_av(nzb:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 1880 | ENDIF |
---|
| 1881 | ALLOCATE( tmp_3d(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 1882 | CALL rrd_mpi_io( 'pcm_transpirationrate_av', tmp_3d ) |
---|
| 1883 | pcm_transpirationrate_av = tmp_3d(nzb:pch_index,:,:) |
---|
| 1884 | DEALLOCATE( tmp_3d ) |
---|
[4517] | 1885 | ENDIF |
---|
| 1886 | |
---|
| 1887 | END SUBROUTINE pcm_rrd_local_mpi |
---|
| 1888 | |
---|
| 1889 | |
---|
[4803] | 1890 | !--------------------------------------------------------------------------------------------------! |
---|
[4517] | 1891 | ! Description: |
---|
| 1892 | ! ------------ |
---|
[4803] | 1893 | !> Calculation of the tendency terms, accounting for the effect of the plant canopy on momentum and |
---|
| 1894 | !> scalar quantities. |
---|
[1682] | 1895 | !> |
---|
[4803] | 1896 | !> The canopy is located where the leaf area density lad_s(k,j,i) > 0.0 (defined on scalar grid), as |
---|
| 1897 | !> initialized in subroutine pcm_init. |
---|
| 1898 | !> The lad on the w-grid is vertically interpolated from the surrounding lad_s. The upper boundary |
---|
| 1899 | !> of the canopy is defined on the w-grid at k = pch_index. Here, the lad is zero. |
---|
[1682] | 1900 | !> |
---|
[4803] | 1901 | !> The canopy drag must be limited (previously accounted for by calculation of a limiting canopy |
---|
| 1902 | !> timestep for the determination of the maximum LES timestep in subroutine timestep), since it is |
---|
| 1903 | !> physically impossible that the canopy drag alone can locally change the sign of a velocity |
---|
| 1904 | !> component. This limitation is realized by calculating preliminary tendencies and velocities. It |
---|
| 1905 | !> is subsequently checked if the preliminary new velocity has a different sign than the current |
---|
| 1906 | !> velocity. If so, the tendency is limited in a way that the velocity can at maximum be reduced to |
---|
| 1907 | !> zero by the canopy drag. |
---|
[1682] | 1908 | !> |
---|
| 1909 | !> |
---|
| 1910 | !> Call for all grid points |
---|
[4803] | 1911 | !--------------------------------------------------------------------------------------------------! |
---|
[1826] | 1912 | SUBROUTINE pcm_tendency( component ) |
---|
[138] | 1913 | |
---|
[1682] | 1914 | INTEGER(iwp) :: component !< prognostic variable (u,v,w,pt,q,e) |
---|
| 1915 | INTEGER(iwp) :: i !< running index |
---|
| 1916 | INTEGER(iwp) :: j !< running index |
---|
| 1917 | INTEGER(iwp) :: k !< running index |
---|
[1721] | 1918 | INTEGER(iwp) :: kk !< running index for flat lad arrays |
---|
[1484] | 1919 | |
---|
[4335] | 1920 | LOGICAL :: building_edge_e !< control flag indicating an eastward-facing building edge |
---|
| 1921 | LOGICAL :: building_edge_n !< control flag indicating a north-facing building edge |
---|
| 1922 | LOGICAL :: building_edge_s !< control flag indicating a south-facing building edge |
---|
| 1923 | LOGICAL :: building_edge_w !< control flag indicating a westward-facing building edge |
---|
| 1924 | |
---|
[4770] | 1925 | REAL(wp) :: bad_local !< local bad value |
---|
[1682] | 1926 | REAL(wp) :: ddt_3d !< inverse of the LES timestep (dt_3d) |
---|
| 1927 | REAL(wp) :: lad_local !< local lad value |
---|
| 1928 | REAL(wp) :: pre_tend !< preliminary tendency |
---|
[4803] | 1929 | REAL(wp) :: pre_u !< preliminary u-value |
---|
| 1930 | REAL(wp) :: pre_v !< preliminary v-value |
---|
| 1931 | REAL(wp) :: pre_w !< preliminary w-value |
---|
[1484] | 1932 | |
---|
| 1933 | |
---|
| 1934 | ddt_3d = 1.0_wp / dt_3d |
---|
[4803] | 1935 | |
---|
[138] | 1936 | ! |
---|
[1484] | 1937 | !-- Compute drag for the three velocity components and the SGS-TKE: |
---|
[138] | 1938 | SELECT CASE ( component ) |
---|
| 1939 | |
---|
| 1940 | ! |
---|
| 1941 | !-- u-component |
---|
| 1942 | CASE ( 1 ) |
---|
| 1943 | DO i = nxlu, nxr |
---|
| 1944 | DO j = nys, nyn |
---|
[2232] | 1945 | ! |
---|
[4803] | 1946 | !-- Set control flags indicating east- and westward-orientated building edges. Note, |
---|
| 1947 | !-- building_egde_w is set from the perspective of the potential rooftop grid point, |
---|
| 1948 | !-- while building_edge_e is set from the perspective of the non-building grid point. |
---|
| 1949 | building_edge_w = ANY( BTEST( wall_flags_total_0(:,j,i), 6 ) ) & |
---|
| 1950 | .AND. .NOT. ANY( BTEST( wall_flags_total_0(:,j,i-1), 6 ) ) |
---|
| 1951 | building_edge_e = ANY( BTEST( wall_flags_total_0(:,j,i-1), 6 ) ) & |
---|
| 1952 | .AND. .NOT. ANY( BTEST( wall_flags_total_0(:,j,i), 6 ) ) |
---|
[4335] | 1953 | ! |
---|
[2232] | 1954 | !-- Determine topography-top index on u-grid |
---|
[4341] | 1955 | DO k = topo_top_ind(j,i,1)+1, topo_top_ind(j,i,1) + pch_index_ji(j,i) |
---|
[1484] | 1956 | |
---|
[4341] | 1957 | kk = k - topo_top_ind(j,i,1) !- lad arrays are defined flat |
---|
[1484] | 1958 | ! |
---|
[4803] | 1959 | !-- In order to create sharp boundaries of the plant canopy, the lad on the u-grid |
---|
| 1960 | !-- at index (k,j,i) is equal to lad_s(k,j,i), rather than being interpolated from |
---|
| 1961 | !-- the surrounding lad_s, because this would yield smaller lad at the canopy |
---|
| 1962 | !-- boundaries than inside of the canopy. |
---|
| 1963 | !-- For the same reason, the lad at the rightmost(i+1)canopy boundary on the |
---|
| 1964 | !-- u-grid equals lad_s(k,j,i), which is considered in the next if-statement. |
---|
| 1965 | !-- Note, at left-sided building edges this is not applied, here the LAD equals |
---|
| 1966 | !-- the LAD at grid point (k,j,i), in order to avoid that LAD is mistakenly mapped |
---|
| 1967 | !-- on top of a roof where (usually) no LAD is defined. The same is also valid for |
---|
| 1968 | !-- bad_s. |
---|
[1721] | 1969 | lad_local = lad_s(kk,j,i) |
---|
[4770] | 1970 | IF ( lad_local == 0.0_wp .AND. lad_s(kk,j,i-1) > 0.0_wp & |
---|
[4335] | 1971 | .AND. .NOT. building_edge_w ) lad_local = lad_s(kk,j,i-1) |
---|
[4770] | 1972 | |
---|
| 1973 | bad_local = bad_s(kk,j,i) |
---|
| 1974 | IF ( bad_local == 0.0_wp .AND. bad_s(kk,j,i-1) > 0.0_wp & |
---|
| 1975 | .AND. .NOT. building_edge_w ) bad_local = bad_s(kk,j,i-1) |
---|
[4335] | 1976 | ! |
---|
[4803] | 1977 | !-- In order to avoid that LAD is mistakenly considered at right-sided building |
---|
| 1978 | !-- edges (here the topography-top index for the u-component at index j,i is still |
---|
| 1979 | !-- on the building while the topography top for the scalar isn't), LAD is taken |
---|
| 1980 | !-- from grid point (j,i-1). The same is also valid for bad_s. |
---|
[4770] | 1981 | IF ( lad_local > 0.0_wp .AND. lad_s(kk,j,i-1) == 0.0_wp & |
---|
[4335] | 1982 | .AND. building_edge_e ) lad_local = lad_s(kk,j,i-1) |
---|
[4770] | 1983 | IF ( bad_local > 0.0_wp .AND. bad_s(kk,j,i-1) == 0.0_wp & |
---|
| 1984 | .AND. building_edge_e ) bad_local = bad_s(kk,j,i-1) |
---|
[1484] | 1985 | |
---|
| 1986 | pre_tend = 0.0_wp |
---|
| 1987 | pre_u = 0.0_wp |
---|
| 1988 | ! |
---|
| 1989 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
[4803] | 1990 | pre_tend = - canopy_drag_coeff * & |
---|
| 1991 | ( lad_local + bad_local ) * & |
---|
| 1992 | SQRT( u(k,j,i)**2 + & |
---|
| 1993 | ( 0.25_wp * ( v(k,j,i-1) + & |
---|
| 1994 | v(k,j,i) + & |
---|
| 1995 | v(k,j+1,i) + & |
---|
| 1996 | v(k,j+1,i-1) ) & |
---|
| 1997 | )**2 + & |
---|
| 1998 | ( 0.25_wp * ( w(k-1,j,i-1) + & |
---|
| 1999 | w(k-1,j,i) + & |
---|
| 2000 | w(k,j,i-1) + & |
---|
| 2001 | w(k,j,i) ) & |
---|
| 2002 | )**2 & |
---|
| 2003 | ) * & |
---|
[1484] | 2004 | u(k,j,i) |
---|
| 2005 | |
---|
| 2006 | ! |
---|
| 2007 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 2008 | pre_u = u(k,j,i) + dt_3d * pre_tend |
---|
| 2009 | ! |
---|
| 2010 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
| 2011 | !-- and in case the signs are different, limit the tendency |
---|
[4803] | 2012 | IF ( SIGN( pre_u,u(k,j,i) ) /= pre_u ) THEN |
---|
[1484] | 2013 | pre_tend = - u(k,j,i) * ddt_3d |
---|
| 2014 | ENDIF |
---|
| 2015 | ! |
---|
| 2016 | !-- Calculate final tendency |
---|
| 2017 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 2018 | |
---|
[138] | 2019 | ENDDO |
---|
| 2020 | ENDDO |
---|
| 2021 | ENDDO |
---|
| 2022 | |
---|
| 2023 | ! |
---|
| 2024 | !-- v-component |
---|
| 2025 | CASE ( 2 ) |
---|
| 2026 | DO i = nxl, nxr |
---|
| 2027 | DO j = nysv, nyn |
---|
[2232] | 2028 | ! |
---|
[4803] | 2029 | !-- Set control flags indicating north- and southward-orientated building edges. |
---|
| 2030 | !-- Note, building_egde_s is set from the perspective of the potential rooftop grid |
---|
| 2031 | !-- point, while building_edge_n is set from the perspective of the non-building grid |
---|
| 2032 | !-- point. |
---|
| 2033 | building_edge_s = ANY( BTEST( wall_flags_total_0(:,j,i), 6 ) ) & |
---|
| 2034 | .AND. .NOT. ANY( BTEST( wall_flags_total_0(:,j-1,i), 6 ) ) |
---|
| 2035 | building_edge_n = ANY( BTEST( wall_flags_total_0(:,j-1,i), 6 ) ) & |
---|
| 2036 | .AND. .NOT. ANY( BTEST( wall_flags_total_0(:,j,i), 6 ) ) |
---|
[4335] | 2037 | ! |
---|
[2232] | 2038 | !-- Determine topography-top index on v-grid |
---|
[4341] | 2039 | DO k = topo_top_ind(j,i,2)+1, topo_top_ind(j,i,2) + pch_index_ji(j,i) |
---|
[2317] | 2040 | |
---|
[4341] | 2041 | kk = k - topo_top_ind(j,i,2) !- lad arrays are defined flat |
---|
[1484] | 2042 | ! |
---|
[4803] | 2043 | !-- In order to create sharp boundaries of the plant canopy, the lad on the v-grid |
---|
| 2044 | !-- at index (k,j,i) is equal to lad_s(k,j,i), rather than being interpolated from |
---|
| 2045 | !-- the surrounding lad_s, because this would yield smaller lad at the canopy |
---|
| 2046 | !-- boundaries than inside of the canopy. |
---|
| 2047 | !-- For the same reason, the lad at the northmost (j+1) canopy boundary on the |
---|
| 2048 | !-- v-grid equals lad_s(k,j,i), which is considered in the next if-statement. |
---|
| 2049 | !-- Note, at left-sided building edges this is not applied, here the LAD equals |
---|
| 2050 | !-- the LAD at grid point (k,j,i), in order to avoid that LAD is mistakenly mapped |
---|
| 2051 | !-- on top of a roof where (usually) no LAD is defined. |
---|
[4770] | 2052 | !-- The same is also valid for bad_s. |
---|
[1721] | 2053 | lad_local = lad_s(kk,j,i) |
---|
[4770] | 2054 | IF ( lad_local == 0.0_wp .AND. lad_s(kk,j-1,i) > 0.0_wp & |
---|
[4803] | 2055 | .AND. .NOT. building_edge_s ) lad_local = lad_s(kk,j-1,i) |
---|
[4770] | 2056 | |
---|
| 2057 | bad_local = bad_s(kk,j,i) |
---|
| 2058 | IF ( bad_local == 0.0_wp .AND. bad_s(kk,j-1,i) > 0.0_wp & |
---|
[4803] | 2059 | .AND. .NOT. building_edge_s ) bad_local = bad_s(kk,j-1,i) |
---|
[4335] | 2060 | ! |
---|
[4803] | 2061 | !-- In order to avoid that LAD is mistakenly considered at right-sided building |
---|
| 2062 | !-- edges (here the topography-top index for the u-component at index j,i is still |
---|
| 2063 | !-- on the building while the topography top for the scalar isn't), LAD is taken |
---|
| 2064 | !-- from grid point (j,i-1). The same is also valid for bad_s. |
---|
[4770] | 2065 | IF ( lad_local > 0.0_wp .AND. lad_s(kk,j-1,i) == 0.0_wp & |
---|
[4803] | 2066 | .AND. building_edge_n ) lad_local = lad_s(kk,j-1,i) |
---|
[1484] | 2067 | |
---|
[4770] | 2068 | IF ( bad_local > 0.0_wp .AND. bad_s(kk,j-1,i) == 0.0_wp & |
---|
[4803] | 2069 | .AND. building_edge_n ) bad_local = bad_s(kk,j-1,i) |
---|
[4770] | 2070 | |
---|
[1484] | 2071 | pre_tend = 0.0_wp |
---|
| 2072 | pre_v = 0.0_wp |
---|
| 2073 | ! |
---|
| 2074 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
[4803] | 2075 | pre_tend = - canopy_drag_coeff * & |
---|
| 2076 | ( lad_local + bad_local ) * & |
---|
| 2077 | SQRT( ( 0.25_wp * ( u(k,j-1,i) + & |
---|
| 2078 | u(k,j-1,i+1) + & |
---|
| 2079 | u(k,j,i) + & |
---|
| 2080 | u(k,j,i+1) ) & |
---|
| 2081 | )**2 + & |
---|
| 2082 | v(k,j,i)**2 + & |
---|
| 2083 | ( 0.25_wp * ( w(k-1,j-1,i) + & |
---|
| 2084 | w(k-1,j,i) + & |
---|
| 2085 | w(k,j-1,i) + & |
---|
| 2086 | w(k,j,i) ) & |
---|
| 2087 | )**2 & |
---|
| 2088 | ) * & |
---|
[1484] | 2089 | v(k,j,i) |
---|
| 2090 | |
---|
| 2091 | ! |
---|
| 2092 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 2093 | pre_v = v(k,j,i) + dt_3d * pre_tend |
---|
| 2094 | ! |
---|
[4803] | 2095 | !-- Compare sign of old velocity and new preliminary velocity, and in case the |
---|
| 2096 | !-- signs are different, limit the tendency. |
---|
| 2097 | IF ( SIGN( pre_v,v(k,j,i) ) /= pre_v ) THEN |
---|
[1484] | 2098 | pre_tend = - v(k,j,i) * ddt_3d |
---|
| 2099 | ELSE |
---|
| 2100 | pre_tend = pre_tend |
---|
| 2101 | ENDIF |
---|
| 2102 | ! |
---|
| 2103 | !-- Calculate final tendency |
---|
| 2104 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 2105 | |
---|
[138] | 2106 | ENDDO |
---|
| 2107 | ENDDO |
---|
| 2108 | ENDDO |
---|
| 2109 | |
---|
| 2110 | ! |
---|
| 2111 | !-- w-component |
---|
| 2112 | CASE ( 3 ) |
---|
| 2113 | DO i = nxl, nxr |
---|
| 2114 | DO j = nys, nyn |
---|
[2232] | 2115 | ! |
---|
| 2116 | !-- Determine topography-top index on w-grid |
---|
[4341] | 2117 | DO k = topo_top_ind(j,i,3)+1, topo_top_ind(j,i,3) + pch_index_ji(j,i) - 1 |
---|
[2317] | 2118 | |
---|
[4341] | 2119 | kk = k - topo_top_ind(j,i,3) !- lad arrays are defined flat |
---|
[1484] | 2120 | |
---|
| 2121 | pre_tend = 0.0_wp |
---|
| 2122 | pre_w = 0.0_wp |
---|
| 2123 | ! |
---|
| 2124 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
[4803] | 2125 | pre_tend = - canopy_drag_coeff * & |
---|
| 2126 | ( 0.5_wp * ( lad_s(kk+1,j,i) + lad_s(kk,j,i) ) + & |
---|
| 2127 | 0.5_wp * ( bad_s(kk+1,j,i) + bad_s(kk,j,i) ) ) * & |
---|
| 2128 | SQRT( ( 0.25_wp * ( u(k,j,i) + & |
---|
| 2129 | u(k,j,i+1) + & |
---|
| 2130 | u(k+1,j,i) + & |
---|
| 2131 | u(k+1,j,i+1) ) & |
---|
| 2132 | )**2 + & |
---|
| 2133 | ( 0.25_wp * ( v(k,j,i) + & |
---|
| 2134 | v(k,j+1,i) + & |
---|
| 2135 | v(k+1,j,i) + & |
---|
| 2136 | v(k+1,j+1,i) ) & |
---|
| 2137 | )**2 + & |
---|
| 2138 | w(k,j,i)**2 & |
---|
| 2139 | ) * & |
---|
[1484] | 2140 | w(k,j,i) |
---|
| 2141 | ! |
---|
| 2142 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 2143 | pre_w = w(k,j,i) + dt_3d * pre_tend |
---|
| 2144 | ! |
---|
[4803] | 2145 | !-- Compare sign of old velocity and new preliminary velocity, and in case the |
---|
| 2146 | !-- signs are different, limit the tendency |
---|
| 2147 | IF ( SIGN( pre_w,w(k,j,i) ) /= pre_w ) THEN |
---|
[1484] | 2148 | pre_tend = - w(k,j,i) * ddt_3d |
---|
| 2149 | ELSE |
---|
| 2150 | pre_tend = pre_tend |
---|
| 2151 | ENDIF |
---|
| 2152 | ! |
---|
| 2153 | !-- Calculate final tendency |
---|
| 2154 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 2155 | |
---|
[138] | 2156 | ENDDO |
---|
| 2157 | ENDDO |
---|
| 2158 | ENDDO |
---|
| 2159 | |
---|
| 2160 | ! |
---|
[153] | 2161 | !-- potential temperature |
---|
[138] | 2162 | CASE ( 4 ) |
---|
[4803] | 2163 | IF ( humidity ) THEN |
---|
[3449] | 2164 | DO i = nxl, nxr |
---|
| 2165 | DO j = nys, nyn |
---|
| 2166 | !-- Determine topography-top index on scalar-grid |
---|
[4341] | 2167 | DO k = topo_top_ind(j,i,0)+1, topo_top_ind(j,i,0) + pch_index_ji(j,i) |
---|
| 2168 | kk = k - topo_top_ind(j,i,0) !- lad arrays are defined flat |
---|
| 2169 | tend(k,j,i) = tend(k,j,i) + pcm_heating_rate(kk,j,i) - pcm_latent_rate(kk,j,i) |
---|
[3449] | 2170 | ENDDO |
---|
[153] | 2171 | ENDDO |
---|
| 2172 | ENDDO |
---|
[3449] | 2173 | ELSE |
---|
| 2174 | DO i = nxl, nxr |
---|
| 2175 | DO j = nys, nyn |
---|
| 2176 | !-- Determine topography-top index on scalar-grid |
---|
[4341] | 2177 | DO k = topo_top_ind(j,i,0)+1, topo_top_ind(j,i,0) + pch_index_ji(j,i) |
---|
| 2178 | kk = k - topo_top_ind(j,i,0) !- lad arrays are defined flat |
---|
| 2179 | tend(k,j,i) = tend(k,j,i) + pcm_heating_rate(kk,j,i) |
---|
[3449] | 2180 | ENDDO |
---|
| 2181 | ENDDO |
---|
| 2182 | ENDDO |
---|
| 2183 | ENDIF |
---|
[153] | 2184 | |
---|
| 2185 | ! |
---|
[1960] | 2186 | !-- humidity |
---|
[153] | 2187 | CASE ( 5 ) |
---|
| 2188 | DO i = nxl, nxr |
---|
| 2189 | DO j = nys, nyn |
---|
[2232] | 2190 | ! |
---|
| 2191 | !-- Determine topography-top index on scalar-grid |
---|
[4341] | 2192 | DO k = topo_top_ind(j,i,0)+1, topo_top_ind(j,i,0) + pch_index_ji(j,i) |
---|
[2317] | 2193 | |
---|
[4341] | 2194 | kk = k - topo_top_ind(j,i,0) !- lad arrays are defined flat |
---|
[2232] | 2195 | |
---|
[4803] | 2196 | IF ( .NOT. plant_canopy_transpiration ) THEN |
---|
[4341] | 2197 | ! pcm_transpiration_rate is calculated in radiation model |
---|
[3449] | 2198 | ! in case of plant_canopy_transpiration = .T. |
---|
| 2199 | ! to include also the dependecy to the radiation |
---|
| 2200 | ! in the plant canopy box |
---|
[4803] | 2201 | pcm_transpiration_rate(kk,j,i) = - leaf_scalar_exch_coeff & |
---|
| 2202 | * lad_s(kk,j,i) * & |
---|
| 2203 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 2204 | u(k,j,i+1) ) & |
---|
| 2205 | )**2 + & |
---|
| 2206 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 2207 | v(k,j+1,i) ) & |
---|
| 2208 | )**2 + & |
---|
| 2209 | ( 0.5_wp * ( w(k-1,j,i) + & |
---|
| 2210 | w(k,j,i) ) & |
---|
| 2211 | )**2 & |
---|
| 2212 | ) * & |
---|
| 2213 | ( q(k,j,i) - leaf_surface_conc ) |
---|
[3449] | 2214 | ENDIF |
---|
| 2215 | |
---|
[4341] | 2216 | tend(k,j,i) = tend(k,j,i) + pcm_transpiration_rate(kk,j,i) |
---|
[153] | 2217 | ENDDO |
---|
| 2218 | ENDDO |
---|
| 2219 | ENDDO |
---|
| 2220 | |
---|
| 2221 | ! |
---|
| 2222 | !-- sgs-tke |
---|
| 2223 | CASE ( 6 ) |
---|
| 2224 | DO i = nxl, nxr |
---|
| 2225 | DO j = nys, nyn |
---|
[2232] | 2226 | ! |
---|
| 2227 | !-- Determine topography-top index on scalar-grid |
---|
[4341] | 2228 | DO k = topo_top_ind(j,i,0)+1, topo_top_ind(j,i,0) + pch_index_ji(j,i) |
---|
[2317] | 2229 | |
---|
[4341] | 2230 | kk = k - topo_top_ind(j,i,0) !- lad arrays are defined flat |
---|
[4803] | 2231 | tend(k,j,i) = tend(k,j,i) - 2.0_wp * canopy_drag_coeff * & |
---|
| 2232 | ( lad_s(kk,j,i) + bad_s(kk,j,i) ) * & |
---|
| 2233 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 2234 | u(k,j,i+1) ) & |
---|
| 2235 | )**2 + & |
---|
| 2236 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 2237 | v(k,j+1,i) ) & |
---|
| 2238 | )**2 + & |
---|
| 2239 | ( 0.5_wp * ( w(k,j,i) + & |
---|
| 2240 | w(k+1,j,i) ) & |
---|
| 2241 | )**2 & |
---|
| 2242 | ) * & |
---|
| 2243 | e(k,j,i) |
---|
[138] | 2244 | ENDDO |
---|
| 2245 | ENDDO |
---|
[4803] | 2246 | ENDDO |
---|
[1960] | 2247 | ! |
---|
| 2248 | !-- scalar concentration |
---|
| 2249 | CASE ( 7 ) |
---|
| 2250 | DO i = nxl, nxr |
---|
| 2251 | DO j = nys, nyn |
---|
[2232] | 2252 | ! |
---|
| 2253 | !-- Determine topography-top index on scalar-grid |
---|
[4341] | 2254 | DO k = topo_top_ind(j,i,0)+1, topo_top_ind(j,i,0) + pch_index_ji(j,i) |
---|
[2317] | 2255 | |
---|
[4341] | 2256 | kk = k - topo_top_ind(j,i,0) !- lad arrays are defined flat |
---|
[4803] | 2257 | tend(k,j,i) = tend(k,j,i) - leaf_scalar_exch_coeff * & |
---|
| 2258 | lad_s(kk,j,i) * & |
---|
| 2259 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 2260 | u(k,j,i+1) ) & |
---|
| 2261 | )**2 + & |
---|
| 2262 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 2263 | v(k,j+1,i) ) & |
---|
| 2264 | )**2 + & |
---|
| 2265 | ( 0.5_wp * ( w(k-1,j,i) + & |
---|
| 2266 | w(k,j,i) ) & |
---|
| 2267 | )**2 & |
---|
| 2268 | ) * & |
---|
| 2269 | ( s(k,j,i) - leaf_surface_conc ) |
---|
[1960] | 2270 | ENDDO |
---|
| 2271 | ENDDO |
---|
[4803] | 2272 | ENDDO |
---|
[1484] | 2273 | |
---|
| 2274 | |
---|
[1960] | 2275 | |
---|
[138] | 2276 | CASE DEFAULT |
---|
| 2277 | |
---|
[257] | 2278 | WRITE( message_string, * ) 'wrong component: ', component |
---|
[4803] | 2279 | CALL message( 'pcm_tendency', 'PA0279', 1, 2, 0, 6, 0 ) |
---|
[138] | 2280 | |
---|
| 2281 | END SELECT |
---|
| 2282 | |
---|
[1826] | 2283 | END SUBROUTINE pcm_tendency |
---|
[138] | 2284 | |
---|
| 2285 | |
---|
[4803] | 2286 | !--------------------------------------------------------------------------------------------------! |
---|
[1484] | 2287 | ! Description: |
---|
| 2288 | ! ------------ |
---|
[4803] | 2289 | !> Calculation of the tendency terms, accounting for the effect of the plant canopy on momentum and |
---|
| 2290 | !> scalar quantities. |
---|
[1682] | 2291 | !> |
---|
[4803] | 2292 | !> The canopy is located where the leaf area density lad_s(k,j,i) > 0.0 (defined on scalar grid), as |
---|
| 2293 | !> initialized in subroutine pcm_init. |
---|
| 2294 | !> The lad on the w-grid is vertically interpolated from the surrounding lad_s. The upper boundary |
---|
| 2295 | !> of the canopy is defined on the w-grid at k = pch_index. Here, the lad is zero. |
---|
[1682] | 2296 | !> |
---|
[4803] | 2297 | !> The canopy drag must be limited (previously accounted for by calculation of a limiting canopy |
---|
| 2298 | !> timestep for the determination of the maximum LES timestep in subroutine timestep), since it is |
---|
| 2299 | !> physically impossible that the canopy drag alone can locally change the sign of a velocity |
---|
| 2300 | !> component. This limitation is realized by calculating preliminary tendencies and velocities. It |
---|
| 2301 | !> is subsequently checked if the preliminary new velocity has a different sign than the current |
---|
| 2302 | !> velocity. If so, the tendency is limited in a way that the velocity can at maximum be reduced to |
---|
| 2303 | !> zero by the canopy drag. |
---|
[1682] | 2304 | !> |
---|
| 2305 | !> |
---|
| 2306 | !> Call for grid point i,j |
---|
[4803] | 2307 | !--------------------------------------------------------------------------------------------------! |
---|
[1826] | 2308 | SUBROUTINE pcm_tendency_ij( i, j, component ) |
---|
[138] | 2309 | |
---|
[1682] | 2310 | INTEGER(iwp) :: component !< prognostic variable (u,v,w,pt,q,e) |
---|
| 2311 | INTEGER(iwp) :: i !< running index |
---|
| 2312 | INTEGER(iwp) :: j !< running index |
---|
| 2313 | INTEGER(iwp) :: k !< running index |
---|
[1721] | 2314 | INTEGER(iwp) :: kk !< running index for flat lad arrays |
---|
[138] | 2315 | |
---|
[4314] | 2316 | LOGICAL :: building_edge_e !< control flag indicating an eastward-facing building edge |
---|
| 2317 | LOGICAL :: building_edge_n !< control flag indicating a north-facing building edge |
---|
| 2318 | LOGICAL :: building_edge_s !< control flag indicating a south-facing building edge |
---|
| 2319 | LOGICAL :: building_edge_w !< control flag indicating a westward-facing building edge |
---|
| 2320 | |
---|
[4770] | 2321 | REAL(wp) :: bad_local !< local lad value |
---|
[1682] | 2322 | REAL(wp) :: ddt_3d !< inverse of the LES timestep (dt_3d) |
---|
| 2323 | REAL(wp) :: lad_local !< local lad value |
---|
| 2324 | REAL(wp) :: pre_tend !< preliminary tendency |
---|
[4803] | 2325 | REAL(wp) :: pre_u !< preliminary u-value |
---|
| 2326 | REAL(wp) :: pre_v !< preliminary v-value |
---|
| 2327 | REAL(wp) :: pre_w !< preliminary w-value |
---|
[1484] | 2328 | |
---|
| 2329 | |
---|
| 2330 | ddt_3d = 1.0_wp / dt_3d |
---|
[138] | 2331 | ! |
---|
[1484] | 2332 | !-- Compute drag for the three velocity components and the SGS-TKE |
---|
[142] | 2333 | SELECT CASE ( component ) |
---|
[138] | 2334 | |
---|
| 2335 | ! |
---|
[142] | 2336 | !-- u-component |
---|
[1484] | 2337 | CASE ( 1 ) |
---|
[2232] | 2338 | ! |
---|
[4803] | 2339 | !-- Set control flags indicating east- and westward-orientated building edges. Note, |
---|
| 2340 | !-- building_egde_w is set from the perspective of the potential rooftop grid point, while |
---|
| 2341 | !-- building_edge_e is set from the perspective of the non-building grid point. |
---|
| 2342 | building_edge_w = ANY( BTEST( wall_flags_total_0(:,j,i), 6 ) ) .AND. & |
---|
| 2343 | .NOT. ANY( BTEST( wall_flags_total_0(:,j,i-1), 6 ) ) |
---|
| 2344 | building_edge_e = ANY( BTEST( wall_flags_total_0(:,j,i-1), 6 ) ) .AND. & |
---|
| 2345 | .NOT. ANY( BTEST( wall_flags_total_0(:,j,i), 6 ) ) |
---|
[4314] | 2346 | ! |
---|
[2232] | 2347 | !-- Determine topography-top index on u-grid |
---|
[4341] | 2348 | DO k = topo_top_ind(j,i,1) + 1, topo_top_ind(j,i,1) + pch_index_ji(j,i) |
---|
[2317] | 2349 | |
---|
[4341] | 2350 | kk = k - topo_top_ind(j,i,1) !- lad arrays are defined flat |
---|
[138] | 2351 | |
---|
| 2352 | ! |
---|
[4803] | 2353 | !-- In order to create sharp boundaries of the plant canopy, the lad on the u-grid at |
---|
| 2354 | !-- index (k,j,i) is equal to lad_s(k,j,i), rather than being interpolated from the |
---|
| 2355 | !-- surrounding lad_s, because this would yield smaller lad at the canopy boundaries |
---|
[1484] | 2356 | !-- than inside of the canopy. |
---|
[4803] | 2357 | !-- For the same reason, the lad at the rightmost(i+1)canopy boundary on the u-grid |
---|
| 2358 | !-- equals lad_s(k,j,i), which is considered in the next if-statement. Note, at |
---|
| 2359 | !-- left-sided building edges this is not applied, here the LAD is equals the LAD at |
---|
| 2360 | !-- grid point (k,j,i), in order to avoid that LAD is mistakenly mapped on top of a roof |
---|
| 2361 | !-- where (usually) is no LAD is defined. |
---|
[4770] | 2362 | !-- The same is also valid for bad_s. |
---|
[1721] | 2363 | lad_local = lad_s(kk,j,i) |
---|
[4770] | 2364 | IF ( lad_local == 0.0_wp .AND. lad_s(kk,j,i-1) > 0.0_wp .AND. & |
---|
[4314] | 2365 | .NOT. building_edge_w ) lad_local = lad_s(kk,j,i-1) |
---|
[4770] | 2366 | |
---|
| 2367 | bad_local = bad_s(kk,j,i) |
---|
| 2368 | IF ( bad_local == 0.0_wp .AND. bad_s(kk,j,i-1) > 0.0_wp .AND. & |
---|
| 2369 | .NOT. building_edge_w ) bad_local = bad_s(kk,j,i-1) |
---|
[4314] | 2370 | ! |
---|
[4803] | 2371 | !-- In order to avoid that LAD is mistakenly considered at right-sided building edges |
---|
| 2372 | !-- (here the topography-top index for the u-component at index j,i is still on the |
---|
| 2373 | !-- building while the topography top for the scalar isn't), LAD is taken from grid |
---|
[4770] | 2374 | !-- point (j,i-1). The same is also valid for bad_s. |
---|
| 2375 | IF ( lad_local > 0.0_wp .AND. lad_s(kk,j,i-1) == 0.0_wp .AND. & |
---|
[4314] | 2376 | building_edge_e ) lad_local = lad_s(kk,j,i-1) |
---|
[4770] | 2377 | IF ( bad_local > 0.0_wp .AND. bad_s(kk,j,i-1) == 0.0_wp .AND. & |
---|
| 2378 | building_edge_e ) bad_local = bad_s(kk,j,i-1) |
---|
[1484] | 2379 | |
---|
| 2380 | pre_tend = 0.0_wp |
---|
| 2381 | pre_u = 0.0_wp |
---|
| 2382 | ! |
---|
| 2383 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
[4803] | 2384 | pre_tend = - canopy_drag_coeff * & |
---|
| 2385 | ( lad_local + bad_local ) * & |
---|
| 2386 | SQRT( u(k,j,i)**2 + & |
---|
| 2387 | ( 0.25_wp * ( v(k,j,i-1) + & |
---|
| 2388 | v(k,j,i) + & |
---|
| 2389 | v(k,j+1,i) + & |
---|
| 2390 | v(k,j+1,i-1) ) & |
---|
| 2391 | )**2 + & |
---|
| 2392 | ( 0.25_wp * ( w(k-1,j,i-1) + & |
---|
| 2393 | w(k-1,j,i) + & |
---|
| 2394 | w(k,j,i-1) + & |
---|
| 2395 | w(k,j,i) ) & |
---|
| 2396 | )**2 & |
---|
| 2397 | ) * & |
---|
[1484] | 2398 | u(k,j,i) |
---|
| 2399 | |
---|
| 2400 | ! |
---|
| 2401 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 2402 | pre_u = u(k,j,i) + dt_3d * pre_tend |
---|
| 2403 | ! |
---|
[4803] | 2404 | !-- Compare sign of old velocity and new preliminary velocity, and in case the signs are |
---|
| 2405 | !-- different, limit the tendency. |
---|
| 2406 | IF ( SIGN( pre_u,u(k,j,i) ) /= pre_u ) THEN |
---|
[1484] | 2407 | pre_tend = - u(k,j,i) * ddt_3d |
---|
| 2408 | ELSE |
---|
| 2409 | pre_tend = pre_tend |
---|
| 2410 | ENDIF |
---|
| 2411 | ! |
---|
| 2412 | !-- Calculate final tendency |
---|
| 2413 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 2414 | ENDDO |
---|
| 2415 | |
---|
| 2416 | |
---|
| 2417 | ! |
---|
[142] | 2418 | !-- v-component |
---|
[1484] | 2419 | CASE ( 2 ) |
---|
[2232] | 2420 | ! |
---|
[4803] | 2421 | !-- Set control flags indicating north- and southward-orientated building edges. Note, |
---|
| 2422 | !-- building_egde_s is set from the perspective of the potential rooftop grid point, while |
---|
| 2423 | !-- building_edge_n is set from the perspective of the non-building grid point. |
---|
| 2424 | building_edge_s = ANY( BTEST( wall_flags_total_0(:,j,i), 6 ) ) .AND. & |
---|
| 2425 | .NOT. ANY( BTEST( wall_flags_total_0(:,j-1,i), 6 ) ) |
---|
| 2426 | building_edge_n = ANY( BTEST( wall_flags_total_0(:,j-1,i), 6 ) ) .AND. & |
---|
| 2427 | .NOT. ANY( BTEST( wall_flags_total_0(:,j,i), 6 ) ) |
---|
[4314] | 2428 | ! |
---|
[2232] | 2429 | !-- Determine topography-top index on v-grid |
---|
[4341] | 2430 | DO k = topo_top_ind(j,i,2) + 1, topo_top_ind(j,i,2) + pch_index_ji(j,i) |
---|
[138] | 2431 | |
---|
[4341] | 2432 | kk = k - topo_top_ind(j,i,2) !- lad arrays are defined flat |
---|
[138] | 2433 | ! |
---|
[4803] | 2434 | !-- In order to create sharp boundaries of the plant canopy, the lad on the v-grid at |
---|
| 2435 | !-- index (k,j,i) is equal to lad_s(k,j,i), rather than being interpolated from the |
---|
| 2436 | !-- surrounding lad_s, because this would yield smaller lad at the canopy boundaries |
---|
[1484] | 2437 | !-- than inside of the canopy. |
---|
[4803] | 2438 | !-- For the same reason, the lad at the northmost (j+1) canopy boundary on the v-grid |
---|
| 2439 | !-- equals lad_s(k,j,i), which is considered in the next if-statement. Note, at |
---|
| 2440 | !-- left-sided building edges this is not applied, here the LAD is equals the LAD at |
---|
| 2441 | !-- grid point (k,j,i), in order to avoid that LAD is mistakenly mapped on top of a roof |
---|
| 2442 | !-- where (usually) is no LAD is defined. |
---|
[4770] | 2443 | !-- The same is also valid for bad_s. |
---|
[1721] | 2444 | lad_local = lad_s(kk,j,i) |
---|
[4770] | 2445 | IF ( lad_local == 0.0_wp .AND. lad_s(kk,j-1,i) > 0.0_wp .AND. & |
---|
[4314] | 2446 | .NOT. building_edge_s ) lad_local = lad_s(kk,j-1,i) |
---|
[4770] | 2447 | |
---|
| 2448 | bad_local = bad_s(kk,j,i) |
---|
| 2449 | IF ( bad_local == 0.0_wp .AND. bad_s(kk,j-1,i) > 0.0_wp .AND. & |
---|
| 2450 | .NOT. building_edge_s ) bad_local = bad_s(kk,j-1,i) |
---|
[4314] | 2451 | ! |
---|
[4803] | 2452 | !-- In order to avoid that LAD is mistakenly considered at right-sided building edges |
---|
| 2453 | !-- (here the topography-top index for the u-component at index j,i is still on the |
---|
| 2454 | !-- building while the topography top for the scalar isn't), LAD is taken from grid |
---|
[4770] | 2455 | !-- point (j,i-1). The same is also valid for bad_s. |
---|
| 2456 | IF ( lad_local > 0.0_wp .AND. lad_s(kk,j-1,i) == 0.0_wp .AND. & |
---|
[4314] | 2457 | building_edge_n ) lad_local = lad_s(kk,j-1,i) |
---|
[4770] | 2458 | IF ( bad_local > 0.0_wp .AND. bad_s(kk,j-1,i) == 0.0_wp .AND. & |
---|
| 2459 | building_edge_n ) bad_local = bad_s(kk,j-1,i) |
---|
[1484] | 2460 | |
---|
| 2461 | pre_tend = 0.0_wp |
---|
| 2462 | pre_v = 0.0_wp |
---|
| 2463 | ! |
---|
| 2464 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
[4803] | 2465 | pre_tend = - canopy_drag_coeff * & |
---|
| 2466 | ( lad_local + bad_local ) * & |
---|
| 2467 | SQRT( ( 0.25_wp * ( u(k,j-1,i) + & |
---|
| 2468 | u(k,j-1,i+1) + & |
---|
| 2469 | u(k,j,i) + & |
---|
| 2470 | u(k,j,i+1) ) & |
---|
| 2471 | )**2 + & |
---|
| 2472 | v(k,j,i)**2 + & |
---|
| 2473 | ( 0.25_wp * ( w(k-1,j-1,i) + & |
---|
| 2474 | w(k-1,j,i) + & |
---|
| 2475 | w(k,j-1,i) + & |
---|
| 2476 | w(k,j,i) ) & |
---|
| 2477 | )**2 & |
---|
| 2478 | ) * & |
---|
[1484] | 2479 | v(k,j,i) |
---|
| 2480 | |
---|
| 2481 | ! |
---|
| 2482 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 2483 | pre_v = v(k,j,i) + dt_3d * pre_tend |
---|
| 2484 | ! |
---|
| 2485 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
| 2486 | !-- and in case the signs are different, limit the tendency |
---|
[4803] | 2487 | IF ( SIGN( pre_v,v(k,j,i) ) /= pre_v ) THEN |
---|
[1484] | 2488 | pre_tend = - v(k,j,i) * ddt_3d |
---|
| 2489 | ELSE |
---|
| 2490 | pre_tend = pre_tend |
---|
| 2491 | ENDIF |
---|
| 2492 | ! |
---|
| 2493 | !-- Calculate final tendency |
---|
| 2494 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 2495 | ENDDO |
---|
| 2496 | |
---|
| 2497 | |
---|
| 2498 | ! |
---|
[142] | 2499 | !-- w-component |
---|
[1484] | 2500 | CASE ( 3 ) |
---|
[2232] | 2501 | ! |
---|
| 2502 | !-- Determine topography-top index on w-grid |
---|
[4341] | 2503 | DO k = topo_top_ind(j,i,3) + 1, topo_top_ind(j,i,3) + pch_index_ji(j,i) - 1 |
---|
[2317] | 2504 | |
---|
[4341] | 2505 | kk = k - topo_top_ind(j,i,3) !- lad arrays are defined flat |
---|
[138] | 2506 | |
---|
[1484] | 2507 | pre_tend = 0.0_wp |
---|
| 2508 | pre_w = 0.0_wp |
---|
[138] | 2509 | ! |
---|
[1484] | 2510 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
[4803] | 2511 | pre_tend = - canopy_drag_coeff * & |
---|
| 2512 | ( 0.5_wp * ( lad_s(kk+1,j,i) + lad_s(kk,j,i) ) + & |
---|
| 2513 | 0.5_wp * ( bad_s(kk+1,j,i) + bad_s(kk,j,i) ) ) * & |
---|
| 2514 | SQRT( ( 0.25_wp * ( u(k,j,i) + & |
---|
| 2515 | u(k,j,i+1) + & |
---|
| 2516 | u(k+1,j,i) + & |
---|
| 2517 | u(k+1,j,i+1) ) & |
---|
| 2518 | )**2 + & |
---|
| 2519 | ( 0.25_wp * ( v(k,j,i) + & |
---|
| 2520 | v(k,j+1,i) + & |
---|
| 2521 | v(k+1,j,i) + & |
---|
| 2522 | v(k+1,j+1,i) ) & |
---|
| 2523 | )**2 + & |
---|
| 2524 | w(k,j,i)**2 & |
---|
| 2525 | ) * & |
---|
[1484] | 2526 | w(k,j,i) |
---|
| 2527 | ! |
---|
| 2528 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 2529 | pre_w = w(k,j,i) + dt_3d * pre_tend |
---|
| 2530 | ! |
---|
[4803] | 2531 | !-- Compare sign of old velocity and new preliminary velocity, and in case the signs are |
---|
| 2532 | !-- different, limit the tendency. |
---|
| 2533 | IF ( SIGN( pre_w,w(k,j,i) ) /= pre_w ) THEN |
---|
[1484] | 2534 | pre_tend = - w(k,j,i) * ddt_3d |
---|
| 2535 | ELSE |
---|
| 2536 | pre_tend = pre_tend |
---|
| 2537 | ENDIF |
---|
| 2538 | ! |
---|
| 2539 | !-- Calculate final tendency |
---|
| 2540 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 2541 | ENDDO |
---|
| 2542 | |
---|
| 2543 | ! |
---|
[153] | 2544 | !-- potential temperature |
---|
| 2545 | CASE ( 4 ) |
---|
[2232] | 2546 | ! |
---|
| 2547 | !-- Determine topography-top index on scalar grid |
---|
[4803] | 2548 | IF ( humidity ) THEN |
---|
[4341] | 2549 | DO k = topo_top_ind(j,i,0) + 1, topo_top_ind(j,i,0) + pch_index_ji(j,i) |
---|
| 2550 | kk = k - topo_top_ind(j,i,0) !- lad arrays are defined flat |
---|
[4803] | 2551 | tend(k,j,i) = tend(k,j,i) + pcm_heating_rate(kk,j,i) - pcm_latent_rate(kk,j,i) |
---|
[3449] | 2552 | ENDDO |
---|
| 2553 | ELSE |
---|
[4341] | 2554 | DO k = topo_top_ind(j,i,0) + 1, topo_top_ind(j,i,0) + pch_index_ji(j,i) |
---|
| 2555 | kk = k - topo_top_ind(j,i,0) !- lad arrays are defined flat |
---|
| 2556 | tend(k,j,i) = tend(k,j,i) + pcm_heating_rate(kk,j,i) |
---|
[3449] | 2557 | ENDDO |
---|
| 2558 | ENDIF |
---|
[153] | 2559 | |
---|
| 2560 | ! |
---|
[1960] | 2561 | !-- humidity |
---|
[153] | 2562 | CASE ( 5 ) |
---|
[2232] | 2563 | ! |
---|
| 2564 | !-- Determine topography-top index on scalar grid |
---|
[4341] | 2565 | DO k = topo_top_ind(j,i,0) + 1, topo_top_ind(j,i,0) + pch_index_ji(j,i) |
---|
| 2566 | kk = k - topo_top_ind(j,i,0) !- lad arrays are defined flat |
---|
[4803] | 2567 | IF ( .NOT. plant_canopy_transpiration ) THEN |
---|
[4341] | 2568 | ! pcm_transpiration_rate is calculated in radiation model |
---|
[3449] | 2569 | ! in case of plant_canopy_transpiration = .T. |
---|
| 2570 | ! to include also the dependecy to the radiation |
---|
| 2571 | ! in the plant canopy box |
---|
[4803] | 2572 | pcm_transpiration_rate(kk,j,i) = - leaf_scalar_exch_coeff & |
---|
| 2573 | * lad_s(kk,j,i) * & |
---|
| 2574 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 2575 | u(k,j,i+1) ) & |
---|
| 2576 | )**2 + & |
---|
| 2577 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 2578 | v(k,j+1,i) ) & |
---|
| 2579 | )**2 + & |
---|
| 2580 | ( 0.5_wp * ( w(k-1,j,i) + & |
---|
| 2581 | w(k,j,i) ) & |
---|
| 2582 | )**2 & |
---|
| 2583 | ) * & |
---|
| 2584 | ( q(k,j,i) - leaf_surface_conc ) |
---|
[3449] | 2585 | ENDIF |
---|
[2232] | 2586 | |
---|
[4341] | 2587 | tend(k,j,i) = tend(k,j,i) + pcm_transpiration_rate(kk,j,i) |
---|
[3014] | 2588 | |
---|
[4803] | 2589 | ENDDO |
---|
[153] | 2590 | |
---|
| 2591 | ! |
---|
[142] | 2592 | !-- sgs-tke |
---|
[1484] | 2593 | CASE ( 6 ) |
---|
[2232] | 2594 | ! |
---|
| 2595 | !-- Determine topography-top index on scalar grid |
---|
[4341] | 2596 | DO k = topo_top_ind(j,i,0) + 1, topo_top_ind(j,i,0) + pch_index_ji(j,i) |
---|
[2317] | 2597 | |
---|
[4341] | 2598 | kk = k - topo_top_ind(j,i,0) |
---|
[4803] | 2599 | tend(k,j,i) = tend(k,j,i) - 2.0_wp * canopy_drag_coeff * & |
---|
| 2600 | ( lad_s(kk,j,i) + bad_s(kk,j,i) ) * & |
---|
| 2601 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 2602 | u(k,j,i+1) ) & |
---|
| 2603 | )**2 + & |
---|
| 2604 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 2605 | v(k,j+1,i) ) & |
---|
| 2606 | )**2 + & |
---|
| 2607 | ( 0.5_wp * ( w(k,j,i) + & |
---|
| 2608 | w(k+1,j,i) ) & |
---|
| 2609 | )**2 & |
---|
| 2610 | ) * & |
---|
| 2611 | e(k,j,i) |
---|
[1484] | 2612 | ENDDO |
---|
[1960] | 2613 | ! |
---|
[4803] | 2614 | !-- scalar concentration |
---|
[1960] | 2615 | CASE ( 7 ) |
---|
[2232] | 2616 | ! |
---|
| 2617 | !-- Determine topography-top index on scalar grid |
---|
[4341] | 2618 | DO k = topo_top_ind(j,i,0) + 1, topo_top_ind(j,i,0) + pch_index_ji(j,i) |
---|
[2317] | 2619 | |
---|
[4341] | 2620 | kk = k - topo_top_ind(j,i,0) |
---|
[4803] | 2621 | tend(k,j,i) = tend(k,j,i) - leaf_scalar_exch_coeff * & |
---|
| 2622 | lad_s(kk,j,i) * & |
---|
| 2623 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 2624 | u(k,j,i+1) ) & |
---|
| 2625 | )**2 + & |
---|
| 2626 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 2627 | v(k,j+1,i) ) & |
---|
| 2628 | )**2 + & |
---|
| 2629 | ( 0.5_wp * ( w(k-1,j,i) + & |
---|
| 2630 | w(k,j,i) ) & |
---|
| 2631 | )**2 & |
---|
| 2632 | ) * & |
---|
| 2633 | ( s(k,j,i) - leaf_surface_conc ) |
---|
| 2634 | ENDDO |
---|
[138] | 2635 | |
---|
[142] | 2636 | CASE DEFAULT |
---|
[138] | 2637 | |
---|
[257] | 2638 | WRITE( message_string, * ) 'wrong component: ', component |
---|
[4803] | 2639 | CALL message( 'pcm_tendency', 'PA0279', 1, 2, 0, 6, 0 ) |
---|
[138] | 2640 | |
---|
[142] | 2641 | END SELECT |
---|
[138] | 2642 | |
---|
[1826] | 2643 | END SUBROUTINE pcm_tendency_ij |
---|
[138] | 2644 | |
---|
[4803] | 2645 | !--------------------------------------------------------------------------------------------------! |
---|
[4360] | 2646 | ! Description: |
---|
| 2647 | ! ------------ |
---|
[4514] | 2648 | !> Subroutine writes global restart data |
---|
[4803] | 2649 | !--------------------------------------------------------------------------------------------------! |
---|
[4514] | 2650 | SUBROUTINE pcm_wrd_global |
---|
| 2651 | |
---|
| 2652 | IF ( TRIM( restart_data_format_output ) == 'fortran_binary' ) THEN |
---|
| 2653 | |
---|
| 2654 | CALL wrd_write_string( 'pch_index' ) |
---|
[4803] | 2655 | WRITE( 14 ) pch_index |
---|
[4514] | 2656 | |
---|
[4803] | 2657 | ELSE IF ( restart_data_format_output(1:3) == 'mpi' ) THEN |
---|
[4514] | 2658 | |
---|
| 2659 | CALL wrd_mpi_io( 'pch_index', pch_index ) |
---|
| 2660 | |
---|
| 2661 | ENDIF |
---|
| 2662 | |
---|
| 2663 | END SUBROUTINE pcm_wrd_global |
---|
| 2664 | |
---|
[4803] | 2665 | !--------------------------------------------------------------------------------------------------! |
---|
[4514] | 2666 | ! Description: |
---|
| 2667 | ! ------------ |
---|
[4360] | 2668 | !> Subroutine writes local (subdomain) restart data |
---|
[4803] | 2669 | !--------------------------------------------------------------------------------------------------! |
---|
[4360] | 2670 | SUBROUTINE pcm_wrd_local |
---|
[2007] | 2671 | |
---|
[4525] | 2672 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: tmp_3d !< temporary array to store pcm data with |
---|
| 2673 | !< non-standard vertical index bounds |
---|
| 2674 | |
---|
[4803] | 2675 | |
---|
[4495] | 2676 | IF ( TRIM( restart_data_format_output ) == 'fortran_binary' ) THEN |
---|
[4360] | 2677 | |
---|
[4495] | 2678 | IF ( ALLOCATED( pcm_heatrate_av ) ) THEN |
---|
| 2679 | CALL wrd_write_string( 'pcm_heatrate_av' ) |
---|
[4803] | 2680 | WRITE( 14 ) pcm_heatrate_av |
---|
[4495] | 2681 | ENDIF |
---|
[4360] | 2682 | |
---|
[4495] | 2683 | IF ( ALLOCATED( pcm_latentrate_av ) ) THEN |
---|
| 2684 | CALL wrd_write_string( 'pcm_latentrate_av' ) |
---|
[4803] | 2685 | WRITE( 14 ) pcm_latentrate_av |
---|
[4495] | 2686 | ENDIF |
---|
| 2687 | |
---|
| 2688 | IF ( ALLOCATED( pcm_transpirationrate_av ) ) THEN |
---|
| 2689 | CALL wrd_write_string( 'pcm_transpirationrate_av' ) |
---|
[4803] | 2690 | WRITE( 14 ) pcm_transpirationrate_av |
---|
[4495] | 2691 | ENDIF |
---|
| 2692 | |
---|
[4803] | 2693 | ELSE IF ( restart_data_format_output(1:3) == 'mpi' ) THEN |
---|
[4495] | 2694 | |
---|
[4525] | 2695 | ! |
---|
| 2696 | !-- Plant canopy arrays have non standard reduced vertical index bounds. They are stored with |
---|
| 2697 | !-- full vertical bounds (bzb:nzt+1) in the restart file and must be re-stored before writing. |
---|
| 2698 | IF ( ALLOCATED( pcm_heatrate_av ) ) THEN |
---|
| 2699 | ALLOCATE( tmp_3d(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 2700 | tmp_3d(nzb:pch_index,:,:) = pcm_heatrate_av |
---|
| 2701 | tmp_3d(pch_index+1:nzt+1,:,:) = 0.0_wp |
---|
| 2702 | CALL wrd_mpi_io( 'pcm_heatrate_av', tmp_3d ) |
---|
| 2703 | DEALLOCATE( tmp_3d ) |
---|
| 2704 | ENDIF |
---|
[4495] | 2705 | IF ( ALLOCATED( pcm_latentrate_av ) ) THEN |
---|
[4525] | 2706 | ALLOCATE( tmp_3d(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 2707 | tmp_3d(nzb:pch_index,:,:) = pcm_latentrate_av |
---|
| 2708 | tmp_3d(pch_index+1:nzt+1,:,:) = 0.0_wp |
---|
| 2709 | CALL wrd_mpi_io( 'pcm_latentrate_av', tmp_3d ) |
---|
| 2710 | DEALLOCATE( tmp_3d ) |
---|
[4495] | 2711 | ENDIF |
---|
| 2712 | IF ( ALLOCATED( pcm_transpirationrate_av ) ) THEN |
---|
[4525] | 2713 | ALLOCATE( tmp_3d(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 2714 | tmp_3d(nzb:pch_index,:,:) = pcm_transpirationrate_av |
---|
| 2715 | tmp_3d(pch_index+1:nzt+1,:,:) = 0.0_wp |
---|
| 2716 | CALL wrd_mpi_io( 'pcm_transpirationrate_av', tmp_3d ) |
---|
| 2717 | DEALLOCATE( tmp_3d ) |
---|
[4495] | 2718 | ENDIF |
---|
| 2719 | |
---|
[4360] | 2720 | ENDIF |
---|
| 2721 | |
---|
| 2722 | END SUBROUTINE pcm_wrd_local |
---|
| 2723 | |
---|
| 2724 | |
---|
[138] | 2725 | END MODULE plant_canopy_model_mod |
---|