[1826] | 1 | !> @file plant_canopy_model_mod.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[4360] | 17 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
[4392] | 18 | ! Copyright 2017-2020 Institute of Computer Science of the |
---|
[3885] | 19 | ! Czech Academy of Sciences, Prague |
---|
[2000] | 20 | !------------------------------------------------------------------------------! |
---|
[1036] | 21 | ! |
---|
[257] | 22 | ! Current revisions: |
---|
[2977] | 23 | ! ------------------ |
---|
[2214] | 24 | ! |
---|
[4226] | 25 | ! |
---|
[2214] | 26 | ! Former revisions: |
---|
| 27 | ! ----------------- |
---|
[4448] | 28 | ! |
---|
[2214] | 29 | ! $Id: plant_canopy_model_mod.f90 4448 2020-03-09 09:29:12Z moh.hefny $ |
---|
[4448] | 30 | ! (salim) removed the error message PA0672 to consider PC 3d data via ascii file |
---|
| 31 | ! |
---|
| 32 | ! 4392 2020-01-31 16:14:57Z pavelkrc (resler) |
---|
| 33 | ! Make pcm_heatrate_av, pcm_latentrate_av public to allow calculation |
---|
[4392] | 34 | ! of averaged Bowen ratio in the user procedure |
---|
| 35 | ! |
---|
| 36 | ! 4381 2020-01-20 13:51:46Z suehring |
---|
[4381] | 37 | ! Give error message 313 only once |
---|
| 38 | ! |
---|
| 39 | ! 4363 2020-01-07 18:11:28Z suehring |
---|
[4363] | 40 | ! Fix for last commit |
---|
| 41 | ! |
---|
| 42 | ! 4362 2020-01-07 17:15:02Z suehring |
---|
[4362] | 43 | ! Input of plant canopy variables from static driver moved to plant-canopy |
---|
| 44 | ! model |
---|
| 45 | ! |
---|
| 46 | ! 4361 2020-01-07 12:22:38Z suehring |
---|
[4361] | 47 | ! - Remove unused arrays in pmc_rrd_local |
---|
| 48 | ! - Remove one exchange of ghost points |
---|
| 49 | ! |
---|
| 50 | ! 4360 2020-01-07 11:25:50Z suehring |
---|
[4360] | 51 | ! - Bugfix, read restart data for time-averaged pcm output quantities |
---|
| 52 | ! - Output of plant-canopy quantities will fill values |
---|
| 53 | ! |
---|
| 54 | ! 4356 2019-12-20 17:09:33Z suehring |
---|
[4356] | 55 | ! Correct single message call, local check must be given by the respective |
---|
| 56 | ! mpi rank. |
---|
| 57 | ! |
---|
| 58 | ! 4346 2019-12-18 11:55:56Z motisi |
---|
[4346] | 59 | ! Introduction of wall_flags_total_0, which currently sets bits based on static |
---|
| 60 | ! topography information used in wall_flags_static_0 |
---|
| 61 | ! |
---|
| 62 | ! 4342 2019-12-16 13:49:14Z Giersch |
---|
[4342] | 63 | ! Use statements moved to module level, ocean dependency removed, redundant |
---|
| 64 | ! variables removed |
---|
| 65 | ! |
---|
| 66 | ! 4341 2019-12-16 10:43:49Z motisi |
---|
[4341] | 67 | ! - Unification of variable names: pc_-variables now pcm_-variables |
---|
| 68 | ! (pc_latent_rate, pc_heating_rate, pc_transpiration_rate) |
---|
| 69 | ! - Removal of pcm_bowenratio output |
---|
| 70 | ! - Renamed canopy-mode 'block' to 'homogeneous' |
---|
| 71 | ! - Renamed value 'read_from_file_3d' to 'read_from_file' |
---|
| 72 | ! - Removal of confusing comment lines |
---|
| 73 | ! - Replacement of k_wall by topo_top_ind |
---|
| 74 | ! - Removal of Else-Statement in tendency-calculation |
---|
| 75 | ! |
---|
| 76 | ! 4335 2019-12-12 16:39:05Z suehring |
---|
[4335] | 77 | ! Fix for LAD at building edges also implemented in vector branch. |
---|
| 78 | ! |
---|
| 79 | ! 4331 2019-12-10 18:25:02Z suehring |
---|
[4331] | 80 | ! Typo corrected |
---|
| 81 | ! |
---|
| 82 | ! 4329 2019-12-10 15:46:36Z motisi |
---|
[4329] | 83 | ! Renamed wall_flags_0 to wall_flags_static_0 |
---|
| 84 | ! |
---|
| 85 | ! 4314 2019-11-29 10:29:20Z suehring |
---|
[4314] | 86 | ! - Bugfix, plant canopy was still considered at building edges on for the u- |
---|
| 87 | ! and v-component. |
---|
| 88 | ! - Relax restriction of LAD on building tops. LAD is only omitted at |
---|
| 89 | ! locations where building grid points emerged artificially by the |
---|
| 90 | ! topography filtering. |
---|
| 91 | ! |
---|
| 92 | ! 4309 2019-11-26 18:49:59Z suehring |
---|
[4309] | 93 | ! Typo |
---|
| 94 | ! |
---|
| 95 | ! 4302 2019-11-22 13:15:56Z suehring |
---|
[4302] | 96 | ! Omit tall canopy mapped on top of buildings |
---|
| 97 | ! |
---|
| 98 | ! 4279 2019-10-29 08:48:17Z scharf |
---|
[4279] | 99 | ! unused variables removed |
---|
| 100 | ! |
---|
| 101 | ! 4258 2019-10-07 13:29:08Z scharf |
---|
[4278] | 102 | ! changed check for static driver and fixed bugs in initialization and header |
---|
| 103 | ! |
---|
| 104 | ! 4258 2019-10-07 13:29:08Z suehring |
---|
[4258] | 105 | ! Check if any LAD is prescribed when plant-canopy model is applied. |
---|
| 106 | ! |
---|
| 107 | ! 4226 2019-09-10 17:03:24Z suehring |
---|
[4226] | 108 | ! Bugfix, missing initialization of heating rate |
---|
| 109 | ! |
---|
| 110 | ! 4221 2019-09-09 08:50:35Z suehring |
---|
[4220] | 111 | ! Further bugfix in 3d data output for plant canopy |
---|
| 112 | ! |
---|
| 113 | ! 4216 2019-09-04 09:09:03Z suehring |
---|
[4216] | 114 | ! Bugfixes in 3d data output |
---|
| 115 | ! |
---|
| 116 | ! 4205 2019-08-30 13:25:00Z suehring |
---|
[4205] | 117 | ! Missing working precision + bugfix in calculation of wind speed |
---|
| 118 | ! |
---|
| 119 | ! 4188 2019-08-26 14:15:47Z suehring |
---|
[4188] | 120 | ! Minor adjustment in error number |
---|
| 121 | ! |
---|
| 122 | ! 4187 2019-08-26 12:43:15Z suehring |
---|
[4187] | 123 | ! Give specific error numbers instead of PA0999 |
---|
| 124 | ! |
---|
| 125 | ! 4182 2019-08-22 15:20:23Z scharf |
---|
[4182] | 126 | ! Corrected "Former revisions" section |
---|
| 127 | ! |
---|
| 128 | ! 4168 2019-08-16 13:50:17Z suehring |
---|
[4168] | 129 | ! Replace function get_topography_top_index by topo_top_ind |
---|
| 130 | ! |
---|
| 131 | ! 4127 2019-07-30 14:47:10Z suehring |
---|
[4127] | 132 | ! Output of 3D plant canopy variables changed. It is now relative to the local |
---|
| 133 | ! terrain rather than located at the acutal vertical level in the model. This |
---|
| 134 | ! way, the vertical dimension of the output can be significantly reduced. |
---|
| 135 | ! (merge from branch resler) |
---|
| 136 | ! |
---|
| 137 | ! 3885 2019-04-11 11:29:34Z kanani |
---|
[3885] | 138 | ! Changes related to global restructuring of location messages and introduction |
---|
| 139 | ! of additional debug messages |
---|
| 140 | ! |
---|
| 141 | ! 3864 2019-04-05 09:01:56Z monakurppa |
---|
[3761] | 142 | ! unsed variables removed |
---|
| 143 | ! |
---|
| 144 | ! 3745 2019-02-15 18:57:56Z suehring |
---|
[3745] | 145 | ! Bugfix in transpiration, floating invalid when temperature |
---|
| 146 | ! becomes > 40 degrees |
---|
| 147 | ! |
---|
| 148 | ! 3744 2019-02-15 18:38:58Z suehring |
---|
[3685] | 149 | ! Some interface calls moved to module_interface + cleanup |
---|
| 150 | ! |
---|
| 151 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
[3614] | 152 | ! unused variables removed |
---|
[3498] | 153 | ! |
---|
[4182] | 154 | ! 138 2007-11-28 10:03:58Z letzel |
---|
| 155 | ! Initial revision |
---|
| 156 | ! |
---|
[138] | 157 | ! Description: |
---|
| 158 | ! ------------ |
---|
[1682] | 159 | !> 1) Initialization of the canopy model, e.g. construction of leaf area density |
---|
[1826] | 160 | !> profile (subroutine pcm_init). |
---|
[1682] | 161 | !> 2) Calculation of sinks and sources of momentum, heat and scalar concentration |
---|
[1826] | 162 | !> due to canopy elements (subroutine pcm_tendency). |
---|
[3744] | 163 | ! |
---|
| 164 | ! @todo - precalculate constant terms in pcm_calc_transpiration_rate |
---|
[4216] | 165 | ! @todo - unify variable names (pcm_, pc_, ...) |
---|
[138] | 166 | !------------------------------------------------------------------------------! |
---|
[1682] | 167 | MODULE plant_canopy_model_mod |
---|
[4360] | 168 | |
---|
[1484] | 169 | USE arrays_3d, & |
---|
[3449] | 170 | ONLY: dzu, dzw, e, exner, hyp, pt, q, s, tend, u, v, w, zu, zw |
---|
[138] | 171 | |
---|
[3449] | 172 | USE basic_constants_and_equations_mod, & |
---|
| 173 | ONLY: c_p, degc_to_k, l_v, lv_d_cp, r_d, rd_d_rv |
---|
[4360] | 174 | |
---|
[4342] | 175 | USE bulk_cloud_model_mod, & |
---|
| 176 | ONLY: bulk_cloud_model, microphysics_seifert |
---|
[3449] | 177 | |
---|
[3885] | 178 | USE control_parameters, & |
---|
[4360] | 179 | ONLY: average_count_3d, & |
---|
| 180 | coupling_char, & |
---|
| 181 | debug_output, & |
---|
| 182 | dt_3d, & |
---|
| 183 | dz, & |
---|
| 184 | humidity, & |
---|
| 185 | length, & |
---|
| 186 | message_string, & |
---|
| 187 | ocean_mode, & |
---|
| 188 | passive_scalar, & |
---|
| 189 | plant_canopy, & |
---|
| 190 | restart_string, & |
---|
| 191 | urban_surface |
---|
| 192 | |
---|
[4342] | 193 | USE grid_variables, & |
---|
| 194 | ONLY: dx, dy |
---|
[3449] | 195 | |
---|
[1484] | 196 | USE indices, & |
---|
| 197 | ONLY: nbgp, nxl, nxlg, nxlu, nxr, nxrg, nyn, nyng, nys, nysg, nysv, & |
---|
[4346] | 198 | nz, nzb, nzt, topo_top_ind, wall_flags_total_0 |
---|
[1484] | 199 | |
---|
| 200 | USE kinds |
---|
[4360] | 201 | |
---|
[4342] | 202 | USE netcdf_data_input_mod, & |
---|
[4362] | 203 | ONLY: input_pids_static, & |
---|
| 204 | char_fill, & |
---|
| 205 | check_existence, & |
---|
| 206 | close_input_file, & |
---|
| 207 | get_attribute, & |
---|
| 208 | get_dimension_length, & |
---|
| 209 | get_variable, & |
---|
| 210 | inquire_num_variables, & |
---|
| 211 | inquire_variable_names, & |
---|
| 212 | input_file_static, & |
---|
| 213 | num_var_pids, & |
---|
| 214 | open_read_file, & |
---|
| 215 | pids_id, & |
---|
| 216 | real_3d, & |
---|
| 217 | vars_pids |
---|
[1484] | 218 | |
---|
[3449] | 219 | USE pegrid |
---|
[4360] | 220 | |
---|
[4342] | 221 | USE surface_mod, & |
---|
| 222 | ONLY: surf_def_h, surf_lsm_h, surf_usm_h |
---|
[3449] | 223 | |
---|
[1484] | 224 | |
---|
| 225 | IMPLICIT NONE |
---|
| 226 | |
---|
[4341] | 227 | CHARACTER (LEN=30) :: canopy_mode = 'homogeneous' !< canopy coverage |
---|
[3449] | 228 | LOGICAL :: plant_canopy_transpiration = .FALSE. !< flag to switch calculation of transpiration and corresponding latent heat |
---|
| 229 | !< for resolved plant canopy inside radiation model |
---|
| 230 | !< (calls subroutine pcm_calc_transpiration_rate from module plant_canopy_mod) |
---|
[1484] | 231 | |
---|
[3449] | 232 | INTEGER(iwp) :: pch_index = 0 !< plant canopy height/top index |
---|
| 233 | INTEGER(iwp) :: lad_vertical_gradient_level_ind(10) = -9999 !< lad-profile levels (index) |
---|
[1484] | 234 | |
---|
[3449] | 235 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: pch_index_ji !< local plant canopy top |
---|
[2696] | 236 | |
---|
[3449] | 237 | LOGICAL :: calc_beta_lad_profile = .FALSE. !< switch for calc. of lad from beta func. |
---|
[1484] | 238 | |
---|
[2696] | 239 | REAL(wp) :: alpha_lad = 9999999.9_wp !< coefficient for lad calculation |
---|
| 240 | REAL(wp) :: beta_lad = 9999999.9_wp !< coefficient for lad calculation |
---|
| 241 | REAL(wp) :: canopy_drag_coeff = 0.0_wp !< canopy drag coefficient (parameter) |
---|
| 242 | REAL(wp) :: cthf = 0.0_wp !< canopy top heat flux |
---|
| 243 | REAL(wp) :: dt_plant_canopy = 0.0_wp !< timestep account. for canopy drag |
---|
| 244 | REAL(wp) :: ext_coef = 0.6_wp !< extinction coefficient |
---|
| 245 | REAL(wp) :: lad_surface = 0.0_wp !< lad surface value |
---|
| 246 | REAL(wp) :: lai_beta = 0.0_wp !< leaf area index (lai) for lad calc. |
---|
| 247 | REAL(wp) :: leaf_scalar_exch_coeff = 0.0_wp !< canopy scalar exchange coeff. |
---|
| 248 | REAL(wp) :: leaf_surface_conc = 0.0_wp !< leaf surface concentration |
---|
[1484] | 249 | |
---|
[2696] | 250 | REAL(wp) :: lad_vertical_gradient(10) = 0.0_wp !< lad gradient |
---|
| 251 | REAL(wp) :: lad_vertical_gradient_level(10) = -9999999.9_wp !< lad-prof. levels (in m) |
---|
[1484] | 252 | |
---|
[2977] | 253 | REAL(wp) :: lad_type_coef(0:10) = 1.0_wp !< multiplicative coeficients for particular types |
---|
| 254 | !< of plant canopy (e.g. deciduous tree during winter) |
---|
| 255 | |
---|
[1682] | 256 | REAL(wp), DIMENSION(:), ALLOCATABLE :: lad !< leaf area density |
---|
| 257 | REAL(wp), DIMENSION(:), ALLOCATABLE :: pre_lad !< preliminary lad |
---|
[1484] | 258 | |
---|
[4127] | 259 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: cum_lai_hf !< cumulative lai for heatflux calc. |
---|
| 260 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: lad_s !< lad on scalar-grid |
---|
[4341] | 261 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pcm_heating_rate !< plant canopy heating rate |
---|
| 262 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pcm_transpiration_rate !< plant canopy transpiration rate |
---|
| 263 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pcm_latent_rate !< plant canopy latent heating rate |
---|
[1484] | 264 | |
---|
[4127] | 265 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pcm_heatrate_av !< array for averaging plant canopy sensible heating rate |
---|
| 266 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pcm_latentrate_av !< array for averaging plant canopy latent heating rate |
---|
| 267 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pcm_transpirationrate_av !< array for averaging plant canopy transpiration rate |
---|
| 268 | |
---|
[4362] | 269 | TYPE(real_3d) :: basal_area_density_f !< input variable for basal area density - resolved vegetation |
---|
| 270 | TYPE(real_3d) :: leaf_area_density_f !< input variable for leaf area density - resolved vegetation |
---|
| 271 | TYPE(real_3d) :: root_area_density_lad_f !< input variable for root area density - resolved vegetation |
---|
| 272 | |
---|
[1484] | 273 | SAVE |
---|
| 274 | |
---|
[138] | 275 | PRIVATE |
---|
[4342] | 276 | |
---|
[1826] | 277 | ! |
---|
| 278 | !-- Public functions |
---|
[4360] | 279 | PUBLIC pcm_calc_transpiration_rate, & |
---|
| 280 | pcm_check_data_output, & |
---|
| 281 | pcm_check_parameters, & |
---|
| 282 | pcm_3d_data_averaging, & |
---|
| 283 | pcm_data_output_3d, & |
---|
| 284 | pcm_define_netcdf_grid, & |
---|
| 285 | pcm_header, & |
---|
| 286 | pcm_init, & |
---|
| 287 | pcm_parin, & |
---|
| 288 | pcm_rrd_local, & |
---|
| 289 | pcm_tendency, & |
---|
| 290 | pcm_wrd_local |
---|
[138] | 291 | |
---|
[1826] | 292 | ! |
---|
| 293 | !-- Public variables and constants |
---|
[4342] | 294 | PUBLIC canopy_drag_coeff, pcm_heating_rate, pcm_transpiration_rate, & |
---|
| 295 | pcm_latent_rate, canopy_mode, cthf, dt_plant_canopy, lad, lad_s, & |
---|
[4392] | 296 | pch_index, plant_canopy_transpiration, & |
---|
| 297 | pcm_heatrate_av, pcm_latentrate_av |
---|
[1484] | 298 | |
---|
[3449] | 299 | INTERFACE pcm_calc_transpiration_rate |
---|
| 300 | MODULE PROCEDURE pcm_calc_transpiration_rate |
---|
| 301 | END INTERFACE pcm_calc_transpiration_rate |
---|
| 302 | |
---|
[2209] | 303 | INTERFACE pcm_check_data_output |
---|
| 304 | MODULE PROCEDURE pcm_check_data_output |
---|
| 305 | END INTERFACE pcm_check_data_output |
---|
| 306 | |
---|
[1826] | 307 | INTERFACE pcm_check_parameters |
---|
| 308 | MODULE PROCEDURE pcm_check_parameters |
---|
[2209] | 309 | END INTERFACE pcm_check_parameters |
---|
| 310 | |
---|
[4127] | 311 | INTERFACE pcm_3d_data_averaging |
---|
| 312 | MODULE PROCEDURE pcm_3d_data_averaging |
---|
| 313 | END INTERFACE pcm_3d_data_averaging |
---|
| 314 | |
---|
[2209] | 315 | INTERFACE pcm_data_output_3d |
---|
| 316 | MODULE PROCEDURE pcm_data_output_3d |
---|
| 317 | END INTERFACE pcm_data_output_3d |
---|
| 318 | |
---|
| 319 | INTERFACE pcm_define_netcdf_grid |
---|
| 320 | MODULE PROCEDURE pcm_define_netcdf_grid |
---|
| 321 | END INTERFACE pcm_define_netcdf_grid |
---|
[1826] | 322 | |
---|
| 323 | INTERFACE pcm_header |
---|
| 324 | MODULE PROCEDURE pcm_header |
---|
| 325 | END INTERFACE pcm_header |
---|
| 326 | |
---|
| 327 | INTERFACE pcm_init |
---|
| 328 | MODULE PROCEDURE pcm_init |
---|
| 329 | END INTERFACE pcm_init |
---|
[138] | 330 | |
---|
[1826] | 331 | INTERFACE pcm_parin |
---|
| 332 | MODULE PROCEDURE pcm_parin |
---|
[2007] | 333 | END INTERFACE pcm_parin |
---|
| 334 | |
---|
| 335 | INTERFACE pcm_read_plant_canopy_3d |
---|
| 336 | MODULE PROCEDURE pcm_read_plant_canopy_3d |
---|
| 337 | END INTERFACE pcm_read_plant_canopy_3d |
---|
[4360] | 338 | |
---|
| 339 | INTERFACE pcm_rrd_local |
---|
| 340 | MODULE PROCEDURE pcm_rrd_local |
---|
| 341 | END INTERFACE pcm_rrd_local |
---|
| 342 | |
---|
[1826] | 343 | INTERFACE pcm_tendency |
---|
| 344 | MODULE PROCEDURE pcm_tendency |
---|
| 345 | MODULE PROCEDURE pcm_tendency_ij |
---|
| 346 | END INTERFACE pcm_tendency |
---|
[1484] | 347 | |
---|
[4360] | 348 | INTERFACE pcm_wrd_local |
---|
| 349 | MODULE PROCEDURE pcm_wrd_local |
---|
| 350 | END INTERFACE pcm_wrd_local |
---|
[1484] | 351 | |
---|
[4360] | 352 | |
---|
[138] | 353 | CONTAINS |
---|
[4342] | 354 | |
---|
| 355 | |
---|
[2209] | 356 | !------------------------------------------------------------------------------! |
---|
| 357 | ! Description: |
---|
| 358 | ! ------------ |
---|
[3449] | 359 | !> Calculation of the plant canopy transpiration rate based on the Jarvis-Stewart |
---|
| 360 | !> with parametrizations described in Daudet et al. (1999; Agricult. and Forest |
---|
| 361 | !> Meteorol. 97) and Ngao, Adam and Saudreau (2017; Agricult. and Forest Meteorol |
---|
| 362 | !> 237-238). Model functions f1-f4 were adapted from Stewart (1998; Agric. |
---|
| 363 | !> and Forest. Meteorol. 43) instead, because they are valid for broader intervals |
---|
| 364 | !> of values. Funcion f4 used in form present in van Wijk et al. (1998; |
---|
| 365 | !> Tree Physiology 20). |
---|
| 366 | !> |
---|
| 367 | !> This subroutine is called from subroutine radiation_interaction |
---|
| 368 | !> after the calculation of radiation in plant canopy boxes. |
---|
| 369 | !> (arrays pcbinsw and pcbinlw). |
---|
| 370 | !> |
---|
| 371 | !------------------------------------------------------------------------------! |
---|
| 372 | SUBROUTINE pcm_calc_transpiration_rate(i, j, k, kk, pcbsw, pcblw, pcbtr, pcblh) |
---|
| 373 | |
---|
[4342] | 374 | ! |
---|
[3449] | 375 | !-- input parameters |
---|
[4205] | 376 | INTEGER(iwp), INTENT(IN) :: i, j, k, kk !< indices of the pc gridbox |
---|
| 377 | REAL(wp), INTENT(IN) :: pcbsw !< sw radiation in gridbox (W) |
---|
| 378 | REAL(wp), INTENT(IN) :: pcblw !< lw radiation in gridbox (W) |
---|
| 379 | REAL(wp), INTENT(OUT) :: pcbtr !< transpiration rate dq/dt (kg/kg/s) |
---|
| 380 | REAL(wp), INTENT(OUT) :: pcblh !< latent heat from transpiration dT/dt (K/s) |
---|
[3449] | 381 | |
---|
| 382 | !-- variables and parameters for calculation of transpiration rate |
---|
[4205] | 383 | REAL(wp) :: sat_press, sat_press_d, temp, v_lad |
---|
| 384 | REAL(wp) :: d_fact, g_b, g_s, wind_speed, evapor_rate |
---|
| 385 | REAL(wp) :: f1, f2, f3, f4, vpd, rswc, e_eq, e_imp, rad |
---|
| 386 | REAL(wp), PARAMETER :: gama_psychr = 66.0_wp !< psychrometric constant (Pa/K) |
---|
| 387 | REAL(wp), PARAMETER :: g_s_max = 0.01 !< maximum stomatal conductivity (m/s) |
---|
| 388 | REAL(wp), PARAMETER :: m_soil = 0.4_wp !< soil water content (needs to adjust or take from LSM) |
---|
| 389 | REAL(wp), PARAMETER :: m_wilt = 0.01_wp !< wilting point soil water content (needs to adjust or take from LSM) |
---|
| 390 | REAL(wp), PARAMETER :: m_sat = 0.51_wp !< saturation soil water content (needs to adjust or take from LSM) |
---|
| 391 | REAL(wp), PARAMETER :: t2_min = 0.0_wp !< minimal temperature for calculation of f2 |
---|
| 392 | REAL(wp), PARAMETER :: t2_max = 40.0_wp !< maximal temperature for calculation of f2 |
---|
[3449] | 393 | |
---|
| 394 | |
---|
| 395 | !-- Temperature (deg C) |
---|
| 396 | temp = pt(k,j,i) * exner(k) - degc_to_k |
---|
| 397 | !-- Coefficient for conversion of radiation to grid to radiation to unit leaves surface |
---|
[4205] | 398 | v_lad = 1.0_wp / ( MAX( lad_s(kk,j,i), 1.0E-10_wp ) * dx * dy * dz(1) ) |
---|
[3449] | 399 | !-- Magnus formula for the saturation pressure (see Ngao, Adam and Saudreau (2017) eq. 1) |
---|
| 400 | !-- There are updated formulas available, kept consistent with the rest of the parametrization |
---|
| 401 | sat_press = 610.8_wp * exp(17.27_wp * temp/(temp + 237.3_wp)) |
---|
| 402 | !-- Saturation pressure derivative (derivative of the above) |
---|
| 403 | sat_press_d = sat_press * 17.27_wp * 237.3_wp / (temp + 237.3_wp)**2 |
---|
| 404 | !-- Wind speed |
---|
[3744] | 405 | wind_speed = SQRT( ( 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) )**2 + & |
---|
[4205] | 406 | ( 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) )**2 + & |
---|
| 407 | ( 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) )**2 ) |
---|
[3449] | 408 | !-- Aerodynamic conductivity (Daudet et al. (1999) eq. 14 |
---|
| 409 | g_b = 0.01_wp * wind_speed + 0.0071_wp |
---|
| 410 | !-- Radiation flux per leaf surface unit |
---|
| 411 | rad = pcbsw * v_lad |
---|
| 412 | !-- First function for calculation of stomatal conductivity (radiation dependency) |
---|
| 413 | !-- Stewart (1988; Agric. and Forest. Meteorol. 43) eq. 17 |
---|
[4205] | 414 | f1 = rad * (1000.0_wp+42.1_wp) / 1000.0_wp / (rad+42.1_wp) |
---|
[3449] | 415 | !-- Second function for calculation of stomatal conductivity (temperature dependency) |
---|
| 416 | !-- Stewart (1988; Agric. and Forest. Meteorol. 43) eq. 21 |
---|
[3744] | 417 | f2 = MAX(t2_min, (temp-t2_min) * MAX(0.0_wp,t2_max-temp)**((t2_max-16.9_wp)/(16.9_wp-t2_min)) / & |
---|
[3449] | 418 | ((16.9_wp-t2_min) * (t2_max-16.9_wp)**((t2_max-16.9_wp)/(16.9_wp-t2_min))) ) |
---|
| 419 | !-- Water pressure deficit |
---|
| 420 | !-- Ngao, Adam and Saudreau (2017) eq. 6 but with water vapour partial pressure |
---|
| 421 | vpd = max( sat_press - q(k,j,i) * hyp(k) / rd_d_rv, 0._wp ) |
---|
| 422 | !-- Third function for calculation of stomatal conductivity (water pressure deficit dependency) |
---|
| 423 | !-- Ngao, Adam and Saudreau (2017) Table 1, limited from below according to Stewart (1988) |
---|
| 424 | !-- The coefficients of the linear dependence should better correspond to broad-leaved trees |
---|
| 425 | !-- than the coefficients from Stewart (1988) which correspond to conifer trees. |
---|
| 426 | vpd = MIN(MAX(vpd,770.0_wp),3820.0_wp) |
---|
[4205] | 427 | f3 = -2E-4_wp * vpd + 1.154_wp |
---|
[3449] | 428 | !-- Fourth function for calculation of stomatal conductivity (soil moisture dependency) |
---|
| 429 | !-- Residual soil water content |
---|
| 430 | !-- van Wijk et al. (1998; Tree Physiology 20) eq. 7 |
---|
| 431 | !-- TODO - over LSM surface might be calculated from LSM parameters |
---|
| 432 | rswc = ( m_sat - m_soil ) / ( m_sat - m_wilt ) |
---|
| 433 | !-- van Wijk et al. (1998; Tree Physiology 20) eq. 5-6 (it is a reformulation of eq. 22-23 of Stewart(1988)) |
---|
[4205] | 434 | f4 = MAX(0.0_wp, MIN(1.0_wp - 0.041_wp * EXP(3.2_wp * rswc), 1.0_wp - 0.041_wp)) |
---|
[3449] | 435 | !-- Stomatal conductivity |
---|
| 436 | !-- Stewart (1988; Agric. and Forest. Meteorol. 43) eq. 12 |
---|
| 437 | !-- (notation according to Ngao, Adam and Saudreau (2017) and others) |
---|
[4205] | 438 | g_s = g_s_max * f1 * f2 * f3 * f4 + 1.0E-10_wp |
---|
[3449] | 439 | !-- Decoupling factor |
---|
| 440 | !-- Daudet et al. (1999) eq. 6 |
---|
[4205] | 441 | d_fact = (sat_press_d / gama_psychr + 2.0_wp ) / & |
---|
| 442 | (sat_press_d / gama_psychr + 2.0_wp + 2.0_wp * g_b / g_s ) |
---|
[3449] | 443 | !-- Equilibrium evaporation rate |
---|
| 444 | !-- Daudet et al. (1999) eq. 4 |
---|
| 445 | e_eq = (pcbsw + pcblw) * v_lad * sat_press_d / & |
---|
| 446 | gama_psychr /( sat_press_d / gama_psychr + 2.0_wp ) / l_v |
---|
| 447 | !-- Imposed evaporation rate |
---|
| 448 | !-- Daudet et al. (1999) eq. 5 |
---|
| 449 | e_imp = r_d * pt(k,j,i) * exner(k) / hyp(k) * c_p * g_s * vpd / gama_psychr / l_v |
---|
| 450 | !-- Evaporation rate |
---|
| 451 | !-- Daudet et al. (1999) eq. 3 |
---|
| 452 | !-- (evaporation rate is limited to non-negative values) |
---|
| 453 | evapor_rate = MAX(d_fact * e_eq + ( 1.0_wp - d_fact ) * e_imp, 0.0_wp) |
---|
| 454 | !-- Conversion of evaporation rate to q tendency in gridbox |
---|
| 455 | !-- dq/dt = E * LAD * V_g / (rho_air * V_g) |
---|
| 456 | pcbtr = evapor_rate * r_d * pt(k,j,i) * exner(k) * lad_s(kk,j,i) / hyp(k) !-- = dq/dt |
---|
| 457 | !-- latent heat from evaporation |
---|
| 458 | pcblh = pcbtr * lv_d_cp !-- = - dT/dt |
---|
| 459 | |
---|
| 460 | END SUBROUTINE pcm_calc_transpiration_rate |
---|
| 461 | |
---|
| 462 | |
---|
| 463 | !------------------------------------------------------------------------------! |
---|
| 464 | ! Description: |
---|
| 465 | ! ------------ |
---|
[2209] | 466 | !> Check data output for plant canopy model |
---|
| 467 | !------------------------------------------------------------------------------! |
---|
| 468 | SUBROUTINE pcm_check_data_output( var, unit ) |
---|
[4279] | 469 | |
---|
[2209] | 470 | CHARACTER (LEN=*) :: unit !< |
---|
| 471 | CHARACTER (LEN=*) :: var !< |
---|
| 472 | |
---|
| 473 | |
---|
| 474 | SELECT CASE ( TRIM( var ) ) |
---|
| 475 | |
---|
| 476 | CASE ( 'pcm_heatrate' ) |
---|
[2770] | 477 | IF ( cthf == 0.0_wp .AND. .NOT. urban_surface ) THEN |
---|
[2768] | 478 | message_string = 'output of "' // TRIM( var ) // '" requi' // & |
---|
| 479 | 'res setting of parameter cthf /= 0.0' |
---|
| 480 | CALL message( 'pcm_check_data_output', 'PA1000', 1, 2, 0, 6, 0 ) |
---|
| 481 | ENDIF |
---|
[2209] | 482 | unit = 'K s-1' |
---|
| 483 | |
---|
[3014] | 484 | CASE ( 'pcm_transpirationrate' ) |
---|
| 485 | unit = 'kg kg-1 s-1' |
---|
| 486 | |
---|
[3449] | 487 | CASE ( 'pcm_latentrate' ) |
---|
| 488 | unit = 'K s-1' |
---|
| 489 | |
---|
[2209] | 490 | CASE ( 'pcm_lad' ) |
---|
| 491 | unit = 'm2 m-3' |
---|
| 492 | |
---|
| 493 | |
---|
| 494 | CASE DEFAULT |
---|
| 495 | unit = 'illegal' |
---|
| 496 | |
---|
| 497 | END SELECT |
---|
| 498 | |
---|
| 499 | |
---|
| 500 | END SUBROUTINE pcm_check_data_output |
---|
| 501 | |
---|
| 502 | |
---|
[1826] | 503 | !------------------------------------------------------------------------------! |
---|
| 504 | ! Description: |
---|
| 505 | ! ------------ |
---|
| 506 | !> Check parameters routine for plant canopy model |
---|
| 507 | !------------------------------------------------------------------------------! |
---|
| 508 | SUBROUTINE pcm_check_parameters |
---|
[4342] | 509 | |
---|
| 510 | IF ( ocean_mode ) THEN |
---|
| 511 | message_string = 'plant_canopy = .TRUE. is not allowed in the '// & |
---|
| 512 | 'ocean' |
---|
| 513 | CALL message( 'pcm_check_parameters', 'PA0696', 1, 2, 0, 6, 0 ) |
---|
| 514 | ENDIF |
---|
| 515 | |
---|
[1826] | 516 | IF ( canopy_drag_coeff == 0.0_wp ) THEN |
---|
| 517 | message_string = 'plant_canopy = .TRUE. requires a non-zero drag '// & |
---|
[3046] | 518 | 'coefficient & given value is canopy_drag_coeff = 0.0' |
---|
[2768] | 519 | CALL message( 'pcm_check_parameters', 'PA0041', 1, 2, 0, 6, 0 ) |
---|
[1826] | 520 | ENDIF |
---|
[4279] | 521 | |
---|
[3045] | 522 | IF ( ( alpha_lad /= 9999999.9_wp .AND. beta_lad == 9999999.9_wp ) .OR.& |
---|
[1826] | 523 | beta_lad /= 9999999.9_wp .AND. alpha_lad == 9999999.9_wp ) THEN |
---|
| 524 | message_string = 'using the beta function for the construction ' // & |
---|
| 525 | 'of the leaf area density profile requires ' // & |
---|
| 526 | 'both alpha_lad and beta_lad to be /= 9999999.9' |
---|
[2768] | 527 | CALL message( 'pcm_check_parameters', 'PA0118', 1, 2, 0, 6, 0 ) |
---|
[1826] | 528 | ENDIF |
---|
[4279] | 529 | |
---|
[1826] | 530 | IF ( calc_beta_lad_profile .AND. lai_beta == 0.0_wp ) THEN |
---|
| 531 | message_string = 'using the beta function for the construction ' // & |
---|
| 532 | 'of the leaf area density profile requires ' // & |
---|
| 533 | 'a non-zero lai_beta, but given value is ' // & |
---|
| 534 | 'lai_beta = 0.0' |
---|
[2768] | 535 | CALL message( 'pcm_check_parameters', 'PA0119', 1, 2, 0, 6, 0 ) |
---|
[1826] | 536 | ENDIF |
---|
| 537 | |
---|
| 538 | IF ( calc_beta_lad_profile .AND. lad_surface /= 0.0_wp ) THEN |
---|
[2274] | 539 | message_string = 'simultaneous setting of alpha_lad /= 9999999.9 '// & |
---|
| 540 | 'combined with beta_lad /= 9999999.9 ' // & |
---|
[1826] | 541 | 'and lad_surface /= 0.0 is not possible, ' // & |
---|
| 542 | 'use either vertical gradients or the beta ' // & |
---|
| 543 | 'function for the construction of the leaf area '// & |
---|
| 544 | 'density profile' |
---|
[2768] | 545 | CALL message( 'pcm_check_parameters', 'PA0120', 1, 2, 0, 6, 0 ) |
---|
[1826] | 546 | ENDIF |
---|
| 547 | |
---|
[3274] | 548 | IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN |
---|
[1826] | 549 | message_string = 'plant_canopy = .TRUE. requires cloud_scheme /=' // & |
---|
| 550 | ' seifert_beheng' |
---|
[2768] | 551 | CALL message( 'pcm_check_parameters', 'PA0360', 1, 2, 0, 6, 0 ) |
---|
[1826] | 552 | ENDIF |
---|
| 553 | |
---|
| 554 | END SUBROUTINE pcm_check_parameters |
---|
| 555 | |
---|
| 556 | |
---|
[138] | 557 | !------------------------------------------------------------------------------! |
---|
[2209] | 558 | ! |
---|
[1484] | 559 | ! Description: |
---|
| 560 | ! ------------ |
---|
[4127] | 561 | !> Subroutine for averaging 3D data |
---|
[2209] | 562 | !------------------------------------------------------------------------------! |
---|
[4216] | 563 | SUBROUTINE pcm_3d_data_averaging( mode, variable ) |
---|
[4127] | 564 | |
---|
| 565 | CHARACTER (LEN=*) :: mode !< |
---|
| 566 | CHARACTER (LEN=*) :: variable !< |
---|
| 567 | |
---|
| 568 | INTEGER(iwp) :: i !< |
---|
| 569 | INTEGER(iwp) :: j !< |
---|
| 570 | INTEGER(iwp) :: k !< |
---|
| 571 | |
---|
| 572 | |
---|
| 573 | IF ( mode == 'allocate' ) THEN |
---|
| 574 | |
---|
| 575 | SELECT CASE ( TRIM( variable ) ) |
---|
| 576 | |
---|
| 577 | CASE ( 'pcm_heatrate' ) |
---|
| 578 | IF ( .NOT. ALLOCATED( pcm_heatrate_av ) ) THEN |
---|
| 579 | ALLOCATE( pcm_heatrate_av(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 580 | ENDIF |
---|
| 581 | pcm_heatrate_av = 0.0_wp |
---|
| 582 | |
---|
| 583 | |
---|
| 584 | CASE ( 'pcm_latentrate' ) |
---|
| 585 | IF ( .NOT. ALLOCATED( pcm_latentrate_av ) ) THEN |
---|
| 586 | ALLOCATE( pcm_latentrate_av(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 587 | ENDIF |
---|
| 588 | pcm_latentrate_av = 0.0_wp |
---|
| 589 | |
---|
| 590 | |
---|
| 591 | CASE ( 'pcm_transpirationrate' ) |
---|
| 592 | IF ( .NOT. ALLOCATED( pcm_transpirationrate_av ) ) THEN |
---|
| 593 | ALLOCATE( pcm_transpirationrate_av(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 594 | ENDIF |
---|
| 595 | pcm_transpirationrate_av = 0.0_wp |
---|
| 596 | |
---|
| 597 | CASE DEFAULT |
---|
| 598 | CONTINUE |
---|
| 599 | |
---|
| 600 | END SELECT |
---|
| 601 | |
---|
| 602 | ELSEIF ( mode == 'sum' ) THEN |
---|
| 603 | |
---|
| 604 | SELECT CASE ( TRIM( variable ) ) |
---|
| 605 | |
---|
| 606 | CASE ( 'pcm_heatrate' ) |
---|
| 607 | IF ( ALLOCATED( pcm_heatrate_av ) ) THEN |
---|
| 608 | DO i = nxl, nxr |
---|
| 609 | DO j = nys, nyn |
---|
| 610 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
| 611 | DO k = 0, pch_index_ji(j,i) |
---|
[4341] | 612 | pcm_heatrate_av(k,j,i) = pcm_heatrate_av(k,j,i) + pcm_heating_rate(k,j,i) |
---|
[4127] | 613 | ENDDO |
---|
| 614 | ENDIF |
---|
| 615 | ENDDO |
---|
| 616 | ENDDO |
---|
| 617 | ENDIF |
---|
| 618 | |
---|
| 619 | |
---|
| 620 | CASE ( 'pcm_latentrate' ) |
---|
| 621 | IF ( ALLOCATED( pcm_latentrate_av ) ) THEN |
---|
| 622 | DO i = nxl, nxr |
---|
| 623 | DO j = nys, nyn |
---|
| 624 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
| 625 | DO k = 0, pch_index_ji(j,i) |
---|
[4341] | 626 | pcm_latentrate_av(k,j,i) = pcm_latentrate_av(k,j,i) + pcm_latent_rate(k,j,i) |
---|
[4127] | 627 | ENDDO |
---|
| 628 | ENDIF |
---|
| 629 | ENDDO |
---|
| 630 | ENDDO |
---|
| 631 | ENDIF |
---|
| 632 | |
---|
| 633 | |
---|
| 634 | CASE ( 'pcm_transpirationrate' ) |
---|
| 635 | IF ( ALLOCATED( pcm_transpirationrate_av ) ) THEN |
---|
| 636 | DO i = nxl, nxr |
---|
| 637 | DO j = nys, nyn |
---|
| 638 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
| 639 | DO k = 0, pch_index_ji(j,i) |
---|
[4341] | 640 | pcm_transpirationrate_av(k,j,i) = pcm_transpirationrate_av(k,j,i) + pcm_transpiration_rate(k,j,i) |
---|
[4127] | 641 | ENDDO |
---|
| 642 | ENDIF |
---|
| 643 | ENDDO |
---|
| 644 | ENDDO |
---|
| 645 | ENDIF |
---|
| 646 | |
---|
| 647 | CASE DEFAULT |
---|
| 648 | CONTINUE |
---|
| 649 | |
---|
| 650 | END SELECT |
---|
| 651 | |
---|
| 652 | ELSEIF ( mode == 'average' ) THEN |
---|
| 653 | |
---|
| 654 | SELECT CASE ( TRIM( variable ) ) |
---|
| 655 | |
---|
| 656 | CASE ( 'pcm_heatrate' ) |
---|
| 657 | IF ( ALLOCATED( pcm_heatrate_av ) ) THEN |
---|
| 658 | DO i = nxlg, nxrg |
---|
| 659 | DO j = nysg, nyng |
---|
| 660 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
| 661 | DO k = 0, pch_index_ji(j,i) |
---|
| 662 | pcm_heatrate_av(k,j,i) = pcm_heatrate_av(k,j,i) & |
---|
| 663 | / REAL( average_count_3d, KIND=wp ) |
---|
| 664 | ENDDO |
---|
| 665 | ENDIF |
---|
| 666 | ENDDO |
---|
| 667 | ENDDO |
---|
| 668 | ENDIF |
---|
| 669 | |
---|
| 670 | |
---|
| 671 | CASE ( 'pcm_latentrate' ) |
---|
| 672 | IF ( ALLOCATED( pcm_latentrate_av ) ) THEN |
---|
| 673 | DO i = nxlg, nxrg |
---|
| 674 | DO j = nysg, nyng |
---|
| 675 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
| 676 | DO k = 0, pch_index_ji(j,i) |
---|
| 677 | pcm_latentrate_av(k,j,i) = pcm_latentrate_av(k,j,i) & |
---|
| 678 | / REAL( average_count_3d, KIND=wp ) |
---|
| 679 | ENDDO |
---|
| 680 | ENDIF |
---|
| 681 | ENDDO |
---|
| 682 | ENDDO |
---|
| 683 | ENDIF |
---|
| 684 | |
---|
| 685 | |
---|
| 686 | CASE ( 'pcm_transpirationrate' ) |
---|
| 687 | IF ( ALLOCATED( pcm_transpirationrate_av ) ) THEN |
---|
| 688 | DO i = nxlg, nxrg |
---|
| 689 | DO j = nysg, nyng |
---|
| 690 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
| 691 | DO k = 0, pch_index_ji(j,i) |
---|
| 692 | pcm_transpirationrate_av(k,j,i) = pcm_transpirationrate_av(k,j,i) & |
---|
| 693 | / REAL( average_count_3d, KIND=wp ) |
---|
| 694 | ENDDO |
---|
| 695 | ENDIF |
---|
| 696 | ENDDO |
---|
| 697 | ENDDO |
---|
| 698 | ENDIF |
---|
| 699 | |
---|
| 700 | END SELECT |
---|
| 701 | |
---|
| 702 | ENDIF |
---|
| 703 | |
---|
[4216] | 704 | END SUBROUTINE pcm_3d_data_averaging |
---|
[4127] | 705 | |
---|
| 706 | !------------------------------------------------------------------------------! |
---|
| 707 | ! |
---|
| 708 | ! Description: |
---|
| 709 | ! ------------ |
---|
| 710 | !> Subroutine defining 3D output variables. |
---|
| 711 | !> Note, 3D plant-canopy output has it's own vertical output dimension, meaning |
---|
| 712 | !> that 3D output is relative to the model surface now rather than at the actual |
---|
| 713 | !> grid point where the plant canopy is located. |
---|
| 714 | !------------------------------------------------------------------------------! |
---|
[3014] | 715 | SUBROUTINE pcm_data_output_3d( av, variable, found, local_pf, fill_value, & |
---|
| 716 | nzb_do, nzt_do ) |
---|
[2209] | 717 | |
---|
[4216] | 718 | CHARACTER (LEN=*) :: variable !< treated variable |
---|
[2209] | 719 | |
---|
[4216] | 720 | INTEGER(iwp) :: av !< flag indicating instantaneous or averaged data output |
---|
| 721 | INTEGER(iwp) :: i !< grid index x-direction |
---|
| 722 | INTEGER(iwp) :: j !< grid index y-direction |
---|
| 723 | INTEGER(iwp) :: k !< grid index z-direction |
---|
[3014] | 724 | INTEGER(iwp) :: nzb_do !< lower limit of the data output (usually 0) |
---|
| 725 | INTEGER(iwp) :: nzt_do !< vertical upper limit of the data output (usually nz_do3d) |
---|
[2209] | 726 | |
---|
[4216] | 727 | LOGICAL :: found !< flag indicating if variable is found |
---|
[2209] | 728 | |
---|
[4216] | 729 | REAL(wp) :: fill_value !< fill value |
---|
| 730 | REAL(sp), DIMENSION(nxl:nxr,nys:nyn,nzb_do:nzt_do) :: local_pf !< data output array |
---|
[2209] | 731 | |
---|
| 732 | |
---|
| 733 | found = .TRUE. |
---|
| 734 | |
---|
[2696] | 735 | local_pf = REAL( fill_value, KIND = 4 ) |
---|
[2209] | 736 | |
---|
| 737 | SELECT CASE ( TRIM( variable ) ) |
---|
[4216] | 738 | ! |
---|
| 739 | !-- Note, to save memory arrays for heating are allocated from 0:pch_index. |
---|
| 740 | !-- Thus, output must be relative to these array indices. Further, check |
---|
| 741 | !-- whether the output is within the vertical output range, |
---|
[4220] | 742 | !-- i.e. nzb_do:nzt_do, which is necessary as local_pf is only allocated |
---|
| 743 | !-- for this index space. Note, plant-canopy output has a separate |
---|
| 744 | !-- vertical output coordinate zlad, so that output is mapped down to the |
---|
| 745 | !-- surface. |
---|
[4127] | 746 | CASE ( 'pcm_heatrate' ) |
---|
| 747 | IF ( av == 0 ) THEN |
---|
| 748 | DO i = nxl, nxr |
---|
| 749 | DO j = nys, nyn |
---|
[4360] | 750 | DO k = MAX( 1, nzb_do ), MIN( pch_index_ji(j,i), nzt_do ) |
---|
[4341] | 751 | local_pf(i,j,k) = pcm_heating_rate(k,j,i) |
---|
[4216] | 752 | ENDDO |
---|
[4127] | 753 | ENDDO |
---|
| 754 | ENDDO |
---|
| 755 | ELSE |
---|
| 756 | DO i = nxl, nxr |
---|
| 757 | DO j = nys, nyn |
---|
[4360] | 758 | DO k = MAX( 1, nzb_do ), MIN( pch_index_ji(j,i), nzt_do ) |
---|
[4220] | 759 | local_pf(i,j,k) = pcm_heatrate_av(k,j,i) |
---|
[4127] | 760 | ENDDO |
---|
| 761 | ENDDO |
---|
| 762 | ENDDO |
---|
| 763 | ENDIF |
---|
[3449] | 764 | |
---|
| 765 | CASE ( 'pcm_latentrate' ) |
---|
[4127] | 766 | IF ( av == 0 ) THEN |
---|
| 767 | DO i = nxl, nxr |
---|
| 768 | DO j = nys, nyn |
---|
[4360] | 769 | DO k = MAX( 1, nzb_do ), MIN( pch_index_ji(j,i), nzt_do ) |
---|
[4341] | 770 | local_pf(i,j,k) = pcm_latent_rate(k,j,i) |
---|
[4216] | 771 | ENDDO |
---|
[4127] | 772 | ENDDO |
---|
| 773 | ENDDO |
---|
| 774 | ELSE |
---|
| 775 | DO i = nxl, nxr |
---|
| 776 | DO j = nys, nyn |
---|
[4360] | 777 | DO k = MAX( 1, nzb_do ), MIN( pch_index_ji(j,i), nzt_do ) |
---|
[4220] | 778 | local_pf(i,j,k) = pcm_latentrate_av(k,j,i) |
---|
[4127] | 779 | ENDDO |
---|
| 780 | ENDDO |
---|
| 781 | ENDDO |
---|
| 782 | ENDIF |
---|
[3449] | 783 | |
---|
[4127] | 784 | CASE ( 'pcm_transpirationrate' ) |
---|
| 785 | IF ( av == 0 ) THEN |
---|
| 786 | DO i = nxl, nxr |
---|
| 787 | DO j = nys, nyn |
---|
[4360] | 788 | DO k = MAX( 1, nzb_do ), MIN( pch_index_ji(j,i), nzt_do ) |
---|
[4341] | 789 | local_pf(i,j,k) = pcm_transpiration_rate(k,j,i) |
---|
[4216] | 790 | ENDDO |
---|
[4127] | 791 | ENDDO |
---|
| 792 | ENDDO |
---|
| 793 | ELSE |
---|
| 794 | DO i = nxl, nxr |
---|
| 795 | DO j = nys, nyn |
---|
[4360] | 796 | DO k = MAX( 1, nzb_do ), MIN( pch_index_ji(j,i), nzt_do ) |
---|
[4220] | 797 | local_pf(i,j,k) = pcm_transpirationrate_av(k,j,i) |
---|
[4127] | 798 | ENDDO |
---|
| 799 | ENDDO |
---|
| 800 | ENDDO |
---|
| 801 | ENDIF |
---|
| 802 | |
---|
| 803 | CASE ( 'pcm_lad' ) |
---|
| 804 | IF ( av == 0 ) THEN |
---|
| 805 | DO i = nxl, nxr |
---|
| 806 | DO j = nys, nyn |
---|
[4360] | 807 | DO k = MAX( 1, nzb_do ), MIN( pch_index_ji(j,i), nzt_do ) |
---|
[4220] | 808 | local_pf(i,j,k) = lad_s(k,j,i) |
---|
[4216] | 809 | ENDDO |
---|
[4127] | 810 | ENDDO |
---|
| 811 | ENDDO |
---|
| 812 | ENDIF |
---|
| 813 | |
---|
[2209] | 814 | CASE DEFAULT |
---|
| 815 | found = .FALSE. |
---|
| 816 | |
---|
| 817 | END SELECT |
---|
| 818 | |
---|
| 819 | END SUBROUTINE pcm_data_output_3d |
---|
| 820 | |
---|
| 821 | !------------------------------------------------------------------------------! |
---|
| 822 | ! |
---|
| 823 | ! Description: |
---|
| 824 | ! ------------ |
---|
| 825 | !> Subroutine defining appropriate grid for netcdf variables. |
---|
| 826 | !> It is called from subroutine netcdf. |
---|
| 827 | !------------------------------------------------------------------------------! |
---|
| 828 | SUBROUTINE pcm_define_netcdf_grid( var, found, grid_x, grid_y, grid_z ) |
---|
| 829 | |
---|
| 830 | CHARACTER (LEN=*), INTENT(IN) :: var !< |
---|
| 831 | LOGICAL, INTENT(OUT) :: found !< |
---|
| 832 | CHARACTER (LEN=*), INTENT(OUT) :: grid_x !< |
---|
| 833 | CHARACTER (LEN=*), INTENT(OUT) :: grid_y !< |
---|
| 834 | CHARACTER (LEN=*), INTENT(OUT) :: grid_z !< |
---|
| 835 | |
---|
| 836 | found = .TRUE. |
---|
| 837 | |
---|
| 838 | ! |
---|
[4342] | 839 | !-- Check for the grid. zpc is zu(nzb:nzb+pch_index) |
---|
[2209] | 840 | SELECT CASE ( TRIM( var ) ) |
---|
| 841 | |
---|
[4341] | 842 | CASE ( 'pcm_heatrate', 'pcm_lad', 'pcm_transpirationrate', 'pcm_latentrate') |
---|
[2209] | 843 | grid_x = 'x' |
---|
| 844 | grid_y = 'y' |
---|
[4127] | 845 | grid_z = 'zpc' |
---|
[2209] | 846 | |
---|
| 847 | CASE DEFAULT |
---|
| 848 | found = .FALSE. |
---|
| 849 | grid_x = 'none' |
---|
| 850 | grid_y = 'none' |
---|
| 851 | grid_z = 'none' |
---|
| 852 | END SELECT |
---|
| 853 | |
---|
| 854 | END SUBROUTINE pcm_define_netcdf_grid |
---|
| 855 | |
---|
| 856 | |
---|
| 857 | !------------------------------------------------------------------------------! |
---|
| 858 | ! Description: |
---|
| 859 | ! ------------ |
---|
[1826] | 860 | !> Header output for plant canopy model |
---|
| 861 | !------------------------------------------------------------------------------! |
---|
[4362] | 862 | SUBROUTINE pcm_header ( io ) |
---|
[1826] | 863 | |
---|
[4362] | 864 | CHARACTER (LEN=10) :: coor_chr !< |
---|
[1826] | 865 | |
---|
[4362] | 866 | CHARACTER (LEN=86) :: coordinates !< |
---|
| 867 | CHARACTER (LEN=86) :: gradients !< |
---|
| 868 | CHARACTER (LEN=86) :: leaf_area_density !< |
---|
| 869 | CHARACTER (LEN=86) :: slices !< |
---|
[1826] | 870 | |
---|
[4362] | 871 | INTEGER(iwp) :: i !< |
---|
| 872 | INTEGER(iwp), INTENT(IN) :: io !< Unit of the output file |
---|
| 873 | INTEGER(iwp) :: k !< |
---|
| 874 | |
---|
| 875 | REAL(wp) :: canopy_height !< canopy height (in m) |
---|
| 876 | |
---|
| 877 | canopy_height = zw(pch_index) |
---|
[1826] | 878 | |
---|
[4362] | 879 | WRITE ( io, 1 ) canopy_mode, canopy_height, pch_index, & |
---|
| 880 | canopy_drag_coeff |
---|
| 881 | IF ( passive_scalar ) THEN |
---|
| 882 | WRITE ( io, 2 ) leaf_scalar_exch_coeff, & |
---|
| 883 | leaf_surface_conc |
---|
| 884 | ENDIF |
---|
[1826] | 885 | |
---|
| 886 | ! |
---|
[4362] | 887 | ! Heat flux at the top of vegetation |
---|
| 888 | WRITE ( io, 3 ) cthf |
---|
[1826] | 889 | |
---|
| 890 | ! |
---|
[4362] | 891 | ! Leaf area density profile, calculated either from given vertical |
---|
| 892 | ! gradients or from beta probability density function. |
---|
| 893 | IF ( .NOT. calc_beta_lad_profile ) THEN |
---|
[1826] | 894 | |
---|
[4362] | 895 | ! Building output strings, starting with surface value |
---|
| 896 | WRITE ( leaf_area_density, '(F7.4)' ) lad_surface |
---|
| 897 | gradients = '------' |
---|
| 898 | slices = ' 0' |
---|
| 899 | coordinates = ' 0.0' |
---|
| 900 | DO i = 1, UBOUND(lad_vertical_gradient_level_ind, DIM=1) |
---|
| 901 | IF ( lad_vertical_gradient_level_ind(i) /= -9999 ) THEN |
---|
[1826] | 902 | |
---|
[4362] | 903 | WRITE (coor_chr,'(F7.2)') lad(lad_vertical_gradient_level_ind(i)) |
---|
| 904 | leaf_area_density = TRIM( leaf_area_density ) // ' ' // TRIM( coor_chr ) |
---|
[1826] | 905 | |
---|
[4362] | 906 | WRITE (coor_chr,'(F7.2)') lad_vertical_gradient(i) |
---|
| 907 | gradients = TRIM( gradients ) // ' ' // TRIM( coor_chr ) |
---|
[1826] | 908 | |
---|
[4362] | 909 | WRITE (coor_chr,'(I7)') lad_vertical_gradient_level_ind(i) |
---|
| 910 | slices = TRIM( slices ) // ' ' // TRIM( coor_chr ) |
---|
[1826] | 911 | |
---|
[4362] | 912 | WRITE (coor_chr,'(F7.1)') lad_vertical_gradient_level(i) |
---|
| 913 | coordinates = TRIM( coordinates ) // ' ' // TRIM( coor_chr ) |
---|
| 914 | ELSE |
---|
| 915 | EXIT |
---|
| 916 | ENDIF |
---|
| 917 | ENDDO |
---|
[1826] | 918 | |
---|
[4362] | 919 | WRITE ( io, 4 ) TRIM( coordinates ), TRIM( leaf_area_density ), & |
---|
| 920 | TRIM( gradients ), TRIM( slices ) |
---|
[1826] | 921 | |
---|
[4362] | 922 | ELSE |
---|
| 923 | |
---|
| 924 | WRITE ( leaf_area_density, '(F7.4)' ) lad_surface |
---|
| 925 | coordinates = ' 0.0' |
---|
[1826] | 926 | |
---|
[4362] | 927 | DO k = 1, pch_index |
---|
[1826] | 928 | |
---|
[4362] | 929 | WRITE (coor_chr,'(F7.2)') lad(k) |
---|
| 930 | leaf_area_density = TRIM( leaf_area_density ) // ' ' // & |
---|
| 931 | TRIM( coor_chr ) |
---|
| 932 | |
---|
| 933 | WRITE (coor_chr,'(F7.1)') zu(k) |
---|
| 934 | coordinates = TRIM( coordinates ) // ' ' // TRIM( coor_chr ) |
---|
| 935 | |
---|
| 936 | ENDDO |
---|
| 937 | |
---|
| 938 | WRITE ( io, 5 ) TRIM( coordinates ), TRIM( leaf_area_density ), & |
---|
| 939 | alpha_lad, beta_lad, lai_beta |
---|
[1826] | 940 | |
---|
[4362] | 941 | ENDIF |
---|
[1826] | 942 | |
---|
[4362] | 943 | 1 FORMAT (//' Vegetation canopy (drag) model:'/ & |
---|
[1826] | 944 | ' ------------------------------'// & |
---|
| 945 | ' Canopy mode: ', A / & |
---|
| 946 | ' Canopy height: ',F6.2,'m (',I4,' grid points)' / & |
---|
| 947 | ' Leaf drag coefficient: ',F6.2 /) |
---|
[4362] | 948 | 2 FORMAT (/ ' Scalar exchange coefficient: ',F6.2 / & |
---|
[1826] | 949 | ' Scalar concentration at leaf surfaces in kg/m**3: ',F6.2 /) |
---|
[4362] | 950 | 3 FORMAT (' Predefined constant heatflux at the top of the vegetation: ', & |
---|
| 951 | F6.2, ' K m/s') |
---|
| 952 | 4 FORMAT (/ ' Characteristic levels of the leaf area density:'// & |
---|
[1826] | 953 | ' Height: ',A,' m'/ & |
---|
| 954 | ' Leaf area density: ',A,' m**2/m**3'/ & |
---|
| 955 | ' Gradient: ',A,' m**2/m**4'/ & |
---|
| 956 | ' Gridpoint: ',A) |
---|
[4362] | 957 | 5 FORMAT (//' Characteristic levels of the leaf area density and coefficients:'& |
---|
[1826] | 958 | // ' Height: ',A,' m'/ & |
---|
| 959 | ' Leaf area density: ',A,' m**2/m**3'/ & |
---|
| 960 | ' Coefficient alpha: ',F6.2 / & |
---|
| 961 | ' Coefficient beta: ',F6.2 / & |
---|
| 962 | ' Leaf area index: ',F6.2,' m**2/m**2' /) |
---|
| 963 | |
---|
| 964 | END SUBROUTINE pcm_header |
---|
| 965 | |
---|
| 966 | |
---|
| 967 | !------------------------------------------------------------------------------! |
---|
| 968 | ! Description: |
---|
| 969 | ! ------------ |
---|
[1682] | 970 | !> Initialization of the plant canopy model |
---|
[138] | 971 | !------------------------------------------------------------------------------! |
---|
[1826] | 972 | SUBROUTINE pcm_init |
---|
[1484] | 973 | |
---|
[2007] | 974 | INTEGER(iwp) :: i !< running index |
---|
| 975 | INTEGER(iwp) :: j !< running index |
---|
| 976 | INTEGER(iwp) :: k !< running index |
---|
[2232] | 977 | INTEGER(iwp) :: m !< running index |
---|
[1484] | 978 | |
---|
[4381] | 979 | LOGICAL :: lad_on_top = .FALSE. !< dummy flag to indicate that LAD is defined on a building roof |
---|
| 980 | |
---|
[4258] | 981 | REAL(wp) :: canopy_height !< canopy height for lad-profile construction |
---|
[2007] | 982 | REAL(wp) :: gradient !< gradient for lad-profile construction |
---|
[4258] | 983 | REAL(wp) :: int_bpdf !< vertical integral for lad-profile construction |
---|
| 984 | REAL(wp) :: lad_max !< maximum LAD value in the model domain, used to perform a check |
---|
[3241] | 985 | |
---|
[3885] | 986 | IF ( debug_output ) CALL debug_message( 'pcm_init', 'start' ) |
---|
[1484] | 987 | ! |
---|
| 988 | !-- Allocate one-dimensional arrays for the computation of the |
---|
| 989 | !-- leaf area density (lad) profile |
---|
| 990 | ALLOCATE( lad(0:nz+1), pre_lad(0:nz+1) ) |
---|
| 991 | lad = 0.0_wp |
---|
| 992 | pre_lad = 0.0_wp |
---|
| 993 | |
---|
| 994 | ! |
---|
[1826] | 995 | !-- Set flag that indicates that the lad-profile shall be calculated by using |
---|
| 996 | !-- a beta probability density function |
---|
| 997 | IF ( alpha_lad /= 9999999.9_wp .AND. beta_lad /= 9999999.9_wp ) THEN |
---|
| 998 | calc_beta_lad_profile = .TRUE. |
---|
| 999 | ENDIF |
---|
| 1000 | |
---|
| 1001 | |
---|
| 1002 | ! |
---|
[1484] | 1003 | !-- Compute the profile of leaf area density used in the plant |
---|
| 1004 | !-- canopy model. The profile can either be constructed from |
---|
| 1005 | !-- prescribed vertical gradients of the leaf area density or by |
---|
| 1006 | !-- using a beta probability density function (see e.g. Markkanen et al., |
---|
| 1007 | !-- 2003: Boundary-Layer Meteorology, 106, 437-459) |
---|
| 1008 | IF ( .NOT. calc_beta_lad_profile ) THEN |
---|
| 1009 | |
---|
| 1010 | ! |
---|
| 1011 | !-- Use vertical gradients for lad-profile construction |
---|
| 1012 | i = 1 |
---|
| 1013 | gradient = 0.0_wp |
---|
| 1014 | |
---|
[4342] | 1015 | lad(0) = lad_surface |
---|
| 1016 | lad_vertical_gradient_level_ind(1) = 0 |
---|
[1484] | 1017 | |
---|
[4342] | 1018 | DO k = 1, pch_index |
---|
| 1019 | IF ( i < 11 ) THEN |
---|
| 1020 | IF ( lad_vertical_gradient_level(i) < zu(k) .AND. & |
---|
| 1021 | lad_vertical_gradient_level(i) >= 0.0_wp ) THEN |
---|
| 1022 | gradient = lad_vertical_gradient(i) |
---|
| 1023 | lad_vertical_gradient_level_ind(i) = k - 1 |
---|
| 1024 | i = i + 1 |
---|
[1484] | 1025 | ENDIF |
---|
[4342] | 1026 | ENDIF |
---|
| 1027 | IF ( gradient /= 0.0_wp ) THEN |
---|
| 1028 | IF ( k /= 1 ) THEN |
---|
| 1029 | lad(k) = lad(k-1) + dzu(k) * gradient |
---|
[1484] | 1030 | ELSE |
---|
[4342] | 1031 | lad(k) = lad_surface + dzu(k) * gradient |
---|
[1484] | 1032 | ENDIF |
---|
[4342] | 1033 | ELSE |
---|
| 1034 | lad(k) = lad(k-1) |
---|
| 1035 | ENDIF |
---|
| 1036 | ENDDO |
---|
[1484] | 1037 | |
---|
| 1038 | ! |
---|
| 1039 | !-- In case of no given leaf area density gradients, choose a vanishing |
---|
| 1040 | !-- gradient. This information is used for the HEADER and the RUN_CONTROL |
---|
| 1041 | !-- file. |
---|
| 1042 | IF ( lad_vertical_gradient_level(1) == -9999999.9_wp ) THEN |
---|
| 1043 | lad_vertical_gradient_level(1) = 0.0_wp |
---|
| 1044 | ENDIF |
---|
| 1045 | |
---|
| 1046 | ELSE |
---|
| 1047 | |
---|
| 1048 | ! |
---|
| 1049 | !-- Use beta function for lad-profile construction |
---|
| 1050 | int_bpdf = 0.0_wp |
---|
[3065] | 1051 | canopy_height = zw(pch_index) |
---|
[1484] | 1052 | |
---|
[2232] | 1053 | DO k = 0, pch_index |
---|
[1484] | 1054 | int_bpdf = int_bpdf + & |
---|
[1826] | 1055 | ( ( ( zw(k) / canopy_height )**( alpha_lad-1.0_wp ) ) * & |
---|
| 1056 | ( ( 1.0_wp - ( zw(k) / canopy_height ) )**( & |
---|
| 1057 | beta_lad-1.0_wp ) ) & |
---|
| 1058 | * ( ( zw(k+1)-zw(k) ) / canopy_height ) ) |
---|
[1484] | 1059 | ENDDO |
---|
| 1060 | |
---|
| 1061 | ! |
---|
| 1062 | !-- Preliminary lad profile (defined on w-grid) |
---|
[2232] | 1063 | DO k = 0, pch_index |
---|
[1826] | 1064 | pre_lad(k) = lai_beta * & |
---|
| 1065 | ( ( ( zw(k) / canopy_height )**( alpha_lad-1.0_wp ) ) & |
---|
| 1066 | * ( ( 1.0_wp - ( zw(k) / canopy_height ) )**( & |
---|
| 1067 | beta_lad-1.0_wp ) ) / int_bpdf & |
---|
| 1068 | ) / canopy_height |
---|
[1484] | 1069 | ENDDO |
---|
| 1070 | |
---|
| 1071 | ! |
---|
| 1072 | !-- Final lad profile (defined on scalar-grid level, since most prognostic |
---|
| 1073 | !-- quantities are defined there, hence, less interpolation is required |
---|
| 1074 | !-- when calculating the canopy tendencies) |
---|
| 1075 | lad(0) = pre_lad(0) |
---|
[2232] | 1076 | DO k = 1, pch_index |
---|
[1484] | 1077 | lad(k) = 0.5 * ( pre_lad(k-1) + pre_lad(k) ) |
---|
[4302] | 1078 | ENDDO |
---|
[1484] | 1079 | |
---|
| 1080 | ENDIF |
---|
| 1081 | |
---|
| 1082 | ! |
---|
[2213] | 1083 | !-- Allocate 3D-array for the leaf area density (lad_s). |
---|
[1484] | 1084 | ALLOCATE( lad_s(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 1085 | |
---|
| 1086 | ! |
---|
| 1087 | !-- Initialization of the canopy coverage in the model domain: |
---|
[4341] | 1088 | !-- Setting the parameter canopy_mode = 'homogeneous' initializes a canopy, which |
---|
[1484] | 1089 | !-- fully covers the domain surface |
---|
| 1090 | SELECT CASE ( TRIM( canopy_mode ) ) |
---|
| 1091 | |
---|
[4341] | 1092 | CASE( 'homogeneous' ) |
---|
[1484] | 1093 | |
---|
| 1094 | DO i = nxlg, nxrg |
---|
| 1095 | DO j = nysg, nyng |
---|
| 1096 | lad_s(:,j,i) = lad(:) |
---|
| 1097 | ENDDO |
---|
| 1098 | ENDDO |
---|
| 1099 | |
---|
[4341] | 1100 | CASE ( 'read_from_file' ) |
---|
[2007] | 1101 | ! |
---|
[4362] | 1102 | !-- Read plant canopy |
---|
| 1103 | IF ( input_pids_static ) THEN |
---|
| 1104 | ! |
---|
| 1105 | !-- Open the static input file |
---|
| 1106 | #if defined( __netcdf ) |
---|
| 1107 | CALL open_read_file( TRIM( input_file_static ) // & |
---|
| 1108 | TRIM( coupling_char ), & |
---|
| 1109 | pids_id ) |
---|
| 1110 | |
---|
| 1111 | CALL inquire_num_variables( pids_id, num_var_pids ) |
---|
| 1112 | ! |
---|
| 1113 | !-- Allocate memory to store variable names and read them |
---|
| 1114 | ALLOCATE( vars_pids(1:num_var_pids) ) |
---|
| 1115 | CALL inquire_variable_names( pids_id, vars_pids ) |
---|
| 1116 | ! |
---|
| 1117 | !-- Read leaf area density - resolved vegetation |
---|
| 1118 | IF ( check_existence( vars_pids, 'lad' ) ) THEN |
---|
| 1119 | leaf_area_density_f%from_file = .TRUE. |
---|
| 1120 | CALL get_attribute( pids_id, char_fill, & |
---|
| 1121 | leaf_area_density_f%fill, & |
---|
| 1122 | .FALSE., 'lad' ) |
---|
| 1123 | ! |
---|
| 1124 | !-- Inquire number of vertical vegetation layer |
---|
| 1125 | CALL get_dimension_length( pids_id, & |
---|
| 1126 | leaf_area_density_f%nz, & |
---|
| 1127 | 'zlad' ) |
---|
| 1128 | ! |
---|
| 1129 | !-- Allocate variable for leaf-area density |
---|
| 1130 | ALLOCATE( leaf_area_density_f%var & |
---|
| 1131 | (0:leaf_area_density_f%nz-1, & |
---|
| 1132 | nys:nyn,nxl:nxr) ) |
---|
| 1133 | |
---|
| 1134 | CALL get_variable( pids_id, 'lad', leaf_area_density_f%var, & |
---|
| 1135 | nxl, nxr, nys, nyn, & |
---|
| 1136 | 0, leaf_area_density_f%nz-1 ) |
---|
| 1137 | |
---|
| 1138 | ELSE |
---|
| 1139 | leaf_area_density_f%from_file = .FALSE. |
---|
| 1140 | ENDIF |
---|
| 1141 | ! |
---|
| 1142 | !-- Read basal area density - resolved vegetation |
---|
| 1143 | IF ( check_existence( vars_pids, 'bad' ) ) THEN |
---|
| 1144 | basal_area_density_f%from_file = .TRUE. |
---|
| 1145 | CALL get_attribute( pids_id, char_fill, & |
---|
| 1146 | basal_area_density_f%fill, & |
---|
| 1147 | .FALSE., 'bad' ) |
---|
| 1148 | ! |
---|
| 1149 | !-- Inquire number of vertical vegetation layer |
---|
| 1150 | CALL get_dimension_length( pids_id, & |
---|
| 1151 | basal_area_density_f%nz, & |
---|
| 1152 | 'zlad' ) |
---|
| 1153 | ! |
---|
| 1154 | !-- Allocate variable |
---|
| 1155 | ALLOCATE( basal_area_density_f%var & |
---|
| 1156 | (0:basal_area_density_f%nz-1, & |
---|
| 1157 | nys:nyn,nxl:nxr) ) |
---|
| 1158 | |
---|
| 1159 | CALL get_variable( pids_id, 'bad', basal_area_density_f%var,& |
---|
| 1160 | nxl, nxr, nys, nyn, & |
---|
| 1161 | 0, basal_area_density_f%nz-1 ) |
---|
| 1162 | ELSE |
---|
| 1163 | basal_area_density_f%from_file = .FALSE. |
---|
| 1164 | ENDIF |
---|
| 1165 | ! |
---|
| 1166 | !-- Read root area density - resolved vegetation |
---|
| 1167 | IF ( check_existence( vars_pids, 'root_area_dens_r' ) ) THEN |
---|
| 1168 | root_area_density_lad_f%from_file = .TRUE. |
---|
| 1169 | CALL get_attribute( pids_id, char_fill, & |
---|
| 1170 | root_area_density_lad_f%fill, & |
---|
| 1171 | .FALSE., 'root_area_dens_r' ) |
---|
| 1172 | ! |
---|
| 1173 | !-- Inquire number of vertical soil layers |
---|
| 1174 | CALL get_dimension_length( pids_id, & |
---|
| 1175 | root_area_density_lad_f%nz, & |
---|
| 1176 | 'zsoil' ) |
---|
| 1177 | ! |
---|
| 1178 | !-- Allocate variable |
---|
| 1179 | ALLOCATE( root_area_density_lad_f%var & |
---|
| 1180 | (0:root_area_density_lad_f%nz-1,& |
---|
| 1181 | nys:nyn,nxl:nxr) ) |
---|
| 1182 | |
---|
| 1183 | CALL get_variable( pids_id, 'root_area_dens_r', & |
---|
| 1184 | root_area_density_lad_f%var, & |
---|
| 1185 | nxl, nxr, nys, nyn, & |
---|
| 1186 | 0, root_area_density_lad_f%nz-1 ) |
---|
| 1187 | ELSE |
---|
| 1188 | root_area_density_lad_f%from_file = .FALSE. |
---|
| 1189 | ENDIF |
---|
| 1190 | |
---|
| 1191 | DEALLOCATE( vars_pids ) |
---|
| 1192 | ! |
---|
[4363] | 1193 | !-- Finally, close the input file and deallocate temporary array |
---|
| 1194 | CALL close_input_file( pids_id ) |
---|
[4362] | 1195 | #endif |
---|
[4363] | 1196 | ENDIF |
---|
| 1197 | |
---|
[4362] | 1198 | ! |
---|
[2696] | 1199 | !-- Initialize LAD with data from file. If LAD is given in NetCDF file, |
---|
| 1200 | !-- use these values, else take LAD profiles from ASCII file. |
---|
| 1201 | !-- Please note, in NetCDF file LAD is only given up to the maximum |
---|
| 1202 | !-- canopy top, indicated by leaf_area_density_f%nz. |
---|
| 1203 | lad_s = 0.0_wp |
---|
| 1204 | IF ( leaf_area_density_f%from_file ) THEN |
---|
| 1205 | ! |
---|
| 1206 | !-- Set also pch_index, used to be the upper bound of the vertical |
---|
| 1207 | !-- loops. Therefore, use the global top of the canopy layer. |
---|
| 1208 | pch_index = leaf_area_density_f%nz - 1 |
---|
| 1209 | |
---|
| 1210 | DO i = nxl, nxr |
---|
| 1211 | DO j = nys, nyn |
---|
| 1212 | DO k = 0, leaf_area_density_f%nz - 1 |
---|
[3864] | 1213 | IF ( leaf_area_density_f%var(k,j,i) /= & |
---|
| 1214 | leaf_area_density_f%fill ) & |
---|
[2696] | 1215 | lad_s(k,j,i) = leaf_area_density_f%var(k,j,i) |
---|
| 1216 | ENDDO |
---|
[4302] | 1217 | ! |
---|
| 1218 | !-- Check if resolved vegetation is mapped onto buildings. |
---|
[4314] | 1219 | !-- In general, this is allowed and also meaningful, e.g. |
---|
| 1220 | !-- when trees carry across roofs. However, due to the |
---|
| 1221 | !-- topography filtering, new building grid points can emerge |
---|
| 1222 | !-- at location where also plant canopy is defined. As a |
---|
| 1223 | !-- result, plant canopy is mapped on top of roofs, with |
---|
| 1224 | !-- siginficant impact on the downstream flow field and the |
---|
| 1225 | !-- nearby surface radiation. In order to avoid that |
---|
| 1226 | !-- plant canopy is mistakenly mapped onto building roofs, |
---|
| 1227 | !-- check for building grid points (bit 6) that emerge from |
---|
| 1228 | !-- the filtering (bit 4) and set LAD to zero at these |
---|
| 1229 | !-- artificially created building grid points. This case, |
---|
| 1230 | !-- an informative message is given. |
---|
[4302] | 1231 | IF ( ANY( lad_s(:,j,i) /= 0.0_wp ) .AND. & |
---|
[4346] | 1232 | ANY( BTEST( wall_flags_total_0(:,j,i), 6 ) ) .AND. & |
---|
| 1233 | ANY( BTEST( wall_flags_total_0(:,j,i), 4 ) ) ) THEN |
---|
[4302] | 1234 | lad_s(:,j,i) = 0.0_wp |
---|
[4381] | 1235 | lad_on_top = .TRUE. |
---|
| 1236 | ENDIF |
---|
| 1237 | ENDDO |
---|
| 1238 | ENDDO |
---|
| 1239 | #if defined( __parallel ) |
---|
| 1240 | CALL MPI_ALLREDUCE( MPI_IN_PLACE, lad_on_top, 1, MPI_LOGICAL, & |
---|
| 1241 | MPI_LOR, comm2d, ierr) |
---|
| 1242 | #endif |
---|
| 1243 | IF ( lad_on_top ) THEN |
---|
| 1244 | WRITE( message_string, * ) & |
---|
[4314] | 1245 | 'Resolved plant-canopy is ' // & |
---|
| 1246 | 'defined on top of an artificially '// & |
---|
[4381] | 1247 | 'created building grid point(s) ' // & |
---|
[4331] | 1248 | '(emerged from the filtering) - ' // & |
---|
[4381] | 1249 | 'LAD profile is omitted at this / ' // & |
---|
| 1250 | 'these grid point(s).' |
---|
| 1251 | CALL message( 'pcm_init', 'PA0313', 0, 0, 0, 6, 0 ) |
---|
| 1252 | ENDIF |
---|
[2696] | 1253 | CALL exchange_horiz( lad_s, nbgp ) |
---|
| 1254 | ! |
---|
| 1255 | ! ASCII file |
---|
[4342] | 1256 | !-- Initialize canopy parameters canopy_drag_coeff, |
---|
| 1257 | !-- leaf_scalar_exch_coeff, leaf_surface_conc |
---|
[2007] | 1258 | !-- from file which contains complete 3D data (separate vertical profiles for |
---|
| 1259 | !-- each location). |
---|
[2696] | 1260 | ELSE |
---|
| 1261 | CALL pcm_read_plant_canopy_3d |
---|
| 1262 | ENDIF |
---|
[2007] | 1263 | |
---|
[1484] | 1264 | CASE DEFAULT |
---|
| 1265 | ! |
---|
[2007] | 1266 | !-- The DEFAULT case is reached either if the parameter |
---|
| 1267 | !-- canopy mode contains a wrong character string or if the |
---|
| 1268 | !-- user has coded a special case in the user interface. |
---|
| 1269 | !-- There, the subroutine user_init_plant_canopy checks |
---|
| 1270 | !-- which of these two conditions applies. |
---|
| 1271 | CALL user_init_plant_canopy |
---|
[1484] | 1272 | |
---|
| 1273 | END SELECT |
---|
[2696] | 1274 | ! |
---|
[4258] | 1275 | !-- Check that at least one grid point has an LAD /= 0, else this may |
---|
| 1276 | !-- cause errors in the radiation model. |
---|
| 1277 | lad_max = MAXVAL( lad_s ) |
---|
| 1278 | #if defined( __parallel ) |
---|
| 1279 | CALL MPI_ALLREDUCE( MPI_IN_PLACE, lad_max, 1, MPI_REAL, MPI_MAX, & |
---|
| 1280 | comm2d, ierr) |
---|
| 1281 | #endif |
---|
| 1282 | IF ( lad_max <= 0.0_wp ) THEN |
---|
| 1283 | message_string = 'Plant-canopy model is switched-on but no ' // & |
---|
| 1284 | 'plant canopy is present in the model domain.' |
---|
| 1285 | CALL message( 'pcm_init', 'PA0685', 1, 2, 0, 6, 0 ) |
---|
| 1286 | ENDIF |
---|
| 1287 | |
---|
| 1288 | ! |
---|
[2696] | 1289 | !-- Initialize 2D index array indicating canopy top index. |
---|
| 1290 | ALLOCATE( pch_index_ji(nysg:nyng,nxlg:nxrg) ) |
---|
| 1291 | pch_index_ji = 0 |
---|
[4187] | 1292 | |
---|
[4361] | 1293 | DO i = nxlg, nxrg |
---|
| 1294 | DO j = nysg, nyng |
---|
[2696] | 1295 | DO k = 0, pch_index |
---|
| 1296 | IF ( lad_s(k,j,i) /= 0 ) pch_index_ji(j,i) = k |
---|
| 1297 | ENDDO |
---|
[1484] | 1298 | ! |
---|
[2696] | 1299 | !-- Check whether topography and local vegetation on top exceed |
---|
| 1300 | !-- height of the model domain. |
---|
[4356] | 1301 | IF ( topo_top_ind(j,i,0) + pch_index_ji(j,i) >= nzt + 1 ) THEN |
---|
[2696] | 1302 | message_string = 'Local vegetation height on top of ' // & |
---|
| 1303 | 'topography exceeds height of model domain.' |
---|
[4356] | 1304 | CALL message( 'pcm_init', 'PA0674', 2, 2, myid, 6, 0 ) |
---|
[2696] | 1305 | ENDIF |
---|
| 1306 | |
---|
| 1307 | ENDDO |
---|
| 1308 | ENDDO |
---|
[3497] | 1309 | ! |
---|
[3449] | 1310 | !-- Calculate global pch_index value (index of top of plant canopy from ground) |
---|
[3497] | 1311 | pch_index = MAXVAL( pch_index_ji ) |
---|
| 1312 | ! |
---|
[3449] | 1313 | !-- Exchange pch_index from all processors |
---|
| 1314 | #if defined( __parallel ) |
---|
[3497] | 1315 | CALL MPI_ALLREDUCE( MPI_IN_PLACE, pch_index, 1, MPI_INTEGER, & |
---|
| 1316 | MPI_MAX, comm2d, ierr) |
---|
[3449] | 1317 | #endif |
---|
[4360] | 1318 | ! |
---|
[4341] | 1319 | !-- Allocation of arrays pcm_heating_rate, pcm_transpiration_rate and pcm_latent_rate |
---|
| 1320 | ALLOCATE( pcm_heating_rate(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 1321 | pcm_heating_rate = 0.0_wp |
---|
[4221] | 1322 | |
---|
[3449] | 1323 | IF ( humidity ) THEN |
---|
[4341] | 1324 | ALLOCATE( pcm_transpiration_rate(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 1325 | pcm_transpiration_rate = 0.0_wp |
---|
| 1326 | ALLOCATE( pcm_latent_rate(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 1327 | pcm_latent_rate = 0.0_wp |
---|
[3449] | 1328 | ENDIF |
---|
[2696] | 1329 | ! |
---|
[2011] | 1330 | !-- Initialization of the canopy heat source distribution due to heating |
---|
| 1331 | !-- of the canopy layers by incoming solar radiation, in case that a non-zero |
---|
| 1332 | !-- value is set for the canopy top heat flux (cthf), which equals the |
---|
| 1333 | !-- available net radiation at canopy top. |
---|
| 1334 | !-- The heat source distribution is calculated by a decaying exponential |
---|
| 1335 | !-- function of the downward cumulative leaf area index (cum_lai_hf), |
---|
| 1336 | !-- assuming that the foliage inside the plant canopy is heated by solar |
---|
| 1337 | !-- radiation penetrating the canopy layers according to the distribution |
---|
| 1338 | !-- of net radiation as suggested by Brown & Covey (1966; Agric. Meteorol. 3, |
---|
| 1339 | !-- 73â96). This approach has been applied e.g. by Shaw & Schumann (1992; |
---|
[2213] | 1340 | !-- Bound.-Layer Meteorol. 61, 47â64). |
---|
[4341] | 1341 | !-- When using the radiation_interactions, canopy heating (pcm_heating_rate) |
---|
| 1342 | !-- and plant canopy transpiration (pcm_transpiration_rate, pcm_latent_rate) |
---|
[3449] | 1343 | !-- are calculated in the RTM after the calculation of radiation. |
---|
| 1344 | IF ( cthf /= 0.0_wp ) THEN |
---|
[2213] | 1345 | |
---|
[3449] | 1346 | ALLOCATE( cum_lai_hf(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1484] | 1347 | ! |
---|
[2011] | 1348 | !-- Piecewise calculation of the cumulative leaf area index by vertical |
---|
[1484] | 1349 | !-- integration of the leaf area density |
---|
| 1350 | cum_lai_hf(:,:,:) = 0.0_wp |
---|
| 1351 | DO i = nxlg, nxrg |
---|
| 1352 | DO j = nysg, nyng |
---|
[2696] | 1353 | DO k = pch_index_ji(j,i)-1, 0, -1 |
---|
| 1354 | IF ( k == pch_index_ji(j,i)-1 ) THEN |
---|
[1484] | 1355 | cum_lai_hf(k,j,i) = cum_lai_hf(k+1,j,i) + & |
---|
| 1356 | ( 0.5_wp * lad_s(k+1,j,i) * & |
---|
| 1357 | ( zw(k+1) - zu(k+1) ) ) + & |
---|
| 1358 | ( 0.5_wp * ( 0.5_wp * ( lad_s(k+1,j,i) + & |
---|
| 1359 | lad_s(k,j,i) ) + & |
---|
| 1360 | lad_s(k+1,j,i) ) * & |
---|
| 1361 | ( zu(k+1) - zw(k) ) ) |
---|
| 1362 | ELSE |
---|
| 1363 | cum_lai_hf(k,j,i) = cum_lai_hf(k+1,j,i) + & |
---|
| 1364 | ( 0.5_wp * ( 0.5_wp * ( lad_s(k+2,j,i) + & |
---|
| 1365 | lad_s(k+1,j,i) ) + & |
---|
| 1366 | lad_s(k+1,j,i) ) * & |
---|
| 1367 | ( zw(k+1) - zu(k+1) ) ) + & |
---|
| 1368 | ( 0.5_wp * ( 0.5_wp * ( lad_s(k+1,j,i) + & |
---|
| 1369 | lad_s(k,j,i) ) + & |
---|
| 1370 | lad_s(k+1,j,i) ) * & |
---|
| 1371 | ( zu(k+1) - zw(k) ) ) |
---|
| 1372 | ENDIF |
---|
| 1373 | ENDDO |
---|
| 1374 | ENDDO |
---|
| 1375 | ENDDO |
---|
| 1376 | |
---|
[4278] | 1377 | ! |
---|
[2232] | 1378 | !-- In areas with canopy the surface value of the canopy heat |
---|
| 1379 | !-- flux distribution overrides the surface heat flux (shf) |
---|
| 1380 | !-- Start with default surface type |
---|
| 1381 | DO m = 1, surf_def_h(0)%ns |
---|
[4278] | 1382 | i = surf_def_h(0)%i(m) |
---|
| 1383 | j = surf_def_h(0)%j(m) |
---|
[2232] | 1384 | IF ( cum_lai_hf(0,j,i) /= 0.0_wp ) & |
---|
| 1385 | surf_def_h(0)%shf(m) = cthf * exp( -ext_coef * cum_lai_hf(0,j,i) ) |
---|
| 1386 | ENDDO |
---|
[1484] | 1387 | ! |
---|
[2232] | 1388 | !-- Natural surfaces |
---|
| 1389 | DO m = 1, surf_lsm_h%ns |
---|
[4278] | 1390 | i = surf_lsm_h%i(m) |
---|
| 1391 | j = surf_lsm_h%j(m) |
---|
[2232] | 1392 | IF ( cum_lai_hf(0,j,i) /= 0.0_wp ) & |
---|
| 1393 | surf_lsm_h%shf(m) = cthf * exp( -ext_coef * cum_lai_hf(0,j,i) ) |
---|
| 1394 | ENDDO |
---|
| 1395 | ! |
---|
| 1396 | !-- Urban surfaces |
---|
| 1397 | DO m = 1, surf_usm_h%ns |
---|
[4278] | 1398 | i = surf_usm_h%i(m) |
---|
| 1399 | j = surf_usm_h%j(m) |
---|
[2232] | 1400 | IF ( cum_lai_hf(0,j,i) /= 0.0_wp ) & |
---|
| 1401 | surf_usm_h%shf(m) = cthf * exp( -ext_coef * cum_lai_hf(0,j,i) ) |
---|
| 1402 | ENDDO |
---|
| 1403 | ! |
---|
| 1404 | ! |
---|
[2011] | 1405 | !-- Calculation of the heating rate (K/s) within the different layers of |
---|
[2232] | 1406 | !-- the plant canopy. Calculation is only necessary in areas covered with |
---|
| 1407 | !-- canopy. |
---|
| 1408 | !-- Within the different canopy layers the plant-canopy heating |
---|
[4341] | 1409 | !-- rate (pcm_heating_rate) is calculated as the vertical |
---|
[2232] | 1410 | !-- divergence of the canopy heat fluxes at the top and bottom |
---|
| 1411 | !-- of the respective layer |
---|
[1484] | 1412 | DO i = nxlg, nxrg |
---|
| 1413 | DO j = nysg, nyng |
---|
[2696] | 1414 | DO k = 1, pch_index_ji(j,i) |
---|
[2232] | 1415 | IF ( cum_lai_hf(0,j,i) /= 0.0_wp ) THEN |
---|
[4341] | 1416 | pcm_heating_rate(k,j,i) = cthf * & |
---|
[3022] | 1417 | ( exp(-ext_coef*cum_lai_hf(k,j,i)) - & |
---|
[2232] | 1418 | exp(-ext_coef*cum_lai_hf(k-1,j,i) ) ) / dzw(k) |
---|
| 1419 | ENDIF |
---|
| 1420 | ENDDO |
---|
[1721] | 1421 | ENDDO |
---|
| 1422 | ENDDO |
---|
[1484] | 1423 | |
---|
| 1424 | ENDIF |
---|
| 1425 | |
---|
[3885] | 1426 | IF ( debug_output ) CALL debug_message( 'pcm_init', 'end' ) |
---|
[1484] | 1427 | |
---|
[1826] | 1428 | END SUBROUTINE pcm_init |
---|
[1484] | 1429 | |
---|
| 1430 | |
---|
[2007] | 1431 | !------------------------------------------------------------------------------! |
---|
| 1432 | ! Description: |
---|
| 1433 | ! ------------ |
---|
[2932] | 1434 | !> Parin for &plant_canopy_parameters for plant canopy model |
---|
[2007] | 1435 | !------------------------------------------------------------------------------! |
---|
| 1436 | SUBROUTINE pcm_parin |
---|
[1484] | 1437 | |
---|
[2007] | 1438 | CHARACTER (LEN=80) :: line !< dummy string that contains the current line of the parameter file |
---|
| 1439 | |
---|
[2932] | 1440 | NAMELIST /plant_canopy_parameters/ & |
---|
| 1441 | alpha_lad, beta_lad, canopy_drag_coeff, & |
---|
| 1442 | canopy_mode, cthf, & |
---|
[2977] | 1443 | lad_surface, lad_type_coef, & |
---|
[2932] | 1444 | lad_vertical_gradient, & |
---|
| 1445 | lad_vertical_gradient_level, & |
---|
| 1446 | lai_beta, & |
---|
| 1447 | leaf_scalar_exch_coeff, & |
---|
[3449] | 1448 | leaf_surface_conc, pch_index, & |
---|
| 1449 | plant_canopy_transpiration |
---|
[2932] | 1450 | |
---|
[2007] | 1451 | NAMELIST /canopy_par/ alpha_lad, beta_lad, canopy_drag_coeff, & |
---|
| 1452 | canopy_mode, cthf, & |
---|
[2977] | 1453 | lad_surface, lad_type_coef, & |
---|
[2007] | 1454 | lad_vertical_gradient, & |
---|
| 1455 | lad_vertical_gradient_level, & |
---|
| 1456 | lai_beta, & |
---|
| 1457 | leaf_scalar_exch_coeff, & |
---|
[3449] | 1458 | leaf_surface_conc, pch_index, & |
---|
| 1459 | plant_canopy_transpiration |
---|
[3246] | 1460 | |
---|
[2007] | 1461 | line = ' ' |
---|
[3246] | 1462 | |
---|
[2007] | 1463 | ! |
---|
[4258] | 1464 | !-- Try to find plant-canopy model package |
---|
[2007] | 1465 | REWIND ( 11 ) |
---|
| 1466 | line = ' ' |
---|
[3248] | 1467 | DO WHILE ( INDEX( line, '&plant_canopy_parameters' ) == 0 ) |
---|
[3246] | 1468 | READ ( 11, '(A)', END=12 ) line |
---|
[2007] | 1469 | ENDDO |
---|
| 1470 | BACKSPACE ( 11 ) |
---|
| 1471 | |
---|
| 1472 | ! |
---|
| 1473 | !-- Read user-defined namelist |
---|
[3246] | 1474 | READ ( 11, plant_canopy_parameters, ERR = 10 ) |
---|
[2932] | 1475 | |
---|
| 1476 | ! |
---|
[4258] | 1477 | !-- Set flag that indicates that the plant-canopy model is switched on |
---|
[2932] | 1478 | plant_canopy = .TRUE. |
---|
[3246] | 1479 | |
---|
| 1480 | GOTO 14 |
---|
| 1481 | |
---|
| 1482 | 10 BACKSPACE( 11 ) |
---|
[3248] | 1483 | READ( 11 , '(A)') line |
---|
| 1484 | CALL parin_fail_message( 'plant_canopy_parameters', line ) |
---|
[2932] | 1485 | ! |
---|
| 1486 | !-- Try to find old namelist |
---|
[3246] | 1487 | 12 REWIND ( 11 ) |
---|
[2932] | 1488 | line = ' ' |
---|
[3248] | 1489 | DO WHILE ( INDEX( line, '&canopy_par' ) == 0 ) |
---|
[3246] | 1490 | READ ( 11, '(A)', END=14 ) line |
---|
[2932] | 1491 | ENDDO |
---|
| 1492 | BACKSPACE ( 11 ) |
---|
| 1493 | |
---|
| 1494 | ! |
---|
| 1495 | !-- Read user-defined namelist |
---|
[3246] | 1496 | READ ( 11, canopy_par, ERR = 13, END = 14 ) |
---|
[2007] | 1497 | |
---|
[2932] | 1498 | message_string = 'namelist canopy_par is deprecated and will be ' // & |
---|
[3046] | 1499 | 'removed in near future. Please use namelist ' // & |
---|
[2932] | 1500 | 'plant_canopy_parameters instead' |
---|
| 1501 | CALL message( 'pcm_parin', 'PA0487', 0, 1, 0, 6, 0 ) |
---|
[3246] | 1502 | |
---|
[2007] | 1503 | ! |
---|
[4258] | 1504 | !-- Set flag that indicates that the plant-canopy model is switched on |
---|
[2007] | 1505 | plant_canopy = .TRUE. |
---|
| 1506 | |
---|
[3246] | 1507 | GOTO 14 |
---|
[2007] | 1508 | |
---|
[3246] | 1509 | 13 BACKSPACE( 11 ) |
---|
[3248] | 1510 | READ( 11 , '(A)') line |
---|
| 1511 | CALL parin_fail_message( 'canopy_par', line ) |
---|
[3246] | 1512 | |
---|
| 1513 | 14 CONTINUE |
---|
| 1514 | |
---|
[2007] | 1515 | END SUBROUTINE pcm_parin |
---|
| 1516 | |
---|
| 1517 | |
---|
[1484] | 1518 | !------------------------------------------------------------------------------! |
---|
| 1519 | ! Description: |
---|
| 1520 | ! ------------ |
---|
[2007] | 1521 | ! |
---|
| 1522 | !> Loads 3D plant canopy data from file. File format is as follows: |
---|
| 1523 | !> |
---|
| 1524 | !> num_levels |
---|
[2977] | 1525 | !> dtype,x,y,pctype,value(nzb),value(nzb+1), ... ,value(nzb+num_levels-1) |
---|
| 1526 | !> dtype,x,y,pctype,value(nzb),value(nzb+1), ... ,value(nzb+num_levels-1) |
---|
| 1527 | !> dtype,x,y,pctype,value(nzb),value(nzb+1), ... ,value(nzb+num_levels-1) |
---|
[2007] | 1528 | !> ... |
---|
| 1529 | !> |
---|
| 1530 | !> i.e. first line determines number of levels and further lines represent plant |
---|
| 1531 | !> canopy data, one line per column and variable. In each data line, |
---|
| 1532 | !> dtype represents variable to be set: |
---|
| 1533 | !> |
---|
| 1534 | !> dtype=1: leaf area density (lad_s) |
---|
[2213] | 1535 | !> dtype=2....n: some additional plant canopy input data quantity |
---|
[2007] | 1536 | !> |
---|
| 1537 | !> Zeros are added automatically above num_levels until top of domain. Any |
---|
| 1538 | !> non-specified (x,y) columns have zero values as default. |
---|
| 1539 | !------------------------------------------------------------------------------! |
---|
| 1540 | SUBROUTINE pcm_read_plant_canopy_3d |
---|
| 1541 | |
---|
[2213] | 1542 | INTEGER(iwp) :: dtype !< type of input data (1=lad) |
---|
[2977] | 1543 | INTEGER(iwp) :: pctype !< type of plant canopy (deciduous,non-deciduous,...) |
---|
[2213] | 1544 | INTEGER(iwp) :: i, j !< running index |
---|
| 1545 | INTEGER(iwp) :: nzp !< number of vertical layers of plant canopy |
---|
[3337] | 1546 | INTEGER(iwp) :: nzpltop !< |
---|
| 1547 | INTEGER(iwp) :: nzpl !< |
---|
| 1548 | INTEGER(iwp) :: kk !< |
---|
[2213] | 1549 | |
---|
| 1550 | REAL(wp), DIMENSION(:), ALLOCATABLE :: col !< vertical column of input data |
---|
[2007] | 1551 | |
---|
[2213] | 1552 | ! |
---|
| 1553 | !-- Initialize lad_s array |
---|
| 1554 | lad_s = 0.0_wp |
---|
| 1555 | |
---|
| 1556 | ! |
---|
| 1557 | !-- Open and read plant canopy input data |
---|
[2977] | 1558 | OPEN(152, FILE='PLANT_CANOPY_DATA_3D' // TRIM( coupling_char ), & |
---|
| 1559 | ACCESS='SEQUENTIAL', ACTION='READ', STATUS='OLD', & |
---|
| 1560 | FORM='FORMATTED', ERR=515) |
---|
| 1561 | READ(152, *, ERR=516, END=517) nzp !< read first line = number of vertical layers |
---|
[3337] | 1562 | nzpltop = MIN(nzt+1, nzb+nzp-1) |
---|
| 1563 | nzpl = nzpltop - nzb + 1 !< no. of layers to assign |
---|
[2977] | 1564 | ALLOCATE( col(0:nzp-1) ) |
---|
[2007] | 1565 | |
---|
[2213] | 1566 | DO |
---|
[2977] | 1567 | READ(152, *, ERR=516, END=517) dtype, i, j, pctype, col(:) |
---|
| 1568 | IF ( i < nxlg .OR. i > nxrg .OR. j < nysg .OR. j > nyng ) CYCLE |
---|
| 1569 | |
---|
| 1570 | SELECT CASE (dtype) |
---|
| 1571 | CASE( 1 ) !< leaf area density |
---|
[2213] | 1572 | ! |
---|
[2977] | 1573 | !-- This is just the pure canopy layer assumed to be grounded to |
---|
| 1574 | !-- a flat domain surface. At locations where plant canopy sits |
---|
| 1575 | !-- on top of any kind of topography, the vertical plant column |
---|
| 1576 | !-- must be "lifted", which is done in SUBROUTINE pcm_tendency. |
---|
| 1577 | IF ( pctype < 0 .OR. pctype > 10 ) THEN !< incorrect plant canopy type |
---|
| 1578 | WRITE( message_string, * ) 'Incorrect type of plant canopy. ' // & |
---|
| 1579 | 'Allowed values 0 <= pctype <= 10, ' // & |
---|
| 1580 | 'but pctype is ', pctype |
---|
| 1581 | CALL message( 'pcm_read_plant_canopy_3d', 'PA0349', 1, 2, 0, 6, 0 ) |
---|
| 1582 | ENDIF |
---|
[4168] | 1583 | kk = topo_top_ind(j,i,0) |
---|
[3337] | 1584 | lad_s(nzb:nzpltop-kk, j, i) = col(kk:nzpl-1)*lad_type_coef(pctype) |
---|
[2977] | 1585 | CASE DEFAULT |
---|
| 1586 | WRITE(message_string, '(a,i2,a)') & |
---|
| 1587 | 'Unknown record type in file PLANT_CANOPY_DATA_3D: "', dtype, '"' |
---|
| 1588 | CALL message( 'pcm_read_plant_canopy_3d', 'PA0530', 1, 2, 0, 6, 0 ) |
---|
| 1589 | END SELECT |
---|
[2213] | 1590 | ENDDO |
---|
[2007] | 1591 | |
---|
[2213] | 1592 | 515 message_string = 'error opening file PLANT_CANOPY_DATA_3D' |
---|
| 1593 | CALL message( 'pcm_read_plant_canopy_3d', 'PA0531', 1, 2, 0, 6, 0 ) |
---|
[2007] | 1594 | |
---|
[2213] | 1595 | 516 message_string = 'error reading file PLANT_CANOPY_DATA_3D' |
---|
| 1596 | CALL message( 'pcm_read_plant_canopy_3d', 'PA0532', 1, 2, 0, 6, 0 ) |
---|
| 1597 | |
---|
| 1598 | 517 CLOSE(152) |
---|
[2977] | 1599 | DEALLOCATE( col ) |
---|
[2213] | 1600 | |
---|
| 1601 | CALL exchange_horiz( lad_s, nbgp ) |
---|
[2007] | 1602 | |
---|
| 1603 | END SUBROUTINE pcm_read_plant_canopy_3d |
---|
[4360] | 1604 | |
---|
[2007] | 1605 | !------------------------------------------------------------------------------! |
---|
| 1606 | ! Description: |
---|
| 1607 | ! ------------ |
---|
[4360] | 1608 | !> Subroutine reads local (subdomain) restart data |
---|
| 1609 | !------------------------------------------------------------------------------! |
---|
| 1610 | SUBROUTINE pcm_rrd_local( k, nxlf, nxlc, nxl_on_file, nxrf, nxrc, & |
---|
| 1611 | nxr_on_file, nynf, nync, nyn_on_file, nysf, & |
---|
[4361] | 1612 | nysc, nys_on_file, found ) |
---|
[4360] | 1613 | |
---|
| 1614 | INTEGER(iwp) :: k !< |
---|
| 1615 | INTEGER(iwp) :: nxlc !< |
---|
| 1616 | INTEGER(iwp) :: nxlf !< |
---|
| 1617 | INTEGER(iwp) :: nxl_on_file !< |
---|
| 1618 | INTEGER(iwp) :: nxrc !< |
---|
| 1619 | INTEGER(iwp) :: nxrf !< |
---|
| 1620 | INTEGER(iwp) :: nxr_on_file !< |
---|
| 1621 | INTEGER(iwp) :: nync !< |
---|
| 1622 | INTEGER(iwp) :: nynf !< |
---|
| 1623 | INTEGER(iwp) :: nyn_on_file !< |
---|
| 1624 | INTEGER(iwp) :: nysc !< |
---|
| 1625 | INTEGER(iwp) :: nysf !< |
---|
| 1626 | INTEGER(iwp) :: nys_on_file !< |
---|
| 1627 | |
---|
| 1628 | LOGICAL, INTENT(OUT) :: found |
---|
| 1629 | |
---|
| 1630 | REAL(wp), DIMENSION(0:pch_index, & |
---|
| 1631 | nys_on_file-nbgp:nyn_on_file+nbgp, & |
---|
| 1632 | nxl_on_file-nbgp:nxr_on_file+nbgp) :: tmp_3d2 !< temporary 3D array for entire vertical |
---|
| 1633 | !< extension of canopy layer |
---|
| 1634 | found = .TRUE. |
---|
| 1635 | |
---|
| 1636 | SELECT CASE ( restart_string(1:length) ) |
---|
| 1637 | |
---|
| 1638 | CASE ( 'pcm_heatrate_av' ) |
---|
| 1639 | IF ( .NOT. ALLOCATED( pcm_heatrate_av ) ) THEN |
---|
| 1640 | ALLOCATE( pcm_heatrate_av(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 1641 | pcm_heatrate_av = 0.0_wp |
---|
| 1642 | ENDIF |
---|
| 1643 | IF ( k == 1 ) READ ( 13 ) tmp_3d2 |
---|
| 1644 | pcm_heatrate_av(0:pch_index,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
| 1645 | tmp_3d2(0:pch_index,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
| 1646 | |
---|
| 1647 | CASE ( 'pcm_latentrate_av' ) |
---|
| 1648 | IF ( .NOT. ALLOCATED( pcm_latentrate_av ) ) THEN |
---|
| 1649 | ALLOCATE( pcm_latentrate_av(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 1650 | pcm_latentrate_av = 0.0_wp |
---|
| 1651 | ENDIF |
---|
| 1652 | IF ( k == 1 ) READ ( 13 ) tmp_3d2 |
---|
| 1653 | pcm_latentrate_av(0:pch_index,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
| 1654 | tmp_3d2(0:pch_index,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
| 1655 | |
---|
| 1656 | CASE ( 'pcm_transpirationrate_av' ) |
---|
| 1657 | IF ( .NOT. ALLOCATED( pcm_transpirationrate_av ) ) THEN |
---|
| 1658 | ALLOCATE( pcm_transpirationrate_av(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 1659 | pcm_transpirationrate_av = 0.0_wp |
---|
| 1660 | ENDIF |
---|
| 1661 | IF ( k == 1 ) READ ( 13 ) tmp_3d2 |
---|
| 1662 | pcm_transpirationrate_av(0:pch_index,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
| 1663 | tmp_3d2(0:pch_index,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
| 1664 | |
---|
| 1665 | CASE DEFAULT |
---|
| 1666 | |
---|
| 1667 | found = .FALSE. |
---|
| 1668 | |
---|
| 1669 | END SELECT |
---|
| 1670 | |
---|
| 1671 | END SUBROUTINE pcm_rrd_local |
---|
| 1672 | |
---|
| 1673 | !------------------------------------------------------------------------------! |
---|
| 1674 | ! Description: |
---|
| 1675 | ! ------------ |
---|
[1682] | 1676 | !> Calculation of the tendency terms, accounting for the effect of the plant |
---|
| 1677 | !> canopy on momentum and scalar quantities. |
---|
| 1678 | !> |
---|
| 1679 | !> The canopy is located where the leaf area density lad_s(k,j,i) > 0.0 |
---|
[1826] | 1680 | !> (defined on scalar grid), as initialized in subroutine pcm_init. |
---|
[1682] | 1681 | !> The lad on the w-grid is vertically interpolated from the surrounding |
---|
| 1682 | !> lad_s. The upper boundary of the canopy is defined on the w-grid at |
---|
| 1683 | !> k = pch_index. Here, the lad is zero. |
---|
| 1684 | !> |
---|
| 1685 | !> The canopy drag must be limited (previously accounted for by calculation of |
---|
| 1686 | !> a limiting canopy timestep for the determination of the maximum LES timestep |
---|
| 1687 | !> in subroutine timestep), since it is physically impossible that the canopy |
---|
| 1688 | !> drag alone can locally change the sign of a velocity component. This |
---|
| 1689 | !> limitation is realized by calculating preliminary tendencies and velocities. |
---|
| 1690 | !> It is subsequently checked if the preliminary new velocity has a different |
---|
| 1691 | !> sign than the current velocity. If so, the tendency is limited in a way that |
---|
| 1692 | !> the velocity can at maximum be reduced to zero by the canopy drag. |
---|
| 1693 | !> |
---|
| 1694 | !> |
---|
| 1695 | !> Call for all grid points |
---|
[1484] | 1696 | !------------------------------------------------------------------------------! |
---|
[1826] | 1697 | SUBROUTINE pcm_tendency( component ) |
---|
[138] | 1698 | |
---|
[1682] | 1699 | INTEGER(iwp) :: component !< prognostic variable (u,v,w,pt,q,e) |
---|
| 1700 | INTEGER(iwp) :: i !< running index |
---|
| 1701 | INTEGER(iwp) :: j !< running index |
---|
| 1702 | INTEGER(iwp) :: k !< running index |
---|
[1721] | 1703 | INTEGER(iwp) :: kk !< running index for flat lad arrays |
---|
[1484] | 1704 | |
---|
[4335] | 1705 | LOGICAL :: building_edge_e !< control flag indicating an eastward-facing building edge |
---|
| 1706 | LOGICAL :: building_edge_n !< control flag indicating a north-facing building edge |
---|
| 1707 | LOGICAL :: building_edge_s !< control flag indicating a south-facing building edge |
---|
| 1708 | LOGICAL :: building_edge_w !< control flag indicating a westward-facing building edge |
---|
| 1709 | |
---|
[1682] | 1710 | REAL(wp) :: ddt_3d !< inverse of the LES timestep (dt_3d) |
---|
| 1711 | REAL(wp) :: lad_local !< local lad value |
---|
| 1712 | REAL(wp) :: pre_tend !< preliminary tendency |
---|
| 1713 | REAL(wp) :: pre_u !< preliminary u-value |
---|
| 1714 | REAL(wp) :: pre_v !< preliminary v-value |
---|
| 1715 | REAL(wp) :: pre_w !< preliminary w-value |
---|
[1484] | 1716 | |
---|
| 1717 | |
---|
| 1718 | ddt_3d = 1.0_wp / dt_3d |
---|
[138] | 1719 | |
---|
| 1720 | ! |
---|
[1484] | 1721 | !-- Compute drag for the three velocity components and the SGS-TKE: |
---|
[138] | 1722 | SELECT CASE ( component ) |
---|
| 1723 | |
---|
| 1724 | ! |
---|
| 1725 | !-- u-component |
---|
| 1726 | CASE ( 1 ) |
---|
| 1727 | DO i = nxlu, nxr |
---|
| 1728 | DO j = nys, nyn |
---|
[2232] | 1729 | ! |
---|
[4335] | 1730 | !-- Set control flags indicating east- and westward-orientated |
---|
| 1731 | !-- building edges. Note, building_egde_w is set from the perspective |
---|
| 1732 | !-- of the potential rooftop grid point, while building_edge_e is |
---|
| 1733 | !-- is set from the perspective of the non-building grid point. |
---|
[4346] | 1734 | building_edge_w = ANY( BTEST( wall_flags_total_0(:,j,i), 6 ) )& |
---|
| 1735 | .AND. .NOT. ANY( BTEST( wall_flags_total_0(:,j,i-1), 6 ) ) |
---|
| 1736 | building_edge_e = ANY( BTEST( wall_flags_total_0(:,j,i-1), 6 ) )& |
---|
| 1737 | .AND. .NOT. ANY( BTEST( wall_flags_total_0(:,j,i), 6 ) ) |
---|
[4335] | 1738 | ! |
---|
[2232] | 1739 | !-- Determine topography-top index on u-grid |
---|
[4341] | 1740 | DO k = topo_top_ind(j,i,1)+1, topo_top_ind(j,i,1) + pch_index_ji(j,i) |
---|
[1484] | 1741 | |
---|
[4341] | 1742 | kk = k - topo_top_ind(j,i,1) !- lad arrays are defined flat |
---|
[1484] | 1743 | ! |
---|
| 1744 | !-- In order to create sharp boundaries of the plant canopy, |
---|
[4335] | 1745 | !-- the lad on the u-grid at index (k,j,i) is equal to lad_s(k,j,i), |
---|
| 1746 | !-- rather than being interpolated from the surrounding lad_s, |
---|
| 1747 | !-- because this would yield smaller lad at the canopy boundaries |
---|
| 1748 | !-- than inside of the canopy. |
---|
[1484] | 1749 | !-- For the same reason, the lad at the rightmost(i+1)canopy |
---|
[4335] | 1750 | !-- boundary on the u-grid equals lad_s(k,j,i), which is considered |
---|
| 1751 | !-- in the next if-statement. Note, at left-sided building edges |
---|
| 1752 | !-- this is not applied, here the LAD is equals the LAD at grid |
---|
| 1753 | !-- point (k,j,i), in order to avoid that LAD is mistakenly mapped |
---|
| 1754 | !-- on top of a roof where (usually) is no LAD is defined. |
---|
[1721] | 1755 | lad_local = lad_s(kk,j,i) |
---|
[4335] | 1756 | IF ( lad_local == 0.0_wp .AND. lad_s(kk,j,i-1) > 0.0_wp & |
---|
| 1757 | .AND. .NOT. building_edge_w ) lad_local = lad_s(kk,j,i-1) |
---|
| 1758 | ! |
---|
| 1759 | !-- In order to avoid that LAD is mistakenly considered at right- |
---|
| 1760 | !-- sided building edges (here the topography-top index for the |
---|
| 1761 | !-- u-component at index j,i is still on the building while the |
---|
| 1762 | !-- topography top for the scalar isn't), LAD is taken from grid |
---|
| 1763 | !-- point (j,i-1). |
---|
| 1764 | IF ( lad_local > 0.0_wp .AND. lad_s(kk,j,i-1) == 0.0_wp & |
---|
| 1765 | .AND. building_edge_e ) lad_local = lad_s(kk,j,i-1) |
---|
[1484] | 1766 | |
---|
| 1767 | pre_tend = 0.0_wp |
---|
| 1768 | pre_u = 0.0_wp |
---|
| 1769 | ! |
---|
| 1770 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
[4342] | 1771 | pre_tend = - canopy_drag_coeff * & |
---|
[1484] | 1772 | lad_local * & |
---|
| 1773 | SQRT( u(k,j,i)**2 + & |
---|
| 1774 | ( 0.25_wp * ( v(k,j,i-1) + & |
---|
| 1775 | v(k,j,i) + & |
---|
| 1776 | v(k,j+1,i) + & |
---|
| 1777 | v(k,j+1,i-1) ) & |
---|
| 1778 | )**2 + & |
---|
| 1779 | ( 0.25_wp * ( w(k-1,j,i-1) + & |
---|
| 1780 | w(k-1,j,i) + & |
---|
| 1781 | w(k,j,i-1) + & |
---|
| 1782 | w(k,j,i) ) & |
---|
| 1783 | )**2 & |
---|
| 1784 | ) * & |
---|
| 1785 | u(k,j,i) |
---|
| 1786 | |
---|
| 1787 | ! |
---|
| 1788 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 1789 | pre_u = u(k,j,i) + dt_3d * pre_tend |
---|
| 1790 | ! |
---|
| 1791 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
| 1792 | !-- and in case the signs are different, limit the tendency |
---|
| 1793 | IF ( SIGN(pre_u,u(k,j,i)) /= pre_u ) THEN |
---|
| 1794 | pre_tend = - u(k,j,i) * ddt_3d |
---|
| 1795 | ENDIF |
---|
| 1796 | ! |
---|
| 1797 | !-- Calculate final tendency |
---|
| 1798 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 1799 | |
---|
[138] | 1800 | ENDDO |
---|
| 1801 | ENDDO |
---|
| 1802 | ENDDO |
---|
| 1803 | |
---|
| 1804 | ! |
---|
| 1805 | !-- v-component |
---|
| 1806 | CASE ( 2 ) |
---|
| 1807 | DO i = nxl, nxr |
---|
| 1808 | DO j = nysv, nyn |
---|
[2232] | 1809 | ! |
---|
[4335] | 1810 | !-- Set control flags indicating north- and southward-orientated |
---|
| 1811 | !-- building edges. Note, building_egde_s is set from the perspective |
---|
| 1812 | !-- of the potential rooftop grid point, while building_edge_n is |
---|
| 1813 | !-- is set from the perspective of the non-building grid point. |
---|
[4346] | 1814 | building_edge_s = ANY( BTEST( wall_flags_total_0(:,j,i), 6 ) )& |
---|
| 1815 | .AND. .NOT. ANY( BTEST( wall_flags_total_0(:,j-1,i), 6 ) ) |
---|
| 1816 | building_edge_n = ANY( BTEST( wall_flags_total_0(:,j-1,i), 6 ) )& |
---|
| 1817 | .AND. .NOT. ANY( BTEST( wall_flags_total_0(:,j,i), 6 ) ) |
---|
[4335] | 1818 | ! |
---|
[2232] | 1819 | !-- Determine topography-top index on v-grid |
---|
[4341] | 1820 | DO k = topo_top_ind(j,i,2)+1, topo_top_ind(j,i,2) + pch_index_ji(j,i) |
---|
[2317] | 1821 | |
---|
[4341] | 1822 | kk = k - topo_top_ind(j,i,2) !- lad arrays are defined flat |
---|
[1484] | 1823 | ! |
---|
| 1824 | !-- In order to create sharp boundaries of the plant canopy, |
---|
[4335] | 1825 | !-- the lad on the v-grid at index (k,j,i) is equal to lad_s(k,j,i), |
---|
| 1826 | !-- rather than being interpolated from the surrounding lad_s, |
---|
| 1827 | !-- because this would yield smaller lad at the canopy boundaries |
---|
| 1828 | !-- than inside of the canopy. |
---|
| 1829 | !-- For the same reason, the lad at the northmost(j+1)canopy |
---|
| 1830 | !-- boundary on the v-grid equals lad_s(k,j,i), which is considered |
---|
| 1831 | !-- in the next if-statement. Note, at left-sided building edges |
---|
| 1832 | !-- this is not applied, here the LAD is equals the LAD at grid |
---|
| 1833 | !-- point (k,j,i), in order to avoid that LAD is mistakenly mapped |
---|
| 1834 | !-- on top of a roof where (usually) is no LAD is defined. |
---|
[1721] | 1835 | lad_local = lad_s(kk,j,i) |
---|
[4335] | 1836 | IF ( lad_local == 0.0_wp .AND. lad_s(kk,j-1,i) > 0.0_wp & |
---|
| 1837 | .AND. .NOT. building_edge_s ) lad_local = lad_s(kk,j-1,i) |
---|
| 1838 | ! |
---|
| 1839 | !-- In order to avoid that LAD is mistakenly considered at right- |
---|
| 1840 | !-- sided building edges (here the topography-top index for the |
---|
| 1841 | !-- u-component at index j,i is still on the building while the |
---|
| 1842 | !-- topography top for the scalar isn't), LAD is taken from grid |
---|
| 1843 | !-- point (j,i-1). |
---|
| 1844 | IF ( lad_local > 0.0_wp .AND. lad_s(kk,j-1,i) == 0.0_wp & |
---|
| 1845 | .AND. building_edge_n ) lad_local = lad_s(kk,j-1,i) |
---|
[1484] | 1846 | |
---|
| 1847 | pre_tend = 0.0_wp |
---|
| 1848 | pre_v = 0.0_wp |
---|
| 1849 | ! |
---|
| 1850 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
[4342] | 1851 | pre_tend = - canopy_drag_coeff * & |
---|
[1484] | 1852 | lad_local * & |
---|
| 1853 | SQRT( ( 0.25_wp * ( u(k,j-1,i) + & |
---|
| 1854 | u(k,j-1,i+1) + & |
---|
| 1855 | u(k,j,i) + & |
---|
| 1856 | u(k,j,i+1) ) & |
---|
| 1857 | )**2 + & |
---|
| 1858 | v(k,j,i)**2 + & |
---|
| 1859 | ( 0.25_wp * ( w(k-1,j-1,i) + & |
---|
| 1860 | w(k-1,j,i) + & |
---|
| 1861 | w(k,j-1,i) + & |
---|
| 1862 | w(k,j,i) ) & |
---|
| 1863 | )**2 & |
---|
| 1864 | ) * & |
---|
| 1865 | v(k,j,i) |
---|
| 1866 | |
---|
| 1867 | ! |
---|
| 1868 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 1869 | pre_v = v(k,j,i) + dt_3d * pre_tend |
---|
| 1870 | ! |
---|
| 1871 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
| 1872 | !-- and in case the signs are different, limit the tendency |
---|
| 1873 | IF ( SIGN(pre_v,v(k,j,i)) /= pre_v ) THEN |
---|
| 1874 | pre_tend = - v(k,j,i) * ddt_3d |
---|
| 1875 | ELSE |
---|
| 1876 | pre_tend = pre_tend |
---|
| 1877 | ENDIF |
---|
| 1878 | ! |
---|
| 1879 | !-- Calculate final tendency |
---|
| 1880 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 1881 | |
---|
[138] | 1882 | ENDDO |
---|
| 1883 | ENDDO |
---|
| 1884 | ENDDO |
---|
| 1885 | |
---|
| 1886 | ! |
---|
| 1887 | !-- w-component |
---|
| 1888 | CASE ( 3 ) |
---|
| 1889 | DO i = nxl, nxr |
---|
| 1890 | DO j = nys, nyn |
---|
[2232] | 1891 | ! |
---|
| 1892 | !-- Determine topography-top index on w-grid |
---|
[4341] | 1893 | DO k = topo_top_ind(j,i,3)+1, topo_top_ind(j,i,3) + pch_index_ji(j,i) - 1 |
---|
[2317] | 1894 | |
---|
[4341] | 1895 | kk = k - topo_top_ind(j,i,3) !- lad arrays are defined flat |
---|
[1484] | 1896 | |
---|
| 1897 | pre_tend = 0.0_wp |
---|
| 1898 | pre_w = 0.0_wp |
---|
| 1899 | ! |
---|
| 1900 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
[4342] | 1901 | pre_tend = - canopy_drag_coeff * & |
---|
[1484] | 1902 | (0.5_wp * & |
---|
[1721] | 1903 | ( lad_s(kk+1,j,i) + lad_s(kk,j,i) )) * & |
---|
[1484] | 1904 | SQRT( ( 0.25_wp * ( u(k,j,i) + & |
---|
| 1905 | u(k,j,i+1) + & |
---|
| 1906 | u(k+1,j,i) + & |
---|
| 1907 | u(k+1,j,i+1) ) & |
---|
| 1908 | )**2 + & |
---|
| 1909 | ( 0.25_wp * ( v(k,j,i) + & |
---|
| 1910 | v(k,j+1,i) + & |
---|
| 1911 | v(k+1,j,i) + & |
---|
| 1912 | v(k+1,j+1,i) ) & |
---|
| 1913 | )**2 + & |
---|
| 1914 | w(k,j,i)**2 & |
---|
| 1915 | ) * & |
---|
| 1916 | w(k,j,i) |
---|
| 1917 | ! |
---|
| 1918 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 1919 | pre_w = w(k,j,i) + dt_3d * pre_tend |
---|
| 1920 | ! |
---|
| 1921 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
| 1922 | !-- and in case the signs are different, limit the tendency |
---|
| 1923 | IF ( SIGN(pre_w,w(k,j,i)) /= pre_w ) THEN |
---|
| 1924 | pre_tend = - w(k,j,i) * ddt_3d |
---|
| 1925 | ELSE |
---|
| 1926 | pre_tend = pre_tend |
---|
| 1927 | ENDIF |
---|
| 1928 | ! |
---|
| 1929 | !-- Calculate final tendency |
---|
| 1930 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 1931 | |
---|
[138] | 1932 | ENDDO |
---|
| 1933 | ENDDO |
---|
| 1934 | ENDDO |
---|
| 1935 | |
---|
| 1936 | ! |
---|
[153] | 1937 | !-- potential temperature |
---|
[138] | 1938 | CASE ( 4 ) |
---|
[3449] | 1939 | IF ( humidity ) THEN |
---|
| 1940 | DO i = nxl, nxr |
---|
| 1941 | DO j = nys, nyn |
---|
| 1942 | !-- Determine topography-top index on scalar-grid |
---|
[4341] | 1943 | DO k = topo_top_ind(j,i,0)+1, topo_top_ind(j,i,0) + pch_index_ji(j,i) |
---|
| 1944 | kk = k - topo_top_ind(j,i,0) !- lad arrays are defined flat |
---|
| 1945 | tend(k,j,i) = tend(k,j,i) + pcm_heating_rate(kk,j,i) - pcm_latent_rate(kk,j,i) |
---|
[3449] | 1946 | ENDDO |
---|
[153] | 1947 | ENDDO |
---|
| 1948 | ENDDO |
---|
[3449] | 1949 | ELSE |
---|
| 1950 | DO i = nxl, nxr |
---|
| 1951 | DO j = nys, nyn |
---|
| 1952 | !-- Determine topography-top index on scalar-grid |
---|
[4341] | 1953 | DO k = topo_top_ind(j,i,0)+1, topo_top_ind(j,i,0) + pch_index_ji(j,i) |
---|
| 1954 | kk = k - topo_top_ind(j,i,0) !- lad arrays are defined flat |
---|
| 1955 | tend(k,j,i) = tend(k,j,i) + pcm_heating_rate(kk,j,i) |
---|
[3449] | 1956 | ENDDO |
---|
| 1957 | ENDDO |
---|
| 1958 | ENDDO |
---|
| 1959 | ENDIF |
---|
[153] | 1960 | |
---|
| 1961 | ! |
---|
[1960] | 1962 | !-- humidity |
---|
[153] | 1963 | CASE ( 5 ) |
---|
| 1964 | DO i = nxl, nxr |
---|
| 1965 | DO j = nys, nyn |
---|
[2232] | 1966 | ! |
---|
| 1967 | !-- Determine topography-top index on scalar-grid |
---|
[4341] | 1968 | DO k = topo_top_ind(j,i,0)+1, topo_top_ind(j,i,0) + pch_index_ji(j,i) |
---|
[2317] | 1969 | |
---|
[4341] | 1970 | kk = k - topo_top_ind(j,i,0) !- lad arrays are defined flat |
---|
[2232] | 1971 | |
---|
[3449] | 1972 | IF ( .NOT. plant_canopy_transpiration ) THEN |
---|
[4341] | 1973 | ! pcm_transpiration_rate is calculated in radiation model |
---|
[3449] | 1974 | ! in case of plant_canopy_transpiration = .T. |
---|
| 1975 | ! to include also the dependecy to the radiation |
---|
| 1976 | ! in the plant canopy box |
---|
[4342] | 1977 | pcm_transpiration_rate(kk,j,i) = - leaf_scalar_exch_coeff & |
---|
| 1978 | * lad_s(kk,j,i) * & |
---|
| 1979 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 1980 | u(k,j,i+1) ) & |
---|
| 1981 | )**2 + & |
---|
| 1982 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 1983 | v(k,j+1,i) ) & |
---|
| 1984 | )**2 + & |
---|
| 1985 | ( 0.5_wp * ( w(k-1,j,i) + & |
---|
| 1986 | w(k,j,i) ) & |
---|
| 1987 | )**2 & |
---|
| 1988 | ) * & |
---|
| 1989 | ( q(k,j,i) - leaf_surface_conc ) |
---|
[3449] | 1990 | ENDIF |
---|
| 1991 | |
---|
[4341] | 1992 | tend(k,j,i) = tend(k,j,i) + pcm_transpiration_rate(kk,j,i) |
---|
[153] | 1993 | ENDDO |
---|
| 1994 | ENDDO |
---|
| 1995 | ENDDO |
---|
| 1996 | |
---|
| 1997 | ! |
---|
| 1998 | !-- sgs-tke |
---|
| 1999 | CASE ( 6 ) |
---|
| 2000 | DO i = nxl, nxr |
---|
| 2001 | DO j = nys, nyn |
---|
[2232] | 2002 | ! |
---|
| 2003 | !-- Determine topography-top index on scalar-grid |
---|
[4341] | 2004 | DO k = topo_top_ind(j,i,0)+1, topo_top_ind(j,i,0) + pch_index_ji(j,i) |
---|
[2317] | 2005 | |
---|
[4341] | 2006 | kk = k - topo_top_ind(j,i,0) !- lad arrays are defined flat |
---|
[1484] | 2007 | tend(k,j,i) = tend(k,j,i) - & |
---|
[4342] | 2008 | 2.0_wp * canopy_drag_coeff * & |
---|
[1721] | 2009 | lad_s(kk,j,i) * & |
---|
[1484] | 2010 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 2011 | u(k,j,i+1) ) & |
---|
| 2012 | )**2 + & |
---|
| 2013 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 2014 | v(k,j+1,i) ) & |
---|
| 2015 | )**2 + & |
---|
| 2016 | ( 0.5_wp * ( w(k,j,i) + & |
---|
| 2017 | w(k+1,j,i) ) & |
---|
| 2018 | )**2 & |
---|
| 2019 | ) * & |
---|
| 2020 | e(k,j,i) |
---|
[138] | 2021 | ENDDO |
---|
| 2022 | ENDDO |
---|
| 2023 | ENDDO |
---|
[1960] | 2024 | ! |
---|
| 2025 | !-- scalar concentration |
---|
| 2026 | CASE ( 7 ) |
---|
| 2027 | DO i = nxl, nxr |
---|
| 2028 | DO j = nys, nyn |
---|
[2232] | 2029 | ! |
---|
| 2030 | !-- Determine topography-top index on scalar-grid |
---|
[4341] | 2031 | DO k = topo_top_ind(j,i,0)+1, topo_top_ind(j,i,0) + pch_index_ji(j,i) |
---|
[2317] | 2032 | |
---|
[4341] | 2033 | kk = k - topo_top_ind(j,i,0) !- lad arrays are defined flat |
---|
[1960] | 2034 | tend(k,j,i) = tend(k,j,i) - & |
---|
[4342] | 2035 | leaf_scalar_exch_coeff * & |
---|
[1960] | 2036 | lad_s(kk,j,i) * & |
---|
| 2037 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 2038 | u(k,j,i+1) ) & |
---|
| 2039 | )**2 + & |
---|
| 2040 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 2041 | v(k,j+1,i) ) & |
---|
| 2042 | )**2 + & |
---|
| 2043 | ( 0.5_wp * ( w(k-1,j,i) + & |
---|
| 2044 | w(k,j,i) ) & |
---|
| 2045 | )**2 & |
---|
| 2046 | ) * & |
---|
[4342] | 2047 | ( s(k,j,i) - leaf_surface_conc ) |
---|
[1960] | 2048 | ENDDO |
---|
| 2049 | ENDDO |
---|
| 2050 | ENDDO |
---|
[1484] | 2051 | |
---|
| 2052 | |
---|
[1960] | 2053 | |
---|
[138] | 2054 | CASE DEFAULT |
---|
| 2055 | |
---|
[257] | 2056 | WRITE( message_string, * ) 'wrong component: ', component |
---|
[1826] | 2057 | CALL message( 'pcm_tendency', 'PA0279', 1, 2, 0, 6, 0 ) |
---|
[138] | 2058 | |
---|
| 2059 | END SELECT |
---|
| 2060 | |
---|
[1826] | 2061 | END SUBROUTINE pcm_tendency |
---|
[138] | 2062 | |
---|
| 2063 | |
---|
| 2064 | !------------------------------------------------------------------------------! |
---|
[1484] | 2065 | ! Description: |
---|
| 2066 | ! ------------ |
---|
[1682] | 2067 | !> Calculation of the tendency terms, accounting for the effect of the plant |
---|
| 2068 | !> canopy on momentum and scalar quantities. |
---|
| 2069 | !> |
---|
| 2070 | !> The canopy is located where the leaf area density lad_s(k,j,i) > 0.0 |
---|
[1826] | 2071 | !> (defined on scalar grid), as initialized in subroutine pcm_init. |
---|
[1682] | 2072 | !> The lad on the w-grid is vertically interpolated from the surrounding |
---|
| 2073 | !> lad_s. The upper boundary of the canopy is defined on the w-grid at |
---|
| 2074 | !> k = pch_index. Here, the lad is zero. |
---|
| 2075 | !> |
---|
| 2076 | !> The canopy drag must be limited (previously accounted for by calculation of |
---|
| 2077 | !> a limiting canopy timestep for the determination of the maximum LES timestep |
---|
| 2078 | !> in subroutine timestep), since it is physically impossible that the canopy |
---|
| 2079 | !> drag alone can locally change the sign of a velocity component. This |
---|
| 2080 | !> limitation is realized by calculating preliminary tendencies and velocities. |
---|
| 2081 | !> It is subsequently checked if the preliminary new velocity has a different |
---|
| 2082 | !> sign than the current velocity. If so, the tendency is limited in a way that |
---|
| 2083 | !> the velocity can at maximum be reduced to zero by the canopy drag. |
---|
| 2084 | !> |
---|
| 2085 | !> |
---|
| 2086 | !> Call for grid point i,j |
---|
[138] | 2087 | !------------------------------------------------------------------------------! |
---|
[1826] | 2088 | SUBROUTINE pcm_tendency_ij( i, j, component ) |
---|
[138] | 2089 | |
---|
[1682] | 2090 | INTEGER(iwp) :: component !< prognostic variable (u,v,w,pt,q,e) |
---|
| 2091 | INTEGER(iwp) :: i !< running index |
---|
| 2092 | INTEGER(iwp) :: j !< running index |
---|
| 2093 | INTEGER(iwp) :: k !< running index |
---|
[1721] | 2094 | INTEGER(iwp) :: kk !< running index for flat lad arrays |
---|
[138] | 2095 | |
---|
[4314] | 2096 | LOGICAL :: building_edge_e !< control flag indicating an eastward-facing building edge |
---|
| 2097 | LOGICAL :: building_edge_n !< control flag indicating a north-facing building edge |
---|
| 2098 | LOGICAL :: building_edge_s !< control flag indicating a south-facing building edge |
---|
| 2099 | LOGICAL :: building_edge_w !< control flag indicating a westward-facing building edge |
---|
| 2100 | |
---|
[1682] | 2101 | REAL(wp) :: ddt_3d !< inverse of the LES timestep (dt_3d) |
---|
| 2102 | REAL(wp) :: lad_local !< local lad value |
---|
| 2103 | REAL(wp) :: pre_tend !< preliminary tendency |
---|
| 2104 | REAL(wp) :: pre_u !< preliminary u-value |
---|
| 2105 | REAL(wp) :: pre_v !< preliminary v-value |
---|
| 2106 | REAL(wp) :: pre_w !< preliminary w-value |
---|
[1484] | 2107 | |
---|
| 2108 | |
---|
| 2109 | ddt_3d = 1.0_wp / dt_3d |
---|
[138] | 2110 | ! |
---|
[1484] | 2111 | !-- Compute drag for the three velocity components and the SGS-TKE |
---|
[142] | 2112 | SELECT CASE ( component ) |
---|
[138] | 2113 | |
---|
| 2114 | ! |
---|
[142] | 2115 | !-- u-component |
---|
[1484] | 2116 | CASE ( 1 ) |
---|
[2232] | 2117 | ! |
---|
[4314] | 2118 | !-- Set control flags indicating east- and westward-orientated |
---|
| 2119 | !-- building edges. Note, building_egde_w is set from the perspective |
---|
| 2120 | !-- of the potential rooftop grid point, while building_edge_e is |
---|
| 2121 | !-- is set from the perspective of the non-building grid point. |
---|
[4346] | 2122 | building_edge_w = ANY( BTEST( wall_flags_total_0(:,j,i), 6 ) ) .AND. & |
---|
| 2123 | .NOT. ANY( BTEST( wall_flags_total_0(:,j,i-1), 6 ) ) |
---|
| 2124 | building_edge_e = ANY( BTEST( wall_flags_total_0(:,j,i-1), 6 ) ) .AND. & |
---|
| 2125 | .NOT. ANY( BTEST( wall_flags_total_0(:,j,i), 6 ) ) |
---|
[4314] | 2126 | ! |
---|
[2232] | 2127 | !-- Determine topography-top index on u-grid |
---|
[4341] | 2128 | DO k = topo_top_ind(j,i,1) + 1, topo_top_ind(j,i,1) + pch_index_ji(j,i) |
---|
[2317] | 2129 | |
---|
[4341] | 2130 | kk = k - topo_top_ind(j,i,1) !- lad arrays are defined flat |
---|
[138] | 2131 | |
---|
| 2132 | ! |
---|
[1484] | 2133 | !-- In order to create sharp boundaries of the plant canopy, |
---|
| 2134 | !-- the lad on the u-grid at index (k,j,i) is equal to lad_s(k,j,i), |
---|
| 2135 | !-- rather than being interpolated from the surrounding lad_s, |
---|
| 2136 | !-- because this would yield smaller lad at the canopy boundaries |
---|
| 2137 | !-- than inside of the canopy. |
---|
| 2138 | !-- For the same reason, the lad at the rightmost(i+1)canopy |
---|
[4314] | 2139 | !-- boundary on the u-grid equals lad_s(k,j,i), which is considered |
---|
| 2140 | !-- in the next if-statement. Note, at left-sided building edges |
---|
| 2141 | !-- this is not applied, here the LAD is equals the LAD at grid |
---|
| 2142 | !-- point (k,j,i), in order to avoid that LAD is mistakenly mapped |
---|
| 2143 | !-- on top of a roof where (usually) is no LAD is defined. |
---|
[1721] | 2144 | lad_local = lad_s(kk,j,i) |
---|
[4314] | 2145 | IF ( lad_local == 0.0_wp .AND. lad_s(kk,j,i-1) > 0.0_wp .AND. & |
---|
| 2146 | .NOT. building_edge_w ) lad_local = lad_s(kk,j,i-1) |
---|
| 2147 | ! |
---|
| 2148 | !-- In order to avoid that LAD is mistakenly considered at right- |
---|
| 2149 | !-- sided building edges (here the topography-top index for the |
---|
| 2150 | !-- u-component at index j,i is still on the building while the |
---|
| 2151 | !-- topography top for the scalar isn't), LAD is taken from grid |
---|
| 2152 | !-- point (j,i-1). |
---|
| 2153 | IF ( lad_local > 0.0_wp .AND. lad_s(kk,j,i-1) == 0.0_wp .AND. & |
---|
| 2154 | building_edge_e ) lad_local = lad_s(kk,j,i-1) |
---|
[1484] | 2155 | |
---|
| 2156 | pre_tend = 0.0_wp |
---|
| 2157 | pre_u = 0.0_wp |
---|
| 2158 | ! |
---|
| 2159 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
[4342] | 2160 | pre_tend = - canopy_drag_coeff * & |
---|
[1484] | 2161 | lad_local * & |
---|
| 2162 | SQRT( u(k,j,i)**2 + & |
---|
| 2163 | ( 0.25_wp * ( v(k,j,i-1) + & |
---|
| 2164 | v(k,j,i) + & |
---|
| 2165 | v(k,j+1,i) + & |
---|
| 2166 | v(k,j+1,i-1) ) & |
---|
| 2167 | )**2 + & |
---|
| 2168 | ( 0.25_wp * ( w(k-1,j,i-1) + & |
---|
| 2169 | w(k-1,j,i) + & |
---|
| 2170 | w(k,j,i-1) + & |
---|
| 2171 | w(k,j,i) ) & |
---|
| 2172 | )**2 & |
---|
| 2173 | ) * & |
---|
| 2174 | u(k,j,i) |
---|
| 2175 | |
---|
| 2176 | ! |
---|
| 2177 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 2178 | pre_u = u(k,j,i) + dt_3d * pre_tend |
---|
| 2179 | ! |
---|
| 2180 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
| 2181 | !-- and in case the signs are different, limit the tendency |
---|
| 2182 | IF ( SIGN(pre_u,u(k,j,i)) /= pre_u ) THEN |
---|
| 2183 | pre_tend = - u(k,j,i) * ddt_3d |
---|
| 2184 | ELSE |
---|
| 2185 | pre_tend = pre_tend |
---|
| 2186 | ENDIF |
---|
| 2187 | ! |
---|
| 2188 | !-- Calculate final tendency |
---|
| 2189 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 2190 | ENDDO |
---|
| 2191 | |
---|
| 2192 | |
---|
| 2193 | ! |
---|
[142] | 2194 | !-- v-component |
---|
[1484] | 2195 | CASE ( 2 ) |
---|
[2232] | 2196 | ! |
---|
[4314] | 2197 | !-- Set control flags indicating north- and southward-orientated |
---|
| 2198 | !-- building edges. Note, building_egde_s is set from the perspective |
---|
| 2199 | !-- of the potential rooftop grid point, while building_edge_n is |
---|
| 2200 | !-- is set from the perspective of the non-building grid point. |
---|
[4346] | 2201 | building_edge_s = ANY( BTEST( wall_flags_total_0(:,j,i), 6 ) ) .AND. & |
---|
| 2202 | .NOT. ANY( BTEST( wall_flags_total_0(:,j-1,i), 6 ) ) |
---|
| 2203 | building_edge_n = ANY( BTEST( wall_flags_total_0(:,j-1,i), 6 ) ) .AND. & |
---|
| 2204 | .NOT. ANY( BTEST( wall_flags_total_0(:,j,i), 6 ) ) |
---|
[4314] | 2205 | ! |
---|
[2232] | 2206 | !-- Determine topography-top index on v-grid |
---|
[4341] | 2207 | DO k = topo_top_ind(j,i,2) + 1, topo_top_ind(j,i,2) + pch_index_ji(j,i) |
---|
[138] | 2208 | |
---|
[4341] | 2209 | kk = k - topo_top_ind(j,i,2) !- lad arrays are defined flat |
---|
[138] | 2210 | ! |
---|
[1484] | 2211 | !-- In order to create sharp boundaries of the plant canopy, |
---|
| 2212 | !-- the lad on the v-grid at index (k,j,i) is equal to lad_s(k,j,i), |
---|
| 2213 | !-- rather than being interpolated from the surrounding lad_s, |
---|
| 2214 | !-- because this would yield smaller lad at the canopy boundaries |
---|
| 2215 | !-- than inside of the canopy. |
---|
| 2216 | !-- For the same reason, the lad at the northmost(j+1)canopy |
---|
[4314] | 2217 | !-- boundary on the v-grid equals lad_s(k,j,i), which is considered |
---|
| 2218 | !-- in the next if-statement. Note, at left-sided building edges |
---|
| 2219 | !-- this is not applied, here the LAD is equals the LAD at grid |
---|
| 2220 | !-- point (k,j,i), in order to avoid that LAD is mistakenly mapped |
---|
| 2221 | !-- on top of a roof where (usually) is no LAD is defined. |
---|
[1721] | 2222 | lad_local = lad_s(kk,j,i) |
---|
[4314] | 2223 | IF ( lad_local == 0.0_wp .AND. lad_s(kk,j-1,i) > 0.0_wp .AND. & |
---|
| 2224 | .NOT. building_edge_s ) lad_local = lad_s(kk,j-1,i) |
---|
| 2225 | ! |
---|
| 2226 | !-- In order to avoid that LAD is mistakenly considered at right- |
---|
| 2227 | !-- sided building edges (here the topography-top index for the |
---|
| 2228 | !-- u-component at index j,i is still on the building while the |
---|
| 2229 | !-- topography top for the scalar isn't), LAD is taken from grid |
---|
| 2230 | !-- point (j,i-1). |
---|
| 2231 | IF ( lad_local > 0.0_wp .AND. lad_s(kk,j-1,i) == 0.0_wp .AND. & |
---|
| 2232 | building_edge_n ) lad_local = lad_s(kk,j-1,i) |
---|
[1484] | 2233 | |
---|
| 2234 | pre_tend = 0.0_wp |
---|
| 2235 | pre_v = 0.0_wp |
---|
| 2236 | ! |
---|
| 2237 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
[4342] | 2238 | pre_tend = - canopy_drag_coeff * & |
---|
[1484] | 2239 | lad_local * & |
---|
| 2240 | SQRT( ( 0.25_wp * ( u(k,j-1,i) + & |
---|
| 2241 | u(k,j-1,i+1) + & |
---|
| 2242 | u(k,j,i) + & |
---|
| 2243 | u(k,j,i+1) ) & |
---|
| 2244 | )**2 + & |
---|
| 2245 | v(k,j,i)**2 + & |
---|
| 2246 | ( 0.25_wp * ( w(k-1,j-1,i) + & |
---|
| 2247 | w(k-1,j,i) + & |
---|
| 2248 | w(k,j-1,i) + & |
---|
| 2249 | w(k,j,i) ) & |
---|
| 2250 | )**2 & |
---|
| 2251 | ) * & |
---|
| 2252 | v(k,j,i) |
---|
| 2253 | |
---|
| 2254 | ! |
---|
| 2255 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 2256 | pre_v = v(k,j,i) + dt_3d * pre_tend |
---|
| 2257 | ! |
---|
| 2258 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
| 2259 | !-- and in case the signs are different, limit the tendency |
---|
| 2260 | IF ( SIGN(pre_v,v(k,j,i)) /= pre_v ) THEN |
---|
| 2261 | pre_tend = - v(k,j,i) * ddt_3d |
---|
| 2262 | ELSE |
---|
| 2263 | pre_tend = pre_tend |
---|
| 2264 | ENDIF |
---|
| 2265 | ! |
---|
| 2266 | !-- Calculate final tendency |
---|
| 2267 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 2268 | ENDDO |
---|
| 2269 | |
---|
| 2270 | |
---|
| 2271 | ! |
---|
[142] | 2272 | !-- w-component |
---|
[1484] | 2273 | CASE ( 3 ) |
---|
[2232] | 2274 | ! |
---|
| 2275 | !-- Determine topography-top index on w-grid |
---|
[4341] | 2276 | DO k = topo_top_ind(j,i,3) + 1, topo_top_ind(j,i,3) + pch_index_ji(j,i) - 1 |
---|
[2317] | 2277 | |
---|
[4341] | 2278 | kk = k - topo_top_ind(j,i,3) !- lad arrays are defined flat |
---|
[138] | 2279 | |
---|
[1484] | 2280 | pre_tend = 0.0_wp |
---|
| 2281 | pre_w = 0.0_wp |
---|
[138] | 2282 | ! |
---|
[1484] | 2283 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
[4342] | 2284 | pre_tend = - canopy_drag_coeff * & |
---|
[1484] | 2285 | (0.5_wp * & |
---|
[1721] | 2286 | ( lad_s(kk+1,j,i) + lad_s(kk,j,i) )) * & |
---|
[1484] | 2287 | SQRT( ( 0.25_wp * ( u(k,j,i) + & |
---|
| 2288 | u(k,j,i+1) + & |
---|
| 2289 | u(k+1,j,i) + & |
---|
| 2290 | u(k+1,j,i+1) ) & |
---|
| 2291 | )**2 + & |
---|
| 2292 | ( 0.25_wp * ( v(k,j,i) + & |
---|
| 2293 | v(k,j+1,i) + & |
---|
| 2294 | v(k+1,j,i) + & |
---|
| 2295 | v(k+1,j+1,i) ) & |
---|
| 2296 | )**2 + & |
---|
| 2297 | w(k,j,i)**2 & |
---|
| 2298 | ) * & |
---|
| 2299 | w(k,j,i) |
---|
| 2300 | ! |
---|
| 2301 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 2302 | pre_w = w(k,j,i) + dt_3d * pre_tend |
---|
| 2303 | ! |
---|
| 2304 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
| 2305 | !-- and in case the signs are different, limit the tendency |
---|
| 2306 | IF ( SIGN(pre_w,w(k,j,i)) /= pre_w ) THEN |
---|
| 2307 | pre_tend = - w(k,j,i) * ddt_3d |
---|
| 2308 | ELSE |
---|
| 2309 | pre_tend = pre_tend |
---|
| 2310 | ENDIF |
---|
| 2311 | ! |
---|
| 2312 | !-- Calculate final tendency |
---|
| 2313 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 2314 | ENDDO |
---|
| 2315 | |
---|
| 2316 | ! |
---|
[153] | 2317 | !-- potential temperature |
---|
| 2318 | CASE ( 4 ) |
---|
[2232] | 2319 | ! |
---|
| 2320 | !-- Determine topography-top index on scalar grid |
---|
[3449] | 2321 | IF ( humidity ) THEN |
---|
[4341] | 2322 | DO k = topo_top_ind(j,i,0) + 1, topo_top_ind(j,i,0) + pch_index_ji(j,i) |
---|
| 2323 | kk = k - topo_top_ind(j,i,0) !- lad arrays are defined flat |
---|
| 2324 | tend(k,j,i) = tend(k,j,i) + pcm_heating_rate(kk,j,i) - & |
---|
| 2325 | pcm_latent_rate(kk,j,i) |
---|
[3449] | 2326 | ENDDO |
---|
| 2327 | ELSE |
---|
[4341] | 2328 | DO k = topo_top_ind(j,i,0) + 1, topo_top_ind(j,i,0) + pch_index_ji(j,i) |
---|
| 2329 | kk = k - topo_top_ind(j,i,0) !- lad arrays are defined flat |
---|
| 2330 | tend(k,j,i) = tend(k,j,i) + pcm_heating_rate(kk,j,i) |
---|
[3449] | 2331 | ENDDO |
---|
| 2332 | ENDIF |
---|
[153] | 2333 | |
---|
| 2334 | ! |
---|
[1960] | 2335 | !-- humidity |
---|
[153] | 2336 | CASE ( 5 ) |
---|
[2232] | 2337 | ! |
---|
| 2338 | !-- Determine topography-top index on scalar grid |
---|
[4341] | 2339 | DO k = topo_top_ind(j,i,0) + 1, topo_top_ind(j,i,0) + pch_index_ji(j,i) |
---|
| 2340 | kk = k - topo_top_ind(j,i,0) !- lad arrays are defined flat |
---|
[3449] | 2341 | IF ( .NOT. plant_canopy_transpiration ) THEN |
---|
[4341] | 2342 | ! pcm_transpiration_rate is calculated in radiation model |
---|
[3449] | 2343 | ! in case of plant_canopy_transpiration = .T. |
---|
| 2344 | ! to include also the dependecy to the radiation |
---|
| 2345 | ! in the plant canopy box |
---|
[4342] | 2346 | pcm_transpiration_rate(kk,j,i) = - leaf_scalar_exch_coeff & |
---|
[3582] | 2347 | * lad_s(kk,j,i) * & |
---|
| 2348 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 2349 | u(k,j,i+1) ) & |
---|
| 2350 | )**2 + & |
---|
| 2351 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 2352 | v(k,j+1,i) ) & |
---|
| 2353 | )**2 + & |
---|
| 2354 | ( 0.5_wp * ( w(k-1,j,i) + & |
---|
| 2355 | w(k,j,i) ) & |
---|
| 2356 | )**2 & |
---|
| 2357 | ) * & |
---|
[4342] | 2358 | ( q(k,j,i) - leaf_surface_conc ) |
---|
[3449] | 2359 | ENDIF |
---|
[2232] | 2360 | |
---|
[4341] | 2361 | tend(k,j,i) = tend(k,j,i) + pcm_transpiration_rate(kk,j,i) |
---|
[3014] | 2362 | |
---|
[153] | 2363 | ENDDO |
---|
| 2364 | |
---|
| 2365 | ! |
---|
[142] | 2366 | !-- sgs-tke |
---|
[1484] | 2367 | CASE ( 6 ) |
---|
[2232] | 2368 | ! |
---|
| 2369 | !-- Determine topography-top index on scalar grid |
---|
[4341] | 2370 | DO k = topo_top_ind(j,i,0) + 1, topo_top_ind(j,i,0) + pch_index_ji(j,i) |
---|
[2317] | 2371 | |
---|
[4341] | 2372 | kk = k - topo_top_ind(j,i,0) |
---|
[1484] | 2373 | tend(k,j,i) = tend(k,j,i) - & |
---|
[4342] | 2374 | 2.0_wp * canopy_drag_coeff * & |
---|
[1721] | 2375 | lad_s(kk,j,i) * & |
---|
[1484] | 2376 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 2377 | u(k,j,i+1) ) & |
---|
| 2378 | )**2 + & |
---|
| 2379 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 2380 | v(k,j+1,i) ) & |
---|
| 2381 | )**2 + & |
---|
| 2382 | ( 0.5_wp * ( w(k,j,i) + & |
---|
| 2383 | w(k+1,j,i) ) & |
---|
| 2384 | )**2 & |
---|
| 2385 | ) * & |
---|
| 2386 | e(k,j,i) |
---|
| 2387 | ENDDO |
---|
[1960] | 2388 | |
---|
| 2389 | ! |
---|
| 2390 | !-- scalar concentration |
---|
| 2391 | CASE ( 7 ) |
---|
[2232] | 2392 | ! |
---|
| 2393 | !-- Determine topography-top index on scalar grid |
---|
[4341] | 2394 | DO k = topo_top_ind(j,i,0) + 1, topo_top_ind(j,i,0) + pch_index_ji(j,i) |
---|
[2317] | 2395 | |
---|
[4341] | 2396 | kk = k - topo_top_ind(j,i,0) |
---|
[1960] | 2397 | tend(k,j,i) = tend(k,j,i) - & |
---|
[4342] | 2398 | leaf_scalar_exch_coeff * & |
---|
[1960] | 2399 | lad_s(kk,j,i) * & |
---|
| 2400 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 2401 | u(k,j,i+1) ) & |
---|
| 2402 | )**2 + & |
---|
| 2403 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 2404 | v(k,j+1,i) ) & |
---|
| 2405 | )**2 + & |
---|
| 2406 | ( 0.5_wp * ( w(k-1,j,i) + & |
---|
| 2407 | w(k,j,i) ) & |
---|
| 2408 | )**2 & |
---|
| 2409 | ) * & |
---|
[4342] | 2410 | ( s(k,j,i) - leaf_surface_conc ) |
---|
[1960] | 2411 | ENDDO |
---|
[138] | 2412 | |
---|
[142] | 2413 | CASE DEFAULT |
---|
[138] | 2414 | |
---|
[257] | 2415 | WRITE( message_string, * ) 'wrong component: ', component |
---|
[1826] | 2416 | CALL message( 'pcm_tendency', 'PA0279', 1, 2, 0, 6, 0 ) |
---|
[138] | 2417 | |
---|
[142] | 2418 | END SELECT |
---|
[138] | 2419 | |
---|
[1826] | 2420 | END SUBROUTINE pcm_tendency_ij |
---|
[138] | 2421 | |
---|
[4360] | 2422 | !------------------------------------------------------------------------------! |
---|
| 2423 | ! Description: |
---|
| 2424 | ! ------------ |
---|
| 2425 | !> Subroutine writes local (subdomain) restart data |
---|
| 2426 | !------------------------------------------------------------------------------! |
---|
| 2427 | SUBROUTINE pcm_wrd_local |
---|
[2007] | 2428 | |
---|
[4360] | 2429 | IF ( ALLOCATED( pcm_heatrate_av ) ) THEN |
---|
| 2430 | CALL wrd_write_string( 'pcm_heatrate_av' ) |
---|
| 2431 | WRITE ( 14 ) pcm_heatrate_av |
---|
| 2432 | ENDIF |
---|
| 2433 | |
---|
| 2434 | IF ( ALLOCATED( pcm_latentrate_av ) ) THEN |
---|
| 2435 | CALL wrd_write_string( 'pcm_latentrate_av' ) |
---|
| 2436 | WRITE ( 14 ) pcm_latentrate_av |
---|
| 2437 | ENDIF |
---|
| 2438 | |
---|
| 2439 | IF ( ALLOCATED( pcm_transpirationrate_av ) ) THEN |
---|
| 2440 | CALL wrd_write_string( 'pcm_transpirationrate_av' ) |
---|
| 2441 | WRITE ( 14 ) pcm_transpirationrate_av |
---|
| 2442 | ENDIF |
---|
| 2443 | |
---|
| 2444 | END SUBROUTINE pcm_wrd_local |
---|
| 2445 | |
---|
| 2446 | |
---|
[138] | 2447 | END MODULE plant_canopy_model_mod |
---|