[1826] | 1 | !> @file plant_canopy_model_mod.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[3655] | 17 | ! Copyright 1997-2019 Leibniz Universitaet Hannover |
---|
[3885] | 18 | ! Copyright 2017-2019 Institute of Computer Science of the |
---|
| 19 | ! Czech Academy of Sciences, Prague |
---|
[2000] | 20 | !------------------------------------------------------------------------------! |
---|
[1036] | 21 | ! |
---|
[257] | 22 | ! Current revisions: |
---|
[2977] | 23 | ! ------------------ |
---|
[2214] | 24 | ! |
---|
[4226] | 25 | ! |
---|
[2214] | 26 | ! Former revisions: |
---|
| 27 | ! ----------------- |
---|
| 28 | ! $Id: plant_canopy_model_mod.f90 4314 2019-11-29 10:29:20Z pavelkrc $ |
---|
[4314] | 29 | ! - Bugfix, plant canopy was still considered at building edges on for the u- |
---|
| 30 | ! and v-component. |
---|
| 31 | ! - Relax restriction of LAD on building tops. LAD is only omitted at |
---|
| 32 | ! locations where building grid points emerged artificially by the |
---|
| 33 | ! topography filtering. |
---|
| 34 | ! |
---|
| 35 | ! 4309 2019-11-26 18:49:59Z suehring |
---|
[4309] | 36 | ! Typo |
---|
| 37 | ! |
---|
| 38 | ! 4302 2019-11-22 13:15:56Z suehring |
---|
[4302] | 39 | ! Omit tall canopy mapped on top of buildings |
---|
| 40 | ! |
---|
| 41 | ! 4279 2019-10-29 08:48:17Z scharf |
---|
[4279] | 42 | ! unused variables removed |
---|
| 43 | ! |
---|
| 44 | ! 4258 2019-10-07 13:29:08Z scharf |
---|
[4278] | 45 | ! changed check for static driver and fixed bugs in initialization and header |
---|
| 46 | ! |
---|
| 47 | ! 4258 2019-10-07 13:29:08Z suehring |
---|
[4258] | 48 | ! Check if any LAD is prescribed when plant-canopy model is applied. |
---|
| 49 | ! |
---|
| 50 | ! 4226 2019-09-10 17:03:24Z suehring |
---|
[4226] | 51 | ! Bugfix, missing initialization of heating rate |
---|
| 52 | ! |
---|
| 53 | ! 4221 2019-09-09 08:50:35Z suehring |
---|
[4220] | 54 | ! Further bugfix in 3d data output for plant canopy |
---|
| 55 | ! |
---|
| 56 | ! 4216 2019-09-04 09:09:03Z suehring |
---|
[4216] | 57 | ! Bugfixes in 3d data output |
---|
| 58 | ! |
---|
| 59 | ! 4205 2019-08-30 13:25:00Z suehring |
---|
[4205] | 60 | ! Missing working precision + bugfix in calculation of wind speed |
---|
| 61 | ! |
---|
| 62 | ! 4188 2019-08-26 14:15:47Z suehring |
---|
[4188] | 63 | ! Minor adjustment in error number |
---|
| 64 | ! |
---|
| 65 | ! 4187 2019-08-26 12:43:15Z suehring |
---|
[4187] | 66 | ! Give specific error numbers instead of PA0999 |
---|
| 67 | ! |
---|
| 68 | ! 4182 2019-08-22 15:20:23Z scharf |
---|
[4182] | 69 | ! Corrected "Former revisions" section |
---|
| 70 | ! |
---|
| 71 | ! 4168 2019-08-16 13:50:17Z suehring |
---|
[4168] | 72 | ! Replace function get_topography_top_index by topo_top_ind |
---|
| 73 | ! |
---|
| 74 | ! 4127 2019-07-30 14:47:10Z suehring |
---|
[4127] | 75 | ! Output of 3D plant canopy variables changed. It is now relative to the local |
---|
| 76 | ! terrain rather than located at the acutal vertical level in the model. This |
---|
| 77 | ! way, the vertical dimension of the output can be significantly reduced. |
---|
| 78 | ! (merge from branch resler) |
---|
| 79 | ! |
---|
| 80 | ! 3885 2019-04-11 11:29:34Z kanani |
---|
[3885] | 81 | ! Changes related to global restructuring of location messages and introduction |
---|
| 82 | ! of additional debug messages |
---|
| 83 | ! |
---|
| 84 | ! 3864 2019-04-05 09:01:56Z monakurppa |
---|
[3761] | 85 | ! unsed variables removed |
---|
| 86 | ! |
---|
| 87 | ! 3745 2019-02-15 18:57:56Z suehring |
---|
[3745] | 88 | ! Bugfix in transpiration, floating invalid when temperature |
---|
| 89 | ! becomes > 40 degrees |
---|
| 90 | ! |
---|
| 91 | ! 3744 2019-02-15 18:38:58Z suehring |
---|
[3685] | 92 | ! Some interface calls moved to module_interface + cleanup |
---|
| 93 | ! |
---|
| 94 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
[3614] | 95 | ! unused variables removed |
---|
[3498] | 96 | ! |
---|
[4182] | 97 | ! 138 2007-11-28 10:03:58Z letzel |
---|
| 98 | ! Initial revision |
---|
| 99 | ! |
---|
[138] | 100 | ! Description: |
---|
| 101 | ! ------------ |
---|
[1682] | 102 | !> 1) Initialization of the canopy model, e.g. construction of leaf area density |
---|
[1826] | 103 | !> profile (subroutine pcm_init). |
---|
[1682] | 104 | !> 2) Calculation of sinks and sources of momentum, heat and scalar concentration |
---|
[1826] | 105 | !> due to canopy elements (subroutine pcm_tendency). |
---|
[3744] | 106 | ! |
---|
| 107 | ! @todo - precalculate constant terms in pcm_calc_transpiration_rate |
---|
[4216] | 108 | ! @todo - unify variable names (pcm_, pc_, ...) |
---|
[138] | 109 | !------------------------------------------------------------------------------! |
---|
[1682] | 110 | MODULE plant_canopy_model_mod |
---|
| 111 | |
---|
[1484] | 112 | USE arrays_3d, & |
---|
[3449] | 113 | ONLY: dzu, dzw, e, exner, hyp, pt, q, s, tend, u, v, w, zu, zw |
---|
[138] | 114 | |
---|
[3449] | 115 | USE basic_constants_and_equations_mod, & |
---|
| 116 | ONLY: c_p, degc_to_k, l_v, lv_d_cp, r_d, rd_d_rv |
---|
| 117 | |
---|
[3885] | 118 | USE control_parameters, & |
---|
| 119 | ONLY: debug_output, humidity |
---|
[3449] | 120 | |
---|
[1484] | 121 | USE indices, & |
---|
| 122 | ONLY: nbgp, nxl, nxlg, nxlu, nxr, nxrg, nyn, nyng, nys, nysg, nysv, & |
---|
[4314] | 123 | nz, nzb, nzt, topo_top_ind, wall_flags_0 |
---|
[1484] | 124 | |
---|
| 125 | USE kinds |
---|
| 126 | |
---|
[3449] | 127 | USE pegrid |
---|
| 128 | |
---|
[1484] | 129 | |
---|
| 130 | IMPLICIT NONE |
---|
| 131 | |
---|
| 132 | |
---|
[3449] | 133 | CHARACTER (LEN=30) :: canopy_mode = 'block' !< canopy coverage |
---|
| 134 | LOGICAL :: plant_canopy_transpiration = .FALSE. !< flag to switch calculation of transpiration and corresponding latent heat |
---|
| 135 | !< for resolved plant canopy inside radiation model |
---|
| 136 | !< (calls subroutine pcm_calc_transpiration_rate from module plant_canopy_mod) |
---|
[1484] | 137 | |
---|
[3449] | 138 | INTEGER(iwp) :: pch_index = 0 !< plant canopy height/top index |
---|
| 139 | INTEGER(iwp) :: lad_vertical_gradient_level_ind(10) = -9999 !< lad-profile levels (index) |
---|
[1484] | 140 | |
---|
[3449] | 141 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: pch_index_ji !< local plant canopy top |
---|
[2696] | 142 | |
---|
[3449] | 143 | LOGICAL :: calc_beta_lad_profile = .FALSE. !< switch for calc. of lad from beta func. |
---|
[1484] | 144 | |
---|
[2696] | 145 | REAL(wp) :: alpha_lad = 9999999.9_wp !< coefficient for lad calculation |
---|
| 146 | REAL(wp) :: beta_lad = 9999999.9_wp !< coefficient for lad calculation |
---|
| 147 | REAL(wp) :: canopy_drag_coeff = 0.0_wp !< canopy drag coefficient (parameter) |
---|
| 148 | REAL(wp) :: cdc = 0.0_wp !< canopy drag coeff. (abbreviation used in equations) |
---|
| 149 | REAL(wp) :: cthf = 0.0_wp !< canopy top heat flux |
---|
| 150 | REAL(wp) :: dt_plant_canopy = 0.0_wp !< timestep account. for canopy drag |
---|
| 151 | REAL(wp) :: ext_coef = 0.6_wp !< extinction coefficient |
---|
| 152 | REAL(wp) :: lad_surface = 0.0_wp !< lad surface value |
---|
| 153 | REAL(wp) :: lai_beta = 0.0_wp !< leaf area index (lai) for lad calc. |
---|
| 154 | REAL(wp) :: leaf_scalar_exch_coeff = 0.0_wp !< canopy scalar exchange coeff. |
---|
| 155 | REAL(wp) :: leaf_surface_conc = 0.0_wp !< leaf surface concentration |
---|
[2768] | 156 | REAL(wp) :: lsc = 0.0_wp !< leaf surface concentration |
---|
[2696] | 157 | REAL(wp) :: lsec = 0.0_wp !< leaf scalar exchange coeff. |
---|
[1484] | 158 | |
---|
[2696] | 159 | REAL(wp) :: lad_vertical_gradient(10) = 0.0_wp !< lad gradient |
---|
| 160 | REAL(wp) :: lad_vertical_gradient_level(10) = -9999999.9_wp !< lad-prof. levels (in m) |
---|
[1484] | 161 | |
---|
[2977] | 162 | REAL(wp) :: lad_type_coef(0:10) = 1.0_wp !< multiplicative coeficients for particular types |
---|
| 163 | !< of plant canopy (e.g. deciduous tree during winter) |
---|
| 164 | |
---|
[1682] | 165 | REAL(wp), DIMENSION(:), ALLOCATABLE :: lad !< leaf area density |
---|
| 166 | REAL(wp), DIMENSION(:), ALLOCATABLE :: pre_lad !< preliminary lad |
---|
[1484] | 167 | |
---|
[4127] | 168 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: cum_lai_hf !< cumulative lai for heatflux calc. |
---|
| 169 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: lad_s !< lad on scalar-grid |
---|
| 170 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pc_heating_rate !< plant canopy heating rate |
---|
| 171 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pc_transpiration_rate !< plant canopy transpiration rate |
---|
| 172 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pc_latent_rate !< plant canopy latent heating rate |
---|
[1484] | 173 | |
---|
[4127] | 174 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pcm_heatrate_av !< array for averaging plant canopy sensible heating rate |
---|
| 175 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pcm_latentrate_av !< array for averaging plant canopy latent heating rate |
---|
| 176 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pcm_transpirationrate_av !< array for averaging plant canopy transpiration rate |
---|
| 177 | |
---|
[1484] | 178 | SAVE |
---|
| 179 | |
---|
| 180 | |
---|
[138] | 181 | PRIVATE |
---|
[1826] | 182 | |
---|
| 183 | ! |
---|
| 184 | !-- Public functions |
---|
[3449] | 185 | PUBLIC pcm_calc_transpiration_rate, pcm_check_data_output, & |
---|
[4127] | 186 | pcm_check_parameters, pcm_3d_data_averaging, & |
---|
| 187 | pcm_data_output_3d, pcm_define_netcdf_grid, & |
---|
[3449] | 188 | pcm_header, pcm_init, pcm_parin, pcm_tendency |
---|
[138] | 189 | |
---|
[1826] | 190 | ! |
---|
| 191 | !-- Public variables and constants |
---|
[3467] | 192 | PUBLIC cdc, pc_heating_rate, pc_transpiration_rate, pc_latent_rate, & |
---|
| 193 | canopy_mode, cthf, dt_plant_canopy, lad, lad_s, pch_index, & |
---|
| 194 | plant_canopy_transpiration |
---|
[1484] | 195 | |
---|
[3449] | 196 | INTERFACE pcm_calc_transpiration_rate |
---|
| 197 | MODULE PROCEDURE pcm_calc_transpiration_rate |
---|
| 198 | END INTERFACE pcm_calc_transpiration_rate |
---|
| 199 | |
---|
[2209] | 200 | INTERFACE pcm_check_data_output |
---|
| 201 | MODULE PROCEDURE pcm_check_data_output |
---|
| 202 | END INTERFACE pcm_check_data_output |
---|
| 203 | |
---|
[1826] | 204 | INTERFACE pcm_check_parameters |
---|
| 205 | MODULE PROCEDURE pcm_check_parameters |
---|
[2209] | 206 | END INTERFACE pcm_check_parameters |
---|
| 207 | |
---|
[4127] | 208 | INTERFACE pcm_3d_data_averaging |
---|
| 209 | MODULE PROCEDURE pcm_3d_data_averaging |
---|
| 210 | END INTERFACE pcm_3d_data_averaging |
---|
| 211 | |
---|
[2209] | 212 | INTERFACE pcm_data_output_3d |
---|
| 213 | MODULE PROCEDURE pcm_data_output_3d |
---|
| 214 | END INTERFACE pcm_data_output_3d |
---|
| 215 | |
---|
| 216 | INTERFACE pcm_define_netcdf_grid |
---|
| 217 | MODULE PROCEDURE pcm_define_netcdf_grid |
---|
| 218 | END INTERFACE pcm_define_netcdf_grid |
---|
[1826] | 219 | |
---|
| 220 | INTERFACE pcm_header |
---|
| 221 | MODULE PROCEDURE pcm_header |
---|
| 222 | END INTERFACE pcm_header |
---|
| 223 | |
---|
| 224 | INTERFACE pcm_init |
---|
| 225 | MODULE PROCEDURE pcm_init |
---|
| 226 | END INTERFACE pcm_init |
---|
[138] | 227 | |
---|
[1826] | 228 | INTERFACE pcm_parin |
---|
| 229 | MODULE PROCEDURE pcm_parin |
---|
[2007] | 230 | END INTERFACE pcm_parin |
---|
| 231 | |
---|
| 232 | INTERFACE pcm_read_plant_canopy_3d |
---|
| 233 | MODULE PROCEDURE pcm_read_plant_canopy_3d |
---|
| 234 | END INTERFACE pcm_read_plant_canopy_3d |
---|
[1826] | 235 | |
---|
| 236 | INTERFACE pcm_tendency |
---|
| 237 | MODULE PROCEDURE pcm_tendency |
---|
| 238 | MODULE PROCEDURE pcm_tendency_ij |
---|
| 239 | END INTERFACE pcm_tendency |
---|
[1484] | 240 | |
---|
| 241 | |
---|
[138] | 242 | CONTAINS |
---|
| 243 | |
---|
[2209] | 244 | |
---|
[3449] | 245 | |
---|
[2209] | 246 | !------------------------------------------------------------------------------! |
---|
| 247 | ! Description: |
---|
| 248 | ! ------------ |
---|
[3449] | 249 | !> Calculation of the plant canopy transpiration rate based on the Jarvis-Stewart |
---|
| 250 | !> with parametrizations described in Daudet et al. (1999; Agricult. and Forest |
---|
| 251 | !> Meteorol. 97) and Ngao, Adam and Saudreau (2017; Agricult. and Forest Meteorol |
---|
| 252 | !> 237-238). Model functions f1-f4 were adapted from Stewart (1998; Agric. |
---|
| 253 | !> and Forest. Meteorol. 43) instead, because they are valid for broader intervals |
---|
| 254 | !> of values. Funcion f4 used in form present in van Wijk et al. (1998; |
---|
| 255 | !> Tree Physiology 20). |
---|
| 256 | !> |
---|
| 257 | !> This subroutine is called from subroutine radiation_interaction |
---|
| 258 | !> after the calculation of radiation in plant canopy boxes. |
---|
| 259 | !> (arrays pcbinsw and pcbinlw). |
---|
| 260 | !> |
---|
| 261 | !------------------------------------------------------------------------------! |
---|
| 262 | SUBROUTINE pcm_calc_transpiration_rate(i, j, k, kk, pcbsw, pcblw, pcbtr, pcblh) |
---|
| 263 | |
---|
| 264 | USE control_parameters, & |
---|
| 265 | ONLY: dz |
---|
| 266 | |
---|
| 267 | USE grid_variables, & |
---|
| 268 | ONLY: dx, dy |
---|
| 269 | |
---|
| 270 | IMPLICIT NONE |
---|
| 271 | !-- input parameters |
---|
[4205] | 272 | INTEGER(iwp), INTENT(IN) :: i, j, k, kk !< indices of the pc gridbox |
---|
| 273 | REAL(wp), INTENT(IN) :: pcbsw !< sw radiation in gridbox (W) |
---|
| 274 | REAL(wp), INTENT(IN) :: pcblw !< lw radiation in gridbox (W) |
---|
| 275 | REAL(wp), INTENT(OUT) :: pcbtr !< transpiration rate dq/dt (kg/kg/s) |
---|
| 276 | REAL(wp), INTENT(OUT) :: pcblh !< latent heat from transpiration dT/dt (K/s) |
---|
[3449] | 277 | |
---|
| 278 | !-- variables and parameters for calculation of transpiration rate |
---|
[4205] | 279 | REAL(wp) :: sat_press, sat_press_d, temp, v_lad |
---|
| 280 | REAL(wp) :: d_fact, g_b, g_s, wind_speed, evapor_rate |
---|
| 281 | REAL(wp) :: f1, f2, f3, f4, vpd, rswc, e_eq, e_imp, rad |
---|
| 282 | REAL(wp), PARAMETER :: gama_psychr = 66.0_wp !< psychrometric constant (Pa/K) |
---|
| 283 | REAL(wp), PARAMETER :: g_s_max = 0.01 !< maximum stomatal conductivity (m/s) |
---|
| 284 | REAL(wp), PARAMETER :: m_soil = 0.4_wp !< soil water content (needs to adjust or take from LSM) |
---|
| 285 | REAL(wp), PARAMETER :: m_wilt = 0.01_wp !< wilting point soil water content (needs to adjust or take from LSM) |
---|
| 286 | REAL(wp), PARAMETER :: m_sat = 0.51_wp !< saturation soil water content (needs to adjust or take from LSM) |
---|
| 287 | REAL(wp), PARAMETER :: t2_min = 0.0_wp !< minimal temperature for calculation of f2 |
---|
| 288 | REAL(wp), PARAMETER :: t2_max = 40.0_wp !< maximal temperature for calculation of f2 |
---|
[3449] | 289 | |
---|
| 290 | |
---|
| 291 | !-- Temperature (deg C) |
---|
| 292 | temp = pt(k,j,i) * exner(k) - degc_to_k |
---|
| 293 | !-- Coefficient for conversion of radiation to grid to radiation to unit leaves surface |
---|
[4205] | 294 | v_lad = 1.0_wp / ( MAX( lad_s(kk,j,i), 1.0E-10_wp ) * dx * dy * dz(1) ) |
---|
[3449] | 295 | !-- Magnus formula for the saturation pressure (see Ngao, Adam and Saudreau (2017) eq. 1) |
---|
| 296 | !-- There are updated formulas available, kept consistent with the rest of the parametrization |
---|
| 297 | sat_press = 610.8_wp * exp(17.27_wp * temp/(temp + 237.3_wp)) |
---|
| 298 | !-- Saturation pressure derivative (derivative of the above) |
---|
| 299 | sat_press_d = sat_press * 17.27_wp * 237.3_wp / (temp + 237.3_wp)**2 |
---|
| 300 | !-- Wind speed |
---|
[3744] | 301 | wind_speed = SQRT( ( 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) )**2 + & |
---|
[4205] | 302 | ( 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) )**2 + & |
---|
| 303 | ( 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) )**2 ) |
---|
[3449] | 304 | !-- Aerodynamic conductivity (Daudet et al. (1999) eq. 14 |
---|
| 305 | g_b = 0.01_wp * wind_speed + 0.0071_wp |
---|
| 306 | !-- Radiation flux per leaf surface unit |
---|
| 307 | rad = pcbsw * v_lad |
---|
| 308 | !-- First function for calculation of stomatal conductivity (radiation dependency) |
---|
| 309 | !-- Stewart (1988; Agric. and Forest. Meteorol. 43) eq. 17 |
---|
[4205] | 310 | f1 = rad * (1000.0_wp+42.1_wp) / 1000.0_wp / (rad+42.1_wp) |
---|
[3449] | 311 | !-- Second function for calculation of stomatal conductivity (temperature dependency) |
---|
| 312 | !-- Stewart (1988; Agric. and Forest. Meteorol. 43) eq. 21 |
---|
[3744] | 313 | f2 = MAX(t2_min, (temp-t2_min) * MAX(0.0_wp,t2_max-temp)**((t2_max-16.9_wp)/(16.9_wp-t2_min)) / & |
---|
[3449] | 314 | ((16.9_wp-t2_min) * (t2_max-16.9_wp)**((t2_max-16.9_wp)/(16.9_wp-t2_min))) ) |
---|
| 315 | !-- Water pressure deficit |
---|
| 316 | !-- Ngao, Adam and Saudreau (2017) eq. 6 but with water vapour partial pressure |
---|
| 317 | vpd = max( sat_press - q(k,j,i) * hyp(k) / rd_d_rv, 0._wp ) |
---|
| 318 | !-- Third function for calculation of stomatal conductivity (water pressure deficit dependency) |
---|
| 319 | !-- Ngao, Adam and Saudreau (2017) Table 1, limited from below according to Stewart (1988) |
---|
| 320 | !-- The coefficients of the linear dependence should better correspond to broad-leaved trees |
---|
| 321 | !-- than the coefficients from Stewart (1988) which correspond to conifer trees. |
---|
| 322 | vpd = MIN(MAX(vpd,770.0_wp),3820.0_wp) |
---|
[4205] | 323 | f3 = -2E-4_wp * vpd + 1.154_wp |
---|
[3449] | 324 | !-- Fourth function for calculation of stomatal conductivity (soil moisture dependency) |
---|
| 325 | !-- Residual soil water content |
---|
| 326 | !-- van Wijk et al. (1998; Tree Physiology 20) eq. 7 |
---|
| 327 | !-- TODO - over LSM surface might be calculated from LSM parameters |
---|
| 328 | rswc = ( m_sat - m_soil ) / ( m_sat - m_wilt ) |
---|
| 329 | !-- van Wijk et al. (1998; Tree Physiology 20) eq. 5-6 (it is a reformulation of eq. 22-23 of Stewart(1988)) |
---|
[4205] | 330 | f4 = MAX(0.0_wp, MIN(1.0_wp - 0.041_wp * EXP(3.2_wp * rswc), 1.0_wp - 0.041_wp)) |
---|
[3449] | 331 | !-- Stomatal conductivity |
---|
| 332 | !-- Stewart (1988; Agric. and Forest. Meteorol. 43) eq. 12 |
---|
| 333 | !-- (notation according to Ngao, Adam and Saudreau (2017) and others) |
---|
[4205] | 334 | g_s = g_s_max * f1 * f2 * f3 * f4 + 1.0E-10_wp |
---|
[3449] | 335 | !-- Decoupling factor |
---|
| 336 | !-- Daudet et al. (1999) eq. 6 |
---|
[4205] | 337 | d_fact = (sat_press_d / gama_psychr + 2.0_wp ) / & |
---|
| 338 | (sat_press_d / gama_psychr + 2.0_wp + 2.0_wp * g_b / g_s ) |
---|
[3449] | 339 | !-- Equilibrium evaporation rate |
---|
| 340 | !-- Daudet et al. (1999) eq. 4 |
---|
| 341 | e_eq = (pcbsw + pcblw) * v_lad * sat_press_d / & |
---|
| 342 | gama_psychr /( sat_press_d / gama_psychr + 2.0_wp ) / l_v |
---|
| 343 | !-- Imposed evaporation rate |
---|
| 344 | !-- Daudet et al. (1999) eq. 5 |
---|
| 345 | e_imp = r_d * pt(k,j,i) * exner(k) / hyp(k) * c_p * g_s * vpd / gama_psychr / l_v |
---|
| 346 | !-- Evaporation rate |
---|
| 347 | !-- Daudet et al. (1999) eq. 3 |
---|
| 348 | !-- (evaporation rate is limited to non-negative values) |
---|
| 349 | evapor_rate = MAX(d_fact * e_eq + ( 1.0_wp - d_fact ) * e_imp, 0.0_wp) |
---|
| 350 | !-- Conversion of evaporation rate to q tendency in gridbox |
---|
| 351 | !-- dq/dt = E * LAD * V_g / (rho_air * V_g) |
---|
| 352 | pcbtr = evapor_rate * r_d * pt(k,j,i) * exner(k) * lad_s(kk,j,i) / hyp(k) !-- = dq/dt |
---|
| 353 | !-- latent heat from evaporation |
---|
| 354 | pcblh = pcbtr * lv_d_cp !-- = - dT/dt |
---|
| 355 | |
---|
| 356 | END SUBROUTINE pcm_calc_transpiration_rate |
---|
| 357 | |
---|
| 358 | |
---|
| 359 | !------------------------------------------------------------------------------! |
---|
| 360 | ! Description: |
---|
| 361 | ! ------------ |
---|
[2209] | 362 | !> Check data output for plant canopy model |
---|
| 363 | !------------------------------------------------------------------------------! |
---|
| 364 | SUBROUTINE pcm_check_data_output( var, unit ) |
---|
[4279] | 365 | |
---|
[2209] | 366 | USE control_parameters, & |
---|
[3241] | 367 | ONLY: message_string, urban_surface |
---|
[2209] | 368 | |
---|
| 369 | IMPLICIT NONE |
---|
| 370 | |
---|
| 371 | CHARACTER (LEN=*) :: unit !< |
---|
| 372 | CHARACTER (LEN=*) :: var !< |
---|
| 373 | |
---|
| 374 | |
---|
| 375 | SELECT CASE ( TRIM( var ) ) |
---|
| 376 | |
---|
| 377 | CASE ( 'pcm_heatrate' ) |
---|
[2770] | 378 | IF ( cthf == 0.0_wp .AND. .NOT. urban_surface ) THEN |
---|
[2768] | 379 | message_string = 'output of "' // TRIM( var ) // '" requi' // & |
---|
| 380 | 'res setting of parameter cthf /= 0.0' |
---|
| 381 | CALL message( 'pcm_check_data_output', 'PA1000', 1, 2, 0, 6, 0 ) |
---|
| 382 | ENDIF |
---|
[2209] | 383 | unit = 'K s-1' |
---|
| 384 | |
---|
[3014] | 385 | CASE ( 'pcm_transpirationrate' ) |
---|
| 386 | unit = 'kg kg-1 s-1' |
---|
| 387 | |
---|
[3449] | 388 | CASE ( 'pcm_latentrate' ) |
---|
| 389 | unit = 'K s-1' |
---|
| 390 | |
---|
| 391 | CASE ( 'pcm_bowenratio' ) |
---|
| 392 | unit = 'K s-1' |
---|
| 393 | |
---|
[2209] | 394 | CASE ( 'pcm_lad' ) |
---|
| 395 | unit = 'm2 m-3' |
---|
| 396 | |
---|
| 397 | |
---|
| 398 | CASE DEFAULT |
---|
| 399 | unit = 'illegal' |
---|
| 400 | |
---|
| 401 | END SELECT |
---|
| 402 | |
---|
| 403 | |
---|
| 404 | END SUBROUTINE pcm_check_data_output |
---|
| 405 | |
---|
| 406 | |
---|
[1826] | 407 | !------------------------------------------------------------------------------! |
---|
| 408 | ! Description: |
---|
| 409 | ! ------------ |
---|
| 410 | !> Check parameters routine for plant canopy model |
---|
| 411 | !------------------------------------------------------------------------------! |
---|
| 412 | SUBROUTINE pcm_check_parameters |
---|
[138] | 413 | |
---|
[1826] | 414 | USE control_parameters, & |
---|
[4279] | 415 | ONLY: message_string |
---|
[2696] | 416 | |
---|
[3274] | 417 | USE bulk_cloud_model_mod, & |
---|
| 418 | ONLY: bulk_cloud_model, microphysics_seifert |
---|
| 419 | |
---|
[2696] | 420 | USE netcdf_data_input_mod, & |
---|
[4279] | 421 | ONLY: input_pids_static |
---|
| 422 | |
---|
| 423 | |
---|
[1826] | 424 | IMPLICIT NONE |
---|
| 425 | |
---|
| 426 | IF ( canopy_drag_coeff == 0.0_wp ) THEN |
---|
| 427 | message_string = 'plant_canopy = .TRUE. requires a non-zero drag '// & |
---|
[3046] | 428 | 'coefficient & given value is canopy_drag_coeff = 0.0' |
---|
[2768] | 429 | CALL message( 'pcm_check_parameters', 'PA0041', 1, 2, 0, 6, 0 ) |
---|
[1826] | 430 | ENDIF |
---|
[4279] | 431 | |
---|
[3045] | 432 | IF ( ( alpha_lad /= 9999999.9_wp .AND. beta_lad == 9999999.9_wp ) .OR.& |
---|
[1826] | 433 | beta_lad /= 9999999.9_wp .AND. alpha_lad == 9999999.9_wp ) THEN |
---|
| 434 | message_string = 'using the beta function for the construction ' // & |
---|
| 435 | 'of the leaf area density profile requires ' // & |
---|
| 436 | 'both alpha_lad and beta_lad to be /= 9999999.9' |
---|
[2768] | 437 | CALL message( 'pcm_check_parameters', 'PA0118', 1, 2, 0, 6, 0 ) |
---|
[1826] | 438 | ENDIF |
---|
[4279] | 439 | |
---|
[1826] | 440 | IF ( calc_beta_lad_profile .AND. lai_beta == 0.0_wp ) THEN |
---|
| 441 | message_string = 'using the beta function for the construction ' // & |
---|
| 442 | 'of the leaf area density profile requires ' // & |
---|
| 443 | 'a non-zero lai_beta, but given value is ' // & |
---|
| 444 | 'lai_beta = 0.0' |
---|
[2768] | 445 | CALL message( 'pcm_check_parameters', 'PA0119', 1, 2, 0, 6, 0 ) |
---|
[1826] | 446 | ENDIF |
---|
| 447 | |
---|
| 448 | IF ( calc_beta_lad_profile .AND. lad_surface /= 0.0_wp ) THEN |
---|
[2274] | 449 | message_string = 'simultaneous setting of alpha_lad /= 9999999.9 '// & |
---|
| 450 | 'combined with beta_lad /= 9999999.9 ' // & |
---|
[1826] | 451 | 'and lad_surface /= 0.0 is not possible, ' // & |
---|
| 452 | 'use either vertical gradients or the beta ' // & |
---|
| 453 | 'function for the construction of the leaf area '// & |
---|
| 454 | 'density profile' |
---|
[2768] | 455 | CALL message( 'pcm_check_parameters', 'PA0120', 1, 2, 0, 6, 0 ) |
---|
[1826] | 456 | ENDIF |
---|
| 457 | |
---|
[3274] | 458 | IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN |
---|
[1826] | 459 | message_string = 'plant_canopy = .TRUE. requires cloud_scheme /=' // & |
---|
| 460 | ' seifert_beheng' |
---|
[2768] | 461 | CALL message( 'pcm_check_parameters', 'PA0360', 1, 2, 0, 6, 0 ) |
---|
[1826] | 462 | ENDIF |
---|
[2696] | 463 | ! |
---|
[4278] | 464 | !-- If canopy shall be read from file, static input file must be present |
---|
| 465 | IF ( TRIM( canopy_mode ) == 'read_from_file_3d' .AND. & |
---|
| 466 | .NOT. input_pids_static ) THEN |
---|
| 467 | message_string = 'canopy_mode = read_from_file_3d requires ' // & |
---|
| 468 | 'static input file' |
---|
[4188] | 469 | CALL message( 'pcm_check_parameters', 'PA0672', 1, 2, 0, 6, 0 ) |
---|
[2696] | 470 | ENDIF |
---|
[1826] | 471 | |
---|
| 472 | |
---|
| 473 | END SUBROUTINE pcm_check_parameters |
---|
| 474 | |
---|
| 475 | |
---|
[138] | 476 | !------------------------------------------------------------------------------! |
---|
[2209] | 477 | ! |
---|
[1484] | 478 | ! Description: |
---|
| 479 | ! ------------ |
---|
[4127] | 480 | !> Subroutine for averaging 3D data |
---|
[2209] | 481 | !------------------------------------------------------------------------------! |
---|
[4216] | 482 | SUBROUTINE pcm_3d_data_averaging( mode, variable ) |
---|
[4127] | 483 | |
---|
| 484 | |
---|
| 485 | USE control_parameters |
---|
| 486 | |
---|
| 487 | USE indices |
---|
| 488 | |
---|
| 489 | USE kinds |
---|
| 490 | |
---|
| 491 | IMPLICIT NONE |
---|
| 492 | |
---|
| 493 | CHARACTER (LEN=*) :: mode !< |
---|
| 494 | CHARACTER (LEN=*) :: variable !< |
---|
| 495 | |
---|
| 496 | INTEGER(iwp) :: i !< |
---|
| 497 | INTEGER(iwp) :: j !< |
---|
| 498 | INTEGER(iwp) :: k !< |
---|
| 499 | |
---|
| 500 | |
---|
| 501 | IF ( mode == 'allocate' ) THEN |
---|
| 502 | |
---|
| 503 | SELECT CASE ( TRIM( variable ) ) |
---|
| 504 | |
---|
| 505 | CASE ( 'pcm_heatrate' ) |
---|
| 506 | IF ( .NOT. ALLOCATED( pcm_heatrate_av ) ) THEN |
---|
| 507 | ALLOCATE( pcm_heatrate_av(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 508 | ENDIF |
---|
| 509 | pcm_heatrate_av = 0.0_wp |
---|
| 510 | |
---|
| 511 | |
---|
| 512 | CASE ( 'pcm_latentrate' ) |
---|
| 513 | IF ( .NOT. ALLOCATED( pcm_latentrate_av ) ) THEN |
---|
| 514 | ALLOCATE( pcm_latentrate_av(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 515 | ENDIF |
---|
| 516 | pcm_latentrate_av = 0.0_wp |
---|
| 517 | |
---|
| 518 | |
---|
| 519 | CASE ( 'pcm_transpirationrate' ) |
---|
| 520 | IF ( .NOT. ALLOCATED( pcm_transpirationrate_av ) ) THEN |
---|
| 521 | ALLOCATE( pcm_transpirationrate_av(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 522 | ENDIF |
---|
| 523 | pcm_transpirationrate_av = 0.0_wp |
---|
| 524 | |
---|
| 525 | CASE DEFAULT |
---|
| 526 | CONTINUE |
---|
| 527 | |
---|
| 528 | END SELECT |
---|
| 529 | |
---|
| 530 | ELSEIF ( mode == 'sum' ) THEN |
---|
| 531 | |
---|
| 532 | SELECT CASE ( TRIM( variable ) ) |
---|
| 533 | |
---|
| 534 | CASE ( 'pcm_heatrate' ) |
---|
| 535 | IF ( ALLOCATED( pcm_heatrate_av ) ) THEN |
---|
| 536 | DO i = nxl, nxr |
---|
| 537 | DO j = nys, nyn |
---|
| 538 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
| 539 | DO k = 0, pch_index_ji(j,i) |
---|
| 540 | pcm_heatrate_av(k,j,i) = pcm_heatrate_av(k,j,i) + pc_heating_rate(k,j,i) |
---|
| 541 | ENDDO |
---|
| 542 | ENDIF |
---|
| 543 | ENDDO |
---|
| 544 | ENDDO |
---|
| 545 | ENDIF |
---|
| 546 | |
---|
| 547 | |
---|
| 548 | CASE ( 'pcm_latentrate' ) |
---|
| 549 | IF ( ALLOCATED( pcm_latentrate_av ) ) THEN |
---|
| 550 | DO i = nxl, nxr |
---|
| 551 | DO j = nys, nyn |
---|
| 552 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
| 553 | DO k = 0, pch_index_ji(j,i) |
---|
| 554 | pcm_latentrate_av(k,j,i) = pcm_latentrate_av(k,j,i) + pc_latent_rate(k,j,i) |
---|
| 555 | ENDDO |
---|
| 556 | ENDIF |
---|
| 557 | ENDDO |
---|
| 558 | ENDDO |
---|
| 559 | ENDIF |
---|
| 560 | |
---|
| 561 | |
---|
| 562 | CASE ( 'pcm_transpirationrate' ) |
---|
| 563 | IF ( ALLOCATED( pcm_transpirationrate_av ) ) THEN |
---|
| 564 | DO i = nxl, nxr |
---|
| 565 | DO j = nys, nyn |
---|
| 566 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
| 567 | DO k = 0, pch_index_ji(j,i) |
---|
| 568 | pcm_transpirationrate_av(k,j,i) = pcm_transpirationrate_av(k,j,i) + pc_transpiration_rate(k,j,i) |
---|
| 569 | ENDDO |
---|
| 570 | ENDIF |
---|
| 571 | ENDDO |
---|
| 572 | ENDDO |
---|
| 573 | ENDIF |
---|
| 574 | |
---|
| 575 | CASE DEFAULT |
---|
| 576 | CONTINUE |
---|
| 577 | |
---|
| 578 | END SELECT |
---|
| 579 | |
---|
| 580 | ELSEIF ( mode == 'average' ) THEN |
---|
| 581 | |
---|
| 582 | SELECT CASE ( TRIM( variable ) ) |
---|
| 583 | |
---|
| 584 | CASE ( 'pcm_heatrate' ) |
---|
| 585 | IF ( ALLOCATED( pcm_heatrate_av ) ) THEN |
---|
| 586 | DO i = nxlg, nxrg |
---|
| 587 | DO j = nysg, nyng |
---|
| 588 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
| 589 | DO k = 0, pch_index_ji(j,i) |
---|
| 590 | pcm_heatrate_av(k,j,i) = pcm_heatrate_av(k,j,i) & |
---|
| 591 | / REAL( average_count_3d, KIND=wp ) |
---|
| 592 | ENDDO |
---|
| 593 | ENDIF |
---|
| 594 | ENDDO |
---|
| 595 | ENDDO |
---|
| 596 | ENDIF |
---|
| 597 | |
---|
| 598 | |
---|
| 599 | CASE ( 'pcm_latentrate' ) |
---|
| 600 | IF ( ALLOCATED( pcm_latentrate_av ) ) THEN |
---|
| 601 | DO i = nxlg, nxrg |
---|
| 602 | DO j = nysg, nyng |
---|
| 603 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
| 604 | DO k = 0, pch_index_ji(j,i) |
---|
| 605 | pcm_latentrate_av(k,j,i) = pcm_latentrate_av(k,j,i) & |
---|
| 606 | / REAL( average_count_3d, KIND=wp ) |
---|
| 607 | ENDDO |
---|
| 608 | ENDIF |
---|
| 609 | ENDDO |
---|
| 610 | ENDDO |
---|
| 611 | ENDIF |
---|
| 612 | |
---|
| 613 | |
---|
| 614 | CASE ( 'pcm_transpirationrate' ) |
---|
| 615 | IF ( ALLOCATED( pcm_transpirationrate_av ) ) THEN |
---|
| 616 | DO i = nxlg, nxrg |
---|
| 617 | DO j = nysg, nyng |
---|
| 618 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
| 619 | DO k = 0, pch_index_ji(j,i) |
---|
| 620 | pcm_transpirationrate_av(k,j,i) = pcm_transpirationrate_av(k,j,i) & |
---|
| 621 | / REAL( average_count_3d, KIND=wp ) |
---|
| 622 | ENDDO |
---|
| 623 | ENDIF |
---|
| 624 | ENDDO |
---|
| 625 | ENDDO |
---|
| 626 | ENDIF |
---|
| 627 | |
---|
| 628 | END SELECT |
---|
| 629 | |
---|
| 630 | ENDIF |
---|
| 631 | |
---|
[4216] | 632 | END SUBROUTINE pcm_3d_data_averaging |
---|
[4127] | 633 | |
---|
| 634 | !------------------------------------------------------------------------------! |
---|
| 635 | ! |
---|
| 636 | ! Description: |
---|
| 637 | ! ------------ |
---|
| 638 | !> Subroutine defining 3D output variables. |
---|
| 639 | !> Note, 3D plant-canopy output has it's own vertical output dimension, meaning |
---|
| 640 | !> that 3D output is relative to the model surface now rather than at the actual |
---|
| 641 | !> grid point where the plant canopy is located. |
---|
| 642 | !------------------------------------------------------------------------------! |
---|
[3014] | 643 | SUBROUTINE pcm_data_output_3d( av, variable, found, local_pf, fill_value, & |
---|
| 644 | nzb_do, nzt_do ) |
---|
| 645 | |
---|
[2209] | 646 | USE indices |
---|
| 647 | |
---|
| 648 | USE kinds |
---|
| 649 | |
---|
| 650 | |
---|
| 651 | IMPLICIT NONE |
---|
| 652 | |
---|
[4216] | 653 | CHARACTER (LEN=*) :: variable !< treated variable |
---|
[2209] | 654 | |
---|
[4216] | 655 | INTEGER(iwp) :: av !< flag indicating instantaneous or averaged data output |
---|
| 656 | INTEGER(iwp) :: i !< grid index x-direction |
---|
| 657 | INTEGER(iwp) :: j !< grid index y-direction |
---|
| 658 | INTEGER(iwp) :: k !< grid index z-direction |
---|
[3014] | 659 | INTEGER(iwp) :: nzb_do !< lower limit of the data output (usually 0) |
---|
| 660 | INTEGER(iwp) :: nzt_do !< vertical upper limit of the data output (usually nz_do3d) |
---|
[2209] | 661 | |
---|
[4216] | 662 | LOGICAL :: found !< flag indicating if variable is found |
---|
[2209] | 663 | |
---|
[4216] | 664 | REAL(wp) :: fill_value !< fill value |
---|
| 665 | REAL(sp), DIMENSION(nxl:nxr,nys:nyn,nzb_do:nzt_do) :: local_pf !< data output array |
---|
[2209] | 666 | |
---|
| 667 | |
---|
| 668 | found = .TRUE. |
---|
| 669 | |
---|
[2696] | 670 | local_pf = REAL( fill_value, KIND = 4 ) |
---|
[2209] | 671 | |
---|
| 672 | SELECT CASE ( TRIM( variable ) ) |
---|
[4216] | 673 | ! |
---|
| 674 | !-- Note, to save memory arrays for heating are allocated from 0:pch_index. |
---|
| 675 | !-- Thus, output must be relative to these array indices. Further, check |
---|
| 676 | !-- whether the output is within the vertical output range, |
---|
[4220] | 677 | !-- i.e. nzb_do:nzt_do, which is necessary as local_pf is only allocated |
---|
| 678 | !-- for this index space. Note, plant-canopy output has a separate |
---|
| 679 | !-- vertical output coordinate zlad, so that output is mapped down to the |
---|
| 680 | !-- surface. |
---|
[4127] | 681 | CASE ( 'pcm_heatrate' ) |
---|
| 682 | IF ( av == 0 ) THEN |
---|
| 683 | DO i = nxl, nxr |
---|
| 684 | DO j = nys, nyn |
---|
[4220] | 685 | DO k = MAX( 1, nzb_do ), MIN( pch_index, nzt_do ) |
---|
| 686 | local_pf(i,j,k) = pc_heating_rate(k,j,i) |
---|
[4216] | 687 | ENDDO |
---|
[4127] | 688 | ENDDO |
---|
| 689 | ENDDO |
---|
| 690 | ELSE |
---|
| 691 | DO i = nxl, nxr |
---|
| 692 | DO j = nys, nyn |
---|
[4220] | 693 | DO k = MAX( 1, nzb_do ), MIN( pch_index, nzt_do ) |
---|
| 694 | local_pf(i,j,k) = pcm_heatrate_av(k,j,i) |
---|
[4127] | 695 | ENDDO |
---|
| 696 | ENDDO |
---|
| 697 | ENDDO |
---|
| 698 | ENDIF |
---|
[3449] | 699 | |
---|
| 700 | CASE ( 'pcm_latentrate' ) |
---|
[4127] | 701 | IF ( av == 0 ) THEN |
---|
| 702 | DO i = nxl, nxr |
---|
| 703 | DO j = nys, nyn |
---|
[4220] | 704 | DO k = MAX( 1, nzb_do ), MIN( pch_index, nzt_do ) |
---|
| 705 | local_pf(i,j,k) = pc_latent_rate(k,j,i) |
---|
[4216] | 706 | ENDDO |
---|
[4127] | 707 | ENDDO |
---|
| 708 | ENDDO |
---|
| 709 | ELSE |
---|
| 710 | DO i = nxl, nxr |
---|
| 711 | DO j = nys, nyn |
---|
[4220] | 712 | DO k = MAX( 1, nzb_do ), MIN( pch_index, nzt_do ) |
---|
| 713 | local_pf(i,j,k) = pcm_latentrate_av(k,j,i) |
---|
[4127] | 714 | ENDDO |
---|
| 715 | ENDDO |
---|
| 716 | ENDDO |
---|
| 717 | ENDIF |
---|
[3449] | 718 | |
---|
[4127] | 719 | CASE ( 'pcm_transpirationrate' ) |
---|
| 720 | IF ( av == 0 ) THEN |
---|
| 721 | DO i = nxl, nxr |
---|
| 722 | DO j = nys, nyn |
---|
[4220] | 723 | DO k = MAX( 1, nzb_do ), MIN( pch_index, nzt_do ) |
---|
| 724 | local_pf(i,j,k) = pc_transpiration_rate(k,j,i) |
---|
[4216] | 725 | ENDDO |
---|
[4127] | 726 | ENDDO |
---|
| 727 | ENDDO |
---|
| 728 | ELSE |
---|
| 729 | DO i = nxl, nxr |
---|
| 730 | DO j = nys, nyn |
---|
[4220] | 731 | DO k = MAX( 1, nzb_do ), MIN( pch_index, nzt_do ) |
---|
| 732 | local_pf(i,j,k) = pcm_transpirationrate_av(k,j,i) |
---|
[4127] | 733 | ENDDO |
---|
| 734 | ENDDO |
---|
| 735 | ENDDO |
---|
| 736 | ENDIF |
---|
| 737 | |
---|
[3449] | 738 | CASE ( 'pcm_bowenratio' ) |
---|
[4127] | 739 | IF ( av == 0 ) THEN |
---|
| 740 | DO i = nxl, nxr |
---|
| 741 | DO j = nys, nyn |
---|
[4220] | 742 | DO k = MAX( 1, nzb_do ), MIN( pch_index, nzt_do ) |
---|
| 743 | IF ( pc_latent_rate(k,j,i) /= 0.0_wp ) THEN |
---|
| 744 | local_pf(i,j,k) = pc_heating_rate(k,j,i) / & |
---|
| 745 | pc_latent_rate(k,j,i) |
---|
[4216] | 746 | ENDIF |
---|
| 747 | ENDDO |
---|
[4127] | 748 | ENDDO |
---|
| 749 | ENDDO |
---|
[4216] | 750 | ELSE |
---|
| 751 | DO i = nxl, nxr |
---|
| 752 | DO j = nys, nyn |
---|
[4220] | 753 | DO k = MAX( 1, nzb_do ), MIN( pch_index, nzt_do ) |
---|
| 754 | IF ( pcm_latentrate_av(k,j,i) /= 0.0_wp ) THEN |
---|
| 755 | local_pf(i,j,k) = pcm_heatrate_av(k,j,i) / & |
---|
| 756 | pcm_latentrate_av(k,j,i) |
---|
[4216] | 757 | ENDIF |
---|
| 758 | ENDDO |
---|
| 759 | ENDDO |
---|
| 760 | ENDDO |
---|
[4127] | 761 | ENDIF |
---|
[3449] | 762 | |
---|
[4127] | 763 | CASE ( 'pcm_lad' ) |
---|
| 764 | IF ( av == 0 ) THEN |
---|
| 765 | DO i = nxl, nxr |
---|
| 766 | DO j = nys, nyn |
---|
[4220] | 767 | DO k = MAX( 1, nzb_do ), MIN( pch_index, nzt_do ) |
---|
| 768 | local_pf(i,j,k) = lad_s(k,j,i) |
---|
[4216] | 769 | ENDDO |
---|
[4127] | 770 | ENDDO |
---|
| 771 | ENDDO |
---|
| 772 | ENDIF |
---|
| 773 | |
---|
[2209] | 774 | CASE DEFAULT |
---|
| 775 | found = .FALSE. |
---|
| 776 | |
---|
| 777 | END SELECT |
---|
| 778 | |
---|
| 779 | |
---|
| 780 | END SUBROUTINE pcm_data_output_3d |
---|
| 781 | |
---|
| 782 | !------------------------------------------------------------------------------! |
---|
| 783 | ! |
---|
| 784 | ! Description: |
---|
| 785 | ! ------------ |
---|
| 786 | !> Subroutine defining appropriate grid for netcdf variables. |
---|
| 787 | !> It is called from subroutine netcdf. |
---|
| 788 | !------------------------------------------------------------------------------! |
---|
| 789 | SUBROUTINE pcm_define_netcdf_grid( var, found, grid_x, grid_y, grid_z ) |
---|
| 790 | |
---|
| 791 | IMPLICIT NONE |
---|
| 792 | |
---|
| 793 | CHARACTER (LEN=*), INTENT(IN) :: var !< |
---|
| 794 | LOGICAL, INTENT(OUT) :: found !< |
---|
| 795 | CHARACTER (LEN=*), INTENT(OUT) :: grid_x !< |
---|
| 796 | CHARACTER (LEN=*), INTENT(OUT) :: grid_y !< |
---|
| 797 | CHARACTER (LEN=*), INTENT(OUT) :: grid_z !< |
---|
| 798 | |
---|
| 799 | found = .TRUE. |
---|
| 800 | |
---|
| 801 | ! |
---|
| 802 | !-- Check for the grid |
---|
| 803 | SELECT CASE ( TRIM( var ) ) |
---|
| 804 | |
---|
[3449] | 805 | CASE ( 'pcm_heatrate', 'pcm_lad', 'pcm_transpirationrate', 'pcm_latentrate', 'pcm_bowenratio') |
---|
[2209] | 806 | grid_x = 'x' |
---|
| 807 | grid_y = 'y' |
---|
[4127] | 808 | grid_z = 'zpc' |
---|
[2209] | 809 | |
---|
| 810 | CASE DEFAULT |
---|
| 811 | found = .FALSE. |
---|
| 812 | grid_x = 'none' |
---|
| 813 | grid_y = 'none' |
---|
| 814 | grid_z = 'none' |
---|
| 815 | END SELECT |
---|
| 816 | |
---|
| 817 | END SUBROUTINE pcm_define_netcdf_grid |
---|
| 818 | |
---|
| 819 | |
---|
| 820 | !------------------------------------------------------------------------------! |
---|
| 821 | ! Description: |
---|
| 822 | ! ------------ |
---|
[1826] | 823 | !> Header output for plant canopy model |
---|
| 824 | !------------------------------------------------------------------------------! |
---|
| 825 | SUBROUTINE pcm_header ( io ) |
---|
| 826 | |
---|
| 827 | USE control_parameters, & |
---|
[3065] | 828 | ONLY: passive_scalar |
---|
[1826] | 829 | |
---|
| 830 | |
---|
| 831 | IMPLICIT NONE |
---|
| 832 | |
---|
| 833 | CHARACTER (LEN=10) :: coor_chr !< |
---|
| 834 | |
---|
| 835 | CHARACTER (LEN=86) :: coordinates !< |
---|
| 836 | CHARACTER (LEN=86) :: gradients !< |
---|
| 837 | CHARACTER (LEN=86) :: leaf_area_density !< |
---|
| 838 | CHARACTER (LEN=86) :: slices !< |
---|
| 839 | |
---|
| 840 | INTEGER(iwp) :: i !< |
---|
| 841 | INTEGER(iwp), INTENT(IN) :: io !< Unit of the output file |
---|
| 842 | INTEGER(iwp) :: k !< |
---|
| 843 | |
---|
| 844 | REAL(wp) :: canopy_height !< canopy height (in m) |
---|
| 845 | |
---|
[3065] | 846 | canopy_height = zw(pch_index) |
---|
[1826] | 847 | |
---|
| 848 | WRITE ( io, 1 ) canopy_mode, canopy_height, pch_index, & |
---|
| 849 | canopy_drag_coeff |
---|
| 850 | IF ( passive_scalar ) THEN |
---|
| 851 | WRITE ( io, 2 ) leaf_scalar_exch_coeff, & |
---|
| 852 | leaf_surface_conc |
---|
| 853 | ENDIF |
---|
| 854 | |
---|
| 855 | ! |
---|
| 856 | !-- Heat flux at the top of vegetation |
---|
| 857 | WRITE ( io, 3 ) cthf |
---|
| 858 | |
---|
| 859 | ! |
---|
| 860 | !-- Leaf area density profile, calculated either from given vertical |
---|
| 861 | !-- gradients or from beta probability density function. |
---|
| 862 | IF ( .NOT. calc_beta_lad_profile ) THEN |
---|
| 863 | |
---|
| 864 | !-- Building output strings, starting with surface value |
---|
| 865 | WRITE ( leaf_area_density, '(F7.4)' ) lad_surface |
---|
| 866 | gradients = '------' |
---|
| 867 | slices = ' 0' |
---|
| 868 | coordinates = ' 0.0' |
---|
[4278] | 869 | DO i = 1, UBOUND(lad_vertical_gradient_level_ind, DIM=1) |
---|
| 870 | IF ( lad_vertical_gradient_level_ind(i) /= -9999 ) THEN |
---|
[1826] | 871 | |
---|
[4278] | 872 | WRITE (coor_chr,'(F7.2)') lad(lad_vertical_gradient_level_ind(i)) |
---|
| 873 | leaf_area_density = TRIM( leaf_area_density ) // ' ' // TRIM( coor_chr ) |
---|
[1826] | 874 | |
---|
[4278] | 875 | WRITE (coor_chr,'(F7.2)') lad_vertical_gradient(i) |
---|
| 876 | gradients = TRIM( gradients ) // ' ' // TRIM( coor_chr ) |
---|
[1826] | 877 | |
---|
[4278] | 878 | WRITE (coor_chr,'(I7)') lad_vertical_gradient_level_ind(i) |
---|
| 879 | slices = TRIM( slices ) // ' ' // TRIM( coor_chr ) |
---|
[1826] | 880 | |
---|
[4278] | 881 | WRITE (coor_chr,'(F7.1)') lad_vertical_gradient_level(i) |
---|
| 882 | coordinates = TRIM( coordinates ) // ' ' // TRIM( coor_chr ) |
---|
| 883 | ELSE |
---|
| 884 | EXIT |
---|
| 885 | ENDIF |
---|
[1826] | 886 | ENDDO |
---|
| 887 | |
---|
| 888 | WRITE ( io, 4 ) TRIM( coordinates ), TRIM( leaf_area_density ), & |
---|
| 889 | TRIM( gradients ), TRIM( slices ) |
---|
| 890 | |
---|
| 891 | ELSE |
---|
| 892 | |
---|
| 893 | WRITE ( leaf_area_density, '(F7.4)' ) lad_surface |
---|
| 894 | coordinates = ' 0.0' |
---|
| 895 | |
---|
| 896 | DO k = 1, pch_index |
---|
| 897 | |
---|
| 898 | WRITE (coor_chr,'(F7.2)') lad(k) |
---|
| 899 | leaf_area_density = TRIM( leaf_area_density ) // ' ' // & |
---|
| 900 | TRIM( coor_chr ) |
---|
| 901 | |
---|
| 902 | WRITE (coor_chr,'(F7.1)') zu(k) |
---|
| 903 | coordinates = TRIM( coordinates ) // ' ' // TRIM( coor_chr ) |
---|
| 904 | |
---|
| 905 | ENDDO |
---|
| 906 | |
---|
| 907 | WRITE ( io, 5 ) TRIM( coordinates ), TRIM( leaf_area_density ), & |
---|
| 908 | alpha_lad, beta_lad, lai_beta |
---|
| 909 | |
---|
| 910 | ENDIF |
---|
| 911 | |
---|
| 912 | 1 FORMAT (//' Vegetation canopy (drag) model:'/ & |
---|
| 913 | ' ------------------------------'// & |
---|
| 914 | ' Canopy mode: ', A / & |
---|
| 915 | ' Canopy height: ',F6.2,'m (',I4,' grid points)' / & |
---|
| 916 | ' Leaf drag coefficient: ',F6.2 /) |
---|
| 917 | 2 FORMAT (/ ' Scalar exchange coefficient: ',F6.2 / & |
---|
| 918 | ' Scalar concentration at leaf surfaces in kg/m**3: ',F6.2 /) |
---|
| 919 | 3 FORMAT (' Predefined constant heatflux at the top of the vegetation: ',F6.2, & |
---|
| 920 | ' K m/s') |
---|
| 921 | 4 FORMAT (/ ' Characteristic levels of the leaf area density:'// & |
---|
| 922 | ' Height: ',A,' m'/ & |
---|
| 923 | ' Leaf area density: ',A,' m**2/m**3'/ & |
---|
| 924 | ' Gradient: ',A,' m**2/m**4'/ & |
---|
| 925 | ' Gridpoint: ',A) |
---|
| 926 | 5 FORMAT (//' Characteristic levels of the leaf area density and coefficients:'& |
---|
| 927 | // ' Height: ',A,' m'/ & |
---|
| 928 | ' Leaf area density: ',A,' m**2/m**3'/ & |
---|
| 929 | ' Coefficient alpha: ',F6.2 / & |
---|
| 930 | ' Coefficient beta: ',F6.2 / & |
---|
| 931 | ' Leaf area index: ',F6.2,' m**2/m**2' /) |
---|
| 932 | |
---|
| 933 | END SUBROUTINE pcm_header |
---|
| 934 | |
---|
| 935 | |
---|
| 936 | !------------------------------------------------------------------------------! |
---|
| 937 | ! Description: |
---|
| 938 | ! ------------ |
---|
[1682] | 939 | !> Initialization of the plant canopy model |
---|
[138] | 940 | !------------------------------------------------------------------------------! |
---|
[1826] | 941 | SUBROUTINE pcm_init |
---|
[1484] | 942 | |
---|
| 943 | |
---|
| 944 | USE control_parameters, & |
---|
[3614] | 945 | ONLY: message_string, ocean_mode |
---|
[1484] | 946 | |
---|
[2696] | 947 | USE netcdf_data_input_mod, & |
---|
| 948 | ONLY: leaf_area_density_f |
---|
| 949 | |
---|
[4302] | 950 | USE pegrid |
---|
| 951 | |
---|
[2232] | 952 | USE surface_mod, & |
---|
| 953 | ONLY: surf_def_h, surf_lsm_h, surf_usm_h |
---|
[1484] | 954 | |
---|
| 955 | IMPLICIT NONE |
---|
| 956 | |
---|
[2007] | 957 | INTEGER(iwp) :: i !< running index |
---|
| 958 | INTEGER(iwp) :: j !< running index |
---|
| 959 | INTEGER(iwp) :: k !< running index |
---|
[2232] | 960 | INTEGER(iwp) :: m !< running index |
---|
[1484] | 961 | |
---|
[4258] | 962 | REAL(wp) :: canopy_height !< canopy height for lad-profile construction |
---|
[2007] | 963 | REAL(wp) :: gradient !< gradient for lad-profile construction |
---|
[4258] | 964 | REAL(wp) :: int_bpdf !< vertical integral for lad-profile construction |
---|
| 965 | REAL(wp) :: lad_max !< maximum LAD value in the model domain, used to perform a check |
---|
[3241] | 966 | |
---|
[3885] | 967 | IF ( debug_output ) CALL debug_message( 'pcm_init', 'start' ) |
---|
[1484] | 968 | ! |
---|
| 969 | !-- Allocate one-dimensional arrays for the computation of the |
---|
| 970 | !-- leaf area density (lad) profile |
---|
| 971 | ALLOCATE( lad(0:nz+1), pre_lad(0:nz+1) ) |
---|
| 972 | lad = 0.0_wp |
---|
| 973 | pre_lad = 0.0_wp |
---|
| 974 | |
---|
| 975 | ! |
---|
[1826] | 976 | !-- Set flag that indicates that the lad-profile shall be calculated by using |
---|
| 977 | !-- a beta probability density function |
---|
| 978 | IF ( alpha_lad /= 9999999.9_wp .AND. beta_lad /= 9999999.9_wp ) THEN |
---|
| 979 | calc_beta_lad_profile = .TRUE. |
---|
| 980 | ENDIF |
---|
| 981 | |
---|
| 982 | |
---|
| 983 | ! |
---|
[1484] | 984 | !-- Compute the profile of leaf area density used in the plant |
---|
| 985 | !-- canopy model. The profile can either be constructed from |
---|
| 986 | !-- prescribed vertical gradients of the leaf area density or by |
---|
| 987 | !-- using a beta probability density function (see e.g. Markkanen et al., |
---|
| 988 | !-- 2003: Boundary-Layer Meteorology, 106, 437-459) |
---|
| 989 | IF ( .NOT. calc_beta_lad_profile ) THEN |
---|
| 990 | |
---|
| 991 | ! |
---|
| 992 | !-- Use vertical gradients for lad-profile construction |
---|
| 993 | i = 1 |
---|
| 994 | gradient = 0.0_wp |
---|
| 995 | |
---|
[3294] | 996 | IF ( .NOT. ocean_mode ) THEN |
---|
[1484] | 997 | |
---|
| 998 | lad(0) = lad_surface |
---|
| 999 | lad_vertical_gradient_level_ind(1) = 0 |
---|
| 1000 | |
---|
| 1001 | DO k = 1, pch_index |
---|
| 1002 | IF ( i < 11 ) THEN |
---|
| 1003 | IF ( lad_vertical_gradient_level(i) < zu(k) .AND. & |
---|
| 1004 | lad_vertical_gradient_level(i) >= 0.0_wp ) THEN |
---|
| 1005 | gradient = lad_vertical_gradient(i) |
---|
| 1006 | lad_vertical_gradient_level_ind(i) = k - 1 |
---|
| 1007 | i = i + 1 |
---|
| 1008 | ENDIF |
---|
| 1009 | ENDIF |
---|
| 1010 | IF ( gradient /= 0.0_wp ) THEN |
---|
| 1011 | IF ( k /= 1 ) THEN |
---|
| 1012 | lad(k) = lad(k-1) + dzu(k) * gradient |
---|
| 1013 | ELSE |
---|
| 1014 | lad(k) = lad_surface + dzu(k) * gradient |
---|
| 1015 | ENDIF |
---|
| 1016 | ELSE |
---|
| 1017 | lad(k) = lad(k-1) |
---|
| 1018 | ENDIF |
---|
| 1019 | ENDDO |
---|
| 1020 | |
---|
| 1021 | ENDIF |
---|
| 1022 | |
---|
| 1023 | ! |
---|
| 1024 | !-- In case of no given leaf area density gradients, choose a vanishing |
---|
| 1025 | !-- gradient. This information is used for the HEADER and the RUN_CONTROL |
---|
| 1026 | !-- file. |
---|
| 1027 | IF ( lad_vertical_gradient_level(1) == -9999999.9_wp ) THEN |
---|
| 1028 | lad_vertical_gradient_level(1) = 0.0_wp |
---|
| 1029 | ENDIF |
---|
| 1030 | |
---|
| 1031 | ELSE |
---|
| 1032 | |
---|
| 1033 | ! |
---|
| 1034 | !-- Use beta function for lad-profile construction |
---|
| 1035 | int_bpdf = 0.0_wp |
---|
[3065] | 1036 | canopy_height = zw(pch_index) |
---|
[1484] | 1037 | |
---|
[2232] | 1038 | DO k = 0, pch_index |
---|
[1484] | 1039 | int_bpdf = int_bpdf + & |
---|
[1826] | 1040 | ( ( ( zw(k) / canopy_height )**( alpha_lad-1.0_wp ) ) * & |
---|
| 1041 | ( ( 1.0_wp - ( zw(k) / canopy_height ) )**( & |
---|
| 1042 | beta_lad-1.0_wp ) ) & |
---|
| 1043 | * ( ( zw(k+1)-zw(k) ) / canopy_height ) ) |
---|
[1484] | 1044 | ENDDO |
---|
| 1045 | |
---|
| 1046 | ! |
---|
| 1047 | !-- Preliminary lad profile (defined on w-grid) |
---|
[2232] | 1048 | DO k = 0, pch_index |
---|
[1826] | 1049 | pre_lad(k) = lai_beta * & |
---|
| 1050 | ( ( ( zw(k) / canopy_height )**( alpha_lad-1.0_wp ) ) & |
---|
| 1051 | * ( ( 1.0_wp - ( zw(k) / canopy_height ) )**( & |
---|
| 1052 | beta_lad-1.0_wp ) ) / int_bpdf & |
---|
| 1053 | ) / canopy_height |
---|
[1484] | 1054 | ENDDO |
---|
| 1055 | |
---|
| 1056 | ! |
---|
| 1057 | !-- Final lad profile (defined on scalar-grid level, since most prognostic |
---|
| 1058 | !-- quantities are defined there, hence, less interpolation is required |
---|
| 1059 | !-- when calculating the canopy tendencies) |
---|
| 1060 | lad(0) = pre_lad(0) |
---|
[2232] | 1061 | DO k = 1, pch_index |
---|
[1484] | 1062 | lad(k) = 0.5 * ( pre_lad(k-1) + pre_lad(k) ) |
---|
[4302] | 1063 | ENDDO |
---|
[1484] | 1064 | |
---|
| 1065 | ENDIF |
---|
| 1066 | |
---|
| 1067 | ! |
---|
[2213] | 1068 | !-- Allocate 3D-array for the leaf area density (lad_s). |
---|
[1484] | 1069 | ALLOCATE( lad_s(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 1070 | ! |
---|
| 1071 | !-- Initialize canopy parameters cdc (canopy drag coefficient), |
---|
| 1072 | !-- lsec (leaf scalar exchange coefficient), lsc (leaf surface concentration) |
---|
| 1073 | !-- with the prescribed values |
---|
| 1074 | cdc = canopy_drag_coeff |
---|
| 1075 | lsec = leaf_scalar_exch_coeff |
---|
| 1076 | lsc = leaf_surface_conc |
---|
| 1077 | |
---|
| 1078 | ! |
---|
| 1079 | !-- Initialization of the canopy coverage in the model domain: |
---|
| 1080 | !-- Setting the parameter canopy_mode = 'block' initializes a canopy, which |
---|
| 1081 | !-- fully covers the domain surface |
---|
| 1082 | SELECT CASE ( TRIM( canopy_mode ) ) |
---|
| 1083 | |
---|
| 1084 | CASE( 'block' ) |
---|
| 1085 | |
---|
| 1086 | DO i = nxlg, nxrg |
---|
| 1087 | DO j = nysg, nyng |
---|
| 1088 | lad_s(:,j,i) = lad(:) |
---|
| 1089 | ENDDO |
---|
| 1090 | ENDDO |
---|
| 1091 | |
---|
[2007] | 1092 | CASE ( 'read_from_file_3d' ) |
---|
| 1093 | ! |
---|
[2696] | 1094 | !-- Initialize LAD with data from file. If LAD is given in NetCDF file, |
---|
| 1095 | !-- use these values, else take LAD profiles from ASCII file. |
---|
| 1096 | !-- Please note, in NetCDF file LAD is only given up to the maximum |
---|
| 1097 | !-- canopy top, indicated by leaf_area_density_f%nz. |
---|
| 1098 | lad_s = 0.0_wp |
---|
| 1099 | IF ( leaf_area_density_f%from_file ) THEN |
---|
| 1100 | ! |
---|
| 1101 | !-- Set also pch_index, used to be the upper bound of the vertical |
---|
| 1102 | !-- loops. Therefore, use the global top of the canopy layer. |
---|
| 1103 | pch_index = leaf_area_density_f%nz - 1 |
---|
| 1104 | |
---|
| 1105 | DO i = nxl, nxr |
---|
| 1106 | DO j = nys, nyn |
---|
| 1107 | DO k = 0, leaf_area_density_f%nz - 1 |
---|
[3864] | 1108 | IF ( leaf_area_density_f%var(k,j,i) /= & |
---|
| 1109 | leaf_area_density_f%fill ) & |
---|
[2696] | 1110 | lad_s(k,j,i) = leaf_area_density_f%var(k,j,i) |
---|
| 1111 | ENDDO |
---|
[4302] | 1112 | ! |
---|
| 1113 | !-- Check if resolved vegetation is mapped onto buildings. |
---|
[4314] | 1114 | !-- In general, this is allowed and also meaningful, e.g. |
---|
| 1115 | !-- when trees carry across roofs. However, due to the |
---|
| 1116 | !-- topography filtering, new building grid points can emerge |
---|
| 1117 | !-- at location where also plant canopy is defined. As a |
---|
| 1118 | !-- result, plant canopy is mapped on top of roofs, with |
---|
| 1119 | !-- siginficant impact on the downstream flow field and the |
---|
| 1120 | !-- nearby surface radiation. In order to avoid that |
---|
| 1121 | !-- plant canopy is mistakenly mapped onto building roofs, |
---|
| 1122 | !-- check for building grid points (bit 6) that emerge from |
---|
| 1123 | !-- the filtering (bit 4) and set LAD to zero at these |
---|
| 1124 | !-- artificially created building grid points. This case, |
---|
| 1125 | !-- an informative message is given. |
---|
[4302] | 1126 | IF ( ANY( lad_s(:,j,i) /= 0.0_wp ) .AND. & |
---|
[4314] | 1127 | ANY( BTEST( wall_flags_0(:,j,i), 6 ) ) .AND. & |
---|
| 1128 | ANY( BTEST( wall_flags_0(:,j,i), 4 ) ) ) THEN |
---|
[4302] | 1129 | lad_s(:,j,i) = 0.0_wp |
---|
| 1130 | WRITE( message_string, * ) & |
---|
[4314] | 1131 | 'Resolved plant-canopy is ' // & |
---|
| 1132 | 'defined on top of an artificially '// & |
---|
| 1133 | 'created building grid point ' // & |
---|
| 1134 | '(emerged from the filering) - ' // & |
---|
| 1135 | 'LAD profile is omitted at this ' // & |
---|
| 1136 | 'grid point: (i,j) = ', i, j |
---|
[4302] | 1137 | CALL message( 'pcm_init', 'PA0313', 0, 0, myid, 6, 0 ) |
---|
| 1138 | ENDIF |
---|
[2696] | 1139 | ENDDO |
---|
| 1140 | ENDDO |
---|
| 1141 | CALL exchange_horiz( lad_s, nbgp ) |
---|
| 1142 | ! |
---|
| 1143 | ! ASCII file |
---|
[2007] | 1144 | !-- Initialize canopy parameters cdc (canopy drag coefficient), |
---|
| 1145 | !-- lsec (leaf scalar exchange coefficient), lsc (leaf surface concentration) |
---|
| 1146 | !-- from file which contains complete 3D data (separate vertical profiles for |
---|
| 1147 | !-- each location). |
---|
[2696] | 1148 | ELSE |
---|
| 1149 | CALL pcm_read_plant_canopy_3d |
---|
| 1150 | ENDIF |
---|
[2007] | 1151 | |
---|
[1484] | 1152 | CASE DEFAULT |
---|
| 1153 | ! |
---|
[2007] | 1154 | !-- The DEFAULT case is reached either if the parameter |
---|
| 1155 | !-- canopy mode contains a wrong character string or if the |
---|
| 1156 | !-- user has coded a special case in the user interface. |
---|
| 1157 | !-- There, the subroutine user_init_plant_canopy checks |
---|
| 1158 | !-- which of these two conditions applies. |
---|
| 1159 | CALL user_init_plant_canopy |
---|
[1484] | 1160 | |
---|
| 1161 | END SELECT |
---|
[2696] | 1162 | ! |
---|
[4258] | 1163 | !-- Check that at least one grid point has an LAD /= 0, else this may |
---|
| 1164 | !-- cause errors in the radiation model. |
---|
| 1165 | lad_max = MAXVAL( lad_s ) |
---|
| 1166 | #if defined( __parallel ) |
---|
| 1167 | CALL MPI_ALLREDUCE( MPI_IN_PLACE, lad_max, 1, MPI_REAL, MPI_MAX, & |
---|
| 1168 | comm2d, ierr) |
---|
| 1169 | #endif |
---|
| 1170 | IF ( lad_max <= 0.0_wp ) THEN |
---|
| 1171 | message_string = 'Plant-canopy model is switched-on but no ' // & |
---|
| 1172 | 'plant canopy is present in the model domain.' |
---|
| 1173 | CALL message( 'pcm_init', 'PA0685', 1, 2, 0, 6, 0 ) |
---|
| 1174 | ENDIF |
---|
| 1175 | |
---|
| 1176 | ! |
---|
[2696] | 1177 | !-- Initialize 2D index array indicating canopy top index. |
---|
| 1178 | ALLOCATE( pch_index_ji(nysg:nyng,nxlg:nxrg) ) |
---|
| 1179 | pch_index_ji = 0 |
---|
[4187] | 1180 | |
---|
[2696] | 1181 | DO i = nxl, nxr |
---|
| 1182 | DO j = nys, nyn |
---|
| 1183 | DO k = 0, pch_index |
---|
| 1184 | IF ( lad_s(k,j,i) /= 0 ) pch_index_ji(j,i) = k |
---|
| 1185 | ENDDO |
---|
[1484] | 1186 | ! |
---|
[2696] | 1187 | !-- Check whether topography and local vegetation on top exceed |
---|
| 1188 | !-- height of the model domain. |
---|
[4168] | 1189 | k = topo_top_ind(j,i,0) |
---|
[2696] | 1190 | IF ( k + pch_index_ji(j,i) >= nzt + 1 ) THEN |
---|
| 1191 | message_string = 'Local vegetation height on top of ' // & |
---|
| 1192 | 'topography exceeds height of model domain.' |
---|
[4187] | 1193 | CALL message( 'pcm_init', 'PA0674', 2, 2, 0, 6, 0 ) |
---|
[2696] | 1194 | ENDIF |
---|
| 1195 | |
---|
| 1196 | ENDDO |
---|
| 1197 | ENDDO |
---|
| 1198 | |
---|
| 1199 | CALL exchange_horiz_2d_int( pch_index_ji, nys, nyn, nxl, nxr, nbgp ) |
---|
[3497] | 1200 | ! |
---|
[3449] | 1201 | !-- Calculate global pch_index value (index of top of plant canopy from ground) |
---|
[3497] | 1202 | pch_index = MAXVAL( pch_index_ji ) |
---|
[4187] | 1203 | |
---|
| 1204 | |
---|
[3497] | 1205 | ! |
---|
[3449] | 1206 | !-- Exchange pch_index from all processors |
---|
| 1207 | #if defined( __parallel ) |
---|
[3497] | 1208 | CALL MPI_ALLREDUCE( MPI_IN_PLACE, pch_index, 1, MPI_INTEGER, & |
---|
| 1209 | MPI_MAX, comm2d, ierr) |
---|
[3449] | 1210 | #endif |
---|
| 1211 | |
---|
| 1212 | !-- Allocation of arrays pc_heating_rate, pc_transpiration_rate and pc_latent_rate |
---|
| 1213 | ALLOCATE( pc_heating_rate(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
[4221] | 1214 | pc_heating_rate = 0.0_wp |
---|
| 1215 | |
---|
[3449] | 1216 | IF ( humidity ) THEN |
---|
| 1217 | ALLOCATE( pc_transpiration_rate(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 1218 | pc_transpiration_rate = 0.0_wp |
---|
| 1219 | ALLOCATE( pc_latent_rate(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 1220 | pc_latent_rate = 0.0_wp |
---|
| 1221 | ENDIF |
---|
[2696] | 1222 | ! |
---|
[2011] | 1223 | !-- Initialization of the canopy heat source distribution due to heating |
---|
| 1224 | !-- of the canopy layers by incoming solar radiation, in case that a non-zero |
---|
| 1225 | !-- value is set for the canopy top heat flux (cthf), which equals the |
---|
| 1226 | !-- available net radiation at canopy top. |
---|
| 1227 | !-- The heat source distribution is calculated by a decaying exponential |
---|
| 1228 | !-- function of the downward cumulative leaf area index (cum_lai_hf), |
---|
| 1229 | !-- assuming that the foliage inside the plant canopy is heated by solar |
---|
| 1230 | !-- radiation penetrating the canopy layers according to the distribution |
---|
| 1231 | !-- of net radiation as suggested by Brown & Covey (1966; Agric. Meteorol. 3, |
---|
| 1232 | !-- 73â96). This approach has been applied e.g. by Shaw & Schumann (1992; |
---|
[2213] | 1233 | !-- Bound.-Layer Meteorol. 61, 47â64). |
---|
[3449] | 1234 | !-- When using the radiation_interactions, canopy heating (pc_heating_rate) |
---|
| 1235 | !-- and plant canopy transpiration (pc_transpiration_rate, pc_latent_rate) |
---|
| 1236 | !-- are calculated in the RTM after the calculation of radiation. |
---|
| 1237 | !-- We cannot use variable radiation_interactions here to determine the situation |
---|
| 1238 | !-- as it is assigned in init_3d_model after the call of pcm_init. |
---|
| 1239 | IF ( cthf /= 0.0_wp ) THEN |
---|
[2213] | 1240 | |
---|
[3449] | 1241 | ALLOCATE( cum_lai_hf(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1484] | 1242 | ! |
---|
[2011] | 1243 | !-- Piecewise calculation of the cumulative leaf area index by vertical |
---|
[1484] | 1244 | !-- integration of the leaf area density |
---|
| 1245 | cum_lai_hf(:,:,:) = 0.0_wp |
---|
| 1246 | DO i = nxlg, nxrg |
---|
| 1247 | DO j = nysg, nyng |
---|
[2696] | 1248 | DO k = pch_index_ji(j,i)-1, 0, -1 |
---|
| 1249 | IF ( k == pch_index_ji(j,i)-1 ) THEN |
---|
[1484] | 1250 | cum_lai_hf(k,j,i) = cum_lai_hf(k+1,j,i) + & |
---|
| 1251 | ( 0.5_wp * lad_s(k+1,j,i) * & |
---|
| 1252 | ( zw(k+1) - zu(k+1) ) ) + & |
---|
| 1253 | ( 0.5_wp * ( 0.5_wp * ( lad_s(k+1,j,i) + & |
---|
| 1254 | lad_s(k,j,i) ) + & |
---|
| 1255 | lad_s(k+1,j,i) ) * & |
---|
| 1256 | ( zu(k+1) - zw(k) ) ) |
---|
| 1257 | ELSE |
---|
| 1258 | cum_lai_hf(k,j,i) = cum_lai_hf(k+1,j,i) + & |
---|
| 1259 | ( 0.5_wp * ( 0.5_wp * ( lad_s(k+2,j,i) + & |
---|
| 1260 | lad_s(k+1,j,i) ) + & |
---|
| 1261 | lad_s(k+1,j,i) ) * & |
---|
| 1262 | ( zw(k+1) - zu(k+1) ) ) + & |
---|
| 1263 | ( 0.5_wp * ( 0.5_wp * ( lad_s(k+1,j,i) + & |
---|
| 1264 | lad_s(k,j,i) ) + & |
---|
| 1265 | lad_s(k+1,j,i) ) * & |
---|
| 1266 | ( zu(k+1) - zw(k) ) ) |
---|
| 1267 | ENDIF |
---|
| 1268 | ENDDO |
---|
| 1269 | ENDDO |
---|
| 1270 | ENDDO |
---|
| 1271 | |
---|
[4278] | 1272 | ! |
---|
[2232] | 1273 | !-- In areas with canopy the surface value of the canopy heat |
---|
| 1274 | !-- flux distribution overrides the surface heat flux (shf) |
---|
| 1275 | !-- Start with default surface type |
---|
| 1276 | DO m = 1, surf_def_h(0)%ns |
---|
[4278] | 1277 | i = surf_def_h(0)%i(m) |
---|
| 1278 | j = surf_def_h(0)%j(m) |
---|
[2232] | 1279 | k = surf_def_h(0)%k(m) |
---|
| 1280 | IF ( cum_lai_hf(0,j,i) /= 0.0_wp ) & |
---|
| 1281 | surf_def_h(0)%shf(m) = cthf * exp( -ext_coef * cum_lai_hf(0,j,i) ) |
---|
| 1282 | ENDDO |
---|
[1484] | 1283 | ! |
---|
[2232] | 1284 | !-- Natural surfaces |
---|
| 1285 | DO m = 1, surf_lsm_h%ns |
---|
[4278] | 1286 | i = surf_lsm_h%i(m) |
---|
| 1287 | j = surf_lsm_h%j(m) |
---|
[2232] | 1288 | k = surf_lsm_h%k(m) |
---|
| 1289 | IF ( cum_lai_hf(0,j,i) /= 0.0_wp ) & |
---|
| 1290 | surf_lsm_h%shf(m) = cthf * exp( -ext_coef * cum_lai_hf(0,j,i) ) |
---|
| 1291 | ENDDO |
---|
| 1292 | ! |
---|
| 1293 | !-- Urban surfaces |
---|
| 1294 | DO m = 1, surf_usm_h%ns |
---|
[4278] | 1295 | i = surf_usm_h%i(m) |
---|
| 1296 | j = surf_usm_h%j(m) |
---|
[2232] | 1297 | k = surf_usm_h%k(m) |
---|
| 1298 | IF ( cum_lai_hf(0,j,i) /= 0.0_wp ) & |
---|
| 1299 | surf_usm_h%shf(m) = cthf * exp( -ext_coef * cum_lai_hf(0,j,i) ) |
---|
| 1300 | ENDDO |
---|
| 1301 | ! |
---|
| 1302 | ! |
---|
[2011] | 1303 | !-- Calculation of the heating rate (K/s) within the different layers of |
---|
[2232] | 1304 | !-- the plant canopy. Calculation is only necessary in areas covered with |
---|
| 1305 | !-- canopy. |
---|
| 1306 | !-- Within the different canopy layers the plant-canopy heating |
---|
| 1307 | !-- rate (pc_heating_rate) is calculated as the vertical |
---|
| 1308 | !-- divergence of the canopy heat fluxes at the top and bottom |
---|
| 1309 | !-- of the respective layer |
---|
[1484] | 1310 | DO i = nxlg, nxrg |
---|
| 1311 | DO j = nysg, nyng |
---|
[2696] | 1312 | DO k = 1, pch_index_ji(j,i) |
---|
[2232] | 1313 | IF ( cum_lai_hf(0,j,i) /= 0.0_wp ) THEN |
---|
[3022] | 1314 | pc_heating_rate(k,j,i) = cthf * & |
---|
| 1315 | ( exp(-ext_coef*cum_lai_hf(k,j,i)) - & |
---|
[2232] | 1316 | exp(-ext_coef*cum_lai_hf(k-1,j,i) ) ) / dzw(k) |
---|
| 1317 | ENDIF |
---|
| 1318 | ENDDO |
---|
[1721] | 1319 | ENDDO |
---|
| 1320 | ENDDO |
---|
[1484] | 1321 | |
---|
| 1322 | ENDIF |
---|
| 1323 | |
---|
[3885] | 1324 | IF ( debug_output ) CALL debug_message( 'pcm_init', 'end' ) |
---|
[1484] | 1325 | |
---|
[3685] | 1326 | |
---|
[1826] | 1327 | END SUBROUTINE pcm_init |
---|
[1484] | 1328 | |
---|
| 1329 | |
---|
[2007] | 1330 | !------------------------------------------------------------------------------! |
---|
| 1331 | ! Description: |
---|
| 1332 | ! ------------ |
---|
[2932] | 1333 | !> Parin for &plant_canopy_parameters for plant canopy model |
---|
[2007] | 1334 | !------------------------------------------------------------------------------! |
---|
| 1335 | SUBROUTINE pcm_parin |
---|
[1484] | 1336 | |
---|
[2746] | 1337 | USE control_parameters, & |
---|
[2932] | 1338 | ONLY: message_string, plant_canopy |
---|
[2007] | 1339 | |
---|
| 1340 | IMPLICIT NONE |
---|
| 1341 | |
---|
| 1342 | CHARACTER (LEN=80) :: line !< dummy string that contains the current line of the parameter file |
---|
| 1343 | |
---|
[2932] | 1344 | NAMELIST /plant_canopy_parameters/ & |
---|
| 1345 | alpha_lad, beta_lad, canopy_drag_coeff, & |
---|
| 1346 | canopy_mode, cthf, & |
---|
[2977] | 1347 | lad_surface, lad_type_coef, & |
---|
[2932] | 1348 | lad_vertical_gradient, & |
---|
| 1349 | lad_vertical_gradient_level, & |
---|
| 1350 | lai_beta, & |
---|
| 1351 | leaf_scalar_exch_coeff, & |
---|
[3449] | 1352 | leaf_surface_conc, pch_index, & |
---|
| 1353 | plant_canopy_transpiration |
---|
[2932] | 1354 | |
---|
[2007] | 1355 | NAMELIST /canopy_par/ alpha_lad, beta_lad, canopy_drag_coeff, & |
---|
| 1356 | canopy_mode, cthf, & |
---|
[2977] | 1357 | lad_surface, lad_type_coef, & |
---|
[2007] | 1358 | lad_vertical_gradient, & |
---|
| 1359 | lad_vertical_gradient_level, & |
---|
| 1360 | lai_beta, & |
---|
| 1361 | leaf_scalar_exch_coeff, & |
---|
[3449] | 1362 | leaf_surface_conc, pch_index, & |
---|
| 1363 | plant_canopy_transpiration |
---|
[3246] | 1364 | |
---|
[2007] | 1365 | line = ' ' |
---|
[3246] | 1366 | |
---|
[2007] | 1367 | ! |
---|
[4258] | 1368 | !-- Try to find plant-canopy model package |
---|
[2007] | 1369 | REWIND ( 11 ) |
---|
| 1370 | line = ' ' |
---|
[3248] | 1371 | DO WHILE ( INDEX( line, '&plant_canopy_parameters' ) == 0 ) |
---|
[3246] | 1372 | READ ( 11, '(A)', END=12 ) line |
---|
[2007] | 1373 | ENDDO |
---|
| 1374 | BACKSPACE ( 11 ) |
---|
| 1375 | |
---|
| 1376 | ! |
---|
| 1377 | !-- Read user-defined namelist |
---|
[3246] | 1378 | READ ( 11, plant_canopy_parameters, ERR = 10 ) |
---|
[2932] | 1379 | |
---|
| 1380 | ! |
---|
[4258] | 1381 | !-- Set flag that indicates that the plant-canopy model is switched on |
---|
[2932] | 1382 | plant_canopy = .TRUE. |
---|
[3246] | 1383 | |
---|
| 1384 | GOTO 14 |
---|
| 1385 | |
---|
| 1386 | 10 BACKSPACE( 11 ) |
---|
[3248] | 1387 | READ( 11 , '(A)') line |
---|
| 1388 | CALL parin_fail_message( 'plant_canopy_parameters', line ) |
---|
[2932] | 1389 | ! |
---|
| 1390 | !-- Try to find old namelist |
---|
[3246] | 1391 | 12 REWIND ( 11 ) |
---|
[2932] | 1392 | line = ' ' |
---|
[3248] | 1393 | DO WHILE ( INDEX( line, '&canopy_par' ) == 0 ) |
---|
[3246] | 1394 | READ ( 11, '(A)', END=14 ) line |
---|
[2932] | 1395 | ENDDO |
---|
| 1396 | BACKSPACE ( 11 ) |
---|
| 1397 | |
---|
| 1398 | ! |
---|
| 1399 | !-- Read user-defined namelist |
---|
[3246] | 1400 | READ ( 11, canopy_par, ERR = 13, END = 14 ) |
---|
[2007] | 1401 | |
---|
[2932] | 1402 | message_string = 'namelist canopy_par is deprecated and will be ' // & |
---|
[3046] | 1403 | 'removed in near future. Please use namelist ' // & |
---|
[2932] | 1404 | 'plant_canopy_parameters instead' |
---|
| 1405 | CALL message( 'pcm_parin', 'PA0487', 0, 1, 0, 6, 0 ) |
---|
[3246] | 1406 | |
---|
[2007] | 1407 | ! |
---|
[4258] | 1408 | !-- Set flag that indicates that the plant-canopy model is switched on |
---|
[2007] | 1409 | plant_canopy = .TRUE. |
---|
| 1410 | |
---|
[3246] | 1411 | GOTO 14 |
---|
[2007] | 1412 | |
---|
[3246] | 1413 | 13 BACKSPACE( 11 ) |
---|
[3248] | 1414 | READ( 11 , '(A)') line |
---|
| 1415 | CALL parin_fail_message( 'canopy_par', line ) |
---|
[3246] | 1416 | |
---|
| 1417 | 14 CONTINUE |
---|
| 1418 | |
---|
| 1419 | |
---|
[2007] | 1420 | END SUBROUTINE pcm_parin |
---|
| 1421 | |
---|
| 1422 | |
---|
| 1423 | |
---|
[1484] | 1424 | !------------------------------------------------------------------------------! |
---|
| 1425 | ! Description: |
---|
| 1426 | ! ------------ |
---|
[2007] | 1427 | ! |
---|
| 1428 | !> Loads 3D plant canopy data from file. File format is as follows: |
---|
| 1429 | !> |
---|
| 1430 | !> num_levels |
---|
[2977] | 1431 | !> dtype,x,y,pctype,value(nzb),value(nzb+1), ... ,value(nzb+num_levels-1) |
---|
| 1432 | !> dtype,x,y,pctype,value(nzb),value(nzb+1), ... ,value(nzb+num_levels-1) |
---|
| 1433 | !> dtype,x,y,pctype,value(nzb),value(nzb+1), ... ,value(nzb+num_levels-1) |
---|
[2007] | 1434 | !> ... |
---|
| 1435 | !> |
---|
| 1436 | !> i.e. first line determines number of levels and further lines represent plant |
---|
| 1437 | !> canopy data, one line per column and variable. In each data line, |
---|
| 1438 | !> dtype represents variable to be set: |
---|
| 1439 | !> |
---|
| 1440 | !> dtype=1: leaf area density (lad_s) |
---|
[2213] | 1441 | !> dtype=2....n: some additional plant canopy input data quantity |
---|
[2007] | 1442 | !> |
---|
| 1443 | !> Zeros are added automatically above num_levels until top of domain. Any |
---|
| 1444 | !> non-specified (x,y) columns have zero values as default. |
---|
| 1445 | !------------------------------------------------------------------------------! |
---|
| 1446 | SUBROUTINE pcm_read_plant_canopy_3d |
---|
[2213] | 1447 | |
---|
| 1448 | USE control_parameters, & |
---|
[3241] | 1449 | ONLY: coupling_char, message_string |
---|
[2007] | 1450 | |
---|
[2213] | 1451 | USE indices, & |
---|
| 1452 | ONLY: nbgp |
---|
| 1453 | |
---|
| 1454 | IMPLICIT NONE |
---|
[2007] | 1455 | |
---|
[2213] | 1456 | INTEGER(iwp) :: dtype !< type of input data (1=lad) |
---|
[2977] | 1457 | INTEGER(iwp) :: pctype !< type of plant canopy (deciduous,non-deciduous,...) |
---|
[2213] | 1458 | INTEGER(iwp) :: i, j !< running index |
---|
| 1459 | INTEGER(iwp) :: nzp !< number of vertical layers of plant canopy |
---|
[3337] | 1460 | INTEGER(iwp) :: nzpltop !< |
---|
| 1461 | INTEGER(iwp) :: nzpl !< |
---|
| 1462 | INTEGER(iwp) :: kk !< |
---|
[2213] | 1463 | |
---|
| 1464 | REAL(wp), DIMENSION(:), ALLOCATABLE :: col !< vertical column of input data |
---|
[2007] | 1465 | |
---|
[2213] | 1466 | ! |
---|
| 1467 | !-- Initialize lad_s array |
---|
| 1468 | lad_s = 0.0_wp |
---|
| 1469 | |
---|
| 1470 | ! |
---|
| 1471 | !-- Open and read plant canopy input data |
---|
[2977] | 1472 | OPEN(152, FILE='PLANT_CANOPY_DATA_3D' // TRIM( coupling_char ), & |
---|
| 1473 | ACCESS='SEQUENTIAL', ACTION='READ', STATUS='OLD', & |
---|
| 1474 | FORM='FORMATTED', ERR=515) |
---|
| 1475 | READ(152, *, ERR=516, END=517) nzp !< read first line = number of vertical layers |
---|
[3337] | 1476 | nzpltop = MIN(nzt+1, nzb+nzp-1) |
---|
| 1477 | nzpl = nzpltop - nzb + 1 !< no. of layers to assign |
---|
[2977] | 1478 | ALLOCATE( col(0:nzp-1) ) |
---|
[2007] | 1479 | |
---|
[2213] | 1480 | DO |
---|
[2977] | 1481 | READ(152, *, ERR=516, END=517) dtype, i, j, pctype, col(:) |
---|
| 1482 | IF ( i < nxlg .OR. i > nxrg .OR. j < nysg .OR. j > nyng ) CYCLE |
---|
| 1483 | |
---|
| 1484 | SELECT CASE (dtype) |
---|
| 1485 | CASE( 1 ) !< leaf area density |
---|
[2213] | 1486 | ! |
---|
[2977] | 1487 | !-- This is just the pure canopy layer assumed to be grounded to |
---|
| 1488 | !-- a flat domain surface. At locations where plant canopy sits |
---|
| 1489 | !-- on top of any kind of topography, the vertical plant column |
---|
| 1490 | !-- must be "lifted", which is done in SUBROUTINE pcm_tendency. |
---|
| 1491 | IF ( pctype < 0 .OR. pctype > 10 ) THEN !< incorrect plant canopy type |
---|
| 1492 | WRITE( message_string, * ) 'Incorrect type of plant canopy. ' // & |
---|
| 1493 | 'Allowed values 0 <= pctype <= 10, ' // & |
---|
| 1494 | 'but pctype is ', pctype |
---|
| 1495 | CALL message( 'pcm_read_plant_canopy_3d', 'PA0349', 1, 2, 0, 6, 0 ) |
---|
| 1496 | ENDIF |
---|
[4168] | 1497 | kk = topo_top_ind(j,i,0) |
---|
[3337] | 1498 | lad_s(nzb:nzpltop-kk, j, i) = col(kk:nzpl-1)*lad_type_coef(pctype) |
---|
[2977] | 1499 | CASE DEFAULT |
---|
| 1500 | WRITE(message_string, '(a,i2,a)') & |
---|
| 1501 | 'Unknown record type in file PLANT_CANOPY_DATA_3D: "', dtype, '"' |
---|
| 1502 | CALL message( 'pcm_read_plant_canopy_3d', 'PA0530', 1, 2, 0, 6, 0 ) |
---|
| 1503 | END SELECT |
---|
[2213] | 1504 | ENDDO |
---|
[2007] | 1505 | |
---|
[2213] | 1506 | 515 message_string = 'error opening file PLANT_CANOPY_DATA_3D' |
---|
| 1507 | CALL message( 'pcm_read_plant_canopy_3d', 'PA0531', 1, 2, 0, 6, 0 ) |
---|
[2007] | 1508 | |
---|
[2213] | 1509 | 516 message_string = 'error reading file PLANT_CANOPY_DATA_3D' |
---|
| 1510 | CALL message( 'pcm_read_plant_canopy_3d', 'PA0532', 1, 2, 0, 6, 0 ) |
---|
| 1511 | |
---|
| 1512 | 517 CLOSE(152) |
---|
[2977] | 1513 | DEALLOCATE( col ) |
---|
[2213] | 1514 | |
---|
| 1515 | CALL exchange_horiz( lad_s, nbgp ) |
---|
[2007] | 1516 | |
---|
| 1517 | END SUBROUTINE pcm_read_plant_canopy_3d |
---|
| 1518 | |
---|
| 1519 | |
---|
| 1520 | |
---|
| 1521 | !------------------------------------------------------------------------------! |
---|
| 1522 | ! Description: |
---|
| 1523 | ! ------------ |
---|
[1682] | 1524 | !> Calculation of the tendency terms, accounting for the effect of the plant |
---|
| 1525 | !> canopy on momentum and scalar quantities. |
---|
| 1526 | !> |
---|
| 1527 | !> The canopy is located where the leaf area density lad_s(k,j,i) > 0.0 |
---|
[1826] | 1528 | !> (defined on scalar grid), as initialized in subroutine pcm_init. |
---|
[1682] | 1529 | !> The lad on the w-grid is vertically interpolated from the surrounding |
---|
| 1530 | !> lad_s. The upper boundary of the canopy is defined on the w-grid at |
---|
| 1531 | !> k = pch_index. Here, the lad is zero. |
---|
| 1532 | !> |
---|
| 1533 | !> The canopy drag must be limited (previously accounted for by calculation of |
---|
| 1534 | !> a limiting canopy timestep for the determination of the maximum LES timestep |
---|
| 1535 | !> in subroutine timestep), since it is physically impossible that the canopy |
---|
| 1536 | !> drag alone can locally change the sign of a velocity component. This |
---|
| 1537 | !> limitation is realized by calculating preliminary tendencies and velocities. |
---|
| 1538 | !> It is subsequently checked if the preliminary new velocity has a different |
---|
| 1539 | !> sign than the current velocity. If so, the tendency is limited in a way that |
---|
| 1540 | !> the velocity can at maximum be reduced to zero by the canopy drag. |
---|
| 1541 | !> |
---|
| 1542 | !> |
---|
| 1543 | !> Call for all grid points |
---|
[1484] | 1544 | !------------------------------------------------------------------------------! |
---|
[1826] | 1545 | SUBROUTINE pcm_tendency( component ) |
---|
[138] | 1546 | |
---|
| 1547 | |
---|
[1320] | 1548 | USE control_parameters, & |
---|
[1484] | 1549 | ONLY: dt_3d, message_string |
---|
[1320] | 1550 | |
---|
| 1551 | USE kinds |
---|
| 1552 | |
---|
[138] | 1553 | IMPLICIT NONE |
---|
| 1554 | |
---|
[1682] | 1555 | INTEGER(iwp) :: component !< prognostic variable (u,v,w,pt,q,e) |
---|
| 1556 | INTEGER(iwp) :: i !< running index |
---|
| 1557 | INTEGER(iwp) :: j !< running index |
---|
| 1558 | INTEGER(iwp) :: k !< running index |
---|
[2232] | 1559 | INTEGER(iwp) :: k_wall !< vertical index of topography top |
---|
[1721] | 1560 | INTEGER(iwp) :: kk !< running index for flat lad arrays |
---|
[1484] | 1561 | |
---|
[1682] | 1562 | REAL(wp) :: ddt_3d !< inverse of the LES timestep (dt_3d) |
---|
| 1563 | REAL(wp) :: lad_local !< local lad value |
---|
| 1564 | REAL(wp) :: pre_tend !< preliminary tendency |
---|
| 1565 | REAL(wp) :: pre_u !< preliminary u-value |
---|
| 1566 | REAL(wp) :: pre_v !< preliminary v-value |
---|
| 1567 | REAL(wp) :: pre_w !< preliminary w-value |
---|
[1484] | 1568 | |
---|
| 1569 | |
---|
| 1570 | ddt_3d = 1.0_wp / dt_3d |
---|
[138] | 1571 | |
---|
| 1572 | ! |
---|
[1484] | 1573 | !-- Compute drag for the three velocity components and the SGS-TKE: |
---|
[138] | 1574 | SELECT CASE ( component ) |
---|
| 1575 | |
---|
| 1576 | ! |
---|
| 1577 | !-- u-component |
---|
| 1578 | CASE ( 1 ) |
---|
| 1579 | DO i = nxlu, nxr |
---|
| 1580 | DO j = nys, nyn |
---|
[2232] | 1581 | ! |
---|
| 1582 | !-- Determine topography-top index on u-grid |
---|
[4168] | 1583 | k_wall = topo_top_ind(j,i,1) |
---|
[2696] | 1584 | DO k = k_wall+1, k_wall + pch_index_ji(j,i) |
---|
[1484] | 1585 | |
---|
[2232] | 1586 | kk = k - k_wall !- lad arrays are defined flat |
---|
[1484] | 1587 | ! |
---|
| 1588 | !-- In order to create sharp boundaries of the plant canopy, |
---|
| 1589 | !-- the lad on the u-grid at index (k,j,i) is equal to |
---|
| 1590 | !-- lad_s(k,j,i), rather than being interpolated from the |
---|
| 1591 | !-- surrounding lad_s, because this would yield smaller lad |
---|
| 1592 | !-- at the canopy boundaries than inside of the canopy. |
---|
| 1593 | !-- For the same reason, the lad at the rightmost(i+1)canopy |
---|
| 1594 | !-- boundary on the u-grid equals lad_s(k,j,i). |
---|
[1721] | 1595 | lad_local = lad_s(kk,j,i) |
---|
| 1596 | IF ( lad_local == 0.0_wp .AND. lad_s(kk,j,i-1) > 0.0_wp )& |
---|
| 1597 | THEN |
---|
| 1598 | lad_local = lad_s(kk,j,i-1) |
---|
[1484] | 1599 | ENDIF |
---|
| 1600 | |
---|
| 1601 | pre_tend = 0.0_wp |
---|
| 1602 | pre_u = 0.0_wp |
---|
| 1603 | ! |
---|
| 1604 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
| 1605 | pre_tend = - cdc * & |
---|
| 1606 | lad_local * & |
---|
| 1607 | SQRT( u(k,j,i)**2 + & |
---|
| 1608 | ( 0.25_wp * ( v(k,j,i-1) + & |
---|
| 1609 | v(k,j,i) + & |
---|
| 1610 | v(k,j+1,i) + & |
---|
| 1611 | v(k,j+1,i-1) ) & |
---|
| 1612 | )**2 + & |
---|
| 1613 | ( 0.25_wp * ( w(k-1,j,i-1) + & |
---|
| 1614 | w(k-1,j,i) + & |
---|
| 1615 | w(k,j,i-1) + & |
---|
| 1616 | w(k,j,i) ) & |
---|
| 1617 | )**2 & |
---|
| 1618 | ) * & |
---|
| 1619 | u(k,j,i) |
---|
| 1620 | |
---|
| 1621 | ! |
---|
| 1622 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 1623 | pre_u = u(k,j,i) + dt_3d * pre_tend |
---|
| 1624 | ! |
---|
| 1625 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
| 1626 | !-- and in case the signs are different, limit the tendency |
---|
| 1627 | IF ( SIGN(pre_u,u(k,j,i)) /= pre_u ) THEN |
---|
| 1628 | pre_tend = - u(k,j,i) * ddt_3d |
---|
| 1629 | ELSE |
---|
| 1630 | pre_tend = pre_tend |
---|
| 1631 | ENDIF |
---|
| 1632 | ! |
---|
| 1633 | !-- Calculate final tendency |
---|
| 1634 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 1635 | |
---|
[138] | 1636 | ENDDO |
---|
| 1637 | ENDDO |
---|
| 1638 | ENDDO |
---|
| 1639 | |
---|
| 1640 | ! |
---|
| 1641 | !-- v-component |
---|
| 1642 | CASE ( 2 ) |
---|
| 1643 | DO i = nxl, nxr |
---|
| 1644 | DO j = nysv, nyn |
---|
[2232] | 1645 | ! |
---|
| 1646 | !-- Determine topography-top index on v-grid |
---|
[4168] | 1647 | k_wall = topo_top_ind(j,i,2) |
---|
[2317] | 1648 | |
---|
[2696] | 1649 | DO k = k_wall+1, k_wall + pch_index_ji(j,i) |
---|
[1484] | 1650 | |
---|
[2232] | 1651 | kk = k - k_wall !- lad arrays are defined flat |
---|
[1484] | 1652 | ! |
---|
| 1653 | !-- In order to create sharp boundaries of the plant canopy, |
---|
| 1654 | !-- the lad on the v-grid at index (k,j,i) is equal to |
---|
| 1655 | !-- lad_s(k,j,i), rather than being interpolated from the |
---|
| 1656 | !-- surrounding lad_s, because this would yield smaller lad |
---|
| 1657 | !-- at the canopy boundaries than inside of the canopy. |
---|
| 1658 | !-- For the same reason, the lad at the northmost(j+1) canopy |
---|
| 1659 | !-- boundary on the v-grid equals lad_s(k,j,i). |
---|
[1721] | 1660 | lad_local = lad_s(kk,j,i) |
---|
| 1661 | IF ( lad_local == 0.0_wp .AND. lad_s(kk,j-1,i) > 0.0_wp )& |
---|
| 1662 | THEN |
---|
| 1663 | lad_local = lad_s(kk,j-1,i) |
---|
[1484] | 1664 | ENDIF |
---|
| 1665 | |
---|
| 1666 | pre_tend = 0.0_wp |
---|
| 1667 | pre_v = 0.0_wp |
---|
| 1668 | ! |
---|
| 1669 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
| 1670 | pre_tend = - cdc * & |
---|
| 1671 | lad_local * & |
---|
| 1672 | SQRT( ( 0.25_wp * ( u(k,j-1,i) + & |
---|
| 1673 | u(k,j-1,i+1) + & |
---|
| 1674 | u(k,j,i) + & |
---|
| 1675 | u(k,j,i+1) ) & |
---|
| 1676 | )**2 + & |
---|
| 1677 | v(k,j,i)**2 + & |
---|
| 1678 | ( 0.25_wp * ( w(k-1,j-1,i) + & |
---|
| 1679 | w(k-1,j,i) + & |
---|
| 1680 | w(k,j-1,i) + & |
---|
| 1681 | w(k,j,i) ) & |
---|
| 1682 | )**2 & |
---|
| 1683 | ) * & |
---|
| 1684 | v(k,j,i) |
---|
| 1685 | |
---|
| 1686 | ! |
---|
| 1687 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 1688 | pre_v = v(k,j,i) + dt_3d * pre_tend |
---|
| 1689 | ! |
---|
| 1690 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
| 1691 | !-- and in case the signs are different, limit the tendency |
---|
| 1692 | IF ( SIGN(pre_v,v(k,j,i)) /= pre_v ) THEN |
---|
| 1693 | pre_tend = - v(k,j,i) * ddt_3d |
---|
| 1694 | ELSE |
---|
| 1695 | pre_tend = pre_tend |
---|
| 1696 | ENDIF |
---|
| 1697 | ! |
---|
| 1698 | !-- Calculate final tendency |
---|
| 1699 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 1700 | |
---|
[138] | 1701 | ENDDO |
---|
| 1702 | ENDDO |
---|
| 1703 | ENDDO |
---|
| 1704 | |
---|
| 1705 | ! |
---|
| 1706 | !-- w-component |
---|
| 1707 | CASE ( 3 ) |
---|
| 1708 | DO i = nxl, nxr |
---|
| 1709 | DO j = nys, nyn |
---|
[2232] | 1710 | ! |
---|
| 1711 | !-- Determine topography-top index on w-grid |
---|
[4168] | 1712 | k_wall = topo_top_ind(j,i,3) |
---|
[2317] | 1713 | |
---|
[2696] | 1714 | DO k = k_wall+1, k_wall + pch_index_ji(j,i) - 1 |
---|
[1484] | 1715 | |
---|
[2232] | 1716 | kk = k - k_wall !- lad arrays are defined flat |
---|
[1721] | 1717 | |
---|
[1484] | 1718 | pre_tend = 0.0_wp |
---|
| 1719 | pre_w = 0.0_wp |
---|
| 1720 | ! |
---|
| 1721 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
| 1722 | pre_tend = - cdc * & |
---|
| 1723 | (0.5_wp * & |
---|
[1721] | 1724 | ( lad_s(kk+1,j,i) + lad_s(kk,j,i) )) * & |
---|
[1484] | 1725 | SQRT( ( 0.25_wp * ( u(k,j,i) + & |
---|
| 1726 | u(k,j,i+1) + & |
---|
| 1727 | u(k+1,j,i) + & |
---|
| 1728 | u(k+1,j,i+1) ) & |
---|
| 1729 | )**2 + & |
---|
| 1730 | ( 0.25_wp * ( v(k,j,i) + & |
---|
| 1731 | v(k,j+1,i) + & |
---|
| 1732 | v(k+1,j,i) + & |
---|
| 1733 | v(k+1,j+1,i) ) & |
---|
| 1734 | )**2 + & |
---|
| 1735 | w(k,j,i)**2 & |
---|
| 1736 | ) * & |
---|
| 1737 | w(k,j,i) |
---|
| 1738 | ! |
---|
| 1739 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 1740 | pre_w = w(k,j,i) + dt_3d * pre_tend |
---|
| 1741 | ! |
---|
| 1742 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
| 1743 | !-- and in case the signs are different, limit the tendency |
---|
| 1744 | IF ( SIGN(pre_w,w(k,j,i)) /= pre_w ) THEN |
---|
| 1745 | pre_tend = - w(k,j,i) * ddt_3d |
---|
| 1746 | ELSE |
---|
| 1747 | pre_tend = pre_tend |
---|
| 1748 | ENDIF |
---|
| 1749 | ! |
---|
| 1750 | !-- Calculate final tendency |
---|
| 1751 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 1752 | |
---|
[138] | 1753 | ENDDO |
---|
| 1754 | ENDDO |
---|
| 1755 | ENDDO |
---|
| 1756 | |
---|
| 1757 | ! |
---|
[153] | 1758 | !-- potential temperature |
---|
[138] | 1759 | CASE ( 4 ) |
---|
[3449] | 1760 | IF ( humidity ) THEN |
---|
| 1761 | DO i = nxl, nxr |
---|
| 1762 | DO j = nys, nyn |
---|
| 1763 | !-- Determine topography-top index on scalar-grid |
---|
[4168] | 1764 | k_wall = topo_top_ind(j,i,0) |
---|
[3449] | 1765 | DO k = k_wall+1, k_wall + pch_index_ji(j,i) |
---|
| 1766 | kk = k - k_wall !- lad arrays are defined flat |
---|
| 1767 | tend(k,j,i) = tend(k,j,i) + pc_heating_rate(kk,j,i) - pc_latent_rate(kk,j,i) |
---|
| 1768 | ENDDO |
---|
[153] | 1769 | ENDDO |
---|
| 1770 | ENDDO |
---|
[3449] | 1771 | ELSE |
---|
| 1772 | DO i = nxl, nxr |
---|
| 1773 | DO j = nys, nyn |
---|
| 1774 | !-- Determine topography-top index on scalar-grid |
---|
[4168] | 1775 | k_wall = topo_top_ind(j,i,0) |
---|
[3449] | 1776 | DO k = k_wall+1, k_wall + pch_index_ji(j,i) |
---|
| 1777 | kk = k - k_wall !- lad arrays are defined flat |
---|
| 1778 | tend(k,j,i) = tend(k,j,i) + pc_heating_rate(kk,j,i) |
---|
| 1779 | ENDDO |
---|
| 1780 | ENDDO |
---|
| 1781 | ENDDO |
---|
| 1782 | ENDIF |
---|
[153] | 1783 | |
---|
| 1784 | ! |
---|
[1960] | 1785 | !-- humidity |
---|
[153] | 1786 | CASE ( 5 ) |
---|
| 1787 | DO i = nxl, nxr |
---|
| 1788 | DO j = nys, nyn |
---|
[2232] | 1789 | ! |
---|
| 1790 | !-- Determine topography-top index on scalar-grid |
---|
[4168] | 1791 | k_wall = topo_top_ind(j,i,0) |
---|
[2317] | 1792 | |
---|
[2696] | 1793 | DO k = k_wall+1, k_wall + pch_index_ji(j,i) |
---|
[2232] | 1794 | |
---|
| 1795 | kk = k - k_wall !- lad arrays are defined flat |
---|
[3014] | 1796 | |
---|
[3449] | 1797 | IF ( .NOT. plant_canopy_transpiration ) THEN |
---|
| 1798 | ! pc_transpiration_rate is calculated in radiation model |
---|
| 1799 | ! in case of plant_canopy_transpiration = .T. |
---|
| 1800 | ! to include also the dependecy to the radiation |
---|
| 1801 | ! in the plant canopy box |
---|
[3582] | 1802 | pc_transpiration_rate(kk,j,i) = - lsec & |
---|
| 1803 | * lad_s(kk,j,i) * & |
---|
| 1804 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 1805 | u(k,j,i+1) ) & |
---|
| 1806 | )**2 + & |
---|
| 1807 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 1808 | v(k,j+1,i) ) & |
---|
| 1809 | )**2 + & |
---|
| 1810 | ( 0.5_wp * ( w(k-1,j,i) + & |
---|
| 1811 | w(k,j,i) ) & |
---|
| 1812 | )**2 & |
---|
| 1813 | ) * & |
---|
[3449] | 1814 | ( q(k,j,i) - lsc ) |
---|
| 1815 | ENDIF |
---|
| 1816 | |
---|
[3014] | 1817 | tend(k,j,i) = tend(k,j,i) + pc_transpiration_rate(kk,j,i) |
---|
[153] | 1818 | ENDDO |
---|
| 1819 | ENDDO |
---|
| 1820 | ENDDO |
---|
| 1821 | |
---|
| 1822 | ! |
---|
| 1823 | !-- sgs-tke |
---|
| 1824 | CASE ( 6 ) |
---|
| 1825 | DO i = nxl, nxr |
---|
| 1826 | DO j = nys, nyn |
---|
[2232] | 1827 | ! |
---|
| 1828 | !-- Determine topography-top index on scalar-grid |
---|
[4168] | 1829 | k_wall = topo_top_ind(j,i,0) |
---|
[2317] | 1830 | |
---|
[2696] | 1831 | DO k = k_wall+1, k_wall + pch_index_ji(j,i) |
---|
[2232] | 1832 | |
---|
| 1833 | kk = k - k_wall !- lad arrays are defined flat |
---|
[1484] | 1834 | tend(k,j,i) = tend(k,j,i) - & |
---|
| 1835 | 2.0_wp * cdc * & |
---|
[1721] | 1836 | lad_s(kk,j,i) * & |
---|
[1484] | 1837 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 1838 | u(k,j,i+1) ) & |
---|
| 1839 | )**2 + & |
---|
| 1840 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 1841 | v(k,j+1,i) ) & |
---|
| 1842 | )**2 + & |
---|
| 1843 | ( 0.5_wp * ( w(k,j,i) + & |
---|
| 1844 | w(k+1,j,i) ) & |
---|
| 1845 | )**2 & |
---|
| 1846 | ) * & |
---|
| 1847 | e(k,j,i) |
---|
[138] | 1848 | ENDDO |
---|
| 1849 | ENDDO |
---|
| 1850 | ENDDO |
---|
[1960] | 1851 | ! |
---|
| 1852 | !-- scalar concentration |
---|
| 1853 | CASE ( 7 ) |
---|
| 1854 | DO i = nxl, nxr |
---|
| 1855 | DO j = nys, nyn |
---|
[2232] | 1856 | ! |
---|
| 1857 | !-- Determine topography-top index on scalar-grid |
---|
[4168] | 1858 | k_wall = topo_top_ind(j,i,0) |
---|
[2317] | 1859 | |
---|
[2696] | 1860 | DO k = k_wall+1, k_wall + pch_index_ji(j,i) |
---|
[2232] | 1861 | |
---|
| 1862 | kk = k - k_wall !- lad arrays are defined flat |
---|
[1960] | 1863 | tend(k,j,i) = tend(k,j,i) - & |
---|
| 1864 | lsec * & |
---|
| 1865 | lad_s(kk,j,i) * & |
---|
| 1866 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 1867 | u(k,j,i+1) ) & |
---|
| 1868 | )**2 + & |
---|
| 1869 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 1870 | v(k,j+1,i) ) & |
---|
| 1871 | )**2 + & |
---|
| 1872 | ( 0.5_wp * ( w(k-1,j,i) + & |
---|
| 1873 | w(k,j,i) ) & |
---|
| 1874 | )**2 & |
---|
| 1875 | ) * & |
---|
| 1876 | ( s(k,j,i) - lsc ) |
---|
| 1877 | ENDDO |
---|
| 1878 | ENDDO |
---|
| 1879 | ENDDO |
---|
[1484] | 1880 | |
---|
| 1881 | |
---|
[1960] | 1882 | |
---|
[138] | 1883 | CASE DEFAULT |
---|
| 1884 | |
---|
[257] | 1885 | WRITE( message_string, * ) 'wrong component: ', component |
---|
[1826] | 1886 | CALL message( 'pcm_tendency', 'PA0279', 1, 2, 0, 6, 0 ) |
---|
[138] | 1887 | |
---|
| 1888 | END SELECT |
---|
| 1889 | |
---|
[1826] | 1890 | END SUBROUTINE pcm_tendency |
---|
[138] | 1891 | |
---|
| 1892 | |
---|
| 1893 | !------------------------------------------------------------------------------! |
---|
[1484] | 1894 | ! Description: |
---|
| 1895 | ! ------------ |
---|
[1682] | 1896 | !> Calculation of the tendency terms, accounting for the effect of the plant |
---|
| 1897 | !> canopy on momentum and scalar quantities. |
---|
| 1898 | !> |
---|
| 1899 | !> The canopy is located where the leaf area density lad_s(k,j,i) > 0.0 |
---|
[1826] | 1900 | !> (defined on scalar grid), as initialized in subroutine pcm_init. |
---|
[1682] | 1901 | !> The lad on the w-grid is vertically interpolated from the surrounding |
---|
| 1902 | !> lad_s. The upper boundary of the canopy is defined on the w-grid at |
---|
| 1903 | !> k = pch_index. Here, the lad is zero. |
---|
| 1904 | !> |
---|
| 1905 | !> The canopy drag must be limited (previously accounted for by calculation of |
---|
| 1906 | !> a limiting canopy timestep for the determination of the maximum LES timestep |
---|
| 1907 | !> in subroutine timestep), since it is physically impossible that the canopy |
---|
| 1908 | !> drag alone can locally change the sign of a velocity component. This |
---|
| 1909 | !> limitation is realized by calculating preliminary tendencies and velocities. |
---|
| 1910 | !> It is subsequently checked if the preliminary new velocity has a different |
---|
| 1911 | !> sign than the current velocity. If so, the tendency is limited in a way that |
---|
| 1912 | !> the velocity can at maximum be reduced to zero by the canopy drag. |
---|
| 1913 | !> |
---|
| 1914 | !> |
---|
| 1915 | !> Call for grid point i,j |
---|
[138] | 1916 | !------------------------------------------------------------------------------! |
---|
[1826] | 1917 | SUBROUTINE pcm_tendency_ij( i, j, component ) |
---|
[138] | 1918 | |
---|
| 1919 | |
---|
[1320] | 1920 | USE control_parameters, & |
---|
[1484] | 1921 | ONLY: dt_3d, message_string |
---|
[1320] | 1922 | |
---|
| 1923 | USE kinds |
---|
| 1924 | |
---|
[138] | 1925 | IMPLICIT NONE |
---|
| 1926 | |
---|
[1682] | 1927 | INTEGER(iwp) :: component !< prognostic variable (u,v,w,pt,q,e) |
---|
| 1928 | INTEGER(iwp) :: i !< running index |
---|
| 1929 | INTEGER(iwp) :: j !< running index |
---|
| 1930 | INTEGER(iwp) :: k !< running index |
---|
[2232] | 1931 | INTEGER(iwp) :: k_wall !< vertical index of topography top |
---|
[1721] | 1932 | INTEGER(iwp) :: kk !< running index for flat lad arrays |
---|
[138] | 1933 | |
---|
[4314] | 1934 | LOGICAL :: building_edge_e !< control flag indicating an eastward-facing building edge |
---|
| 1935 | LOGICAL :: building_edge_n !< control flag indicating a north-facing building edge |
---|
| 1936 | LOGICAL :: building_edge_s !< control flag indicating a south-facing building edge |
---|
| 1937 | LOGICAL :: building_edge_w !< control flag indicating a westward-facing building edge |
---|
| 1938 | |
---|
[1682] | 1939 | REAL(wp) :: ddt_3d !< inverse of the LES timestep (dt_3d) |
---|
| 1940 | REAL(wp) :: lad_local !< local lad value |
---|
| 1941 | REAL(wp) :: pre_tend !< preliminary tendency |
---|
| 1942 | REAL(wp) :: pre_u !< preliminary u-value |
---|
| 1943 | REAL(wp) :: pre_v !< preliminary v-value |
---|
| 1944 | REAL(wp) :: pre_w !< preliminary w-value |
---|
[1484] | 1945 | |
---|
| 1946 | |
---|
| 1947 | ddt_3d = 1.0_wp / dt_3d |
---|
[138] | 1948 | ! |
---|
[1484] | 1949 | !-- Compute drag for the three velocity components and the SGS-TKE |
---|
[142] | 1950 | SELECT CASE ( component ) |
---|
[138] | 1951 | |
---|
| 1952 | ! |
---|
[142] | 1953 | !-- u-component |
---|
[1484] | 1954 | CASE ( 1 ) |
---|
[2232] | 1955 | ! |
---|
[4314] | 1956 | !-- Set control flags indicating east- and westward-orientated |
---|
| 1957 | !-- building edges. Note, building_egde_w is set from the perspective |
---|
| 1958 | !-- of the potential rooftop grid point, while building_edge_e is |
---|
| 1959 | !-- is set from the perspective of the non-building grid point. |
---|
| 1960 | building_edge_w = ANY( BTEST( wall_flags_0(:,j,i), 6 ) ) .AND. & |
---|
| 1961 | .NOT. ANY( BTEST( wall_flags_0(:,j,i-1), 6 ) ) |
---|
| 1962 | building_edge_e = ANY( BTEST( wall_flags_0(:,j,i-1), 6 ) ) .AND. & |
---|
| 1963 | .NOT. ANY( BTEST( wall_flags_0(:,j,i), 6 ) ) |
---|
| 1964 | ! |
---|
[2232] | 1965 | !-- Determine topography-top index on u-grid |
---|
[4168] | 1966 | k_wall = topo_top_ind(j,i,1) |
---|
[2696] | 1967 | DO k = k_wall + 1, k_wall + pch_index_ji(j,i) |
---|
[2317] | 1968 | |
---|
[2696] | 1969 | kk = k - k_wall !- lad arrays are defined flat |
---|
[138] | 1970 | |
---|
| 1971 | ! |
---|
[1484] | 1972 | !-- In order to create sharp boundaries of the plant canopy, |
---|
| 1973 | !-- the lad on the u-grid at index (k,j,i) is equal to lad_s(k,j,i), |
---|
| 1974 | !-- rather than being interpolated from the surrounding lad_s, |
---|
| 1975 | !-- because this would yield smaller lad at the canopy boundaries |
---|
| 1976 | !-- than inside of the canopy. |
---|
| 1977 | !-- For the same reason, the lad at the rightmost(i+1)canopy |
---|
[4314] | 1978 | !-- boundary on the u-grid equals lad_s(k,j,i), which is considered |
---|
| 1979 | !-- in the next if-statement. Note, at left-sided building edges |
---|
| 1980 | !-- this is not applied, here the LAD is equals the LAD at grid |
---|
| 1981 | !-- point (k,j,i), in order to avoid that LAD is mistakenly mapped |
---|
| 1982 | !-- on top of a roof where (usually) is no LAD is defined. |
---|
[1721] | 1983 | lad_local = lad_s(kk,j,i) |
---|
[4314] | 1984 | IF ( lad_local == 0.0_wp .AND. lad_s(kk,j,i-1) > 0.0_wp .AND. & |
---|
| 1985 | .NOT. building_edge_w ) lad_local = lad_s(kk,j,i-1) |
---|
| 1986 | ! |
---|
| 1987 | !-- In order to avoid that LAD is mistakenly considered at right- |
---|
| 1988 | !-- sided building edges (here the topography-top index for the |
---|
| 1989 | !-- u-component at index j,i is still on the building while the |
---|
| 1990 | !-- topography top for the scalar isn't), LAD is taken from grid |
---|
| 1991 | !-- point (j,i-1). |
---|
| 1992 | IF ( lad_local > 0.0_wp .AND. lad_s(kk,j,i-1) == 0.0_wp .AND. & |
---|
| 1993 | building_edge_e ) lad_local = lad_s(kk,j,i-1) |
---|
[1484] | 1994 | |
---|
| 1995 | pre_tend = 0.0_wp |
---|
| 1996 | pre_u = 0.0_wp |
---|
| 1997 | ! |
---|
| 1998 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
| 1999 | pre_tend = - cdc * & |
---|
| 2000 | lad_local * & |
---|
| 2001 | SQRT( u(k,j,i)**2 + & |
---|
| 2002 | ( 0.25_wp * ( v(k,j,i-1) + & |
---|
| 2003 | v(k,j,i) + & |
---|
| 2004 | v(k,j+1,i) + & |
---|
| 2005 | v(k,j+1,i-1) ) & |
---|
| 2006 | )**2 + & |
---|
| 2007 | ( 0.25_wp * ( w(k-1,j,i-1) + & |
---|
| 2008 | w(k-1,j,i) + & |
---|
| 2009 | w(k,j,i-1) + & |
---|
| 2010 | w(k,j,i) ) & |
---|
| 2011 | )**2 & |
---|
| 2012 | ) * & |
---|
| 2013 | u(k,j,i) |
---|
| 2014 | |
---|
| 2015 | ! |
---|
| 2016 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 2017 | pre_u = u(k,j,i) + dt_3d * pre_tend |
---|
| 2018 | ! |
---|
| 2019 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
| 2020 | !-- and in case the signs are different, limit the tendency |
---|
| 2021 | IF ( SIGN(pre_u,u(k,j,i)) /= pre_u ) THEN |
---|
| 2022 | pre_tend = - u(k,j,i) * ddt_3d |
---|
| 2023 | ELSE |
---|
| 2024 | pre_tend = pre_tend |
---|
| 2025 | ENDIF |
---|
| 2026 | ! |
---|
| 2027 | !-- Calculate final tendency |
---|
| 2028 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 2029 | ENDDO |
---|
| 2030 | |
---|
| 2031 | |
---|
| 2032 | ! |
---|
[142] | 2033 | !-- v-component |
---|
[1484] | 2034 | CASE ( 2 ) |
---|
[2232] | 2035 | ! |
---|
[4314] | 2036 | !-- Set control flags indicating north- and southward-orientated |
---|
| 2037 | !-- building edges. Note, building_egde_s is set from the perspective |
---|
| 2038 | !-- of the potential rooftop grid point, while building_edge_n is |
---|
| 2039 | !-- is set from the perspective of the non-building grid point. |
---|
| 2040 | building_edge_s = ANY( BTEST( wall_flags_0(:,j,i), 6 ) ) .AND. & |
---|
| 2041 | .NOT. ANY( BTEST( wall_flags_0(:,j-1,i), 6 ) ) |
---|
| 2042 | building_edge_n = ANY( BTEST( wall_flags_0(:,j-1,i), 6 ) ) .AND. & |
---|
| 2043 | .NOT. ANY( BTEST( wall_flags_0(:,j,i), 6 ) ) |
---|
| 2044 | ! |
---|
[2232] | 2045 | !-- Determine topography-top index on v-grid |
---|
[4168] | 2046 | k_wall = topo_top_ind(j,i,2) |
---|
[2696] | 2047 | DO k = k_wall + 1, k_wall + pch_index_ji(j,i) |
---|
[138] | 2048 | |
---|
[2232] | 2049 | kk = k - k_wall !- lad arrays are defined flat |
---|
[138] | 2050 | ! |
---|
[1484] | 2051 | !-- In order to create sharp boundaries of the plant canopy, |
---|
| 2052 | !-- the lad on the v-grid at index (k,j,i) is equal to lad_s(k,j,i), |
---|
| 2053 | !-- rather than being interpolated from the surrounding lad_s, |
---|
| 2054 | !-- because this would yield smaller lad at the canopy boundaries |
---|
| 2055 | !-- than inside of the canopy. |
---|
| 2056 | !-- For the same reason, the lad at the northmost(j+1)canopy |
---|
[4314] | 2057 | !-- boundary on the v-grid equals lad_s(k,j,i), which is considered |
---|
| 2058 | !-- in the next if-statement. Note, at left-sided building edges |
---|
| 2059 | !-- this is not applied, here the LAD is equals the LAD at grid |
---|
| 2060 | !-- point (k,j,i), in order to avoid that LAD is mistakenly mapped |
---|
| 2061 | !-- on top of a roof where (usually) is no LAD is defined. |
---|
[1721] | 2062 | lad_local = lad_s(kk,j,i) |
---|
[4314] | 2063 | IF ( lad_local == 0.0_wp .AND. lad_s(kk,j-1,i) > 0.0_wp .AND. & |
---|
| 2064 | .NOT. building_edge_s ) lad_local = lad_s(kk,j-1,i) |
---|
| 2065 | ! |
---|
| 2066 | !-- In order to avoid that LAD is mistakenly considered at right- |
---|
| 2067 | !-- sided building edges (here the topography-top index for the |
---|
| 2068 | !-- u-component at index j,i is still on the building while the |
---|
| 2069 | !-- topography top for the scalar isn't), LAD is taken from grid |
---|
| 2070 | !-- point (j,i-1). |
---|
| 2071 | IF ( lad_local > 0.0_wp .AND. lad_s(kk,j-1,i) == 0.0_wp .AND. & |
---|
| 2072 | building_edge_n ) lad_local = lad_s(kk,j-1,i) |
---|
[1484] | 2073 | |
---|
| 2074 | pre_tend = 0.0_wp |
---|
| 2075 | pre_v = 0.0_wp |
---|
| 2076 | ! |
---|
| 2077 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
| 2078 | pre_tend = - cdc * & |
---|
| 2079 | lad_local * & |
---|
| 2080 | SQRT( ( 0.25_wp * ( u(k,j-1,i) + & |
---|
| 2081 | u(k,j-1,i+1) + & |
---|
| 2082 | u(k,j,i) + & |
---|
| 2083 | u(k,j,i+1) ) & |
---|
| 2084 | )**2 + & |
---|
| 2085 | v(k,j,i)**2 + & |
---|
| 2086 | ( 0.25_wp * ( w(k-1,j-1,i) + & |
---|
| 2087 | w(k-1,j,i) + & |
---|
| 2088 | w(k,j-1,i) + & |
---|
| 2089 | w(k,j,i) ) & |
---|
| 2090 | )**2 & |
---|
| 2091 | ) * & |
---|
| 2092 | v(k,j,i) |
---|
| 2093 | |
---|
| 2094 | ! |
---|
| 2095 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 2096 | pre_v = v(k,j,i) + dt_3d * pre_tend |
---|
| 2097 | ! |
---|
| 2098 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
| 2099 | !-- and in case the signs are different, limit the tendency |
---|
| 2100 | IF ( SIGN(pre_v,v(k,j,i)) /= pre_v ) THEN |
---|
| 2101 | pre_tend = - v(k,j,i) * ddt_3d |
---|
| 2102 | ELSE |
---|
| 2103 | pre_tend = pre_tend |
---|
| 2104 | ENDIF |
---|
| 2105 | ! |
---|
| 2106 | !-- Calculate final tendency |
---|
| 2107 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 2108 | ENDDO |
---|
| 2109 | |
---|
| 2110 | |
---|
| 2111 | ! |
---|
[142] | 2112 | !-- w-component |
---|
[1484] | 2113 | CASE ( 3 ) |
---|
[2232] | 2114 | ! |
---|
| 2115 | !-- Determine topography-top index on w-grid |
---|
[4168] | 2116 | k_wall = topo_top_ind(j,i,3) |
---|
[2317] | 2117 | |
---|
[2696] | 2118 | DO k = k_wall + 1, k_wall + pch_index_ji(j,i) - 1 |
---|
[138] | 2119 | |
---|
[2232] | 2120 | kk = k - k_wall !- lad arrays are defined flat |
---|
[1721] | 2121 | |
---|
[1484] | 2122 | pre_tend = 0.0_wp |
---|
| 2123 | pre_w = 0.0_wp |
---|
[138] | 2124 | ! |
---|
[1484] | 2125 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
| 2126 | pre_tend = - cdc * & |
---|
| 2127 | (0.5_wp * & |
---|
[1721] | 2128 | ( lad_s(kk+1,j,i) + lad_s(kk,j,i) )) * & |
---|
[1484] | 2129 | SQRT( ( 0.25_wp * ( u(k,j,i) + & |
---|
| 2130 | u(k,j,i+1) + & |
---|
| 2131 | u(k+1,j,i) + & |
---|
| 2132 | u(k+1,j,i+1) ) & |
---|
| 2133 | )**2 + & |
---|
| 2134 | ( 0.25_wp * ( v(k,j,i) + & |
---|
| 2135 | v(k,j+1,i) + & |
---|
| 2136 | v(k+1,j,i) + & |
---|
| 2137 | v(k+1,j+1,i) ) & |
---|
| 2138 | )**2 + & |
---|
| 2139 | w(k,j,i)**2 & |
---|
| 2140 | ) * & |
---|
| 2141 | w(k,j,i) |
---|
| 2142 | ! |
---|
| 2143 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 2144 | pre_w = w(k,j,i) + dt_3d * pre_tend |
---|
| 2145 | ! |
---|
| 2146 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
| 2147 | !-- and in case the signs are different, limit the tendency |
---|
| 2148 | IF ( SIGN(pre_w,w(k,j,i)) /= pre_w ) THEN |
---|
| 2149 | pre_tend = - w(k,j,i) * ddt_3d |
---|
| 2150 | ELSE |
---|
| 2151 | pre_tend = pre_tend |
---|
| 2152 | ENDIF |
---|
| 2153 | ! |
---|
| 2154 | !-- Calculate final tendency |
---|
| 2155 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 2156 | ENDDO |
---|
| 2157 | |
---|
| 2158 | ! |
---|
[153] | 2159 | !-- potential temperature |
---|
| 2160 | CASE ( 4 ) |
---|
[2232] | 2161 | ! |
---|
| 2162 | !-- Determine topography-top index on scalar grid |
---|
[4168] | 2163 | k_wall = topo_top_ind(j,i,0) |
---|
[2317] | 2164 | |
---|
[3449] | 2165 | IF ( humidity ) THEN |
---|
| 2166 | DO k = k_wall + 1, k_wall + pch_index_ji(j,i) |
---|
| 2167 | kk = k - k_wall !- lad arrays are defined flat |
---|
[3582] | 2168 | tend(k,j,i) = tend(k,j,i) + pc_heating_rate(kk,j,i) - & |
---|
| 2169 | pc_latent_rate(kk,j,i) |
---|
[3449] | 2170 | ENDDO |
---|
| 2171 | ELSE |
---|
| 2172 | DO k = k_wall + 1, k_wall + pch_index_ji(j,i) |
---|
| 2173 | kk = k - k_wall !- lad arrays are defined flat |
---|
| 2174 | tend(k,j,i) = tend(k,j,i) + pc_heating_rate(kk,j,i) |
---|
| 2175 | ENDDO |
---|
| 2176 | ENDIF |
---|
[153] | 2177 | |
---|
| 2178 | ! |
---|
[1960] | 2179 | !-- humidity |
---|
[153] | 2180 | CASE ( 5 ) |
---|
[2232] | 2181 | ! |
---|
| 2182 | !-- Determine topography-top index on scalar grid |
---|
[4168] | 2183 | k_wall = topo_top_ind(j,i,0) |
---|
[2317] | 2184 | |
---|
[2696] | 2185 | DO k = k_wall + 1, k_wall + pch_index_ji(j,i) |
---|
[3014] | 2186 | kk = k - k_wall !- lad arrays are defined flat |
---|
[3449] | 2187 | IF ( .NOT. plant_canopy_transpiration ) THEN |
---|
| 2188 | ! pc_transpiration_rate is calculated in radiation model |
---|
| 2189 | ! in case of plant_canopy_transpiration = .T. |
---|
| 2190 | ! to include also the dependecy to the radiation |
---|
| 2191 | ! in the plant canopy box |
---|
[3582] | 2192 | pc_transpiration_rate(kk,j,i) = - lsec & |
---|
| 2193 | * lad_s(kk,j,i) * & |
---|
| 2194 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 2195 | u(k,j,i+1) ) & |
---|
| 2196 | )**2 + & |
---|
| 2197 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 2198 | v(k,j+1,i) ) & |
---|
| 2199 | )**2 + & |
---|
| 2200 | ( 0.5_wp * ( w(k-1,j,i) + & |
---|
| 2201 | w(k,j,i) ) & |
---|
| 2202 | )**2 & |
---|
| 2203 | ) * & |
---|
[3449] | 2204 | ( q(k,j,i) - lsc ) |
---|
| 2205 | ENDIF |
---|
[2232] | 2206 | |
---|
[3014] | 2207 | tend(k,j,i) = tend(k,j,i) + pc_transpiration_rate(kk,j,i) |
---|
| 2208 | |
---|
[153] | 2209 | ENDDO |
---|
| 2210 | |
---|
| 2211 | ! |
---|
[142] | 2212 | !-- sgs-tke |
---|
[1484] | 2213 | CASE ( 6 ) |
---|
[2232] | 2214 | ! |
---|
| 2215 | !-- Determine topography-top index on scalar grid |
---|
[4168] | 2216 | k_wall = topo_top_ind(j,i,0) |
---|
[2317] | 2217 | |
---|
[2696] | 2218 | DO k = k_wall + 1, k_wall + pch_index_ji(j,i) |
---|
[2232] | 2219 | |
---|
| 2220 | kk = k - k_wall |
---|
[1484] | 2221 | tend(k,j,i) = tend(k,j,i) - & |
---|
| 2222 | 2.0_wp * cdc * & |
---|
[1721] | 2223 | lad_s(kk,j,i) * & |
---|
[1484] | 2224 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 2225 | u(k,j,i+1) ) & |
---|
| 2226 | )**2 + & |
---|
| 2227 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 2228 | v(k,j+1,i) ) & |
---|
| 2229 | )**2 + & |
---|
| 2230 | ( 0.5_wp * ( w(k,j,i) + & |
---|
| 2231 | w(k+1,j,i) ) & |
---|
| 2232 | )**2 & |
---|
| 2233 | ) * & |
---|
| 2234 | e(k,j,i) |
---|
| 2235 | ENDDO |
---|
[1960] | 2236 | |
---|
| 2237 | ! |
---|
| 2238 | !-- scalar concentration |
---|
| 2239 | CASE ( 7 ) |
---|
[2232] | 2240 | ! |
---|
| 2241 | !-- Determine topography-top index on scalar grid |
---|
[4168] | 2242 | k_wall = topo_top_ind(j,i,0) |
---|
[2317] | 2243 | |
---|
[2696] | 2244 | DO k = k_wall + 1, k_wall + pch_index_ji(j,i) |
---|
[2232] | 2245 | |
---|
| 2246 | kk = k - k_wall |
---|
[1960] | 2247 | tend(k,j,i) = tend(k,j,i) - & |
---|
| 2248 | lsec * & |
---|
| 2249 | lad_s(kk,j,i) * & |
---|
| 2250 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 2251 | u(k,j,i+1) ) & |
---|
| 2252 | )**2 + & |
---|
| 2253 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 2254 | v(k,j+1,i) ) & |
---|
| 2255 | )**2 + & |
---|
| 2256 | ( 0.5_wp * ( w(k-1,j,i) + & |
---|
| 2257 | w(k,j,i) ) & |
---|
| 2258 | )**2 & |
---|
| 2259 | ) * & |
---|
| 2260 | ( s(k,j,i) - lsc ) |
---|
| 2261 | ENDDO |
---|
[138] | 2262 | |
---|
[142] | 2263 | CASE DEFAULT |
---|
[138] | 2264 | |
---|
[257] | 2265 | WRITE( message_string, * ) 'wrong component: ', component |
---|
[1826] | 2266 | CALL message( 'pcm_tendency', 'PA0279', 1, 2, 0, 6, 0 ) |
---|
[138] | 2267 | |
---|
[142] | 2268 | END SELECT |
---|
[138] | 2269 | |
---|
[1826] | 2270 | END SUBROUTINE pcm_tendency_ij |
---|
[138] | 2271 | |
---|
[2007] | 2272 | |
---|
| 2273 | |
---|
[138] | 2274 | END MODULE plant_canopy_model_mod |
---|