[1826] | 1 | !> @file plant_canopy_model_mod.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[3655] | 17 | ! Copyright 1997-2019 Leibniz Universitaet Hannover |
---|
[3885] | 18 | ! Copyright 2017-2019 Institute of Computer Science of the |
---|
| 19 | ! Czech Academy of Sciences, Prague |
---|
[2000] | 20 | !------------------------------------------------------------------------------! |
---|
[1036] | 21 | ! |
---|
[257] | 22 | ! Current revisions: |
---|
[2977] | 23 | ! ------------------ |
---|
[2214] | 24 | ! |
---|
[4226] | 25 | ! |
---|
[2214] | 26 | ! Former revisions: |
---|
| 27 | ! ----------------- |
---|
| 28 | ! $Id: plant_canopy_model_mod.f90 4226 2019-09-10 17:03:24Z knoop $ |
---|
[4226] | 29 | ! Bugfix, missing initialization of heating rate |
---|
| 30 | ! |
---|
| 31 | ! 4221 2019-09-09 08:50:35Z suehring |
---|
[4220] | 32 | ! Further bugfix in 3d data output for plant canopy |
---|
| 33 | ! |
---|
| 34 | ! 4216 2019-09-04 09:09:03Z suehring |
---|
[4216] | 35 | ! Bugfixes in 3d data output |
---|
| 36 | ! |
---|
| 37 | ! 4205 2019-08-30 13:25:00Z suehring |
---|
[4205] | 38 | ! Missing working precision + bugfix in calculation of wind speed |
---|
| 39 | ! |
---|
| 40 | ! 4188 2019-08-26 14:15:47Z suehring |
---|
[4188] | 41 | ! Minor adjustment in error number |
---|
| 42 | ! |
---|
| 43 | ! 4187 2019-08-26 12:43:15Z suehring |
---|
[4187] | 44 | ! Give specific error numbers instead of PA0999 |
---|
| 45 | ! |
---|
| 46 | ! 4182 2019-08-22 15:20:23Z scharf |
---|
[4182] | 47 | ! Corrected "Former revisions" section |
---|
| 48 | ! |
---|
| 49 | ! 4168 2019-08-16 13:50:17Z suehring |
---|
[4168] | 50 | ! Replace function get_topography_top_index by topo_top_ind |
---|
| 51 | ! |
---|
| 52 | ! 4127 2019-07-30 14:47:10Z suehring |
---|
[4127] | 53 | ! Output of 3D plant canopy variables changed. It is now relative to the local |
---|
| 54 | ! terrain rather than located at the acutal vertical level in the model. This |
---|
| 55 | ! way, the vertical dimension of the output can be significantly reduced. |
---|
| 56 | ! (merge from branch resler) |
---|
| 57 | ! |
---|
| 58 | ! 3885 2019-04-11 11:29:34Z kanani |
---|
[3885] | 59 | ! Changes related to global restructuring of location messages and introduction |
---|
| 60 | ! of additional debug messages |
---|
| 61 | ! |
---|
| 62 | ! 3864 2019-04-05 09:01:56Z monakurppa |
---|
[3761] | 63 | ! unsed variables removed |
---|
| 64 | ! |
---|
| 65 | ! 3745 2019-02-15 18:57:56Z suehring |
---|
[3745] | 66 | ! Bugfix in transpiration, floating invalid when temperature |
---|
| 67 | ! becomes > 40 degrees |
---|
| 68 | ! |
---|
| 69 | ! 3744 2019-02-15 18:38:58Z suehring |
---|
[3685] | 70 | ! Some interface calls moved to module_interface + cleanup |
---|
| 71 | ! |
---|
| 72 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
[3614] | 73 | ! unused variables removed |
---|
[3498] | 74 | ! |
---|
[4182] | 75 | ! 138 2007-11-28 10:03:58Z letzel |
---|
| 76 | ! Initial revision |
---|
| 77 | ! |
---|
[138] | 78 | ! Description: |
---|
| 79 | ! ------------ |
---|
[1682] | 80 | !> 1) Initialization of the canopy model, e.g. construction of leaf area density |
---|
[1826] | 81 | !> profile (subroutine pcm_init). |
---|
[1682] | 82 | !> 2) Calculation of sinks and sources of momentum, heat and scalar concentration |
---|
[1826] | 83 | !> due to canopy elements (subroutine pcm_tendency). |
---|
[3744] | 84 | ! |
---|
| 85 | ! @todo - precalculate constant terms in pcm_calc_transpiration_rate |
---|
[4216] | 86 | ! @todo - unify variable names (pcm_, pc_, ...) |
---|
[138] | 87 | !------------------------------------------------------------------------------! |
---|
[1682] | 88 | MODULE plant_canopy_model_mod |
---|
| 89 | |
---|
[1484] | 90 | USE arrays_3d, & |
---|
[3449] | 91 | ONLY: dzu, dzw, e, exner, hyp, pt, q, s, tend, u, v, w, zu, zw |
---|
[138] | 92 | |
---|
[3449] | 93 | USE basic_constants_and_equations_mod, & |
---|
| 94 | ONLY: c_p, degc_to_k, l_v, lv_d_cp, r_d, rd_d_rv |
---|
| 95 | |
---|
[3885] | 96 | USE control_parameters, & |
---|
| 97 | ONLY: debug_output, humidity |
---|
[3449] | 98 | |
---|
[1484] | 99 | USE indices, & |
---|
| 100 | ONLY: nbgp, nxl, nxlg, nxlu, nxr, nxrg, nyn, nyng, nys, nysg, nysv, & |
---|
[4168] | 101 | nz, nzb, nzt, topo_top_ind |
---|
[1484] | 102 | |
---|
| 103 | USE kinds |
---|
| 104 | |
---|
[3449] | 105 | USE pegrid |
---|
| 106 | |
---|
[1484] | 107 | |
---|
| 108 | IMPLICIT NONE |
---|
| 109 | |
---|
| 110 | |
---|
[3449] | 111 | CHARACTER (LEN=30) :: canopy_mode = 'block' !< canopy coverage |
---|
| 112 | LOGICAL :: plant_canopy_transpiration = .FALSE. !< flag to switch calculation of transpiration and corresponding latent heat |
---|
| 113 | !< for resolved plant canopy inside radiation model |
---|
| 114 | !< (calls subroutine pcm_calc_transpiration_rate from module plant_canopy_mod) |
---|
[1484] | 115 | |
---|
[3449] | 116 | INTEGER(iwp) :: pch_index = 0 !< plant canopy height/top index |
---|
| 117 | INTEGER(iwp) :: lad_vertical_gradient_level_ind(10) = -9999 !< lad-profile levels (index) |
---|
[1484] | 118 | |
---|
[3449] | 119 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: pch_index_ji !< local plant canopy top |
---|
[2696] | 120 | |
---|
[3449] | 121 | LOGICAL :: calc_beta_lad_profile = .FALSE. !< switch for calc. of lad from beta func. |
---|
[1484] | 122 | |
---|
[2696] | 123 | REAL(wp) :: alpha_lad = 9999999.9_wp !< coefficient for lad calculation |
---|
| 124 | REAL(wp) :: beta_lad = 9999999.9_wp !< coefficient for lad calculation |
---|
| 125 | REAL(wp) :: canopy_drag_coeff = 0.0_wp !< canopy drag coefficient (parameter) |
---|
| 126 | REAL(wp) :: cdc = 0.0_wp !< canopy drag coeff. (abbreviation used in equations) |
---|
| 127 | REAL(wp) :: cthf = 0.0_wp !< canopy top heat flux |
---|
| 128 | REAL(wp) :: dt_plant_canopy = 0.0_wp !< timestep account. for canopy drag |
---|
| 129 | REAL(wp) :: ext_coef = 0.6_wp !< extinction coefficient |
---|
| 130 | REAL(wp) :: lad_surface = 0.0_wp !< lad surface value |
---|
| 131 | REAL(wp) :: lai_beta = 0.0_wp !< leaf area index (lai) for lad calc. |
---|
| 132 | REAL(wp) :: leaf_scalar_exch_coeff = 0.0_wp !< canopy scalar exchange coeff. |
---|
| 133 | REAL(wp) :: leaf_surface_conc = 0.0_wp !< leaf surface concentration |
---|
[2768] | 134 | REAL(wp) :: lsc = 0.0_wp !< leaf surface concentration |
---|
[2696] | 135 | REAL(wp) :: lsec = 0.0_wp !< leaf scalar exchange coeff. |
---|
[1484] | 136 | |
---|
[2696] | 137 | REAL(wp) :: lad_vertical_gradient(10) = 0.0_wp !< lad gradient |
---|
| 138 | REAL(wp) :: lad_vertical_gradient_level(10) = -9999999.9_wp !< lad-prof. levels (in m) |
---|
[1484] | 139 | |
---|
[2977] | 140 | REAL(wp) :: lad_type_coef(0:10) = 1.0_wp !< multiplicative coeficients for particular types |
---|
| 141 | !< of plant canopy (e.g. deciduous tree during winter) |
---|
| 142 | |
---|
[1682] | 143 | REAL(wp), DIMENSION(:), ALLOCATABLE :: lad !< leaf area density |
---|
| 144 | REAL(wp), DIMENSION(:), ALLOCATABLE :: pre_lad !< preliminary lad |
---|
[1484] | 145 | |
---|
[4127] | 146 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: cum_lai_hf !< cumulative lai for heatflux calc. |
---|
| 147 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: lad_s !< lad on scalar-grid |
---|
| 148 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pc_heating_rate !< plant canopy heating rate |
---|
| 149 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pc_transpiration_rate !< plant canopy transpiration rate |
---|
| 150 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pc_latent_rate !< plant canopy latent heating rate |
---|
[1484] | 151 | |
---|
[4127] | 152 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pcm_heatrate_av !< array for averaging plant canopy sensible heating rate |
---|
| 153 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pcm_latentrate_av !< array for averaging plant canopy latent heating rate |
---|
| 154 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pcm_transpirationrate_av !< array for averaging plant canopy transpiration rate |
---|
| 155 | |
---|
[1484] | 156 | SAVE |
---|
| 157 | |
---|
| 158 | |
---|
[138] | 159 | PRIVATE |
---|
[1826] | 160 | |
---|
| 161 | ! |
---|
| 162 | !-- Public functions |
---|
[3449] | 163 | PUBLIC pcm_calc_transpiration_rate, pcm_check_data_output, & |
---|
[4127] | 164 | pcm_check_parameters, pcm_3d_data_averaging, & |
---|
| 165 | pcm_data_output_3d, pcm_define_netcdf_grid, & |
---|
[3449] | 166 | pcm_header, pcm_init, pcm_parin, pcm_tendency |
---|
[138] | 167 | |
---|
[1826] | 168 | ! |
---|
| 169 | !-- Public variables and constants |
---|
[3467] | 170 | PUBLIC cdc, pc_heating_rate, pc_transpiration_rate, pc_latent_rate, & |
---|
| 171 | canopy_mode, cthf, dt_plant_canopy, lad, lad_s, pch_index, & |
---|
| 172 | plant_canopy_transpiration |
---|
[1484] | 173 | |
---|
[3449] | 174 | INTERFACE pcm_calc_transpiration_rate |
---|
| 175 | MODULE PROCEDURE pcm_calc_transpiration_rate |
---|
| 176 | END INTERFACE pcm_calc_transpiration_rate |
---|
| 177 | |
---|
[2209] | 178 | INTERFACE pcm_check_data_output |
---|
| 179 | MODULE PROCEDURE pcm_check_data_output |
---|
| 180 | END INTERFACE pcm_check_data_output |
---|
| 181 | |
---|
[1826] | 182 | INTERFACE pcm_check_parameters |
---|
| 183 | MODULE PROCEDURE pcm_check_parameters |
---|
[2209] | 184 | END INTERFACE pcm_check_parameters |
---|
| 185 | |
---|
[4127] | 186 | INTERFACE pcm_3d_data_averaging |
---|
| 187 | MODULE PROCEDURE pcm_3d_data_averaging |
---|
| 188 | END INTERFACE pcm_3d_data_averaging |
---|
| 189 | |
---|
[2209] | 190 | INTERFACE pcm_data_output_3d |
---|
| 191 | MODULE PROCEDURE pcm_data_output_3d |
---|
| 192 | END INTERFACE pcm_data_output_3d |
---|
| 193 | |
---|
| 194 | INTERFACE pcm_define_netcdf_grid |
---|
| 195 | MODULE PROCEDURE pcm_define_netcdf_grid |
---|
| 196 | END INTERFACE pcm_define_netcdf_grid |
---|
[1826] | 197 | |
---|
| 198 | INTERFACE pcm_header |
---|
| 199 | MODULE PROCEDURE pcm_header |
---|
| 200 | END INTERFACE pcm_header |
---|
| 201 | |
---|
| 202 | INTERFACE pcm_init |
---|
| 203 | MODULE PROCEDURE pcm_init |
---|
| 204 | END INTERFACE pcm_init |
---|
[138] | 205 | |
---|
[1826] | 206 | INTERFACE pcm_parin |
---|
| 207 | MODULE PROCEDURE pcm_parin |
---|
[2007] | 208 | END INTERFACE pcm_parin |
---|
| 209 | |
---|
| 210 | INTERFACE pcm_read_plant_canopy_3d |
---|
| 211 | MODULE PROCEDURE pcm_read_plant_canopy_3d |
---|
| 212 | END INTERFACE pcm_read_plant_canopy_3d |
---|
[1826] | 213 | |
---|
| 214 | INTERFACE pcm_tendency |
---|
| 215 | MODULE PROCEDURE pcm_tendency |
---|
| 216 | MODULE PROCEDURE pcm_tendency_ij |
---|
| 217 | END INTERFACE pcm_tendency |
---|
[1484] | 218 | |
---|
| 219 | |
---|
[138] | 220 | CONTAINS |
---|
| 221 | |
---|
[2209] | 222 | |
---|
[3449] | 223 | |
---|
[2209] | 224 | !------------------------------------------------------------------------------! |
---|
| 225 | ! Description: |
---|
| 226 | ! ------------ |
---|
[3449] | 227 | !> Calculation of the plant canopy transpiration rate based on the Jarvis-Stewart |
---|
| 228 | !> with parametrizations described in Daudet et al. (1999; Agricult. and Forest |
---|
| 229 | !> Meteorol. 97) and Ngao, Adam and Saudreau (2017; Agricult. and Forest Meteorol |
---|
| 230 | !> 237-238). Model functions f1-f4 were adapted from Stewart (1998; Agric. |
---|
| 231 | !> and Forest. Meteorol. 43) instead, because they are valid for broader intervals |
---|
| 232 | !> of values. Funcion f4 used in form present in van Wijk et al. (1998; |
---|
| 233 | !> Tree Physiology 20). |
---|
| 234 | !> |
---|
| 235 | !> This subroutine is called from subroutine radiation_interaction |
---|
| 236 | !> after the calculation of radiation in plant canopy boxes. |
---|
| 237 | !> (arrays pcbinsw and pcbinlw). |
---|
| 238 | !> |
---|
| 239 | !------------------------------------------------------------------------------! |
---|
| 240 | SUBROUTINE pcm_calc_transpiration_rate(i, j, k, kk, pcbsw, pcblw, pcbtr, pcblh) |
---|
| 241 | |
---|
| 242 | USE control_parameters, & |
---|
| 243 | ONLY: dz |
---|
| 244 | |
---|
| 245 | USE grid_variables, & |
---|
| 246 | ONLY: dx, dy |
---|
| 247 | |
---|
| 248 | IMPLICIT NONE |
---|
| 249 | !-- input parameters |
---|
[4205] | 250 | INTEGER(iwp), INTENT(IN) :: i, j, k, kk !< indices of the pc gridbox |
---|
| 251 | REAL(wp), INTENT(IN) :: pcbsw !< sw radiation in gridbox (W) |
---|
| 252 | REAL(wp), INTENT(IN) :: pcblw !< lw radiation in gridbox (W) |
---|
| 253 | REAL(wp), INTENT(OUT) :: pcbtr !< transpiration rate dq/dt (kg/kg/s) |
---|
| 254 | REAL(wp), INTENT(OUT) :: pcblh !< latent heat from transpiration dT/dt (K/s) |
---|
[3449] | 255 | |
---|
| 256 | !-- variables and parameters for calculation of transpiration rate |
---|
[4205] | 257 | REAL(wp) :: sat_press, sat_press_d, temp, v_lad |
---|
| 258 | REAL(wp) :: d_fact, g_b, g_s, wind_speed, evapor_rate |
---|
| 259 | REAL(wp) :: f1, f2, f3, f4, vpd, rswc, e_eq, e_imp, rad |
---|
| 260 | REAL(wp), PARAMETER :: gama_psychr = 66.0_wp !< psychrometric constant (Pa/K) |
---|
| 261 | REAL(wp), PARAMETER :: g_s_max = 0.01 !< maximum stomatal conductivity (m/s) |
---|
| 262 | REAL(wp), PARAMETER :: m_soil = 0.4_wp !< soil water content (needs to adjust or take from LSM) |
---|
| 263 | REAL(wp), PARAMETER :: m_wilt = 0.01_wp !< wilting point soil water content (needs to adjust or take from LSM) |
---|
| 264 | REAL(wp), PARAMETER :: m_sat = 0.51_wp !< saturation soil water content (needs to adjust or take from LSM) |
---|
| 265 | REAL(wp), PARAMETER :: t2_min = 0.0_wp !< minimal temperature for calculation of f2 |
---|
| 266 | REAL(wp), PARAMETER :: t2_max = 40.0_wp !< maximal temperature for calculation of f2 |
---|
[3449] | 267 | |
---|
| 268 | |
---|
| 269 | !-- Temperature (deg C) |
---|
| 270 | temp = pt(k,j,i) * exner(k) - degc_to_k |
---|
| 271 | !-- Coefficient for conversion of radiation to grid to radiation to unit leaves surface |
---|
[4205] | 272 | v_lad = 1.0_wp / ( MAX( lad_s(kk,j,i), 1.0E-10_wp ) * dx * dy * dz(1) ) |
---|
[3449] | 273 | !-- Magnus formula for the saturation pressure (see Ngao, Adam and Saudreau (2017) eq. 1) |
---|
| 274 | !-- There are updated formulas available, kept consistent with the rest of the parametrization |
---|
| 275 | sat_press = 610.8_wp * exp(17.27_wp * temp/(temp + 237.3_wp)) |
---|
| 276 | !-- Saturation pressure derivative (derivative of the above) |
---|
| 277 | sat_press_d = sat_press * 17.27_wp * 237.3_wp / (temp + 237.3_wp)**2 |
---|
| 278 | !-- Wind speed |
---|
[3744] | 279 | wind_speed = SQRT( ( 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) )**2 + & |
---|
[4205] | 280 | ( 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) )**2 + & |
---|
| 281 | ( 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) )**2 ) |
---|
[3449] | 282 | !-- Aerodynamic conductivity (Daudet et al. (1999) eq. 14 |
---|
| 283 | g_b = 0.01_wp * wind_speed + 0.0071_wp |
---|
| 284 | !-- Radiation flux per leaf surface unit |
---|
| 285 | rad = pcbsw * v_lad |
---|
| 286 | !-- First function for calculation of stomatal conductivity (radiation dependency) |
---|
| 287 | !-- Stewart (1988; Agric. and Forest. Meteorol. 43) eq. 17 |
---|
[4205] | 288 | f1 = rad * (1000.0_wp+42.1_wp) / 1000.0_wp / (rad+42.1_wp) |
---|
[3449] | 289 | !-- Second function for calculation of stomatal conductivity (temperature dependency) |
---|
| 290 | !-- Stewart (1988; Agric. and Forest. Meteorol. 43) eq. 21 |
---|
[3744] | 291 | f2 = MAX(t2_min, (temp-t2_min) * MAX(0.0_wp,t2_max-temp)**((t2_max-16.9_wp)/(16.9_wp-t2_min)) / & |
---|
[3449] | 292 | ((16.9_wp-t2_min) * (t2_max-16.9_wp)**((t2_max-16.9_wp)/(16.9_wp-t2_min))) ) |
---|
| 293 | !-- Water pressure deficit |
---|
| 294 | !-- Ngao, Adam and Saudreau (2017) eq. 6 but with water vapour partial pressure |
---|
| 295 | vpd = max( sat_press - q(k,j,i) * hyp(k) / rd_d_rv, 0._wp ) |
---|
| 296 | !-- Third function for calculation of stomatal conductivity (water pressure deficit dependency) |
---|
| 297 | !-- Ngao, Adam and Saudreau (2017) Table 1, limited from below according to Stewart (1988) |
---|
| 298 | !-- The coefficients of the linear dependence should better correspond to broad-leaved trees |
---|
| 299 | !-- than the coefficients from Stewart (1988) which correspond to conifer trees. |
---|
| 300 | vpd = MIN(MAX(vpd,770.0_wp),3820.0_wp) |
---|
[4205] | 301 | f3 = -2E-4_wp * vpd + 1.154_wp |
---|
[3449] | 302 | !-- Fourth function for calculation of stomatal conductivity (soil moisture dependency) |
---|
| 303 | !-- Residual soil water content |
---|
| 304 | !-- van Wijk et al. (1998; Tree Physiology 20) eq. 7 |
---|
| 305 | !-- TODO - over LSM surface might be calculated from LSM parameters |
---|
| 306 | rswc = ( m_sat - m_soil ) / ( m_sat - m_wilt ) |
---|
| 307 | !-- van Wijk et al. (1998; Tree Physiology 20) eq. 5-6 (it is a reformulation of eq. 22-23 of Stewart(1988)) |
---|
[4205] | 308 | f4 = MAX(0.0_wp, MIN(1.0_wp - 0.041_wp * EXP(3.2_wp * rswc), 1.0_wp - 0.041_wp)) |
---|
[3449] | 309 | !-- Stomatal conductivity |
---|
| 310 | !-- Stewart (1988; Agric. and Forest. Meteorol. 43) eq. 12 |
---|
| 311 | !-- (notation according to Ngao, Adam and Saudreau (2017) and others) |
---|
[4205] | 312 | g_s = g_s_max * f1 * f2 * f3 * f4 + 1.0E-10_wp |
---|
[3449] | 313 | !-- Decoupling factor |
---|
| 314 | !-- Daudet et al. (1999) eq. 6 |
---|
[4205] | 315 | d_fact = (sat_press_d / gama_psychr + 2.0_wp ) / & |
---|
| 316 | (sat_press_d / gama_psychr + 2.0_wp + 2.0_wp * g_b / g_s ) |
---|
[3449] | 317 | !-- Equilibrium evaporation rate |
---|
| 318 | !-- Daudet et al. (1999) eq. 4 |
---|
| 319 | e_eq = (pcbsw + pcblw) * v_lad * sat_press_d / & |
---|
| 320 | gama_psychr /( sat_press_d / gama_psychr + 2.0_wp ) / l_v |
---|
| 321 | !-- Imposed evaporation rate |
---|
| 322 | !-- Daudet et al. (1999) eq. 5 |
---|
| 323 | e_imp = r_d * pt(k,j,i) * exner(k) / hyp(k) * c_p * g_s * vpd / gama_psychr / l_v |
---|
| 324 | !-- Evaporation rate |
---|
| 325 | !-- Daudet et al. (1999) eq. 3 |
---|
| 326 | !-- (evaporation rate is limited to non-negative values) |
---|
| 327 | evapor_rate = MAX(d_fact * e_eq + ( 1.0_wp - d_fact ) * e_imp, 0.0_wp) |
---|
| 328 | !-- Conversion of evaporation rate to q tendency in gridbox |
---|
| 329 | !-- dq/dt = E * LAD * V_g / (rho_air * V_g) |
---|
| 330 | pcbtr = evapor_rate * r_d * pt(k,j,i) * exner(k) * lad_s(kk,j,i) / hyp(k) !-- = dq/dt |
---|
| 331 | !-- latent heat from evaporation |
---|
| 332 | pcblh = pcbtr * lv_d_cp !-- = - dT/dt |
---|
| 333 | |
---|
| 334 | END SUBROUTINE pcm_calc_transpiration_rate |
---|
| 335 | |
---|
| 336 | |
---|
| 337 | !------------------------------------------------------------------------------! |
---|
| 338 | ! Description: |
---|
| 339 | ! ------------ |
---|
[2209] | 340 | !> Check data output for plant canopy model |
---|
| 341 | !------------------------------------------------------------------------------! |
---|
| 342 | SUBROUTINE pcm_check_data_output( var, unit ) |
---|
[1826] | 343 | |
---|
[2209] | 344 | |
---|
| 345 | USE control_parameters, & |
---|
[3241] | 346 | ONLY: message_string, urban_surface |
---|
[2209] | 347 | |
---|
| 348 | IMPLICIT NONE |
---|
| 349 | |
---|
| 350 | CHARACTER (LEN=*) :: unit !< |
---|
| 351 | CHARACTER (LEN=*) :: var !< |
---|
| 352 | |
---|
| 353 | |
---|
| 354 | SELECT CASE ( TRIM( var ) ) |
---|
| 355 | |
---|
| 356 | CASE ( 'pcm_heatrate' ) |
---|
[2770] | 357 | IF ( cthf == 0.0_wp .AND. .NOT. urban_surface ) THEN |
---|
[2768] | 358 | message_string = 'output of "' // TRIM( var ) // '" requi' // & |
---|
| 359 | 'res setting of parameter cthf /= 0.0' |
---|
| 360 | CALL message( 'pcm_check_data_output', 'PA1000', 1, 2, 0, 6, 0 ) |
---|
| 361 | ENDIF |
---|
[2209] | 362 | unit = 'K s-1' |
---|
| 363 | |
---|
[3014] | 364 | CASE ( 'pcm_transpirationrate' ) |
---|
| 365 | unit = 'kg kg-1 s-1' |
---|
| 366 | |
---|
[3449] | 367 | CASE ( 'pcm_latentrate' ) |
---|
| 368 | unit = 'K s-1' |
---|
| 369 | |
---|
| 370 | CASE ( 'pcm_bowenratio' ) |
---|
| 371 | unit = 'K s-1' |
---|
| 372 | |
---|
[2209] | 373 | CASE ( 'pcm_lad' ) |
---|
| 374 | unit = 'm2 m-3' |
---|
| 375 | |
---|
| 376 | |
---|
| 377 | CASE DEFAULT |
---|
| 378 | unit = 'illegal' |
---|
| 379 | |
---|
| 380 | END SELECT |
---|
| 381 | |
---|
| 382 | |
---|
| 383 | END SUBROUTINE pcm_check_data_output |
---|
| 384 | |
---|
| 385 | |
---|
[1826] | 386 | !------------------------------------------------------------------------------! |
---|
| 387 | ! Description: |
---|
| 388 | ! ------------ |
---|
| 389 | !> Check parameters routine for plant canopy model |
---|
| 390 | !------------------------------------------------------------------------------! |
---|
| 391 | SUBROUTINE pcm_check_parameters |
---|
[138] | 392 | |
---|
[1826] | 393 | USE control_parameters, & |
---|
[3274] | 394 | ONLY: coupling_char, message_string |
---|
[2696] | 395 | |
---|
[3274] | 396 | USE bulk_cloud_model_mod, & |
---|
| 397 | ONLY: bulk_cloud_model, microphysics_seifert |
---|
| 398 | |
---|
[2696] | 399 | USE netcdf_data_input_mod, & |
---|
| 400 | ONLY: input_file_static, input_pids_static |
---|
[1826] | 401 | |
---|
| 402 | |
---|
| 403 | IMPLICIT NONE |
---|
| 404 | |
---|
| 405 | |
---|
| 406 | IF ( canopy_drag_coeff == 0.0_wp ) THEN |
---|
| 407 | message_string = 'plant_canopy = .TRUE. requires a non-zero drag '// & |
---|
[3046] | 408 | 'coefficient & given value is canopy_drag_coeff = 0.0' |
---|
[2768] | 409 | CALL message( 'pcm_check_parameters', 'PA0041', 1, 2, 0, 6, 0 ) |
---|
[1826] | 410 | ENDIF |
---|
| 411 | |
---|
[3045] | 412 | IF ( ( alpha_lad /= 9999999.9_wp .AND. beta_lad == 9999999.9_wp ) .OR.& |
---|
[1826] | 413 | beta_lad /= 9999999.9_wp .AND. alpha_lad == 9999999.9_wp ) THEN |
---|
| 414 | message_string = 'using the beta function for the construction ' // & |
---|
| 415 | 'of the leaf area density profile requires ' // & |
---|
| 416 | 'both alpha_lad and beta_lad to be /= 9999999.9' |
---|
[2768] | 417 | CALL message( 'pcm_check_parameters', 'PA0118', 1, 2, 0, 6, 0 ) |
---|
[1826] | 418 | ENDIF |
---|
| 419 | |
---|
| 420 | IF ( calc_beta_lad_profile .AND. lai_beta == 0.0_wp ) THEN |
---|
| 421 | message_string = 'using the beta function for the construction ' // & |
---|
| 422 | 'of the leaf area density profile requires ' // & |
---|
| 423 | 'a non-zero lai_beta, but given value is ' // & |
---|
| 424 | 'lai_beta = 0.0' |
---|
[2768] | 425 | CALL message( 'pcm_check_parameters', 'PA0119', 1, 2, 0, 6, 0 ) |
---|
[1826] | 426 | ENDIF |
---|
| 427 | |
---|
| 428 | IF ( calc_beta_lad_profile .AND. lad_surface /= 0.0_wp ) THEN |
---|
[2274] | 429 | message_string = 'simultaneous setting of alpha_lad /= 9999999.9 '// & |
---|
| 430 | 'combined with beta_lad /= 9999999.9 ' // & |
---|
[1826] | 431 | 'and lad_surface /= 0.0 is not possible, ' // & |
---|
| 432 | 'use either vertical gradients or the beta ' // & |
---|
| 433 | 'function for the construction of the leaf area '// & |
---|
| 434 | 'density profile' |
---|
[2768] | 435 | CALL message( 'pcm_check_parameters', 'PA0120', 1, 2, 0, 6, 0 ) |
---|
[1826] | 436 | ENDIF |
---|
| 437 | |
---|
[3274] | 438 | IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN |
---|
[1826] | 439 | message_string = 'plant_canopy = .TRUE. requires cloud_scheme /=' // & |
---|
| 440 | ' seifert_beheng' |
---|
[2768] | 441 | CALL message( 'pcm_check_parameters', 'PA0360', 1, 2, 0, 6, 0 ) |
---|
[1826] | 442 | ENDIF |
---|
[2696] | 443 | ! |
---|
| 444 | !-- If dynamic input file is used, canopy need to be read from file |
---|
| 445 | IF ( input_pids_static .AND. & |
---|
| 446 | TRIM( canopy_mode ) /= 'read_from_file_3d' ) THEN |
---|
| 447 | message_string = 'Usage of dynamic input file ' // & |
---|
| 448 | TRIM( input_file_static ) // & |
---|
| 449 | TRIM( coupling_char ) // ' requires ' // & |
---|
| 450 | 'canopy_mode = read_from_file_3d' |
---|
[4188] | 451 | CALL message( 'pcm_check_parameters', 'PA0672', 1, 2, 0, 6, 0 ) |
---|
[2696] | 452 | ENDIF |
---|
[1826] | 453 | |
---|
| 454 | |
---|
| 455 | END SUBROUTINE pcm_check_parameters |
---|
| 456 | |
---|
| 457 | |
---|
[138] | 458 | !------------------------------------------------------------------------------! |
---|
[2209] | 459 | ! |
---|
[1484] | 460 | ! Description: |
---|
| 461 | ! ------------ |
---|
[4127] | 462 | !> Subroutine for averaging 3D data |
---|
[2209] | 463 | !------------------------------------------------------------------------------! |
---|
[4216] | 464 | SUBROUTINE pcm_3d_data_averaging( mode, variable ) |
---|
[4127] | 465 | |
---|
| 466 | |
---|
| 467 | USE control_parameters |
---|
| 468 | |
---|
| 469 | USE indices |
---|
| 470 | |
---|
| 471 | USE kinds |
---|
| 472 | |
---|
| 473 | IMPLICIT NONE |
---|
| 474 | |
---|
| 475 | CHARACTER (LEN=*) :: mode !< |
---|
| 476 | CHARACTER (LEN=*) :: variable !< |
---|
| 477 | |
---|
| 478 | INTEGER(iwp) :: i !< |
---|
| 479 | INTEGER(iwp) :: j !< |
---|
| 480 | INTEGER(iwp) :: k !< |
---|
| 481 | |
---|
| 482 | |
---|
| 483 | IF ( mode == 'allocate' ) THEN |
---|
| 484 | |
---|
| 485 | SELECT CASE ( TRIM( variable ) ) |
---|
| 486 | |
---|
| 487 | CASE ( 'pcm_heatrate' ) |
---|
| 488 | IF ( .NOT. ALLOCATED( pcm_heatrate_av ) ) THEN |
---|
| 489 | ALLOCATE( pcm_heatrate_av(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 490 | ENDIF |
---|
| 491 | pcm_heatrate_av = 0.0_wp |
---|
| 492 | |
---|
| 493 | |
---|
| 494 | CASE ( 'pcm_latentrate' ) |
---|
| 495 | IF ( .NOT. ALLOCATED( pcm_latentrate_av ) ) THEN |
---|
| 496 | ALLOCATE( pcm_latentrate_av(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 497 | ENDIF |
---|
| 498 | pcm_latentrate_av = 0.0_wp |
---|
| 499 | |
---|
| 500 | |
---|
| 501 | CASE ( 'pcm_transpirationrate' ) |
---|
| 502 | IF ( .NOT. ALLOCATED( pcm_transpirationrate_av ) ) THEN |
---|
| 503 | ALLOCATE( pcm_transpirationrate_av(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 504 | ENDIF |
---|
| 505 | pcm_transpirationrate_av = 0.0_wp |
---|
| 506 | |
---|
| 507 | CASE DEFAULT |
---|
| 508 | CONTINUE |
---|
| 509 | |
---|
| 510 | END SELECT |
---|
| 511 | |
---|
| 512 | ELSEIF ( mode == 'sum' ) THEN |
---|
| 513 | |
---|
| 514 | SELECT CASE ( TRIM( variable ) ) |
---|
| 515 | |
---|
| 516 | CASE ( 'pcm_heatrate' ) |
---|
| 517 | IF ( ALLOCATED( pcm_heatrate_av ) ) THEN |
---|
| 518 | DO i = nxl, nxr |
---|
| 519 | DO j = nys, nyn |
---|
| 520 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
| 521 | DO k = 0, pch_index_ji(j,i) |
---|
| 522 | pcm_heatrate_av(k,j,i) = pcm_heatrate_av(k,j,i) + pc_heating_rate(k,j,i) |
---|
| 523 | ENDDO |
---|
| 524 | ENDIF |
---|
| 525 | ENDDO |
---|
| 526 | ENDDO |
---|
| 527 | ENDIF |
---|
| 528 | |
---|
| 529 | |
---|
| 530 | CASE ( 'pcm_latentrate' ) |
---|
| 531 | IF ( ALLOCATED( pcm_latentrate_av ) ) THEN |
---|
| 532 | DO i = nxl, nxr |
---|
| 533 | DO j = nys, nyn |
---|
| 534 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
| 535 | DO k = 0, pch_index_ji(j,i) |
---|
| 536 | pcm_latentrate_av(k,j,i) = pcm_latentrate_av(k,j,i) + pc_latent_rate(k,j,i) |
---|
| 537 | ENDDO |
---|
| 538 | ENDIF |
---|
| 539 | ENDDO |
---|
| 540 | ENDDO |
---|
| 541 | ENDIF |
---|
| 542 | |
---|
| 543 | |
---|
| 544 | CASE ( 'pcm_transpirationrate' ) |
---|
| 545 | IF ( ALLOCATED( pcm_transpirationrate_av ) ) THEN |
---|
| 546 | DO i = nxl, nxr |
---|
| 547 | DO j = nys, nyn |
---|
| 548 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
| 549 | DO k = 0, pch_index_ji(j,i) |
---|
| 550 | pcm_transpirationrate_av(k,j,i) = pcm_transpirationrate_av(k,j,i) + pc_transpiration_rate(k,j,i) |
---|
| 551 | ENDDO |
---|
| 552 | ENDIF |
---|
| 553 | ENDDO |
---|
| 554 | ENDDO |
---|
| 555 | ENDIF |
---|
| 556 | |
---|
| 557 | CASE DEFAULT |
---|
| 558 | CONTINUE |
---|
| 559 | |
---|
| 560 | END SELECT |
---|
| 561 | |
---|
| 562 | ELSEIF ( mode == 'average' ) THEN |
---|
| 563 | |
---|
| 564 | SELECT CASE ( TRIM( variable ) ) |
---|
| 565 | |
---|
| 566 | CASE ( 'pcm_heatrate' ) |
---|
| 567 | IF ( ALLOCATED( pcm_heatrate_av ) ) THEN |
---|
| 568 | DO i = nxlg, nxrg |
---|
| 569 | DO j = nysg, nyng |
---|
| 570 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
| 571 | DO k = 0, pch_index_ji(j,i) |
---|
| 572 | pcm_heatrate_av(k,j,i) = pcm_heatrate_av(k,j,i) & |
---|
| 573 | / REAL( average_count_3d, KIND=wp ) |
---|
| 574 | ENDDO |
---|
| 575 | ENDIF |
---|
| 576 | ENDDO |
---|
| 577 | ENDDO |
---|
| 578 | ENDIF |
---|
| 579 | |
---|
| 580 | |
---|
| 581 | CASE ( 'pcm_latentrate' ) |
---|
| 582 | IF ( ALLOCATED( pcm_latentrate_av ) ) THEN |
---|
| 583 | DO i = nxlg, nxrg |
---|
| 584 | DO j = nysg, nyng |
---|
| 585 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
| 586 | DO k = 0, pch_index_ji(j,i) |
---|
| 587 | pcm_latentrate_av(k,j,i) = pcm_latentrate_av(k,j,i) & |
---|
| 588 | / REAL( average_count_3d, KIND=wp ) |
---|
| 589 | ENDDO |
---|
| 590 | ENDIF |
---|
| 591 | ENDDO |
---|
| 592 | ENDDO |
---|
| 593 | ENDIF |
---|
| 594 | |
---|
| 595 | |
---|
| 596 | CASE ( 'pcm_transpirationrate' ) |
---|
| 597 | IF ( ALLOCATED( pcm_transpirationrate_av ) ) THEN |
---|
| 598 | DO i = nxlg, nxrg |
---|
| 599 | DO j = nysg, nyng |
---|
| 600 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
| 601 | DO k = 0, pch_index_ji(j,i) |
---|
| 602 | pcm_transpirationrate_av(k,j,i) = pcm_transpirationrate_av(k,j,i) & |
---|
| 603 | / REAL( average_count_3d, KIND=wp ) |
---|
| 604 | ENDDO |
---|
| 605 | ENDIF |
---|
| 606 | ENDDO |
---|
| 607 | ENDDO |
---|
| 608 | ENDIF |
---|
| 609 | |
---|
| 610 | END SELECT |
---|
| 611 | |
---|
| 612 | ENDIF |
---|
| 613 | |
---|
[4216] | 614 | END SUBROUTINE pcm_3d_data_averaging |
---|
[4127] | 615 | |
---|
| 616 | !------------------------------------------------------------------------------! |
---|
| 617 | ! |
---|
| 618 | ! Description: |
---|
| 619 | ! ------------ |
---|
| 620 | !> Subroutine defining 3D output variables. |
---|
| 621 | !> Note, 3D plant-canopy output has it's own vertical output dimension, meaning |
---|
| 622 | !> that 3D output is relative to the model surface now rather than at the actual |
---|
| 623 | !> grid point where the plant canopy is located. |
---|
| 624 | !------------------------------------------------------------------------------! |
---|
[3014] | 625 | SUBROUTINE pcm_data_output_3d( av, variable, found, local_pf, fill_value, & |
---|
| 626 | nzb_do, nzt_do ) |
---|
| 627 | |
---|
[2209] | 628 | USE indices |
---|
| 629 | |
---|
| 630 | USE kinds |
---|
| 631 | |
---|
| 632 | |
---|
| 633 | IMPLICIT NONE |
---|
| 634 | |
---|
[4216] | 635 | CHARACTER (LEN=*) :: variable !< treated variable |
---|
[2209] | 636 | |
---|
[4216] | 637 | INTEGER(iwp) :: av !< flag indicating instantaneous or averaged data output |
---|
| 638 | INTEGER(iwp) :: i !< grid index x-direction |
---|
| 639 | INTEGER(iwp) :: j !< grid index y-direction |
---|
| 640 | INTEGER(iwp) :: k !< grid index z-direction |
---|
[3014] | 641 | INTEGER(iwp) :: nzb_do !< lower limit of the data output (usually 0) |
---|
| 642 | INTEGER(iwp) :: nzt_do !< vertical upper limit of the data output (usually nz_do3d) |
---|
[2209] | 643 | |
---|
[4216] | 644 | LOGICAL :: found !< flag indicating if variable is found |
---|
[2209] | 645 | |
---|
[4216] | 646 | REAL(wp) :: fill_value !< fill value |
---|
| 647 | REAL(sp), DIMENSION(nxl:nxr,nys:nyn,nzb_do:nzt_do) :: local_pf !< data output array |
---|
[2209] | 648 | |
---|
| 649 | |
---|
| 650 | found = .TRUE. |
---|
| 651 | |
---|
[2696] | 652 | local_pf = REAL( fill_value, KIND = 4 ) |
---|
[2209] | 653 | |
---|
| 654 | SELECT CASE ( TRIM( variable ) ) |
---|
[4216] | 655 | ! |
---|
| 656 | !-- Note, to save memory arrays for heating are allocated from 0:pch_index. |
---|
| 657 | !-- Thus, output must be relative to these array indices. Further, check |
---|
| 658 | !-- whether the output is within the vertical output range, |
---|
[4220] | 659 | !-- i.e. nzb_do:nzt_do, which is necessary as local_pf is only allocated |
---|
| 660 | !-- for this index space. Note, plant-canopy output has a separate |
---|
| 661 | !-- vertical output coordinate zlad, so that output is mapped down to the |
---|
| 662 | !-- surface. |
---|
[4127] | 663 | CASE ( 'pcm_heatrate' ) |
---|
| 664 | IF ( av == 0 ) THEN |
---|
| 665 | DO i = nxl, nxr |
---|
| 666 | DO j = nys, nyn |
---|
[4220] | 667 | DO k = MAX( 1, nzb_do ), MIN( pch_index, nzt_do ) |
---|
| 668 | local_pf(i,j,k) = pc_heating_rate(k,j,i) |
---|
[4216] | 669 | ENDDO |
---|
[4127] | 670 | ENDDO |
---|
| 671 | ENDDO |
---|
| 672 | ELSE |
---|
| 673 | DO i = nxl, nxr |
---|
| 674 | DO j = nys, nyn |
---|
[4220] | 675 | DO k = MAX( 1, nzb_do ), MIN( pch_index, nzt_do ) |
---|
| 676 | local_pf(i,j,k) = pcm_heatrate_av(k,j,i) |
---|
[4127] | 677 | ENDDO |
---|
| 678 | ENDDO |
---|
| 679 | ENDDO |
---|
| 680 | ENDIF |
---|
[3449] | 681 | |
---|
| 682 | CASE ( 'pcm_latentrate' ) |
---|
[4127] | 683 | IF ( av == 0 ) THEN |
---|
| 684 | DO i = nxl, nxr |
---|
| 685 | DO j = nys, nyn |
---|
[4220] | 686 | DO k = MAX( 1, nzb_do ), MIN( pch_index, nzt_do ) |
---|
| 687 | local_pf(i,j,k) = pc_latent_rate(k,j,i) |
---|
[4216] | 688 | ENDDO |
---|
[4127] | 689 | ENDDO |
---|
| 690 | ENDDO |
---|
| 691 | ELSE |
---|
| 692 | DO i = nxl, nxr |
---|
| 693 | DO j = nys, nyn |
---|
[4220] | 694 | DO k = MAX( 1, nzb_do ), MIN( pch_index, nzt_do ) |
---|
| 695 | local_pf(i,j,k) = pcm_latentrate_av(k,j,i) |
---|
[4127] | 696 | ENDDO |
---|
| 697 | ENDDO |
---|
| 698 | ENDDO |
---|
| 699 | ENDIF |
---|
[3449] | 700 | |
---|
[4127] | 701 | CASE ( 'pcm_transpirationrate' ) |
---|
| 702 | IF ( av == 0 ) THEN |
---|
| 703 | DO i = nxl, nxr |
---|
| 704 | DO j = nys, nyn |
---|
[4220] | 705 | DO k = MAX( 1, nzb_do ), MIN( pch_index, nzt_do ) |
---|
| 706 | local_pf(i,j,k) = pc_transpiration_rate(k,j,i) |
---|
[4216] | 707 | ENDDO |
---|
[4127] | 708 | ENDDO |
---|
| 709 | ENDDO |
---|
| 710 | ELSE |
---|
| 711 | DO i = nxl, nxr |
---|
| 712 | DO j = nys, nyn |
---|
[4220] | 713 | DO k = MAX( 1, nzb_do ), MIN( pch_index, nzt_do ) |
---|
| 714 | local_pf(i,j,k) = pcm_transpirationrate_av(k,j,i) |
---|
[4127] | 715 | ENDDO |
---|
| 716 | ENDDO |
---|
| 717 | ENDDO |
---|
| 718 | ENDIF |
---|
| 719 | |
---|
[3449] | 720 | CASE ( 'pcm_bowenratio' ) |
---|
[4127] | 721 | IF ( av == 0 ) THEN |
---|
| 722 | DO i = nxl, nxr |
---|
| 723 | DO j = nys, nyn |
---|
[4220] | 724 | DO k = MAX( 1, nzb_do ), MIN( pch_index, nzt_do ) |
---|
| 725 | IF ( pc_latent_rate(k,j,i) /= 0.0_wp ) THEN |
---|
| 726 | local_pf(i,j,k) = pc_heating_rate(k,j,i) / & |
---|
| 727 | pc_latent_rate(k,j,i) |
---|
[4216] | 728 | ENDIF |
---|
| 729 | ENDDO |
---|
[4127] | 730 | ENDDO |
---|
| 731 | ENDDO |
---|
[4216] | 732 | ELSE |
---|
| 733 | DO i = nxl, nxr |
---|
| 734 | DO j = nys, nyn |
---|
[4220] | 735 | DO k = MAX( 1, nzb_do ), MIN( pch_index, nzt_do ) |
---|
| 736 | IF ( pcm_latentrate_av(k,j,i) /= 0.0_wp ) THEN |
---|
| 737 | local_pf(i,j,k) = pcm_heatrate_av(k,j,i) / & |
---|
| 738 | pcm_latentrate_av(k,j,i) |
---|
[4216] | 739 | ENDIF |
---|
| 740 | ENDDO |
---|
| 741 | ENDDO |
---|
| 742 | ENDDO |
---|
[4127] | 743 | ENDIF |
---|
[3449] | 744 | |
---|
[4127] | 745 | CASE ( 'pcm_lad' ) |
---|
| 746 | IF ( av == 0 ) THEN |
---|
| 747 | DO i = nxl, nxr |
---|
| 748 | DO j = nys, nyn |
---|
[4220] | 749 | DO k = MAX( 1, nzb_do ), MIN( pch_index, nzt_do ) |
---|
| 750 | local_pf(i,j,k) = lad_s(k,j,i) |
---|
[4216] | 751 | ENDDO |
---|
[4127] | 752 | ENDDO |
---|
| 753 | ENDDO |
---|
| 754 | ENDIF |
---|
| 755 | |
---|
[2209] | 756 | CASE DEFAULT |
---|
| 757 | found = .FALSE. |
---|
| 758 | |
---|
| 759 | END SELECT |
---|
| 760 | |
---|
| 761 | |
---|
| 762 | END SUBROUTINE pcm_data_output_3d |
---|
| 763 | |
---|
| 764 | !------------------------------------------------------------------------------! |
---|
| 765 | ! |
---|
| 766 | ! Description: |
---|
| 767 | ! ------------ |
---|
| 768 | !> Subroutine defining appropriate grid for netcdf variables. |
---|
| 769 | !> It is called from subroutine netcdf. |
---|
| 770 | !------------------------------------------------------------------------------! |
---|
| 771 | SUBROUTINE pcm_define_netcdf_grid( var, found, grid_x, grid_y, grid_z ) |
---|
| 772 | |
---|
| 773 | IMPLICIT NONE |
---|
| 774 | |
---|
| 775 | CHARACTER (LEN=*), INTENT(IN) :: var !< |
---|
| 776 | LOGICAL, INTENT(OUT) :: found !< |
---|
| 777 | CHARACTER (LEN=*), INTENT(OUT) :: grid_x !< |
---|
| 778 | CHARACTER (LEN=*), INTENT(OUT) :: grid_y !< |
---|
| 779 | CHARACTER (LEN=*), INTENT(OUT) :: grid_z !< |
---|
| 780 | |
---|
| 781 | found = .TRUE. |
---|
| 782 | |
---|
| 783 | ! |
---|
| 784 | !-- Check for the grid |
---|
| 785 | SELECT CASE ( TRIM( var ) ) |
---|
| 786 | |
---|
[3449] | 787 | CASE ( 'pcm_heatrate', 'pcm_lad', 'pcm_transpirationrate', 'pcm_latentrate', 'pcm_bowenratio') |
---|
[2209] | 788 | grid_x = 'x' |
---|
| 789 | grid_y = 'y' |
---|
[4127] | 790 | grid_z = 'zpc' |
---|
[2209] | 791 | |
---|
| 792 | CASE DEFAULT |
---|
| 793 | found = .FALSE. |
---|
| 794 | grid_x = 'none' |
---|
| 795 | grid_y = 'none' |
---|
| 796 | grid_z = 'none' |
---|
| 797 | END SELECT |
---|
| 798 | |
---|
| 799 | END SUBROUTINE pcm_define_netcdf_grid |
---|
| 800 | |
---|
| 801 | |
---|
| 802 | !------------------------------------------------------------------------------! |
---|
| 803 | ! Description: |
---|
| 804 | ! ------------ |
---|
[1826] | 805 | !> Header output for plant canopy model |
---|
| 806 | !------------------------------------------------------------------------------! |
---|
| 807 | SUBROUTINE pcm_header ( io ) |
---|
| 808 | |
---|
| 809 | USE control_parameters, & |
---|
[3065] | 810 | ONLY: passive_scalar |
---|
[1826] | 811 | |
---|
| 812 | |
---|
| 813 | IMPLICIT NONE |
---|
| 814 | |
---|
| 815 | CHARACTER (LEN=10) :: coor_chr !< |
---|
| 816 | |
---|
| 817 | CHARACTER (LEN=86) :: coordinates !< |
---|
| 818 | CHARACTER (LEN=86) :: gradients !< |
---|
| 819 | CHARACTER (LEN=86) :: leaf_area_density !< |
---|
| 820 | CHARACTER (LEN=86) :: slices !< |
---|
| 821 | |
---|
| 822 | INTEGER(iwp) :: i !< |
---|
| 823 | INTEGER(iwp), INTENT(IN) :: io !< Unit of the output file |
---|
| 824 | INTEGER(iwp) :: k !< |
---|
| 825 | |
---|
| 826 | REAL(wp) :: canopy_height !< canopy height (in m) |
---|
| 827 | |
---|
[3065] | 828 | canopy_height = zw(pch_index) |
---|
[1826] | 829 | |
---|
| 830 | WRITE ( io, 1 ) canopy_mode, canopy_height, pch_index, & |
---|
| 831 | canopy_drag_coeff |
---|
| 832 | IF ( passive_scalar ) THEN |
---|
| 833 | WRITE ( io, 2 ) leaf_scalar_exch_coeff, & |
---|
| 834 | leaf_surface_conc |
---|
| 835 | ENDIF |
---|
| 836 | |
---|
| 837 | ! |
---|
| 838 | !-- Heat flux at the top of vegetation |
---|
| 839 | WRITE ( io, 3 ) cthf |
---|
| 840 | |
---|
| 841 | ! |
---|
| 842 | !-- Leaf area density profile, calculated either from given vertical |
---|
| 843 | !-- gradients or from beta probability density function. |
---|
| 844 | IF ( .NOT. calc_beta_lad_profile ) THEN |
---|
| 845 | |
---|
| 846 | !-- Building output strings, starting with surface value |
---|
| 847 | WRITE ( leaf_area_density, '(F7.4)' ) lad_surface |
---|
| 848 | gradients = '------' |
---|
| 849 | slices = ' 0' |
---|
| 850 | coordinates = ' 0.0' |
---|
| 851 | i = 1 |
---|
| 852 | DO WHILE ( i < 11 .AND. lad_vertical_gradient_level_ind(i) & |
---|
| 853 | /= -9999 ) |
---|
| 854 | |
---|
| 855 | WRITE (coor_chr,'(F7.2)') lad(lad_vertical_gradient_level_ind(i)) |
---|
| 856 | leaf_area_density = TRIM( leaf_area_density ) // ' ' // & |
---|
| 857 | TRIM( coor_chr ) |
---|
| 858 | |
---|
| 859 | WRITE (coor_chr,'(F7.2)') lad_vertical_gradient(i) |
---|
| 860 | gradients = TRIM( gradients ) // ' ' // TRIM( coor_chr ) |
---|
| 861 | |
---|
| 862 | WRITE (coor_chr,'(I7)') lad_vertical_gradient_level_ind(i) |
---|
| 863 | slices = TRIM( slices ) // ' ' // TRIM( coor_chr ) |
---|
| 864 | |
---|
| 865 | WRITE (coor_chr,'(F7.1)') lad_vertical_gradient_level(i) |
---|
| 866 | coordinates = TRIM( coordinates ) // ' ' // TRIM( coor_chr ) |
---|
| 867 | |
---|
| 868 | i = i + 1 |
---|
| 869 | ENDDO |
---|
| 870 | |
---|
| 871 | WRITE ( io, 4 ) TRIM( coordinates ), TRIM( leaf_area_density ), & |
---|
| 872 | TRIM( gradients ), TRIM( slices ) |
---|
| 873 | |
---|
| 874 | ELSE |
---|
| 875 | |
---|
| 876 | WRITE ( leaf_area_density, '(F7.4)' ) lad_surface |
---|
| 877 | coordinates = ' 0.0' |
---|
| 878 | |
---|
| 879 | DO k = 1, pch_index |
---|
| 880 | |
---|
| 881 | WRITE (coor_chr,'(F7.2)') lad(k) |
---|
| 882 | leaf_area_density = TRIM( leaf_area_density ) // ' ' // & |
---|
| 883 | TRIM( coor_chr ) |
---|
| 884 | |
---|
| 885 | WRITE (coor_chr,'(F7.1)') zu(k) |
---|
| 886 | coordinates = TRIM( coordinates ) // ' ' // TRIM( coor_chr ) |
---|
| 887 | |
---|
| 888 | ENDDO |
---|
| 889 | |
---|
| 890 | WRITE ( io, 5 ) TRIM( coordinates ), TRIM( leaf_area_density ), & |
---|
| 891 | alpha_lad, beta_lad, lai_beta |
---|
| 892 | |
---|
| 893 | ENDIF |
---|
| 894 | |
---|
| 895 | 1 FORMAT (//' Vegetation canopy (drag) model:'/ & |
---|
| 896 | ' ------------------------------'// & |
---|
| 897 | ' Canopy mode: ', A / & |
---|
| 898 | ' Canopy height: ',F6.2,'m (',I4,' grid points)' / & |
---|
| 899 | ' Leaf drag coefficient: ',F6.2 /) |
---|
| 900 | 2 FORMAT (/ ' Scalar exchange coefficient: ',F6.2 / & |
---|
| 901 | ' Scalar concentration at leaf surfaces in kg/m**3: ',F6.2 /) |
---|
| 902 | 3 FORMAT (' Predefined constant heatflux at the top of the vegetation: ',F6.2, & |
---|
| 903 | ' K m/s') |
---|
| 904 | 4 FORMAT (/ ' Characteristic levels of the leaf area density:'// & |
---|
| 905 | ' Height: ',A,' m'/ & |
---|
| 906 | ' Leaf area density: ',A,' m**2/m**3'/ & |
---|
| 907 | ' Gradient: ',A,' m**2/m**4'/ & |
---|
| 908 | ' Gridpoint: ',A) |
---|
| 909 | 5 FORMAT (//' Characteristic levels of the leaf area density and coefficients:'& |
---|
| 910 | // ' Height: ',A,' m'/ & |
---|
| 911 | ' Leaf area density: ',A,' m**2/m**3'/ & |
---|
| 912 | ' Coefficient alpha: ',F6.2 / & |
---|
| 913 | ' Coefficient beta: ',F6.2 / & |
---|
| 914 | ' Leaf area index: ',F6.2,' m**2/m**2' /) |
---|
| 915 | |
---|
| 916 | END SUBROUTINE pcm_header |
---|
| 917 | |
---|
| 918 | |
---|
| 919 | !------------------------------------------------------------------------------! |
---|
| 920 | ! Description: |
---|
| 921 | ! ------------ |
---|
[1682] | 922 | !> Initialization of the plant canopy model |
---|
[138] | 923 | !------------------------------------------------------------------------------! |
---|
[1826] | 924 | SUBROUTINE pcm_init |
---|
[1484] | 925 | |
---|
| 926 | |
---|
| 927 | USE control_parameters, & |
---|
[3614] | 928 | ONLY: message_string, ocean_mode |
---|
[1484] | 929 | |
---|
[2696] | 930 | USE netcdf_data_input_mod, & |
---|
| 931 | ONLY: leaf_area_density_f |
---|
| 932 | |
---|
[2232] | 933 | USE surface_mod, & |
---|
| 934 | ONLY: surf_def_h, surf_lsm_h, surf_usm_h |
---|
[1484] | 935 | |
---|
| 936 | IMPLICIT NONE |
---|
| 937 | |
---|
[2007] | 938 | INTEGER(iwp) :: i !< running index |
---|
| 939 | INTEGER(iwp) :: j !< running index |
---|
| 940 | INTEGER(iwp) :: k !< running index |
---|
[2232] | 941 | INTEGER(iwp) :: m !< running index |
---|
[1484] | 942 | |
---|
[2007] | 943 | REAL(wp) :: int_bpdf !< vertical integral for lad-profile construction |
---|
| 944 | REAL(wp) :: gradient !< gradient for lad-profile construction |
---|
| 945 | REAL(wp) :: canopy_height !< canopy height for lad-profile construction |
---|
[3241] | 946 | |
---|
[3885] | 947 | IF ( debug_output ) CALL debug_message( 'pcm_init', 'start' ) |
---|
[1484] | 948 | ! |
---|
| 949 | !-- Allocate one-dimensional arrays for the computation of the |
---|
| 950 | !-- leaf area density (lad) profile |
---|
| 951 | ALLOCATE( lad(0:nz+1), pre_lad(0:nz+1) ) |
---|
| 952 | lad = 0.0_wp |
---|
| 953 | pre_lad = 0.0_wp |
---|
| 954 | |
---|
| 955 | ! |
---|
[1826] | 956 | !-- Set flag that indicates that the lad-profile shall be calculated by using |
---|
| 957 | !-- a beta probability density function |
---|
| 958 | IF ( alpha_lad /= 9999999.9_wp .AND. beta_lad /= 9999999.9_wp ) THEN |
---|
| 959 | calc_beta_lad_profile = .TRUE. |
---|
| 960 | ENDIF |
---|
| 961 | |
---|
| 962 | |
---|
| 963 | ! |
---|
[1484] | 964 | !-- Compute the profile of leaf area density used in the plant |
---|
| 965 | !-- canopy model. The profile can either be constructed from |
---|
| 966 | !-- prescribed vertical gradients of the leaf area density or by |
---|
| 967 | !-- using a beta probability density function (see e.g. Markkanen et al., |
---|
| 968 | !-- 2003: Boundary-Layer Meteorology, 106, 437-459) |
---|
| 969 | IF ( .NOT. calc_beta_lad_profile ) THEN |
---|
| 970 | |
---|
| 971 | ! |
---|
| 972 | !-- Use vertical gradients for lad-profile construction |
---|
| 973 | i = 1 |
---|
| 974 | gradient = 0.0_wp |
---|
| 975 | |
---|
[3294] | 976 | IF ( .NOT. ocean_mode ) THEN |
---|
[1484] | 977 | |
---|
| 978 | lad(0) = lad_surface |
---|
| 979 | lad_vertical_gradient_level_ind(1) = 0 |
---|
| 980 | |
---|
| 981 | DO k = 1, pch_index |
---|
| 982 | IF ( i < 11 ) THEN |
---|
| 983 | IF ( lad_vertical_gradient_level(i) < zu(k) .AND. & |
---|
| 984 | lad_vertical_gradient_level(i) >= 0.0_wp ) THEN |
---|
| 985 | gradient = lad_vertical_gradient(i) |
---|
| 986 | lad_vertical_gradient_level_ind(i) = k - 1 |
---|
| 987 | i = i + 1 |
---|
| 988 | ENDIF |
---|
| 989 | ENDIF |
---|
| 990 | IF ( gradient /= 0.0_wp ) THEN |
---|
| 991 | IF ( k /= 1 ) THEN |
---|
| 992 | lad(k) = lad(k-1) + dzu(k) * gradient |
---|
| 993 | ELSE |
---|
| 994 | lad(k) = lad_surface + dzu(k) * gradient |
---|
| 995 | ENDIF |
---|
| 996 | ELSE |
---|
| 997 | lad(k) = lad(k-1) |
---|
| 998 | ENDIF |
---|
| 999 | ENDDO |
---|
| 1000 | |
---|
| 1001 | ENDIF |
---|
| 1002 | |
---|
| 1003 | ! |
---|
| 1004 | !-- In case of no given leaf area density gradients, choose a vanishing |
---|
| 1005 | !-- gradient. This information is used for the HEADER and the RUN_CONTROL |
---|
| 1006 | !-- file. |
---|
| 1007 | IF ( lad_vertical_gradient_level(1) == -9999999.9_wp ) THEN |
---|
| 1008 | lad_vertical_gradient_level(1) = 0.0_wp |
---|
| 1009 | ENDIF |
---|
| 1010 | |
---|
| 1011 | ELSE |
---|
| 1012 | |
---|
| 1013 | ! |
---|
| 1014 | !-- Use beta function for lad-profile construction |
---|
| 1015 | int_bpdf = 0.0_wp |
---|
[3065] | 1016 | canopy_height = zw(pch_index) |
---|
[1484] | 1017 | |
---|
[2232] | 1018 | DO k = 0, pch_index |
---|
[1484] | 1019 | int_bpdf = int_bpdf + & |
---|
[1826] | 1020 | ( ( ( zw(k) / canopy_height )**( alpha_lad-1.0_wp ) ) * & |
---|
| 1021 | ( ( 1.0_wp - ( zw(k) / canopy_height ) )**( & |
---|
| 1022 | beta_lad-1.0_wp ) ) & |
---|
| 1023 | * ( ( zw(k+1)-zw(k) ) / canopy_height ) ) |
---|
[1484] | 1024 | ENDDO |
---|
| 1025 | |
---|
| 1026 | ! |
---|
| 1027 | !-- Preliminary lad profile (defined on w-grid) |
---|
[2232] | 1028 | DO k = 0, pch_index |
---|
[1826] | 1029 | pre_lad(k) = lai_beta * & |
---|
| 1030 | ( ( ( zw(k) / canopy_height )**( alpha_lad-1.0_wp ) ) & |
---|
| 1031 | * ( ( 1.0_wp - ( zw(k) / canopy_height ) )**( & |
---|
| 1032 | beta_lad-1.0_wp ) ) / int_bpdf & |
---|
| 1033 | ) / canopy_height |
---|
[1484] | 1034 | ENDDO |
---|
| 1035 | |
---|
| 1036 | ! |
---|
| 1037 | !-- Final lad profile (defined on scalar-grid level, since most prognostic |
---|
| 1038 | !-- quantities are defined there, hence, less interpolation is required |
---|
| 1039 | !-- when calculating the canopy tendencies) |
---|
| 1040 | lad(0) = pre_lad(0) |
---|
[2232] | 1041 | DO k = 1, pch_index |
---|
[1484] | 1042 | lad(k) = 0.5 * ( pre_lad(k-1) + pre_lad(k) ) |
---|
| 1043 | ENDDO |
---|
| 1044 | |
---|
| 1045 | ENDIF |
---|
| 1046 | |
---|
| 1047 | ! |
---|
[2213] | 1048 | !-- Allocate 3D-array for the leaf area density (lad_s). |
---|
[1484] | 1049 | ALLOCATE( lad_s(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 1050 | |
---|
| 1051 | ! |
---|
| 1052 | !-- Initialize canopy parameters cdc (canopy drag coefficient), |
---|
| 1053 | !-- lsec (leaf scalar exchange coefficient), lsc (leaf surface concentration) |
---|
| 1054 | !-- with the prescribed values |
---|
| 1055 | cdc = canopy_drag_coeff |
---|
| 1056 | lsec = leaf_scalar_exch_coeff |
---|
| 1057 | lsc = leaf_surface_conc |
---|
| 1058 | |
---|
| 1059 | ! |
---|
| 1060 | !-- Initialization of the canopy coverage in the model domain: |
---|
| 1061 | !-- Setting the parameter canopy_mode = 'block' initializes a canopy, which |
---|
| 1062 | !-- fully covers the domain surface |
---|
| 1063 | SELECT CASE ( TRIM( canopy_mode ) ) |
---|
| 1064 | |
---|
| 1065 | CASE( 'block' ) |
---|
| 1066 | |
---|
| 1067 | DO i = nxlg, nxrg |
---|
| 1068 | DO j = nysg, nyng |
---|
| 1069 | lad_s(:,j,i) = lad(:) |
---|
| 1070 | ENDDO |
---|
| 1071 | ENDDO |
---|
| 1072 | |
---|
[2007] | 1073 | CASE ( 'read_from_file_3d' ) |
---|
| 1074 | ! |
---|
[2696] | 1075 | !-- Initialize LAD with data from file. If LAD is given in NetCDF file, |
---|
| 1076 | !-- use these values, else take LAD profiles from ASCII file. |
---|
| 1077 | !-- Please note, in NetCDF file LAD is only given up to the maximum |
---|
| 1078 | !-- canopy top, indicated by leaf_area_density_f%nz. |
---|
| 1079 | lad_s = 0.0_wp |
---|
| 1080 | IF ( leaf_area_density_f%from_file ) THEN |
---|
| 1081 | ! |
---|
| 1082 | !-- Set also pch_index, used to be the upper bound of the vertical |
---|
| 1083 | !-- loops. Therefore, use the global top of the canopy layer. |
---|
| 1084 | pch_index = leaf_area_density_f%nz - 1 |
---|
| 1085 | |
---|
| 1086 | DO i = nxl, nxr |
---|
| 1087 | DO j = nys, nyn |
---|
| 1088 | DO k = 0, leaf_area_density_f%nz - 1 |
---|
[3864] | 1089 | IF ( leaf_area_density_f%var(k,j,i) /= & |
---|
| 1090 | leaf_area_density_f%fill ) & |
---|
[2696] | 1091 | lad_s(k,j,i) = leaf_area_density_f%var(k,j,i) |
---|
| 1092 | ENDDO |
---|
| 1093 | ENDDO |
---|
| 1094 | ENDDO |
---|
[4187] | 1095 | |
---|
[2696] | 1096 | CALL exchange_horiz( lad_s, nbgp ) |
---|
| 1097 | ! |
---|
| 1098 | ! ASCII file |
---|
[2007] | 1099 | !-- Initialize canopy parameters cdc (canopy drag coefficient), |
---|
| 1100 | !-- lsec (leaf scalar exchange coefficient), lsc (leaf surface concentration) |
---|
| 1101 | !-- from file which contains complete 3D data (separate vertical profiles for |
---|
| 1102 | !-- each location). |
---|
[2696] | 1103 | ELSE |
---|
| 1104 | CALL pcm_read_plant_canopy_3d |
---|
| 1105 | ENDIF |
---|
[2007] | 1106 | |
---|
[1484] | 1107 | CASE DEFAULT |
---|
| 1108 | ! |
---|
[2007] | 1109 | !-- The DEFAULT case is reached either if the parameter |
---|
| 1110 | !-- canopy mode contains a wrong character string or if the |
---|
| 1111 | !-- user has coded a special case in the user interface. |
---|
| 1112 | !-- There, the subroutine user_init_plant_canopy checks |
---|
| 1113 | !-- which of these two conditions applies. |
---|
| 1114 | CALL user_init_plant_canopy |
---|
[1484] | 1115 | |
---|
| 1116 | END SELECT |
---|
[2696] | 1117 | ! |
---|
| 1118 | !-- Initialize 2D index array indicating canopy top index. |
---|
| 1119 | ALLOCATE( pch_index_ji(nysg:nyng,nxlg:nxrg) ) |
---|
| 1120 | pch_index_ji = 0 |
---|
[4187] | 1121 | |
---|
[2696] | 1122 | DO i = nxl, nxr |
---|
| 1123 | DO j = nys, nyn |
---|
| 1124 | DO k = 0, pch_index |
---|
| 1125 | IF ( lad_s(k,j,i) /= 0 ) pch_index_ji(j,i) = k |
---|
| 1126 | ENDDO |
---|
[1484] | 1127 | ! |
---|
[2696] | 1128 | !-- Check whether topography and local vegetation on top exceed |
---|
| 1129 | !-- height of the model domain. |
---|
[4168] | 1130 | k = topo_top_ind(j,i,0) |
---|
[2696] | 1131 | IF ( k + pch_index_ji(j,i) >= nzt + 1 ) THEN |
---|
| 1132 | message_string = 'Local vegetation height on top of ' // & |
---|
| 1133 | 'topography exceeds height of model domain.' |
---|
[4187] | 1134 | CALL message( 'pcm_init', 'PA0674', 2, 2, 0, 6, 0 ) |
---|
[2696] | 1135 | ENDIF |
---|
| 1136 | |
---|
| 1137 | ENDDO |
---|
| 1138 | ENDDO |
---|
| 1139 | |
---|
| 1140 | CALL exchange_horiz_2d_int( pch_index_ji, nys, nyn, nxl, nxr, nbgp ) |
---|
[3497] | 1141 | ! |
---|
[3449] | 1142 | !-- Calculate global pch_index value (index of top of plant canopy from ground) |
---|
[3497] | 1143 | pch_index = MAXVAL( pch_index_ji ) |
---|
[4187] | 1144 | |
---|
| 1145 | |
---|
[3497] | 1146 | ! |
---|
[3449] | 1147 | !-- Exchange pch_index from all processors |
---|
| 1148 | #if defined( __parallel ) |
---|
[3497] | 1149 | CALL MPI_ALLREDUCE( MPI_IN_PLACE, pch_index, 1, MPI_INTEGER, & |
---|
| 1150 | MPI_MAX, comm2d, ierr) |
---|
[3449] | 1151 | #endif |
---|
| 1152 | |
---|
| 1153 | !-- Allocation of arrays pc_heating_rate, pc_transpiration_rate and pc_latent_rate |
---|
| 1154 | ALLOCATE( pc_heating_rate(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
[4221] | 1155 | pc_heating_rate = 0.0_wp |
---|
| 1156 | |
---|
[3449] | 1157 | IF ( humidity ) THEN |
---|
| 1158 | ALLOCATE( pc_transpiration_rate(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 1159 | pc_transpiration_rate = 0.0_wp |
---|
| 1160 | ALLOCATE( pc_latent_rate(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 1161 | pc_latent_rate = 0.0_wp |
---|
| 1162 | ENDIF |
---|
[2696] | 1163 | ! |
---|
[2011] | 1164 | !-- Initialization of the canopy heat source distribution due to heating |
---|
| 1165 | !-- of the canopy layers by incoming solar radiation, in case that a non-zero |
---|
| 1166 | !-- value is set for the canopy top heat flux (cthf), which equals the |
---|
| 1167 | !-- available net radiation at canopy top. |
---|
| 1168 | !-- The heat source distribution is calculated by a decaying exponential |
---|
| 1169 | !-- function of the downward cumulative leaf area index (cum_lai_hf), |
---|
| 1170 | !-- assuming that the foliage inside the plant canopy is heated by solar |
---|
| 1171 | !-- radiation penetrating the canopy layers according to the distribution |
---|
| 1172 | !-- of net radiation as suggested by Brown & Covey (1966; Agric. Meteorol. 3, |
---|
| 1173 | !-- 73â96). This approach has been applied e.g. by Shaw & Schumann (1992; |
---|
[2213] | 1174 | !-- Bound.-Layer Meteorol. 61, 47â64). |
---|
[3449] | 1175 | !-- When using the radiation_interactions, canopy heating (pc_heating_rate) |
---|
| 1176 | !-- and plant canopy transpiration (pc_transpiration_rate, pc_latent_rate) |
---|
| 1177 | !-- are calculated in the RTM after the calculation of radiation. |
---|
| 1178 | !-- We cannot use variable radiation_interactions here to determine the situation |
---|
| 1179 | !-- as it is assigned in init_3d_model after the call of pcm_init. |
---|
| 1180 | IF ( cthf /= 0.0_wp ) THEN |
---|
[2213] | 1181 | |
---|
[3449] | 1182 | ALLOCATE( cum_lai_hf(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1484] | 1183 | ! |
---|
[2011] | 1184 | !-- Piecewise calculation of the cumulative leaf area index by vertical |
---|
[1484] | 1185 | !-- integration of the leaf area density |
---|
| 1186 | cum_lai_hf(:,:,:) = 0.0_wp |
---|
| 1187 | DO i = nxlg, nxrg |
---|
| 1188 | DO j = nysg, nyng |
---|
[2696] | 1189 | DO k = pch_index_ji(j,i)-1, 0, -1 |
---|
| 1190 | IF ( k == pch_index_ji(j,i)-1 ) THEN |
---|
[1484] | 1191 | cum_lai_hf(k,j,i) = cum_lai_hf(k+1,j,i) + & |
---|
| 1192 | ( 0.5_wp * lad_s(k+1,j,i) * & |
---|
| 1193 | ( zw(k+1) - zu(k+1) ) ) + & |
---|
| 1194 | ( 0.5_wp * ( 0.5_wp * ( lad_s(k+1,j,i) + & |
---|
| 1195 | lad_s(k,j,i) ) + & |
---|
| 1196 | lad_s(k+1,j,i) ) * & |
---|
| 1197 | ( zu(k+1) - zw(k) ) ) |
---|
| 1198 | ELSE |
---|
| 1199 | cum_lai_hf(k,j,i) = cum_lai_hf(k+1,j,i) + & |
---|
| 1200 | ( 0.5_wp * ( 0.5_wp * ( lad_s(k+2,j,i) + & |
---|
| 1201 | lad_s(k+1,j,i) ) + & |
---|
| 1202 | lad_s(k+1,j,i) ) * & |
---|
| 1203 | ( zw(k+1) - zu(k+1) ) ) + & |
---|
| 1204 | ( 0.5_wp * ( 0.5_wp * ( lad_s(k+1,j,i) + & |
---|
| 1205 | lad_s(k,j,i) ) + & |
---|
| 1206 | lad_s(k+1,j,i) ) * & |
---|
| 1207 | ( zu(k+1) - zw(k) ) ) |
---|
| 1208 | ENDIF |
---|
| 1209 | ENDDO |
---|
| 1210 | ENDDO |
---|
| 1211 | ENDDO |
---|
| 1212 | |
---|
[2232] | 1213 | ! |
---|
| 1214 | !-- In areas with canopy the surface value of the canopy heat |
---|
| 1215 | !-- flux distribution overrides the surface heat flux (shf) |
---|
| 1216 | !-- Start with default surface type |
---|
| 1217 | DO m = 1, surf_def_h(0)%ns |
---|
| 1218 | k = surf_def_h(0)%k(m) |
---|
| 1219 | IF ( cum_lai_hf(0,j,i) /= 0.0_wp ) & |
---|
| 1220 | surf_def_h(0)%shf(m) = cthf * exp( -ext_coef * cum_lai_hf(0,j,i) ) |
---|
| 1221 | ENDDO |
---|
[1484] | 1222 | ! |
---|
[2232] | 1223 | !-- Natural surfaces |
---|
| 1224 | DO m = 1, surf_lsm_h%ns |
---|
| 1225 | k = surf_lsm_h%k(m) |
---|
| 1226 | IF ( cum_lai_hf(0,j,i) /= 0.0_wp ) & |
---|
| 1227 | surf_lsm_h%shf(m) = cthf * exp( -ext_coef * cum_lai_hf(0,j,i) ) |
---|
| 1228 | ENDDO |
---|
| 1229 | ! |
---|
| 1230 | !-- Urban surfaces |
---|
| 1231 | DO m = 1, surf_usm_h%ns |
---|
| 1232 | k = surf_usm_h%k(m) |
---|
| 1233 | IF ( cum_lai_hf(0,j,i) /= 0.0_wp ) & |
---|
| 1234 | surf_usm_h%shf(m) = cthf * exp( -ext_coef * cum_lai_hf(0,j,i) ) |
---|
| 1235 | ENDDO |
---|
| 1236 | ! |
---|
| 1237 | ! |
---|
[2011] | 1238 | !-- Calculation of the heating rate (K/s) within the different layers of |
---|
[2232] | 1239 | !-- the plant canopy. Calculation is only necessary in areas covered with |
---|
| 1240 | !-- canopy. |
---|
| 1241 | !-- Within the different canopy layers the plant-canopy heating |
---|
| 1242 | !-- rate (pc_heating_rate) is calculated as the vertical |
---|
| 1243 | !-- divergence of the canopy heat fluxes at the top and bottom |
---|
| 1244 | !-- of the respective layer |
---|
[1484] | 1245 | DO i = nxlg, nxrg |
---|
| 1246 | DO j = nysg, nyng |
---|
[2696] | 1247 | DO k = 1, pch_index_ji(j,i) |
---|
[2232] | 1248 | IF ( cum_lai_hf(0,j,i) /= 0.0_wp ) THEN |
---|
[3022] | 1249 | pc_heating_rate(k,j,i) = cthf * & |
---|
| 1250 | ( exp(-ext_coef*cum_lai_hf(k,j,i)) - & |
---|
[2232] | 1251 | exp(-ext_coef*cum_lai_hf(k-1,j,i) ) ) / dzw(k) |
---|
| 1252 | ENDIF |
---|
| 1253 | ENDDO |
---|
[1721] | 1254 | ENDDO |
---|
| 1255 | ENDDO |
---|
[1484] | 1256 | |
---|
| 1257 | ENDIF |
---|
| 1258 | |
---|
[3885] | 1259 | IF ( debug_output ) CALL debug_message( 'pcm_init', 'end' ) |
---|
[1484] | 1260 | |
---|
[3685] | 1261 | |
---|
[1826] | 1262 | END SUBROUTINE pcm_init |
---|
[1484] | 1263 | |
---|
| 1264 | |
---|
[2007] | 1265 | !------------------------------------------------------------------------------! |
---|
| 1266 | ! Description: |
---|
| 1267 | ! ------------ |
---|
[2932] | 1268 | !> Parin for &plant_canopy_parameters for plant canopy model |
---|
[2007] | 1269 | !------------------------------------------------------------------------------! |
---|
| 1270 | SUBROUTINE pcm_parin |
---|
[1484] | 1271 | |
---|
[2746] | 1272 | USE control_parameters, & |
---|
[2932] | 1273 | ONLY: message_string, plant_canopy |
---|
[2007] | 1274 | |
---|
| 1275 | IMPLICIT NONE |
---|
| 1276 | |
---|
| 1277 | CHARACTER (LEN=80) :: line !< dummy string that contains the current line of the parameter file |
---|
| 1278 | |
---|
[2932] | 1279 | NAMELIST /plant_canopy_parameters/ & |
---|
| 1280 | alpha_lad, beta_lad, canopy_drag_coeff, & |
---|
| 1281 | canopy_mode, cthf, & |
---|
[2977] | 1282 | lad_surface, lad_type_coef, & |
---|
[2932] | 1283 | lad_vertical_gradient, & |
---|
| 1284 | lad_vertical_gradient_level, & |
---|
| 1285 | lai_beta, & |
---|
| 1286 | leaf_scalar_exch_coeff, & |
---|
[3449] | 1287 | leaf_surface_conc, pch_index, & |
---|
| 1288 | plant_canopy_transpiration |
---|
[2932] | 1289 | |
---|
[2007] | 1290 | NAMELIST /canopy_par/ alpha_lad, beta_lad, canopy_drag_coeff, & |
---|
| 1291 | canopy_mode, cthf, & |
---|
[2977] | 1292 | lad_surface, lad_type_coef, & |
---|
[2007] | 1293 | lad_vertical_gradient, & |
---|
| 1294 | lad_vertical_gradient_level, & |
---|
| 1295 | lai_beta, & |
---|
| 1296 | leaf_scalar_exch_coeff, & |
---|
[3449] | 1297 | leaf_surface_conc, pch_index, & |
---|
| 1298 | plant_canopy_transpiration |
---|
[3246] | 1299 | |
---|
[2007] | 1300 | line = ' ' |
---|
[3246] | 1301 | |
---|
[2007] | 1302 | ! |
---|
| 1303 | !-- Try to find radiation model package |
---|
| 1304 | REWIND ( 11 ) |
---|
| 1305 | line = ' ' |
---|
[3248] | 1306 | DO WHILE ( INDEX( line, '&plant_canopy_parameters' ) == 0 ) |
---|
[3246] | 1307 | READ ( 11, '(A)', END=12 ) line |
---|
[2007] | 1308 | ENDDO |
---|
| 1309 | BACKSPACE ( 11 ) |
---|
| 1310 | |
---|
| 1311 | ! |
---|
| 1312 | !-- Read user-defined namelist |
---|
[3246] | 1313 | READ ( 11, plant_canopy_parameters, ERR = 10 ) |
---|
[2932] | 1314 | |
---|
| 1315 | ! |
---|
| 1316 | !-- Set flag that indicates that the radiation model is switched on |
---|
| 1317 | plant_canopy = .TRUE. |
---|
[3246] | 1318 | |
---|
| 1319 | GOTO 14 |
---|
| 1320 | |
---|
| 1321 | 10 BACKSPACE( 11 ) |
---|
[3248] | 1322 | READ( 11 , '(A)') line |
---|
| 1323 | CALL parin_fail_message( 'plant_canopy_parameters', line ) |
---|
[2932] | 1324 | ! |
---|
| 1325 | !-- Try to find old namelist |
---|
[3246] | 1326 | 12 REWIND ( 11 ) |
---|
[2932] | 1327 | line = ' ' |
---|
[3248] | 1328 | DO WHILE ( INDEX( line, '&canopy_par' ) == 0 ) |
---|
[3246] | 1329 | READ ( 11, '(A)', END=14 ) line |
---|
[2932] | 1330 | ENDDO |
---|
| 1331 | BACKSPACE ( 11 ) |
---|
| 1332 | |
---|
| 1333 | ! |
---|
| 1334 | !-- Read user-defined namelist |
---|
[3246] | 1335 | READ ( 11, canopy_par, ERR = 13, END = 14 ) |
---|
[2007] | 1336 | |
---|
[2932] | 1337 | message_string = 'namelist canopy_par is deprecated and will be ' // & |
---|
[3046] | 1338 | 'removed in near future. Please use namelist ' // & |
---|
[2932] | 1339 | 'plant_canopy_parameters instead' |
---|
| 1340 | CALL message( 'pcm_parin', 'PA0487', 0, 1, 0, 6, 0 ) |
---|
[3246] | 1341 | |
---|
[2007] | 1342 | ! |
---|
| 1343 | !-- Set flag that indicates that the radiation model is switched on |
---|
| 1344 | plant_canopy = .TRUE. |
---|
| 1345 | |
---|
[3246] | 1346 | GOTO 14 |
---|
[2007] | 1347 | |
---|
[3246] | 1348 | 13 BACKSPACE( 11 ) |
---|
[3248] | 1349 | READ( 11 , '(A)') line |
---|
| 1350 | CALL parin_fail_message( 'canopy_par', line ) |
---|
[3246] | 1351 | |
---|
| 1352 | 14 CONTINUE |
---|
| 1353 | |
---|
| 1354 | |
---|
[2007] | 1355 | END SUBROUTINE pcm_parin |
---|
| 1356 | |
---|
| 1357 | |
---|
| 1358 | |
---|
[1484] | 1359 | !------------------------------------------------------------------------------! |
---|
| 1360 | ! Description: |
---|
| 1361 | ! ------------ |
---|
[2007] | 1362 | ! |
---|
| 1363 | !> Loads 3D plant canopy data from file. File format is as follows: |
---|
| 1364 | !> |
---|
| 1365 | !> num_levels |
---|
[2977] | 1366 | !> dtype,x,y,pctype,value(nzb),value(nzb+1), ... ,value(nzb+num_levels-1) |
---|
| 1367 | !> dtype,x,y,pctype,value(nzb),value(nzb+1), ... ,value(nzb+num_levels-1) |
---|
| 1368 | !> dtype,x,y,pctype,value(nzb),value(nzb+1), ... ,value(nzb+num_levels-1) |
---|
[2007] | 1369 | !> ... |
---|
| 1370 | !> |
---|
| 1371 | !> i.e. first line determines number of levels and further lines represent plant |
---|
| 1372 | !> canopy data, one line per column and variable. In each data line, |
---|
| 1373 | !> dtype represents variable to be set: |
---|
| 1374 | !> |
---|
| 1375 | !> dtype=1: leaf area density (lad_s) |
---|
[2213] | 1376 | !> dtype=2....n: some additional plant canopy input data quantity |
---|
[2007] | 1377 | !> |
---|
| 1378 | !> Zeros are added automatically above num_levels until top of domain. Any |
---|
| 1379 | !> non-specified (x,y) columns have zero values as default. |
---|
| 1380 | !------------------------------------------------------------------------------! |
---|
| 1381 | SUBROUTINE pcm_read_plant_canopy_3d |
---|
[2213] | 1382 | |
---|
| 1383 | USE control_parameters, & |
---|
[3241] | 1384 | ONLY: coupling_char, message_string |
---|
[2007] | 1385 | |
---|
[2213] | 1386 | USE indices, & |
---|
| 1387 | ONLY: nbgp |
---|
| 1388 | |
---|
| 1389 | IMPLICIT NONE |
---|
[2007] | 1390 | |
---|
[2213] | 1391 | INTEGER(iwp) :: dtype !< type of input data (1=lad) |
---|
[2977] | 1392 | INTEGER(iwp) :: pctype !< type of plant canopy (deciduous,non-deciduous,...) |
---|
[2213] | 1393 | INTEGER(iwp) :: i, j !< running index |
---|
| 1394 | INTEGER(iwp) :: nzp !< number of vertical layers of plant canopy |
---|
[3337] | 1395 | INTEGER(iwp) :: nzpltop !< |
---|
| 1396 | INTEGER(iwp) :: nzpl !< |
---|
| 1397 | INTEGER(iwp) :: kk !< |
---|
[2213] | 1398 | |
---|
| 1399 | REAL(wp), DIMENSION(:), ALLOCATABLE :: col !< vertical column of input data |
---|
[2007] | 1400 | |
---|
[2213] | 1401 | ! |
---|
| 1402 | !-- Initialize lad_s array |
---|
| 1403 | lad_s = 0.0_wp |
---|
| 1404 | |
---|
| 1405 | ! |
---|
| 1406 | !-- Open and read plant canopy input data |
---|
[2977] | 1407 | OPEN(152, FILE='PLANT_CANOPY_DATA_3D' // TRIM( coupling_char ), & |
---|
| 1408 | ACCESS='SEQUENTIAL', ACTION='READ', STATUS='OLD', & |
---|
| 1409 | FORM='FORMATTED', ERR=515) |
---|
| 1410 | READ(152, *, ERR=516, END=517) nzp !< read first line = number of vertical layers |
---|
[3337] | 1411 | nzpltop = MIN(nzt+1, nzb+nzp-1) |
---|
| 1412 | nzpl = nzpltop - nzb + 1 !< no. of layers to assign |
---|
[2977] | 1413 | ALLOCATE( col(0:nzp-1) ) |
---|
[2007] | 1414 | |
---|
[2213] | 1415 | DO |
---|
[2977] | 1416 | READ(152, *, ERR=516, END=517) dtype, i, j, pctype, col(:) |
---|
| 1417 | IF ( i < nxlg .OR. i > nxrg .OR. j < nysg .OR. j > nyng ) CYCLE |
---|
| 1418 | |
---|
| 1419 | SELECT CASE (dtype) |
---|
| 1420 | CASE( 1 ) !< leaf area density |
---|
[2213] | 1421 | ! |
---|
[2977] | 1422 | !-- This is just the pure canopy layer assumed to be grounded to |
---|
| 1423 | !-- a flat domain surface. At locations where plant canopy sits |
---|
| 1424 | !-- on top of any kind of topography, the vertical plant column |
---|
| 1425 | !-- must be "lifted", which is done in SUBROUTINE pcm_tendency. |
---|
| 1426 | IF ( pctype < 0 .OR. pctype > 10 ) THEN !< incorrect plant canopy type |
---|
| 1427 | WRITE( message_string, * ) 'Incorrect type of plant canopy. ' // & |
---|
| 1428 | 'Allowed values 0 <= pctype <= 10, ' // & |
---|
| 1429 | 'but pctype is ', pctype |
---|
| 1430 | CALL message( 'pcm_read_plant_canopy_3d', 'PA0349', 1, 2, 0, 6, 0 ) |
---|
| 1431 | ENDIF |
---|
[4168] | 1432 | kk = topo_top_ind(j,i,0) |
---|
[3337] | 1433 | lad_s(nzb:nzpltop-kk, j, i) = col(kk:nzpl-1)*lad_type_coef(pctype) |
---|
[2977] | 1434 | CASE DEFAULT |
---|
| 1435 | WRITE(message_string, '(a,i2,a)') & |
---|
| 1436 | 'Unknown record type in file PLANT_CANOPY_DATA_3D: "', dtype, '"' |
---|
| 1437 | CALL message( 'pcm_read_plant_canopy_3d', 'PA0530', 1, 2, 0, 6, 0 ) |
---|
| 1438 | END SELECT |
---|
[2213] | 1439 | ENDDO |
---|
[2007] | 1440 | |
---|
[2213] | 1441 | 515 message_string = 'error opening file PLANT_CANOPY_DATA_3D' |
---|
| 1442 | CALL message( 'pcm_read_plant_canopy_3d', 'PA0531', 1, 2, 0, 6, 0 ) |
---|
[2007] | 1443 | |
---|
[2213] | 1444 | 516 message_string = 'error reading file PLANT_CANOPY_DATA_3D' |
---|
| 1445 | CALL message( 'pcm_read_plant_canopy_3d', 'PA0532', 1, 2, 0, 6, 0 ) |
---|
| 1446 | |
---|
| 1447 | 517 CLOSE(152) |
---|
[2977] | 1448 | DEALLOCATE( col ) |
---|
[2213] | 1449 | |
---|
| 1450 | CALL exchange_horiz( lad_s, nbgp ) |
---|
[2007] | 1451 | |
---|
| 1452 | END SUBROUTINE pcm_read_plant_canopy_3d |
---|
| 1453 | |
---|
| 1454 | |
---|
| 1455 | |
---|
| 1456 | !------------------------------------------------------------------------------! |
---|
| 1457 | ! Description: |
---|
| 1458 | ! ------------ |
---|
[1682] | 1459 | !> Calculation of the tendency terms, accounting for the effect of the plant |
---|
| 1460 | !> canopy on momentum and scalar quantities. |
---|
| 1461 | !> |
---|
| 1462 | !> The canopy is located where the leaf area density lad_s(k,j,i) > 0.0 |
---|
[1826] | 1463 | !> (defined on scalar grid), as initialized in subroutine pcm_init. |
---|
[1682] | 1464 | !> The lad on the w-grid is vertically interpolated from the surrounding |
---|
| 1465 | !> lad_s. The upper boundary of the canopy is defined on the w-grid at |
---|
| 1466 | !> k = pch_index. Here, the lad is zero. |
---|
| 1467 | !> |
---|
| 1468 | !> The canopy drag must be limited (previously accounted for by calculation of |
---|
| 1469 | !> a limiting canopy timestep for the determination of the maximum LES timestep |
---|
| 1470 | !> in subroutine timestep), since it is physically impossible that the canopy |
---|
| 1471 | !> drag alone can locally change the sign of a velocity component. This |
---|
| 1472 | !> limitation is realized by calculating preliminary tendencies and velocities. |
---|
| 1473 | !> It is subsequently checked if the preliminary new velocity has a different |
---|
| 1474 | !> sign than the current velocity. If so, the tendency is limited in a way that |
---|
| 1475 | !> the velocity can at maximum be reduced to zero by the canopy drag. |
---|
| 1476 | !> |
---|
| 1477 | !> |
---|
| 1478 | !> Call for all grid points |
---|
[1484] | 1479 | !------------------------------------------------------------------------------! |
---|
[1826] | 1480 | SUBROUTINE pcm_tendency( component ) |
---|
[138] | 1481 | |
---|
| 1482 | |
---|
[1320] | 1483 | USE control_parameters, & |
---|
[1484] | 1484 | ONLY: dt_3d, message_string |
---|
[1320] | 1485 | |
---|
| 1486 | USE kinds |
---|
| 1487 | |
---|
[138] | 1488 | IMPLICIT NONE |
---|
| 1489 | |
---|
[1682] | 1490 | INTEGER(iwp) :: component !< prognostic variable (u,v,w,pt,q,e) |
---|
| 1491 | INTEGER(iwp) :: i !< running index |
---|
| 1492 | INTEGER(iwp) :: j !< running index |
---|
| 1493 | INTEGER(iwp) :: k !< running index |
---|
[2232] | 1494 | INTEGER(iwp) :: k_wall !< vertical index of topography top |
---|
[1721] | 1495 | INTEGER(iwp) :: kk !< running index for flat lad arrays |
---|
[1484] | 1496 | |
---|
[1682] | 1497 | REAL(wp) :: ddt_3d !< inverse of the LES timestep (dt_3d) |
---|
| 1498 | REAL(wp) :: lad_local !< local lad value |
---|
| 1499 | REAL(wp) :: pre_tend !< preliminary tendency |
---|
| 1500 | REAL(wp) :: pre_u !< preliminary u-value |
---|
| 1501 | REAL(wp) :: pre_v !< preliminary v-value |
---|
| 1502 | REAL(wp) :: pre_w !< preliminary w-value |
---|
[1484] | 1503 | |
---|
| 1504 | |
---|
| 1505 | ddt_3d = 1.0_wp / dt_3d |
---|
[138] | 1506 | |
---|
| 1507 | ! |
---|
[1484] | 1508 | !-- Compute drag for the three velocity components and the SGS-TKE: |
---|
[138] | 1509 | SELECT CASE ( component ) |
---|
| 1510 | |
---|
| 1511 | ! |
---|
| 1512 | !-- u-component |
---|
| 1513 | CASE ( 1 ) |
---|
| 1514 | DO i = nxlu, nxr |
---|
| 1515 | DO j = nys, nyn |
---|
[2232] | 1516 | ! |
---|
| 1517 | !-- Determine topography-top index on u-grid |
---|
[4168] | 1518 | k_wall = topo_top_ind(j,i,1) |
---|
[2696] | 1519 | DO k = k_wall+1, k_wall + pch_index_ji(j,i) |
---|
[1484] | 1520 | |
---|
[2232] | 1521 | kk = k - k_wall !- lad arrays are defined flat |
---|
[1484] | 1522 | ! |
---|
| 1523 | !-- In order to create sharp boundaries of the plant canopy, |
---|
| 1524 | !-- the lad on the u-grid at index (k,j,i) is equal to |
---|
| 1525 | !-- lad_s(k,j,i), rather than being interpolated from the |
---|
| 1526 | !-- surrounding lad_s, because this would yield smaller lad |
---|
| 1527 | !-- at the canopy boundaries than inside of the canopy. |
---|
| 1528 | !-- For the same reason, the lad at the rightmost(i+1)canopy |
---|
| 1529 | !-- boundary on the u-grid equals lad_s(k,j,i). |
---|
[1721] | 1530 | lad_local = lad_s(kk,j,i) |
---|
| 1531 | IF ( lad_local == 0.0_wp .AND. lad_s(kk,j,i-1) > 0.0_wp )& |
---|
| 1532 | THEN |
---|
| 1533 | lad_local = lad_s(kk,j,i-1) |
---|
[1484] | 1534 | ENDIF |
---|
| 1535 | |
---|
| 1536 | pre_tend = 0.0_wp |
---|
| 1537 | pre_u = 0.0_wp |
---|
| 1538 | ! |
---|
| 1539 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
| 1540 | pre_tend = - cdc * & |
---|
| 1541 | lad_local * & |
---|
| 1542 | SQRT( u(k,j,i)**2 + & |
---|
| 1543 | ( 0.25_wp * ( v(k,j,i-1) + & |
---|
| 1544 | v(k,j,i) + & |
---|
| 1545 | v(k,j+1,i) + & |
---|
| 1546 | v(k,j+1,i-1) ) & |
---|
| 1547 | )**2 + & |
---|
| 1548 | ( 0.25_wp * ( w(k-1,j,i-1) + & |
---|
| 1549 | w(k-1,j,i) + & |
---|
| 1550 | w(k,j,i-1) + & |
---|
| 1551 | w(k,j,i) ) & |
---|
| 1552 | )**2 & |
---|
| 1553 | ) * & |
---|
| 1554 | u(k,j,i) |
---|
| 1555 | |
---|
| 1556 | ! |
---|
| 1557 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 1558 | pre_u = u(k,j,i) + dt_3d * pre_tend |
---|
| 1559 | ! |
---|
| 1560 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
| 1561 | !-- and in case the signs are different, limit the tendency |
---|
| 1562 | IF ( SIGN(pre_u,u(k,j,i)) /= pre_u ) THEN |
---|
| 1563 | pre_tend = - u(k,j,i) * ddt_3d |
---|
| 1564 | ELSE |
---|
| 1565 | pre_tend = pre_tend |
---|
| 1566 | ENDIF |
---|
| 1567 | ! |
---|
| 1568 | !-- Calculate final tendency |
---|
| 1569 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 1570 | |
---|
[138] | 1571 | ENDDO |
---|
| 1572 | ENDDO |
---|
| 1573 | ENDDO |
---|
| 1574 | |
---|
| 1575 | ! |
---|
| 1576 | !-- v-component |
---|
| 1577 | CASE ( 2 ) |
---|
| 1578 | DO i = nxl, nxr |
---|
| 1579 | DO j = nysv, nyn |
---|
[2232] | 1580 | ! |
---|
| 1581 | !-- Determine topography-top index on v-grid |
---|
[4168] | 1582 | k_wall = topo_top_ind(j,i,2) |
---|
[2317] | 1583 | |
---|
[2696] | 1584 | DO k = k_wall+1, k_wall + pch_index_ji(j,i) |
---|
[1484] | 1585 | |
---|
[2232] | 1586 | kk = k - k_wall !- lad arrays are defined flat |
---|
[1484] | 1587 | ! |
---|
| 1588 | !-- In order to create sharp boundaries of the plant canopy, |
---|
| 1589 | !-- the lad on the v-grid at index (k,j,i) is equal to |
---|
| 1590 | !-- lad_s(k,j,i), rather than being interpolated from the |
---|
| 1591 | !-- surrounding lad_s, because this would yield smaller lad |
---|
| 1592 | !-- at the canopy boundaries than inside of the canopy. |
---|
| 1593 | !-- For the same reason, the lad at the northmost(j+1) canopy |
---|
| 1594 | !-- boundary on the v-grid equals lad_s(k,j,i). |
---|
[1721] | 1595 | lad_local = lad_s(kk,j,i) |
---|
| 1596 | IF ( lad_local == 0.0_wp .AND. lad_s(kk,j-1,i) > 0.0_wp )& |
---|
| 1597 | THEN |
---|
| 1598 | lad_local = lad_s(kk,j-1,i) |
---|
[1484] | 1599 | ENDIF |
---|
| 1600 | |
---|
| 1601 | pre_tend = 0.0_wp |
---|
| 1602 | pre_v = 0.0_wp |
---|
| 1603 | ! |
---|
| 1604 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
| 1605 | pre_tend = - cdc * & |
---|
| 1606 | lad_local * & |
---|
| 1607 | SQRT( ( 0.25_wp * ( u(k,j-1,i) + & |
---|
| 1608 | u(k,j-1,i+1) + & |
---|
| 1609 | u(k,j,i) + & |
---|
| 1610 | u(k,j,i+1) ) & |
---|
| 1611 | )**2 + & |
---|
| 1612 | v(k,j,i)**2 + & |
---|
| 1613 | ( 0.25_wp * ( w(k-1,j-1,i) + & |
---|
| 1614 | w(k-1,j,i) + & |
---|
| 1615 | w(k,j-1,i) + & |
---|
| 1616 | w(k,j,i) ) & |
---|
| 1617 | )**2 & |
---|
| 1618 | ) * & |
---|
| 1619 | v(k,j,i) |
---|
| 1620 | |
---|
| 1621 | ! |
---|
| 1622 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 1623 | pre_v = v(k,j,i) + dt_3d * pre_tend |
---|
| 1624 | ! |
---|
| 1625 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
| 1626 | !-- and in case the signs are different, limit the tendency |
---|
| 1627 | IF ( SIGN(pre_v,v(k,j,i)) /= pre_v ) THEN |
---|
| 1628 | pre_tend = - v(k,j,i) * ddt_3d |
---|
| 1629 | ELSE |
---|
| 1630 | pre_tend = pre_tend |
---|
| 1631 | ENDIF |
---|
| 1632 | ! |
---|
| 1633 | !-- Calculate final tendency |
---|
| 1634 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 1635 | |
---|
[138] | 1636 | ENDDO |
---|
| 1637 | ENDDO |
---|
| 1638 | ENDDO |
---|
| 1639 | |
---|
| 1640 | ! |
---|
| 1641 | !-- w-component |
---|
| 1642 | CASE ( 3 ) |
---|
| 1643 | DO i = nxl, nxr |
---|
| 1644 | DO j = nys, nyn |
---|
[2232] | 1645 | ! |
---|
| 1646 | !-- Determine topography-top index on w-grid |
---|
[4168] | 1647 | k_wall = topo_top_ind(j,i,3) |
---|
[2317] | 1648 | |
---|
[2696] | 1649 | DO k = k_wall+1, k_wall + pch_index_ji(j,i) - 1 |
---|
[1484] | 1650 | |
---|
[2232] | 1651 | kk = k - k_wall !- lad arrays are defined flat |
---|
[1721] | 1652 | |
---|
[1484] | 1653 | pre_tend = 0.0_wp |
---|
| 1654 | pre_w = 0.0_wp |
---|
| 1655 | ! |
---|
| 1656 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
| 1657 | pre_tend = - cdc * & |
---|
| 1658 | (0.5_wp * & |
---|
[1721] | 1659 | ( lad_s(kk+1,j,i) + lad_s(kk,j,i) )) * & |
---|
[1484] | 1660 | SQRT( ( 0.25_wp * ( u(k,j,i) + & |
---|
| 1661 | u(k,j,i+1) + & |
---|
| 1662 | u(k+1,j,i) + & |
---|
| 1663 | u(k+1,j,i+1) ) & |
---|
| 1664 | )**2 + & |
---|
| 1665 | ( 0.25_wp * ( v(k,j,i) + & |
---|
| 1666 | v(k,j+1,i) + & |
---|
| 1667 | v(k+1,j,i) + & |
---|
| 1668 | v(k+1,j+1,i) ) & |
---|
| 1669 | )**2 + & |
---|
| 1670 | w(k,j,i)**2 & |
---|
| 1671 | ) * & |
---|
| 1672 | w(k,j,i) |
---|
| 1673 | ! |
---|
| 1674 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 1675 | pre_w = w(k,j,i) + dt_3d * pre_tend |
---|
| 1676 | ! |
---|
| 1677 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
| 1678 | !-- and in case the signs are different, limit the tendency |
---|
| 1679 | IF ( SIGN(pre_w,w(k,j,i)) /= pre_w ) THEN |
---|
| 1680 | pre_tend = - w(k,j,i) * ddt_3d |
---|
| 1681 | ELSE |
---|
| 1682 | pre_tend = pre_tend |
---|
| 1683 | ENDIF |
---|
| 1684 | ! |
---|
| 1685 | !-- Calculate final tendency |
---|
| 1686 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 1687 | |
---|
[138] | 1688 | ENDDO |
---|
| 1689 | ENDDO |
---|
| 1690 | ENDDO |
---|
| 1691 | |
---|
| 1692 | ! |
---|
[153] | 1693 | !-- potential temperature |
---|
[138] | 1694 | CASE ( 4 ) |
---|
[3449] | 1695 | IF ( humidity ) THEN |
---|
| 1696 | DO i = nxl, nxr |
---|
| 1697 | DO j = nys, nyn |
---|
| 1698 | !-- Determine topography-top index on scalar-grid |
---|
[4168] | 1699 | k_wall = topo_top_ind(j,i,0) |
---|
[3449] | 1700 | DO k = k_wall+1, k_wall + pch_index_ji(j,i) |
---|
| 1701 | kk = k - k_wall !- lad arrays are defined flat |
---|
| 1702 | tend(k,j,i) = tend(k,j,i) + pc_heating_rate(kk,j,i) - pc_latent_rate(kk,j,i) |
---|
| 1703 | ENDDO |
---|
[153] | 1704 | ENDDO |
---|
| 1705 | ENDDO |
---|
[3449] | 1706 | ELSE |
---|
| 1707 | DO i = nxl, nxr |
---|
| 1708 | DO j = nys, nyn |
---|
| 1709 | !-- Determine topography-top index on scalar-grid |
---|
[4168] | 1710 | k_wall = topo_top_ind(j,i,0) |
---|
[3449] | 1711 | DO k = k_wall+1, k_wall + pch_index_ji(j,i) |
---|
| 1712 | kk = k - k_wall !- lad arrays are defined flat |
---|
| 1713 | tend(k,j,i) = tend(k,j,i) + pc_heating_rate(kk,j,i) |
---|
| 1714 | ENDDO |
---|
| 1715 | ENDDO |
---|
| 1716 | ENDDO |
---|
| 1717 | ENDIF |
---|
[153] | 1718 | |
---|
| 1719 | ! |
---|
[1960] | 1720 | !-- humidity |
---|
[153] | 1721 | CASE ( 5 ) |
---|
| 1722 | DO i = nxl, nxr |
---|
| 1723 | DO j = nys, nyn |
---|
[2232] | 1724 | ! |
---|
| 1725 | !-- Determine topography-top index on scalar-grid |
---|
[4168] | 1726 | k_wall = topo_top_ind(j,i,0) |
---|
[2317] | 1727 | |
---|
[2696] | 1728 | DO k = k_wall+1, k_wall + pch_index_ji(j,i) |
---|
[2232] | 1729 | |
---|
| 1730 | kk = k - k_wall !- lad arrays are defined flat |
---|
[3014] | 1731 | |
---|
[3449] | 1732 | IF ( .NOT. plant_canopy_transpiration ) THEN |
---|
| 1733 | ! pc_transpiration_rate is calculated in radiation model |
---|
| 1734 | ! in case of plant_canopy_transpiration = .T. |
---|
| 1735 | ! to include also the dependecy to the radiation |
---|
| 1736 | ! in the plant canopy box |
---|
[3582] | 1737 | pc_transpiration_rate(kk,j,i) = - lsec & |
---|
| 1738 | * lad_s(kk,j,i) * & |
---|
| 1739 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 1740 | u(k,j,i+1) ) & |
---|
| 1741 | )**2 + & |
---|
| 1742 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 1743 | v(k,j+1,i) ) & |
---|
| 1744 | )**2 + & |
---|
| 1745 | ( 0.5_wp * ( w(k-1,j,i) + & |
---|
| 1746 | w(k,j,i) ) & |
---|
| 1747 | )**2 & |
---|
| 1748 | ) * & |
---|
[3449] | 1749 | ( q(k,j,i) - lsc ) |
---|
| 1750 | ENDIF |
---|
| 1751 | |
---|
[3014] | 1752 | tend(k,j,i) = tend(k,j,i) + pc_transpiration_rate(kk,j,i) |
---|
[153] | 1753 | ENDDO |
---|
| 1754 | ENDDO |
---|
| 1755 | ENDDO |
---|
| 1756 | |
---|
| 1757 | ! |
---|
| 1758 | !-- sgs-tke |
---|
| 1759 | CASE ( 6 ) |
---|
| 1760 | DO i = nxl, nxr |
---|
| 1761 | DO j = nys, nyn |
---|
[2232] | 1762 | ! |
---|
| 1763 | !-- Determine topography-top index on scalar-grid |
---|
[4168] | 1764 | k_wall = topo_top_ind(j,i,0) |
---|
[2317] | 1765 | |
---|
[2696] | 1766 | DO k = k_wall+1, k_wall + pch_index_ji(j,i) |
---|
[2232] | 1767 | |
---|
| 1768 | kk = k - k_wall !- lad arrays are defined flat |
---|
[1484] | 1769 | tend(k,j,i) = tend(k,j,i) - & |
---|
| 1770 | 2.0_wp * cdc * & |
---|
[1721] | 1771 | lad_s(kk,j,i) * & |
---|
[1484] | 1772 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 1773 | u(k,j,i+1) ) & |
---|
| 1774 | )**2 + & |
---|
| 1775 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 1776 | v(k,j+1,i) ) & |
---|
| 1777 | )**2 + & |
---|
| 1778 | ( 0.5_wp * ( w(k,j,i) + & |
---|
| 1779 | w(k+1,j,i) ) & |
---|
| 1780 | )**2 & |
---|
| 1781 | ) * & |
---|
| 1782 | e(k,j,i) |
---|
[138] | 1783 | ENDDO |
---|
| 1784 | ENDDO |
---|
| 1785 | ENDDO |
---|
[1960] | 1786 | ! |
---|
| 1787 | !-- scalar concentration |
---|
| 1788 | CASE ( 7 ) |
---|
| 1789 | DO i = nxl, nxr |
---|
| 1790 | DO j = nys, nyn |
---|
[2232] | 1791 | ! |
---|
| 1792 | !-- Determine topography-top index on scalar-grid |
---|
[4168] | 1793 | k_wall = topo_top_ind(j,i,0) |
---|
[2317] | 1794 | |
---|
[2696] | 1795 | DO k = k_wall+1, k_wall + pch_index_ji(j,i) |
---|
[2232] | 1796 | |
---|
| 1797 | kk = k - k_wall !- lad arrays are defined flat |
---|
[1960] | 1798 | tend(k,j,i) = tend(k,j,i) - & |
---|
| 1799 | lsec * & |
---|
| 1800 | lad_s(kk,j,i) * & |
---|
| 1801 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 1802 | u(k,j,i+1) ) & |
---|
| 1803 | )**2 + & |
---|
| 1804 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 1805 | v(k,j+1,i) ) & |
---|
| 1806 | )**2 + & |
---|
| 1807 | ( 0.5_wp * ( w(k-1,j,i) + & |
---|
| 1808 | w(k,j,i) ) & |
---|
| 1809 | )**2 & |
---|
| 1810 | ) * & |
---|
| 1811 | ( s(k,j,i) - lsc ) |
---|
| 1812 | ENDDO |
---|
| 1813 | ENDDO |
---|
| 1814 | ENDDO |
---|
[1484] | 1815 | |
---|
| 1816 | |
---|
[1960] | 1817 | |
---|
[138] | 1818 | CASE DEFAULT |
---|
| 1819 | |
---|
[257] | 1820 | WRITE( message_string, * ) 'wrong component: ', component |
---|
[1826] | 1821 | CALL message( 'pcm_tendency', 'PA0279', 1, 2, 0, 6, 0 ) |
---|
[138] | 1822 | |
---|
| 1823 | END SELECT |
---|
| 1824 | |
---|
[1826] | 1825 | END SUBROUTINE pcm_tendency |
---|
[138] | 1826 | |
---|
| 1827 | |
---|
| 1828 | !------------------------------------------------------------------------------! |
---|
[1484] | 1829 | ! Description: |
---|
| 1830 | ! ------------ |
---|
[1682] | 1831 | !> Calculation of the tendency terms, accounting for the effect of the plant |
---|
| 1832 | !> canopy on momentum and scalar quantities. |
---|
| 1833 | !> |
---|
| 1834 | !> The canopy is located where the leaf area density lad_s(k,j,i) > 0.0 |
---|
[1826] | 1835 | !> (defined on scalar grid), as initialized in subroutine pcm_init. |
---|
[1682] | 1836 | !> The lad on the w-grid is vertically interpolated from the surrounding |
---|
| 1837 | !> lad_s. The upper boundary of the canopy is defined on the w-grid at |
---|
| 1838 | !> k = pch_index. Here, the lad is zero. |
---|
| 1839 | !> |
---|
| 1840 | !> The canopy drag must be limited (previously accounted for by calculation of |
---|
| 1841 | !> a limiting canopy timestep for the determination of the maximum LES timestep |
---|
| 1842 | !> in subroutine timestep), since it is physically impossible that the canopy |
---|
| 1843 | !> drag alone can locally change the sign of a velocity component. This |
---|
| 1844 | !> limitation is realized by calculating preliminary tendencies and velocities. |
---|
| 1845 | !> It is subsequently checked if the preliminary new velocity has a different |
---|
| 1846 | !> sign than the current velocity. If so, the tendency is limited in a way that |
---|
| 1847 | !> the velocity can at maximum be reduced to zero by the canopy drag. |
---|
| 1848 | !> |
---|
| 1849 | !> |
---|
| 1850 | !> Call for grid point i,j |
---|
[138] | 1851 | !------------------------------------------------------------------------------! |
---|
[1826] | 1852 | SUBROUTINE pcm_tendency_ij( i, j, component ) |
---|
[138] | 1853 | |
---|
| 1854 | |
---|
[1320] | 1855 | USE control_parameters, & |
---|
[1484] | 1856 | ONLY: dt_3d, message_string |
---|
[1320] | 1857 | |
---|
| 1858 | USE kinds |
---|
| 1859 | |
---|
[138] | 1860 | IMPLICIT NONE |
---|
| 1861 | |
---|
[1682] | 1862 | INTEGER(iwp) :: component !< prognostic variable (u,v,w,pt,q,e) |
---|
| 1863 | INTEGER(iwp) :: i !< running index |
---|
| 1864 | INTEGER(iwp) :: j !< running index |
---|
| 1865 | INTEGER(iwp) :: k !< running index |
---|
[2232] | 1866 | INTEGER(iwp) :: k_wall !< vertical index of topography top |
---|
[1721] | 1867 | INTEGER(iwp) :: kk !< running index for flat lad arrays |
---|
[138] | 1868 | |
---|
[1682] | 1869 | REAL(wp) :: ddt_3d !< inverse of the LES timestep (dt_3d) |
---|
| 1870 | REAL(wp) :: lad_local !< local lad value |
---|
| 1871 | REAL(wp) :: pre_tend !< preliminary tendency |
---|
| 1872 | REAL(wp) :: pre_u !< preliminary u-value |
---|
| 1873 | REAL(wp) :: pre_v !< preliminary v-value |
---|
| 1874 | REAL(wp) :: pre_w !< preliminary w-value |
---|
[1484] | 1875 | |
---|
| 1876 | |
---|
| 1877 | ddt_3d = 1.0_wp / dt_3d |
---|
[138] | 1878 | ! |
---|
[1484] | 1879 | !-- Compute drag for the three velocity components and the SGS-TKE |
---|
[142] | 1880 | SELECT CASE ( component ) |
---|
[138] | 1881 | |
---|
| 1882 | ! |
---|
[142] | 1883 | !-- u-component |
---|
[1484] | 1884 | CASE ( 1 ) |
---|
[2232] | 1885 | ! |
---|
| 1886 | !-- Determine topography-top index on u-grid |
---|
[4168] | 1887 | k_wall = topo_top_ind(j,i,1) |
---|
[2696] | 1888 | DO k = k_wall + 1, k_wall + pch_index_ji(j,i) |
---|
[2317] | 1889 | |
---|
[2696] | 1890 | kk = k - k_wall !- lad arrays are defined flat |
---|
[138] | 1891 | |
---|
| 1892 | ! |
---|
[1484] | 1893 | !-- In order to create sharp boundaries of the plant canopy, |
---|
| 1894 | !-- the lad on the u-grid at index (k,j,i) is equal to lad_s(k,j,i), |
---|
| 1895 | !-- rather than being interpolated from the surrounding lad_s, |
---|
| 1896 | !-- because this would yield smaller lad at the canopy boundaries |
---|
| 1897 | !-- than inside of the canopy. |
---|
| 1898 | !-- For the same reason, the lad at the rightmost(i+1)canopy |
---|
| 1899 | !-- boundary on the u-grid equals lad_s(k,j,i). |
---|
[1721] | 1900 | lad_local = lad_s(kk,j,i) |
---|
| 1901 | IF ( lad_local == 0.0_wp .AND. lad_s(kk,j,i-1) > 0.0_wp ) THEN |
---|
| 1902 | lad_local = lad_s(kk,j,i-1) |
---|
[1484] | 1903 | ENDIF |
---|
| 1904 | |
---|
| 1905 | pre_tend = 0.0_wp |
---|
| 1906 | pre_u = 0.0_wp |
---|
| 1907 | ! |
---|
| 1908 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
| 1909 | pre_tend = - cdc * & |
---|
| 1910 | lad_local * & |
---|
| 1911 | SQRT( u(k,j,i)**2 + & |
---|
| 1912 | ( 0.25_wp * ( v(k,j,i-1) + & |
---|
| 1913 | v(k,j,i) + & |
---|
| 1914 | v(k,j+1,i) + & |
---|
| 1915 | v(k,j+1,i-1) ) & |
---|
| 1916 | )**2 + & |
---|
| 1917 | ( 0.25_wp * ( w(k-1,j,i-1) + & |
---|
| 1918 | w(k-1,j,i) + & |
---|
| 1919 | w(k,j,i-1) + & |
---|
| 1920 | w(k,j,i) ) & |
---|
| 1921 | )**2 & |
---|
| 1922 | ) * & |
---|
| 1923 | u(k,j,i) |
---|
| 1924 | |
---|
| 1925 | ! |
---|
| 1926 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 1927 | pre_u = u(k,j,i) + dt_3d * pre_tend |
---|
| 1928 | ! |
---|
| 1929 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
| 1930 | !-- and in case the signs are different, limit the tendency |
---|
| 1931 | IF ( SIGN(pre_u,u(k,j,i)) /= pre_u ) THEN |
---|
| 1932 | pre_tend = - u(k,j,i) * ddt_3d |
---|
| 1933 | ELSE |
---|
| 1934 | pre_tend = pre_tend |
---|
| 1935 | ENDIF |
---|
| 1936 | ! |
---|
| 1937 | !-- Calculate final tendency |
---|
| 1938 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 1939 | ENDDO |
---|
| 1940 | |
---|
| 1941 | |
---|
| 1942 | ! |
---|
[142] | 1943 | !-- v-component |
---|
[1484] | 1944 | CASE ( 2 ) |
---|
[2232] | 1945 | ! |
---|
| 1946 | !-- Determine topography-top index on v-grid |
---|
[4168] | 1947 | k_wall = topo_top_ind(j,i,2) |
---|
[2317] | 1948 | |
---|
[2696] | 1949 | DO k = k_wall + 1, k_wall + pch_index_ji(j,i) |
---|
[138] | 1950 | |
---|
[2232] | 1951 | kk = k - k_wall !- lad arrays are defined flat |
---|
[138] | 1952 | ! |
---|
[1484] | 1953 | !-- In order to create sharp boundaries of the plant canopy, |
---|
| 1954 | !-- the lad on the v-grid at index (k,j,i) is equal to lad_s(k,j,i), |
---|
| 1955 | !-- rather than being interpolated from the surrounding lad_s, |
---|
| 1956 | !-- because this would yield smaller lad at the canopy boundaries |
---|
| 1957 | !-- than inside of the canopy. |
---|
| 1958 | !-- For the same reason, the lad at the northmost(j+1)canopy |
---|
| 1959 | !-- boundary on the v-grid equals lad_s(k,j,i). |
---|
[1721] | 1960 | lad_local = lad_s(kk,j,i) |
---|
| 1961 | IF ( lad_local == 0.0_wp .AND. lad_s(kk,j-1,i) > 0.0_wp ) THEN |
---|
| 1962 | lad_local = lad_s(kk,j-1,i) |
---|
[1484] | 1963 | ENDIF |
---|
| 1964 | |
---|
| 1965 | pre_tend = 0.0_wp |
---|
| 1966 | pre_v = 0.0_wp |
---|
| 1967 | ! |
---|
| 1968 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
| 1969 | pre_tend = - cdc * & |
---|
| 1970 | lad_local * & |
---|
| 1971 | SQRT( ( 0.25_wp * ( u(k,j-1,i) + & |
---|
| 1972 | u(k,j-1,i+1) + & |
---|
| 1973 | u(k,j,i) + & |
---|
| 1974 | u(k,j,i+1) ) & |
---|
| 1975 | )**2 + & |
---|
| 1976 | v(k,j,i)**2 + & |
---|
| 1977 | ( 0.25_wp * ( w(k-1,j-1,i) + & |
---|
| 1978 | w(k-1,j,i) + & |
---|
| 1979 | w(k,j-1,i) + & |
---|
| 1980 | w(k,j,i) ) & |
---|
| 1981 | )**2 & |
---|
| 1982 | ) * & |
---|
| 1983 | v(k,j,i) |
---|
| 1984 | |
---|
| 1985 | ! |
---|
| 1986 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 1987 | pre_v = v(k,j,i) + dt_3d * pre_tend |
---|
| 1988 | ! |
---|
| 1989 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
| 1990 | !-- and in case the signs are different, limit the tendency |
---|
| 1991 | IF ( SIGN(pre_v,v(k,j,i)) /= pre_v ) THEN |
---|
| 1992 | pre_tend = - v(k,j,i) * ddt_3d |
---|
| 1993 | ELSE |
---|
| 1994 | pre_tend = pre_tend |
---|
| 1995 | ENDIF |
---|
| 1996 | ! |
---|
| 1997 | !-- Calculate final tendency |
---|
| 1998 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 1999 | ENDDO |
---|
| 2000 | |
---|
| 2001 | |
---|
| 2002 | ! |
---|
[142] | 2003 | !-- w-component |
---|
[1484] | 2004 | CASE ( 3 ) |
---|
[2232] | 2005 | ! |
---|
| 2006 | !-- Determine topography-top index on w-grid |
---|
[4168] | 2007 | k_wall = topo_top_ind(j,i,3) |
---|
[2317] | 2008 | |
---|
[2696] | 2009 | DO k = k_wall + 1, k_wall + pch_index_ji(j,i) - 1 |
---|
[138] | 2010 | |
---|
[2232] | 2011 | kk = k - k_wall !- lad arrays are defined flat |
---|
[1721] | 2012 | |
---|
[1484] | 2013 | pre_tend = 0.0_wp |
---|
| 2014 | pre_w = 0.0_wp |
---|
[138] | 2015 | ! |
---|
[1484] | 2016 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
| 2017 | pre_tend = - cdc * & |
---|
| 2018 | (0.5_wp * & |
---|
[1721] | 2019 | ( lad_s(kk+1,j,i) + lad_s(kk,j,i) )) * & |
---|
[1484] | 2020 | SQRT( ( 0.25_wp * ( u(k,j,i) + & |
---|
| 2021 | u(k,j,i+1) + & |
---|
| 2022 | u(k+1,j,i) + & |
---|
| 2023 | u(k+1,j,i+1) ) & |
---|
| 2024 | )**2 + & |
---|
| 2025 | ( 0.25_wp * ( v(k,j,i) + & |
---|
| 2026 | v(k,j+1,i) + & |
---|
| 2027 | v(k+1,j,i) + & |
---|
| 2028 | v(k+1,j+1,i) ) & |
---|
| 2029 | )**2 + & |
---|
| 2030 | w(k,j,i)**2 & |
---|
| 2031 | ) * & |
---|
| 2032 | w(k,j,i) |
---|
| 2033 | ! |
---|
| 2034 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 2035 | pre_w = w(k,j,i) + dt_3d * pre_tend |
---|
| 2036 | ! |
---|
| 2037 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
| 2038 | !-- and in case the signs are different, limit the tendency |
---|
| 2039 | IF ( SIGN(pre_w,w(k,j,i)) /= pre_w ) THEN |
---|
| 2040 | pre_tend = - w(k,j,i) * ddt_3d |
---|
| 2041 | ELSE |
---|
| 2042 | pre_tend = pre_tend |
---|
| 2043 | ENDIF |
---|
| 2044 | ! |
---|
| 2045 | !-- Calculate final tendency |
---|
| 2046 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 2047 | ENDDO |
---|
| 2048 | |
---|
| 2049 | ! |
---|
[153] | 2050 | !-- potential temperature |
---|
| 2051 | CASE ( 4 ) |
---|
[2232] | 2052 | ! |
---|
| 2053 | !-- Determine topography-top index on scalar grid |
---|
[4168] | 2054 | k_wall = topo_top_ind(j,i,0) |
---|
[2317] | 2055 | |
---|
[3449] | 2056 | IF ( humidity ) THEN |
---|
| 2057 | DO k = k_wall + 1, k_wall + pch_index_ji(j,i) |
---|
| 2058 | kk = k - k_wall !- lad arrays are defined flat |
---|
[3582] | 2059 | tend(k,j,i) = tend(k,j,i) + pc_heating_rate(kk,j,i) - & |
---|
| 2060 | pc_latent_rate(kk,j,i) |
---|
[3449] | 2061 | ENDDO |
---|
| 2062 | ELSE |
---|
| 2063 | DO k = k_wall + 1, k_wall + pch_index_ji(j,i) |
---|
| 2064 | kk = k - k_wall !- lad arrays are defined flat |
---|
| 2065 | tend(k,j,i) = tend(k,j,i) + pc_heating_rate(kk,j,i) |
---|
| 2066 | ENDDO |
---|
| 2067 | ENDIF |
---|
[153] | 2068 | |
---|
| 2069 | ! |
---|
[1960] | 2070 | !-- humidity |
---|
[153] | 2071 | CASE ( 5 ) |
---|
[2232] | 2072 | ! |
---|
| 2073 | !-- Determine topography-top index on scalar grid |
---|
[4168] | 2074 | k_wall = topo_top_ind(j,i,0) |
---|
[2317] | 2075 | |
---|
[2696] | 2076 | DO k = k_wall + 1, k_wall + pch_index_ji(j,i) |
---|
[3014] | 2077 | kk = k - k_wall !- lad arrays are defined flat |
---|
[3449] | 2078 | IF ( .NOT. plant_canopy_transpiration ) THEN |
---|
| 2079 | ! pc_transpiration_rate is calculated in radiation model |
---|
| 2080 | ! in case of plant_canopy_transpiration = .T. |
---|
| 2081 | ! to include also the dependecy to the radiation |
---|
| 2082 | ! in the plant canopy box |
---|
[3582] | 2083 | pc_transpiration_rate(kk,j,i) = - lsec & |
---|
| 2084 | * lad_s(kk,j,i) * & |
---|
| 2085 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 2086 | u(k,j,i+1) ) & |
---|
| 2087 | )**2 + & |
---|
| 2088 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 2089 | v(k,j+1,i) ) & |
---|
| 2090 | )**2 + & |
---|
| 2091 | ( 0.5_wp * ( w(k-1,j,i) + & |
---|
| 2092 | w(k,j,i) ) & |
---|
| 2093 | )**2 & |
---|
| 2094 | ) * & |
---|
[3449] | 2095 | ( q(k,j,i) - lsc ) |
---|
| 2096 | ENDIF |
---|
[2232] | 2097 | |
---|
[3014] | 2098 | tend(k,j,i) = tend(k,j,i) + pc_transpiration_rate(kk,j,i) |
---|
| 2099 | |
---|
[153] | 2100 | ENDDO |
---|
| 2101 | |
---|
| 2102 | ! |
---|
[142] | 2103 | !-- sgs-tke |
---|
[1484] | 2104 | CASE ( 6 ) |
---|
[2232] | 2105 | ! |
---|
| 2106 | !-- Determine topography-top index on scalar grid |
---|
[4168] | 2107 | k_wall = topo_top_ind(j,i,0) |
---|
[2317] | 2108 | |
---|
[2696] | 2109 | DO k = k_wall + 1, k_wall + pch_index_ji(j,i) |
---|
[2232] | 2110 | |
---|
| 2111 | kk = k - k_wall |
---|
[1484] | 2112 | tend(k,j,i) = tend(k,j,i) - & |
---|
| 2113 | 2.0_wp * cdc * & |
---|
[1721] | 2114 | lad_s(kk,j,i) * & |
---|
[1484] | 2115 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 2116 | u(k,j,i+1) ) & |
---|
| 2117 | )**2 + & |
---|
| 2118 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 2119 | v(k,j+1,i) ) & |
---|
| 2120 | )**2 + & |
---|
| 2121 | ( 0.5_wp * ( w(k,j,i) + & |
---|
| 2122 | w(k+1,j,i) ) & |
---|
| 2123 | )**2 & |
---|
| 2124 | ) * & |
---|
| 2125 | e(k,j,i) |
---|
| 2126 | ENDDO |
---|
[1960] | 2127 | |
---|
| 2128 | ! |
---|
| 2129 | !-- scalar concentration |
---|
| 2130 | CASE ( 7 ) |
---|
[2232] | 2131 | ! |
---|
| 2132 | !-- Determine topography-top index on scalar grid |
---|
[4168] | 2133 | k_wall = topo_top_ind(j,i,0) |
---|
[2317] | 2134 | |
---|
[2696] | 2135 | DO k = k_wall + 1, k_wall + pch_index_ji(j,i) |
---|
[2232] | 2136 | |
---|
| 2137 | kk = k - k_wall |
---|
[1960] | 2138 | tend(k,j,i) = tend(k,j,i) - & |
---|
| 2139 | lsec * & |
---|
| 2140 | lad_s(kk,j,i) * & |
---|
| 2141 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 2142 | u(k,j,i+1) ) & |
---|
| 2143 | )**2 + & |
---|
| 2144 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 2145 | v(k,j+1,i) ) & |
---|
| 2146 | )**2 + & |
---|
| 2147 | ( 0.5_wp * ( w(k-1,j,i) + & |
---|
| 2148 | w(k,j,i) ) & |
---|
| 2149 | )**2 & |
---|
| 2150 | ) * & |
---|
| 2151 | ( s(k,j,i) - lsc ) |
---|
| 2152 | ENDDO |
---|
[138] | 2153 | |
---|
[142] | 2154 | CASE DEFAULT |
---|
[138] | 2155 | |
---|
[257] | 2156 | WRITE( message_string, * ) 'wrong component: ', component |
---|
[1826] | 2157 | CALL message( 'pcm_tendency', 'PA0279', 1, 2, 0, 6, 0 ) |
---|
[138] | 2158 | |
---|
[142] | 2159 | END SELECT |
---|
[138] | 2160 | |
---|
[1826] | 2161 | END SUBROUTINE pcm_tendency_ij |
---|
[138] | 2162 | |
---|
[2007] | 2163 | |
---|
| 2164 | |
---|
[138] | 2165 | END MODULE plant_canopy_model_mod |
---|