[1826] | 1 | !> @file plant_canopy_model_mod.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[2718] | 17 | ! Copyright 1997-2018 Leibniz Universitaet Hannover |
---|
[3449] | 18 | ! Copyright 2018 Institute of Computer Science of the |
---|
| 19 | ! Czech Academy of Sciences, Prague |
---|
[2000] | 20 | !------------------------------------------------------------------------------! |
---|
[1036] | 21 | ! |
---|
[257] | 22 | ! Current revisions: |
---|
[2977] | 23 | ! ------------------ |
---|
[2214] | 24 | ! |
---|
[3049] | 25 | ! |
---|
[2214] | 26 | ! Former revisions: |
---|
| 27 | ! ----------------- |
---|
| 28 | ! $Id: plant_canopy_model_mod.f90 3449 2018-10-29 19:36:56Z eckhard $ |
---|
[3449] | 29 | ! Add calculation of transpiration for resolved plant canopy (trees, shrubs) |
---|
| 30 | ! (V. Fuka, MFF UK Prague, J.Resler, ICS AS, Prague) |
---|
| 31 | ! |
---|
[3337] | 32 | ! Fix reading plant canopy over buildings |
---|
| 33 | ! |
---|
[3449] | 34 | ! 3337 2018-10-12 15:17:09Z kanani |
---|
| 35 | ! Fix reading plant canopy over buildings |
---|
| 36 | ! |
---|
[3337] | 37 | ! 3294 2018-10-01 02:37:10Z raasch |
---|
[3294] | 38 | ! ocean renamed ocean_mode |
---|
| 39 | ! |
---|
| 40 | ! 3274 2018-09-24 15:42:55Z knoop |
---|
[3274] | 41 | ! Modularization of all bulk cloud physics code components |
---|
| 42 | ! |
---|
| 43 | ! 3248 2018-09-14 09:42:06Z sward |
---|
[3248] | 44 | ! Minor formating changes |
---|
| 45 | ! |
---|
| 46 | ! 3246 2018-09-13 15:14:50Z sward |
---|
[3246] | 47 | ! Added error handling for input namelist via parin_fail_message |
---|
| 48 | ! |
---|
| 49 | ! 3241 2018-09-12 15:02:00Z raasch |
---|
[3241] | 50 | ! unused variables removed |
---|
| 51 | ! |
---|
| 52 | ! 3065 2018-06-12 07:03:02Z Giersch |
---|
[3065] | 53 | ! dz was replaced by the help of zw to allow for vertical stretching |
---|
| 54 | ! |
---|
| 55 | ! 3049 2018-05-29 13:52:36Z Giersch |
---|
[3049] | 56 | ! Error messages revised |
---|
| 57 | ! |
---|
| 58 | ! 3045 2018-05-28 07:55:41Z Giersch |
---|
[3045] | 59 | ! Error message revised |
---|
| 60 | ! |
---|
| 61 | ! 3022 2018-05-18 11:12:35Z suehring |
---|
[3022] | 62 | ! Bugfix in allocation of transpiration rate |
---|
| 63 | ! |
---|
| 64 | ! 3014 2018-05-09 08:42:38Z maronga |
---|
[3014] | 65 | ! Bugfix: nzb_do and nzt_do were not used for 3d data output |
---|
| 66 | ! Added pc_transpiration_rate |
---|
| 67 | ! |
---|
| 68 | ! 2977 2018-04-17 10:27:57Z kanani |
---|
[2977] | 69 | ! Implement changes from branch radiation (r2948-2971) with minor modifications, |
---|
| 70 | ! plus some formatting. |
---|
| 71 | ! (moh.hefny): |
---|
| 72 | ! Add plant canopy type to account for changes in LAD (based on the changes |
---|
| 73 | ! done by Resler & Pavel) and correct the error message to PALM Standard. |
---|
| 74 | ! |
---|
| 75 | ! 2932 2018-03-26 09:39:22Z maronga |
---|
[2932] | 76 | ! renamed canopy_par to plant_canopy_parameters |
---|
| 77 | ! |
---|
| 78 | ! 2920 2018-03-22 11:22:01Z kanani |
---|
[2920] | 79 | ! Move usm_lad_rma and prototype_lad to radiation_model (moh.hefny) |
---|
| 80 | ! |
---|
| 81 | ! 2892 2018-03-14 15:06:29Z suehring |
---|
[2892] | 82 | ! Bugfix, read separate ASCII LAD files for parent and child model. |
---|
| 83 | ! |
---|
| 84 | ! 2770 2018-01-25 15:10:09Z kanani |
---|
[2770] | 85 | ! Correction of parameter check |
---|
| 86 | ! |
---|
| 87 | ! 2768 2018-01-24 15:38:29Z kanani |
---|
[2768] | 88 | ! Added check for output quantity pcm_heatrate, some formatting |
---|
| 89 | ! |
---|
| 90 | ! 2766 2018-01-22 17:17:47Z kanani |
---|
[2766] | 91 | ! Increased LEN of canopy mode to 30 |
---|
| 92 | ! |
---|
| 93 | ! 2746 2018-01-15 12:06:04Z suehring |
---|
[2746] | 94 | ! Move flag plant canopy to modules |
---|
| 95 | ! |
---|
| 96 | ! 2718 2018-01-02 08:49:38Z maronga |
---|
[2716] | 97 | ! Corrected "Former revisions" section |
---|
| 98 | ! |
---|
| 99 | ! 2701 2017-12-15 15:40:50Z suehring |
---|
| 100 | ! Changes from last commit documented |
---|
| 101 | ! |
---|
| 102 | ! 2698 2017-12-14 18:46:24Z suehring |
---|
[2701] | 103 | ! Bugfix in get_topography_top_index |
---|
| 104 | ! |
---|
[2716] | 105 | ! 2696 2017-12-14 17:12:51Z kanani |
---|
| 106 | ! Change in file header (GPL part) |
---|
[2696] | 107 | ! Bugfix for vertical loop index pch_index in case of Netcdf input |
---|
| 108 | ! Introduce 2D index array incorporate canopy top index |
---|
| 109 | ! Check if canopy on top of topography do not exceed vertical dimension |
---|
| 110 | ! Add check for canopy_mode in case of Netcdf input. |
---|
| 111 | ! Enable _FillValue output for 3d quantities |
---|
| 112 | ! Bugfix in reading of PIDS leaf area density (MS) |
---|
| 113 | ! |
---|
| 114 | ! 2669 2017-12-06 16:03:27Z raasch |
---|
[2669] | 115 | ! coupling_char removed |
---|
| 116 | ! |
---|
| 117 | ! 2512 2017-10-04 08:26:59Z raasch |
---|
[2512] | 118 | ! upper bounds of 3d output changed from nx+1,ny+1 to nx,ny |
---|
| 119 | ! no output of ghost layer data |
---|
| 120 | ! |
---|
| 121 | ! 2318 2017-07-20 17:27:44Z suehring |
---|
[2318] | 122 | ! Get topography top index via Function call |
---|
| 123 | ! |
---|
| 124 | ! 2317 2017-07-20 17:27:19Z suehring |
---|
[2274] | 125 | ! Changed error messages |
---|
| 126 | ! |
---|
| 127 | ! 2233 2017-05-30 18:08:54Z suehring |
---|
[2214] | 128 | ! |
---|
[2233] | 129 | ! 2232 2017-05-30 17:47:52Z suehring |
---|
| 130 | ! Adjustments to new topography concept |
---|
| 131 | ! |
---|
[2214] | 132 | ! 2213 2017-04-24 15:10:35Z kanani |
---|
[2213] | 133 | ! Bugfix: exchange of ghost points in array pc_heating_rate needed for output |
---|
| 134 | ! of pcm_heatrate, onetime ghost point exchange of lad_s after initialization. |
---|
| 135 | ! Formatting and clean-up of subroutine pcm_read_plant_canopy_3d, |
---|
| 136 | ! minor re-organization of canopy-heating initialization. |
---|
[2008] | 137 | ! |
---|
[2210] | 138 | ! 2209 2017-04-19 09:34:46Z kanani |
---|
| 139 | ! Added 3d output of leaf area density (pcm_lad) and canopy |
---|
| 140 | ! heat rate (pcm_heatrate) |
---|
| 141 | ! |
---|
[2025] | 142 | ! 2024 2016-10-12 16:42:37Z kanani |
---|
| 143 | ! Added missing lad_s initialization |
---|
| 144 | ! |
---|
[2012] | 145 | ! 2011 2016-09-19 17:29:57Z kanani |
---|
| 146 | ! Renamed canopy_heat_flux to pc_heating_rate, since the original meaning/ |
---|
| 147 | ! calculation of the quantity has changed, related to the urban surface model |
---|
| 148 | ! and similar future applications. |
---|
| 149 | ! |
---|
[2008] | 150 | ! 2007 2016-08-24 15:47:17Z kanani |
---|
[2007] | 151 | ! Added SUBROUTINE pcm_read_plant_canopy_3d for reading 3d plant canopy data |
---|
| 152 | ! from file (new case canopy_mode=read_from_file_3d) in the course of |
---|
| 153 | ! introduction of urban surface model, |
---|
| 154 | ! introduced variable ext_coef, |
---|
| 155 | ! resorted SUBROUTINEs to alphabetical order |
---|
[1827] | 156 | ! |
---|
[2001] | 157 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 158 | ! Forced header and separation lines into 80 columns |
---|
| 159 | ! |
---|
[1961] | 160 | ! 1960 2016-07-12 16:34:24Z suehring |
---|
| 161 | ! Separate humidity and passive scalar |
---|
| 162 | ! |
---|
[1954] | 163 | ! 1953 2016-06-21 09:28:42Z suehring |
---|
| 164 | ! Bugfix, lad_s and lad must be public |
---|
| 165 | ! |
---|
[1827] | 166 | ! 1826 2016-04-07 12:01:39Z maronga |
---|
| 167 | ! Further modularization |
---|
| 168 | ! |
---|
[1722] | 169 | ! 1721 2015-11-16 12:56:48Z raasch |
---|
| 170 | ! bugfixes: shf is reduced in areas covered with canopy only, |
---|
| 171 | ! canopy is set on top of topography |
---|
| 172 | ! |
---|
[1683] | 173 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 174 | ! Code annotations made doxygen readable |
---|
| 175 | ! |
---|
[1485] | 176 | ! 1484 2014-10-21 10:53:05Z kanani |
---|
[1484] | 177 | ! Changes due to new module structure of the plant canopy model: |
---|
| 178 | ! module plant_canopy_model_mod now contains a subroutine for the |
---|
[1826] | 179 | ! initialization of the canopy model (pcm_init), |
---|
[1484] | 180 | ! limitation of the canopy drag (previously accounted for by calculation of |
---|
| 181 | ! a limiting canopy timestep for the determination of the maximum LES timestep |
---|
| 182 | ! in subroutine timestep) is now realized by the calculation of pre-tendencies |
---|
[1826] | 183 | ! and preliminary velocities in subroutine pcm_tendency, |
---|
| 184 | ! some redundant MPI communication removed in subroutine pcm_init |
---|
[1484] | 185 | ! (was previously in init_3d_model), |
---|
| 186 | ! unnecessary 3d-arrays lad_u, lad_v, lad_w removed - lad information on the |
---|
| 187 | ! respective grid is now provided only by lad_s (e.g. in the calculation of |
---|
| 188 | ! the tendency terms or of cum_lai_hf), |
---|
| 189 | ! drag_coefficient, lai, leaf_surface_concentration, |
---|
| 190 | ! scalar_exchange_coefficient, sec and sls renamed to canopy_drag_coeff, |
---|
| 191 | ! cum_lai_hf, leaf_surface_conc, leaf_scalar_exch_coeff, lsec and lsc, |
---|
| 192 | ! respectively, |
---|
| 193 | ! unnecessary 3d-arrays cdc, lsc and lsec now defined as single-value constants, |
---|
| 194 | ! USE-statements and ONLY-lists modified accordingly |
---|
[1341] | 195 | ! |
---|
| 196 | ! 1340 2014-03-25 19:45:13Z kanani |
---|
| 197 | ! REAL constants defined as wp-kind |
---|
| 198 | ! |
---|
[1321] | 199 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 200 | ! ONLY-attribute added to USE-statements, |
---|
| 201 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 202 | ! kinds are defined in new module kinds, |
---|
| 203 | ! old module precision_kind is removed, |
---|
| 204 | ! revision history before 2012 removed, |
---|
| 205 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 206 | ! all variable declaration statements |
---|
[153] | 207 | ! |
---|
[1037] | 208 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 209 | ! code put under GPL (PALM 3.9) |
---|
| 210 | ! |
---|
[139] | 211 | ! 138 2007-11-28 10:03:58Z letzel |
---|
| 212 | ! Initial revision |
---|
| 213 | ! |
---|
[138] | 214 | ! Description: |
---|
| 215 | ! ------------ |
---|
[1682] | 216 | !> 1) Initialization of the canopy model, e.g. construction of leaf area density |
---|
[1826] | 217 | !> profile (subroutine pcm_init). |
---|
[1682] | 218 | !> 2) Calculation of sinks and sources of momentum, heat and scalar concentration |
---|
[1826] | 219 | !> due to canopy elements (subroutine pcm_tendency). |
---|
[138] | 220 | !------------------------------------------------------------------------------! |
---|
[1682] | 221 | MODULE plant_canopy_model_mod |
---|
| 222 | |
---|
[1484] | 223 | USE arrays_3d, & |
---|
[3449] | 224 | ONLY: dzu, dzw, e, exner, hyp, pt, q, s, tend, u, v, w, zu, zw |
---|
[138] | 225 | |
---|
[3449] | 226 | USE basic_constants_and_equations_mod, & |
---|
| 227 | ONLY: c_p, degc_to_k, l_v, lv_d_cp, r_d, rd_d_rv |
---|
| 228 | |
---|
| 229 | USE control_parameters, & |
---|
| 230 | ONLY: humidity |
---|
| 231 | |
---|
[1484] | 232 | USE indices, & |
---|
| 233 | ONLY: nbgp, nxl, nxlg, nxlu, nxr, nxrg, nyn, nyng, nys, nysg, nysv, & |
---|
[2317] | 234 | nz, nzb, nzt |
---|
[1484] | 235 | |
---|
| 236 | USE kinds |
---|
| 237 | |
---|
[3449] | 238 | USE pegrid |
---|
| 239 | |
---|
[2317] | 240 | USE surface_mod, & |
---|
[2698] | 241 | ONLY: get_topography_top_index_ji |
---|
[1484] | 242 | |
---|
[2317] | 243 | |
---|
[1484] | 244 | IMPLICIT NONE |
---|
| 245 | |
---|
| 246 | |
---|
[3449] | 247 | CHARACTER (LEN=30) :: canopy_mode = 'block' !< canopy coverage |
---|
| 248 | LOGICAL :: plant_canopy_transpiration = .FALSE. !< flag to switch calculation of transpiration and corresponding latent heat |
---|
| 249 | !< for resolved plant canopy inside radiation model |
---|
| 250 | !< (calls subroutine pcm_calc_transpiration_rate from module plant_canopy_mod) |
---|
[1484] | 251 | |
---|
[3449] | 252 | INTEGER(iwp) :: pch_index = 0 !< plant canopy height/top index |
---|
| 253 | INTEGER(iwp) :: lad_vertical_gradient_level_ind(10) = -9999 !< lad-profile levels (index) |
---|
[1484] | 254 | |
---|
[3449] | 255 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: pch_index_ji !< local plant canopy top |
---|
[2696] | 256 | |
---|
[3449] | 257 | LOGICAL :: calc_beta_lad_profile = .FALSE. !< switch for calc. of lad from beta func. |
---|
[1484] | 258 | |
---|
[2696] | 259 | REAL(wp) :: alpha_lad = 9999999.9_wp !< coefficient for lad calculation |
---|
| 260 | REAL(wp) :: beta_lad = 9999999.9_wp !< coefficient for lad calculation |
---|
| 261 | REAL(wp) :: canopy_drag_coeff = 0.0_wp !< canopy drag coefficient (parameter) |
---|
| 262 | REAL(wp) :: cdc = 0.0_wp !< canopy drag coeff. (abbreviation used in equations) |
---|
| 263 | REAL(wp) :: cthf = 0.0_wp !< canopy top heat flux |
---|
| 264 | REAL(wp) :: dt_plant_canopy = 0.0_wp !< timestep account. for canopy drag |
---|
| 265 | REAL(wp) :: ext_coef = 0.6_wp !< extinction coefficient |
---|
| 266 | REAL(wp) :: lad_surface = 0.0_wp !< lad surface value |
---|
| 267 | REAL(wp) :: lai_beta = 0.0_wp !< leaf area index (lai) for lad calc. |
---|
| 268 | REAL(wp) :: leaf_scalar_exch_coeff = 0.0_wp !< canopy scalar exchange coeff. |
---|
| 269 | REAL(wp) :: leaf_surface_conc = 0.0_wp !< leaf surface concentration |
---|
[2768] | 270 | REAL(wp) :: lsc = 0.0_wp !< leaf surface concentration |
---|
[2696] | 271 | REAL(wp) :: lsec = 0.0_wp !< leaf scalar exchange coeff. |
---|
[1484] | 272 | |
---|
[2696] | 273 | REAL(wp) :: lad_vertical_gradient(10) = 0.0_wp !< lad gradient |
---|
| 274 | REAL(wp) :: lad_vertical_gradient_level(10) = -9999999.9_wp !< lad-prof. levels (in m) |
---|
[1484] | 275 | |
---|
[2977] | 276 | REAL(wp) :: lad_type_coef(0:10) = 1.0_wp !< multiplicative coeficients for particular types |
---|
| 277 | !< of plant canopy (e.g. deciduous tree during winter) |
---|
| 278 | |
---|
[1682] | 279 | REAL(wp), DIMENSION(:), ALLOCATABLE :: lad !< leaf area density |
---|
| 280 | REAL(wp), DIMENSION(:), ALLOCATABLE :: pre_lad !< preliminary lad |
---|
[1484] | 281 | |
---|
[3449] | 282 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: cum_lai_hf !< cumulative lai for heatflux calc. |
---|
| 283 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: lad_s !< lad on scalar-grid |
---|
| 284 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pc_heating_rate !< plant canopy heating rate |
---|
[3014] | 285 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pc_transpiration_rate !< plant canopy transpiration rate |
---|
[3449] | 286 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pc_latent_rate !< plant canopy latent heating rate |
---|
[1484] | 287 | |
---|
| 288 | SAVE |
---|
| 289 | |
---|
| 290 | |
---|
[138] | 291 | PRIVATE |
---|
[1826] | 292 | |
---|
| 293 | ! |
---|
| 294 | !-- Public functions |
---|
[3449] | 295 | PUBLIC pcm_calc_transpiration_rate, pcm_check_data_output, & |
---|
| 296 | pcm_check_parameters, pcm_data_output_3d, pcm_define_netcdf_grid, & |
---|
| 297 | pcm_header, pcm_init, pcm_parin, pcm_tendency |
---|
[138] | 298 | |
---|
[1826] | 299 | ! |
---|
| 300 | !-- Public variables and constants |
---|
[3449] | 301 | PUBLIC pc_heating_rate, pc_transpiration_rate, pc_latent_rate, & |
---|
| 302 | canopy_mode, cthf, dt_plant_canopy, lad, lad_s, pch_index, & |
---|
| 303 | plant_canopy_transpiration |
---|
[1484] | 304 | |
---|
[3449] | 305 | INTERFACE pcm_calc_transpiration_rate |
---|
| 306 | MODULE PROCEDURE pcm_calc_transpiration_rate |
---|
| 307 | END INTERFACE pcm_calc_transpiration_rate |
---|
| 308 | |
---|
[2209] | 309 | INTERFACE pcm_check_data_output |
---|
| 310 | MODULE PROCEDURE pcm_check_data_output |
---|
| 311 | END INTERFACE pcm_check_data_output |
---|
| 312 | |
---|
[1826] | 313 | INTERFACE pcm_check_parameters |
---|
| 314 | MODULE PROCEDURE pcm_check_parameters |
---|
[2209] | 315 | END INTERFACE pcm_check_parameters |
---|
| 316 | |
---|
| 317 | INTERFACE pcm_data_output_3d |
---|
| 318 | MODULE PROCEDURE pcm_data_output_3d |
---|
| 319 | END INTERFACE pcm_data_output_3d |
---|
| 320 | |
---|
| 321 | INTERFACE pcm_define_netcdf_grid |
---|
| 322 | MODULE PROCEDURE pcm_define_netcdf_grid |
---|
| 323 | END INTERFACE pcm_define_netcdf_grid |
---|
[1826] | 324 | |
---|
| 325 | INTERFACE pcm_header |
---|
| 326 | MODULE PROCEDURE pcm_header |
---|
| 327 | END INTERFACE pcm_header |
---|
| 328 | |
---|
| 329 | INTERFACE pcm_init |
---|
| 330 | MODULE PROCEDURE pcm_init |
---|
| 331 | END INTERFACE pcm_init |
---|
[138] | 332 | |
---|
[1826] | 333 | INTERFACE pcm_parin |
---|
| 334 | MODULE PROCEDURE pcm_parin |
---|
[2007] | 335 | END INTERFACE pcm_parin |
---|
| 336 | |
---|
| 337 | INTERFACE pcm_read_plant_canopy_3d |
---|
| 338 | MODULE PROCEDURE pcm_read_plant_canopy_3d |
---|
| 339 | END INTERFACE pcm_read_plant_canopy_3d |
---|
[1826] | 340 | |
---|
| 341 | INTERFACE pcm_tendency |
---|
| 342 | MODULE PROCEDURE pcm_tendency |
---|
| 343 | MODULE PROCEDURE pcm_tendency_ij |
---|
| 344 | END INTERFACE pcm_tendency |
---|
[1484] | 345 | |
---|
| 346 | |
---|
[138] | 347 | CONTAINS |
---|
| 348 | |
---|
[2209] | 349 | |
---|
[3449] | 350 | |
---|
[2209] | 351 | !------------------------------------------------------------------------------! |
---|
| 352 | ! Description: |
---|
| 353 | ! ------------ |
---|
[3449] | 354 | !> Calculation of the plant canopy transpiration rate based on the Jarvis-Stewart |
---|
| 355 | !> with parametrizations described in Daudet et al. (1999; Agricult. and Forest |
---|
| 356 | !> Meteorol. 97) and Ngao, Adam and Saudreau (2017; Agricult. and Forest Meteorol |
---|
| 357 | !> 237-238). Model functions f1-f4 were adapted from Stewart (1998; Agric. |
---|
| 358 | !> and Forest. Meteorol. 43) instead, because they are valid for broader intervals |
---|
| 359 | !> of values. Funcion f4 used in form present in van Wijk et al. (1998; |
---|
| 360 | !> Tree Physiology 20). |
---|
| 361 | !> |
---|
| 362 | !> This subroutine is called from subroutine radiation_interaction |
---|
| 363 | !> after the calculation of radiation in plant canopy boxes. |
---|
| 364 | !> (arrays pcbinsw and pcbinlw). |
---|
| 365 | !> |
---|
| 366 | !------------------------------------------------------------------------------! |
---|
| 367 | SUBROUTINE pcm_calc_transpiration_rate(i, j, k, kk, pcbsw, pcblw, pcbtr, pcblh) |
---|
| 368 | |
---|
| 369 | USE control_parameters, & |
---|
| 370 | ONLY: dz |
---|
| 371 | |
---|
| 372 | USE grid_variables, & |
---|
| 373 | ONLY: dx, dy |
---|
| 374 | |
---|
| 375 | IMPLICIT NONE |
---|
| 376 | !-- input parameters |
---|
| 377 | INTEGER(iwp), INTENT(IN) :: i, j, k, kk !< indices of the pc gridbox |
---|
| 378 | REAL(wp), INTENT(IN) :: pcbsw !< sw radiation in gridbox (W) |
---|
| 379 | REAL(wp), INTENT(IN) :: pcblw !< lw radiation in gridbox (W) |
---|
| 380 | REAL(wp), INTENT(OUT) :: pcbtr !< transpiration rate dq/dt (kg/kg/s) |
---|
| 381 | REAL(wp), INTENT(OUT) :: pcblh !< latent heat from transpiration dT/dt (K/s) |
---|
| 382 | |
---|
| 383 | !-- variables and parameters for calculation of transpiration rate |
---|
| 384 | REAL(wp) :: sat_press, sat_press_d, temp, v_lad |
---|
| 385 | REAL(wp) :: d_fact, g_b, g_s, wind_speed, evapor_rate |
---|
| 386 | REAL(wp) :: f1, f2, f3, f4, vpd, rswc, e_eq, e_imp, rad |
---|
| 387 | REAL(wp), PARAMETER :: gama_psychr = 66 !< psychrometric constant (Pa/K) |
---|
| 388 | REAL(wp), PARAMETER :: g_s_max = 0.01 !< maximum stomatal conductivity (m/s) |
---|
| 389 | REAL(wp), PARAMETER :: m_soil = 0.4_wp !< soil water content (needs to adjust or take from LSM) |
---|
| 390 | REAL(wp), PARAMETER :: m_wilt = 0.01_wp !< wilting point soil water content (needs to adjust or take from LSM) |
---|
| 391 | REAL(wp), PARAMETER :: m_sat = 0.51_wp !< saturation soil water content (needs to adjust or take from LSM) |
---|
| 392 | REAL(wp), PARAMETER :: t2_min = 0.0_wp !< minimal temperature for calculation of f2 |
---|
| 393 | REAL(wp), PARAMETER :: t2_max = 40.0_wp !< maximal temperature for calculation of f2 |
---|
| 394 | |
---|
| 395 | |
---|
| 396 | !-- Temperature (deg C) |
---|
| 397 | temp = pt(k,j,i) * exner(k) - degc_to_k |
---|
| 398 | !-- Coefficient for conversion of radiation to grid to radiation to unit leaves surface |
---|
| 399 | v_lad = 1.0_wp / ( MAX(lad_s(kk,j,i), 1.0e-10) * dx * dy * dz(1) ) |
---|
| 400 | !-- Magnus formula for the saturation pressure (see Ngao, Adam and Saudreau (2017) eq. 1) |
---|
| 401 | !-- There are updated formulas available, kept consistent with the rest of the parametrization |
---|
| 402 | sat_press = 610.8_wp * exp(17.27_wp * temp/(temp + 237.3_wp)) |
---|
| 403 | !-- Saturation pressure derivative (derivative of the above) |
---|
| 404 | sat_press_d = sat_press * 17.27_wp * 237.3_wp / (temp + 237.3_wp)**2 |
---|
| 405 | !-- Wind speed |
---|
| 406 | wind_speed = SQRT( ((u(k,j,i) + u(k,j,i+1))/2.0_wp )**2 + & |
---|
| 407 | ((v(k,j,i) + v(k,j,i+1))/2.0_wp )**2 + & |
---|
| 408 | ((w(k,j,i) + w(k,j,i+1))/2.0_wp )**2 ) |
---|
| 409 | !-- Aerodynamic conductivity (Daudet et al. (1999) eq. 14 |
---|
| 410 | g_b = 0.01_wp * wind_speed + 0.0071_wp |
---|
| 411 | !-- Radiation flux per leaf surface unit |
---|
| 412 | rad = pcbsw * v_lad |
---|
| 413 | !-- First function for calculation of stomatal conductivity (radiation dependency) |
---|
| 414 | !-- Stewart (1988; Agric. and Forest. Meteorol. 43) eq. 17 |
---|
| 415 | f1 = rad * (1000._wp+42.1_wp) / 1000._wp / (rad+42.1_wp) |
---|
| 416 | !-- Second function for calculation of stomatal conductivity (temperature dependency) |
---|
| 417 | !-- Stewart (1988; Agric. and Forest. Meteorol. 43) eq. 21 |
---|
| 418 | f2 = MAX(t2_min, (temp-t2_min) * (t2_max-temp)**((t2_max-16.9_wp)/(16.9_wp-t2_min)) / & |
---|
| 419 | ((16.9_wp-t2_min) * (t2_max-16.9_wp)**((t2_max-16.9_wp)/(16.9_wp-t2_min))) ) |
---|
| 420 | !-- Water pressure deficit |
---|
| 421 | !-- Ngao, Adam and Saudreau (2017) eq. 6 but with water vapour partial pressure |
---|
| 422 | vpd = max( sat_press - q(k,j,i) * hyp(k) / rd_d_rv, 0._wp ) |
---|
| 423 | !-- Third function for calculation of stomatal conductivity (water pressure deficit dependency) |
---|
| 424 | !-- Ngao, Adam and Saudreau (2017) Table 1, limited from below according to Stewart (1988) |
---|
| 425 | !-- The coefficients of the linear dependence should better correspond to broad-leaved trees |
---|
| 426 | !-- than the coefficients from Stewart (1988) which correspond to conifer trees. |
---|
| 427 | vpd = MIN(MAX(vpd,770.0_wp),3820.0_wp) |
---|
| 428 | f3 = -2e-4_wp * vpd + 1.154_wp |
---|
| 429 | !-- Fourth function for calculation of stomatal conductivity (soil moisture dependency) |
---|
| 430 | !-- Residual soil water content |
---|
| 431 | !-- van Wijk et al. (1998; Tree Physiology 20) eq. 7 |
---|
| 432 | !-- TODO - over LSM surface might be calculated from LSM parameters |
---|
| 433 | rswc = ( m_sat - m_soil ) / ( m_sat - m_wilt ) |
---|
| 434 | !-- van Wijk et al. (1998; Tree Physiology 20) eq. 5-6 (it is a reformulation of eq. 22-23 of Stewart(1988)) |
---|
| 435 | f4 = MAX(0._wp, MIN(1.0_wp - 0.041_wp * EXP(3.2_wp * rswc), 1.0_wp - 0.041_wp)) |
---|
| 436 | !-- Stomatal conductivity |
---|
| 437 | !-- Stewart (1988; Agric. and Forest. Meteorol. 43) eq. 12 |
---|
| 438 | !-- (notation according to Ngao, Adam and Saudreau (2017) and others) |
---|
| 439 | g_s = g_s_max * f1 * f2 * f3 * f4 + 1.0e-10_wp |
---|
| 440 | !-- Decoupling factor |
---|
| 441 | !-- Daudet et al. (1999) eq. 6 |
---|
| 442 | d_fact = (sat_press_d / gama_psychr + 2._wp ) / & |
---|
| 443 | (sat_press_d / gama_psychr + 2._wp + 2 * g_b / g_s ) |
---|
| 444 | !-- Equilibrium evaporation rate |
---|
| 445 | !-- Daudet et al. (1999) eq. 4 |
---|
| 446 | e_eq = (pcbsw + pcblw) * v_lad * sat_press_d / & |
---|
| 447 | gama_psychr /( sat_press_d / gama_psychr + 2.0_wp ) / l_v |
---|
| 448 | !-- Imposed evaporation rate |
---|
| 449 | !-- Daudet et al. (1999) eq. 5 |
---|
| 450 | e_imp = r_d * pt(k,j,i) * exner(k) / hyp(k) * c_p * g_s * vpd / gama_psychr / l_v |
---|
| 451 | !-- Evaporation rate |
---|
| 452 | !-- Daudet et al. (1999) eq. 3 |
---|
| 453 | !-- (evaporation rate is limited to non-negative values) |
---|
| 454 | evapor_rate = MAX(d_fact * e_eq + ( 1.0_wp - d_fact ) * e_imp, 0.0_wp) |
---|
| 455 | !-- Conversion of evaporation rate to q tendency in gridbox |
---|
| 456 | !-- dq/dt = E * LAD * V_g / (rho_air * V_g) |
---|
| 457 | pcbtr = evapor_rate * r_d * pt(k,j,i) * exner(k) * lad_s(kk,j,i) / hyp(k) !-- = dq/dt |
---|
| 458 | !-- latent heat from evaporation |
---|
| 459 | pcblh = pcbtr * lv_d_cp !-- = - dT/dt |
---|
| 460 | |
---|
| 461 | END SUBROUTINE pcm_calc_transpiration_rate |
---|
| 462 | |
---|
| 463 | |
---|
| 464 | !------------------------------------------------------------------------------! |
---|
| 465 | ! Description: |
---|
| 466 | ! ------------ |
---|
[2209] | 467 | !> Check data output for plant canopy model |
---|
| 468 | !------------------------------------------------------------------------------! |
---|
| 469 | SUBROUTINE pcm_check_data_output( var, unit ) |
---|
[1826] | 470 | |
---|
[2209] | 471 | |
---|
| 472 | USE control_parameters, & |
---|
[3241] | 473 | ONLY: message_string, urban_surface |
---|
[2209] | 474 | |
---|
| 475 | IMPLICIT NONE |
---|
| 476 | |
---|
| 477 | CHARACTER (LEN=*) :: unit !< |
---|
| 478 | CHARACTER (LEN=*) :: var !< |
---|
| 479 | |
---|
| 480 | |
---|
| 481 | SELECT CASE ( TRIM( var ) ) |
---|
| 482 | |
---|
| 483 | CASE ( 'pcm_heatrate' ) |
---|
[2770] | 484 | IF ( cthf == 0.0_wp .AND. .NOT. urban_surface ) THEN |
---|
[2768] | 485 | message_string = 'output of "' // TRIM( var ) // '" requi' // & |
---|
| 486 | 'res setting of parameter cthf /= 0.0' |
---|
| 487 | CALL message( 'pcm_check_data_output', 'PA1000', 1, 2, 0, 6, 0 ) |
---|
| 488 | ENDIF |
---|
[2209] | 489 | unit = 'K s-1' |
---|
| 490 | |
---|
[3014] | 491 | CASE ( 'pcm_transpirationrate' ) |
---|
| 492 | unit = 'kg kg-1 s-1' |
---|
| 493 | |
---|
[3449] | 494 | CASE ( 'pcm_latentrate' ) |
---|
| 495 | unit = 'K s-1' |
---|
| 496 | |
---|
| 497 | CASE ( 'pcm_bowenratio' ) |
---|
| 498 | unit = 'K s-1' |
---|
| 499 | |
---|
[2209] | 500 | CASE ( 'pcm_lad' ) |
---|
| 501 | unit = 'm2 m-3' |
---|
| 502 | |
---|
| 503 | |
---|
| 504 | CASE DEFAULT |
---|
| 505 | unit = 'illegal' |
---|
| 506 | |
---|
| 507 | END SELECT |
---|
| 508 | |
---|
| 509 | |
---|
| 510 | END SUBROUTINE pcm_check_data_output |
---|
| 511 | |
---|
| 512 | |
---|
[1826] | 513 | !------------------------------------------------------------------------------! |
---|
| 514 | ! Description: |
---|
| 515 | ! ------------ |
---|
| 516 | !> Check parameters routine for plant canopy model |
---|
| 517 | !------------------------------------------------------------------------------! |
---|
| 518 | SUBROUTINE pcm_check_parameters |
---|
[138] | 519 | |
---|
[1826] | 520 | USE control_parameters, & |
---|
[3274] | 521 | ONLY: coupling_char, message_string |
---|
[2696] | 522 | |
---|
[3274] | 523 | USE bulk_cloud_model_mod, & |
---|
| 524 | ONLY: bulk_cloud_model, microphysics_seifert |
---|
| 525 | |
---|
[2696] | 526 | USE netcdf_data_input_mod, & |
---|
| 527 | ONLY: input_file_static, input_pids_static |
---|
[1826] | 528 | |
---|
| 529 | |
---|
| 530 | IMPLICIT NONE |
---|
| 531 | |
---|
| 532 | |
---|
| 533 | IF ( canopy_drag_coeff == 0.0_wp ) THEN |
---|
| 534 | message_string = 'plant_canopy = .TRUE. requires a non-zero drag '// & |
---|
[3046] | 535 | 'coefficient & given value is canopy_drag_coeff = 0.0' |
---|
[2768] | 536 | CALL message( 'pcm_check_parameters', 'PA0041', 1, 2, 0, 6, 0 ) |
---|
[1826] | 537 | ENDIF |
---|
| 538 | |
---|
[3045] | 539 | IF ( ( alpha_lad /= 9999999.9_wp .AND. beta_lad == 9999999.9_wp ) .OR.& |
---|
[1826] | 540 | beta_lad /= 9999999.9_wp .AND. alpha_lad == 9999999.9_wp ) THEN |
---|
| 541 | message_string = 'using the beta function for the construction ' // & |
---|
| 542 | 'of the leaf area density profile requires ' // & |
---|
| 543 | 'both alpha_lad and beta_lad to be /= 9999999.9' |
---|
[2768] | 544 | CALL message( 'pcm_check_parameters', 'PA0118', 1, 2, 0, 6, 0 ) |
---|
[1826] | 545 | ENDIF |
---|
| 546 | |
---|
| 547 | IF ( calc_beta_lad_profile .AND. lai_beta == 0.0_wp ) THEN |
---|
| 548 | message_string = 'using the beta function for the construction ' // & |
---|
| 549 | 'of the leaf area density profile requires ' // & |
---|
| 550 | 'a non-zero lai_beta, but given value is ' // & |
---|
| 551 | 'lai_beta = 0.0' |
---|
[2768] | 552 | CALL message( 'pcm_check_parameters', 'PA0119', 1, 2, 0, 6, 0 ) |
---|
[1826] | 553 | ENDIF |
---|
| 554 | |
---|
| 555 | IF ( calc_beta_lad_profile .AND. lad_surface /= 0.0_wp ) THEN |
---|
[2274] | 556 | message_string = 'simultaneous setting of alpha_lad /= 9999999.9 '// & |
---|
| 557 | 'combined with beta_lad /= 9999999.9 ' // & |
---|
[1826] | 558 | 'and lad_surface /= 0.0 is not possible, ' // & |
---|
| 559 | 'use either vertical gradients or the beta ' // & |
---|
| 560 | 'function for the construction of the leaf area '// & |
---|
| 561 | 'density profile' |
---|
[2768] | 562 | CALL message( 'pcm_check_parameters', 'PA0120', 1, 2, 0, 6, 0 ) |
---|
[1826] | 563 | ENDIF |
---|
| 564 | |
---|
[3274] | 565 | IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN |
---|
[1826] | 566 | message_string = 'plant_canopy = .TRUE. requires cloud_scheme /=' // & |
---|
| 567 | ' seifert_beheng' |
---|
[2768] | 568 | CALL message( 'pcm_check_parameters', 'PA0360', 1, 2, 0, 6, 0 ) |
---|
[1826] | 569 | ENDIF |
---|
[2696] | 570 | ! |
---|
| 571 | !-- If dynamic input file is used, canopy need to be read from file |
---|
| 572 | IF ( input_pids_static .AND. & |
---|
| 573 | TRIM( canopy_mode ) /= 'read_from_file_3d' ) THEN |
---|
| 574 | message_string = 'Usage of dynamic input file ' // & |
---|
| 575 | TRIM( input_file_static ) // & |
---|
| 576 | TRIM( coupling_char ) // ' requires ' // & |
---|
| 577 | 'canopy_mode = read_from_file_3d' |
---|
[2768] | 578 | CALL message( 'pcm_check_parameters', 'PA0999', 1, 2, 0, 6, 0 ) |
---|
[2696] | 579 | ENDIF |
---|
[1826] | 580 | |
---|
| 581 | |
---|
| 582 | END SUBROUTINE pcm_check_parameters |
---|
| 583 | |
---|
| 584 | |
---|
[138] | 585 | !------------------------------------------------------------------------------! |
---|
[2209] | 586 | ! |
---|
[1484] | 587 | ! Description: |
---|
| 588 | ! ------------ |
---|
[2209] | 589 | !> Subroutine defining 3D output variables |
---|
| 590 | !------------------------------------------------------------------------------! |
---|
[3014] | 591 | SUBROUTINE pcm_data_output_3d( av, variable, found, local_pf, fill_value, & |
---|
| 592 | nzb_do, nzt_do ) |
---|
| 593 | |
---|
[2209] | 594 | USE indices |
---|
| 595 | |
---|
| 596 | USE kinds |
---|
| 597 | |
---|
| 598 | |
---|
| 599 | IMPLICIT NONE |
---|
| 600 | |
---|
| 601 | CHARACTER (LEN=*) :: variable !< |
---|
| 602 | |
---|
[2696] | 603 | INTEGER(iwp) :: av !< |
---|
| 604 | INTEGER(iwp) :: i !< |
---|
| 605 | INTEGER(iwp) :: j !< |
---|
| 606 | INTEGER(iwp) :: k !< |
---|
| 607 | INTEGER(iwp) :: k_topo !< topography top index |
---|
[3014] | 608 | INTEGER(iwp) :: nzb_do !< lower limit of the data output (usually 0) |
---|
| 609 | INTEGER(iwp) :: nzt_do !< vertical upper limit of the data output (usually nz_do3d) |
---|
[2209] | 610 | |
---|
| 611 | LOGICAL :: found !< |
---|
| 612 | |
---|
[2696] | 613 | REAL(wp) :: fill_value |
---|
[3014] | 614 | REAL(sp), DIMENSION(nxl:nxr,nys:nyn,nzb_do:nzt_do) :: local_pf !< |
---|
[2209] | 615 | |
---|
| 616 | |
---|
| 617 | found = .TRUE. |
---|
| 618 | |
---|
[2696] | 619 | local_pf = REAL( fill_value, KIND = 4 ) |
---|
[2209] | 620 | |
---|
| 621 | SELECT CASE ( TRIM( variable ) ) |
---|
| 622 | |
---|
| 623 | CASE ( 'pcm_heatrate' ) |
---|
| 624 | IF ( av == 0 ) THEN |
---|
[2512] | 625 | DO i = nxl, nxr |
---|
| 626 | DO j = nys, nyn |
---|
[2696] | 627 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
[2698] | 628 | k_topo = get_topography_top_index_ji( j, i, 's' ) |
---|
[2696] | 629 | DO k = k_topo, k_topo + pch_index_ji(j,i) |
---|
| 630 | local_pf(i,j,k) = pc_heating_rate(k-k_topo,j,i) |
---|
| 631 | ENDDO |
---|
| 632 | ENDIF |
---|
[2209] | 633 | ENDDO |
---|
| 634 | ENDDO |
---|
| 635 | ENDIF |
---|
[3014] | 636 | |
---|
| 637 | CASE ( 'pcm_transpirationrate' ) |
---|
| 638 | IF ( av == 0 ) THEN |
---|
| 639 | DO i = nxl, nxr |
---|
| 640 | DO j = nys, nyn |
---|
| 641 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
| 642 | k_topo = get_topography_top_index_ji( j, i, 's' ) |
---|
| 643 | DO k = k_topo, k_topo + pch_index_ji(j,i) |
---|
| 644 | local_pf(i,j,k) = pc_transpiration_rate(k-k_topo,j,i) |
---|
| 645 | ENDDO |
---|
| 646 | ENDIF |
---|
| 647 | ENDDO |
---|
| 648 | ENDDO |
---|
| 649 | ENDIF |
---|
[3449] | 650 | |
---|
| 651 | CASE ( 'pcm_latentrate' ) |
---|
| 652 | IF ( av == 0 ) THEN |
---|
| 653 | DO i = nxl, nxr |
---|
| 654 | DO j = nys, nyn |
---|
| 655 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
| 656 | k_topo = get_topography_top_index_ji( j, i, 's' ) |
---|
| 657 | DO k = k_topo, k_topo + pch_index_ji(j,i) |
---|
| 658 | local_pf(i,j,k) = pc_latent_rate(k-k_topo,j,i) |
---|
| 659 | ENDDO |
---|
| 660 | ENDIF |
---|
| 661 | ENDDO |
---|
| 662 | ENDDO |
---|
| 663 | ENDIF |
---|
| 664 | |
---|
| 665 | CASE ( 'pcm_bowenratio' ) |
---|
| 666 | IF ( av == 0 ) THEN |
---|
| 667 | DO i = nxl, nxr |
---|
| 668 | DO j = nys, nyn |
---|
| 669 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
| 670 | k_topo = get_topography_top_index_ji( j, i, 's' ) |
---|
| 671 | DO k = k_topo, k_topo + pch_index_ji(j,i) |
---|
| 672 | IF ( pc_latent_rate(k-k_topo,j,i) /= 0._wp ) THEN |
---|
| 673 | local_pf(i,j,k) = pc_heating_rate(k-k_topo,j,i) / & |
---|
| 674 | pc_latent_rate(k-k_topo,j,i) |
---|
| 675 | ENDIF |
---|
| 676 | ENDDO |
---|
| 677 | ENDIF |
---|
| 678 | ENDDO |
---|
| 679 | ENDDO |
---|
| 680 | ENDIF |
---|
| 681 | |
---|
[2209] | 682 | CASE ( 'pcm_lad' ) |
---|
| 683 | IF ( av == 0 ) THEN |
---|
[2512] | 684 | DO i = nxl, nxr |
---|
| 685 | DO j = nys, nyn |
---|
[2696] | 686 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
[2698] | 687 | k_topo = get_topography_top_index_ji( j, i, 's' ) |
---|
[2696] | 688 | DO k = k_topo, k_topo + pch_index_ji(j,i) |
---|
| 689 | local_pf(i,j,k) = lad_s(k-k_topo,j,i) |
---|
| 690 | ENDDO |
---|
| 691 | ENDIF |
---|
[2209] | 692 | ENDDO |
---|
| 693 | ENDDO |
---|
| 694 | ENDIF |
---|
| 695 | |
---|
| 696 | |
---|
| 697 | CASE DEFAULT |
---|
| 698 | found = .FALSE. |
---|
| 699 | |
---|
| 700 | END SELECT |
---|
| 701 | |
---|
| 702 | |
---|
| 703 | END SUBROUTINE pcm_data_output_3d |
---|
| 704 | |
---|
| 705 | !------------------------------------------------------------------------------! |
---|
| 706 | ! |
---|
| 707 | ! Description: |
---|
| 708 | ! ------------ |
---|
| 709 | !> Subroutine defining appropriate grid for netcdf variables. |
---|
| 710 | !> It is called from subroutine netcdf. |
---|
| 711 | !------------------------------------------------------------------------------! |
---|
| 712 | SUBROUTINE pcm_define_netcdf_grid( var, found, grid_x, grid_y, grid_z ) |
---|
| 713 | |
---|
| 714 | IMPLICIT NONE |
---|
| 715 | |
---|
| 716 | CHARACTER (LEN=*), INTENT(IN) :: var !< |
---|
| 717 | LOGICAL, INTENT(OUT) :: found !< |
---|
| 718 | CHARACTER (LEN=*), INTENT(OUT) :: grid_x !< |
---|
| 719 | CHARACTER (LEN=*), INTENT(OUT) :: grid_y !< |
---|
| 720 | CHARACTER (LEN=*), INTENT(OUT) :: grid_z !< |
---|
| 721 | |
---|
| 722 | found = .TRUE. |
---|
| 723 | |
---|
| 724 | ! |
---|
| 725 | !-- Check for the grid |
---|
| 726 | SELECT CASE ( TRIM( var ) ) |
---|
| 727 | |
---|
[3449] | 728 | CASE ( 'pcm_heatrate', 'pcm_lad', 'pcm_transpirationrate', 'pcm_latentrate', 'pcm_bowenratio') |
---|
[2209] | 729 | grid_x = 'x' |
---|
| 730 | grid_y = 'y' |
---|
| 731 | grid_z = 'zu' |
---|
| 732 | |
---|
| 733 | CASE DEFAULT |
---|
| 734 | found = .FALSE. |
---|
| 735 | grid_x = 'none' |
---|
| 736 | grid_y = 'none' |
---|
| 737 | grid_z = 'none' |
---|
| 738 | END SELECT |
---|
| 739 | |
---|
| 740 | END SUBROUTINE pcm_define_netcdf_grid |
---|
| 741 | |
---|
| 742 | |
---|
| 743 | !------------------------------------------------------------------------------! |
---|
| 744 | ! Description: |
---|
| 745 | ! ------------ |
---|
[1826] | 746 | !> Header output for plant canopy model |
---|
| 747 | !------------------------------------------------------------------------------! |
---|
| 748 | SUBROUTINE pcm_header ( io ) |
---|
| 749 | |
---|
| 750 | USE control_parameters, & |
---|
[3065] | 751 | ONLY: passive_scalar |
---|
[1826] | 752 | |
---|
| 753 | |
---|
| 754 | IMPLICIT NONE |
---|
| 755 | |
---|
| 756 | CHARACTER (LEN=10) :: coor_chr !< |
---|
| 757 | |
---|
| 758 | CHARACTER (LEN=86) :: coordinates !< |
---|
| 759 | CHARACTER (LEN=86) :: gradients !< |
---|
| 760 | CHARACTER (LEN=86) :: leaf_area_density !< |
---|
| 761 | CHARACTER (LEN=86) :: slices !< |
---|
| 762 | |
---|
| 763 | INTEGER(iwp) :: i !< |
---|
| 764 | INTEGER(iwp), INTENT(IN) :: io !< Unit of the output file |
---|
| 765 | INTEGER(iwp) :: k !< |
---|
| 766 | |
---|
| 767 | REAL(wp) :: canopy_height !< canopy height (in m) |
---|
| 768 | |
---|
[3065] | 769 | canopy_height = zw(pch_index) |
---|
[1826] | 770 | |
---|
| 771 | WRITE ( io, 1 ) canopy_mode, canopy_height, pch_index, & |
---|
| 772 | canopy_drag_coeff |
---|
| 773 | IF ( passive_scalar ) THEN |
---|
| 774 | WRITE ( io, 2 ) leaf_scalar_exch_coeff, & |
---|
| 775 | leaf_surface_conc |
---|
| 776 | ENDIF |
---|
| 777 | |
---|
| 778 | ! |
---|
| 779 | !-- Heat flux at the top of vegetation |
---|
| 780 | WRITE ( io, 3 ) cthf |
---|
| 781 | |
---|
| 782 | ! |
---|
| 783 | !-- Leaf area density profile, calculated either from given vertical |
---|
| 784 | !-- gradients or from beta probability density function. |
---|
| 785 | IF ( .NOT. calc_beta_lad_profile ) THEN |
---|
| 786 | |
---|
| 787 | !-- Building output strings, starting with surface value |
---|
| 788 | WRITE ( leaf_area_density, '(F7.4)' ) lad_surface |
---|
| 789 | gradients = '------' |
---|
| 790 | slices = ' 0' |
---|
| 791 | coordinates = ' 0.0' |
---|
| 792 | i = 1 |
---|
| 793 | DO WHILE ( i < 11 .AND. lad_vertical_gradient_level_ind(i) & |
---|
| 794 | /= -9999 ) |
---|
| 795 | |
---|
| 796 | WRITE (coor_chr,'(F7.2)') lad(lad_vertical_gradient_level_ind(i)) |
---|
| 797 | leaf_area_density = TRIM( leaf_area_density ) // ' ' // & |
---|
| 798 | TRIM( coor_chr ) |
---|
| 799 | |
---|
| 800 | WRITE (coor_chr,'(F7.2)') lad_vertical_gradient(i) |
---|
| 801 | gradients = TRIM( gradients ) // ' ' // TRIM( coor_chr ) |
---|
| 802 | |
---|
| 803 | WRITE (coor_chr,'(I7)') lad_vertical_gradient_level_ind(i) |
---|
| 804 | slices = TRIM( slices ) // ' ' // TRIM( coor_chr ) |
---|
| 805 | |
---|
| 806 | WRITE (coor_chr,'(F7.1)') lad_vertical_gradient_level(i) |
---|
| 807 | coordinates = TRIM( coordinates ) // ' ' // TRIM( coor_chr ) |
---|
| 808 | |
---|
| 809 | i = i + 1 |
---|
| 810 | ENDDO |
---|
| 811 | |
---|
| 812 | WRITE ( io, 4 ) TRIM( coordinates ), TRIM( leaf_area_density ), & |
---|
| 813 | TRIM( gradients ), TRIM( slices ) |
---|
| 814 | |
---|
| 815 | ELSE |
---|
| 816 | |
---|
| 817 | WRITE ( leaf_area_density, '(F7.4)' ) lad_surface |
---|
| 818 | coordinates = ' 0.0' |
---|
| 819 | |
---|
| 820 | DO k = 1, pch_index |
---|
| 821 | |
---|
| 822 | WRITE (coor_chr,'(F7.2)') lad(k) |
---|
| 823 | leaf_area_density = TRIM( leaf_area_density ) // ' ' // & |
---|
| 824 | TRIM( coor_chr ) |
---|
| 825 | |
---|
| 826 | WRITE (coor_chr,'(F7.1)') zu(k) |
---|
| 827 | coordinates = TRIM( coordinates ) // ' ' // TRIM( coor_chr ) |
---|
| 828 | |
---|
| 829 | ENDDO |
---|
| 830 | |
---|
| 831 | WRITE ( io, 5 ) TRIM( coordinates ), TRIM( leaf_area_density ), & |
---|
| 832 | alpha_lad, beta_lad, lai_beta |
---|
| 833 | |
---|
| 834 | ENDIF |
---|
| 835 | |
---|
| 836 | 1 FORMAT (//' Vegetation canopy (drag) model:'/ & |
---|
| 837 | ' ------------------------------'// & |
---|
| 838 | ' Canopy mode: ', A / & |
---|
| 839 | ' Canopy height: ',F6.2,'m (',I4,' grid points)' / & |
---|
| 840 | ' Leaf drag coefficient: ',F6.2 /) |
---|
| 841 | 2 FORMAT (/ ' Scalar exchange coefficient: ',F6.2 / & |
---|
| 842 | ' Scalar concentration at leaf surfaces in kg/m**3: ',F6.2 /) |
---|
| 843 | 3 FORMAT (' Predefined constant heatflux at the top of the vegetation: ',F6.2, & |
---|
| 844 | ' K m/s') |
---|
| 845 | 4 FORMAT (/ ' Characteristic levels of the leaf area density:'// & |
---|
| 846 | ' Height: ',A,' m'/ & |
---|
| 847 | ' Leaf area density: ',A,' m**2/m**3'/ & |
---|
| 848 | ' Gradient: ',A,' m**2/m**4'/ & |
---|
| 849 | ' Gridpoint: ',A) |
---|
| 850 | 5 FORMAT (//' Characteristic levels of the leaf area density and coefficients:'& |
---|
| 851 | // ' Height: ',A,' m'/ & |
---|
| 852 | ' Leaf area density: ',A,' m**2/m**3'/ & |
---|
| 853 | ' Coefficient alpha: ',F6.2 / & |
---|
| 854 | ' Coefficient beta: ',F6.2 / & |
---|
| 855 | ' Leaf area index: ',F6.2,' m**2/m**2' /) |
---|
| 856 | |
---|
| 857 | END SUBROUTINE pcm_header |
---|
| 858 | |
---|
| 859 | |
---|
| 860 | !------------------------------------------------------------------------------! |
---|
| 861 | ! Description: |
---|
| 862 | ! ------------ |
---|
[1682] | 863 | !> Initialization of the plant canopy model |
---|
[138] | 864 | !------------------------------------------------------------------------------! |
---|
[1826] | 865 | SUBROUTINE pcm_init |
---|
[1484] | 866 | |
---|
| 867 | |
---|
| 868 | USE control_parameters, & |
---|
[3449] | 869 | ONLY: message_string, ocean_mode, urban_surface |
---|
[1484] | 870 | |
---|
[2696] | 871 | USE netcdf_data_input_mod, & |
---|
| 872 | ONLY: leaf_area_density_f |
---|
| 873 | |
---|
[2232] | 874 | USE surface_mod, & |
---|
| 875 | ONLY: surf_def_h, surf_lsm_h, surf_usm_h |
---|
[1484] | 876 | |
---|
| 877 | IMPLICIT NONE |
---|
| 878 | |
---|
[2007] | 879 | INTEGER(iwp) :: i !< running index |
---|
| 880 | INTEGER(iwp) :: j !< running index |
---|
| 881 | INTEGER(iwp) :: k !< running index |
---|
[2232] | 882 | INTEGER(iwp) :: m !< running index |
---|
[3449] | 883 | INTEGER(iwp) :: pch_index_l |
---|
[1484] | 884 | |
---|
[2007] | 885 | REAL(wp) :: int_bpdf !< vertical integral for lad-profile construction |
---|
| 886 | REAL(wp) :: gradient !< gradient for lad-profile construction |
---|
| 887 | REAL(wp) :: canopy_height !< canopy height for lad-profile construction |
---|
[3241] | 888 | |
---|
[1484] | 889 | ! |
---|
| 890 | !-- Allocate one-dimensional arrays for the computation of the |
---|
| 891 | !-- leaf area density (lad) profile |
---|
| 892 | ALLOCATE( lad(0:nz+1), pre_lad(0:nz+1) ) |
---|
| 893 | lad = 0.0_wp |
---|
| 894 | pre_lad = 0.0_wp |
---|
| 895 | |
---|
| 896 | ! |
---|
[1826] | 897 | !-- Set flag that indicates that the lad-profile shall be calculated by using |
---|
| 898 | !-- a beta probability density function |
---|
| 899 | IF ( alpha_lad /= 9999999.9_wp .AND. beta_lad /= 9999999.9_wp ) THEN |
---|
| 900 | calc_beta_lad_profile = .TRUE. |
---|
| 901 | ENDIF |
---|
| 902 | |
---|
| 903 | |
---|
| 904 | ! |
---|
[1484] | 905 | !-- Compute the profile of leaf area density used in the plant |
---|
| 906 | !-- canopy model. The profile can either be constructed from |
---|
| 907 | !-- prescribed vertical gradients of the leaf area density or by |
---|
| 908 | !-- using a beta probability density function (see e.g. Markkanen et al., |
---|
| 909 | !-- 2003: Boundary-Layer Meteorology, 106, 437-459) |
---|
| 910 | IF ( .NOT. calc_beta_lad_profile ) THEN |
---|
| 911 | |
---|
| 912 | ! |
---|
| 913 | !-- Use vertical gradients for lad-profile construction |
---|
| 914 | i = 1 |
---|
| 915 | gradient = 0.0_wp |
---|
| 916 | |
---|
[3294] | 917 | IF ( .NOT. ocean_mode ) THEN |
---|
[1484] | 918 | |
---|
| 919 | lad(0) = lad_surface |
---|
| 920 | lad_vertical_gradient_level_ind(1) = 0 |
---|
| 921 | |
---|
| 922 | DO k = 1, pch_index |
---|
| 923 | IF ( i < 11 ) THEN |
---|
| 924 | IF ( lad_vertical_gradient_level(i) < zu(k) .AND. & |
---|
| 925 | lad_vertical_gradient_level(i) >= 0.0_wp ) THEN |
---|
| 926 | gradient = lad_vertical_gradient(i) |
---|
| 927 | lad_vertical_gradient_level_ind(i) = k - 1 |
---|
| 928 | i = i + 1 |
---|
| 929 | ENDIF |
---|
| 930 | ENDIF |
---|
| 931 | IF ( gradient /= 0.0_wp ) THEN |
---|
| 932 | IF ( k /= 1 ) THEN |
---|
| 933 | lad(k) = lad(k-1) + dzu(k) * gradient |
---|
| 934 | ELSE |
---|
| 935 | lad(k) = lad_surface + dzu(k) * gradient |
---|
| 936 | ENDIF |
---|
| 937 | ELSE |
---|
| 938 | lad(k) = lad(k-1) |
---|
| 939 | ENDIF |
---|
| 940 | ENDDO |
---|
| 941 | |
---|
| 942 | ENDIF |
---|
| 943 | |
---|
| 944 | ! |
---|
| 945 | !-- In case of no given leaf area density gradients, choose a vanishing |
---|
| 946 | !-- gradient. This information is used for the HEADER and the RUN_CONTROL |
---|
| 947 | !-- file. |
---|
| 948 | IF ( lad_vertical_gradient_level(1) == -9999999.9_wp ) THEN |
---|
| 949 | lad_vertical_gradient_level(1) = 0.0_wp |
---|
| 950 | ENDIF |
---|
| 951 | |
---|
| 952 | ELSE |
---|
| 953 | |
---|
| 954 | ! |
---|
| 955 | !-- Use beta function for lad-profile construction |
---|
| 956 | int_bpdf = 0.0_wp |
---|
[3065] | 957 | canopy_height = zw(pch_index) |
---|
[1484] | 958 | |
---|
[2232] | 959 | DO k = 0, pch_index |
---|
[1484] | 960 | int_bpdf = int_bpdf + & |
---|
[1826] | 961 | ( ( ( zw(k) / canopy_height )**( alpha_lad-1.0_wp ) ) * & |
---|
| 962 | ( ( 1.0_wp - ( zw(k) / canopy_height ) )**( & |
---|
| 963 | beta_lad-1.0_wp ) ) & |
---|
| 964 | * ( ( zw(k+1)-zw(k) ) / canopy_height ) ) |
---|
[1484] | 965 | ENDDO |
---|
| 966 | |
---|
| 967 | ! |
---|
| 968 | !-- Preliminary lad profile (defined on w-grid) |
---|
[2232] | 969 | DO k = 0, pch_index |
---|
[1826] | 970 | pre_lad(k) = lai_beta * & |
---|
| 971 | ( ( ( zw(k) / canopy_height )**( alpha_lad-1.0_wp ) ) & |
---|
| 972 | * ( ( 1.0_wp - ( zw(k) / canopy_height ) )**( & |
---|
| 973 | beta_lad-1.0_wp ) ) / int_bpdf & |
---|
| 974 | ) / canopy_height |
---|
[1484] | 975 | ENDDO |
---|
| 976 | |
---|
| 977 | ! |
---|
| 978 | !-- Final lad profile (defined on scalar-grid level, since most prognostic |
---|
| 979 | !-- quantities are defined there, hence, less interpolation is required |
---|
| 980 | !-- when calculating the canopy tendencies) |
---|
| 981 | lad(0) = pre_lad(0) |
---|
[2232] | 982 | DO k = 1, pch_index |
---|
[1484] | 983 | lad(k) = 0.5 * ( pre_lad(k-1) + pre_lad(k) ) |
---|
| 984 | ENDDO |
---|
| 985 | |
---|
| 986 | ENDIF |
---|
| 987 | |
---|
| 988 | ! |
---|
[2213] | 989 | !-- Allocate 3D-array for the leaf area density (lad_s). |
---|
[1484] | 990 | ALLOCATE( lad_s(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 991 | |
---|
| 992 | ! |
---|
| 993 | !-- Initialize canopy parameters cdc (canopy drag coefficient), |
---|
| 994 | !-- lsec (leaf scalar exchange coefficient), lsc (leaf surface concentration) |
---|
| 995 | !-- with the prescribed values |
---|
| 996 | cdc = canopy_drag_coeff |
---|
| 997 | lsec = leaf_scalar_exch_coeff |
---|
| 998 | lsc = leaf_surface_conc |
---|
| 999 | |
---|
| 1000 | ! |
---|
| 1001 | !-- Initialization of the canopy coverage in the model domain: |
---|
| 1002 | !-- Setting the parameter canopy_mode = 'block' initializes a canopy, which |
---|
| 1003 | !-- fully covers the domain surface |
---|
| 1004 | SELECT CASE ( TRIM( canopy_mode ) ) |
---|
| 1005 | |
---|
| 1006 | CASE( 'block' ) |
---|
| 1007 | |
---|
| 1008 | DO i = nxlg, nxrg |
---|
| 1009 | DO j = nysg, nyng |
---|
| 1010 | lad_s(:,j,i) = lad(:) |
---|
| 1011 | ENDDO |
---|
| 1012 | ENDDO |
---|
| 1013 | |
---|
[2007] | 1014 | CASE ( 'read_from_file_3d' ) |
---|
| 1015 | ! |
---|
[2696] | 1016 | !-- Initialize LAD with data from file. If LAD is given in NetCDF file, |
---|
| 1017 | !-- use these values, else take LAD profiles from ASCII file. |
---|
| 1018 | !-- Please note, in NetCDF file LAD is only given up to the maximum |
---|
| 1019 | !-- canopy top, indicated by leaf_area_density_f%nz. |
---|
| 1020 | lad_s = 0.0_wp |
---|
| 1021 | IF ( leaf_area_density_f%from_file ) THEN |
---|
| 1022 | ! |
---|
| 1023 | !-- Set also pch_index, used to be the upper bound of the vertical |
---|
| 1024 | !-- loops. Therefore, use the global top of the canopy layer. |
---|
| 1025 | pch_index = leaf_area_density_f%nz - 1 |
---|
| 1026 | |
---|
| 1027 | DO i = nxl, nxr |
---|
| 1028 | DO j = nys, nyn |
---|
| 1029 | DO k = 0, leaf_area_density_f%nz - 1 |
---|
| 1030 | IF ( leaf_area_density_f%var(k,j,i) /= & |
---|
| 1031 | leaf_area_density_f%fill ) & |
---|
| 1032 | lad_s(k,j,i) = leaf_area_density_f%var(k,j,i) |
---|
| 1033 | ENDDO |
---|
| 1034 | ENDDO |
---|
| 1035 | ENDDO |
---|
| 1036 | CALL exchange_horiz( lad_s, nbgp ) |
---|
| 1037 | ! |
---|
| 1038 | ! ASCII file |
---|
[2007] | 1039 | !-- Initialize canopy parameters cdc (canopy drag coefficient), |
---|
| 1040 | !-- lsec (leaf scalar exchange coefficient), lsc (leaf surface concentration) |
---|
| 1041 | !-- from file which contains complete 3D data (separate vertical profiles for |
---|
| 1042 | !-- each location). |
---|
[2696] | 1043 | ELSE |
---|
| 1044 | CALL pcm_read_plant_canopy_3d |
---|
| 1045 | ENDIF |
---|
[2007] | 1046 | |
---|
[1484] | 1047 | CASE DEFAULT |
---|
| 1048 | ! |
---|
[2007] | 1049 | !-- The DEFAULT case is reached either if the parameter |
---|
| 1050 | !-- canopy mode contains a wrong character string or if the |
---|
| 1051 | !-- user has coded a special case in the user interface. |
---|
| 1052 | !-- There, the subroutine user_init_plant_canopy checks |
---|
| 1053 | !-- which of these two conditions applies. |
---|
| 1054 | CALL user_init_plant_canopy |
---|
[1484] | 1055 | |
---|
| 1056 | END SELECT |
---|
[2696] | 1057 | ! |
---|
| 1058 | !-- Initialize 2D index array indicating canopy top index. |
---|
| 1059 | ALLOCATE( pch_index_ji(nysg:nyng,nxlg:nxrg) ) |
---|
| 1060 | pch_index_ji = 0 |
---|
[1484] | 1061 | |
---|
[2696] | 1062 | DO i = nxl, nxr |
---|
| 1063 | DO j = nys, nyn |
---|
| 1064 | DO k = 0, pch_index |
---|
| 1065 | IF ( lad_s(k,j,i) /= 0 ) pch_index_ji(j,i) = k |
---|
| 1066 | ENDDO |
---|
[1484] | 1067 | ! |
---|
[2696] | 1068 | !-- Check whether topography and local vegetation on top exceed |
---|
| 1069 | !-- height of the model domain. |
---|
[2698] | 1070 | k = get_topography_top_index_ji( j, i, 's' ) |
---|
[2696] | 1071 | IF ( k + pch_index_ji(j,i) >= nzt + 1 ) THEN |
---|
| 1072 | message_string = 'Local vegetation height on top of ' // & |
---|
| 1073 | 'topography exceeds height of model domain.' |
---|
| 1074 | CALL message( 'pcm_init', 'PA0999', 2, 2, 0, 6, 0 ) |
---|
| 1075 | ENDIF |
---|
| 1076 | |
---|
| 1077 | ENDDO |
---|
| 1078 | ENDDO |
---|
| 1079 | |
---|
| 1080 | CALL exchange_horiz_2d_int( pch_index_ji, nys, nyn, nxl, nxr, nbgp ) |
---|
| 1081 | |
---|
[3449] | 1082 | !-- Calculate global pch_index value (index of top of plant canopy from ground) |
---|
| 1083 | pch_index = MAXVAL(pch_index_ji) |
---|
| 1084 | !-- Exchange pch_index from all processors |
---|
| 1085 | #if defined( __parallel ) |
---|
| 1086 | CALL MPI_Allreduce(MPI_IN_PLACE, pch_index, 1, MPI_INTEGER, MPI_MAX, comm2d, ierr) |
---|
| 1087 | IF ( ierr /= 0 ) THEN |
---|
| 1088 | WRITE (9,*) 'Error MPI_Allreduce pch_index:', ierr |
---|
| 1089 | FLUSH(9) |
---|
| 1090 | ENDIF |
---|
| 1091 | #endif |
---|
| 1092 | |
---|
| 1093 | !-- Allocation of arrays pc_heating_rate, pc_transpiration_rate and pc_latent_rate |
---|
| 1094 | ALLOCATE( pc_heating_rate(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 1095 | IF ( humidity ) THEN |
---|
| 1096 | ALLOCATE( pc_transpiration_rate(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 1097 | pc_transpiration_rate = 0.0_wp |
---|
| 1098 | ALLOCATE( pc_latent_rate(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 1099 | pc_latent_rate = 0.0_wp |
---|
| 1100 | ENDIF |
---|
| 1101 | |
---|
[2696] | 1102 | ! |
---|
[2011] | 1103 | !-- Initialization of the canopy heat source distribution due to heating |
---|
| 1104 | !-- of the canopy layers by incoming solar radiation, in case that a non-zero |
---|
| 1105 | !-- value is set for the canopy top heat flux (cthf), which equals the |
---|
| 1106 | !-- available net radiation at canopy top. |
---|
| 1107 | !-- The heat source distribution is calculated by a decaying exponential |
---|
| 1108 | !-- function of the downward cumulative leaf area index (cum_lai_hf), |
---|
| 1109 | !-- assuming that the foliage inside the plant canopy is heated by solar |
---|
| 1110 | !-- radiation penetrating the canopy layers according to the distribution |
---|
| 1111 | !-- of net radiation as suggested by Brown & Covey (1966; Agric. Meteorol. 3, |
---|
| 1112 | !-- 73â96). This approach has been applied e.g. by Shaw & Schumann (1992; |
---|
[2213] | 1113 | !-- Bound.-Layer Meteorol. 61, 47â64). |
---|
[3449] | 1114 | !-- When using the radiation_interactions, canopy heating (pc_heating_rate) |
---|
| 1115 | !-- and plant canopy transpiration (pc_transpiration_rate, pc_latent_rate) |
---|
| 1116 | !-- are calculated in the RTM after the calculation of radiation. |
---|
| 1117 | !-- We cannot use variable radiation_interactions here to determine the situation |
---|
| 1118 | !-- as it is assigned in init_3d_model after the call of pcm_init. |
---|
| 1119 | IF ( cthf /= 0.0_wp ) THEN |
---|
[2213] | 1120 | |
---|
[3449] | 1121 | ALLOCATE( cum_lai_hf(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1484] | 1122 | ! |
---|
[2011] | 1123 | !-- Piecewise calculation of the cumulative leaf area index by vertical |
---|
[1484] | 1124 | !-- integration of the leaf area density |
---|
| 1125 | cum_lai_hf(:,:,:) = 0.0_wp |
---|
| 1126 | DO i = nxlg, nxrg |
---|
| 1127 | DO j = nysg, nyng |
---|
[2696] | 1128 | DO k = pch_index_ji(j,i)-1, 0, -1 |
---|
| 1129 | IF ( k == pch_index_ji(j,i)-1 ) THEN |
---|
[1484] | 1130 | cum_lai_hf(k,j,i) = cum_lai_hf(k+1,j,i) + & |
---|
| 1131 | ( 0.5_wp * lad_s(k+1,j,i) * & |
---|
| 1132 | ( zw(k+1) - zu(k+1) ) ) + & |
---|
| 1133 | ( 0.5_wp * ( 0.5_wp * ( lad_s(k+1,j,i) + & |
---|
| 1134 | lad_s(k,j,i) ) + & |
---|
| 1135 | lad_s(k+1,j,i) ) * & |
---|
| 1136 | ( zu(k+1) - zw(k) ) ) |
---|
| 1137 | ELSE |
---|
| 1138 | cum_lai_hf(k,j,i) = cum_lai_hf(k+1,j,i) + & |
---|
| 1139 | ( 0.5_wp * ( 0.5_wp * ( lad_s(k+2,j,i) + & |
---|
| 1140 | lad_s(k+1,j,i) ) + & |
---|
| 1141 | lad_s(k+1,j,i) ) * & |
---|
| 1142 | ( zw(k+1) - zu(k+1) ) ) + & |
---|
| 1143 | ( 0.5_wp * ( 0.5_wp * ( lad_s(k+1,j,i) + & |
---|
| 1144 | lad_s(k,j,i) ) + & |
---|
| 1145 | lad_s(k+1,j,i) ) * & |
---|
| 1146 | ( zu(k+1) - zw(k) ) ) |
---|
| 1147 | ENDIF |
---|
| 1148 | ENDDO |
---|
| 1149 | ENDDO |
---|
| 1150 | ENDDO |
---|
| 1151 | |
---|
[2232] | 1152 | ! |
---|
| 1153 | !-- In areas with canopy the surface value of the canopy heat |
---|
| 1154 | !-- flux distribution overrides the surface heat flux (shf) |
---|
| 1155 | !-- Start with default surface type |
---|
| 1156 | DO m = 1, surf_def_h(0)%ns |
---|
| 1157 | k = surf_def_h(0)%k(m) |
---|
| 1158 | IF ( cum_lai_hf(0,j,i) /= 0.0_wp ) & |
---|
| 1159 | surf_def_h(0)%shf(m) = cthf * exp( -ext_coef * cum_lai_hf(0,j,i) ) |
---|
| 1160 | ENDDO |
---|
[1484] | 1161 | ! |
---|
[2232] | 1162 | !-- Natural surfaces |
---|
| 1163 | DO m = 1, surf_lsm_h%ns |
---|
| 1164 | k = surf_lsm_h%k(m) |
---|
| 1165 | IF ( cum_lai_hf(0,j,i) /= 0.0_wp ) & |
---|
| 1166 | surf_lsm_h%shf(m) = cthf * exp( -ext_coef * cum_lai_hf(0,j,i) ) |
---|
| 1167 | ENDDO |
---|
| 1168 | ! |
---|
| 1169 | !-- Urban surfaces |
---|
| 1170 | DO m = 1, surf_usm_h%ns |
---|
| 1171 | k = surf_usm_h%k(m) |
---|
| 1172 | IF ( cum_lai_hf(0,j,i) /= 0.0_wp ) & |
---|
| 1173 | surf_usm_h%shf(m) = cthf * exp( -ext_coef * cum_lai_hf(0,j,i) ) |
---|
| 1174 | ENDDO |
---|
| 1175 | ! |
---|
| 1176 | ! |
---|
[2011] | 1177 | !-- Calculation of the heating rate (K/s) within the different layers of |
---|
[2232] | 1178 | !-- the plant canopy. Calculation is only necessary in areas covered with |
---|
| 1179 | !-- canopy. |
---|
| 1180 | !-- Within the different canopy layers the plant-canopy heating |
---|
| 1181 | !-- rate (pc_heating_rate) is calculated as the vertical |
---|
| 1182 | !-- divergence of the canopy heat fluxes at the top and bottom |
---|
| 1183 | !-- of the respective layer |
---|
[1484] | 1184 | DO i = nxlg, nxrg |
---|
| 1185 | DO j = nysg, nyng |
---|
[2696] | 1186 | DO k = 1, pch_index_ji(j,i) |
---|
[2232] | 1187 | IF ( cum_lai_hf(0,j,i) /= 0.0_wp ) THEN |
---|
[3022] | 1188 | pc_heating_rate(k,j,i) = cthf * & |
---|
| 1189 | ( exp(-ext_coef*cum_lai_hf(k,j,i)) - & |
---|
[2232] | 1190 | exp(-ext_coef*cum_lai_hf(k-1,j,i) ) ) / dzw(k) |
---|
| 1191 | ENDIF |
---|
| 1192 | ENDDO |
---|
[1721] | 1193 | ENDDO |
---|
| 1194 | ENDDO |
---|
[1484] | 1195 | |
---|
| 1196 | ENDIF |
---|
| 1197 | |
---|
| 1198 | |
---|
[1826] | 1199 | END SUBROUTINE pcm_init |
---|
[1484] | 1200 | |
---|
| 1201 | |
---|
[2007] | 1202 | !------------------------------------------------------------------------------! |
---|
| 1203 | ! Description: |
---|
| 1204 | ! ------------ |
---|
[2932] | 1205 | !> Parin for &plant_canopy_parameters for plant canopy model |
---|
[2007] | 1206 | !------------------------------------------------------------------------------! |
---|
| 1207 | SUBROUTINE pcm_parin |
---|
[1484] | 1208 | |
---|
[2746] | 1209 | USE control_parameters, & |
---|
[2932] | 1210 | ONLY: message_string, plant_canopy |
---|
[2007] | 1211 | |
---|
| 1212 | IMPLICIT NONE |
---|
| 1213 | |
---|
| 1214 | CHARACTER (LEN=80) :: line !< dummy string that contains the current line of the parameter file |
---|
| 1215 | |
---|
[2932] | 1216 | NAMELIST /plant_canopy_parameters/ & |
---|
| 1217 | alpha_lad, beta_lad, canopy_drag_coeff, & |
---|
| 1218 | canopy_mode, cthf, & |
---|
[2977] | 1219 | lad_surface, lad_type_coef, & |
---|
[2932] | 1220 | lad_vertical_gradient, & |
---|
| 1221 | lad_vertical_gradient_level, & |
---|
| 1222 | lai_beta, & |
---|
| 1223 | leaf_scalar_exch_coeff, & |
---|
[3449] | 1224 | leaf_surface_conc, pch_index, & |
---|
| 1225 | plant_canopy_transpiration |
---|
[2932] | 1226 | |
---|
[2007] | 1227 | NAMELIST /canopy_par/ alpha_lad, beta_lad, canopy_drag_coeff, & |
---|
| 1228 | canopy_mode, cthf, & |
---|
[2977] | 1229 | lad_surface, lad_type_coef, & |
---|
[2007] | 1230 | lad_vertical_gradient, & |
---|
| 1231 | lad_vertical_gradient_level, & |
---|
| 1232 | lai_beta, & |
---|
| 1233 | leaf_scalar_exch_coeff, & |
---|
[3449] | 1234 | leaf_surface_conc, pch_index, & |
---|
| 1235 | plant_canopy_transpiration |
---|
[3246] | 1236 | |
---|
[2007] | 1237 | line = ' ' |
---|
[3246] | 1238 | |
---|
[2007] | 1239 | ! |
---|
| 1240 | !-- Try to find radiation model package |
---|
| 1241 | REWIND ( 11 ) |
---|
| 1242 | line = ' ' |
---|
[3248] | 1243 | DO WHILE ( INDEX( line, '&plant_canopy_parameters' ) == 0 ) |
---|
[3246] | 1244 | READ ( 11, '(A)', END=12 ) line |
---|
[2007] | 1245 | ENDDO |
---|
| 1246 | BACKSPACE ( 11 ) |
---|
| 1247 | |
---|
| 1248 | ! |
---|
| 1249 | !-- Read user-defined namelist |
---|
[3246] | 1250 | READ ( 11, plant_canopy_parameters, ERR = 10 ) |
---|
[2932] | 1251 | |
---|
| 1252 | ! |
---|
| 1253 | !-- Set flag that indicates that the radiation model is switched on |
---|
| 1254 | plant_canopy = .TRUE. |
---|
[3246] | 1255 | |
---|
| 1256 | GOTO 14 |
---|
| 1257 | |
---|
| 1258 | 10 BACKSPACE( 11 ) |
---|
[3248] | 1259 | READ( 11 , '(A)') line |
---|
| 1260 | CALL parin_fail_message( 'plant_canopy_parameters', line ) |
---|
[2932] | 1261 | ! |
---|
| 1262 | !-- Try to find old namelist |
---|
[3246] | 1263 | 12 REWIND ( 11 ) |
---|
[2932] | 1264 | line = ' ' |
---|
[3248] | 1265 | DO WHILE ( INDEX( line, '&canopy_par' ) == 0 ) |
---|
[3246] | 1266 | READ ( 11, '(A)', END=14 ) line |
---|
[2932] | 1267 | ENDDO |
---|
| 1268 | BACKSPACE ( 11 ) |
---|
| 1269 | |
---|
| 1270 | ! |
---|
| 1271 | !-- Read user-defined namelist |
---|
[3246] | 1272 | READ ( 11, canopy_par, ERR = 13, END = 14 ) |
---|
[2007] | 1273 | |
---|
[2932] | 1274 | message_string = 'namelist canopy_par is deprecated and will be ' // & |
---|
[3046] | 1275 | 'removed in near future. Please use namelist ' // & |
---|
[2932] | 1276 | 'plant_canopy_parameters instead' |
---|
| 1277 | CALL message( 'pcm_parin', 'PA0487', 0, 1, 0, 6, 0 ) |
---|
[3246] | 1278 | |
---|
[2007] | 1279 | ! |
---|
| 1280 | !-- Set flag that indicates that the radiation model is switched on |
---|
| 1281 | plant_canopy = .TRUE. |
---|
| 1282 | |
---|
[3246] | 1283 | GOTO 14 |
---|
[2007] | 1284 | |
---|
[3246] | 1285 | 13 BACKSPACE( 11 ) |
---|
[3248] | 1286 | READ( 11 , '(A)') line |
---|
| 1287 | CALL parin_fail_message( 'canopy_par', line ) |
---|
[3246] | 1288 | |
---|
| 1289 | 14 CONTINUE |
---|
| 1290 | |
---|
| 1291 | |
---|
[2007] | 1292 | END SUBROUTINE pcm_parin |
---|
| 1293 | |
---|
| 1294 | |
---|
| 1295 | |
---|
[1484] | 1296 | !------------------------------------------------------------------------------! |
---|
| 1297 | ! Description: |
---|
| 1298 | ! ------------ |
---|
[2007] | 1299 | ! |
---|
| 1300 | !> Loads 3D plant canopy data from file. File format is as follows: |
---|
| 1301 | !> |
---|
| 1302 | !> num_levels |
---|
[2977] | 1303 | !> dtype,x,y,pctype,value(nzb),value(nzb+1), ... ,value(nzb+num_levels-1) |
---|
| 1304 | !> dtype,x,y,pctype,value(nzb),value(nzb+1), ... ,value(nzb+num_levels-1) |
---|
| 1305 | !> dtype,x,y,pctype,value(nzb),value(nzb+1), ... ,value(nzb+num_levels-1) |
---|
[2007] | 1306 | !> ... |
---|
| 1307 | !> |
---|
| 1308 | !> i.e. first line determines number of levels and further lines represent plant |
---|
| 1309 | !> canopy data, one line per column and variable. In each data line, |
---|
| 1310 | !> dtype represents variable to be set: |
---|
| 1311 | !> |
---|
| 1312 | !> dtype=1: leaf area density (lad_s) |
---|
[2213] | 1313 | !> dtype=2....n: some additional plant canopy input data quantity |
---|
[2007] | 1314 | !> |
---|
| 1315 | !> Zeros are added automatically above num_levels until top of domain. Any |
---|
| 1316 | !> non-specified (x,y) columns have zero values as default. |
---|
| 1317 | !------------------------------------------------------------------------------! |
---|
| 1318 | SUBROUTINE pcm_read_plant_canopy_3d |
---|
[2213] | 1319 | |
---|
| 1320 | USE control_parameters, & |
---|
[3241] | 1321 | ONLY: coupling_char, message_string |
---|
[2007] | 1322 | |
---|
[2213] | 1323 | USE indices, & |
---|
| 1324 | ONLY: nbgp |
---|
| 1325 | |
---|
| 1326 | IMPLICIT NONE |
---|
[2007] | 1327 | |
---|
[2213] | 1328 | INTEGER(iwp) :: dtype !< type of input data (1=lad) |
---|
[2977] | 1329 | INTEGER(iwp) :: pctype !< type of plant canopy (deciduous,non-deciduous,...) |
---|
[2213] | 1330 | INTEGER(iwp) :: i, j !< running index |
---|
| 1331 | INTEGER(iwp) :: nzp !< number of vertical layers of plant canopy |
---|
[3337] | 1332 | INTEGER(iwp) :: nzpltop !< |
---|
| 1333 | INTEGER(iwp) :: nzpl !< |
---|
| 1334 | INTEGER(iwp) :: kk !< |
---|
[2213] | 1335 | |
---|
| 1336 | REAL(wp), DIMENSION(:), ALLOCATABLE :: col !< vertical column of input data |
---|
[2007] | 1337 | |
---|
[2213] | 1338 | ! |
---|
| 1339 | !-- Initialize lad_s array |
---|
| 1340 | lad_s = 0.0_wp |
---|
| 1341 | |
---|
| 1342 | ! |
---|
| 1343 | !-- Open and read plant canopy input data |
---|
[2977] | 1344 | OPEN(152, FILE='PLANT_CANOPY_DATA_3D' // TRIM( coupling_char ), & |
---|
| 1345 | ACCESS='SEQUENTIAL', ACTION='READ', STATUS='OLD', & |
---|
| 1346 | FORM='FORMATTED', ERR=515) |
---|
| 1347 | READ(152, *, ERR=516, END=517) nzp !< read first line = number of vertical layers |
---|
[3337] | 1348 | nzpltop = MIN(nzt+1, nzb+nzp-1) |
---|
| 1349 | nzpl = nzpltop - nzb + 1 !< no. of layers to assign |
---|
[2977] | 1350 | ALLOCATE( col(0:nzp-1) ) |
---|
[2007] | 1351 | |
---|
[2213] | 1352 | DO |
---|
[2977] | 1353 | READ(152, *, ERR=516, END=517) dtype, i, j, pctype, col(:) |
---|
| 1354 | IF ( i < nxlg .OR. i > nxrg .OR. j < nysg .OR. j > nyng ) CYCLE |
---|
| 1355 | |
---|
| 1356 | SELECT CASE (dtype) |
---|
| 1357 | CASE( 1 ) !< leaf area density |
---|
[2213] | 1358 | ! |
---|
[2977] | 1359 | !-- This is just the pure canopy layer assumed to be grounded to |
---|
| 1360 | !-- a flat domain surface. At locations where plant canopy sits |
---|
| 1361 | !-- on top of any kind of topography, the vertical plant column |
---|
| 1362 | !-- must be "lifted", which is done in SUBROUTINE pcm_tendency. |
---|
| 1363 | IF ( pctype < 0 .OR. pctype > 10 ) THEN !< incorrect plant canopy type |
---|
| 1364 | WRITE( message_string, * ) 'Incorrect type of plant canopy. ' // & |
---|
| 1365 | 'Allowed values 0 <= pctype <= 10, ' // & |
---|
| 1366 | 'but pctype is ', pctype |
---|
| 1367 | CALL message( 'pcm_read_plant_canopy_3d', 'PA0349', 1, 2, 0, 6, 0 ) |
---|
| 1368 | ENDIF |
---|
[3337] | 1369 | kk = get_topography_top_index_ji( j, i, 's' ) |
---|
| 1370 | lad_s(nzb:nzpltop-kk, j, i) = col(kk:nzpl-1)*lad_type_coef(pctype) |
---|
[2977] | 1371 | CASE DEFAULT |
---|
| 1372 | WRITE(message_string, '(a,i2,a)') & |
---|
| 1373 | 'Unknown record type in file PLANT_CANOPY_DATA_3D: "', dtype, '"' |
---|
| 1374 | CALL message( 'pcm_read_plant_canopy_3d', 'PA0530', 1, 2, 0, 6, 0 ) |
---|
| 1375 | END SELECT |
---|
[2213] | 1376 | ENDDO |
---|
[2007] | 1377 | |
---|
[2213] | 1378 | 515 message_string = 'error opening file PLANT_CANOPY_DATA_3D' |
---|
| 1379 | CALL message( 'pcm_read_plant_canopy_3d', 'PA0531', 1, 2, 0, 6, 0 ) |
---|
[2007] | 1380 | |
---|
[2213] | 1381 | 516 message_string = 'error reading file PLANT_CANOPY_DATA_3D' |
---|
| 1382 | CALL message( 'pcm_read_plant_canopy_3d', 'PA0532', 1, 2, 0, 6, 0 ) |
---|
| 1383 | |
---|
| 1384 | 517 CLOSE(152) |
---|
[2977] | 1385 | DEALLOCATE( col ) |
---|
[2213] | 1386 | |
---|
| 1387 | CALL exchange_horiz( lad_s, nbgp ) |
---|
[2007] | 1388 | |
---|
| 1389 | END SUBROUTINE pcm_read_plant_canopy_3d |
---|
| 1390 | |
---|
| 1391 | |
---|
| 1392 | |
---|
| 1393 | !------------------------------------------------------------------------------! |
---|
| 1394 | ! Description: |
---|
| 1395 | ! ------------ |
---|
[1682] | 1396 | !> Calculation of the tendency terms, accounting for the effect of the plant |
---|
| 1397 | !> canopy on momentum and scalar quantities. |
---|
| 1398 | !> |
---|
| 1399 | !> The canopy is located where the leaf area density lad_s(k,j,i) > 0.0 |
---|
[1826] | 1400 | !> (defined on scalar grid), as initialized in subroutine pcm_init. |
---|
[1682] | 1401 | !> The lad on the w-grid is vertically interpolated from the surrounding |
---|
| 1402 | !> lad_s. The upper boundary of the canopy is defined on the w-grid at |
---|
| 1403 | !> k = pch_index. Here, the lad is zero. |
---|
| 1404 | !> |
---|
| 1405 | !> The canopy drag must be limited (previously accounted for by calculation of |
---|
| 1406 | !> a limiting canopy timestep for the determination of the maximum LES timestep |
---|
| 1407 | !> in subroutine timestep), since it is physically impossible that the canopy |
---|
| 1408 | !> drag alone can locally change the sign of a velocity component. This |
---|
| 1409 | !> limitation is realized by calculating preliminary tendencies and velocities. |
---|
| 1410 | !> It is subsequently checked if the preliminary new velocity has a different |
---|
| 1411 | !> sign than the current velocity. If so, the tendency is limited in a way that |
---|
| 1412 | !> the velocity can at maximum be reduced to zero by the canopy drag. |
---|
| 1413 | !> |
---|
| 1414 | !> |
---|
| 1415 | !> Call for all grid points |
---|
[1484] | 1416 | !------------------------------------------------------------------------------! |
---|
[1826] | 1417 | SUBROUTINE pcm_tendency( component ) |
---|
[138] | 1418 | |
---|
| 1419 | |
---|
[1320] | 1420 | USE control_parameters, & |
---|
[1484] | 1421 | ONLY: dt_3d, message_string |
---|
[1320] | 1422 | |
---|
| 1423 | USE kinds |
---|
| 1424 | |
---|
[138] | 1425 | IMPLICIT NONE |
---|
| 1426 | |
---|
[1682] | 1427 | INTEGER(iwp) :: component !< prognostic variable (u,v,w,pt,q,e) |
---|
| 1428 | INTEGER(iwp) :: i !< running index |
---|
| 1429 | INTEGER(iwp) :: j !< running index |
---|
| 1430 | INTEGER(iwp) :: k !< running index |
---|
[2232] | 1431 | INTEGER(iwp) :: k_wall !< vertical index of topography top |
---|
[1721] | 1432 | INTEGER(iwp) :: kk !< running index for flat lad arrays |
---|
[1484] | 1433 | |
---|
[1682] | 1434 | REAL(wp) :: ddt_3d !< inverse of the LES timestep (dt_3d) |
---|
| 1435 | REAL(wp) :: lad_local !< local lad value |
---|
| 1436 | REAL(wp) :: pre_tend !< preliminary tendency |
---|
| 1437 | REAL(wp) :: pre_u !< preliminary u-value |
---|
| 1438 | REAL(wp) :: pre_v !< preliminary v-value |
---|
| 1439 | REAL(wp) :: pre_w !< preliminary w-value |
---|
[1484] | 1440 | |
---|
| 1441 | |
---|
| 1442 | ddt_3d = 1.0_wp / dt_3d |
---|
[138] | 1443 | |
---|
| 1444 | ! |
---|
[1484] | 1445 | !-- Compute drag for the three velocity components and the SGS-TKE: |
---|
[138] | 1446 | SELECT CASE ( component ) |
---|
| 1447 | |
---|
| 1448 | ! |
---|
| 1449 | !-- u-component |
---|
| 1450 | CASE ( 1 ) |
---|
| 1451 | DO i = nxlu, nxr |
---|
| 1452 | DO j = nys, nyn |
---|
[2232] | 1453 | ! |
---|
| 1454 | !-- Determine topography-top index on u-grid |
---|
[2698] | 1455 | k_wall = get_topography_top_index_ji( j, i, 'u' ) |
---|
[2696] | 1456 | DO k = k_wall+1, k_wall + pch_index_ji(j,i) |
---|
[1484] | 1457 | |
---|
[2232] | 1458 | kk = k - k_wall !- lad arrays are defined flat |
---|
[1484] | 1459 | ! |
---|
| 1460 | !-- In order to create sharp boundaries of the plant canopy, |
---|
| 1461 | !-- the lad on the u-grid at index (k,j,i) is equal to |
---|
| 1462 | !-- lad_s(k,j,i), rather than being interpolated from the |
---|
| 1463 | !-- surrounding lad_s, because this would yield smaller lad |
---|
| 1464 | !-- at the canopy boundaries than inside of the canopy. |
---|
| 1465 | !-- For the same reason, the lad at the rightmost(i+1)canopy |
---|
| 1466 | !-- boundary on the u-grid equals lad_s(k,j,i). |
---|
[1721] | 1467 | lad_local = lad_s(kk,j,i) |
---|
| 1468 | IF ( lad_local == 0.0_wp .AND. lad_s(kk,j,i-1) > 0.0_wp )& |
---|
| 1469 | THEN |
---|
| 1470 | lad_local = lad_s(kk,j,i-1) |
---|
[1484] | 1471 | ENDIF |
---|
| 1472 | |
---|
| 1473 | pre_tend = 0.0_wp |
---|
| 1474 | pre_u = 0.0_wp |
---|
| 1475 | ! |
---|
| 1476 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
| 1477 | pre_tend = - cdc * & |
---|
| 1478 | lad_local * & |
---|
| 1479 | SQRT( u(k,j,i)**2 + & |
---|
| 1480 | ( 0.25_wp * ( v(k,j,i-1) + & |
---|
| 1481 | v(k,j,i) + & |
---|
| 1482 | v(k,j+1,i) + & |
---|
| 1483 | v(k,j+1,i-1) ) & |
---|
| 1484 | )**2 + & |
---|
| 1485 | ( 0.25_wp * ( w(k-1,j,i-1) + & |
---|
| 1486 | w(k-1,j,i) + & |
---|
| 1487 | w(k,j,i-1) + & |
---|
| 1488 | w(k,j,i) ) & |
---|
| 1489 | )**2 & |
---|
| 1490 | ) * & |
---|
| 1491 | u(k,j,i) |
---|
| 1492 | |
---|
| 1493 | ! |
---|
| 1494 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 1495 | pre_u = u(k,j,i) + dt_3d * pre_tend |
---|
| 1496 | ! |
---|
| 1497 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
| 1498 | !-- and in case the signs are different, limit the tendency |
---|
| 1499 | IF ( SIGN(pre_u,u(k,j,i)) /= pre_u ) THEN |
---|
| 1500 | pre_tend = - u(k,j,i) * ddt_3d |
---|
| 1501 | ELSE |
---|
| 1502 | pre_tend = pre_tend |
---|
| 1503 | ENDIF |
---|
| 1504 | ! |
---|
| 1505 | !-- Calculate final tendency |
---|
| 1506 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 1507 | |
---|
[138] | 1508 | ENDDO |
---|
| 1509 | ENDDO |
---|
| 1510 | ENDDO |
---|
| 1511 | |
---|
| 1512 | ! |
---|
| 1513 | !-- v-component |
---|
| 1514 | CASE ( 2 ) |
---|
| 1515 | DO i = nxl, nxr |
---|
| 1516 | DO j = nysv, nyn |
---|
[2232] | 1517 | ! |
---|
| 1518 | !-- Determine topography-top index on v-grid |
---|
[2698] | 1519 | k_wall = get_topography_top_index_ji( j, i, 'v' ) |
---|
[2317] | 1520 | |
---|
[2696] | 1521 | DO k = k_wall+1, k_wall + pch_index_ji(j,i) |
---|
[1484] | 1522 | |
---|
[2232] | 1523 | kk = k - k_wall !- lad arrays are defined flat |
---|
[1484] | 1524 | ! |
---|
| 1525 | !-- In order to create sharp boundaries of the plant canopy, |
---|
| 1526 | !-- the lad on the v-grid at index (k,j,i) is equal to |
---|
| 1527 | !-- lad_s(k,j,i), rather than being interpolated from the |
---|
| 1528 | !-- surrounding lad_s, because this would yield smaller lad |
---|
| 1529 | !-- at the canopy boundaries than inside of the canopy. |
---|
| 1530 | !-- For the same reason, the lad at the northmost(j+1) canopy |
---|
| 1531 | !-- boundary on the v-grid equals lad_s(k,j,i). |
---|
[1721] | 1532 | lad_local = lad_s(kk,j,i) |
---|
| 1533 | IF ( lad_local == 0.0_wp .AND. lad_s(kk,j-1,i) > 0.0_wp )& |
---|
| 1534 | THEN |
---|
| 1535 | lad_local = lad_s(kk,j-1,i) |
---|
[1484] | 1536 | ENDIF |
---|
| 1537 | |
---|
| 1538 | pre_tend = 0.0_wp |
---|
| 1539 | pre_v = 0.0_wp |
---|
| 1540 | ! |
---|
| 1541 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
| 1542 | pre_tend = - cdc * & |
---|
| 1543 | lad_local * & |
---|
| 1544 | SQRT( ( 0.25_wp * ( u(k,j-1,i) + & |
---|
| 1545 | u(k,j-1,i+1) + & |
---|
| 1546 | u(k,j,i) + & |
---|
| 1547 | u(k,j,i+1) ) & |
---|
| 1548 | )**2 + & |
---|
| 1549 | v(k,j,i)**2 + & |
---|
| 1550 | ( 0.25_wp * ( w(k-1,j-1,i) + & |
---|
| 1551 | w(k-1,j,i) + & |
---|
| 1552 | w(k,j-1,i) + & |
---|
| 1553 | w(k,j,i) ) & |
---|
| 1554 | )**2 & |
---|
| 1555 | ) * & |
---|
| 1556 | v(k,j,i) |
---|
| 1557 | |
---|
| 1558 | ! |
---|
| 1559 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 1560 | pre_v = v(k,j,i) + dt_3d * pre_tend |
---|
| 1561 | ! |
---|
| 1562 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
| 1563 | !-- and in case the signs are different, limit the tendency |
---|
| 1564 | IF ( SIGN(pre_v,v(k,j,i)) /= pre_v ) THEN |
---|
| 1565 | pre_tend = - v(k,j,i) * ddt_3d |
---|
| 1566 | ELSE |
---|
| 1567 | pre_tend = pre_tend |
---|
| 1568 | ENDIF |
---|
| 1569 | ! |
---|
| 1570 | !-- Calculate final tendency |
---|
| 1571 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 1572 | |
---|
[138] | 1573 | ENDDO |
---|
| 1574 | ENDDO |
---|
| 1575 | ENDDO |
---|
| 1576 | |
---|
| 1577 | ! |
---|
| 1578 | !-- w-component |
---|
| 1579 | CASE ( 3 ) |
---|
| 1580 | DO i = nxl, nxr |
---|
| 1581 | DO j = nys, nyn |
---|
[2232] | 1582 | ! |
---|
| 1583 | !-- Determine topography-top index on w-grid |
---|
[2698] | 1584 | k_wall = get_topography_top_index_ji( j, i, 'w' ) |
---|
[2317] | 1585 | |
---|
[2696] | 1586 | DO k = k_wall+1, k_wall + pch_index_ji(j,i) - 1 |
---|
[1484] | 1587 | |
---|
[2232] | 1588 | kk = k - k_wall !- lad arrays are defined flat |
---|
[1721] | 1589 | |
---|
[1484] | 1590 | pre_tend = 0.0_wp |
---|
| 1591 | pre_w = 0.0_wp |
---|
| 1592 | ! |
---|
| 1593 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
| 1594 | pre_tend = - cdc * & |
---|
| 1595 | (0.5_wp * & |
---|
[1721] | 1596 | ( lad_s(kk+1,j,i) + lad_s(kk,j,i) )) * & |
---|
[1484] | 1597 | SQRT( ( 0.25_wp * ( u(k,j,i) + & |
---|
| 1598 | u(k,j,i+1) + & |
---|
| 1599 | u(k+1,j,i) + & |
---|
| 1600 | u(k+1,j,i+1) ) & |
---|
| 1601 | )**2 + & |
---|
| 1602 | ( 0.25_wp * ( v(k,j,i) + & |
---|
| 1603 | v(k,j+1,i) + & |
---|
| 1604 | v(k+1,j,i) + & |
---|
| 1605 | v(k+1,j+1,i) ) & |
---|
| 1606 | )**2 + & |
---|
| 1607 | w(k,j,i)**2 & |
---|
| 1608 | ) * & |
---|
| 1609 | w(k,j,i) |
---|
| 1610 | ! |
---|
| 1611 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 1612 | pre_w = w(k,j,i) + dt_3d * pre_tend |
---|
| 1613 | ! |
---|
| 1614 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
| 1615 | !-- and in case the signs are different, limit the tendency |
---|
| 1616 | IF ( SIGN(pre_w,w(k,j,i)) /= pre_w ) THEN |
---|
| 1617 | pre_tend = - w(k,j,i) * ddt_3d |
---|
| 1618 | ELSE |
---|
| 1619 | pre_tend = pre_tend |
---|
| 1620 | ENDIF |
---|
| 1621 | ! |
---|
| 1622 | !-- Calculate final tendency |
---|
| 1623 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 1624 | |
---|
[138] | 1625 | ENDDO |
---|
| 1626 | ENDDO |
---|
| 1627 | ENDDO |
---|
| 1628 | |
---|
| 1629 | ! |
---|
[153] | 1630 | !-- potential temperature |
---|
[138] | 1631 | CASE ( 4 ) |
---|
[3449] | 1632 | IF ( humidity ) THEN |
---|
| 1633 | DO i = nxl, nxr |
---|
| 1634 | DO j = nys, nyn |
---|
| 1635 | !-- Determine topography-top index on scalar-grid |
---|
| 1636 | k_wall = get_topography_top_index_ji( j, i, 's' ) |
---|
| 1637 | DO k = k_wall+1, k_wall + pch_index_ji(j,i) |
---|
| 1638 | kk = k - k_wall !- lad arrays are defined flat |
---|
| 1639 | tend(k,j,i) = tend(k,j,i) + pc_heating_rate(kk,j,i) - pc_latent_rate(kk,j,i) |
---|
| 1640 | ENDDO |
---|
[153] | 1641 | ENDDO |
---|
| 1642 | ENDDO |
---|
[3449] | 1643 | ELSE |
---|
| 1644 | DO i = nxl, nxr |
---|
| 1645 | DO j = nys, nyn |
---|
| 1646 | !-- Determine topography-top index on scalar-grid |
---|
| 1647 | k_wall = get_topography_top_index_ji( j, i, 's' ) |
---|
| 1648 | DO k = k_wall+1, k_wall + pch_index_ji(j,i) |
---|
| 1649 | kk = k - k_wall !- lad arrays are defined flat |
---|
| 1650 | tend(k,j,i) = tend(k,j,i) + pc_heating_rate(kk,j,i) |
---|
| 1651 | ENDDO |
---|
| 1652 | ENDDO |
---|
| 1653 | ENDDO |
---|
| 1654 | ENDIF |
---|
[153] | 1655 | |
---|
| 1656 | ! |
---|
[1960] | 1657 | !-- humidity |
---|
[153] | 1658 | CASE ( 5 ) |
---|
| 1659 | DO i = nxl, nxr |
---|
| 1660 | DO j = nys, nyn |
---|
[2232] | 1661 | ! |
---|
| 1662 | !-- Determine topography-top index on scalar-grid |
---|
[2698] | 1663 | k_wall = get_topography_top_index_ji( j, i, 's' ) |
---|
[2317] | 1664 | |
---|
[2696] | 1665 | DO k = k_wall+1, k_wall + pch_index_ji(j,i) |
---|
[2232] | 1666 | |
---|
| 1667 | kk = k - k_wall !- lad arrays are defined flat |
---|
[3014] | 1668 | |
---|
[3449] | 1669 | IF ( .NOT. plant_canopy_transpiration ) THEN |
---|
| 1670 | ! pc_transpiration_rate is calculated in radiation model |
---|
| 1671 | ! in case of plant_canopy_transpiration = .T. |
---|
| 1672 | ! to include also the dependecy to the radiation |
---|
| 1673 | ! in the plant canopy box |
---|
| 1674 | pc_transpiration_rate(kk,j,i) = - lsec & |
---|
| 1675 | * lad_s(kk,j,i) * & |
---|
| 1676 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 1677 | u(k,j,i+1) ) & |
---|
| 1678 | )**2 + & |
---|
| 1679 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 1680 | v(k,j+1,i) ) & |
---|
| 1681 | )**2 + & |
---|
| 1682 | ( 0.5_wp * ( w(k-1,j,i) + & |
---|
| 1683 | w(k,j,i) ) & |
---|
| 1684 | )**2 & |
---|
| 1685 | ) * & |
---|
| 1686 | ( q(k,j,i) - lsc ) |
---|
| 1687 | ENDIF |
---|
| 1688 | |
---|
[3014] | 1689 | tend(k,j,i) = tend(k,j,i) + pc_transpiration_rate(kk,j,i) |
---|
[153] | 1690 | ENDDO |
---|
| 1691 | ENDDO |
---|
| 1692 | ENDDO |
---|
| 1693 | |
---|
| 1694 | ! |
---|
| 1695 | !-- sgs-tke |
---|
| 1696 | CASE ( 6 ) |
---|
| 1697 | DO i = nxl, nxr |
---|
| 1698 | DO j = nys, nyn |
---|
[2232] | 1699 | ! |
---|
| 1700 | !-- Determine topography-top index on scalar-grid |
---|
[2698] | 1701 | k_wall = get_topography_top_index_ji( j, i, 's' ) |
---|
[2317] | 1702 | |
---|
[2696] | 1703 | DO k = k_wall+1, k_wall + pch_index_ji(j,i) |
---|
[2232] | 1704 | |
---|
| 1705 | kk = k - k_wall !- lad arrays are defined flat |
---|
[1484] | 1706 | tend(k,j,i) = tend(k,j,i) - & |
---|
| 1707 | 2.0_wp * cdc * & |
---|
[1721] | 1708 | lad_s(kk,j,i) * & |
---|
[1484] | 1709 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 1710 | u(k,j,i+1) ) & |
---|
| 1711 | )**2 + & |
---|
| 1712 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 1713 | v(k,j+1,i) ) & |
---|
| 1714 | )**2 + & |
---|
| 1715 | ( 0.5_wp * ( w(k,j,i) + & |
---|
| 1716 | w(k+1,j,i) ) & |
---|
| 1717 | )**2 & |
---|
| 1718 | ) * & |
---|
| 1719 | e(k,j,i) |
---|
[138] | 1720 | ENDDO |
---|
| 1721 | ENDDO |
---|
| 1722 | ENDDO |
---|
[1960] | 1723 | ! |
---|
| 1724 | !-- scalar concentration |
---|
| 1725 | CASE ( 7 ) |
---|
| 1726 | DO i = nxl, nxr |
---|
| 1727 | DO j = nys, nyn |
---|
[2232] | 1728 | ! |
---|
| 1729 | !-- Determine topography-top index on scalar-grid |
---|
[2698] | 1730 | k_wall = get_topography_top_index_ji( j, i, 's' ) |
---|
[2317] | 1731 | |
---|
[2696] | 1732 | DO k = k_wall+1, k_wall + pch_index_ji(j,i) |
---|
[2232] | 1733 | |
---|
| 1734 | kk = k - k_wall !- lad arrays are defined flat |
---|
[1960] | 1735 | tend(k,j,i) = tend(k,j,i) - & |
---|
| 1736 | lsec * & |
---|
| 1737 | lad_s(kk,j,i) * & |
---|
| 1738 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 1739 | u(k,j,i+1) ) & |
---|
| 1740 | )**2 + & |
---|
| 1741 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 1742 | v(k,j+1,i) ) & |
---|
| 1743 | )**2 + & |
---|
| 1744 | ( 0.5_wp * ( w(k-1,j,i) + & |
---|
| 1745 | w(k,j,i) ) & |
---|
| 1746 | )**2 & |
---|
| 1747 | ) * & |
---|
| 1748 | ( s(k,j,i) - lsc ) |
---|
| 1749 | ENDDO |
---|
| 1750 | ENDDO |
---|
| 1751 | ENDDO |
---|
[1484] | 1752 | |
---|
| 1753 | |
---|
[1960] | 1754 | |
---|
[138] | 1755 | CASE DEFAULT |
---|
| 1756 | |
---|
[257] | 1757 | WRITE( message_string, * ) 'wrong component: ', component |
---|
[1826] | 1758 | CALL message( 'pcm_tendency', 'PA0279', 1, 2, 0, 6, 0 ) |
---|
[138] | 1759 | |
---|
| 1760 | END SELECT |
---|
| 1761 | |
---|
[1826] | 1762 | END SUBROUTINE pcm_tendency |
---|
[138] | 1763 | |
---|
| 1764 | |
---|
| 1765 | !------------------------------------------------------------------------------! |
---|
[1484] | 1766 | ! Description: |
---|
| 1767 | ! ------------ |
---|
[1682] | 1768 | !> Calculation of the tendency terms, accounting for the effect of the plant |
---|
| 1769 | !> canopy on momentum and scalar quantities. |
---|
| 1770 | !> |
---|
| 1771 | !> The canopy is located where the leaf area density lad_s(k,j,i) > 0.0 |
---|
[1826] | 1772 | !> (defined on scalar grid), as initialized in subroutine pcm_init. |
---|
[1682] | 1773 | !> The lad on the w-grid is vertically interpolated from the surrounding |
---|
| 1774 | !> lad_s. The upper boundary of the canopy is defined on the w-grid at |
---|
| 1775 | !> k = pch_index. Here, the lad is zero. |
---|
| 1776 | !> |
---|
| 1777 | !> The canopy drag must be limited (previously accounted for by calculation of |
---|
| 1778 | !> a limiting canopy timestep for the determination of the maximum LES timestep |
---|
| 1779 | !> in subroutine timestep), since it is physically impossible that the canopy |
---|
| 1780 | !> drag alone can locally change the sign of a velocity component. This |
---|
| 1781 | !> limitation is realized by calculating preliminary tendencies and velocities. |
---|
| 1782 | !> It is subsequently checked if the preliminary new velocity has a different |
---|
| 1783 | !> sign than the current velocity. If so, the tendency is limited in a way that |
---|
| 1784 | !> the velocity can at maximum be reduced to zero by the canopy drag. |
---|
| 1785 | !> |
---|
| 1786 | !> |
---|
| 1787 | !> Call for grid point i,j |
---|
[138] | 1788 | !------------------------------------------------------------------------------! |
---|
[1826] | 1789 | SUBROUTINE pcm_tendency_ij( i, j, component ) |
---|
[138] | 1790 | |
---|
| 1791 | |
---|
[1320] | 1792 | USE control_parameters, & |
---|
[1484] | 1793 | ONLY: dt_3d, message_string |
---|
[1320] | 1794 | |
---|
| 1795 | USE kinds |
---|
| 1796 | |
---|
[138] | 1797 | IMPLICIT NONE |
---|
| 1798 | |
---|
[1682] | 1799 | INTEGER(iwp) :: component !< prognostic variable (u,v,w,pt,q,e) |
---|
| 1800 | INTEGER(iwp) :: i !< running index |
---|
| 1801 | INTEGER(iwp) :: j !< running index |
---|
| 1802 | INTEGER(iwp) :: k !< running index |
---|
[2232] | 1803 | INTEGER(iwp) :: k_wall !< vertical index of topography top |
---|
[1721] | 1804 | INTEGER(iwp) :: kk !< running index for flat lad arrays |
---|
[138] | 1805 | |
---|
[1682] | 1806 | REAL(wp) :: ddt_3d !< inverse of the LES timestep (dt_3d) |
---|
| 1807 | REAL(wp) :: lad_local !< local lad value |
---|
| 1808 | REAL(wp) :: pre_tend !< preliminary tendency |
---|
| 1809 | REAL(wp) :: pre_u !< preliminary u-value |
---|
| 1810 | REAL(wp) :: pre_v !< preliminary v-value |
---|
| 1811 | REAL(wp) :: pre_w !< preliminary w-value |
---|
[1484] | 1812 | |
---|
| 1813 | |
---|
| 1814 | ddt_3d = 1.0_wp / dt_3d |
---|
[138] | 1815 | ! |
---|
[1484] | 1816 | !-- Compute drag for the three velocity components and the SGS-TKE |
---|
[142] | 1817 | SELECT CASE ( component ) |
---|
[138] | 1818 | |
---|
| 1819 | ! |
---|
[142] | 1820 | !-- u-component |
---|
[1484] | 1821 | CASE ( 1 ) |
---|
[2232] | 1822 | ! |
---|
| 1823 | !-- Determine topography-top index on u-grid |
---|
[2698] | 1824 | k_wall = get_topography_top_index_ji( j, i, 'u' ) |
---|
[2696] | 1825 | DO k = k_wall + 1, k_wall + pch_index_ji(j,i) |
---|
[2317] | 1826 | |
---|
[2696] | 1827 | kk = k - k_wall !- lad arrays are defined flat |
---|
[138] | 1828 | |
---|
| 1829 | ! |
---|
[1484] | 1830 | !-- In order to create sharp boundaries of the plant canopy, |
---|
| 1831 | !-- the lad on the u-grid at index (k,j,i) is equal to lad_s(k,j,i), |
---|
| 1832 | !-- rather than being interpolated from the surrounding lad_s, |
---|
| 1833 | !-- because this would yield smaller lad at the canopy boundaries |
---|
| 1834 | !-- than inside of the canopy. |
---|
| 1835 | !-- For the same reason, the lad at the rightmost(i+1)canopy |
---|
| 1836 | !-- boundary on the u-grid equals lad_s(k,j,i). |
---|
[1721] | 1837 | lad_local = lad_s(kk,j,i) |
---|
| 1838 | IF ( lad_local == 0.0_wp .AND. lad_s(kk,j,i-1) > 0.0_wp ) THEN |
---|
| 1839 | lad_local = lad_s(kk,j,i-1) |
---|
[1484] | 1840 | ENDIF |
---|
| 1841 | |
---|
| 1842 | pre_tend = 0.0_wp |
---|
| 1843 | pre_u = 0.0_wp |
---|
| 1844 | ! |
---|
| 1845 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
| 1846 | pre_tend = - cdc * & |
---|
| 1847 | lad_local * & |
---|
| 1848 | SQRT( u(k,j,i)**2 + & |
---|
| 1849 | ( 0.25_wp * ( v(k,j,i-1) + & |
---|
| 1850 | v(k,j,i) + & |
---|
| 1851 | v(k,j+1,i) + & |
---|
| 1852 | v(k,j+1,i-1) ) & |
---|
| 1853 | )**2 + & |
---|
| 1854 | ( 0.25_wp * ( w(k-1,j,i-1) + & |
---|
| 1855 | w(k-1,j,i) + & |
---|
| 1856 | w(k,j,i-1) + & |
---|
| 1857 | w(k,j,i) ) & |
---|
| 1858 | )**2 & |
---|
| 1859 | ) * & |
---|
| 1860 | u(k,j,i) |
---|
| 1861 | |
---|
| 1862 | ! |
---|
| 1863 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 1864 | pre_u = u(k,j,i) + dt_3d * pre_tend |
---|
| 1865 | ! |
---|
| 1866 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
| 1867 | !-- and in case the signs are different, limit the tendency |
---|
| 1868 | IF ( SIGN(pre_u,u(k,j,i)) /= pre_u ) THEN |
---|
| 1869 | pre_tend = - u(k,j,i) * ddt_3d |
---|
| 1870 | ELSE |
---|
| 1871 | pre_tend = pre_tend |
---|
| 1872 | ENDIF |
---|
| 1873 | ! |
---|
| 1874 | !-- Calculate final tendency |
---|
| 1875 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 1876 | ENDDO |
---|
| 1877 | |
---|
| 1878 | |
---|
| 1879 | ! |
---|
[142] | 1880 | !-- v-component |
---|
[1484] | 1881 | CASE ( 2 ) |
---|
[2232] | 1882 | ! |
---|
| 1883 | !-- Determine topography-top index on v-grid |
---|
[2698] | 1884 | k_wall = get_topography_top_index_ji( j, i, 'v' ) |
---|
[2317] | 1885 | |
---|
[2696] | 1886 | DO k = k_wall + 1, k_wall + pch_index_ji(j,i) |
---|
[138] | 1887 | |
---|
[2232] | 1888 | kk = k - k_wall !- lad arrays are defined flat |
---|
[138] | 1889 | ! |
---|
[1484] | 1890 | !-- In order to create sharp boundaries of the plant canopy, |
---|
| 1891 | !-- the lad on the v-grid at index (k,j,i) is equal to lad_s(k,j,i), |
---|
| 1892 | !-- rather than being interpolated from the surrounding lad_s, |
---|
| 1893 | !-- because this would yield smaller lad at the canopy boundaries |
---|
| 1894 | !-- than inside of the canopy. |
---|
| 1895 | !-- For the same reason, the lad at the northmost(j+1)canopy |
---|
| 1896 | !-- boundary on the v-grid equals lad_s(k,j,i). |
---|
[1721] | 1897 | lad_local = lad_s(kk,j,i) |
---|
| 1898 | IF ( lad_local == 0.0_wp .AND. lad_s(kk,j-1,i) > 0.0_wp ) THEN |
---|
| 1899 | lad_local = lad_s(kk,j-1,i) |
---|
[1484] | 1900 | ENDIF |
---|
| 1901 | |
---|
| 1902 | pre_tend = 0.0_wp |
---|
| 1903 | pre_v = 0.0_wp |
---|
| 1904 | ! |
---|
| 1905 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
| 1906 | pre_tend = - cdc * & |
---|
| 1907 | lad_local * & |
---|
| 1908 | SQRT( ( 0.25_wp * ( u(k,j-1,i) + & |
---|
| 1909 | u(k,j-1,i+1) + & |
---|
| 1910 | u(k,j,i) + & |
---|
| 1911 | u(k,j,i+1) ) & |
---|
| 1912 | )**2 + & |
---|
| 1913 | v(k,j,i)**2 + & |
---|
| 1914 | ( 0.25_wp * ( w(k-1,j-1,i) + & |
---|
| 1915 | w(k-1,j,i) + & |
---|
| 1916 | w(k,j-1,i) + & |
---|
| 1917 | w(k,j,i) ) & |
---|
| 1918 | )**2 & |
---|
| 1919 | ) * & |
---|
| 1920 | v(k,j,i) |
---|
| 1921 | |
---|
| 1922 | ! |
---|
| 1923 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 1924 | pre_v = v(k,j,i) + dt_3d * pre_tend |
---|
| 1925 | ! |
---|
| 1926 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
| 1927 | !-- and in case the signs are different, limit the tendency |
---|
| 1928 | IF ( SIGN(pre_v,v(k,j,i)) /= pre_v ) THEN |
---|
| 1929 | pre_tend = - v(k,j,i) * ddt_3d |
---|
| 1930 | ELSE |
---|
| 1931 | pre_tend = pre_tend |
---|
| 1932 | ENDIF |
---|
| 1933 | ! |
---|
| 1934 | !-- Calculate final tendency |
---|
| 1935 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 1936 | ENDDO |
---|
| 1937 | |
---|
| 1938 | |
---|
| 1939 | ! |
---|
[142] | 1940 | !-- w-component |
---|
[1484] | 1941 | CASE ( 3 ) |
---|
[2232] | 1942 | ! |
---|
| 1943 | !-- Determine topography-top index on w-grid |
---|
[2698] | 1944 | k_wall = get_topography_top_index_ji( j, i, 'w' ) |
---|
[2317] | 1945 | |
---|
[2696] | 1946 | DO k = k_wall + 1, k_wall + pch_index_ji(j,i) - 1 |
---|
[138] | 1947 | |
---|
[2232] | 1948 | kk = k - k_wall !- lad arrays are defined flat |
---|
[1721] | 1949 | |
---|
[1484] | 1950 | pre_tend = 0.0_wp |
---|
| 1951 | pre_w = 0.0_wp |
---|
[138] | 1952 | ! |
---|
[1484] | 1953 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
| 1954 | pre_tend = - cdc * & |
---|
| 1955 | (0.5_wp * & |
---|
[1721] | 1956 | ( lad_s(kk+1,j,i) + lad_s(kk,j,i) )) * & |
---|
[1484] | 1957 | SQRT( ( 0.25_wp * ( u(k,j,i) + & |
---|
| 1958 | u(k,j,i+1) + & |
---|
| 1959 | u(k+1,j,i) + & |
---|
| 1960 | u(k+1,j,i+1) ) & |
---|
| 1961 | )**2 + & |
---|
| 1962 | ( 0.25_wp * ( v(k,j,i) + & |
---|
| 1963 | v(k,j+1,i) + & |
---|
| 1964 | v(k+1,j,i) + & |
---|
| 1965 | v(k+1,j+1,i) ) & |
---|
| 1966 | )**2 + & |
---|
| 1967 | w(k,j,i)**2 & |
---|
| 1968 | ) * & |
---|
| 1969 | w(k,j,i) |
---|
| 1970 | ! |
---|
| 1971 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 1972 | pre_w = w(k,j,i) + dt_3d * pre_tend |
---|
| 1973 | ! |
---|
| 1974 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
| 1975 | !-- and in case the signs are different, limit the tendency |
---|
| 1976 | IF ( SIGN(pre_w,w(k,j,i)) /= pre_w ) THEN |
---|
| 1977 | pre_tend = - w(k,j,i) * ddt_3d |
---|
| 1978 | ELSE |
---|
| 1979 | pre_tend = pre_tend |
---|
| 1980 | ENDIF |
---|
| 1981 | ! |
---|
| 1982 | !-- Calculate final tendency |
---|
| 1983 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 1984 | ENDDO |
---|
| 1985 | |
---|
| 1986 | ! |
---|
[153] | 1987 | !-- potential temperature |
---|
| 1988 | CASE ( 4 ) |
---|
[2232] | 1989 | ! |
---|
| 1990 | !-- Determine topography-top index on scalar grid |
---|
[2698] | 1991 | k_wall = get_topography_top_index_ji( j, i, 's' ) |
---|
[2317] | 1992 | |
---|
[3449] | 1993 | IF ( humidity ) THEN |
---|
| 1994 | DO k = k_wall + 1, k_wall + pch_index_ji(j,i) |
---|
| 1995 | kk = k - k_wall !- lad arrays are defined flat |
---|
| 1996 | tend(k,j,i) = tend(k,j,i) + pc_heating_rate(kk,j,i) - pc_latent_rate(kk,j,i) |
---|
| 1997 | ENDDO |
---|
| 1998 | ELSE |
---|
| 1999 | DO k = k_wall + 1, k_wall + pch_index_ji(j,i) |
---|
| 2000 | kk = k - k_wall !- lad arrays are defined flat |
---|
| 2001 | tend(k,j,i) = tend(k,j,i) + pc_heating_rate(kk,j,i) |
---|
| 2002 | ENDDO |
---|
| 2003 | ENDIF |
---|
[153] | 2004 | |
---|
| 2005 | ! |
---|
[1960] | 2006 | !-- humidity |
---|
[153] | 2007 | CASE ( 5 ) |
---|
[2232] | 2008 | ! |
---|
| 2009 | !-- Determine topography-top index on scalar grid |
---|
[2698] | 2010 | k_wall = get_topography_top_index_ji( j, i, 's' ) |
---|
[2317] | 2011 | |
---|
[2696] | 2012 | DO k = k_wall + 1, k_wall + pch_index_ji(j,i) |
---|
[3014] | 2013 | kk = k - k_wall !- lad arrays are defined flat |
---|
[3449] | 2014 | IF ( .NOT. plant_canopy_transpiration ) THEN |
---|
| 2015 | ! pc_transpiration_rate is calculated in radiation model |
---|
| 2016 | ! in case of plant_canopy_transpiration = .T. |
---|
| 2017 | ! to include also the dependecy to the radiation |
---|
| 2018 | ! in the plant canopy box |
---|
| 2019 | pc_transpiration_rate(kk,j,i) = - lsec & |
---|
| 2020 | * lad_s(kk,j,i) * & |
---|
| 2021 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 2022 | u(k,j,i+1) ) & |
---|
| 2023 | )**2 + & |
---|
| 2024 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 2025 | v(k,j+1,i) ) & |
---|
| 2026 | )**2 + & |
---|
| 2027 | ( 0.5_wp * ( w(k-1,j,i) + & |
---|
| 2028 | w(k,j,i) ) & |
---|
| 2029 | )**2 & |
---|
| 2030 | ) * & |
---|
| 2031 | ( q(k,j,i) - lsc ) |
---|
| 2032 | ENDIF |
---|
[2232] | 2033 | |
---|
[3014] | 2034 | tend(k,j,i) = tend(k,j,i) + pc_transpiration_rate(kk,j,i) |
---|
| 2035 | |
---|
[153] | 2036 | ENDDO |
---|
| 2037 | |
---|
| 2038 | ! |
---|
[142] | 2039 | !-- sgs-tke |
---|
[1484] | 2040 | CASE ( 6 ) |
---|
[2232] | 2041 | ! |
---|
| 2042 | !-- Determine topography-top index on scalar grid |
---|
[2698] | 2043 | k_wall = get_topography_top_index_ji( j, i, 's' ) |
---|
[2317] | 2044 | |
---|
[2696] | 2045 | DO k = k_wall + 1, k_wall + pch_index_ji(j,i) |
---|
[2232] | 2046 | |
---|
| 2047 | kk = k - k_wall |
---|
[1484] | 2048 | tend(k,j,i) = tend(k,j,i) - & |
---|
| 2049 | 2.0_wp * cdc * & |
---|
[1721] | 2050 | lad_s(kk,j,i) * & |
---|
[1484] | 2051 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 2052 | u(k,j,i+1) ) & |
---|
| 2053 | )**2 + & |
---|
| 2054 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 2055 | v(k,j+1,i) ) & |
---|
| 2056 | )**2 + & |
---|
| 2057 | ( 0.5_wp * ( w(k,j,i) + & |
---|
| 2058 | w(k+1,j,i) ) & |
---|
| 2059 | )**2 & |
---|
| 2060 | ) * & |
---|
| 2061 | e(k,j,i) |
---|
| 2062 | ENDDO |
---|
[1960] | 2063 | |
---|
| 2064 | ! |
---|
| 2065 | !-- scalar concentration |
---|
| 2066 | CASE ( 7 ) |
---|
[2232] | 2067 | ! |
---|
| 2068 | !-- Determine topography-top index on scalar grid |
---|
[2698] | 2069 | k_wall = get_topography_top_index_ji( j, i, 's' ) |
---|
[2317] | 2070 | |
---|
[2696] | 2071 | DO k = k_wall + 1, k_wall + pch_index_ji(j,i) |
---|
[2232] | 2072 | |
---|
| 2073 | kk = k - k_wall |
---|
[1960] | 2074 | tend(k,j,i) = tend(k,j,i) - & |
---|
| 2075 | lsec * & |
---|
| 2076 | lad_s(kk,j,i) * & |
---|
| 2077 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 2078 | u(k,j,i+1) ) & |
---|
| 2079 | )**2 + & |
---|
| 2080 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 2081 | v(k,j+1,i) ) & |
---|
| 2082 | )**2 + & |
---|
| 2083 | ( 0.5_wp * ( w(k-1,j,i) + & |
---|
| 2084 | w(k,j,i) ) & |
---|
| 2085 | )**2 & |
---|
| 2086 | ) * & |
---|
| 2087 | ( s(k,j,i) - lsc ) |
---|
| 2088 | ENDDO |
---|
[138] | 2089 | |
---|
[142] | 2090 | CASE DEFAULT |
---|
[138] | 2091 | |
---|
[257] | 2092 | WRITE( message_string, * ) 'wrong component: ', component |
---|
[1826] | 2093 | CALL message( 'pcm_tendency', 'PA0279', 1, 2, 0, 6, 0 ) |
---|
[138] | 2094 | |
---|
[142] | 2095 | END SELECT |
---|
[138] | 2096 | |
---|
[1826] | 2097 | END SUBROUTINE pcm_tendency_ij |
---|
[138] | 2098 | |
---|
[2007] | 2099 | |
---|
| 2100 | |
---|
[138] | 2101 | END MODULE plant_canopy_model_mod |
---|