1 | !> @file multi_agent_system_mod.f90 |
---|
2 | !--------------------------------------------------------------------------------! |
---|
3 | ! This file is part of PALM-4U. |
---|
4 | ! |
---|
5 | ! PALM-4U is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM-4U is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 2016 Leibniz Universitaet Hannover |
---|
18 | !------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ------------------ |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: multi_agent_system_mod.f90 3593 2018-12-03 13:51:13Z kanani $ |
---|
27 | ! Replace degree symbol by degree_C/degrees |
---|
28 | ! |
---|
29 | ! 3587 2018-11-30 13:52:19Z sward |
---|
30 | ! Added output of agent substep time |
---|
31 | ! |
---|
32 | ! 3525 2018-11-14 16:06:14Z kanani |
---|
33 | ! Changes related to clean-up of biometeorology (dom_dwd_user) |
---|
34 | ! |
---|
35 | ! 3448 2018-10-29 18:14:31Z kanani |
---|
36 | ! Adjustment of biometeorology calls, |
---|
37 | ! implement some agent biometeorology |
---|
38 | ! |
---|
39 | ! 3274 2018-09-24 15:42:55Z knoop |
---|
40 | ! Modularization of all bulk cloud physics code components |
---|
41 | ! |
---|
42 | ! 3268 2018-09-21 13:45:37Z sward |
---|
43 | ! Cleaned up agent pointer assignment in output routine |
---|
44 | ! |
---|
45 | ! 3248 2018-09-14 09:42:06Z sward |
---|
46 | ! Minor formating changes |
---|
47 | ! |
---|
48 | ! 3246 2018-09-13 15:14:50Z sward |
---|
49 | ! Added error handling for input namelist via parin_fail_message |
---|
50 | ! |
---|
51 | ! 3241 2018-09-12 15:02:00Z raasch |
---|
52 | ! unused variables removed |
---|
53 | ! |
---|
54 | ! 3235 2018-09-07 14:06:15Z sward |
---|
55 | ! Bugfix in output, added agent-number dimension and related messages and |
---|
56 | ! input parameters, updated cpu logging, added mas_last_actions |
---|
57 | ! |
---|
58 | ! 3201 2018-08-20 11:45:01Z sward |
---|
59 | ! Bugfix, missing pre-processor directive. Set default |
---|
60 | ! read_agents_from_restartfile = .FALSE. restarts not yet implemented. |
---|
61 | ! |
---|
62 | ! 3198 2018-08-15 09:23:10Z sward |
---|
63 | ! Now using time_since_reference_point; moved multi_agent_system_start and |
---|
64 | ! multi_agent_system_end to control_parameters; renamed NAMELIST agents_par to |
---|
65 | ! agent_parameters |
---|
66 | ! |
---|
67 | ! 3187 2018-07-31 10:32:34Z sward |
---|
68 | ! Reworked agent pathfinding to avoid collisions with walls |
---|
69 | ! |
---|
70 | ! 3165 2018-07-24 13:12:42Z sward |
---|
71 | ! Added agent ID output |
---|
72 | ! |
---|
73 | ! 3160 2018-07-20 11:52:56Z sward |
---|
74 | ! Changed C_SIZEOF to STORAGE_SIZE |
---|
75 | ! |
---|
76 | ! 3159 2018-07-20 11:20:01Z sward |
---|
77 | ! Initial revision |
---|
78 | ! |
---|
79 | ! |
---|
80 | ! |
---|
81 | ! Authors: |
---|
82 | ! -------- |
---|
83 | ! @author sward |
---|
84 | ! |
---|
85 | ! |
---|
86 | ! Description: |
---|
87 | ! ------------ |
---|
88 | !> Multi Agent System for the simulation of pedestrian movement in urban |
---|
89 | !> environments |
---|
90 | !------------------------------------------------------------------------------! |
---|
91 | MODULE multi_agent_system_mod |
---|
92 | |
---|
93 | USE, INTRINSIC :: ISO_C_BINDING |
---|
94 | |
---|
95 | USE basic_constants_and_equations_mod, & |
---|
96 | ONLY: pi |
---|
97 | |
---|
98 | USE control_parameters, & |
---|
99 | ONLY: biometeorology, dt_3d, dt_write_agent_data, message_string, & |
---|
100 | time_since_reference_point |
---|
101 | |
---|
102 | USE cpulog, & |
---|
103 | ONLY: cpu_log, log_point, log_point_s |
---|
104 | |
---|
105 | USE grid_variables, & |
---|
106 | ONLY: ddx, ddy, dx, dy |
---|
107 | |
---|
108 | USE indices, & |
---|
109 | ONLY: nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, nzb, & |
---|
110 | wall_flags_0 |
---|
111 | |
---|
112 | USE random_function_mod, & |
---|
113 | ONLY: random_function |
---|
114 | |
---|
115 | USE kinds |
---|
116 | |
---|
117 | USE pegrid |
---|
118 | |
---|
119 | CHARACTER(LEN=15) :: bc_mas_lr = 'absorb' !< left/right boundary condition |
---|
120 | CHARACTER(LEN=15) :: bc_mas_ns = 'absorb' !< north/south boundary condition |
---|
121 | |
---|
122 | INTEGER(iwp) :: deleted_agents = 0 !< number of deleted agents per time step |
---|
123 | INTEGER(iwp) :: dim_size_agtnum_manual = 9999999 !< namelist parameter (see documentation) |
---|
124 | INTEGER(iwp) :: heap_count !< number of items in binary heap (for pathfinding) |
---|
125 | INTEGER(iwp) :: ibc_mas_lr !< agent left/right boundary condition dummy |
---|
126 | INTEGER(iwp) :: ibc_mas_ns !< agent north/south boundary condition dummy |
---|
127 | ! INTEGER(iwp) :: ind_pm10 = -9 !< chemical species index of PM10 |
---|
128 | ! INTEGER(iwp) :: ind_pm25 = -9 !< chemical species index of PM2.5 |
---|
129 | INTEGER(iwp) :: iran_agent = -1234567 !< number for random generator |
---|
130 | INTEGER(iwp) :: min_nr_agent = 2 !< namelist parameter (see documentation) |
---|
131 | INTEGER(iwp) :: ghla_count_recv !< number of agents in left ghost layer |
---|
132 | INTEGER(iwp) :: ghna_count_recv !< number of agents in north ghost layer |
---|
133 | INTEGER(iwp) :: ghra_count_recv !< number of agents in right ghost layer |
---|
134 | INTEGER(iwp) :: ghsa_count_recv !< number of agents in south ghost layer |
---|
135 | INTEGER(iwp) :: maximum_number_of_agents = 0 !< maximum number of agents during run |
---|
136 | INTEGER(iwp) :: nr_move_north !< number of agts to move north during exchange_horiz |
---|
137 | INTEGER(iwp) :: nr_move_south !< number of agts to move south during exchange_horiz |
---|
138 | INTEGER(iwp) :: number_of_agents = 0 !< number of agents for each grid box (3d array is saved on agt_count) |
---|
139 | INTEGER(iwp) :: number_of_agent_groups = 1 !< namelist parameter (see documentation) |
---|
140 | INTEGER(iwp) :: sort_count_mas = 0 !< counter for sorting agents |
---|
141 | INTEGER(iwp) :: agt_path_size = 15 !< size of agent path array |
---|
142 | INTEGER(iwp) :: step_dealloc_mas = 100 !< namelist parameter (see documentation) |
---|
143 | INTEGER(iwp) :: total_number_of_agents !< total number of agents in the whole model domain |
---|
144 | |
---|
145 | INTEGER(iwp), PARAMETER :: NR_2_direction_move = 10000 !< parameter for agent exchange |
---|
146 | INTEGER(iwp), PARAMETER :: PHASE_INIT = 1 !< phase parameter |
---|
147 | INTEGER(iwp), PARAMETER :: PHASE_RELEASE = 2 !< phase parameter |
---|
148 | |
---|
149 | INTEGER(iwp), PARAMETER :: max_number_of_agent_groups = 100 !< maximum allowed number of agent groups |
---|
150 | |
---|
151 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: agt_count !< 3d array of number of agents of every grid box |
---|
152 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: s_measure_height !< k-index(s-grid) for measurement |
---|
153 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: top_top_s !< k-index of first s-gridpoint above topography |
---|
154 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: top_top_w !< k-index of first v-gridpoint above topography |
---|
155 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: obstacle_flags !< flags to identify corners and edges of topography that cannot be crossed by agents |
---|
156 | |
---|
157 | LOGICAL :: deallocate_memory_mas = .TRUE. !< namelist parameter (see documentation) |
---|
158 | LOGICAL :: dt_3d_reached_mas !< flag: agent timestep has reached model timestep |
---|
159 | LOGICAL :: dt_3d_reached_l_mas !< flag: agent timestep has reached model timestep |
---|
160 | LOGICAL :: agents_active = .FALSE. !< flag for agent system |
---|
161 | LOGICAL :: random_start_position_agents = .TRUE. !< namelist parameter (see documentation) |
---|
162 | LOGICAL :: read_agents_from_restartfile = .FALSE. !< namelist parameter (see documentation) |
---|
163 | LOGICAL :: agent_own_timestep = .FALSE. !< namelist parameter (see documentation) |
---|
164 | |
---|
165 | LOGICAL, DIMENSION(max_number_of_agent_groups) :: a_rand_target = .FALSE. !< namelist parameter (see documentation) |
---|
166 | |
---|
167 | REAL(wp) :: agent_maximum_age = 9999999.9_wp !< namelist parameter (see documentation) |
---|
168 | REAL(wp) :: agent_substep_time = 0.0_wp !< time measurement during one LES timestep |
---|
169 | REAL(wp) :: alloc_factor_mas = 20.0_wp !< namelist parameter (see documentation) |
---|
170 | REAL(wp) :: coll_t_0 = 3. !< namelist parameter (see documentation) |
---|
171 | REAL(wp) :: corner_gate_start = 0.5_wp !< namelist parameter (see documentation) |
---|
172 | REAL(wp) :: corner_gate_width = 1.0_wp !< namelist parameter (see documentation) |
---|
173 | REAL(wp) :: dim_size_factor_agtnum = 1.0_wp !< namelist parameter (see documentation) |
---|
174 | REAL(wp) :: d_sigma_rep_agent !< inverse of sigma_rep_agent |
---|
175 | REAL(wp) :: d_sigma_rep_wall !< inverse of sigma_rep_wall |
---|
176 | REAL(wp) :: d_tau_accel_agent !< inverse of tau_accel_agent |
---|
177 | REAL(wp) :: desired_speed = 1.2_wp !< namelist parameter (see documentation) |
---|
178 | REAL(wp) :: des_sp_sig = .2_wp !< namelist parameter (see documentation) |
---|
179 | REAL(wp) :: dist_target_reached = 2.0_wp !< distance at which target counts as reached |
---|
180 | REAL(wp) :: dist_to_int_target = .25_wp !< namelist parameter (see documentation) |
---|
181 | REAL(wp) :: dt_agent = 0.02_wp !< namelist parameter (see documentation) |
---|
182 | REAL(wp) :: dt_arel = 9999999.9_wp !< namelist parameter (see documentation) |
---|
183 | REAL(wp) :: end_time_arel = 9999999.9_wp !< namelist parameter (see documentation) |
---|
184 | REAL(wp) :: force_x !< dummy value for force on current agent in x-direction |
---|
185 | REAL(wp) :: force_y !< dummy value for force on current agent in y-direction |
---|
186 | REAL(wp) :: max_dist_from_path = 0.25_wp !< distance from current path at which a new path is calculated |
---|
187 | REAL(wp) :: radius_agent = .25_wp !< namelist parameter (see documentation) |
---|
188 | REAL(wp) :: repuls_agent = 1.5_wp !< namelist parameter (see documentation) |
---|
189 | REAL(wp) :: repuls_wall = 7.0_wp !< namelist parameter (see documentation) |
---|
190 | REAL(wp) :: scan_radius_agent = 3.0_wp !< namelist parameter (see documentation) |
---|
191 | REAL(wp) :: scan_radius_wall = 2.0_wp !< namelist parameter (see documentation) |
---|
192 | REAL(wp) :: sigma_rep_agent = 0.3_wp !< namelist parameter (see documentation) |
---|
193 | REAL(wp) :: sigma_rep_wall = 0.1_wp !< namelist parameter (see documentation) |
---|
194 | REAL(wp) :: tau_accel_agent = 0.5_wp !< namelist parameter (see documentation) |
---|
195 | REAL(wp) :: time_arel = 0.0_wp !< time for agent release |
---|
196 | REAL(wp) :: time_write_agent_data = 0.0_wp !< write agent data at current time on file |
---|
197 | REAL(wp) :: v_max_agent = 1.3_wp !< namelist parameter (see documentation) |
---|
198 | |
---|
199 | REAL(wp), DIMENSION(:), ALLOCATABLE :: dummy_path_x !< dummy path (x-coordinate) |
---|
200 | REAL(wp), DIMENSION(:), ALLOCATABLE :: dummy_path_y !< dummy path (y-coordinate) |
---|
201 | |
---|
202 | REAL(wp), DIMENSION(max_number_of_agent_groups) :: adx = 9999999.9_wp !< namelist parameter (see documentation) |
---|
203 | REAL(wp), DIMENSION(max_number_of_agent_groups) :: ady = 9999999.9_wp !< namelist parameter (see documentation) |
---|
204 | REAL(wp), DIMENSION(max_number_of_agent_groups) :: asl = 9999999.9_wp !< namelist parameter (see documentation) |
---|
205 | REAL(wp), DIMENSION(max_number_of_agent_groups) :: asn = 9999999.9_wp !< namelist parameter (see documentation) |
---|
206 | REAL(wp), DIMENSION(max_number_of_agent_groups) :: asr = 9999999.9_wp !< namelist parameter (see documentation) |
---|
207 | REAL(wp), DIMENSION(max_number_of_agent_groups) :: ass = 9999999.9_wp !< namelist parameter (see documentation) |
---|
208 | REAL(wp), DIMENSION(max_number_of_agent_groups) :: at_x = 9999999.9_wp !< namelist parameter (see documentation) |
---|
209 | REAL(wp), DIMENSION(max_number_of_agent_groups) :: at_y = 9999999.9_wp !< namelist parameter (see documentation) |
---|
210 | ! |
---|
211 | !-- Type for the definition of an agent |
---|
212 | TYPE agent_type |
---|
213 | INTEGER(iwp) :: block_nr !< number for sorting |
---|
214 | INTEGER(iwp) :: group !< number of agent group |
---|
215 | INTEGER(idp) :: id !< particle ID (64 bit integer) |
---|
216 | INTEGER(iwp) :: path_counter !< current target along path (path_x/y) |
---|
217 | LOGICAL :: agent_mask !< if this parameter is set to false the agent will be deleted |
---|
218 | REAL(wp) :: age !< age of agent |
---|
219 | REAL(wp) :: age_m !< age of agent |
---|
220 | REAL(wp) :: dt_sum !< sum of agents subtimesteps |
---|
221 | REAL(wp) :: clo !< clothing index |
---|
222 | REAL(wp) :: energy_storage !< energy stored by agent |
---|
223 | REAL(wp) :: clothing_temp !< energy stored by agent |
---|
224 | REAL(wp) :: actlev !< metabolic + work energy of the person |
---|
225 | REAL(wp) :: age_years !< physical age of the person |
---|
226 | REAL(wp) :: weight !< total weight of the person (kg) |
---|
227 | REAL(wp) :: height !< height of the person (m) |
---|
228 | REAL(wp) :: work !< workload of the agent (W) |
---|
229 | INTEGER(iwp) :: sex !< agents gender: 1 = male, 2 = female |
---|
230 | REAL(wp) :: force_x !< force term x-direction |
---|
231 | REAL(wp) :: force_y !< force term y-direction |
---|
232 | REAL(wp) :: origin_x !< origin x-position of agent |
---|
233 | REAL(wp) :: origin_y !< origin y-position of agent |
---|
234 | REAL(wp) :: pm10 !< PM10 concentration at agent position |
---|
235 | REAL(wp) :: pm25 !< PM25 concentration at agent position |
---|
236 | REAL(wp) :: speed_abs !< absolute value of agent speed |
---|
237 | REAL(wp) :: speed_e_x !< normalized speed of agent in x |
---|
238 | REAL(wp) :: speed_e_y !< normalized speed of agent in y |
---|
239 | REAL(wp) :: speed_des !< agent's desired speed |
---|
240 | REAL(wp) :: speed_x !< speed of agent in x |
---|
241 | REAL(wp) :: speed_y !< speed of agent in y |
---|
242 | REAL(wp) :: ipt !< instationary thermal index iPT (degree_C) |
---|
243 | REAL(wp) :: windspeed !< absolute value of windspeed at agent position |
---|
244 | REAL(wp) :: x !< x-position |
---|
245 | REAL(wp) :: y !< y-position |
---|
246 | REAL(wp) :: t !< temperature |
---|
247 | REAL(wp) :: t_x !< x-position |
---|
248 | REAL(wp) :: t_y !< y-position |
---|
249 | REAL(wp), DIMENSION(0:15) :: path_x !< agent path to target (x) |
---|
250 | REAL(wp), DIMENSION(0:15) :: path_y !< agent path to target (y) |
---|
251 | END TYPE agent_type |
---|
252 | |
---|
253 | TYPE(agent_type), DIMENSION(:), POINTER :: agents !< Agent array for this grid cell |
---|
254 | TYPE(agent_type) :: zero_agent !< zero agent to avoid weird thing |
---|
255 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: move_also_north !< for agent exchange between PEs |
---|
256 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: move_also_south !< for agent exchange between PEs |
---|
257 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: agt_gh_l !< ghost layer left of pe domain |
---|
258 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: agt_gh_n !< ghost layer north of pe domain |
---|
259 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: agt_gh_r !< ghost layer right of pe domain |
---|
260 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: agt_gh_s !< ghost layer south of pe domain |
---|
261 | ! |
---|
262 | !-- Type for 2D grid on which agents are stored |
---|
263 | TYPE grid_agent_def |
---|
264 | INTEGER(iwp), DIMENSION(0:3) :: start_index !< start agent index for current block |
---|
265 | INTEGER(iwp), DIMENSION(0:3) :: end_index !< end agent index for current block |
---|
266 | INTEGER(iwp) :: id_counter !< agent id counter (removeable?) |
---|
267 | LOGICAL :: time_loop_done !< timestep loop for agent advection |
---|
268 | TYPE(agent_type), POINTER, DIMENSION(:) :: agents !< Particle array for this grid cell |
---|
269 | END TYPE grid_agent_def |
---|
270 | |
---|
271 | TYPE(grid_agent_def), DIMENSION(:,:), ALLOCATABLE, TARGET :: grid_agents !< 2D grid on which agents are stored |
---|
272 | ! |
---|
273 | !-- Item in a priority queue (binary heap) |
---|
274 | TYPE heap_item |
---|
275 | INTEGER(iwp) :: mesh_id !< id of the submitted mesh point |
---|
276 | REAL(wp) :: priority !< priority of the mesh point (= distance so far + heuristic to goal) |
---|
277 | END TYPE heap_item |
---|
278 | |
---|
279 | TYPE(heap_item), DIMENSION(:), ALLOCATABLE :: queue !< priority queue realized as binary heap |
---|
280 | ! |
---|
281 | !-- Type for mesh point in visibility graph |
---|
282 | TYPE mesh_point |
---|
283 | INTEGER(iwp) :: polygon_id !< Polygon the point belongs to |
---|
284 | INTEGER(iwp) :: vertex_id !< Vertex in the polygon |
---|
285 | INTEGER(iwp) :: noc !< number of connections |
---|
286 | INTEGER(iwp) :: origin_id !< ID of previous mesh point on path (A*) |
---|
287 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: connected_vertices !< Index of connected vertices |
---|
288 | REAL(wp) :: cost_so_far !< Cost to reach this mesh point (A*) |
---|
289 | REAL(wp) :: x !< x-coordinate |
---|
290 | REAL(wp) :: y !< y-coordinate |
---|
291 | REAL(wp) :: x_s !< corner shifted outward from building by 1m (x) |
---|
292 | REAL(wp) :: y_s !< corner shifted outward from building by 1m (y) |
---|
293 | REAL(wp), DIMENSION(:), ALLOCATABLE :: distance_to_vertex !< Distance to each vertex |
---|
294 | END TYPE mesh_point |
---|
295 | |
---|
296 | TYPE(mesh_point), DIMENSION(:), ALLOCATABLE :: mesh !< navigation mesh |
---|
297 | TYPE(mesh_point), DIMENSION(:), ALLOCATABLE :: tmp_mesh !< temporary navigation mesh |
---|
298 | ! |
---|
299 | !-- Vertex of a polygon |
---|
300 | TYPE vertex_type |
---|
301 | LOGICAL :: delete !< Flag to mark vertex for deletion |
---|
302 | REAL(wp) :: x !< x-coordinate |
---|
303 | REAL(wp) :: y !< y-coordinate |
---|
304 | END TYPE vertex_type |
---|
305 | ! |
---|
306 | !-- Polygon containing a number of vertices |
---|
307 | TYPE polygon_type |
---|
308 | INTEGER(iwp) :: nov !< Number of vertices in this polygon |
---|
309 | TYPE(vertex_type), DIMENSION(:), ALLOCATABLE :: vertices !< Array of vertices |
---|
310 | END TYPE polygon_type |
---|
311 | |
---|
312 | TYPE(polygon_type), DIMENSION(:), ALLOCATABLE :: polygons !< Building data in polygon form |
---|
313 | |
---|
314 | SAVE |
---|
315 | |
---|
316 | PRIVATE |
---|
317 | ! |
---|
318 | !-- Public functions |
---|
319 | PUBLIC mas_init, mas_last_actions, mas_parin, multi_agent_system |
---|
320 | |
---|
321 | ! |
---|
322 | !-- Public parameters, constants and initial values |
---|
323 | PUBLIC agents_active |
---|
324 | |
---|
325 | INTERFACE mas_parin |
---|
326 | MODULE PROCEDURE mas_parin |
---|
327 | END INTERFACE mas_parin |
---|
328 | |
---|
329 | INTERFACE mas_init |
---|
330 | MODULE PROCEDURE mas_init |
---|
331 | END INTERFACE mas_init |
---|
332 | |
---|
333 | INTERFACE mas_last_actions |
---|
334 | MODULE PROCEDURE mas_last_actions |
---|
335 | END INTERFACE mas_last_actions |
---|
336 | |
---|
337 | INTERFACE multi_agent_system |
---|
338 | MODULE PROCEDURE multi_agent_system |
---|
339 | END INTERFACE multi_agent_system |
---|
340 | |
---|
341 | CONTAINS |
---|
342 | |
---|
343 | |
---|
344 | !------------------------------------------------------------------------------! |
---|
345 | ! Description: |
---|
346 | ! ------------ |
---|
347 | !> Multi Agent System: |
---|
348 | !> executes a number of agents sub-timesteps until the model timestep is reached. |
---|
349 | !> The agent timestep is usually smaller than the model timestep |
---|
350 | !------------------------------------------------------------------------------! |
---|
351 | SUBROUTINE multi_agent_system |
---|
352 | |
---|
353 | USE biometeorology_mod, & |
---|
354 | ONLY: bio_calc_ipt, bio_calculate_mrt_grid, bio_get_thermal_index_input_ij |
---|
355 | |
---|
356 | |
---|
357 | IMPLICIT NONE |
---|
358 | |
---|
359 | INTEGER(iwp) :: i !< counter |
---|
360 | INTEGER(iwp) :: ie !< counter |
---|
361 | INTEGER(iwp) :: is !< counter |
---|
362 | INTEGER(iwp) :: j !< counter |
---|
363 | INTEGER(iwp) :: je !< counter |
---|
364 | INTEGER(iwp) :: js !< counter |
---|
365 | INTEGER(iwp), SAVE :: mas_count = 0 !< counts the mas-calls |
---|
366 | INTEGER(iwp) :: a !< agent iterator |
---|
367 | !-- local meteorological conditions |
---|
368 | REAL(wp) :: tmrt !< mean radiant temperature (degree_C) |
---|
369 | REAL(wp) :: ta !< air temperature (degree_C) |
---|
370 | REAL(wp) :: vp !< vapour pressure (hPa) |
---|
371 | REAL(wp) :: v !< wind speed (local level) (m/s) |
---|
372 | REAL(wp) :: pair !< air pressure (hPa) |
---|
373 | |
---|
374 | |
---|
375 | LOGICAL :: first_loop_stride !< flag for first loop stride of agent sub-timesteps |
---|
376 | LOGICAL, SAVE :: first_call = .TRUE. !< first call of mas flag for output |
---|
377 | |
---|
378 | CALL cpu_log( log_point(9), 'mas', 'start' ) |
---|
379 | ! |
---|
380 | !-- Initialize variables for the next (sub-) timestep, i.e., for marking |
---|
381 | !-- those agents to be deleted after the timestep |
---|
382 | deleted_agents = 0 |
---|
383 | agent_substep_time = 0.0_wp |
---|
384 | ! |
---|
385 | !-- If necessary, release new set of agents |
---|
386 | IF ( time_arel >= dt_arel .AND. end_time_arel > time_since_reference_point ) THEN |
---|
387 | |
---|
388 | CALL mas_create_agent(PHASE_RELEASE) |
---|
389 | ! |
---|
390 | !-- The MOD function allows for changes in the output interval with |
---|
391 | !-- restart runs. |
---|
392 | time_arel = MOD( time_arel, MAX( dt_arel, dt_3d ) ) |
---|
393 | |
---|
394 | ENDIF |
---|
395 | |
---|
396 | first_loop_stride = .TRUE. |
---|
397 | grid_agents(:,:)%time_loop_done = .TRUE. |
---|
398 | ! |
---|
399 | !-- Set timestep variable |
---|
400 | IF ( .NOT. agent_own_timestep ) dt_agent = dt_3d |
---|
401 | ! |
---|
402 | !-- Timestep loop for agent transport. |
---|
403 | !-- This loop has to be repeated until the transport time of every agent |
---|
404 | !-- (within the total domain!) has reached the LES timestep (dt_3d). |
---|
405 | !-- Timestep scheme is Euler-forward |
---|
406 | DO |
---|
407 | ! |
---|
408 | !-- Write agent data at current time on file. |
---|
409 | time_write_agent_data = time_write_agent_data + dt_agent |
---|
410 | agent_substep_time = agent_substep_time + dt_agent |
---|
411 | IF ( time_write_agent_data >= dt_write_agent_data ) THEN |
---|
412 | #if defined( __netcdf ) |
---|
413 | IF ( first_loop_stride ) CALL mas_get_prognostic_quantities |
---|
414 | CALL mas_data_output_agents ( first_call ) |
---|
415 | #else |
---|
416 | WRITE( message_string, * ) 'NetCDF is needed for agent output. ', & |
---|
417 | 'Set __netcdf in compiler options' |
---|
418 | CALL message( 'multi_agent_system', 'PA0071', 1, 2, 0, 6, 0 ) |
---|
419 | #endif |
---|
420 | IF(first_call) first_call = .FALSE. |
---|
421 | time_write_agent_data = time_write_agent_data - dt_write_agent_data |
---|
422 | ENDIF |
---|
423 | ! |
---|
424 | !-- Flag is true by default, will be set to false if an agent has not yet |
---|
425 | !-- reached the model timestep |
---|
426 | grid_agents(:,:)%time_loop_done = .TRUE. |
---|
427 | |
---|
428 | ! |
---|
429 | !-- First part of agent transport: |
---|
430 | !-- Evaluate social forces for all agents at current positions |
---|
431 | CALL cpu_log( log_point_s(9), 'mas_social_forces', 'start' ) |
---|
432 | DO i = nxl, nxr |
---|
433 | DO j = nys, nyn |
---|
434 | |
---|
435 | number_of_agents = agt_count(j,i) |
---|
436 | ! |
---|
437 | !-- If grid cell is empty, cycle |
---|
438 | IF ( number_of_agents <= 0 ) CYCLE |
---|
439 | |
---|
440 | agents => grid_agents(j,i)%agents(1:number_of_agents) |
---|
441 | ! |
---|
442 | !-- Evaluation of social forces |
---|
443 | CALL mas_timestep_forces_call(i,j) |
---|
444 | |
---|
445 | ENDDO |
---|
446 | ENDDO |
---|
447 | CALL cpu_log( log_point_s(9), 'mas_social_forces', 'stop' ) |
---|
448 | ! |
---|
449 | !-- Second part of agent transport: |
---|
450 | !-- timestep |
---|
451 | CALL cpu_log( log_point_s(16), 'mas_timestep', 'start' ) |
---|
452 | DO i = nxl, nxr |
---|
453 | DO j = nys, nyn |
---|
454 | |
---|
455 | number_of_agents = agt_count(j,i) |
---|
456 | ! |
---|
457 | !-- If grid cell is empty, flag must be true |
---|
458 | IF ( number_of_agents <= 0 ) THEN |
---|
459 | grid_agents(j,i)%time_loop_done = .TRUE. |
---|
460 | CYCLE |
---|
461 | ENDIF |
---|
462 | |
---|
463 | agents => grid_agents(j,i)%agents(1:number_of_agents) |
---|
464 | |
---|
465 | agents(1:number_of_agents)%agent_mask = .TRUE. |
---|
466 | ! |
---|
467 | !-- Initialize the variable storing the total time that an agent |
---|
468 | !-- has advanced within the timestep procedure |
---|
469 | IF ( first_loop_stride ) THEN |
---|
470 | agents(1:number_of_agents)%dt_sum = 0.0_wp |
---|
471 | ENDIF |
---|
472 | ! |
---|
473 | !-- Initialize the switch used for the loop exit condition checked |
---|
474 | !-- at the end of this loop. If at least one agent has failed to |
---|
475 | !-- reach the LES timestep, this switch will be set false in |
---|
476 | !-- mas_transport. |
---|
477 | dt_3d_reached_l_mas = .TRUE. |
---|
478 | ! |
---|
479 | !-- Timestep |
---|
480 | CALL mas_timestep |
---|
481 | ! |
---|
482 | !-- Delete agents that have been simulated longer than allowed |
---|
483 | CALL mas_boundary_conds( 'max_sim_time' ) |
---|
484 | ! |
---|
485 | !-- Delete agents that have reached target area |
---|
486 | CALL mas_boundary_conds( 'target_area' ) |
---|
487 | ! |
---|
488 | !--- If not all agents of the actual grid cell have reached the |
---|
489 | !-- LES timestep, this cell has to to another loop iteration. Due to |
---|
490 | !-- the fact that agents can move into neighboring grid cell, |
---|
491 | !-- these neighbor cells also have to perform another loop iteration |
---|
492 | IF ( .NOT. dt_3d_reached_l_mas ) THEN |
---|
493 | js = MAX(nys,j-1) |
---|
494 | je = MIN(nyn,j+1) |
---|
495 | is = MAX(nxl,i-1) |
---|
496 | ie = MIN(nxr,i+1) |
---|
497 | grid_agents(js:je,is:ie)%time_loop_done = .FALSE. |
---|
498 | ENDIF |
---|
499 | |
---|
500 | ENDDO |
---|
501 | ENDDO |
---|
502 | CALL cpu_log( log_point_s(16), 'mas_timestep', 'stop' ) |
---|
503 | |
---|
504 | ! |
---|
505 | !-- Find out, if all agents on every PE have completed the LES timestep |
---|
506 | !-- and set the switch corespondingly |
---|
507 | dt_3d_reached_l_mas = ALL(grid_agents(:,:)%time_loop_done) |
---|
508 | #if defined( __parallel ) |
---|
509 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
510 | CALL MPI_ALLREDUCE( dt_3d_reached_l_mas, dt_3d_reached_mas, 1, MPI_LOGICAL, & |
---|
511 | MPI_LAND, comm2d, ierr ) |
---|
512 | #else |
---|
513 | dt_3d_reached_mas = dt_3d_reached_l_mas |
---|
514 | #endif |
---|
515 | |
---|
516 | ! |
---|
517 | !-- Increment time since last release |
---|
518 | IF ( dt_3d_reached_mas ) time_arel = time_arel + dt_3d |
---|
519 | |
---|
520 | ! |
---|
521 | !-- Move Agents local to PE to a different grid cell |
---|
522 | CALL cpu_log( log_point_s(18), 'mas_move_exch_sort', 'start' ) |
---|
523 | CALL mas_eh_move_agent |
---|
524 | ! |
---|
525 | !-- Horizontal boundary conditions including exchange between subdmains |
---|
526 | CALL mas_eh_exchange_horiz |
---|
527 | ! |
---|
528 | !-- Pack agents (eliminate those marked for deletion), |
---|
529 | !-- determine new number of agents |
---|
530 | CALL mas_ps_sort_in_subboxes |
---|
531 | CALL cpu_log( log_point_s(18), 'mas_move_exch_sort', 'stop' ) |
---|
532 | ! |
---|
533 | !-- Initialize variables for the next (sub-) timestep, i.e., for marking |
---|
534 | !-- those agents to be deleted after the timestep |
---|
535 | deleted_agents = 0 |
---|
536 | |
---|
537 | IF ( biometeorology ) THEN |
---|
538 | ! |
---|
539 | !-- Fill out the MRT 2D grid from appropriate source (RTM, RRTMG,...) |
---|
540 | CALL bio_calculate_mrt_grid ( .FALSE. ) |
---|
541 | ! |
---|
542 | !-- Call of human thermal comfort mod (and UV exposure) |
---|
543 | DO i = nxl, nxr |
---|
544 | DO j = nys, nyn |
---|
545 | |
---|
546 | number_of_agents = agt_count(j,i) |
---|
547 | ! |
---|
548 | !-- If grid cell gets empty, cycle |
---|
549 | IF ( number_of_agents <= 0 ) CYCLE |
---|
550 | |
---|
551 | agents => grid_agents(j,i)%agents(1:number_of_agents) |
---|
552 | ! |
---|
553 | !-- Evaluation of social forces |
---|
554 | ! CALL bio_dynamic( i, j ) |
---|
555 | ! |
---|
556 | !-- Determine local meteorological conditions |
---|
557 | CALL bio_get_thermal_index_input_ij ( .FALSE., i, j, ta, vp, & |
---|
558 | v, pair, tmrt ) |
---|
559 | |
---|
560 | DO a = 1, number_of_agents |
---|
561 | ! |
---|
562 | !-- Calculate instationary thermal indices based on local tmrt |
---|
563 | |
---|
564 | CALL bio_calc_ipt ( ta, vp, v, pair, tmrt, & |
---|
565 | agents(a)%dt_sum, & |
---|
566 | agents(a)%energy_storage, & |
---|
567 | agents(a)%clothing_temp, & |
---|
568 | agents(a)%clo, & |
---|
569 | agents(a)%actlev, & |
---|
570 | agents(a)%age_years, & |
---|
571 | agents(a)%weight, & |
---|
572 | agents(a)%height, & |
---|
573 | agents(a)%work, & |
---|
574 | agents(a)%sex, & |
---|
575 | agents(a)%ipt ) |
---|
576 | END DO |
---|
577 | |
---|
578 | ENDDO |
---|
579 | ENDDO |
---|
580 | ENDIF |
---|
581 | |
---|
582 | IF ( dt_3d_reached_mas ) EXIT |
---|
583 | |
---|
584 | first_loop_stride = .FALSE. |
---|
585 | ENDDO ! timestep loop |
---|
586 | |
---|
587 | ! |
---|
588 | !-- Deallocate unused memory |
---|
589 | IF ( deallocate_memory_mas .AND. mas_count == step_dealloc_mas ) THEN |
---|
590 | CALL mas_eh_dealloc_agents_array |
---|
591 | mas_count = 0 |
---|
592 | ELSEIF ( deallocate_memory_mas ) THEN |
---|
593 | mas_count = mas_count + 1 |
---|
594 | ENDIF |
---|
595 | |
---|
596 | CALL cpu_log( log_point(9), 'mas', 'stop' ) |
---|
597 | |
---|
598 | END SUBROUTINE multi_agent_system |
---|
599 | |
---|
600 | !------------------------------------------------------------------------------! |
---|
601 | ! Description: |
---|
602 | ! ------------ |
---|
603 | !> Calculation of the direction vector from each agent to its current |
---|
604 | !> intermittent target |
---|
605 | !------------------------------------------------------------------------------! |
---|
606 | SUBROUTINE mas_agent_direction |
---|
607 | |
---|
608 | IMPLICIT NONE |
---|
609 | |
---|
610 | LOGICAL :: path_flag !< true if new path must be calculated |
---|
611 | |
---|
612 | INTEGER(iwp) :: n !< loop variable over all agents in a grid box |
---|
613 | INTEGER(iwp) :: pc !< agent path counter |
---|
614 | |
---|
615 | REAL(wp) :: abs_dir !< length of direction vector (for normalization) |
---|
616 | ! REAL(wp) :: d_curr_target !< rounding influence expressed as x speed component |
---|
617 | ! REAL(wp) :: d_prev_target !< rounding influence expressed as x speed component |
---|
618 | REAL(wp) :: dir_x !< direction of agent (x) |
---|
619 | REAL(wp) :: dir_y !< direction of agent (y) |
---|
620 | ! REAL(wp) :: dist_round = 3. !< distance at which agents start rounding a corner |
---|
621 | REAL(wp) :: dtit !< distance to intermittent target |
---|
622 | ! REAL(wp) :: round_fac = 0.2 !< factor for rounding influence |
---|
623 | ! REAL(wp) :: speed_round_x !< rounding influence expressed as x speed component |
---|
624 | ! REAL(wp) :: speed_round_y !< rounding influence expressed as x speed component |
---|
625 | |
---|
626 | ! |
---|
627 | !-- loop over all agents in the current grid box |
---|
628 | DO n = 1, number_of_agents |
---|
629 | path_flag = .FALSE. |
---|
630 | pc = agents(n)%path_counter |
---|
631 | ! |
---|
632 | !-- If no path was calculated for agent yet, do it |
---|
633 | IF ( pc >= 999 ) THEN |
---|
634 | CALL mas_nav_find_path(n) |
---|
635 | pc = agents(n)%path_counter |
---|
636 | ! |
---|
637 | !-- Check if new path must be calculated and if so, do it |
---|
638 | ELSE |
---|
639 | ! |
---|
640 | !-- Case one: Agent has come close enough to intermittent target. |
---|
641 | !-- -> chose new int target and calculate rest of path if no |
---|
642 | !-- new intermittent targets are left |
---|
643 | dtit = SQRT((agents(n)%x - agents(n)%path_x(pc))**2 & |
---|
644 | + (agents(n)%y - agents(n)%path_y(pc))**2) |
---|
645 | IF ( dtit < dist_to_int_target ) THEN |
---|
646 | agents(n)%path_counter = agents(n)%path_counter + 1 |
---|
647 | pc = agents(n)%path_counter |
---|
648 | ! |
---|
649 | !-- Path counter out of scope (each agent can store a maximum of 15 |
---|
650 | !-- intermittent targets on the way to her final target); new path |
---|
651 | !-- must be calculated |
---|
652 | IF ( pc >= SIZE(agents(n)%path_x) ) THEN |
---|
653 | path_flag = .TRUE. |
---|
654 | ENDIF |
---|
655 | ! |
---|
656 | !-- Case two: Agent too far from path |
---|
657 | !-- -> set flag for new path to be calculated |
---|
658 | ELSEIF ( dist_point_to_edge(agents(n)%path_x(pc-1), & |
---|
659 | agents(n)%path_y(pc-1), & |
---|
660 | agents(n)%path_x(pc), & |
---|
661 | agents(n)%path_y(pc), & |
---|
662 | agents(n)%x, agents(n)%y) & |
---|
663 | > max_dist_from_path ) & |
---|
664 | THEN |
---|
665 | path_flag = .TRUE. |
---|
666 | ENDIF |
---|
667 | ! |
---|
668 | !-- If either of the above two cases was true, calculate new path and |
---|
669 | !-- reset 0th path point. This point (the last target the agent had) |
---|
670 | !-- is needed for the agents rounding of corners and the calculation |
---|
671 | !-- of her deviation from her current path |
---|
672 | IF ( path_flag ) THEN |
---|
673 | CALL mas_nav_find_path(n) |
---|
674 | pc = agents(n)%path_counter |
---|
675 | ENDIF |
---|
676 | ENDIF |
---|
677 | ! |
---|
678 | !-- Normalize direction vector |
---|
679 | abs_dir = 1.0d-12 |
---|
680 | dir_x = agents(n)%path_x(pc) - agents(n)%x |
---|
681 | dir_y = agents(n)%path_y(pc) - agents(n)%y |
---|
682 | abs_dir = SQRT(dir_x**2 + dir_y**2)+1.0d-12 |
---|
683 | !-- needed later for corner rounding |
---|
684 | ! dir_x = dir_x/abs_dir |
---|
685 | ! dir_y = dir_y/abs_dir |
---|
686 | ! dir_x = dir_x + speed_round_x |
---|
687 | ! dir_y = dir_y + speed_round_y |
---|
688 | ! abs_dir = SQRT(dir_x**2 + dir_y**2)+1.0d-12 |
---|
689 | agents(n)%speed_e_x = dir_x/abs_dir |
---|
690 | agents(n)%speed_e_y = dir_y/abs_dir |
---|
691 | ENDDO |
---|
692 | |
---|
693 | ! |
---|
694 | !-- corner rounding; to be added |
---|
695 | ! |
---|
696 | !-- Calculate direction change due to rounding of corners |
---|
697 | |
---|
698 | ! speed_round_x = 0. |
---|
699 | ! speed_round_y = 0. |
---|
700 | ! |
---|
701 | ! d_curr_target = SQRT( (agents(n)%path_x(pc) - agents(n)%x)**2 + & |
---|
702 | ! (agents(n)%path_y(pc) - agents(n)%y)**2 ) |
---|
703 | ! d_prev_target = SQRT( (agents(n)%path_x(pc-1) - agents(n)%x)**2 + & |
---|
704 | ! (agents(n)%path_y(pc-1) - agents(n)%y)**2 ) |
---|
705 | ! ! |
---|
706 | ! !-- Agent is close to next target and that target is not the final one |
---|
707 | ! IF ( d_curr_target < dist_round .AND. dist_round < & |
---|
708 | ! SQRT( (agents(n)%path_x(pc) - agents(n)%t_x)**2 + & |
---|
709 | ! (agents(n)%path_y(pc) - agents(n)%t_y)**2 ) ) & |
---|
710 | ! THEN |
---|
711 | ! speed_round_x = (agents(n)%path_x(pc+1) - agents(n)%path_x(pc)) / & |
---|
712 | ! ABS( agents(n)%path_x(pc) & |
---|
713 | ! - agents(n)%path_x(pc+1)) * round_fac * & |
---|
714 | ! SIN( pi/dist_round*d_curr_target ) |
---|
715 | ! speed_round_y = (agents(n)%path_y(pc+1) - agents(n)%path_y(pc)) / & |
---|
716 | ! ABS( agents(n)%path_y(pc) & |
---|
717 | ! - agents(n)%path_y(pc+1)) * round_fac * & |
---|
718 | ! SIN( pi/dist_round*d_curr_target ) |
---|
719 | ! ENDIF |
---|
720 | ! |
---|
721 | ! IF ( d_prev_target < dist_round ) THEN |
---|
722 | ! IF ( agents(n)%path_x(pc) /= agents(n)%path_x(pc+1) ) THEN |
---|
723 | ! speed_round_x = speed_round_x + & |
---|
724 | ! (agents(n)%path_x(pc) - agents(n)%path_x(pc+1)) / & |
---|
725 | ! ABS( agents(n)%path_x(pc) & |
---|
726 | ! - agents(n)%path_x(pc+1)) * round_fac * & |
---|
727 | ! SIN( pi/dist_round*d_prev_target ) |
---|
728 | ! ENDIF |
---|
729 | ! |
---|
730 | ! IF ( agents(n)%path_y(pc) /= agents(n)%path_y(pc+1) ) THEN |
---|
731 | ! speed_round_y = speed_round_y + & |
---|
732 | ! (agents(n)%path_y(pc) - agents(n)%path_y(pc+1)) / & |
---|
733 | ! ABS( agents(n)%path_y(pc) & |
---|
734 | ! - agents(n)%path_y(pc+1)) * round_fac * & |
---|
735 | ! SIN( pi/dist_round*d_prev_target ) |
---|
736 | ! ENDIF |
---|
737 | |
---|
738 | ! ENDIF |
---|
739 | |
---|
740 | |
---|
741 | END SUBROUTINE mas_agent_direction |
---|
742 | |
---|
743 | !------------------------------------------------------------------------------! |
---|
744 | ! Description: |
---|
745 | ! ------------ |
---|
746 | !> Boundary conditions for maximum time, target reached and out of domain |
---|
747 | !------------------------------------------------------------------------------! |
---|
748 | SUBROUTINE mas_boundary_conds( location ) |
---|
749 | |
---|
750 | IMPLICIT NONE |
---|
751 | |
---|
752 | CHARACTER (LEN=*) :: location !< Identifier |
---|
753 | |
---|
754 | INTEGER(iwp) :: n !< agent number |
---|
755 | INTEGER(iwp) :: grp !< agent group |
---|
756 | |
---|
757 | REAL(wp) :: dist_to_target !< distance to target |
---|
758 | |
---|
759 | IF ( location == 'max_sim_time' ) THEN |
---|
760 | |
---|
761 | ! |
---|
762 | !-- Delete agents that have been simulated longer than allowed |
---|
763 | DO n = 1, number_of_agents |
---|
764 | |
---|
765 | IF ( agents(n)%age > agent_maximum_age .AND. & |
---|
766 | agents(n)%agent_mask ) & |
---|
767 | THEN |
---|
768 | agents(n)%agent_mask = .FALSE. |
---|
769 | deleted_agents = deleted_agents + 1 |
---|
770 | ENDIF |
---|
771 | |
---|
772 | ENDDO |
---|
773 | ENDIF |
---|
774 | |
---|
775 | IF ( location == 'target_area' ) THEN |
---|
776 | |
---|
777 | ! |
---|
778 | !-- Delete agents that entered target region |
---|
779 | DO n = 1, number_of_agents |
---|
780 | grp = agents(n)%group |
---|
781 | dist_to_target = SQRT((agents(n)%x-at_x(grp))**2 & |
---|
782 | + (agents(n)%y-at_y(grp))**2) |
---|
783 | IF ( dist_to_target < dist_target_reached ) THEN |
---|
784 | agents(n)%agent_mask = .FALSE. |
---|
785 | deleted_agents = deleted_agents + 1 |
---|
786 | ENDIF |
---|
787 | |
---|
788 | ENDDO |
---|
789 | ENDIF |
---|
790 | |
---|
791 | END SUBROUTINE mas_boundary_conds |
---|
792 | |
---|
793 | !------------------------------------------------------------------------------! |
---|
794 | ! Description: |
---|
795 | ! ------------ |
---|
796 | !> Release new agents at their respective sources |
---|
797 | !------------------------------------------------------------------------------! |
---|
798 | SUBROUTINE mas_create_agent (phase) |
---|
799 | |
---|
800 | IMPLICIT NONE |
---|
801 | |
---|
802 | INTEGER(iwp) :: alloc_size !< relative increase of allocated memory for agents |
---|
803 | INTEGER(iwp) :: i !< loop variable ( agent groups ) |
---|
804 | INTEGER(iwp) :: ip !< index variable along x |
---|
805 | INTEGER(iwp) :: jp !< index variable along y |
---|
806 | INTEGER(iwp) :: loop_stride !< loop variable for initialization |
---|
807 | INTEGER(iwp) :: n !< loop variable ( number of agents ) |
---|
808 | INTEGER(iwp) :: new_size !< new size of allocated memory for agents |
---|
809 | INTEGER(iwp) :: rn_side !< index of agent path |
---|
810 | |
---|
811 | INTEGER(iwp), INTENT(IN) :: phase !< mode of inititialization |
---|
812 | |
---|
813 | INTEGER(iwp), DIMENSION(nysg:nyng,nxlg:nxrg) :: local_count !< start address of new agent |
---|
814 | INTEGER(iwp), DIMENSION(nysg:nyng,nxlg:nxrg) :: local_start !< start address of new agent |
---|
815 | |
---|
816 | LOGICAL :: first_stride !< flag for initialization |
---|
817 | |
---|
818 | REAL(wp) :: pos_x !< increment for agent position in x |
---|
819 | REAL(wp) :: pos_y !< increment for agent position in y |
---|
820 | REAL(wp) :: rand_contr !< dummy argument for random position |
---|
821 | REAL(wp) :: rn_side_dum !< index of agent path |
---|
822 | |
---|
823 | TYPE(agent_type),TARGET :: tmp_agent !< temporary agent used for initialization |
---|
824 | |
---|
825 | ! |
---|
826 | !-- Calculate agent positions and store agent attributes, if |
---|
827 | !-- agent is situated on this PE |
---|
828 | DO loop_stride = 1, 2 |
---|
829 | first_stride = (loop_stride == 1) |
---|
830 | IF ( first_stride ) THEN |
---|
831 | local_count = 0 ! count number of agents |
---|
832 | ELSE |
---|
833 | local_count = agt_count ! Start address of new agents |
---|
834 | ENDIF |
---|
835 | |
---|
836 | DO i = 1, number_of_agent_groups |
---|
837 | |
---|
838 | pos_y = ass(i) |
---|
839 | |
---|
840 | DO WHILE ( pos_y <= asn(i) ) |
---|
841 | |
---|
842 | IF ( pos_y >= nys * dy .AND. & |
---|
843 | pos_y < ( nyn + 1 ) * dy ) & |
---|
844 | THEN |
---|
845 | |
---|
846 | pos_x = asl(i) |
---|
847 | |
---|
848 | xloop: DO WHILE ( pos_x <= asr(i) ) |
---|
849 | |
---|
850 | IF ( pos_x >= nxl * dx .AND. & |
---|
851 | pos_x < ( nxr + 1) * dx ) & |
---|
852 | THEN |
---|
853 | |
---|
854 | tmp_agent%agent_mask = .TRUE. |
---|
855 | tmp_agent%group = i |
---|
856 | tmp_agent%id = 0_idp |
---|
857 | tmp_agent%block_nr = -1 |
---|
858 | tmp_agent%path_counter = 999 !SIZE(tmp_agent%path_x) |
---|
859 | tmp_agent%age = 0.0_wp |
---|
860 | tmp_agent%age_m = 0.0_wp |
---|
861 | tmp_agent%dt_sum = 0.0_wp |
---|
862 | tmp_agent%clo = -999.0_wp |
---|
863 | tmp_agent%energy_storage= 0.0_wp |
---|
864 | tmp_agent%ipt = 99999.0_wp |
---|
865 | tmp_agent%clothing_temp = -999._wp !< energy stored by agent (W) |
---|
866 | tmp_agent%actlev = 134.6862_wp !< metabolic + work energy of the person |
---|
867 | tmp_agent%age_years = 35._wp !< physical age of the person |
---|
868 | tmp_agent%weight = 75._wp !< total weight of the person (kg) |
---|
869 | tmp_agent%height = 1.75_wp !< height of the person (m) |
---|
870 | tmp_agent%work = 134.6862_wp !< workload of the agent (W) |
---|
871 | tmp_agent%sex = 1 !< agents gender: 1 = male, 2 = female |
---|
872 | tmp_agent%force_x = 0.0_wp |
---|
873 | tmp_agent%force_y = 0.0_wp |
---|
874 | tmp_agent%origin_x = pos_x |
---|
875 | tmp_agent%origin_y = pos_y |
---|
876 | tmp_agent%speed_abs = 0.0_wp |
---|
877 | tmp_agent%speed_e_x = 0.0_wp |
---|
878 | tmp_agent%speed_e_y = 0.0_wp |
---|
879 | tmp_agent%speed_des = random_normal(desired_speed,& |
---|
880 | des_sp_sig) |
---|
881 | tmp_agent%speed_x = 0.0_wp |
---|
882 | tmp_agent%speed_y = 0.0_wp |
---|
883 | tmp_agent%x = pos_x |
---|
884 | tmp_agent%y = pos_y |
---|
885 | tmp_agent%path_x = -1.0_wp |
---|
886 | tmp_agent%path_y = -1.0_wp |
---|
887 | tmp_agent%t_x = - pi |
---|
888 | tmp_agent%t_y = - pi |
---|
889 | ! |
---|
890 | !-- Determine the grid indices of the agent position |
---|
891 | ip = tmp_agent%x * ddx |
---|
892 | jp = tmp_agent%y * ddy |
---|
893 | ! |
---|
894 | !-- Give each agent its target |
---|
895 | IF ( a_rand_target(i) ) THEN |
---|
896 | ! |
---|
897 | !-- Agent shall receive random target just outside |
---|
898 | !-- simulated area |
---|
899 | rn_side_dum = random_function(iran_agent) |
---|
900 | rn_side = FLOOR(4.*rn_side_dum) |
---|
901 | IF ( rn_side < 2 ) THEN |
---|
902 | IF ( rn_side == 0 ) THEN |
---|
903 | tmp_agent%t_y = -2*dy |
---|
904 | ELSE |
---|
905 | tmp_agent%t_y = (ny+3)*dy |
---|
906 | ENDIF |
---|
907 | tmp_agent%t_x = random_function(iran_agent) * & |
---|
908 | (nx+1)*dx |
---|
909 | ELSE |
---|
910 | IF ( rn_side == 2 ) THEN |
---|
911 | tmp_agent%t_x = -2*dx |
---|
912 | ELSE |
---|
913 | tmp_agent%t_x = (nx+3)*dx |
---|
914 | ENDIF |
---|
915 | tmp_agent%t_y = random_function(iran_agent) * & |
---|
916 | (ny+1)*dy |
---|
917 | ENDIF |
---|
918 | ! |
---|
919 | !-- Agent gets target of her group |
---|
920 | ELSE |
---|
921 | tmp_agent%t_x = at_x(i) |
---|
922 | tmp_agent%t_y = at_y(i) |
---|
923 | ENDIF |
---|
924 | |
---|
925 | local_count(jp,ip) = local_count(jp,ip) + 1 |
---|
926 | |
---|
927 | IF ( .NOT. first_stride ) THEN |
---|
928 | grid_agents(jp,ip)%agents(local_count(jp,ip)) & |
---|
929 | = tmp_agent |
---|
930 | ENDIF |
---|
931 | |
---|
932 | ENDIF |
---|
933 | |
---|
934 | pos_x = pos_x + adx(i) |
---|
935 | |
---|
936 | ENDDO xloop |
---|
937 | |
---|
938 | ENDIF |
---|
939 | |
---|
940 | pos_y = pos_y + ady(i) |
---|
941 | |
---|
942 | ENDDO |
---|
943 | |
---|
944 | ENDDO |
---|
945 | |
---|
946 | ! |
---|
947 | !-- Allocate or reallocate agents array to new size |
---|
948 | IF ( first_stride ) THEN |
---|
949 | DO ip = nxlg, nxrg |
---|
950 | DO jp = nysg, nyng |
---|
951 | IF ( phase == PHASE_INIT ) THEN |
---|
952 | IF ( local_count(jp,ip) > 0 ) THEN |
---|
953 | alloc_size = MAX( INT( local_count(jp,ip) * & |
---|
954 | ( 1.0_wp + alloc_factor_mas / 100.0_wp ) ), & |
---|
955 | min_nr_agent ) |
---|
956 | ELSE |
---|
957 | alloc_size = min_nr_agent |
---|
958 | ENDIF |
---|
959 | ALLOCATE(grid_agents(jp,ip)%agents(1:alloc_size)) |
---|
960 | DO n = 1, alloc_size |
---|
961 | grid_agents(jp,ip)%agents(n) = zero_agent |
---|
962 | ENDDO |
---|
963 | ELSEIF ( phase == PHASE_RELEASE ) THEN |
---|
964 | IF ( local_count(jp,ip) > 0 ) THEN |
---|
965 | new_size = local_count(jp,ip) + agt_count(jp,ip) |
---|
966 | alloc_size = MAX( INT( new_size * ( 1.0_wp + & |
---|
967 | alloc_factor_mas / 100.0_wp ) ), min_nr_agent ) |
---|
968 | IF( alloc_size > SIZE( grid_agents(jp,ip)%agents) ) & |
---|
969 | THEN |
---|
970 | CALL mas_eh_realloc_agents_array(ip,jp,alloc_size) |
---|
971 | ENDIF |
---|
972 | ENDIF |
---|
973 | ENDIF |
---|
974 | ENDDO |
---|
975 | ENDDO |
---|
976 | ENDIF |
---|
977 | |
---|
978 | ENDDO |
---|
979 | |
---|
980 | local_start = agt_count+1 |
---|
981 | agt_count = local_count |
---|
982 | |
---|
983 | ! |
---|
984 | !-- Calculate agent IDs |
---|
985 | DO ip = nxl, nxr |
---|
986 | DO jp = nys, nyn |
---|
987 | number_of_agents = agt_count(jp,ip) |
---|
988 | IF ( number_of_agents <= 0 ) CYCLE |
---|
989 | agents => grid_agents(jp,ip)%agents(1:number_of_agents) |
---|
990 | |
---|
991 | DO n = local_start(jp,ip), number_of_agents !only new agents |
---|
992 | |
---|
993 | agents(n)%id = 10000_idp**2 * grid_agents(jp,ip)%id_counter + & |
---|
994 | 10000_idp * jp + ip |
---|
995 | ! |
---|
996 | !-- Count the number of agents that have been released before |
---|
997 | grid_agents(jp,ip)%id_counter = grid_agents(jp,ip)%id_counter & |
---|
998 | + 1 |
---|
999 | |
---|
1000 | ENDDO |
---|
1001 | |
---|
1002 | ENDDO |
---|
1003 | ENDDO |
---|
1004 | |
---|
1005 | ! |
---|
1006 | !-- Add random fluctuation to agent positions. |
---|
1007 | IF ( random_start_position_agents ) THEN |
---|
1008 | DO ip = nxl, nxr |
---|
1009 | DO jp = nys, nyn |
---|
1010 | number_of_agents = agt_count(jp,ip) |
---|
1011 | IF ( number_of_agents <= 0 ) CYCLE |
---|
1012 | agents => grid_agents(jp,ip)%agents(1:number_of_agents) |
---|
1013 | ! |
---|
1014 | !-- Move only new agents. Moreover, limit random fluctuation |
---|
1015 | !-- in order to prevent that agents move more than one grid box, |
---|
1016 | !-- which would lead to problems concerning agent exchange |
---|
1017 | !-- between processors in case adx/ady are larger than dx/dy, |
---|
1018 | !-- respectively. |
---|
1019 | DO n = local_start(jp,ip), number_of_agents |
---|
1020 | IF ( asl(agents(n)%group) /= asr(agents(n)%group) ) THEN |
---|
1021 | rand_contr = ( random_function( iran_agent ) - 0.5_wp ) *& |
---|
1022 | adx(agents(n)%group) |
---|
1023 | agents(n)%x = agents(n)%x + & |
---|
1024 | MERGE( rand_contr, SIGN( dx, rand_contr ), & |
---|
1025 | ABS( rand_contr ) < dx & |
---|
1026 | ) |
---|
1027 | ENDIF |
---|
1028 | IF ( ass(agents(n)%group) /= asn(agents(n)%group) ) THEN |
---|
1029 | rand_contr = ( random_function( iran_agent ) - 0.5_wp ) *& |
---|
1030 | ady(agents(n)%group) |
---|
1031 | agents(n)%y = agents(n)%y + & |
---|
1032 | MERGE( rand_contr, SIGN( dy, rand_contr ), & |
---|
1033 | ABS( rand_contr ) < dy ) |
---|
1034 | ENDIF |
---|
1035 | ENDDO |
---|
1036 | ! |
---|
1037 | !-- Delete agents that have been simulated longer than allowed |
---|
1038 | CALL mas_boundary_conds( 'max_sim_time' ) |
---|
1039 | ! |
---|
1040 | !-- Delete agents that have reached target area |
---|
1041 | CALL mas_boundary_conds( 'target_area' ) |
---|
1042 | |
---|
1043 | ENDDO |
---|
1044 | ENDDO |
---|
1045 | ! |
---|
1046 | !-- Exchange agents between grid cells and processors |
---|
1047 | CALL mas_eh_move_agent |
---|
1048 | CALL mas_eh_exchange_horiz |
---|
1049 | |
---|
1050 | ENDIF |
---|
1051 | ! |
---|
1052 | !-- In case of random_start_position_agents, delete agents identified by |
---|
1053 | !-- mas_eh_exchange_horiz and mas_boundary_conds. Then sort agents into |
---|
1054 | !-- blocks, which is needed for a fast interpolation of the LES fields |
---|
1055 | !-- on the agent position. |
---|
1056 | CALL mas_ps_sort_in_subboxes |
---|
1057 | |
---|
1058 | ! |
---|
1059 | !-- Determine the current number of agents |
---|
1060 | number_of_agents = 0 |
---|
1061 | DO ip = nxl, nxr |
---|
1062 | DO jp = nys, nyn |
---|
1063 | number_of_agents = number_of_agents + agt_count(jp,ip) |
---|
1064 | ENDDO |
---|
1065 | ENDDO |
---|
1066 | ! |
---|
1067 | !-- Calculate the number of agents of the total domain |
---|
1068 | #if defined( __parallel ) |
---|
1069 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1070 | CALL MPI_ALLREDUCE( number_of_agents, total_number_of_agents, 1, & |
---|
1071 | MPI_INTEGER, MPI_SUM, comm2d, ierr ) |
---|
1072 | #else |
---|
1073 | total_number_of_agents = number_of_agents |
---|
1074 | #endif |
---|
1075 | |
---|
1076 | RETURN |
---|
1077 | |
---|
1078 | END SUBROUTINE mas_create_agent |
---|
1079 | |
---|
1080 | !------------------------------------------------------------------------------! |
---|
1081 | ! Description: |
---|
1082 | ! ------------ |
---|
1083 | !> Creates flags that indicate if a gridbox contains edges or corners. These |
---|
1084 | !> flags are used for agents to check if obstacles are close to them. |
---|
1085 | !------------------------------------------------------------------------------! |
---|
1086 | SUBROUTINE mas_create_obstacle_flags |
---|
1087 | |
---|
1088 | USE arrays_3d, & |
---|
1089 | ONLY: zw |
---|
1090 | |
---|
1091 | IMPLICIT NONE |
---|
1092 | |
---|
1093 | INTEGER(iwp) :: il |
---|
1094 | INTEGER(iwp) :: jl |
---|
1095 | |
---|
1096 | ALLOCATE(obstacle_flags(nysg:nyng,nxlg:nxrg)) |
---|
1097 | |
---|
1098 | obstacle_flags = 0 |
---|
1099 | |
---|
1100 | DO il = nxlg, nxrg |
---|
1101 | DO jl = nysg, nyng |
---|
1102 | ! |
---|
1103 | !-- Exclude cyclic topography boundary |
---|
1104 | IF ( il < 0 .OR. il > nx .OR. jl < 0 .OR. jl > ny ) CYCLE |
---|
1105 | ! |
---|
1106 | !-- North edge |
---|
1107 | IF ( jl < nyng ) THEN |
---|
1108 | IF ( ( top_top_s(jl,il) - top_top_s(jl+1,il) ) > 1 .AND. & |
---|
1109 | ( zw( top_top_w(jl,il) ) - & |
---|
1110 | zw( top_top_w(jl+1,il) ) ) > .51_wp ) & |
---|
1111 | THEN |
---|
1112 | obstacle_flags(jl,il) = IBSET( obstacle_flags(jl,il), 0 ) |
---|
1113 | ENDIF |
---|
1114 | ENDIF |
---|
1115 | ! |
---|
1116 | !-- North right corner |
---|
1117 | IF ( jl < nyng .AND. il < nxrg ) THEN |
---|
1118 | IF ( ( top_top_s(jl,il) - top_top_s(jl+1,il) ) > 1 .AND. & |
---|
1119 | ( top_top_s(jl,il) - top_top_s(jl+1,il+1) ) > 1 .AND. & |
---|
1120 | ( top_top_s(jl,il) - top_top_s(jl,il+1) ) > 1 .AND. & |
---|
1121 | ( zw( top_top_w(jl,il) ) - & |
---|
1122 | zw( top_top_w(jl+1,il+1) ) ) > .51_wp ) & |
---|
1123 | THEN |
---|
1124 | obstacle_flags(jl,il) = IBSET( obstacle_flags(jl,il), 1 ) |
---|
1125 | ENDIF |
---|
1126 | ENDIF |
---|
1127 | ! |
---|
1128 | !-- Right edge |
---|
1129 | IF ( il < nxrg ) THEN |
---|
1130 | IF ( ( top_top_s(jl,il) - top_top_s(jl,il+1) ) > 1 .AND. & |
---|
1131 | ( zw( top_top_w(jl,il) ) - & |
---|
1132 | zw( top_top_w(jl,il+1) ) ) > .51_wp ) & |
---|
1133 | THEN |
---|
1134 | obstacle_flags(jl,il) = IBSET( obstacle_flags(jl,il), 2 ) |
---|
1135 | ENDIF |
---|
1136 | ENDIF |
---|
1137 | ! |
---|
1138 | !-- South right corner |
---|
1139 | IF ( jl > nysg .AND. il < nxrg ) THEN |
---|
1140 | IF ( ( top_top_s(jl,il) - top_top_s(jl,il+1) ) > 1 .AND. & |
---|
1141 | ( top_top_s(jl,il) - top_top_s(jl-1,il+1) ) > 1 .AND. & |
---|
1142 | ( top_top_s(jl,il) - top_top_s(jl-1,il) ) > 1 .AND. & |
---|
1143 | ( zw(top_top_w(jl,il)) - & |
---|
1144 | zw( top_top_w(jl-1,il+1) ) ) > .51_wp ) & |
---|
1145 | THEN |
---|
1146 | obstacle_flags(jl,il) = IBSET( obstacle_flags(jl,il), 3 ) |
---|
1147 | ENDIF |
---|
1148 | ENDIF |
---|
1149 | ! |
---|
1150 | !-- South edge |
---|
1151 | IF ( jl > nysg ) THEN |
---|
1152 | IF ( ( top_top_s(jl,il) - top_top_s(jl-1,il) ) > 1 .AND. & |
---|
1153 | ( zw( top_top_w(jl,il) ) - & |
---|
1154 | zw( top_top_w(jl-1,il) ) ) > .51_wp ) & |
---|
1155 | THEN |
---|
1156 | obstacle_flags(jl,il) = IBSET( obstacle_flags(jl,il), 4 ) |
---|
1157 | ENDIF |
---|
1158 | ENDIF |
---|
1159 | ! |
---|
1160 | !-- South left corner |
---|
1161 | IF ( jl > nysg .AND. il > nxlg ) THEN |
---|
1162 | IF ( ( top_top_s(jl,il) - top_top_s(jl-1,il) ) > 1 .AND. & |
---|
1163 | ( top_top_s(jl,il) - top_top_s(jl-1,il-1) ) > 1 .AND. & |
---|
1164 | ( top_top_s(jl,il) - top_top_s(jl,il-1) ) > 1 .AND. & |
---|
1165 | ( zw( top_top_w(jl,il) ) - & |
---|
1166 | zw(top_top_w(jl-1,il-1) ) ) > .51_wp ) & |
---|
1167 | THEN |
---|
1168 | obstacle_flags(jl,il) = IBSET( obstacle_flags(jl,il), 5 ) |
---|
1169 | ENDIF |
---|
1170 | ENDIF |
---|
1171 | ! |
---|
1172 | !-- Left edge |
---|
1173 | IF ( il > nxlg ) THEN |
---|
1174 | IF ( ( top_top_s(jl,il) - top_top_s(jl,il-1) ) > 1 .AND. & |
---|
1175 | ( zw(top_top_w(jl,il) ) - & |
---|
1176 | zw(top_top_w(jl,il-1) ) ) > .51_wp ) & |
---|
1177 | THEN |
---|
1178 | obstacle_flags(jl,il) = IBSET( obstacle_flags(jl,il), 6 ) |
---|
1179 | ENDIF |
---|
1180 | ENDIF |
---|
1181 | ! |
---|
1182 | !-- North left corner |
---|
1183 | IF ( jl < nyng .AND. il > nxlg ) THEN |
---|
1184 | IF ( ( top_top_s(jl,il) - top_top_s(jl,il-1) ) > 1 .AND. & |
---|
1185 | ( top_top_s(jl,il) - top_top_s(jl+1,il-1) ) > 1 .AND. & |
---|
1186 | ( top_top_s(jl,il) - top_top_s(jl+1,il) ) > 1 .AND. & |
---|
1187 | ( zw( top_top_w(jl,il) ) - & |
---|
1188 | zw( top_top_w(jl+1,il-1) ) ) > .51_wp ) & |
---|
1189 | THEN |
---|
1190 | obstacle_flags(jl,il) = IBSET( obstacle_flags(jl,il), 7 ) |
---|
1191 | ENDIF |
---|
1192 | ENDIF |
---|
1193 | |
---|
1194 | ENDDO |
---|
1195 | ENDDO |
---|
1196 | |
---|
1197 | END SUBROUTINE mas_create_obstacle_flags |
---|
1198 | |
---|
1199 | !------------------------------------------------------------------------------! |
---|
1200 | ! Description: |
---|
1201 | ! ------------ |
---|
1202 | !> Write agent data in netCDF format |
---|
1203 | !------------------------------------------------------------------------------! |
---|
1204 | SUBROUTINE mas_data_output_agents( ftest ) |
---|
1205 | |
---|
1206 | USE control_parameters, & |
---|
1207 | ONLY: agt_time_count, end_time, message_string, & |
---|
1208 | multi_agent_system_end, multi_agent_system_start |
---|
1209 | |
---|
1210 | USE netcdf_interface, & |
---|
1211 | ONLY: nc_stat, id_set_agt, id_var_time_agt, & |
---|
1212 | id_var_agt, netcdf_handle_error |
---|
1213 | |
---|
1214 | USE pegrid |
---|
1215 | |
---|
1216 | #if defined( __netcdf ) |
---|
1217 | USE NETCDF |
---|
1218 | #endif |
---|
1219 | USE mas_global_attributes, & |
---|
1220 | ONLY: dim_size_agtnum |
---|
1221 | |
---|
1222 | IMPLICIT NONE |
---|
1223 | |
---|
1224 | INTEGER(iwp) :: agt_size !< Agent size in bytes |
---|
1225 | INTEGER(iwp) :: dummy !< dummy |
---|
1226 | INTEGER(iwp) :: ii !< counter (x) |
---|
1227 | INTEGER(iwp) :: ip !< counter (x) |
---|
1228 | INTEGER(iwp) :: jp !< counter (y) |
---|
1229 | INTEGER(iwp) :: n !< counter (number of PEs) |
---|
1230 | INTEGER(iwp) :: noa !< number of agents |
---|
1231 | INTEGER(iwp) :: noa_rcv !< received number of agents |
---|
1232 | INTEGER(iwp) :: out_noa !< number of agents for output |
---|
1233 | |
---|
1234 | INTEGER(iwp), DIMENSION(0:numprocs-1) :: noa_arr !< number of agents on each PE |
---|
1235 | |
---|
1236 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE, TARGET :: trf_agents !< all agents on current PE |
---|
1237 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE, TARGET :: out_agents !< all agents in entire domain |
---|
1238 | |
---|
1239 | LOGICAL, INTENT (INOUT) :: ftest |
---|
1240 | |
---|
1241 | LOGICAL, SAVE :: agt_dimension_exceeded = .FALSE. |
---|
1242 | |
---|
1243 | CALL cpu_log( log_point_s(17), 'mas_data_output', 'start' ) |
---|
1244 | ! |
---|
1245 | !-- Get total number of agents and put all agents on one PE in one array |
---|
1246 | noa = 0 |
---|
1247 | DO ip = nxl, nxr |
---|
1248 | DO jp = nys, nyn |
---|
1249 | noa = noa + agt_count(jp,ip) |
---|
1250 | ENDDO |
---|
1251 | ENDDO |
---|
1252 | IF(noa > 0) THEN |
---|
1253 | ALLOCATE(trf_agents(1:noa)) |
---|
1254 | dummy = 1 |
---|
1255 | DO ip = nxl, nxr |
---|
1256 | DO jp = nys, nyn |
---|
1257 | IF ( agt_count(jp,ip) == 0 ) CYCLE |
---|
1258 | agents => grid_agents(jp,ip)%agents(1:agt_count(jp,ip)) |
---|
1259 | trf_agents(dummy:(dummy-1+agt_count(jp,ip))) = agents |
---|
1260 | dummy = dummy + agt_count(jp,ip) |
---|
1261 | ENDDO |
---|
1262 | ENDDO |
---|
1263 | ENDIF |
---|
1264 | #if defined( __parallel ) |
---|
1265 | ! |
---|
1266 | !-- Gather all agents on PE0 for output |
---|
1267 | IF ( myid == 0 ) THEN |
---|
1268 | noa_arr(0) = noa |
---|
1269 | ! |
---|
1270 | !-- Receive data from all other PEs. |
---|
1271 | DO n = 1, numprocs-1 |
---|
1272 | CALL MPI_RECV( noa_arr(n), 1, MPI_INTEGER, & |
---|
1273 | n, 0, comm2d, status, ierr ) |
---|
1274 | ENDDO |
---|
1275 | ELSE |
---|
1276 | CALL MPI_SEND( noa, 1, MPI_INTEGER, 0, 0, comm2d, ierr ) |
---|
1277 | ENDIF |
---|
1278 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
1279 | agt_size = STORAGE_SIZE(zero_agent)/8 |
---|
1280 | IF ( myid == 0 ) THEN |
---|
1281 | ! |
---|
1282 | !-- Receive data from all other PEs. |
---|
1283 | out_noa = SUM(noa_arr) |
---|
1284 | IF ( out_noa > 0 ) THEN |
---|
1285 | ALLOCATE( out_agents(1:out_noa) ) |
---|
1286 | IF ( noa > 0 ) THEN |
---|
1287 | out_agents(1:noa) = trf_agents |
---|
1288 | ENDIF |
---|
1289 | noa_rcv = noa |
---|
1290 | DO n = 1, numprocs-1 |
---|
1291 | IF ( noa_arr(n) > 0 ) THEN |
---|
1292 | CALL MPI_RECV( out_agents(noa_rcv+1), noa_arr(n)*agt_size, & |
---|
1293 | MPI_BYTE, n, 0, comm2d, status, ierr ) |
---|
1294 | noa_rcv = noa_rcv + noa_arr(n) |
---|
1295 | ENDIF |
---|
1296 | ENDDO |
---|
1297 | ELSE |
---|
1298 | ALLOCATE( out_agents(1:2) ) |
---|
1299 | out_agents = zero_agent |
---|
1300 | out_noa = 2 |
---|
1301 | ENDIF |
---|
1302 | ELSE |
---|
1303 | IF ( noa > 0 ) THEN |
---|
1304 | CALL MPI_SEND( trf_agents(1), noa*agt_size, MPI_BYTE, 0, 0, & |
---|
1305 | comm2d, ierr ) |
---|
1306 | ENDIF |
---|
1307 | ENDIF |
---|
1308 | ! |
---|
1309 | !-- A barrier has to be set, because otherwise some PEs may |
---|
1310 | !-- proceed too fast so that PE0 may receive wrong data on |
---|
1311 | !-- tag 0 |
---|
1312 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
1313 | #endif |
---|
1314 | IF ( myid == 0 ) THEN |
---|
1315 | #if defined( __parallel ) |
---|
1316 | agents => out_agents |
---|
1317 | #else |
---|
1318 | agents => trf_agents |
---|
1319 | #endif |
---|
1320 | |
---|
1321 | #if defined( __netcdf ) |
---|
1322 | ! |
---|
1323 | !-- Update maximum number of agents |
---|
1324 | maximum_number_of_agents = MAX(maximum_number_of_agents, out_noa) |
---|
1325 | ! |
---|
1326 | !-- Output in netCDF format |
---|
1327 | IF ( ftest ) THEN |
---|
1328 | ! |
---|
1329 | !-- First, define size of agent number dimension from amount of agents |
---|
1330 | !-- released, release interval, time of agent simulation and max |
---|
1331 | !-- age of agents |
---|
1332 | dim_size_agtnum = MIN( MIN( multi_agent_system_end, end_time ) & |
---|
1333 | - multi_agent_system_start, & |
---|
1334 | agent_maximum_age) |
---|
1335 | |
---|
1336 | DO ii = 1, number_of_agent_groups |
---|
1337 | dim_size_agtnum = dim_size_agtnum & |
---|
1338 | + (FLOOR( ( asr(ii)-asl(ii) ) / adx(ii) ) + 1) & |
---|
1339 | * (FLOOR( ( asn(ii)-ass(ii) ) / ady(ii) ) + 1) & |
---|
1340 | * (FLOOR( dim_size_agtnum / dt_arel ) + 1) & |
---|
1341 | * dim_size_factor_agtnum |
---|
1342 | dim_size_agtnum = MIN( dim_size_agtnum, dim_size_agtnum_manual ) |
---|
1343 | ENDDO |
---|
1344 | CALL check_open( 118 ) |
---|
1345 | ENDIF |
---|
1346 | |
---|
1347 | ! |
---|
1348 | !-- Update the NetCDF time axis |
---|
1349 | agt_time_count = agt_time_count + 1 |
---|
1350 | |
---|
1351 | IF ( .NOT. agt_dimension_exceeded ) THEN |
---|
1352 | ! |
---|
1353 | !-- if number of agents to be output exceeds dimension, set flag and |
---|
1354 | !-- print warning |
---|
1355 | IF ( out_noa > dim_size_agtnum ) THEN |
---|
1356 | |
---|
1357 | agt_dimension_exceeded = .TRUE. |
---|
1358 | WRITE(message_string,'(A,F11.1,2(A,I8))') & |
---|
1359 | 'Number of agents exceeds agent dimension.' // & |
---|
1360 | '&Starting at time_since_reference_point = ', & |
---|
1361 | time_since_reference_point, & |
---|
1362 | ' s, &data may be missing.'// & |
---|
1363 | '&Number of agents: ', out_noa, & |
---|
1364 | '&Agent dimension size: ', dim_size_agtnum |
---|
1365 | |
---|
1366 | CALL message( 'mas_data_output_agents', & |
---|
1367 | 'PA0420', 0, 1, 0, 6, 0 ) |
---|
1368 | |
---|
1369 | ENDIF |
---|
1370 | ENDIF |
---|
1371 | |
---|
1372 | ! |
---|
1373 | !-- reduce number of output agents to dimension size, if necessary |
---|
1374 | IF ( agt_dimension_exceeded ) THEN |
---|
1375 | |
---|
1376 | out_noa = MIN( out_noa, dim_size_agtnum ) |
---|
1377 | |
---|
1378 | ENDIF |
---|
1379 | |
---|
1380 | nc_stat = NF90_PUT_VAR( id_set_agt, id_var_time_agt, & |
---|
1381 | (/ time_since_reference_point + agent_substep_time /), & |
---|
1382 | start = (/ agt_time_count /), & |
---|
1383 | count = (/ 1 /) ) |
---|
1384 | CALL netcdf_handle_error( 'mas_data_output_agents', 1 ) |
---|
1385 | |
---|
1386 | ! |
---|
1387 | !-- Output agent attributes |
---|
1388 | |
---|
1389 | nc_stat = NF90_PUT_VAR( id_set_agt, id_var_agt(1), agents%id, & |
---|
1390 | start = (/ 1, agt_time_count /), & |
---|
1391 | count = (/ out_noa /) ) |
---|
1392 | CALL netcdf_handle_error( 'mas_data_output_agents', 2 ) |
---|
1393 | |
---|
1394 | nc_stat = NF90_PUT_VAR( id_set_agt, id_var_agt(2), agents%x, & |
---|
1395 | start = (/ 1, agt_time_count /), & |
---|
1396 | count = (/ out_noa /) ) |
---|
1397 | CALL netcdf_handle_error( 'mas_data_output_agents', 3 ) |
---|
1398 | |
---|
1399 | nc_stat = NF90_PUT_VAR( id_set_agt, id_var_agt(3), agents%y, & |
---|
1400 | start = (/ 1, agt_time_count /), & |
---|
1401 | count = (/ out_noa /) ) |
---|
1402 | CALL netcdf_handle_error( 'mas_data_output_agents', 4 ) |
---|
1403 | |
---|
1404 | nc_stat = NF90_PUT_VAR( id_set_agt, id_var_agt(4), agents%windspeed, & |
---|
1405 | start = (/ 1, agt_time_count /), & |
---|
1406 | count = (/ out_noa /) ) |
---|
1407 | CALL netcdf_handle_error( 'mas_data_output_agents', 5 ) |
---|
1408 | |
---|
1409 | nc_stat = NF90_PUT_VAR( id_set_agt, id_var_agt(5), agents%t, & |
---|
1410 | start = (/ 1, agt_time_count /), & |
---|
1411 | count = (/ out_noa /) ) |
---|
1412 | CALL netcdf_handle_error( 'mas_data_output_agents', 6 ) |
---|
1413 | |
---|
1414 | nc_stat = NF90_PUT_VAR( id_set_agt, id_var_agt(6), agents%group, & |
---|
1415 | start = (/ 1, agt_time_count /), & |
---|
1416 | count = (/ out_noa /) ) |
---|
1417 | CALL netcdf_handle_error( 'mas_data_output_agents', 7 ) |
---|
1418 | CALL cpu_log( log_point_s(17), 'mas_data_output', 'stop' ) |
---|
1419 | |
---|
1420 | |
---|
1421 | ! nc_stat = NF90_PUT_VAR( id_set_agt, id_var_agt(6), agents%pm10, & |
---|
1422 | ! start = (/ 1, agt_time_count /), & |
---|
1423 | ! count = (/ out_noa /) ) |
---|
1424 | ! CALL netcdf_handle_error( 'mas_data_output_agents', 8 ) |
---|
1425 | ! |
---|
1426 | ! nc_stat = NF90_PUT_VAR( id_set_agt, id_var_agt(7), agents%pm25, & |
---|
1427 | ! start = (/ 1, agt_time_count /), & |
---|
1428 | ! count = (/ out_noa /) ) |
---|
1429 | ! CALL netcdf_handle_error( 'mas_data_output_agents', 9 ) |
---|
1430 | ! |
---|
1431 | ! nc_stat = NF90_PUT_VAR( id_set_agt, id_var_agt(8), agents%therm_comf,& |
---|
1432 | ! start = (/ 1, agt_time_count /), & |
---|
1433 | ! count = (/ out_noa /) ) |
---|
1434 | ! |
---|
1435 | ! nc_stat = NF90_PUT_VAR( id_set_agt, id_var_agt(9), agents%uv, & |
---|
1436 | ! start = (/ 1, agt_time_count /), & |
---|
1437 | ! count = (/ out_noa /) ) |
---|
1438 | ! CALL netcdf_handle_error( 'mas_data_output_agents', 10 ) |
---|
1439 | |
---|
1440 | #endif |
---|
1441 | agents => NULL() |
---|
1442 | #if defined( __parallel ) |
---|
1443 | IF ( ALLOCATED( out_agents ) ) DEALLOCATE( out_agents ) |
---|
1444 | #endif |
---|
1445 | ELSE |
---|
1446 | CALL cpu_log( log_point_s(17), 'mas_data_output', 'stop' ) |
---|
1447 | ENDIF |
---|
1448 | |
---|
1449 | IF ( ALLOCATED( trf_agents ) ) DEALLOCATE( trf_agents ) |
---|
1450 | |
---|
1451 | END SUBROUTINE mas_data_output_agents |
---|
1452 | |
---|
1453 | !------------------------------------------------------------------------------! |
---|
1454 | ! Description: |
---|
1455 | ! ------------ |
---|
1456 | !> If an agent moves from one processor to another, this subroutine moves |
---|
1457 | !> the corresponding elements from the agent arrays of the old grid cells |
---|
1458 | !> to the agent arrays of the new grid cells. |
---|
1459 | !------------------------------------------------------------------------------! |
---|
1460 | SUBROUTINE mas_eh_add_agents_to_gridcell (agent_array) |
---|
1461 | |
---|
1462 | IMPLICIT NONE |
---|
1463 | |
---|
1464 | INTEGER(iwp) :: aindex !< dummy argument for new number of agents per grid box |
---|
1465 | INTEGER(iwp) :: ip !< grid index (x) of agent |
---|
1466 | INTEGER(iwp) :: jp !< grid index (x) of agent |
---|
1467 | INTEGER(iwp) :: n !< index variable of agent |
---|
1468 | |
---|
1469 | LOGICAL :: pack_done !< flag to indicate that packing is done |
---|
1470 | |
---|
1471 | TYPE(agent_type), DIMENSION(:), INTENT(IN) :: agent_array !< new agents in a grid box |
---|
1472 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: temp_ns !< temporary agent array for reallocation |
---|
1473 | |
---|
1474 | pack_done = .FALSE. |
---|
1475 | |
---|
1476 | DO n = 1, SIZE(agent_array) |
---|
1477 | |
---|
1478 | IF ( .NOT. agent_array(n)%agent_mask ) CYCLE |
---|
1479 | |
---|
1480 | ip = agent_array(n)%x * ddx |
---|
1481 | jp = agent_array(n)%y * ddy |
---|
1482 | |
---|
1483 | IF ( ip >= nxl .AND. ip <= nxr .AND. & |
---|
1484 | jp >= nys .AND. jp <= nyn ) & |
---|
1485 | THEN ! agent stays on processor |
---|
1486 | number_of_agents = agt_count(jp,ip) |
---|
1487 | agents => grid_agents(jp,ip)%agents(1:number_of_agents) |
---|
1488 | |
---|
1489 | aindex = agt_count(jp,ip)+1 |
---|
1490 | IF( aindex > SIZE(grid_agents(jp,ip)%agents) ) THEN |
---|
1491 | IF ( pack_done ) THEN |
---|
1492 | CALL mas_eh_realloc_agents_array (ip,jp) |
---|
1493 | ELSE |
---|
1494 | CALL mas_ps_pack |
---|
1495 | agt_count(jp,ip) = number_of_agents |
---|
1496 | aindex = agt_count(jp,ip)+1 |
---|
1497 | IF ( aindex > SIZE(grid_agents(jp,ip)%agents) ) THEN |
---|
1498 | CALL mas_eh_realloc_agents_array (ip,jp) |
---|
1499 | ENDIF |
---|
1500 | pack_done = .TRUE. |
---|
1501 | ENDIF |
---|
1502 | ENDIF |
---|
1503 | grid_agents(jp,ip)%agents(aindex) = agent_array(n) |
---|
1504 | agt_count(jp,ip) = aindex |
---|
1505 | ELSE |
---|
1506 | IF ( jp <= nys - 1 ) THEN |
---|
1507 | nr_move_south = nr_move_south+1 |
---|
1508 | ! |
---|
1509 | !-- Before agent information is swapped to exchange-array, check |
---|
1510 | !-- if enough memory is allocated. If required, reallocate exchange |
---|
1511 | !-- array. |
---|
1512 | IF ( nr_move_south > SIZE(move_also_south) ) THEN |
---|
1513 | ! |
---|
1514 | !-- At first, allocate further temporary array to swap agent |
---|
1515 | !-- information. |
---|
1516 | ALLOCATE( temp_ns(SIZE(move_also_south)+NR_2_direction_move)) |
---|
1517 | temp_ns(1:nr_move_south-1) = move_also_south & |
---|
1518 | (1:nr_move_south-1) |
---|
1519 | DEALLOCATE( move_also_south ) |
---|
1520 | ALLOCATE( move_also_south(SIZE(temp_ns)) ) |
---|
1521 | move_also_south(1:nr_move_south-1) = temp_ns & |
---|
1522 | (1:nr_move_south-1) |
---|
1523 | DEALLOCATE( temp_ns ) |
---|
1524 | |
---|
1525 | ENDIF |
---|
1526 | |
---|
1527 | move_also_south(nr_move_south) = agent_array(n) |
---|
1528 | |
---|
1529 | IF ( jp == -1 ) THEN |
---|
1530 | ! |
---|
1531 | !-- Apply boundary condition along y |
---|
1532 | IF ( ibc_mas_ns == 0 ) THEN |
---|
1533 | move_also_south(nr_move_south)%y = & |
---|
1534 | move_also_south(nr_move_south)%y & |
---|
1535 | + ( ny + 1 ) * dy |
---|
1536 | move_also_south(nr_move_south)%origin_y = & |
---|
1537 | move_also_south(nr_move_south)%origin_y & |
---|
1538 | + ( ny + 1 ) * dy |
---|
1539 | ELSEIF ( ibc_mas_ns == 1 ) THEN |
---|
1540 | ! |
---|
1541 | !-- Agent absorption |
---|
1542 | move_also_south(nr_move_south)%agent_mask = .FALSE. |
---|
1543 | deleted_agents = deleted_agents + 1 |
---|
1544 | |
---|
1545 | ENDIF |
---|
1546 | ENDIF |
---|
1547 | ELSEIF ( jp >= nyn+1 ) THEN |
---|
1548 | nr_move_north = nr_move_north+1 |
---|
1549 | ! |
---|
1550 | !-- Before agent information is swapped to exchange-array, check |
---|
1551 | !-- if enough memory is allocated. If required, reallocate exchange |
---|
1552 | !-- array. |
---|
1553 | IF ( nr_move_north > SIZE(move_also_north) ) THEN |
---|
1554 | ! |
---|
1555 | !-- At first, allocate further temporary array to swap agent |
---|
1556 | !-- information. |
---|
1557 | ALLOCATE( temp_ns(SIZE(move_also_north)+NR_2_direction_move)) |
---|
1558 | temp_ns(1:nr_move_north-1) = & |
---|
1559 | move_also_south(1:nr_move_north-1) |
---|
1560 | DEALLOCATE( move_also_north ) |
---|
1561 | ALLOCATE( move_also_north(SIZE(temp_ns)) ) |
---|
1562 | move_also_north(1:nr_move_north-1) = & |
---|
1563 | temp_ns(1:nr_move_north-1) |
---|
1564 | DEALLOCATE( temp_ns ) |
---|
1565 | |
---|
1566 | ENDIF |
---|
1567 | |
---|
1568 | move_also_north(nr_move_north) = agent_array(n) |
---|
1569 | IF ( jp == ny+1 ) THEN |
---|
1570 | ! |
---|
1571 | !-- Apply boundary condition along y |
---|
1572 | IF ( ibc_mas_ns == 0 ) THEN |
---|
1573 | |
---|
1574 | move_also_north(nr_move_north)%y = & |
---|
1575 | move_also_north(nr_move_north)%y & |
---|
1576 | - ( ny + 1 ) * dy |
---|
1577 | move_also_north(nr_move_north)%origin_y = & |
---|
1578 | move_also_north(nr_move_north)%origin_y & |
---|
1579 | - ( ny + 1 ) * dy |
---|
1580 | ELSEIF ( ibc_mas_ns == 1 ) THEN |
---|
1581 | ! |
---|
1582 | !-- Agent absorption |
---|
1583 | move_also_north(nr_move_north)%agent_mask = .FALSE. |
---|
1584 | deleted_agents = deleted_agents + 1 |
---|
1585 | |
---|
1586 | ENDIF |
---|
1587 | ENDIF |
---|
1588 | ENDIF |
---|
1589 | ENDIF |
---|
1590 | ENDDO |
---|
1591 | |
---|
1592 | RETURN |
---|
1593 | |
---|
1594 | END SUBROUTINE mas_eh_add_agents_to_gridcell |
---|
1595 | |
---|
1596 | !------------------------------------------------------------------------------! |
---|
1597 | ! Description: |
---|
1598 | ! ------------ |
---|
1599 | !> After ghost layer agents have been received from neighboring PEs, this |
---|
1600 | !> subroutine sorts them into the corresponding grid cells |
---|
1601 | !------------------------------------------------------------------------------! |
---|
1602 | SUBROUTINE mas_eh_add_ghost_agents_to_gridcell (agent_array) |
---|
1603 | |
---|
1604 | IMPLICIT NONE |
---|
1605 | |
---|
1606 | INTEGER(iwp) :: ip !< grid index (x) of agent |
---|
1607 | INTEGER(iwp) :: jp !< grid index (x) of agent |
---|
1608 | INTEGER(iwp) :: n !< index variable of agent |
---|
1609 | INTEGER(iwp) :: aindex !< dummy argument for new number of agents per grid box |
---|
1610 | |
---|
1611 | LOGICAL :: pack_done !< flag to indicate that packing is done |
---|
1612 | |
---|
1613 | TYPE(agent_type), DIMENSION(:), INTENT(IN) :: agent_array !< new agents in a grid box |
---|
1614 | |
---|
1615 | pack_done = .FALSE. |
---|
1616 | |
---|
1617 | DO n = 1, SIZE(agent_array) |
---|
1618 | |
---|
1619 | IF ( .NOT. agent_array(n)%agent_mask ) CYCLE |
---|
1620 | |
---|
1621 | ip = agent_array(n)%x * ddx |
---|
1622 | jp = agent_array(n)%y * ddy |
---|
1623 | |
---|
1624 | IF ( ip < nxl .OR. ip > nxr .OR. jp < nys .OR. jp > nyn ) THEN |
---|
1625 | number_of_agents = agt_count(jp,ip) |
---|
1626 | agents => grid_agents(jp,ip)%agents(1:number_of_agents) |
---|
1627 | |
---|
1628 | aindex = agt_count(jp,ip)+1 |
---|
1629 | IF( aindex > SIZE(grid_agents(jp,ip)%agents) ) THEN |
---|
1630 | IF ( pack_done ) THEN |
---|
1631 | CALL mas_eh_realloc_agents_array (ip,jp) |
---|
1632 | ELSE |
---|
1633 | CALL mas_ps_pack |
---|
1634 | agt_count(jp,ip) = number_of_agents |
---|
1635 | aindex = agt_count(jp,ip)+1 |
---|
1636 | IF ( aindex > SIZE(grid_agents(jp,ip)%agents) ) THEN |
---|
1637 | CALL mas_eh_realloc_agents_array (ip,jp) |
---|
1638 | ENDIF |
---|
1639 | pack_done = .TRUE. |
---|
1640 | ENDIF |
---|
1641 | ENDIF |
---|
1642 | grid_agents(jp,ip)%agents(aindex) = agent_array(n) |
---|
1643 | agt_count(jp,ip) = aindex |
---|
1644 | ENDIF |
---|
1645 | ENDDO |
---|
1646 | END SUBROUTINE mas_eh_add_ghost_agents_to_gridcell |
---|
1647 | |
---|
1648 | !------------------------------------------------------------------------------! |
---|
1649 | ! Description: |
---|
1650 | ! ------------ |
---|
1651 | !> Resizing of agent arrays |
---|
1652 | !------------------------------------------------------------------------------! |
---|
1653 | SUBROUTINE mas_eh_dealloc_agents_array |
---|
1654 | |
---|
1655 | IMPLICIT NONE |
---|
1656 | |
---|
1657 | INTEGER(iwp) :: i !< grid index (x) of agent |
---|
1658 | INTEGER(iwp) :: j !< grid index (y) of agent |
---|
1659 | INTEGER(iwp) :: old_size !< old array size |
---|
1660 | INTEGER(iwp) :: new_size !< new array size |
---|
1661 | INTEGER(iwp) :: noa !< number of agents |
---|
1662 | |
---|
1663 | LOGICAL :: dealloc !< flag that indicates if reallocation is necessary |
---|
1664 | |
---|
1665 | TYPE(agent_type), DIMENSION(10) :: tmp_agents_s !< temporary static agent array |
---|
1666 | |
---|
1667 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: tmp_agents_d !< temporary dynamic agent array |
---|
1668 | |
---|
1669 | DO i = nxlg, nxrg |
---|
1670 | DO j = nysg, nyng |
---|
1671 | ! |
---|
1672 | !-- Determine number of active agents |
---|
1673 | noa = agt_count(j,i) |
---|
1674 | ! |
---|
1675 | !-- Determine allocated memory size |
---|
1676 | old_size = SIZE( grid_agents(j,i)%agents ) |
---|
1677 | ! |
---|
1678 | !-- Check for large unused memory |
---|
1679 | dealloc = ( ( noa < min_nr_agent .AND. old_size > min_nr_agent ) & |
---|
1680 | .OR. ( noa > min_nr_agent .AND. old_size - noa * & |
---|
1681 | ( 1.0_wp + 0.01_wp * alloc_factor_mas ) > 0.0_wp ) ) |
---|
1682 | ! |
---|
1683 | !-- If large unused memory was found, resize the corresponding array |
---|
1684 | IF ( dealloc ) THEN |
---|
1685 | IF ( noa < min_nr_agent ) THEN |
---|
1686 | new_size = min_nr_agent |
---|
1687 | ELSE |
---|
1688 | new_size = INT( noa * ( 1.0_wp + & |
---|
1689 | 0.01_wp * alloc_factor_mas ) ) |
---|
1690 | ENDIF |
---|
1691 | |
---|
1692 | IF ( noa <= 10 ) THEN |
---|
1693 | |
---|
1694 | tmp_agents_s(1:noa) = grid_agents(j,i)%agents(1:noa) |
---|
1695 | |
---|
1696 | DEALLOCATE(grid_agents(j,i)%agents) |
---|
1697 | ALLOCATE(grid_agents(j,i)%agents(1:new_size)) |
---|
1698 | |
---|
1699 | grid_agents(j,i)%agents(1:noa) = tmp_agents_s(1:noa) |
---|
1700 | grid_agents(j,i)%agents(noa+1:new_size) = zero_agent |
---|
1701 | |
---|
1702 | ELSE |
---|
1703 | |
---|
1704 | ALLOCATE(tmp_agents_d(noa)) |
---|
1705 | tmp_agents_d(1:noa) = grid_agents(j,i)%agents(1:noa) |
---|
1706 | |
---|
1707 | DEALLOCATE(grid_agents(j,i)%agents) |
---|
1708 | ALLOCATE(grid_agents(j,i)%agents(new_size)) |
---|
1709 | |
---|
1710 | grid_agents(j,i)%agents(1:noa) = tmp_agents_d(1:noa) |
---|
1711 | grid_agents(j,i)%agents(noa+1:new_size) = zero_agent |
---|
1712 | |
---|
1713 | DEALLOCATE(tmp_agents_d) |
---|
1714 | |
---|
1715 | ENDIF |
---|
1716 | |
---|
1717 | ENDIF |
---|
1718 | ENDDO |
---|
1719 | ENDDO |
---|
1720 | |
---|
1721 | END SUBROUTINE mas_eh_dealloc_agents_array |
---|
1722 | |
---|
1723 | !------------------------------------------------------------------------------! |
---|
1724 | ! Description: |
---|
1725 | ! ------------ |
---|
1726 | !> Exchange between subdomains. |
---|
1727 | !> As soon as one agent has moved beyond the boundary of the domain, it |
---|
1728 | !> is included in the relevant transfer arrays and marked for subsequent |
---|
1729 | !> deletion on this PE. |
---|
1730 | !> First sweep for crossings in x direction. Find out first the number of |
---|
1731 | !> agents to be transferred and allocate temporary arrays needed to store |
---|
1732 | !> them. |
---|
1733 | !> For a one-dimensional decomposition along y, no transfer is necessary, |
---|
1734 | !> because the agent remains on the PE, but the agent coordinate has to |
---|
1735 | !> be adjusted. |
---|
1736 | !------------------------------------------------------------------------------! |
---|
1737 | SUBROUTINE mas_eh_exchange_horiz |
---|
1738 | |
---|
1739 | IMPLICIT NONE |
---|
1740 | |
---|
1741 | INTEGER(iwp) :: i !< grid index (x) of agent positition |
---|
1742 | INTEGER(iwp) :: ip !< index variable along x |
---|
1743 | INTEGER(iwp) :: j !< grid index (y) of agent positition |
---|
1744 | INTEGER(iwp) :: jp !< index variable along y |
---|
1745 | INTEGER(iwp) :: n !< agent index variable |
---|
1746 | INTEGER(iwp) :: par_size !< Agent size in bytes |
---|
1747 | INTEGER(iwp) :: trla_count !< number of agents send to left PE |
---|
1748 | INTEGER(iwp) :: trla_count_recv !< number of agents receive from right PE |
---|
1749 | INTEGER(iwp) :: trna_count !< number of agents send to north PE |
---|
1750 | INTEGER(iwp) :: trna_count_recv !< number of agents receive from south PE |
---|
1751 | INTEGER(iwp) :: trra_count !< number of agents send to right PE |
---|
1752 | INTEGER(iwp) :: trra_count_recv !< number of agents receive from left PE |
---|
1753 | INTEGER(iwp) :: trsa_count !< number of agents send to south PE |
---|
1754 | INTEGER(iwp) :: trsa_count_recv !< number of agents receive from north PE |
---|
1755 | |
---|
1756 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: rvla !< agents received from right PE |
---|
1757 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: rvna !< agents received from south PE |
---|
1758 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: rvra !< agents received from left PE |
---|
1759 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: rvsa !< agents received from north PE |
---|
1760 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: trla !< agents send to left PE |
---|
1761 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: trna !< agents send to north PE |
---|
1762 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: trra !< agents send to right PE |
---|
1763 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: trsa !< agents send to south PE |
---|
1764 | |
---|
1765 | #if defined( __parallel ) |
---|
1766 | |
---|
1767 | ! |
---|
1768 | !-- Exchange between subdomains. |
---|
1769 | !-- As soon as one agent has moved beyond the boundary of the domain, it |
---|
1770 | !-- is included in the relevant transfer arrays and marked for subsequent |
---|
1771 | !-- deletion on this PE. |
---|
1772 | !-- First sweep for crossings in x direction. Find out first the number of |
---|
1773 | !-- agents to be transferred and allocate temporary arrays needed to store |
---|
1774 | !-- them. |
---|
1775 | !-- For a one-dimensional decomposition along y, no transfer is necessary, |
---|
1776 | !-- because the agent remains on the PE, but the agent coordinate has to |
---|
1777 | !-- be adjusted. |
---|
1778 | trla_count = 0 |
---|
1779 | trra_count = 0 |
---|
1780 | |
---|
1781 | trla_count_recv = 0 |
---|
1782 | trra_count_recv = 0 |
---|
1783 | |
---|
1784 | IF ( pdims(1) /= 1 ) THEN |
---|
1785 | ! |
---|
1786 | !-- First calculate the storage necessary for sending and receiving the data. |
---|
1787 | !-- Compute only first (nxl) and last (nxr) loop iterration. |
---|
1788 | DO ip = nxl, nxr, nxr - nxl |
---|
1789 | DO jp = nys, nyn |
---|
1790 | |
---|
1791 | number_of_agents = agt_count(jp,ip) |
---|
1792 | IF ( number_of_agents <= 0 ) CYCLE |
---|
1793 | agents => grid_agents(jp,ip)%agents(1:number_of_agents) |
---|
1794 | DO n = 1, number_of_agents |
---|
1795 | IF ( agents(n)%agent_mask ) THEN |
---|
1796 | i = agents(n)%x * ddx |
---|
1797 | ! |
---|
1798 | !-- Above calculation does not work for indices less than zero |
---|
1799 | IF ( agents(n)%x < 0.0_wp ) i = -1 |
---|
1800 | |
---|
1801 | IF ( i < nxl ) THEN |
---|
1802 | trla_count = trla_count + 1 |
---|
1803 | ELSEIF ( i > nxr ) THEN |
---|
1804 | trra_count = trra_count + 1 |
---|
1805 | ENDIF |
---|
1806 | ENDIF |
---|
1807 | ENDDO |
---|
1808 | |
---|
1809 | ENDDO |
---|
1810 | ENDDO |
---|
1811 | |
---|
1812 | IF ( trla_count == 0 ) trla_count = 1 |
---|
1813 | IF ( trra_count == 0 ) trra_count = 1 |
---|
1814 | |
---|
1815 | ALLOCATE( trla(trla_count), trra(trra_count) ) |
---|
1816 | |
---|
1817 | trla = zero_agent |
---|
1818 | trra = zero_agent |
---|
1819 | |
---|
1820 | trla_count = 0 |
---|
1821 | trra_count = 0 |
---|
1822 | |
---|
1823 | ENDIF |
---|
1824 | ! |
---|
1825 | !-- Compute only first (nxl) and last (nxr) loop iterration |
---|
1826 | DO ip = nxl, nxr, nxr-nxl |
---|
1827 | DO jp = nys, nyn |
---|
1828 | number_of_agents = agt_count(jp,ip) |
---|
1829 | IF ( number_of_agents <= 0 ) CYCLE |
---|
1830 | agents => grid_agents(jp,ip)%agents(1:number_of_agents) |
---|
1831 | DO n = 1, number_of_agents |
---|
1832 | ! |
---|
1833 | !-- Only those agents that have not been marked as 'deleted' may |
---|
1834 | !-- be moved. |
---|
1835 | IF ( agents(n)%agent_mask ) THEN |
---|
1836 | |
---|
1837 | i = agents(n)%x * ddx |
---|
1838 | ! |
---|
1839 | !-- Above calculation does not work for indices less than zero |
---|
1840 | IF ( agents(n)%x < 0.0_wp ) i = -1 |
---|
1841 | |
---|
1842 | IF ( i < nxl ) THEN |
---|
1843 | IF ( i < 0 ) THEN |
---|
1844 | ! |
---|
1845 | !-- Apply boundary condition along x |
---|
1846 | IF ( ibc_mas_lr == 0 ) THEN |
---|
1847 | ! |
---|
1848 | !-- Cyclic condition |
---|
1849 | IF ( pdims(1) == 1 ) THEN |
---|
1850 | agents(n)%x = ( nx + 1 ) * dx + & |
---|
1851 | agents(n)%x |
---|
1852 | agents(n)%origin_x = ( nx + 1 ) * dx + & |
---|
1853 | agents(n)%origin_x |
---|
1854 | ELSE |
---|
1855 | trla_count = trla_count + 1 |
---|
1856 | trla(trla_count) = agents(n) |
---|
1857 | trla(trla_count)%x = ( nx + 1 ) * dx + & |
---|
1858 | trla(trla_count)%x |
---|
1859 | trla(trla_count)%origin_x = & |
---|
1860 | trla(trla_count)%origin_x + & |
---|
1861 | ( nx + 1 ) * dx |
---|
1862 | agents(n)%agent_mask = .FALSE. |
---|
1863 | deleted_agents = deleted_agents + 1 |
---|
1864 | |
---|
1865 | IF ( trla(trla_count)%x >= & |
---|
1866 | (nx + 1)* dx - 1.0E-12_wp ) & |
---|
1867 | THEN |
---|
1868 | trla(trla_count)%x = trla(trla_count)%x - & |
---|
1869 | 1.0E-10_wp |
---|
1870 | trla(trla_count)%origin_x = & |
---|
1871 | trla(trla_count)%origin_x - 1 |
---|
1872 | ENDIF |
---|
1873 | |
---|
1874 | ENDIF |
---|
1875 | |
---|
1876 | ELSEIF ( ibc_mas_lr == 1 ) THEN |
---|
1877 | ! |
---|
1878 | !-- Agent absorption |
---|
1879 | agents(n)%agent_mask = .FALSE. |
---|
1880 | deleted_agents = deleted_agents + 1 |
---|
1881 | |
---|
1882 | ENDIF |
---|
1883 | ELSE |
---|
1884 | ! |
---|
1885 | !-- Store agent data in the transfer array, which will be |
---|
1886 | !-- send to the neighbouring PE |
---|
1887 | trla_count = trla_count + 1 |
---|
1888 | trla(trla_count) = agents(n) |
---|
1889 | agents(n)%agent_mask = .FALSE. |
---|
1890 | deleted_agents = deleted_agents + 1 |
---|
1891 | |
---|
1892 | ENDIF |
---|
1893 | |
---|
1894 | ELSEIF ( i > nxr ) THEN |
---|
1895 | IF ( i > nx ) THEN |
---|
1896 | ! |
---|
1897 | !-- Apply boundary condition along x |
---|
1898 | IF ( ibc_mas_lr == 0 ) THEN |
---|
1899 | ! |
---|
1900 | !-- Cyclic condition |
---|
1901 | IF ( pdims(1) == 1 ) THEN |
---|
1902 | agents(n)%x = agents(n)%x - ( nx + 1 ) * dx |
---|
1903 | agents(n)%origin_x = agents(n)%origin_x - & |
---|
1904 | ( nx + 1 ) * dx |
---|
1905 | ELSE |
---|
1906 | trra_count = trra_count + 1 |
---|
1907 | trra(trra_count) = agents(n) |
---|
1908 | trra(trra_count)%x = trra(trra_count)%x - & |
---|
1909 | ( nx + 1 ) * dx |
---|
1910 | trra(trra_count)%origin_x = & |
---|
1911 | trra(trra_count)%origin_x - & |
---|
1912 | ( nx + 1 ) * dx |
---|
1913 | agents(n)%agent_mask = .FALSE. |
---|
1914 | deleted_agents = deleted_agents + 1 |
---|
1915 | |
---|
1916 | ENDIF |
---|
1917 | |
---|
1918 | ELSEIF ( ibc_mas_lr == 1 ) THEN |
---|
1919 | ! |
---|
1920 | !-- Agent absorption |
---|
1921 | agents(n)%agent_mask = .FALSE. |
---|
1922 | deleted_agents = deleted_agents + 1 |
---|
1923 | |
---|
1924 | ENDIF |
---|
1925 | ELSE |
---|
1926 | ! |
---|
1927 | !-- Store agent data in the transfer array, which will be send |
---|
1928 | !-- to the neighbouring PE |
---|
1929 | trra_count = trra_count + 1 |
---|
1930 | trra(trra_count) = agents(n) |
---|
1931 | agents(n)%agent_mask = .FALSE. |
---|
1932 | deleted_agents = deleted_agents + 1 |
---|
1933 | |
---|
1934 | ENDIF |
---|
1935 | |
---|
1936 | ENDIF |
---|
1937 | ENDIF |
---|
1938 | |
---|
1939 | ENDDO |
---|
1940 | ENDDO |
---|
1941 | ENDDO |
---|
1942 | |
---|
1943 | ! |
---|
1944 | !-- Allocate arrays required for north-south exchange, as these |
---|
1945 | !-- are used directly after agents are exchange along x-direction. |
---|
1946 | ALLOCATE( move_also_north(1:NR_2_direction_move) ) |
---|
1947 | ALLOCATE( move_also_south(1:NR_2_direction_move) ) |
---|
1948 | |
---|
1949 | nr_move_north = 0 |
---|
1950 | nr_move_south = 0 |
---|
1951 | ! |
---|
1952 | !-- Send left boundary, receive right boundary (but first exchange how many |
---|
1953 | !-- and chec if agent storage must be extended) |
---|
1954 | IF ( pdims(1) /= 1 ) THEN |
---|
1955 | |
---|
1956 | CALL MPI_SENDRECV( trla_count, 1, MPI_INTEGER, pleft, 0, & |
---|
1957 | trra_count_recv, 1, MPI_INTEGER, pright, 0, & |
---|
1958 | comm2d, status, ierr ) |
---|
1959 | |
---|
1960 | ALLOCATE(rvra(MAX(1,trra_count_recv))) |
---|
1961 | ! |
---|
1962 | !-- This MPI_SENDRECV should work even with odd mixture on 32 and 64 Bit |
---|
1963 | !-- variables in structure agent_type (due to the calculation of par_size) |
---|
1964 | par_size = STORAGE_SIZE(trla(1))/8 |
---|
1965 | CALL MPI_SENDRECV( trla, max(1,trla_count)*par_size, MPI_BYTE, pleft,& |
---|
1966 | 1, rvra, max(1,trra_count_recv)*par_size, MPI_BYTE, pright,& |
---|
1967 | 1, comm2d, status, ierr ) |
---|
1968 | |
---|
1969 | IF ( trra_count_recv > 0 ) THEN |
---|
1970 | CALL mas_eh_add_agents_to_gridcell(rvra(1:trra_count_recv)) |
---|
1971 | ENDIF |
---|
1972 | |
---|
1973 | DEALLOCATE(rvra) |
---|
1974 | |
---|
1975 | ! |
---|
1976 | !-- Send right boundary, receive left boundary |
---|
1977 | CALL MPI_SENDRECV( trra_count, 1, MPI_INTEGER, pright, 0, & |
---|
1978 | trla_count_recv, 1, MPI_INTEGER, pleft, 0, & |
---|
1979 | comm2d, status, ierr ) |
---|
1980 | |
---|
1981 | ALLOCATE(rvla(MAX(1,trla_count_recv))) |
---|
1982 | ! |
---|
1983 | !-- This MPI_SENDRECV should work even with odd mixture on 32 and 64 Bit |
---|
1984 | !-- variables in structure agent_type (due to the calculation of par_size) |
---|
1985 | par_size = STORAGE_SIZE(trra(1))/8 |
---|
1986 | CALL MPI_SENDRECV( trra, max(1,trra_count)*par_size, MPI_BYTE, & |
---|
1987 | pright, 1, rvla, & |
---|
1988 | max(1,trla_count_recv)*par_size, MPI_BYTE, & |
---|
1989 | pleft, 1, comm2d, status, ierr ) |
---|
1990 | |
---|
1991 | IF ( trla_count_recv > 0 ) THEN |
---|
1992 | CALL mas_eh_add_agents_to_gridcell(rvla(1:trla_count_recv)) |
---|
1993 | ENDIF |
---|
1994 | |
---|
1995 | DEALLOCATE( rvla ) |
---|
1996 | DEALLOCATE( trla, trra ) |
---|
1997 | |
---|
1998 | ENDIF |
---|
1999 | |
---|
2000 | ! |
---|
2001 | !-- Check whether agents have crossed the boundaries in y direction. Note |
---|
2002 | !-- that this case can also apply to agents that have just been received |
---|
2003 | !-- from the adjacent right or left PE. |
---|
2004 | !-- Find out first the number of agents to be transferred and allocate |
---|
2005 | !-- temporary arrays needed to store them. |
---|
2006 | !-- For a one-dimensional decomposition along y, no transfer is necessary, |
---|
2007 | !-- because the agent remains on the PE. |
---|
2008 | trsa_count = nr_move_south |
---|
2009 | trna_count = nr_move_north |
---|
2010 | |
---|
2011 | trsa_count_recv = 0 |
---|
2012 | trna_count_recv = 0 |
---|
2013 | |
---|
2014 | IF ( pdims(2) /= 1 ) THEN |
---|
2015 | ! |
---|
2016 | !-- First calculate the storage necessary for sending and receiving the |
---|
2017 | !-- data |
---|
2018 | DO ip = nxl, nxr |
---|
2019 | DO jp = nys, nyn, nyn-nys !compute only first (nys) and last (nyn) loop iterration |
---|
2020 | number_of_agents = agt_count(jp,ip) |
---|
2021 | IF ( number_of_agents <= 0 ) CYCLE |
---|
2022 | agents => grid_agents(jp,ip)%agents(1:number_of_agents) |
---|
2023 | DO n = 1, number_of_agents |
---|
2024 | IF ( agents(n)%agent_mask ) THEN |
---|
2025 | j = agents(n)%y * ddy |
---|
2026 | ! |
---|
2027 | !-- Above calculation does not work for indices less than zero |
---|
2028 | IF ( agents(n)%y < 0.0_wp ) j = -1 |
---|
2029 | |
---|
2030 | IF ( j < nys ) THEN |
---|
2031 | trsa_count = trsa_count + 1 |
---|
2032 | ELSEIF ( j > nyn ) THEN |
---|
2033 | trna_count = trna_count + 1 |
---|
2034 | ENDIF |
---|
2035 | ENDIF |
---|
2036 | ENDDO |
---|
2037 | ENDDO |
---|
2038 | ENDDO |
---|
2039 | |
---|
2040 | IF ( trsa_count == 0 ) trsa_count = 1 |
---|
2041 | IF ( trna_count == 0 ) trna_count = 1 |
---|
2042 | |
---|
2043 | ALLOCATE( trsa(trsa_count), trna(trna_count) ) |
---|
2044 | |
---|
2045 | trsa = zero_agent |
---|
2046 | trna = zero_agent |
---|
2047 | |
---|
2048 | trsa_count = nr_move_south |
---|
2049 | trna_count = nr_move_north |
---|
2050 | |
---|
2051 | trsa(1:nr_move_south) = move_also_south(1:nr_move_south) |
---|
2052 | trna(1:nr_move_north) = move_also_north(1:nr_move_north) |
---|
2053 | |
---|
2054 | ENDIF |
---|
2055 | |
---|
2056 | DO ip = nxl, nxr |
---|
2057 | DO jp = nys, nyn, nyn-nys ! compute only first (nys) and last (nyn) loop iterration |
---|
2058 | number_of_agents = agt_count(jp,ip) |
---|
2059 | IF ( number_of_agents <= 0 ) CYCLE |
---|
2060 | agents => grid_agents(jp,ip)%agents(1:number_of_agents) |
---|
2061 | DO n = 1, number_of_agents |
---|
2062 | ! |
---|
2063 | !-- Only those agents that have not been marked as 'deleted' may |
---|
2064 | !-- be moved. |
---|
2065 | IF ( agents(n)%agent_mask ) THEN |
---|
2066 | |
---|
2067 | j = agents(n)%y * ddy |
---|
2068 | ! |
---|
2069 | !-- Above calculation does not work for indices less than zero |
---|
2070 | IF ( agents(n)%y < 0.0_wp * dy ) j = -1 |
---|
2071 | |
---|
2072 | IF ( j < nys ) THEN |
---|
2073 | IF ( j < 0 ) THEN |
---|
2074 | ! |
---|
2075 | !-- Apply boundary condition along y |
---|
2076 | IF ( ibc_mas_ns == 0 ) THEN |
---|
2077 | ! |
---|
2078 | !-- Cyclic condition |
---|
2079 | IF ( pdims(2) == 1 ) THEN |
---|
2080 | agents(n)%y = ( ny + 1 ) * dy + agents(n)%y |
---|
2081 | agents(n)%origin_y = ( ny + 1 ) * dy + & |
---|
2082 | agents(n)%origin_y |
---|
2083 | ELSE |
---|
2084 | trsa_count = trsa_count + 1 |
---|
2085 | trsa(trsa_count) = agents(n) |
---|
2086 | trsa(trsa_count)%y = ( ny + 1 ) * dy + & |
---|
2087 | trsa(trsa_count)%y |
---|
2088 | trsa(trsa_count)%origin_y = & |
---|
2089 | trsa(trsa_count)%origin_y & |
---|
2090 | + ( ny + 1 ) * dy |
---|
2091 | agents(n)%agent_mask = .FALSE. |
---|
2092 | deleted_agents = deleted_agents + 1 |
---|
2093 | |
---|
2094 | IF ( trsa(trsa_count)%y >= & |
---|
2095 | (ny+1)* dy - 1.0E-12_wp ) & |
---|
2096 | THEN |
---|
2097 | trsa(trsa_count)%y = trsa(trsa_count)%y - & |
---|
2098 | 1.0E-10_wp |
---|
2099 | trsa(trsa_count)%origin_y = & |
---|
2100 | trsa(trsa_count)%origin_y - 1 |
---|
2101 | ENDIF |
---|
2102 | |
---|
2103 | ENDIF |
---|
2104 | |
---|
2105 | ELSEIF ( ibc_mas_ns == 1 ) THEN |
---|
2106 | ! |
---|
2107 | !-- Agent absorption |
---|
2108 | agents(n)%agent_mask = .FALSE. |
---|
2109 | deleted_agents = deleted_agents + 1 |
---|
2110 | |
---|
2111 | ENDIF |
---|
2112 | ELSE |
---|
2113 | ! |
---|
2114 | !-- Store agent data in the transfer array, which will |
---|
2115 | !-- be send to the neighbouring PE |
---|
2116 | trsa_count = trsa_count + 1 |
---|
2117 | trsa(trsa_count) = agents(n) |
---|
2118 | agents(n)%agent_mask = .FALSE. |
---|
2119 | deleted_agents = deleted_agents + 1 |
---|
2120 | |
---|
2121 | ENDIF |
---|
2122 | |
---|
2123 | ELSEIF ( j > nyn ) THEN |
---|
2124 | IF ( j > ny ) THEN |
---|
2125 | ! |
---|
2126 | !-- Apply boundary condition along y |
---|
2127 | IF ( ibc_mas_ns == 0 ) THEN |
---|
2128 | ! |
---|
2129 | !-- Cyclic condition |
---|
2130 | IF ( pdims(2) == 1 ) THEN |
---|
2131 | agents(n)%y = agents(n)%y - & |
---|
2132 | ( ny + 1 ) * dy |
---|
2133 | agents(n)%origin_y = agents(n)%origin_y - & |
---|
2134 | ( ny + 1 ) * dy |
---|
2135 | ELSE |
---|
2136 | trna_count = trna_count + 1 |
---|
2137 | trna(trna_count) = agents(n) |
---|
2138 | trna(trna_count)%y = & |
---|
2139 | trna(trna_count)%y - ( ny + 1 ) * dy |
---|
2140 | trna(trna_count)%origin_y = & |
---|
2141 | trna(trna_count)%origin_y - & |
---|
2142 | ( ny + 1 ) * dy |
---|
2143 | agents(n)%agent_mask = .FALSE. |
---|
2144 | deleted_agents = deleted_agents + 1 |
---|
2145 | ENDIF |
---|
2146 | |
---|
2147 | ELSEIF ( ibc_mas_ns == 1 ) THEN |
---|
2148 | ! |
---|
2149 | !-- Agent absorption |
---|
2150 | agents(n)%agent_mask = .FALSE. |
---|
2151 | deleted_agents = deleted_agents + 1 |
---|
2152 | |
---|
2153 | ENDIF |
---|
2154 | ELSE |
---|
2155 | ! |
---|
2156 | !-- Store agent data in the transfer array, which will |
---|
2157 | !-- be send to the neighbouring PE |
---|
2158 | trna_count = trna_count + 1 |
---|
2159 | trna(trna_count) = agents(n) |
---|
2160 | agents(n)%agent_mask = .FALSE. |
---|
2161 | deleted_agents = deleted_agents + 1 |
---|
2162 | |
---|
2163 | ENDIF |
---|
2164 | |
---|
2165 | ENDIF |
---|
2166 | ENDIF |
---|
2167 | ENDDO |
---|
2168 | ENDDO |
---|
2169 | ENDDO |
---|
2170 | |
---|
2171 | ! |
---|
2172 | !-- Send front boundary, receive back boundary (but first exchange how many |
---|
2173 | !-- and chec if agent storage must be extended) |
---|
2174 | IF ( pdims(2) /= 1 ) THEN |
---|
2175 | |
---|
2176 | CALL MPI_SENDRECV( trsa_count, 1, MPI_INTEGER, psouth, 0, & |
---|
2177 | trna_count_recv, 1, MPI_INTEGER, pnorth, 0, & |
---|
2178 | comm2d, status, ierr ) |
---|
2179 | |
---|
2180 | ALLOCATE(rvna(MAX(1,trna_count_recv))) |
---|
2181 | ! |
---|
2182 | !-- This MPI_SENDRECV should work even with odd mixture on 32 and 64 Bit |
---|
2183 | !-- variables in structure agent_type (due to the calculation of par_size) |
---|
2184 | par_size = STORAGE_SIZE(trsa(1))/8 |
---|
2185 | CALL MPI_SENDRECV( trsa, trsa_count*par_size, MPI_BYTE, & |
---|
2186 | psouth, 1, rvna, & |
---|
2187 | trna_count_recv*par_size, MPI_BYTE, pnorth, 1, & |
---|
2188 | comm2d, status, ierr ) |
---|
2189 | |
---|
2190 | IF ( trna_count_recv > 0 ) THEN |
---|
2191 | CALL mas_eh_add_agents_to_gridcell(rvna(1:trna_count_recv)) |
---|
2192 | ENDIF |
---|
2193 | |
---|
2194 | DEALLOCATE(rvna) |
---|
2195 | |
---|
2196 | ! |
---|
2197 | !-- Send back boundary, receive front boundary |
---|
2198 | CALL MPI_SENDRECV( trna_count, 1, MPI_INTEGER, pnorth, 0, & |
---|
2199 | trsa_count_recv, 1, MPI_INTEGER, psouth, 0, & |
---|
2200 | comm2d, status, ierr ) |
---|
2201 | |
---|
2202 | ALLOCATE(rvsa(MAX(1,trsa_count_recv))) |
---|
2203 | ! |
---|
2204 | !-- This MPI_SENDRECV should work even with odd mixture on 32 and 64 Bit |
---|
2205 | !-- variables in structure agent_type (due to the calculation of par_size) |
---|
2206 | par_size = STORAGE_SIZE(trna(1))/8 |
---|
2207 | CALL MPI_SENDRECV( trna, trna_count*par_size, MPI_BYTE, & |
---|
2208 | pnorth, 1, rvsa, & |
---|
2209 | trsa_count_recv*par_size, MPI_BYTE, psouth, 1, & |
---|
2210 | comm2d, status, ierr ) |
---|
2211 | |
---|
2212 | IF ( trsa_count_recv > 0 ) THEN |
---|
2213 | CALL mas_eh_add_agents_to_gridcell(rvsa(1:trsa_count_recv)) |
---|
2214 | ENDIF |
---|
2215 | |
---|
2216 | DEALLOCATE(rvsa) |
---|
2217 | |
---|
2218 | number_of_agents = number_of_agents + trsa_count_recv |
---|
2219 | |
---|
2220 | DEALLOCATE( trsa, trna ) |
---|
2221 | |
---|
2222 | ENDIF |
---|
2223 | |
---|
2224 | DEALLOCATE( move_also_north ) |
---|
2225 | DEALLOCATE( move_also_south ) |
---|
2226 | |
---|
2227 | #else |
---|
2228 | |
---|
2229 | DO ip = nxl, nxr, nxr-nxl |
---|
2230 | DO jp = nys, nyn |
---|
2231 | number_of_agents = agt_count(jp,ip) |
---|
2232 | IF ( number_of_agents <= 0 ) CYCLE |
---|
2233 | agents => grid_agents(jp,ip)%agents(1:number_of_agents) |
---|
2234 | DO n = 1, number_of_agents |
---|
2235 | ! |
---|
2236 | !-- Apply boundary conditions |
---|
2237 | IF ( agents(n)%x < 0.0_wp ) THEN |
---|
2238 | |
---|
2239 | IF ( ibc_mas_lr == 0 ) THEN |
---|
2240 | ! |
---|
2241 | !-- Cyclic boundary. Relevant coordinate has to be changed. |
---|
2242 | agents(n)%x = ( nx + 1 ) * dx + agents(n)%x |
---|
2243 | agents(n)%origin_x = ( nx + 1 ) * dx + & |
---|
2244 | agents(n)%origin_x |
---|
2245 | ELSEIF ( ibc_mas_lr == 1 ) THEN |
---|
2246 | ! |
---|
2247 | !-- Agent absorption |
---|
2248 | agents(n)%agent_mask = .FALSE. |
---|
2249 | deleted_agents = deleted_agents + 1 |
---|
2250 | ENDIF |
---|
2251 | |
---|
2252 | ELSEIF ( agents(n)%x >= ( nx + 1 ) * dx ) THEN |
---|
2253 | |
---|
2254 | IF ( ibc_mas_lr == 0 ) THEN |
---|
2255 | ! |
---|
2256 | !-- Cyclic boundary. Relevant coordinate has to be changed. |
---|
2257 | agents(n)%x = agents(n)%x - ( nx + 1 ) * dx |
---|
2258 | |
---|
2259 | ELSEIF ( ibc_mas_lr == 1 ) THEN |
---|
2260 | ! |
---|
2261 | !-- Agent absorption |
---|
2262 | agents(n)%agent_mask = .FALSE. |
---|
2263 | deleted_agents = deleted_agents + 1 |
---|
2264 | ENDIF |
---|
2265 | |
---|
2266 | ENDIF |
---|
2267 | ENDDO |
---|
2268 | ENDDO |
---|
2269 | ENDDO |
---|
2270 | |
---|
2271 | DO ip = nxl, nxr |
---|
2272 | DO jp = nys, nyn, nyn-nys |
---|
2273 | number_of_agents = agt_count(jp,ip) |
---|
2274 | IF ( number_of_agents <= 0 ) CYCLE |
---|
2275 | agents => grid_agents(jp,ip)%agents(1:number_of_agents) |
---|
2276 | DO n = 1, number_of_agents |
---|
2277 | |
---|
2278 | IF ( agents(n)%y < 0.0_wp ) THEN |
---|
2279 | |
---|
2280 | IF ( ibc_mas_ns == 0 ) THEN |
---|
2281 | ! |
---|
2282 | !-- Cyclic boundary. Relevant coordinate has to be changed. |
---|
2283 | agents(n)%y = ( ny + 1 ) * dy + agents(n)%y |
---|
2284 | agents(n)%origin_y = ( ny + 1 ) * dy + & |
---|
2285 | agents(n)%origin_y |
---|
2286 | |
---|
2287 | ELSEIF ( ibc_mas_ns == 1 ) THEN |
---|
2288 | ! |
---|
2289 | !-- Agent absorption |
---|
2290 | agents(n)%agent_mask = .FALSE. |
---|
2291 | deleted_agents = deleted_agents + 1 |
---|
2292 | ENDIF |
---|
2293 | |
---|
2294 | ELSEIF ( agents(n)%y >= ( ny + 0.5_wp ) * dy ) THEN |
---|
2295 | |
---|
2296 | IF ( ibc_mas_ns == 0 ) THEN |
---|
2297 | ! |
---|
2298 | !-- Cyclic boundary. Relevant coordinate has to be changed. |
---|
2299 | agents(n)%y = agents(n)%y - ( ny + 1 ) * dy |
---|
2300 | |
---|
2301 | ELSEIF ( ibc_mas_ns == 1 ) THEN |
---|
2302 | ! |
---|
2303 | !-- Agent absorption |
---|
2304 | agents(n)%agent_mask = .FALSE. |
---|
2305 | deleted_agents = deleted_agents + 1 |
---|
2306 | ENDIF |
---|
2307 | |
---|
2308 | ENDIF |
---|
2309 | |
---|
2310 | ENDDO |
---|
2311 | ENDDO |
---|
2312 | ENDDO |
---|
2313 | #endif |
---|
2314 | |
---|
2315 | ! |
---|
2316 | !-- Accumulate the number of agents transferred between the subdomains) |
---|
2317 | CALL mas_eh_ghost_exchange |
---|
2318 | |
---|
2319 | END SUBROUTINE mas_eh_exchange_horiz |
---|
2320 | |
---|
2321 | !------------------------------------------------------------------------------! |
---|
2322 | ! Description: |
---|
2323 | ! ------------ |
---|
2324 | !> Sends the agents from the three gridcells closest to the |
---|
2325 | !> north/south/left/right border of a PE to the corresponding neighbors ghost |
---|
2326 | !> layer (which is three grid boxes deep) |
---|
2327 | !------------------------------------------------------------------------------! |
---|
2328 | SUBROUTINE mas_eh_ghost_exchange |
---|
2329 | |
---|
2330 | IMPLICIT NONE |
---|
2331 | |
---|
2332 | #if defined( __parallel ) |
---|
2333 | |
---|
2334 | INTEGER(iwp) :: ip !< index variable along x |
---|
2335 | INTEGER(iwp) :: jp !< index variable along y |
---|
2336 | INTEGER(iwp) :: agt_size !< Bit size of agent datatype |
---|
2337 | INTEGER(iwp) :: ghla_count !< ghost points left agent |
---|
2338 | INTEGER(iwp) :: ghna_count !< ghost points north agent |
---|
2339 | INTEGER(iwp) :: ghra_count !< ghost points right agent |
---|
2340 | INTEGER(iwp) :: ghsa_count !< ghost points south agent |
---|
2341 | |
---|
2342 | LOGICAL :: ghla_empty !< ghost points left agent |
---|
2343 | LOGICAL :: ghla_empty_rcv !< ghost points left agent |
---|
2344 | LOGICAL :: ghna_empty !< ghost points north agent |
---|
2345 | LOGICAL :: ghna_empty_rcv !< ghost points north agent |
---|
2346 | LOGICAL :: ghra_empty !< ghost points right agent |
---|
2347 | LOGICAL :: ghra_empty_rcv !< ghost points right agent |
---|
2348 | LOGICAL :: ghsa_empty !< ghost points south agent |
---|
2349 | LOGICAL :: ghsa_empty_rcv !< ghost points south agent |
---|
2350 | |
---|
2351 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: ghla !< agents received from right PE |
---|
2352 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: ghna !< agents received from south PE |
---|
2353 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: ghra !< agents received from left PE |
---|
2354 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: ghsa !< agents received from north PE |
---|
2355 | |
---|
2356 | ghla_empty = .TRUE. |
---|
2357 | ghna_empty = .TRUE. |
---|
2358 | ghra_empty = .TRUE. |
---|
2359 | ghsa_empty = .TRUE. |
---|
2360 | ! |
---|
2361 | !-- reset ghost layer |
---|
2362 | DO ip = nxlg, nxl-1 |
---|
2363 | DO jp = nysg, nyng |
---|
2364 | agt_count(jp,ip) = 0 |
---|
2365 | ENDDO |
---|
2366 | ENDDO |
---|
2367 | DO ip = nxr+1, nxrg |
---|
2368 | DO jp = nysg, nyng |
---|
2369 | agt_count(jp,ip) = 0 |
---|
2370 | ENDDO |
---|
2371 | ENDDO |
---|
2372 | DO ip = nxl, nxr |
---|
2373 | DO jp = nysg, nys-1 |
---|
2374 | agt_count(jp,ip) = 0 |
---|
2375 | ENDDO |
---|
2376 | ENDDO |
---|
2377 | DO ip = nxl, nxr |
---|
2378 | DO jp = nyn+1, nyng |
---|
2379 | agt_count(jp,ip) = 0 |
---|
2380 | ENDDO |
---|
2381 | ENDDO |
---|
2382 | ! |
---|
2383 | !-- Transfer of agents from left to right and vice versa |
---|
2384 | IF ( pdims(1) /= 1 ) THEN |
---|
2385 | ! |
---|
2386 | !-- Reset left and right ghost layers |
---|
2387 | ghla_count = 0 |
---|
2388 | ghra_count = 0 |
---|
2389 | ! |
---|
2390 | !-- First calculate the storage necessary for sending |
---|
2391 | !-- and receiving the data. |
---|
2392 | ghla_count = SUM(agt_count(nys:nyn,nxl:nxl+2)) |
---|
2393 | ghra_count = SUM(agt_count(nys:nyn,nxr-2:nxr)) |
---|
2394 | ! |
---|
2395 | !-- No cyclic boundaries for agents |
---|
2396 | IF ( nxl == 0 .OR. ghla_count == 0 ) THEN |
---|
2397 | ghla_count = 1 |
---|
2398 | ELSE |
---|
2399 | ghla_empty = .FALSE. |
---|
2400 | ENDIF |
---|
2401 | IF ( nxr == nx .OR. ghra_count == 0 ) THEN |
---|
2402 | ghra_count = 1 |
---|
2403 | ELSE |
---|
2404 | ghra_empty = .FALSE. |
---|
2405 | ENDIF |
---|
2406 | ALLOCATE( ghla(1:ghla_count), ghra(1:ghra_count) ) |
---|
2407 | ghla = zero_agent |
---|
2408 | ghra = zero_agent |
---|
2409 | ! |
---|
2410 | !-- Get all agents that will be sent left into one array |
---|
2411 | ghla_count = 0 |
---|
2412 | IF ( nxl /= 0 ) THEN |
---|
2413 | DO ip = nxl, nxl+2 |
---|
2414 | DO jp = nys, nyn |
---|
2415 | |
---|
2416 | number_of_agents = agt_count(jp,ip) |
---|
2417 | IF ( number_of_agents <= 0 ) CYCLE |
---|
2418 | ghla(ghla_count+1:ghla_count+number_of_agents) & |
---|
2419 | = grid_agents(jp,ip)%agents(1:number_of_agents) |
---|
2420 | ghla_count = ghla_count + number_of_agents |
---|
2421 | |
---|
2422 | ENDDO |
---|
2423 | ENDDO |
---|
2424 | ENDIF |
---|
2425 | IF ( ghla_count == 0 ) ghla_count = 1 |
---|
2426 | ! |
---|
2427 | !-- Get all agents that will be sent right into one array |
---|
2428 | ghra_count = 0 |
---|
2429 | IF ( nxr /= nx ) THEN |
---|
2430 | DO ip = nxr-2, nxr |
---|
2431 | DO jp = nys, nyn |
---|
2432 | |
---|
2433 | number_of_agents = agt_count(jp,ip) |
---|
2434 | IF ( number_of_agents <= 0 ) CYCLE |
---|
2435 | ghra(ghra_count+1:ghra_count+number_of_agents) & |
---|
2436 | = grid_agents(jp,ip)%agents(1:number_of_agents) |
---|
2437 | ghra_count = ghra_count + number_of_agents |
---|
2438 | |
---|
2439 | ENDDO |
---|
2440 | ENDDO |
---|
2441 | ENDIF |
---|
2442 | IF ( ghra_count == 0 ) ghra_count = 1 |
---|
2443 | ! |
---|
2444 | !-- Send/receive number of agents that |
---|
2445 | !-- will be transferred to/from left/right neighbor |
---|
2446 | CALL MPI_SENDRECV( ghla_count, 1, MPI_INTEGER, pleft, 0, & |
---|
2447 | ghra_count_recv, 1, MPI_INTEGER, pright, 0, & |
---|
2448 | comm2d, status, ierr ) |
---|
2449 | ALLOCATE ( agt_gh_r(1:ghra_count_recv) ) |
---|
2450 | ! |
---|
2451 | !-- Send/receive number of agents that |
---|
2452 | !-- will be transferred to/from right/left neighbor |
---|
2453 | CALL MPI_SENDRECV( ghra_count, 1, MPI_INTEGER, pright, 0, & |
---|
2454 | ghla_count_recv, 1, MPI_INTEGER, pleft, 0, & |
---|
2455 | comm2d, status, ierr ) |
---|
2456 | ! |
---|
2457 | !-- Send/receive flag that indicates if there are actually any agents |
---|
2458 | !-- in ghost layer |
---|
2459 | CALL MPI_SENDRECV( ghla_empty, 1, MPI_LOGICAL, pleft, 1, & |
---|
2460 | ghra_empty_rcv, 1, MPI_LOGICAL, pright,1, & |
---|
2461 | comm2d, status, ierr ) |
---|
2462 | CALL MPI_SENDRECV( ghra_empty, 1, MPI_LOGICAL, pright,1, & |
---|
2463 | ghla_empty_rcv, 1, MPI_LOGICAL, pleft, 1, & |
---|
2464 | comm2d, status, ierr ) |
---|
2465 | |
---|
2466 | |
---|
2467 | ALLOCATE ( agt_gh_l(1:ghla_count_recv) ) |
---|
2468 | ! |
---|
2469 | !-- Get bit size of one agent |
---|
2470 | agt_size = STORAGE_SIZE(zero_agent)/8 |
---|
2471 | ! |
---|
2472 | !-- Send/receive agents to/from left/right neighbor |
---|
2473 | CALL MPI_SENDRECV( ghla, ghla_count * agt_size, MPI_BYTE, & |
---|
2474 | pleft, 1, & |
---|
2475 | agt_gh_r, ghra_count_recv * agt_size, MPI_BYTE, & |
---|
2476 | pright,1, & |
---|
2477 | comm2d, status, ierr ) |
---|
2478 | ! |
---|
2479 | !-- Send/receive agents to/from left/right neighbor |
---|
2480 | CALL MPI_SENDRECV( ghra, ghra_count * agt_size, MPI_BYTE, & |
---|
2481 | pright,1, & |
---|
2482 | agt_gh_l, ghla_count_recv * agt_size, MPI_BYTE, & |
---|
2483 | pleft, 1, & |
---|
2484 | comm2d, status, ierr ) |
---|
2485 | ! |
---|
2486 | !-- If agents were received, add them to the respective ghost layer cells |
---|
2487 | IF ( .NOT. ghra_empty_rcv ) THEN |
---|
2488 | CALL mas_eh_add_ghost_agents_to_gridcell(agt_gh_r) |
---|
2489 | ENDIF |
---|
2490 | |
---|
2491 | IF ( .NOT. ghla_empty_rcv ) THEN |
---|
2492 | CALL mas_eh_add_ghost_agents_to_gridcell(agt_gh_l) |
---|
2493 | ENDIF |
---|
2494 | |
---|
2495 | DEALLOCATE( ghla, ghra, agt_gh_l, agt_gh_r ) |
---|
2496 | |
---|
2497 | ENDIF |
---|
2498 | |
---|
2499 | ! |
---|
2500 | !-- Transfer of agents from south to north and vice versa |
---|
2501 | IF ( pdims(2) /= 1 ) THEN |
---|
2502 | ! |
---|
2503 | !-- Reset south and north ghost layers |
---|
2504 | ghsa_count = 0 |
---|
2505 | ghna_count = 0 |
---|
2506 | ! |
---|
2507 | !-- First calculate the storage necessary for sending |
---|
2508 | !-- and receiving the data. |
---|
2509 | ghsa_count = SUM(agt_count(nys:nys+2,nxlg:nxrg)) |
---|
2510 | ghna_count = SUM(agt_count(nyn-2:nyn,nxlg:nxrg)) |
---|
2511 | ! |
---|
2512 | !-- No cyclic boundaries for agents |
---|
2513 | IF ( nys == 0 .OR. ghsa_count == 0 ) THEN |
---|
2514 | ghsa_count = 1 |
---|
2515 | ELSE |
---|
2516 | ghsa_empty = .FALSE. |
---|
2517 | ENDIF |
---|
2518 | IF ( nyn == ny .OR. ghna_count == 0 ) THEN |
---|
2519 | ghna_count = 1 |
---|
2520 | ELSE |
---|
2521 | ghna_empty = .FALSE. |
---|
2522 | ENDIF |
---|
2523 | ALLOCATE( ghsa(1:ghsa_count), ghna(1:ghna_count) ) |
---|
2524 | ghsa = zero_agent |
---|
2525 | ghna = zero_agent |
---|
2526 | ! |
---|
2527 | !-- Get all agents that will be sent south into one array |
---|
2528 | ghsa_count = 0 |
---|
2529 | IF ( nys /= 0 ) THEN |
---|
2530 | DO ip = nxlg, nxrg |
---|
2531 | DO jp = nys, nys+2 |
---|
2532 | |
---|
2533 | number_of_agents = agt_count(jp,ip) |
---|
2534 | IF ( number_of_agents <= 0 ) CYCLE |
---|
2535 | ghsa(ghsa_count+1:ghsa_count+number_of_agents) & |
---|
2536 | = grid_agents(jp,ip)%agents(1:number_of_agents) |
---|
2537 | ghsa_count = ghsa_count + number_of_agents |
---|
2538 | |
---|
2539 | ENDDO |
---|
2540 | ENDDO |
---|
2541 | ENDIF |
---|
2542 | IF ( ghsa_count == 0 ) ghsa_count = 1 |
---|
2543 | ! |
---|
2544 | !-- Get all agents that will be sent north into one array |
---|
2545 | ghna_count = 0 |
---|
2546 | IF ( nyn /= ny ) THEN |
---|
2547 | DO ip = nxlg, nxrg |
---|
2548 | DO jp = nyn-2, nyn |
---|
2549 | |
---|
2550 | number_of_agents = agt_count(jp,ip) |
---|
2551 | IF ( number_of_agents <= 0 ) CYCLE |
---|
2552 | ghna(ghna_count+1:ghna_count+number_of_agents) & |
---|
2553 | = grid_agents(jp,ip)%agents(1:number_of_agents) |
---|
2554 | ghna_count = ghna_count + number_of_agents |
---|
2555 | |
---|
2556 | ENDDO |
---|
2557 | ENDDO |
---|
2558 | ENDIF |
---|
2559 | IF ( ghna_count == 0 ) ghna_count = 1 |
---|
2560 | ! |
---|
2561 | !-- Send/receive number of agents that |
---|
2562 | !-- will be transferred to/from south/north neighbor |
---|
2563 | CALL MPI_SENDRECV( ghsa_count, 1, MPI_INTEGER, psouth, 0, & |
---|
2564 | ghna_count_recv, 1, MPI_INTEGER, pnorth, 0, & |
---|
2565 | comm2d, status, ierr ) |
---|
2566 | ALLOCATE ( agt_gh_n(1:ghna_count_recv) ) |
---|
2567 | ! |
---|
2568 | !-- Send/receive number of agents that |
---|
2569 | !-- will be transferred to/from north/south neighbor |
---|
2570 | CALL MPI_SENDRECV( ghna_count, 1, MPI_INTEGER, pnorth, 0, & |
---|
2571 | ghsa_count_recv, 1, MPI_INTEGER, psouth, 0, & |
---|
2572 | comm2d, status, ierr ) |
---|
2573 | ! |
---|
2574 | !-- Send/receive flag that indicates if there are actually any agents |
---|
2575 | !-- in ghost layer |
---|
2576 | CALL MPI_SENDRECV( ghsa_empty, 1, MPI_LOGICAL, psouth, 1, & |
---|
2577 | ghna_empty_rcv, 1, MPI_LOGICAL, pnorth, 1, & |
---|
2578 | comm2d, status, ierr ) |
---|
2579 | CALL MPI_SENDRECV( ghna_empty, 1, MPI_LOGICAL, pnorth, 1, & |
---|
2580 | ghsa_empty_rcv, 1, MPI_LOGICAL, psouth, 1, & |
---|
2581 | comm2d, status, ierr ) |
---|
2582 | |
---|
2583 | |
---|
2584 | ALLOCATE ( agt_gh_s(1:ghsa_count_recv) ) |
---|
2585 | ! |
---|
2586 | !-- Get bit size of one agent |
---|
2587 | agt_size = STORAGE_SIZE(zero_agent)/8 |
---|
2588 | ! |
---|
2589 | !-- Send/receive agents to/from south/north neighbor |
---|
2590 | CALL MPI_SENDRECV( ghsa, ghsa_count * agt_size, MPI_BYTE, & |
---|
2591 | psouth,1, & |
---|
2592 | agt_gh_n, ghna_count_recv * agt_size, MPI_BYTE, & |
---|
2593 | pnorth,1, & |
---|
2594 | comm2d, status, ierr ) |
---|
2595 | ! |
---|
2596 | !-- Send/receive agents to/from south/north neighbor |
---|
2597 | CALL MPI_SENDRECV( ghna, ghna_count * agt_size, MPI_BYTE, & |
---|
2598 | pnorth,1, & |
---|
2599 | agt_gh_s, ghsa_count_recv * agt_size, MPI_BYTE, & |
---|
2600 | psouth,1, & |
---|
2601 | comm2d, status, ierr ) |
---|
2602 | ! |
---|
2603 | !-- If agents were received, add them to the respective ghost layer cells |
---|
2604 | IF ( .NOT. ghna_empty_rcv ) THEN |
---|
2605 | CALL mas_eh_add_ghost_agents_to_gridcell(agt_gh_n) |
---|
2606 | ENDIF |
---|
2607 | |
---|
2608 | IF ( .NOT. ghsa_empty_rcv ) THEN |
---|
2609 | CALL mas_eh_add_ghost_agents_to_gridcell(agt_gh_s) |
---|
2610 | ENDIF |
---|
2611 | |
---|
2612 | DEALLOCATE( ghna, ghsa, agt_gh_n, agt_gh_s ) |
---|
2613 | |
---|
2614 | ENDIF |
---|
2615 | |
---|
2616 | #endif |
---|
2617 | |
---|
2618 | END SUBROUTINE mas_eh_ghost_exchange |
---|
2619 | |
---|
2620 | !------------------------------------------------------------------------------! |
---|
2621 | ! Description: |
---|
2622 | ! ------------ |
---|
2623 | !> If an agent moves from one grid cell to another (on the current |
---|
2624 | !> processor!), this subroutine moves the corresponding element from the |
---|
2625 | !> agent array of the old grid cell to the agent array of the new grid |
---|
2626 | !> cell. |
---|
2627 | !------------------------------------------------------------------------------! |
---|
2628 | SUBROUTINE mas_eh_move_agent |
---|
2629 | |
---|
2630 | IMPLICIT NONE |
---|
2631 | |
---|
2632 | INTEGER(iwp) :: i !< grid index (x) of agent position |
---|
2633 | INTEGER(iwp) :: ip !< index variable along x |
---|
2634 | INTEGER(iwp) :: j !< grid index (y) of agent position |
---|
2635 | INTEGER(iwp) :: jp !< index variable along y |
---|
2636 | INTEGER(iwp) :: n !< index variable for agent array |
---|
2637 | INTEGER(iwp) :: na_before_move !< number of agents per grid box before moving |
---|
2638 | INTEGER(iwp) :: aindex !< dummy argument for number of new agent per grid box |
---|
2639 | |
---|
2640 | TYPE(agent_type), DIMENSION(:), POINTER :: agents_before_move !< agents before moving |
---|
2641 | |
---|
2642 | DO ip = nxl, nxr |
---|
2643 | DO jp = nys, nyn |
---|
2644 | |
---|
2645 | na_before_move = agt_count(jp,ip) |
---|
2646 | IF ( na_before_move <= 0 ) CYCLE |
---|
2647 | agents_before_move => grid_agents(jp,ip)%agents(1:na_before_move) |
---|
2648 | |
---|
2649 | DO n = 1, na_before_move |
---|
2650 | i = agents_before_move(n)%x * ddx |
---|
2651 | j = agents_before_move(n)%y * ddy |
---|
2652 | |
---|
2653 | !-- For mas_eh_exchange_horiz to work properly agents need to be |
---|
2654 | !-- moved to the outermost gridboxes of the respective processor. |
---|
2655 | !-- If the agent index is inside the processor the following |
---|
2656 | !-- lines will not change the index |
---|
2657 | i = MIN ( i , nxr ) |
---|
2658 | i = MAX ( i , nxl ) |
---|
2659 | j = MIN ( j , nyn ) |
---|
2660 | j = MAX ( j , nys ) |
---|
2661 | |
---|
2662 | ! |
---|
2663 | !-- Check if agent has moved to another grid cell. |
---|
2664 | IF ( i /= ip .OR. j /= jp ) THEN |
---|
2665 | ! |
---|
2666 | !-- If the agent stays on the same processor, the agent |
---|
2667 | !-- will be added to the agent array of the new processor. |
---|
2668 | number_of_agents = agt_count(j,i) |
---|
2669 | agents => grid_agents(j,i)%agents(1:number_of_agents) |
---|
2670 | |
---|
2671 | aindex = number_of_agents+1 |
---|
2672 | IF ( aindex > SIZE(grid_agents(j,i)%agents) ) & |
---|
2673 | THEN |
---|
2674 | CALL mas_eh_realloc_agents_array(i,j) |
---|
2675 | ENDIF |
---|
2676 | |
---|
2677 | grid_agents(j,i)%agents(aindex) = agents_before_move(n) |
---|
2678 | agt_count(j,i) = aindex |
---|
2679 | |
---|
2680 | agents_before_move(n)%agent_mask = .FALSE. |
---|
2681 | ENDIF |
---|
2682 | ENDDO |
---|
2683 | |
---|
2684 | ENDDO |
---|
2685 | ENDDO |
---|
2686 | |
---|
2687 | RETURN |
---|
2688 | |
---|
2689 | END SUBROUTINE mas_eh_move_agent |
---|
2690 | |
---|
2691 | !------------------------------------------------------------------------------! |
---|
2692 | ! Description: |
---|
2693 | ! ------------ |
---|
2694 | !> If the allocated memory for the agent array do not suffice to add arriving |
---|
2695 | !> agents from neighbour grid cells, this subrouting reallocates the |
---|
2696 | !> agent array to assure enough memory is available. |
---|
2697 | !------------------------------------------------------------------------------! |
---|
2698 | SUBROUTINE mas_eh_realloc_agents_array (i,j,size_in) |
---|
2699 | |
---|
2700 | IMPLICIT NONE |
---|
2701 | |
---|
2702 | INTEGER(iwp) :: old_size !< old array size |
---|
2703 | INTEGER(iwp) :: new_size !< new array size |
---|
2704 | |
---|
2705 | INTEGER(iwp), INTENT(in) :: i !< grid index (y) |
---|
2706 | INTEGER(iwp), INTENT(in) :: j !< grid index (y) |
---|
2707 | |
---|
2708 | INTEGER(iwp), INTENT(in), OPTIONAL :: size_in !< size of input array |
---|
2709 | |
---|
2710 | TYPE(agent_type), DIMENSION(10) :: tmp_agents_s !< temporary static agent array |
---|
2711 | |
---|
2712 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: tmp_agents_d !< temporary dynamic agent array |
---|
2713 | |
---|
2714 | old_size = SIZE(grid_agents(j,i)%agents) |
---|
2715 | |
---|
2716 | IF ( PRESENT(size_in) ) THEN |
---|
2717 | new_size = size_in |
---|
2718 | ELSE |
---|
2719 | new_size = old_size * ( 1.0_wp + alloc_factor_mas / 100.0_wp ) |
---|
2720 | ENDIF |
---|
2721 | |
---|
2722 | new_size = MAX( new_size, min_nr_agent, old_size + 1 ) |
---|
2723 | |
---|
2724 | IF ( old_size <= 10 ) THEN |
---|
2725 | |
---|
2726 | tmp_agents_s(1:old_size) = grid_agents(j,i)%agents(1:old_size) |
---|
2727 | |
---|
2728 | DEALLOCATE(grid_agents(j,i)%agents) |
---|
2729 | ALLOCATE(grid_agents(j,i)%agents(new_size)) |
---|
2730 | |
---|
2731 | grid_agents(j,i)%agents(1:old_size) = tmp_agents_s(1:old_size) |
---|
2732 | grid_agents(j,i)%agents(old_size+1:new_size) = zero_agent |
---|
2733 | |
---|
2734 | ELSE |
---|
2735 | |
---|
2736 | ALLOCATE(tmp_agents_d(new_size)) |
---|
2737 | tmp_agents_d(1:old_size) = grid_agents(j,i)%agents |
---|
2738 | |
---|
2739 | DEALLOCATE(grid_agents(j,i)%agents) |
---|
2740 | ALLOCATE(grid_agents(j,i)%agents(new_size)) |
---|
2741 | |
---|
2742 | grid_agents(j,i)%agents(1:old_size) = tmp_agents_d(1:old_size) |
---|
2743 | grid_agents(j,i)%agents(old_size+1:new_size) = zero_agent |
---|
2744 | |
---|
2745 | DEALLOCATE(tmp_agents_d) |
---|
2746 | |
---|
2747 | ENDIF |
---|
2748 | agents => grid_agents(j,i)%agents(1:number_of_agents) |
---|
2749 | |
---|
2750 | RETURN |
---|
2751 | END SUBROUTINE mas_eh_realloc_agents_array |
---|
2752 | |
---|
2753 | !------------------------------------------------------------------------------! |
---|
2754 | ! Description: |
---|
2755 | ! ------------ |
---|
2756 | !> Inquires prognostic model quantities at the position of each agent and |
---|
2757 | !> stores them in that agent for later output |
---|
2758 | !------------------------------------------------------------------------------! |
---|
2759 | SUBROUTINE mas_get_prognostic_quantities |
---|
2760 | |
---|
2761 | USE arrays_3d, & |
---|
2762 | ONLY: u, v, pt, hyp, exner |
---|
2763 | |
---|
2764 | ! USE chemistry_model_mod, & |
---|
2765 | ! ONLY: chem_species |
---|
2766 | |
---|
2767 | ! USE control_parameters, & |
---|
2768 | ! ONLY: air_chemistry |
---|
2769 | |
---|
2770 | IMPLICIT NONE |
---|
2771 | |
---|
2772 | INTEGER(iwp) :: i_offset !< index offset for windspeed measurement |
---|
2773 | INTEGER(iwp) :: il !< x-index |
---|
2774 | INTEGER(iwp) :: is !< subgrid box counter |
---|
2775 | INTEGER(iwp) :: j_offset !< index offset for windspeed measurement |
---|
2776 | INTEGER(iwp) :: jl !< y-index |
---|
2777 | INTEGER(iwp) :: kl !< z-index |
---|
2778 | INTEGER(iwp) :: nl !< agent counter |
---|
2779 | INTEGER(iwp) :: se !< subgrid box end index |
---|
2780 | INTEGER(iwp) :: si !< subgrid box start index |
---|
2781 | |
---|
2782 | REAL(wp) :: u_a !< windspeed at agent position (x) |
---|
2783 | REAL(wp) :: v_a !< windspeed at agent position (y) |
---|
2784 | |
---|
2785 | DO il = nxl, nxr |
---|
2786 | DO jl = nys, nyn |
---|
2787 | |
---|
2788 | number_of_agents = agt_count(jl,il) |
---|
2789 | ! |
---|
2790 | !-- If grid cell is empty, cycle |
---|
2791 | IF ( number_of_agents <= 0 ) CYCLE |
---|
2792 | kl = s_measure_height(jl,il) |
---|
2793 | |
---|
2794 | agents => grid_agents(jl,il)%agents(1:number_of_agents) |
---|
2795 | ! |
---|
2796 | !-- loop over the four subgrid boxes |
---|
2797 | DO is = 0,3 |
---|
2798 | ! |
---|
2799 | !-- Set indices |
---|
2800 | si = grid_agents(jl,il)%start_index(is) |
---|
2801 | se = grid_agents(jl,il)%end_index(is) |
---|
2802 | DO nl = si, se |
---|
2803 | ! |
---|
2804 | !-- Calculate index offset in x-direction: |
---|
2805 | !-- Left value if wall right of grid box |
---|
2806 | !-- Right value if wall left of grid box |
---|
2807 | !-- Else the one that is closer to the agent |
---|
2808 | IF ( BTEST( obstacle_flags( jl, il+1 ), 6 ) ) THEN |
---|
2809 | i_offset = 0 |
---|
2810 | ELSEIF ( BTEST( obstacle_flags( jl, il-1 ), 2 ) ) THEN |
---|
2811 | i_offset = 1 |
---|
2812 | ELSE |
---|
2813 | i_offset = MERGE( 0, 1, BTEST(is,1) ) |
---|
2814 | ENDIF |
---|
2815 | u_a = u( kl, jl, il + i_offset ) |
---|
2816 | ! |
---|
2817 | !-- Calculate index offset in y-direction: |
---|
2818 | !-- South value if wall north of grid box |
---|
2819 | !-- North value if wall south of grid box |
---|
2820 | !-- Else the one that is closer to the agent |
---|
2821 | IF ( BTEST( obstacle_flags( jl+1, il ), 4 ) ) THEN |
---|
2822 | j_offset = 0 |
---|
2823 | ELSEIF ( BTEST( obstacle_flags( jl-1, il ), 0 ) ) THEN |
---|
2824 | j_offset = 1 |
---|
2825 | ELSE |
---|
2826 | j_offset = MERGE( 0, 1, BTEST(is,0) ) |
---|
2827 | ENDIF |
---|
2828 | v_a = v( kl, jl + j_offset, il ) |
---|
2829 | ! |
---|
2830 | !-- Calculate windspeed at agent postion |
---|
2831 | agents(nl)%windspeed = SQRT(u_a**2 + v_a**2) |
---|
2832 | ! |
---|
2833 | !-- Calculate temperature at agent position |
---|
2834 | agents(nl)%t = pt(kl,jl,il) * exner(kl) |
---|
2835 | ! ! |
---|
2836 | ! !-- Get PM10 concentration at agent position, if possible |
---|
2837 | ! IF ( ind_pm10 == -9 ) THEN |
---|
2838 | ! agents(nl)%pm10 = 0.0_wp |
---|
2839 | ! ELSE |
---|
2840 | ! agents(nl)%pm10 = chem_species(ind_pm10)%conc(kl,jl,il) |
---|
2841 | ! ENDIF |
---|
2842 | ! ! |
---|
2843 | ! !-- Get PM10 concentration at agent position, if possible |
---|
2844 | ! IF ( ind_pm25 == -9 ) THEN |
---|
2845 | ! agents(nl)%pm25 = 0.0_wp |
---|
2846 | ! ELSE |
---|
2847 | ! agents(nl)%pm25 = chem_species(ind_pm25)%conc(kl,jl,il) |
---|
2848 | ! ENDIF |
---|
2849 | ENDDO |
---|
2850 | |
---|
2851 | ENDDO |
---|
2852 | |
---|
2853 | ENDDO |
---|
2854 | ENDDO |
---|
2855 | |
---|
2856 | END SUBROUTINE mas_get_prognostic_quantities |
---|
2857 | |
---|
2858 | !------------------------------------------------------------------------------! |
---|
2859 | ! Description: |
---|
2860 | ! ------------ |
---|
2861 | !> Adds an item to the priority queue (binary heap) at the correct position |
---|
2862 | !------------------------------------------------------------------------------! |
---|
2863 | SUBROUTINE mas_heap_insert_item( id, priority ) |
---|
2864 | |
---|
2865 | IMPLICIT NONE |
---|
2866 | |
---|
2867 | INTEGER(iwp) :: cur_pos !< current position |
---|
2868 | INTEGER(iwp) :: id !< mesh ID of item |
---|
2869 | |
---|
2870 | REAL(wp) :: priority !< item priority |
---|
2871 | |
---|
2872 | TYPE(heap_item) :: item !< heap item |
---|
2873 | |
---|
2874 | item%mesh_id = id |
---|
2875 | item%priority = priority |
---|
2876 | ! |
---|
2877 | !-- Extend heap, if necessary |
---|
2878 | IF ( heap_count + 1 > SIZE(queue) ) THEN |
---|
2879 | CALL mas_heap_extend |
---|
2880 | ENDIF |
---|
2881 | ! |
---|
2882 | !-- Insert item at first unoccupied postion (highest index) of heap |
---|
2883 | cur_pos = heap_count |
---|
2884 | queue(cur_pos) = item |
---|
2885 | ! |
---|
2886 | !-- Sort while inserted item is not at top of heap |
---|
2887 | DO WHILE ( cur_pos /= 0 ) |
---|
2888 | ! |
---|
2889 | !-- If priority < its parent's priority, swap them. |
---|
2890 | !-- Else, sorting is done. |
---|
2891 | IF ( queue(cur_pos)%priority & |
---|
2892 | < queue(FLOOR((cur_pos)/2.))%priority ) & |
---|
2893 | THEN |
---|
2894 | item = queue(cur_pos) |
---|
2895 | queue(cur_pos) = queue(FLOOR((cur_pos)/2.)) |
---|
2896 | queue(FLOOR((cur_pos)/2.)) = item |
---|
2897 | cur_pos = FLOOR((cur_pos)/2.) |
---|
2898 | ELSE |
---|
2899 | EXIT |
---|
2900 | ENDIF |
---|
2901 | ENDDO |
---|
2902 | ! |
---|
2903 | !-- Item was added to heap, so the heap count increases |
---|
2904 | heap_count = heap_count + 1 |
---|
2905 | |
---|
2906 | END SUBROUTINE mas_heap_insert_item |
---|
2907 | |
---|
2908 | !------------------------------------------------------------------------------! |
---|
2909 | ! Description: |
---|
2910 | ! ------------ |
---|
2911 | !> Extends the size of the priority queue (binary heap) |
---|
2912 | !------------------------------------------------------------------------------! |
---|
2913 | SUBROUTINE mas_heap_extend |
---|
2914 | |
---|
2915 | IMPLICIT NONE |
---|
2916 | |
---|
2917 | INTEGER(iwp) :: soh !< size of heap |
---|
2918 | |
---|
2919 | TYPE(heap_item), DIMENSION(:), ALLOCATABLE :: dummy_heap !< dummy heap |
---|
2920 | |
---|
2921 | soh = SIZE(queue)-1 |
---|
2922 | ALLOCATE(dummy_heap(0:soh)) |
---|
2923 | dummy_heap = queue |
---|
2924 | DEALLOCATE(queue) |
---|
2925 | ALLOCATE(queue(0:2*soh+1)) |
---|
2926 | queue(0:soh) = dummy_heap(0:soh) |
---|
2927 | |
---|
2928 | END SUBROUTINE mas_heap_extend |
---|
2929 | |
---|
2930 | !------------------------------------------------------------------------------! |
---|
2931 | ! Description: |
---|
2932 | ! ------------ |
---|
2933 | !> Removes first (smallest) element from the priority queue, reorders the rest |
---|
2934 | !> and returns the ID of the removed mesh point |
---|
2935 | !------------------------------------------------------------------------------! |
---|
2936 | SUBROUTINE mas_heap_extract_item ( id ) |
---|
2937 | |
---|
2938 | IMPLICIT NONE |
---|
2939 | |
---|
2940 | INTEGER(iwp) :: id !< ID of item extracted item |
---|
2941 | INTEGER(iwp) :: child !< child of item in heap |
---|
2942 | INTEGER(iwp) :: cur_pos !< current position of item in heap |
---|
2943 | |
---|
2944 | TYPE(heap_item) :: dummy |
---|
2945 | ! |
---|
2946 | !-- Get ID of mesh point with lowest priority (extracted item: top of heap) |
---|
2947 | id = queue(0)%mesh_id |
---|
2948 | ! |
---|
2949 | !-- Put last item in heap at first position |
---|
2950 | queue(0) = queue(heap_count-1) |
---|
2951 | cur_pos = 0 |
---|
2952 | DO |
---|
2953 | ! |
---|
2954 | !-- If current item has no children, sorting is done |
---|
2955 | IF( 2*cur_pos+1 > heap_count - 1 ) THEN |
---|
2956 | EXIT |
---|
2957 | ! |
---|
2958 | !-- If current item has only one child, check if item and its child are |
---|
2959 | !-- ordered correctly. Else, swap them. |
---|
2960 | ELSEIF ( 2*cur_pos+2 > heap_count - 1 ) THEN |
---|
2961 | IF ( queue(cur_pos)%priority > queue(2*cur_pos+1)%priority ) THEN |
---|
2962 | dummy = queue(cur_pos) |
---|
2963 | queue(cur_pos) = queue(2*cur_pos+1) |
---|
2964 | queue(2*cur_pos+1) = dummy |
---|
2965 | cur_pos = 2*cur_pos+1 |
---|
2966 | ELSE |
---|
2967 | EXIT |
---|
2968 | ENDIF |
---|
2969 | ELSE |
---|
2970 | ! |
---|
2971 | !-- determine the smaller child |
---|
2972 | IF ( queue(2*cur_pos+1)%priority & |
---|
2973 | >= queue(2*cur_pos+2)%priority ) & |
---|
2974 | THEN |
---|
2975 | child = 2 |
---|
2976 | ELSE |
---|
2977 | child = 1 |
---|
2978 | ENDIF |
---|
2979 | ! |
---|
2980 | !-- Check if item and its smaller child are ordered falsely. If so, |
---|
2981 | !-- swap them. Else, sorting is done. |
---|
2982 | IF ( queue(cur_pos)%priority > queue(2*cur_pos+child )%priority ) & |
---|
2983 | THEN |
---|
2984 | dummy = queue(cur_pos) |
---|
2985 | queue(cur_pos) = queue(2*cur_pos+child) |
---|
2986 | queue(2*cur_pos+child) = dummy |
---|
2987 | cur_pos = 2*cur_pos+child |
---|
2988 | ELSE |
---|
2989 | EXIT |
---|
2990 | ENDIF |
---|
2991 | ENDIF |
---|
2992 | ENDDO |
---|
2993 | ! |
---|
2994 | !-- Top item was removed from heap, thus, heap_cout decreases by one |
---|
2995 | heap_count = heap_count-1 |
---|
2996 | |
---|
2997 | END SUBROUTINE mas_heap_extract_item |
---|
2998 | |
---|
2999 | !------------------------------------------------------------------------------! |
---|
3000 | ! Description: |
---|
3001 | ! ------------ |
---|
3002 | !> Initialization of Multi Agent System |
---|
3003 | !------------------------------------------------------------------------------! |
---|
3004 | SUBROUTINE mas_init |
---|
3005 | |
---|
3006 | ! USE chem_gasphase_mod, & |
---|
3007 | ! ONLY: nspec |
---|
3008 | |
---|
3009 | ! USE chemistry_model_mod, & |
---|
3010 | ! ONLY: chem_species |
---|
3011 | |
---|
3012 | USE control_parameters, & |
---|
3013 | ONLY: coupling_char, initializing_actions, io_blocks, io_group |
---|
3014 | |
---|
3015 | USE surface_mod, & |
---|
3016 | ONLY: get_topography_top_index, get_topography_top_index_ji |
---|
3017 | |
---|
3018 | USE arrays_3d, & |
---|
3019 | ONLY: zu, zw |
---|
3020 | |
---|
3021 | USE indices, & |
---|
3022 | ONLY: nzt |
---|
3023 | |
---|
3024 | IMPLICIT NONE |
---|
3025 | |
---|
3026 | INTEGER(iwp) :: i !< grid cell (x) |
---|
3027 | INTEGER(iwp) :: ii !< io-block counter |
---|
3028 | INTEGER(iwp) :: il !< io-block counter |
---|
3029 | INTEGER(iwp) :: jl !< io-block counter |
---|
3030 | INTEGER(iwp) :: kl !< io-block counter |
---|
3031 | INTEGER(iwp) :: kdum !< io-block counter |
---|
3032 | INTEGER(iwp) :: locdum !< io-block counter |
---|
3033 | INTEGER(iwp) :: j !< grid cell (y) |
---|
3034 | INTEGER(iwp) :: size_of_mesh !< temporary value for read |
---|
3035 | INTEGER(iwp) :: size_of_pols !< temporary value for read |
---|
3036 | INTEGER(iwp) :: ioerr !< IOSTAT flag for IO-commands ( 0 = no error ) |
---|
3037 | |
---|
3038 | REAL(wp) :: zdum !< dummy for measurement height |
---|
3039 | REAL(wp) :: avg_agt_height = 1.8_wp |
---|
3040 | |
---|
3041 | |
---|
3042 | ! |
---|
3043 | !-- Check the number of agent groups. |
---|
3044 | IF ( number_of_agent_groups > max_number_of_agent_groups ) THEN |
---|
3045 | WRITE( message_string, * ) 'max_number_of_agent_groups =', & |
---|
3046 | max_number_of_agent_groups , & |
---|
3047 | '&number_of_agent_groups reset to ', & |
---|
3048 | max_number_of_agent_groups |
---|
3049 | CALL message( 'mas_init', 'PA0072', 0, 1, 0, 6, 0 ) |
---|
3050 | number_of_agent_groups = max_number_of_agent_groups |
---|
3051 | ENDIF |
---|
3052 | |
---|
3053 | ! |
---|
3054 | !-- Set some parameters |
---|
3055 | d_sigma_rep_agent = 1.0_wp/sigma_rep_agent |
---|
3056 | d_sigma_rep_wall = 1.0_wp/sigma_rep_wall |
---|
3057 | d_tau_accel_agent = 1.0_wp/tau_accel_agent |
---|
3058 | IF ( dt_agent /= 999.0_wp ) THEN |
---|
3059 | agent_own_timestep = .TRUE. |
---|
3060 | ENDIF |
---|
3061 | |
---|
3062 | ! |
---|
3063 | !-- Get index of first grid box above topography |
---|
3064 | ALLOCATE( top_top_s(nysg:nyng,nxlg:nxrg), & |
---|
3065 | top_top_w(nysg:nyng,nxlg:nxrg), & |
---|
3066 | s_measure_height(nys:nyn,nxl:nxr) ) |
---|
3067 | ! |
---|
3068 | !-- Get first index above topography for scalar grid and last index in |
---|
3069 | !-- topography for z-component of wind |
---|
3070 | DO il = nxlg, nxrg |
---|
3071 | DO jl = nysg, nyng |
---|
3072 | top_top_s(jl,il) = get_topography_top_index_ji(jl,il,'s') + 1 |
---|
3073 | top_top_w(jl,il) = get_topography_top_index_ji(jl,il,'w') |
---|
3074 | ENDDO |
---|
3075 | ENDDO |
---|
3076 | ! |
---|
3077 | !-- Create 2D array containing the index at which measurements are done by |
---|
3078 | !-- agents. The height of this measurement is given by avg_agt_height. |
---|
3079 | DO il = nxl, nxr |
---|
3080 | DO jl = nys, nyn |
---|
3081 | |
---|
3082 | kdum = top_top_w(jl,il) |
---|
3083 | zdum = zw(kdum) |
---|
3084 | zdum = zdum + avg_agt_height |
---|
3085 | locdum = 0 |
---|
3086 | ! |
---|
3087 | !-- Locate minimum distance from u-grid to measurement height (zdum) |
---|
3088 | DO kl = 1, nzt |
---|
3089 | IF ( ABS(zu(kl)-zdum) < ABS(zu(locdum)-zdum) ) locdum = kl |
---|
3090 | ENDDO |
---|
3091 | s_measure_height(jl,il) = locdum |
---|
3092 | |
---|
3093 | ENDDO |
---|
3094 | ENDDO |
---|
3095 | ! ! |
---|
3096 | ! !-- Get indices of PM10 and PM2.5 species, if active |
---|
3097 | ! IF ( air_chemistry ) THEN |
---|
3098 | ! DO il = 1, nspec |
---|
3099 | ! print*,chem_species(il)%name |
---|
3100 | ! ! IF ( spec_name(1:4) == 'PM10' ) THEN |
---|
3101 | ! ! ind_pm10 = il |
---|
3102 | ! ! ELSEIF ( spec_name(1:4) == 'PM25' ) THEN |
---|
3103 | ! ! ind_pm25 = il |
---|
3104 | ! ! ENDIF |
---|
3105 | ! |
---|
3106 | ! ENDDO |
---|
3107 | ! ENDIF |
---|
3108 | ! stop |
---|
3109 | CALL mas_create_obstacle_flags |
---|
3110 | |
---|
3111 | ! |
---|
3112 | !-- Set default start positions, if necessary |
---|
3113 | IF ( asl(1) == 9999999.9_wp ) asl(1) = 0.0_wp |
---|
3114 | IF ( asr(1) == 9999999.9_wp ) asr(1) = ( nx + 1 ) * dx |
---|
3115 | IF ( ass(1) == 9999999.9_wp ) ass(1) = 0.0_wp |
---|
3116 | IF ( asn(1) == 9999999.9_wp ) asn(1) = ( ny + 1 ) * dy |
---|
3117 | IF ( adx(1) == 9999999.9_wp .OR. adx(1) == 0.0_wp ) adx(1) = dx |
---|
3118 | IF ( ady(1) == 9999999.9_wp .OR. ady(1) == 0.0_wp ) ady(1) = dy |
---|
3119 | |
---|
3120 | DO j = 2, number_of_agent_groups |
---|
3121 | IF ( asl(j) == 9999999.9_wp ) asl(j) = asl(j-1) |
---|
3122 | IF ( asr(j) == 9999999.9_wp ) asr(j) = asr(j-1) |
---|
3123 | IF ( ass(j) == 9999999.9_wp ) ass(j) = ass(j-1) |
---|
3124 | IF ( asn(j) == 9999999.9_wp ) asn(j) = asn(j-1) |
---|
3125 | IF ( adx(j) == 9999999.9_wp .OR. adx(j) == 0.0_wp ) adx(j) = adx(j-1) |
---|
3126 | IF ( ady(j) == 9999999.9_wp .OR. ady(j) == 0.0_wp ) ady(j) = ady(j-1) |
---|
3127 | ENDDO |
---|
3128 | |
---|
3129 | ! |
---|
3130 | !-- Check boundary condition and set internal variables |
---|
3131 | SELECT CASE ( bc_mas_lr ) |
---|
3132 | |
---|
3133 | CASE ( 'cyclic' ) |
---|
3134 | ibc_mas_lr = 0 |
---|
3135 | |
---|
3136 | CASE ( 'absorb' ) |
---|
3137 | ibc_mas_lr = 1 |
---|
3138 | |
---|
3139 | CASE DEFAULT |
---|
3140 | WRITE( message_string, * ) 'unknown boundary condition ', & |
---|
3141 | 'bc_mas_lr = "', TRIM( bc_mas_lr ), '"' |
---|
3142 | CALL message( 'mas_init', 'PA0073', 1, 2, 0, 6, 0 ) |
---|
3143 | |
---|
3144 | END SELECT |
---|
3145 | SELECT CASE ( bc_mas_ns ) |
---|
3146 | |
---|
3147 | CASE ( 'cyclic' ) |
---|
3148 | ibc_mas_ns = 0 |
---|
3149 | |
---|
3150 | CASE ( 'absorb' ) |
---|
3151 | ibc_mas_ns = 1 |
---|
3152 | |
---|
3153 | CASE DEFAULT |
---|
3154 | WRITE( message_string, * ) 'unknown boundary condition ', & |
---|
3155 | 'bc_mas_ns = "', TRIM( bc_mas_ns ), '"' |
---|
3156 | CALL message( 'mas_init', 'PA0074', 1, 2, 0, 6, 0 ) |
---|
3157 | |
---|
3158 | END SELECT |
---|
3159 | |
---|
3160 | ! |
---|
3161 | !-- For the first model run of a possible job chain initialize the |
---|
3162 | !-- agents, otherwise read the agent data from restart file. |
---|
3163 | IF ( TRIM( initializing_actions ) == 'read_restart_data' & |
---|
3164 | .AND. read_agents_from_restartfile ) THEN |
---|
3165 | |
---|
3166 | ! CALL mas_read_restart_file |
---|
3167 | |
---|
3168 | ELSE |
---|
3169 | ! |
---|
3170 | !-- Read preprocessed data of navigation mesh and building polygons |
---|
3171 | !-- for agent pathfinding |
---|
3172 | DO ii = 0, io_blocks-1 |
---|
3173 | IF ( ii == io_group ) THEN |
---|
3174 | OPEN ( 119, FILE='NAVIGATION_DATA'//TRIM( coupling_char ), & |
---|
3175 | FORM='UNFORMATTED', IOSTAT=ioerr ) |
---|
3176 | ! |
---|
3177 | !-- Read mesh data |
---|
3178 | READ(119) size_of_mesh |
---|
3179 | ALLOCATE( mesh(1:size_of_mesh)) |
---|
3180 | DO i = 1, size_of_mesh |
---|
3181 | READ(119) mesh(i)%polygon_id, mesh(i)%vertex_id, & |
---|
3182 | mesh(i)%noc, mesh(i)%origin_id, & |
---|
3183 | mesh(i)%cost_so_far, mesh(i)%x, & |
---|
3184 | mesh(i)%y, mesh(i)%x_s, mesh(i)%y_s |
---|
3185 | ALLOCATE( mesh(i)%connected_vertices(1:mesh(i)%noc), & |
---|
3186 | mesh(i)%distance_to_vertex(1:mesh(i)%noc) ) |
---|
3187 | DO j = 1, mesh(i)%noc |
---|
3188 | READ(119) mesh(i)%connected_vertices(j), & |
---|
3189 | mesh(i)%distance_to_vertex(j) |
---|
3190 | ENDDO |
---|
3191 | ENDDO |
---|
3192 | ! |
---|
3193 | !-- Read polygon data |
---|
3194 | READ(119) size_of_pols |
---|
3195 | ALLOCATE( polygons(1:size_of_pols) ) |
---|
3196 | DO i = 1, size_of_pols |
---|
3197 | READ(119) polygons(i)%nov |
---|
3198 | ALLOCATE( polygons(i)%vertices(0:polygons(i)%nov+1) ) |
---|
3199 | DO j = 0, polygons(i)%nov+1 |
---|
3200 | READ(119) polygons(i)%vertices(j)%delete, & |
---|
3201 | polygons(i)%vertices(j)%x, & |
---|
3202 | polygons(i)%vertices(j)%y |
---|
3203 | ENDDO |
---|
3204 | ENDDO |
---|
3205 | CLOSE(119) |
---|
3206 | |
---|
3207 | ENDIF |
---|
3208 | #if defined( __parallel ) && ! defined ( __check ) |
---|
3209 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
3210 | #endif |
---|
3211 | ENDDO |
---|
3212 | |
---|
3213 | ! |
---|
3214 | !-- Allocate agent arrays and set attributes of the initial set of |
---|
3215 | !-- agents, which can be also periodically released at later times. |
---|
3216 | ALLOCATE( agt_count (nysg:nyng,nxlg:nxrg), & |
---|
3217 | grid_agents(nysg:nyng,nxlg:nxrg) ) |
---|
3218 | ! |
---|
3219 | !-- Allocate dummy arrays for pathfinding |
---|
3220 | ALLOCATE( dummy_path_x(0:agt_path_size), & |
---|
3221 | dummy_path_y(0:agt_path_size) ) |
---|
3222 | |
---|
3223 | number_of_agents = 0 |
---|
3224 | sort_count_mas = 0 |
---|
3225 | agt_count = 0 |
---|
3226 | |
---|
3227 | ! |
---|
3228 | !-- initialize counter for agent IDs |
---|
3229 | grid_agents%id_counter = 1 |
---|
3230 | |
---|
3231 | ! |
---|
3232 | !-- Initialize all agents with dummy values (otherwise errors may |
---|
3233 | !-- occur within restart runs). The reason for this is still not clear |
---|
3234 | !-- and may be presumably caused by errors in the respective user-interface. |
---|
3235 | zero_agent%agent_mask = .FALSE. |
---|
3236 | zero_agent%block_nr = -1 |
---|
3237 | zero_agent%group = 0 |
---|
3238 | zero_agent%id = 0_idp |
---|
3239 | zero_agent%path_counter = agt_path_size |
---|
3240 | zero_agent%age = 0.0_wp |
---|
3241 | zero_agent%age_m = 0.0_wp |
---|
3242 | zero_agent%dt_sum = 0.0_wp |
---|
3243 | zero_agent%clo = 0.0_wp |
---|
3244 | zero_agent%energy_storage= 0.0_wp |
---|
3245 | zero_agent%force_x = 0.0_wp |
---|
3246 | zero_agent%force_y = 0.0_wp |
---|
3247 | zero_agent%origin_x = 0.0_wp |
---|
3248 | zero_agent%origin_y = 0.0_wp |
---|
3249 | zero_agent%speed_abs = 0.0_wp |
---|
3250 | zero_agent%speed_e_x = 0.0_wp |
---|
3251 | zero_agent%speed_e_y = 0.0_wp |
---|
3252 | zero_agent%speed_des = random_normal(desired_speed, des_sp_sig) |
---|
3253 | zero_agent%speed_x = 0.0_wp |
---|
3254 | zero_agent%speed_y = 0.0_wp |
---|
3255 | zero_agent%ipt = 0.0_wp |
---|
3256 | zero_agent%x = 0.0_wp |
---|
3257 | zero_agent%y = 0.0_wp |
---|
3258 | zero_agent%path_x = 0.0_wp |
---|
3259 | zero_agent%path_y = 0.0_wp |
---|
3260 | zero_agent%t_x = 0.0_wp |
---|
3261 | zero_agent%t_y = 0.0_wp |
---|
3262 | |
---|
3263 | ! |
---|
3264 | !-- Set a seed value for the random number generator to be exclusively |
---|
3265 | !-- used for the agent code. The generated random numbers should be |
---|
3266 | !-- different on the different PEs. |
---|
3267 | iran_agent = iran_agent + myid |
---|
3268 | |
---|
3269 | CALL mas_create_agent (PHASE_INIT) |
---|
3270 | |
---|
3271 | ENDIF |
---|
3272 | |
---|
3273 | ! |
---|
3274 | !-- To avoid programm abort, assign agents array to the local version of |
---|
3275 | !-- first grid cell |
---|
3276 | number_of_agents = agt_count(nys,nxl) |
---|
3277 | agents => grid_agents(nys,nxl)%agents(1:number_of_agents) |
---|
3278 | |
---|
3279 | END SUBROUTINE mas_init |
---|
3280 | |
---|
3281 | !------------------------------------------------------------------------------! |
---|
3282 | ! Description: |
---|
3283 | ! ------------ |
---|
3284 | !> Output of informative message about maximum agent number |
---|
3285 | !------------------------------------------------------------------------------! |
---|
3286 | SUBROUTINE mas_last_actions |
---|
3287 | |
---|
3288 | USE control_parameters, & |
---|
3289 | ONLY: message_string |
---|
3290 | |
---|
3291 | IMPLICIT NONE |
---|
3292 | |
---|
3293 | WRITE(message_string,'(A,I8,A)') & |
---|
3294 | 'The maximumn number of agents during this run was', & |
---|
3295 | maximum_number_of_agents, & |
---|
3296 | '&Consider adjusting the INPUT parameter'// & |
---|
3297 | '&dim_size_agtnum_manual accordingly for the next run.' |
---|
3298 | |
---|
3299 | CALL message( 'mas_data_output_agents', 'PA0457', 0, 0, 0, 6, 0 ) |
---|
3300 | |
---|
3301 | END SUBROUTINE mas_last_actions |
---|
3302 | |
---|
3303 | !------------------------------------------------------------------------------! |
---|
3304 | ! Description: |
---|
3305 | ! ------------ |
---|
3306 | !> Finds the shortest path from a start position to a target position using the |
---|
3307 | !> A*-algorithm |
---|
3308 | !------------------------------------------------------------------------------! |
---|
3309 | SUBROUTINE mas_nav_a_star( start_x, start_y, target_x, target_y, nsteps ) |
---|
3310 | |
---|
3311 | IMPLICIT NONE |
---|
3312 | |
---|
3313 | LOGICAL :: target_reached !< flag |
---|
3314 | |
---|
3315 | INTEGER(iwp) :: cur_node !< current node of binary heap |
---|
3316 | INTEGER(iwp) :: il !< counter (x) |
---|
3317 | INTEGER(iwp) :: neigh_node !< neighbor node |
---|
3318 | INTEGER(iwp) :: node_counter !< binary heap node counter |
---|
3319 | INTEGER(iwp) :: path_ag !< index of agent path |
---|
3320 | INTEGER(iwp) :: som !< size of mesh |
---|
3321 | INTEGER(iwp) :: steps !< steps along the path |
---|
3322 | INTEGER(iwp) :: nsteps !< number of steps |
---|
3323 | |
---|
3324 | REAL(wp) :: start_x !< x-coordinate agent |
---|
3325 | REAL(wp) :: start_y !< y-coordinate agent |
---|
3326 | REAL(wp) :: new_cost !< updated cost to reach node |
---|
3327 | REAL(wp) :: new_priority !< priority of node to be added to queue |
---|
3328 | REAL(wp) :: rn_gate !< random number for corner gate |
---|
3329 | REAL(wp) :: target_x !< x-coordinate target |
---|
3330 | REAL(wp) :: target_y !< y-coordinate target |
---|
3331 | ! |
---|
3332 | !-- Coordinate Type |
---|
3333 | TYPE coord |
---|
3334 | REAL(wp) :: x !< x-coordinate |
---|
3335 | REAL(wp) :: x_s !< x-coordinate (shifted) |
---|
3336 | REAL(wp) :: y !< y-coordinate |
---|
3337 | REAL(wp) :: y_s !< y-coordinate (shifted) |
---|
3338 | END TYPE coord |
---|
3339 | |
---|
3340 | TYPE(coord), DIMENSION(:), ALLOCATABLE, TARGET :: path !< path array |
---|
3341 | TYPE(coord), DIMENSION(:), ALLOCATABLE, TARGET :: tmp_path !< temporary path for resizing |
---|
3342 | |
---|
3343 | node_counter = 0 |
---|
3344 | ! |
---|
3345 | !-- Create temporary navigation mesh including agent and target positions |
---|
3346 | CALL mas_nav_create_tmp_mesh( start_x, start_y, target_x, target_y, som ) |
---|
3347 | tmp_mesh(som)%cost_so_far = 0.0_wp |
---|
3348 | ! |
---|
3349 | !-- Initialize priority queue |
---|
3350 | heap_count = 0_iwp |
---|
3351 | ALLOCATE(queue(0:100)) |
---|
3352 | target_reached = .FALSE. |
---|
3353 | ! |
---|
3354 | !-- Add starting point (agent position) to frontier (the frontier consists |
---|
3355 | !-- of all the nodes that are to be visited. The node with the smallest |
---|
3356 | !-- priority will be visited first. The priority consists of the distance |
---|
3357 | !-- from the start node to this node plus a minimal guess (direct distance) |
---|
3358 | !-- from this node to the goal). For the starting node, the priority is set |
---|
3359 | !-- to 0, as it's the only node thus far |
---|
3360 | CALL mas_heap_insert_item(som,0.0_wp) |
---|
3361 | cur_node = som |
---|
3362 | DO WHILE ( heap_count > 0 ) |
---|
3363 | ! |
---|
3364 | !-- Step one: Pick lowest priority item from queue |
---|
3365 | node_counter = node_counter + 1 |
---|
3366 | CALL mas_heap_extract_item(cur_node) |
---|
3367 | ! |
---|
3368 | !-- Node 0 is the goal node |
---|
3369 | IF ( cur_node == 0 ) THEN |
---|
3370 | EXIT |
---|
3371 | ENDIF |
---|
3372 | ! |
---|
3373 | !-- Loop over all of cur_node's neighbors |
---|
3374 | DO il = 1, tmp_mesh(cur_node)%noc |
---|
3375 | neigh_node = tmp_mesh(cur_node)%connected_vertices(il) |
---|
3376 | ! |
---|
3377 | !-- Check, if the way from the start node to this neigh_node via |
---|
3378 | !-- cur_node is shorter than the previously found shortest path to it. |
---|
3379 | !-- If so, replace said cost and add neigh_node to the frontier. |
---|
3380 | !-- cost_so_far is initialized as 1.d12 so that all found distances |
---|
3381 | !-- should be smaller. |
---|
3382 | new_cost = tmp_mesh(cur_node)%cost_so_far & |
---|
3383 | + tmp_mesh(cur_node)%distance_to_vertex(il) |
---|
3384 | IF ( new_cost < tmp_mesh(neigh_node)%cost_so_far ) THEN |
---|
3385 | tmp_mesh(neigh_node)%cost_so_far = new_cost |
---|
3386 | tmp_mesh(neigh_node)%origin_id = cur_node |
---|
3387 | ! |
---|
3388 | !-- Priority in the queue is cost_so_far + heuristic to goal |
---|
3389 | new_priority = new_cost & |
---|
3390 | + heuristic(tmp_mesh(neigh_node)%x, & |
---|
3391 | tmp_mesh(neigh_node)%y, tmp_mesh(0)%x, & |
---|
3392 | tmp_mesh(0)%y) |
---|
3393 | CALL mas_heap_insert_item(neigh_node,new_priority) |
---|
3394 | ENDIF |
---|
3395 | ENDDO |
---|
3396 | ENDDO |
---|
3397 | ! |
---|
3398 | !-- Add nodes to a path array. To do this, we must backtrack from the target |
---|
3399 | !-- node to its origin to its origin and so on until an node is reached that |
---|
3400 | !-- has no origin (%origin_id == -1). This is the starting node. |
---|
3401 | DEALLOCATE(queue) |
---|
3402 | cur_node = 0 |
---|
3403 | steps = 0 |
---|
3404 | ALLOCATE(path(1:100)) |
---|
3405 | DO WHILE ( cur_node /= -1 ) |
---|
3406 | steps = steps + 1 |
---|
3407 | ! |
---|
3408 | !-- Resize path array if necessary |
---|
3409 | IF ( steps > SIZE(path) ) THEN |
---|
3410 | ALLOCATE(tmp_path(1:steps-1)) |
---|
3411 | tmp_path(1:steps-1) = path(1:steps-1) |
---|
3412 | DEALLOCATE(path) |
---|
3413 | ALLOCATE(path(1:2*(steps-1))) |
---|
3414 | path(1:steps-1) = tmp_path(1:steps-1) |
---|
3415 | DEALLOCATE(tmp_path) |
---|
3416 | ENDIF |
---|
3417 | path(steps)%x = tmp_mesh(cur_node)%x |
---|
3418 | path(steps)%y = tmp_mesh(cur_node)%y |
---|
3419 | path(steps)%x_s = tmp_mesh(cur_node)%x_s |
---|
3420 | path(steps)%y_s = tmp_mesh(cur_node)%y_s |
---|
3421 | cur_node = tmp_mesh(cur_node)%origin_id |
---|
3422 | ENDDO |
---|
3423 | ! |
---|
3424 | !-- Add calculated intermittent targets to the path until either the |
---|
3425 | !-- target or the maximum number of intermittent targets is reached. |
---|
3426 | !-- Ignore starting point (reduce index by one), it is agent position. |
---|
3427 | dummy_path_x = -1 |
---|
3428 | dummy_path_y = -1 |
---|
3429 | path_ag = 1 |
---|
3430 | steps = steps - 1 |
---|
3431 | nsteps = 0 |
---|
3432 | DO WHILE( steps > 0 .AND. path_ag <= agt_path_size ) |
---|
3433 | ! |
---|
3434 | !-- Each target point is randomly chosen along a line target along the |
---|
3435 | !-- bisector of the building corner that starts at corner_gate_start |
---|
3436 | !-- and has a width of corner_gate_width. This is to avoid clustering |
---|
3437 | !-- when opposing agent groups try to reach the same corner target. |
---|
3438 | rn_gate = random_function(iran_agent) * corner_gate_width & |
---|
3439 | + corner_gate_start |
---|
3440 | dummy_path_x(path_ag) = path(steps)%x + rn_gate & |
---|
3441 | * (path(steps)%x_s - path(steps)%x) |
---|
3442 | dummy_path_y(path_ag) = path(steps)%y + rn_gate & |
---|
3443 | * (path(steps)%y_s - path(steps)%y) |
---|
3444 | steps = steps - 1 |
---|
3445 | path_ag = path_ag + 1 |
---|
3446 | nsteps = nsteps + 1 |
---|
3447 | ENDDO |
---|
3448 | ! |
---|
3449 | !-- Set current intermittent target of this agent |
---|
3450 | DEALLOCATE(tmp_mesh, path) |
---|
3451 | |
---|
3452 | END SUBROUTINE mas_nav_a_star |
---|
3453 | |
---|
3454 | !------------------------------------------------------------------------------! |
---|
3455 | ! Description: |
---|
3456 | ! ------------ |
---|
3457 | !> Adds a connection between two points of the navigation mesh |
---|
3458 | !> (one-way: in_mp1 to in_mp2) |
---|
3459 | !------------------------------------------------------------------------------! |
---|
3460 | SUBROUTINE mas_nav_add_connection ( in_mp1, id2, in_mp2 ) |
---|
3461 | |
---|
3462 | IMPLICIT NONE |
---|
3463 | |
---|
3464 | LOGICAL :: connection_established !< Flag to indicate if connection has already been established |
---|
3465 | |
---|
3466 | INTEGER(iwp) :: id2 !< ID of in_mp2 |
---|
3467 | INTEGER(iwp) :: il !< local counter |
---|
3468 | INTEGER(iwp) :: noc1 !< number of connections in in_mp1 |
---|
3469 | |
---|
3470 | INTEGER, DIMENSION(:), ALLOCATABLE :: dum_cv !< dummy array for connected_vertices |
---|
3471 | |
---|
3472 | REAL(wp) :: dist !< Distance between the two points |
---|
3473 | |
---|
3474 | REAL(wp), DIMENSION(:), ALLOCATABLE :: dum_dtv |
---|
3475 | |
---|
3476 | TYPE(mesh_point) :: in_mp1 !< mesh point that gets a new connection |
---|
3477 | TYPE(mesh_point) :: in_mp2 !< mesh point in_mp1 will be connected to |
---|
3478 | |
---|
3479 | connection_established = .FALSE. |
---|
3480 | ! |
---|
3481 | !-- Check if connection has already been established |
---|
3482 | noc1 = SIZE(in_mp1%connected_vertices) |
---|
3483 | DO il = 1, in_mp1%noc |
---|
3484 | IF ( in_mp1%connected_vertices(il) == id2 ) THEN |
---|
3485 | connection_established = .TRUE. |
---|
3486 | EXIT |
---|
3487 | ENDIF |
---|
3488 | ENDDO |
---|
3489 | |
---|
3490 | IF ( .NOT. connection_established ) THEN |
---|
3491 | ! |
---|
3492 | !-- Resize arrays, if necessary |
---|
3493 | IF ( in_mp1%noc >= noc1 ) THEN |
---|
3494 | ALLOCATE( dum_cv(1:noc1),dum_dtv(1:noc1) ) |
---|
3495 | dum_cv = in_mp1%connected_vertices |
---|
3496 | dum_dtv = in_mp1%distance_to_vertex |
---|
3497 | DEALLOCATE( in_mp1%connected_vertices, in_mp1%distance_to_vertex ) |
---|
3498 | ALLOCATE( in_mp1%connected_vertices(1:2*noc1), & |
---|
3499 | in_mp1%distance_to_vertex(1:2*noc1) ) |
---|
3500 | in_mp1%connected_vertices = -999 |
---|
3501 | in_mp1%distance_to_vertex = -999. |
---|
3502 | in_mp1%connected_vertices(1:noc1) = dum_cv |
---|
3503 | in_mp1%distance_to_vertex(1:noc1) = dum_dtv |
---|
3504 | ENDIF |
---|
3505 | |
---|
3506 | ! |
---|
3507 | !-- Add connection |
---|
3508 | in_mp1%noc = in_mp1%noc+1 |
---|
3509 | dist = SQRT( (in_mp1%x - in_mp2%x)**2 + (in_mp1%y - in_mp2%y)**2 ) |
---|
3510 | in_mp1%connected_vertices(in_mp1%noc) = id2 |
---|
3511 | in_mp1%distance_to_vertex(in_mp1%noc) = dist |
---|
3512 | ENDIF |
---|
3513 | |
---|
3514 | END SUBROUTINE mas_nav_add_connection |
---|
3515 | |
---|
3516 | !------------------------------------------------------------------------------! |
---|
3517 | ! Description: |
---|
3518 | ! ------------ |
---|
3519 | !> Adds a vertex (curren position of agent or target) to the existing tmp_mesh |
---|
3520 | !------------------------------------------------------------------------------! |
---|
3521 | SUBROUTINE mas_nav_add_vertex_to_mesh ( in_mp, in_id ) |
---|
3522 | |
---|
3523 | IMPLICIT NONE |
---|
3524 | |
---|
3525 | LOGICAL :: intersection_found !< flag |
---|
3526 | |
---|
3527 | INTEGER(iwp) :: jl !< mesh point counter |
---|
3528 | INTEGER(iwp) :: pl !< polygon counter |
---|
3529 | INTEGER(iwp) :: vl !< vertex counter |
---|
3530 | INTEGER(iwp) :: pid_t !< polygon id of tested mesh point |
---|
3531 | INTEGER(iwp) :: vid_t !< vertex id of tested mesh point |
---|
3532 | INTEGER(iwp) :: in_id !< vertex id of tested mesh point |
---|
3533 | |
---|
3534 | REAL(wp) :: v1x !< x-coordinate of test vertex 1 for intersection test |
---|
3535 | REAL(wp) :: v1y !< y-coordinate of test vertex 1 for intersection test |
---|
3536 | REAL(wp) :: v2x !< x-coordinate of test vertex 2 for intersection test |
---|
3537 | REAL(wp) :: v2y !< y-coordinate of test vertex 2 for intersection test |
---|
3538 | REAL(wp) :: x !< x-coordinate of current mesh point |
---|
3539 | REAL(wp) :: x_t !< x-coordinate of tested mesh point |
---|
3540 | REAL(wp) :: y !< y-coordinate of current mesh point |
---|
3541 | REAL(wp) :: y_t !< y-coordinate of tested mesh point |
---|
3542 | |
---|
3543 | TYPE(mesh_point) :: in_mp !< Input mesh point |
---|
3544 | ! |
---|
3545 | !-- |
---|
3546 | x = in_mp%x |
---|
3547 | y = in_mp%y |
---|
3548 | DO jl = 0, SIZE(tmp_mesh)-2 |
---|
3549 | IF ( in_id == jl ) CYCLE |
---|
3550 | ! |
---|
3551 | !-- Ignore mesh points with 0 connections |
---|
3552 | IF ( tmp_mesh(jl)%polygon_id /= -1 ) THEN |
---|
3553 | IF ( tmp_mesh(jl)%noc == 0 ) CYCLE |
---|
3554 | ENDIF |
---|
3555 | x_t = tmp_mesh(jl)%x |
---|
3556 | y_t = tmp_mesh(jl)%y |
---|
3557 | pid_t = tmp_mesh(jl)%polygon_id |
---|
3558 | vid_t = tmp_mesh(jl)%vertex_id |
---|
3559 | ! |
---|
3560 | !-- If the connecting line between the target and a mesh point points |
---|
3561 | !-- into the mesh point's polygon, no connection will be |
---|
3562 | !-- established between the two points. This is the case if the |
---|
3563 | !-- previous (next) vertex of the polygon is right of the connecting |
---|
3564 | !-- line and the next (previous) vertex of the polygon is left of the |
---|
3565 | !-- connecting line. |
---|
3566 | IF ( pid_t > 0 .AND. pid_t <= SIZE(polygons) ) THEN |
---|
3567 | IF ( (((is_left(x,y,x_t,y_t,polygons(pid_t)%vertices(vid_t-1)%x, & |
---|
3568 | polygons(pid_t)%vertices(vid_t-1)%y) & |
---|
3569 | .AND. is_right(x,y,x_t,y_t, & |
---|
3570 | polygons(pid_t)%vertices(vid_t+1)%x, & |
---|
3571 | polygons(pid_t)%vertices(vid_t+1)%y) ) & |
---|
3572 | .OR. (is_right(x,y,x_t,y_t, & |
---|
3573 | polygons(pid_t)%vertices(vid_t-1)%x, & |
---|
3574 | polygons(pid_t)%vertices(vid_t-1)%y) & |
---|
3575 | .AND. is_left(x,y,x_t,y_t, & |
---|
3576 | polygons(pid_t)%vertices(vid_t+1)%x, & |
---|
3577 | polygons(pid_t)%vertices(vid_t+1)%y)))))& |
---|
3578 | THEN |
---|
3579 | CYCLE |
---|
3580 | ENDIF |
---|
3581 | ENDIF |
---|
3582 | ! |
---|
3583 | !-- For each edge of each polygon, check if it intersects with the |
---|
3584 | !-- potential connection. If at least one intersection is found, |
---|
3585 | !-- no connection can be made |
---|
3586 | intersection_found = .FALSE. |
---|
3587 | DO pl = 1, SIZE(polygons) |
---|
3588 | DO vl = 1, polygons(pl)%nov |
---|
3589 | v1x = polygons(pl)%vertices(vl)%x |
---|
3590 | v1y = polygons(pl)%vertices(vl)%y |
---|
3591 | v2x = polygons(pl)%vertices(vl+1)%x |
---|
3592 | v2y = polygons(pl)%vertices(vl+1)%y |
---|
3593 | intersection_found = intersect(x,y,x_t,y_t,v1x,v1y,v2x,v2y) |
---|
3594 | IF ( intersection_found ) THEN |
---|
3595 | EXIT |
---|
3596 | ENDIF |
---|
3597 | ENDDO |
---|
3598 | IF ( intersection_found ) EXIT |
---|
3599 | ENDDO |
---|
3600 | IF ( intersection_found ) CYCLE |
---|
3601 | ! |
---|
3602 | !-- If neither of the above two test was true, a connection will be |
---|
3603 | !-- established between the two mesh points. |
---|
3604 | CALL mas_nav_add_connection(in_mp,jl, tmp_mesh(jl)) |
---|
3605 | CALL mas_nav_add_connection(tmp_mesh(jl),in_id, in_mp) |
---|
3606 | ENDDO |
---|
3607 | CALL mas_nav_reduce_connections(in_mp) |
---|
3608 | |
---|
3609 | END SUBROUTINE mas_nav_add_vertex_to_mesh |
---|
3610 | |
---|
3611 | !------------------------------------------------------------------------------! |
---|
3612 | ! Description: |
---|
3613 | ! ------------ |
---|
3614 | !> Creates a temporary copy of the navigation mesh to be used for pathfinding |
---|
3615 | !------------------------------------------------------------------------------! |
---|
3616 | SUBROUTINE mas_nav_create_tmp_mesh( a_x, a_y, t_x, t_y, som ) |
---|
3617 | |
---|
3618 | IMPLICIT NONE |
---|
3619 | |
---|
3620 | INTEGER(iwp) :: som !< size of mesh |
---|
3621 | INTEGER(iwp) :: noc !< number of connetions |
---|
3622 | INTEGER(iwp) :: im !< local mesh point counter |
---|
3623 | |
---|
3624 | REAL(wp) :: a_x !< x-coordinate agent |
---|
3625 | REAL(wp) :: a_y !< y-coordinate agent |
---|
3626 | REAL(wp) :: t_x !< x-coordinate target |
---|
3627 | REAL(wp) :: t_y !< y-coordinate target |
---|
3628 | ! |
---|
3629 | !-- give tmp_mesh the size of mesh |
---|
3630 | som = SIZE(mesh)+1 |
---|
3631 | ALLOCATE(tmp_mesh(0:som)) |
---|
3632 | ! |
---|
3633 | !-- give the allocatable variables in tmp_mesh their respctive sizes |
---|
3634 | DO im = 1, som-1 |
---|
3635 | noc = mesh(im)%noc |
---|
3636 | ALLOCATE(tmp_mesh(im)%connected_vertices(1:noc)) |
---|
3637 | ALLOCATE(tmp_mesh(im)%distance_to_vertex(1:noc)) |
---|
3638 | ENDDO |
---|
3639 | ! |
---|
3640 | !-- copy mesh to tmp_mesh |
---|
3641 | tmp_mesh(1:som-1) = mesh(1:som-1) |
---|
3642 | ! |
---|
3643 | !-- Add target point ... |
---|
3644 | CALL mas_nav_init_mesh_point(tmp_mesh(0),-1_iwp,-1_iwp,t_x, t_y) |
---|
3645 | CALL mas_nav_add_vertex_to_mesh(tmp_mesh(0),0_iwp) |
---|
3646 | ! |
---|
3647 | !-- ... and start point to temp mesh |
---|
3648 | CALL mas_nav_init_mesh_point(tmp_mesh(som),-1_iwp,-1_iwp,a_x, a_y) |
---|
3649 | CALL mas_nav_add_vertex_to_mesh(tmp_mesh(som),som) |
---|
3650 | |
---|
3651 | END SUBROUTINE mas_nav_create_tmp_mesh |
---|
3652 | |
---|
3653 | |
---|
3654 | !------------------------------------------------------------------------------! |
---|
3655 | ! Description: |
---|
3656 | ! ------------ |
---|
3657 | !> Finds the shortest path from an agents' position to her target. As the |
---|
3658 | !> actual pathfinding algorithm uses the obstacle corners and then shifts them |
---|
3659 | !> outward after pathfinding, cases can uccur in which the connection between |
---|
3660 | !> these intermittent targets then intersect with obstacles. To remedy this |
---|
3661 | !> the pathfinding algorithm is then run on every two subsequent intermittent |
---|
3662 | !> targets iteratively and new intermittent targets may be added to the path |
---|
3663 | !> this way. |
---|
3664 | !------------------------------------------------------------------------------! |
---|
3665 | SUBROUTINE mas_nav_find_path( nl ) |
---|
3666 | |
---|
3667 | IMPLICIT NONE |
---|
3668 | |
---|
3669 | INTEGER(iwp) :: nl !< local agent counter |
---|
3670 | INTEGER(iwp) :: il !< local counter |
---|
3671 | INTEGER(iwp) :: jl !< local counter |
---|
3672 | INTEGER(iwp) :: kl !< local counter |
---|
3673 | INTEGER(iwp) :: nsteps_total !< number of steps on path |
---|
3674 | INTEGER(iwp) :: nsteps_dummy !< number of steps on path |
---|
3675 | |
---|
3676 | REAL(wp), DIMENSION(0:30) :: ld_path_x !< local dummy agent path to target (x) |
---|
3677 | REAL(wp), DIMENSION(0:30) :: ld_path_y !< local dummy agent path to target (y) |
---|
3678 | ! |
---|
3679 | !-- Initialize agent path arrays |
---|
3680 | agents(nl)%path_x = -1 |
---|
3681 | agents(nl)%path_y = -1 |
---|
3682 | agents(nl)%path_x(0) = agents(nl)%x |
---|
3683 | agents(nl)%path_y(0) = agents(nl)%y |
---|
3684 | ! |
---|
3685 | !-- Calculate initial path |
---|
3686 | CALL mas_nav_a_star( agents(nl)%x, agents(nl)%y, & |
---|
3687 | agents(nl)%t_x, agents(nl)%t_y, nsteps_total ) |
---|
3688 | ! |
---|
3689 | !-- Set the rest of the agent path that was just calculated |
---|
3690 | agents(nl)%path_x(1:nsteps_total) = dummy_path_x(1:nsteps_total) |
---|
3691 | agents(nl)%path_y(1:nsteps_total) = dummy_path_y(1:nsteps_total) |
---|
3692 | ! |
---|
3693 | !-- Iterate through found path and check more intermittent targets need |
---|
3694 | !-- to be added. For this, run pathfinding between every two consecutive |
---|
3695 | !-- intermittent targets. |
---|
3696 | DO il = 0, MIN(agt_path_size-1, nsteps_total-1) |
---|
3697 | ! |
---|
3698 | !-- pathfinding between two consecutive intermittent targets |
---|
3699 | CALL mas_nav_a_star( agents(nl)%path_x(il), agents(nl)%path_y(il), & |
---|
3700 | agents(nl)%path_x(il+1), agents(nl)%path_y(il+1),& |
---|
3701 | nsteps_dummy ) |
---|
3702 | nsteps_dummy = nsteps_dummy - 1 |
---|
3703 | ! |
---|
3704 | !-- If additional intermittent targets are found, add them to the path |
---|
3705 | IF ( nsteps_dummy > 0 ) THEN |
---|
3706 | ld_path_x = -1 |
---|
3707 | ld_path_y = -1 |
---|
3708 | ld_path_x(il+1:il+nsteps_dummy) = dummy_path_x(1:nsteps_dummy) |
---|
3709 | ld_path_y(il+1:il+nsteps_dummy) = dummy_path_y(1:nsteps_dummy) |
---|
3710 | kl = 1 |
---|
3711 | DO jl = il+1,nsteps_total |
---|
3712 | ld_path_x( il+nsteps_dummy+kl ) = agents(nl)%path_x(jl) |
---|
3713 | ld_path_y( il+nsteps_dummy+kl ) = agents(nl)%path_y(jl) |
---|
3714 | kl = kl + 1 |
---|
3715 | IF ( kl > agt_path_size ) EXIT |
---|
3716 | ENDDO |
---|
3717 | nsteps_total = MIN(nsteps_total + nsteps_dummy, agt_path_size) |
---|
3718 | agents(nl)%path_x(il+1:nsteps_total) = ld_path_x(il+1:nsteps_total) |
---|
3719 | agents(nl)%path_y(il+1:nsteps_total) = ld_path_y(il+1:nsteps_total) |
---|
3720 | ENDIF |
---|
3721 | |
---|
3722 | ENDDO |
---|
3723 | ! |
---|
3724 | !-- reset path counter to first intermittent target |
---|
3725 | agents(nl)%path_counter = 1 |
---|
3726 | |
---|
3727 | END SUBROUTINE mas_nav_find_path |
---|
3728 | |
---|
3729 | !------------------------------------------------------------------------------! |
---|
3730 | ! Description: |
---|
3731 | ! ------------ |
---|
3732 | !> Reduces the size of connection array to the amount of actual connections |
---|
3733 | !> after all connetions were added to a mesh point |
---|
3734 | !------------------------------------------------------------------------------! |
---|
3735 | SUBROUTINE mas_nav_reduce_connections ( in_mp ) |
---|
3736 | |
---|
3737 | IMPLICIT NONE |
---|
3738 | |
---|
3739 | INTEGER(iwp) :: noc !< number of connections |
---|
3740 | |
---|
3741 | INTEGER, DIMENSION(:), ALLOCATABLE :: dum_cv !< dummy connected_vertices |
---|
3742 | |
---|
3743 | REAL(wp), DIMENSION(:), ALLOCATABLE :: dum_dtv !< dummy distance_to_vertex |
---|
3744 | |
---|
3745 | TYPE(mesh_point) :: in_mp |
---|
3746 | |
---|
3747 | noc = in_mp%noc |
---|
3748 | ALLOCATE( dum_cv(1:noc),dum_dtv(1:noc) ) |
---|
3749 | dum_cv = in_mp%connected_vertices(1:noc) |
---|
3750 | dum_dtv = in_mp%distance_to_vertex(1:noc) |
---|
3751 | DEALLOCATE( in_mp%connected_vertices, in_mp%distance_to_vertex ) |
---|
3752 | ALLOCATE( in_mp%connected_vertices(1:noc), & |
---|
3753 | in_mp%distance_to_vertex(1:noc) ) |
---|
3754 | in_mp%connected_vertices(1:noc) = dum_cv(1:noc) |
---|
3755 | in_mp%distance_to_vertex(1:noc) = dum_dtv(1:noc) |
---|
3756 | |
---|
3757 | END SUBROUTINE mas_nav_reduce_connections |
---|
3758 | |
---|
3759 | !------------------------------------------------------------------------------! |
---|
3760 | ! Description: |
---|
3761 | ! ------------ |
---|
3762 | !> Initializes a point of the navigation mesh |
---|
3763 | !------------------------------------------------------------------------------! |
---|
3764 | SUBROUTINE mas_nav_init_mesh_point ( in_mp, pid, vid, x, y ) |
---|
3765 | |
---|
3766 | IMPLICIT NONE |
---|
3767 | |
---|
3768 | INTEGER(iwp) :: pid !< polygon ID |
---|
3769 | INTEGER(iwp) :: vid !< vertex ID |
---|
3770 | |
---|
3771 | REAL(wp) :: x !< x-coordinate |
---|
3772 | REAL(wp) :: y !< y-coordinate |
---|
3773 | |
---|
3774 | TYPE(mesh_point) :: in_mp !< mesh point to be initialized |
---|
3775 | |
---|
3776 | in_mp%origin_id = -1 |
---|
3777 | in_mp%polygon_id = pid |
---|
3778 | in_mp%vertex_id = vid |
---|
3779 | in_mp%cost_so_far = 1.d12 |
---|
3780 | in_mp%x = x |
---|
3781 | in_mp%y = y |
---|
3782 | in_mp%x_s = x |
---|
3783 | in_mp%y_s = y |
---|
3784 | ALLOCATE(in_mp%connected_vertices(1:100), & |
---|
3785 | in_mp%distance_to_vertex(1:100)) |
---|
3786 | in_mp%connected_vertices = -999 |
---|
3787 | in_mp%distance_to_vertex = -999. |
---|
3788 | in_mp%noc = 0 |
---|
3789 | |
---|
3790 | END SUBROUTINE mas_nav_init_mesh_point |
---|
3791 | |
---|
3792 | !------------------------------------------------------------------------------! |
---|
3793 | ! Description: |
---|
3794 | ! ------------ |
---|
3795 | !> Reading of namlist from parin file |
---|
3796 | !------------------------------------------------------------------------------! |
---|
3797 | SUBROUTINE mas_parin |
---|
3798 | |
---|
3799 | USE control_parameters, & |
---|
3800 | ONLY: agent_time_unlimited, multi_agent_system_end, & |
---|
3801 | multi_agent_system_start |
---|
3802 | |
---|
3803 | IMPLICIT NONE |
---|
3804 | |
---|
3805 | CHARACTER (LEN=80) :: line !< |
---|
3806 | |
---|
3807 | NAMELIST /agent_parameters/ a_rand_target, & |
---|
3808 | adx, & |
---|
3809 | ady, & |
---|
3810 | agent_maximum_age, & |
---|
3811 | agent_time_unlimited, & |
---|
3812 | alloc_factor_mas, & |
---|
3813 | asl, & |
---|
3814 | asn, & |
---|
3815 | asr, & |
---|
3816 | ass, & |
---|
3817 | at_x, & |
---|
3818 | at_y, & |
---|
3819 | bc_mas_lr, & |
---|
3820 | bc_mas_ns, & |
---|
3821 | coll_t_0, & |
---|
3822 | corner_gate_start, & |
---|
3823 | corner_gate_width, & |
---|
3824 | dim_size_agtnum_manual, & |
---|
3825 | dim_size_factor_agtnum, & |
---|
3826 | deallocate_memory_mas, & |
---|
3827 | dist_to_int_target, & |
---|
3828 | dt_agent, & |
---|
3829 | dt_arel, & |
---|
3830 | dt_write_agent_data, & |
---|
3831 | end_time_arel, & |
---|
3832 | max_dist_from_path, & |
---|
3833 | min_nr_agent, & |
---|
3834 | multi_agent_system_end, & |
---|
3835 | multi_agent_system_start, & |
---|
3836 | number_of_agent_groups, & |
---|
3837 | radius_agent, & |
---|
3838 | random_start_position_agents, & |
---|
3839 | read_agents_from_restartfile, & |
---|
3840 | repuls_agent, & |
---|
3841 | repuls_wall, & |
---|
3842 | scan_radius_agent, & |
---|
3843 | sigma_rep_agent, & |
---|
3844 | sigma_rep_wall, & |
---|
3845 | step_dealloc_mas, & |
---|
3846 | tau_accel_agent |
---|
3847 | |
---|
3848 | ! |
---|
3849 | !-- Try to find agent package |
---|
3850 | REWIND ( 11 ) |
---|
3851 | line = ' ' |
---|
3852 | DO WHILE ( INDEX( line, '&agent_parameters' ) == 0 ) |
---|
3853 | READ ( 11, '(A)', END=20 ) line |
---|
3854 | ENDDO |
---|
3855 | BACKSPACE ( 11 ) |
---|
3856 | |
---|
3857 | ! |
---|
3858 | !-- Read user-defined namelist |
---|
3859 | READ ( 11, agent_parameters, ERR = 10, END = 20 ) |
---|
3860 | |
---|
3861 | ! |
---|
3862 | !-- Set flag that indicates that agents are switched on |
---|
3863 | agents_active = .TRUE. |
---|
3864 | GOTO 20 |
---|
3865 | |
---|
3866 | 10 BACKSPACE( 11 ) |
---|
3867 | READ( 11 , '(A)') line |
---|
3868 | CALL parin_fail_message( 'agent_parameters', line ) |
---|
3869 | |
---|
3870 | 20 CONTINUE |
---|
3871 | |
---|
3872 | END SUBROUTINE mas_parin |
---|
3873 | |
---|
3874 | !------------------------------------------------------------------------------! |
---|
3875 | ! Description: |
---|
3876 | ! ------------ |
---|
3877 | !> Routine for the whole processor |
---|
3878 | !> Sort all agents into the 4 respective subgrid boxes |
---|
3879 | !------------------------------------------------------------------------------! |
---|
3880 | SUBROUTINE mas_ps_sort_in_subboxes |
---|
3881 | |
---|
3882 | IMPLICIT NONE |
---|
3883 | |
---|
3884 | INTEGER(iwp) :: i !< grid box (x) |
---|
3885 | INTEGER(iwp) :: ip !< counter (x) |
---|
3886 | INTEGER(iwp) :: is !< box counter |
---|
3887 | INTEGER(iwp) :: j !< grid box (y) |
---|
3888 | INTEGER(iwp) :: jp !< counter (y) |
---|
3889 | INTEGER(iwp) :: m !< sorting index |
---|
3890 | INTEGER(iwp) :: n !< agent index |
---|
3891 | INTEGER(iwp) :: nn !< agent counter |
---|
3892 | INTEGER(iwp) :: sort_index !< sorting index |
---|
3893 | |
---|
3894 | INTEGER(iwp), DIMENSION(0:3) :: sort_count !< number of agents in one subbox |
---|
3895 | |
---|
3896 | TYPE(agent_type), DIMENSION(:,:), ALLOCATABLE :: sort_agents !< sorted agent array |
---|
3897 | |
---|
3898 | DO ip = nxl, nxr |
---|
3899 | DO jp = nys, nyn |
---|
3900 | number_of_agents = agt_count(jp,ip) |
---|
3901 | IF ( number_of_agents <= 0 ) CYCLE |
---|
3902 | agents => grid_agents(jp,ip)%agents(1:number_of_agents) |
---|
3903 | |
---|
3904 | nn = 0 |
---|
3905 | sort_count = 0 |
---|
3906 | ALLOCATE( sort_agents(number_of_agents, 0:3) ) |
---|
3907 | |
---|
3908 | DO n = 1, number_of_agents |
---|
3909 | sort_index = 0 |
---|
3910 | |
---|
3911 | IF ( agents(n)%agent_mask ) THEN |
---|
3912 | nn = nn + 1 |
---|
3913 | ! |
---|
3914 | !-- Sorting agents with a binary scheme |
---|
3915 | !-- sort_index=11_2=3_10 -> agent at the left,south subgridbox |
---|
3916 | !-- sort_index=10_2=2_10 -> agent at the left,north subgridbox |
---|
3917 | !-- sort_index=01_2=1_10 -> agent at the right,south subgridbox |
---|
3918 | !-- sort_index=00_2=0_10 -> agent at the right,north subgridbox |
---|
3919 | !-- For this the center of the gridbox is calculated |
---|
3920 | i = (agents(n)%x + 0.5_wp * dx) * ddx |
---|
3921 | j = (agents(n)%y + 0.5_wp * dy) * ddy |
---|
3922 | |
---|
3923 | IF ( i == ip ) sort_index = sort_index + 2 |
---|
3924 | IF ( j == jp ) sort_index = sort_index + 1 |
---|
3925 | |
---|
3926 | sort_count(sort_index) = sort_count(sort_index) + 1 |
---|
3927 | m = sort_count(sort_index) |
---|
3928 | sort_agents(m,sort_index) = agents(n) |
---|
3929 | sort_agents(m,sort_index)%block_nr = sort_index |
---|
3930 | ENDIF |
---|
3931 | ENDDO |
---|
3932 | |
---|
3933 | nn = 0 |
---|
3934 | DO is = 0,3 |
---|
3935 | grid_agents(jp,ip)%start_index(is) = nn + 1 |
---|
3936 | DO n = 1,sort_count(is) |
---|
3937 | nn = nn + 1 |
---|
3938 | agents(nn) = sort_agents(n,is) |
---|
3939 | ENDDO |
---|
3940 | grid_agents(jp,ip)%end_index(is) = nn |
---|
3941 | ENDDO |
---|
3942 | |
---|
3943 | number_of_agents = nn |
---|
3944 | agt_count(jp,ip) = number_of_agents |
---|
3945 | DEALLOCATE(sort_agents) |
---|
3946 | ENDDO |
---|
3947 | ENDDO |
---|
3948 | |
---|
3949 | END SUBROUTINE mas_ps_sort_in_subboxes |
---|
3950 | |
---|
3951 | !------------------------------------------------------------------------------! |
---|
3952 | ! Description: |
---|
3953 | ! ------------ |
---|
3954 | !> Move all agents not marked for deletion to lowest indices (packing) |
---|
3955 | !------------------------------------------------------------------------------! |
---|
3956 | SUBROUTINE mas_ps_pack |
---|
3957 | |
---|
3958 | IMPLICIT NONE |
---|
3959 | |
---|
3960 | INTEGER(iwp) :: n !< agent counter |
---|
3961 | INTEGER(iwp) :: nn !< number of agents |
---|
3962 | ! |
---|
3963 | !-- Find out elements marked for deletion and move data from highest index |
---|
3964 | !-- values to these free indices |
---|
3965 | nn = number_of_agents |
---|
3966 | |
---|
3967 | DO WHILE ( .NOT. agents(nn)%agent_mask ) |
---|
3968 | nn = nn-1 |
---|
3969 | IF ( nn == 0 ) EXIT |
---|
3970 | ENDDO |
---|
3971 | |
---|
3972 | IF ( nn > 0 ) THEN |
---|
3973 | DO n = 1, number_of_agents |
---|
3974 | IF ( .NOT. agents(n)%agent_mask ) THEN |
---|
3975 | agents(n) = agents(nn) |
---|
3976 | nn = nn - 1 |
---|
3977 | DO WHILE ( .NOT. agents(nn)%agent_mask ) |
---|
3978 | nn = nn-1 |
---|
3979 | IF ( n == nn ) EXIT |
---|
3980 | ENDDO |
---|
3981 | ENDIF |
---|
3982 | IF ( n == nn ) EXIT |
---|
3983 | ENDDO |
---|
3984 | ENDIF |
---|
3985 | |
---|
3986 | ! |
---|
3987 | !-- The number of deleted agents has been determined in routines |
---|
3988 | !-- mas_boundary_conds, mas_droplet_collision, and mas_eh_exchange_horiz |
---|
3989 | number_of_agents = nn |
---|
3990 | |
---|
3991 | END SUBROUTINE mas_ps_pack |
---|
3992 | |
---|
3993 | !------------------------------------------------------------------------------! |
---|
3994 | ! Description: |
---|
3995 | ! ------------ |
---|
3996 | !> Sort agents in each sub-grid box into two groups: agents that already |
---|
3997 | !> completed the LES timestep, and agents that need further timestepping to |
---|
3998 | !> complete the LES timestep. |
---|
3999 | !------------------------------------------------------------------------------! |
---|
4000 | ! SUBROUTINE mas_ps_sort_timeloop_done |
---|
4001 | ! |
---|
4002 | ! IMPLICIT NONE |
---|
4003 | ! |
---|
4004 | ! INTEGER(iwp) :: end_index !< agent end index for each sub-box |
---|
4005 | ! INTEGER(iwp) :: i !< index of agent grid box in x-direction |
---|
4006 | ! INTEGER(iwp) :: j !< index of agent grid box in y-direction |
---|
4007 | ! INTEGER(iwp) :: n !< running index for number of agents |
---|
4008 | ! INTEGER(iwp) :: nb !< index of subgrid boux |
---|
4009 | ! INTEGER(iwp) :: nf !< indices for agents in each sub-box that already finalized their substeps |
---|
4010 | ! INTEGER(iwp) :: nnf !< indices for agents in each sub-box that need further treatment |
---|
4011 | ! INTEGER(iwp) :: num_finalized !< number of agents in each sub-box that already finalized their substeps |
---|
4012 | ! INTEGER(iwp) :: start_index !< agent start index for each sub-box |
---|
4013 | ! |
---|
4014 | ! TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: sort_agents !< temporary agent array |
---|
4015 | ! |
---|
4016 | ! DO i = nxl, nxr |
---|
4017 | ! DO j = nys, nyn |
---|
4018 | ! |
---|
4019 | ! number_of_agents = agt_count(j,i) |
---|
4020 | ! IF ( number_of_agents <= 0 ) CYCLE |
---|
4021 | ! |
---|
4022 | ! agents => grid_agents(j,i)%agents(1:number_of_agents) |
---|
4023 | ! |
---|
4024 | ! DO nb = 0, 3 |
---|
4025 | ! |
---|
4026 | !-- Obtain start and end index for each subgrid box |
---|
4027 | ! start_index = grid_agents(j,i)%start_index(nb) |
---|
4028 | ! end_index = grid_agents(j,i)%end_index(nb) |
---|
4029 | ! |
---|
4030 | !-- Allocate temporary array used for sorting |
---|
4031 | ! ALLOCATE( sort_agents(start_index:end_index) ) |
---|
4032 | ! |
---|
4033 | !-- Determine number of agents already completed the LES |
---|
4034 | !-- timestep, and write them into a temporary array |
---|
4035 | ! nf = start_index |
---|
4036 | ! num_finalized = 0 |
---|
4037 | ! DO n = start_index, end_index |
---|
4038 | ! IF ( dt_3d - agents(n)%dt_sum < 1E-8_wp ) THEN |
---|
4039 | ! sort_agents(nf) = agents(n) |
---|
4040 | ! nf = nf + 1 |
---|
4041 | ! num_finalized = num_finalized + 1 |
---|
4042 | ! ENDIF |
---|
4043 | ! ENDDO |
---|
4044 | ! |
---|
4045 | !-- Determine number of agents that not completed the LES |
---|
4046 | !-- timestep, and write them into a temporary array |
---|
4047 | ! nnf = nf |
---|
4048 | ! DO n = start_index, end_index |
---|
4049 | ! IF ( dt_3d - agents(n)%dt_sum > 1E-8_wp ) THEN |
---|
4050 | ! sort_agents(nnf) = agents(n) |
---|
4051 | ! nnf = nnf + 1 |
---|
4052 | ! ENDIF |
---|
4053 | ! ENDDO |
---|
4054 | ! |
---|
4055 | !-- Write back sorted agents |
---|
4056 | ! agents(start_index:end_index) = & |
---|
4057 | ! sort_agents(start_index:end_index) |
---|
4058 | ! |
---|
4059 | !-- Determine updated start_index, used to masked already |
---|
4060 | !-- completed agents. |
---|
4061 | ! grid_agents(j,i)%start_index(nb) = & |
---|
4062 | ! grid_agents(j,i)%start_index(nb) & |
---|
4063 | ! + num_finalized |
---|
4064 | ! |
---|
4065 | !-- Deallocate dummy array |
---|
4066 | ! DEALLOCATE ( sort_agents ) |
---|
4067 | ! |
---|
4068 | !-- Finally, if number of non-completed agents is non zero |
---|
4069 | !-- in any of the sub-boxes, set control flag appropriately. |
---|
4070 | ! IF ( nnf > nf ) & |
---|
4071 | ! grid_agents(j,i)%time_loop_done = .FALSE. |
---|
4072 | ! |
---|
4073 | ! ENDDO |
---|
4074 | ! ENDDO |
---|
4075 | ! ENDDO |
---|
4076 | ! |
---|
4077 | ! END SUBROUTINE mas_ps_sort_timeloop_done |
---|
4078 | |
---|
4079 | !------------------------------------------------------------------------------! |
---|
4080 | ! Description: |
---|
4081 | ! ------------ |
---|
4082 | !> Calls social forces calculations |
---|
4083 | !------------------------------------------------------------------------------! |
---|
4084 | SUBROUTINE mas_timestep_forces_call ( ip, jp ) |
---|
4085 | |
---|
4086 | IMPLICIT NONE |
---|
4087 | |
---|
4088 | INTEGER(iwp) :: ip !< counter, x-direction |
---|
4089 | INTEGER(iwp) :: jp !< counter, y-direction |
---|
4090 | INTEGER(iwp) :: n !< loop variable over all agents in a grid box |
---|
4091 | |
---|
4092 | ! |
---|
4093 | !-- Get direction for all agents in current grid cell |
---|
4094 | CALL mas_agent_direction |
---|
4095 | |
---|
4096 | DO n = 1, number_of_agents |
---|
4097 | |
---|
4098 | force_x = 0.0_wp |
---|
4099 | force_y = 0.0_wp |
---|
4100 | |
---|
4101 | CALL mas_timestep_social_forces ( 'acceleration', n, ip, jp ) |
---|
4102 | |
---|
4103 | CALL mas_timestep_social_forces ( 'other_agents', n, ip, jp ) |
---|
4104 | |
---|
4105 | CALL mas_timestep_social_forces ( 'walls', n, ip, jp ) |
---|
4106 | ! |
---|
4107 | !-- Update forces |
---|
4108 | agents(n)%force_x = force_x |
---|
4109 | agents(n)%force_y = force_y |
---|
4110 | ENDDO |
---|
4111 | |
---|
4112 | END SUBROUTINE mas_timestep_forces_call |
---|
4113 | |
---|
4114 | !------------------------------------------------------------------------------! |
---|
4115 | ! Description: |
---|
4116 | ! ------------ |
---|
4117 | !> Euler timestep of agent transport |
---|
4118 | !------------------------------------------------------------------------------! |
---|
4119 | SUBROUTINE mas_timestep |
---|
4120 | |
---|
4121 | IMPLICIT NONE |
---|
4122 | |
---|
4123 | INTEGER(iwp) :: n !< loop variable over all agents in a grid box |
---|
4124 | |
---|
4125 | REAL(wp) :: abs_v !< absolute value of velocity |
---|
4126 | REAL(wp) :: abs_f !< absolute value of force |
---|
4127 | |
---|
4128 | DO n = 1, number_of_agents |
---|
4129 | ! |
---|
4130 | !-- Limit absolute force to a maximum to prevent unrealistic acceleration |
---|
4131 | abs_f = SQRT((agents(n)%force_x)**2 + (agents(n)%force_y)**2) |
---|
4132 | IF ( abs_f > 20. ) THEN |
---|
4133 | agents(n)%force_x = agents(n)%force_x * 20. / abs_f |
---|
4134 | agents(n)%force_y = agents(n)%force_y * 20. / abs_f |
---|
4135 | ENDIF |
---|
4136 | ! |
---|
4137 | !-- Update agent speed |
---|
4138 | agents(n)%speed_x = agents(n)%speed_x + agents(n)%force_x * dt_agent |
---|
4139 | agents(n)%speed_y = agents(n)%speed_y + agents(n)%force_y * dt_agent |
---|
4140 | ! |
---|
4141 | !-- Reduction of agent speed to maximum agent speed |
---|
4142 | abs_v = SQRT((agents(n)%speed_x)**2 + (agents(n)%speed_y)**2) |
---|
4143 | IF ( abs_v > v_max_agent ) THEN |
---|
4144 | agents(n)%speed_x = agents(n)%speed_x * v_max_agent / abs_v |
---|
4145 | agents(n)%speed_y = agents(n)%speed_y * v_max_agent / abs_v |
---|
4146 | ENDIF |
---|
4147 | ! |
---|
4148 | !-- Update agent position |
---|
4149 | agents(n)%x = agents(n)%x + agents(n)%speed_x * dt_agent |
---|
4150 | agents(n)%y = agents(n)%y + agents(n)%speed_y * dt_agent |
---|
4151 | ! |
---|
4152 | !-- Update absolute value of agent speed |
---|
4153 | agents(n)%speed_abs = abs_v |
---|
4154 | ! |
---|
4155 | !-- Increment the agent age and the total time that the agent |
---|
4156 | !-- has advanced within the agent timestep procedure |
---|
4157 | agents(n)%age_m = agents(n)%age |
---|
4158 | agents(n)%age = agents(n)%age + dt_agent |
---|
4159 | agents(n)%dt_sum = agents(n)%dt_sum + dt_agent |
---|
4160 | ! |
---|
4161 | !-- Check whether there is still an agent that has not yet completed |
---|
4162 | !-- the total LES timestep |
---|
4163 | IF ( ( dt_3d - agents(n)%dt_sum ) > 1E-8_wp ) THEN |
---|
4164 | dt_3d_reached_l_mas = .FALSE. |
---|
4165 | ENDIF |
---|
4166 | |
---|
4167 | ENDDO |
---|
4168 | |
---|
4169 | END SUBROUTINE mas_timestep |
---|
4170 | |
---|
4171 | !------------------------------------------------------------------------------! |
---|
4172 | ! Description: |
---|
4173 | ! ------------ |
---|
4174 | !> Calculates the Social Forces (Helbing and Molnar, 1995) that the agent |
---|
4175 | !> experiences due to acceleration towards target and repulsion by obstacles |
---|
4176 | !------------------------------------------------------------------------------! |
---|
4177 | SUBROUTINE mas_timestep_social_forces ( mode, nl, ip, jp ) |
---|
4178 | |
---|
4179 | IMPLICIT NONE |
---|
4180 | |
---|
4181 | CHARACTER (LEN=*) :: mode !< identifier for the mode of calculation |
---|
4182 | |
---|
4183 | INTEGER(iwp) :: ij_dum !< index of nearest wall |
---|
4184 | INTEGER(iwp) :: il !< index variable along x |
---|
4185 | INTEGER(iwp) :: ip !< index variable along x |
---|
4186 | INTEGER(iwp) :: jl !< index variable along y |
---|
4187 | INTEGER(iwp) :: jp !< index variable along y |
---|
4188 | INTEGER(iwp) :: nl !< loop variable over all agents in a grid box |
---|
4189 | INTEGER(iwp) :: no !< loop variable over all agents in a grid box |
---|
4190 | INTEGER(iwp) :: noa !< amount of agents in a grid box |
---|
4191 | INTEGER(iwp) :: sc_x_end !< index for scan for topography/other agents |
---|
4192 | INTEGER(iwp) :: sc_x_start !< index for scan for topography/other agents |
---|
4193 | INTEGER(iwp) :: sc_y_end !< index for scan for topography/other agents |
---|
4194 | INTEGER(iwp) :: sc_y_start !< index for scan for topography/other agents |
---|
4195 | |
---|
4196 | LOGICAL :: corner_found !< flag that indicates a corner has been found near agent |
---|
4197 | |
---|
4198 | REAL(wp) :: a_pl !< factor for collision avoidance |
---|
4199 | REAL(wp) :: ax_semimaj !< semiminor axis of repulsive ellipse |
---|
4200 | REAL(wp) :: b_pl !< factor for collision avoidance |
---|
4201 | REAL(wp) :: c_pl !< factor for collision avoidance |
---|
4202 | REAL(wp) :: coll_t !< time at which the next collision would happen |
---|
4203 | REAL(wp) :: d_coll_t_0 !< inverse of collision cutoff time |
---|
4204 | REAL(wp) :: d_pl !< factor for collision avoidance |
---|
4205 | REAL(wp) :: ddum_f !< dummy devisor collision avoidance |
---|
4206 | REAL(wp) :: dist !< distance to obstacle |
---|
4207 | REAL(wp) :: dist_sq !< distance to obstacle squared |
---|
4208 | REAL(wp) :: pos_rel_x !< relative position of two agents (x) |
---|
4209 | REAL(wp) :: pos_rel_y !< relative position of two agents (y) |
---|
4210 | REAL(wp) :: r_sq !< y-position |
---|
4211 | REAL(wp) :: sra !< scan radius (agents) |
---|
4212 | REAL(wp) :: srw !< local variable for scan radius (walls) |
---|
4213 | REAL(wp) :: v_rel_x !< relative velocity (x); collision avoidance |
---|
4214 | REAL(wp) :: v_rel_y !< relative velocity (y); collision avoidance |
---|
4215 | REAL(wp) :: x_a !< x-position |
---|
4216 | REAL(wp) :: x_wall !< x-position of wall |
---|
4217 | REAL(wp) :: y_a !< y-position |
---|
4218 | REAL(wp) :: y_wall !< y-position of wall |
---|
4219 | |
---|
4220 | REAL(wp), PARAMETER :: k_pl = 1.5 !< factor for collision avoidance |
---|
4221 | |
---|
4222 | TYPE(agent_type), DIMENSION(:), POINTER :: l_agts !< agents that repulse current agent |
---|
4223 | |
---|
4224 | ! |
---|
4225 | !-- Initialization |
---|
4226 | x_a = agents(nl)%x |
---|
4227 | y_a = agents(nl)%y |
---|
4228 | |
---|
4229 | SELECT CASE ( TRIM( mode ) ) |
---|
4230 | ! |
---|
4231 | !-- Calculation of force due to agent trying to approach desired velocity |
---|
4232 | CASE ( 'acceleration' ) |
---|
4233 | |
---|
4234 | force_x = force_x + d_tau_accel_agent & |
---|
4235 | * ( agents(nl)%speed_des*agents(nl)%speed_e_x & |
---|
4236 | -agents(nl)%speed_x ) |
---|
4237 | |
---|
4238 | force_y = force_y + d_tau_accel_agent & |
---|
4239 | * ( agents(nl)%speed_des*agents(nl)%speed_e_y & |
---|
4240 | -agents(nl)%speed_y ) |
---|
4241 | |
---|
4242 | ! |
---|
4243 | !-- Calculation of repulsive forces by other agents in a radius around the |
---|
4244 | !-- current one |
---|
4245 | CASE ( 'other_agents' ) |
---|
4246 | |
---|
4247 | sra = scan_radius_agent |
---|
4248 | d_coll_t_0 = 1./coll_t_0 |
---|
4249 | ! |
---|
4250 | !-- Find relevant gridboxes (those that could contain agents within |
---|
4251 | !-- scan radius) |
---|
4252 | sc_x_start = FLOOR( (x_a - sra) * ddx ) |
---|
4253 | sc_x_end = FLOOR( (x_a + sra) * ddx ) |
---|
4254 | sc_y_start = FLOOR( (y_a - sra) * ddx ) |
---|
4255 | sc_y_end = FLOOR( (y_a + sra) * ddx ) |
---|
4256 | IF ( sc_x_start < nxlg ) sc_x_start = nxlg |
---|
4257 | IF ( sc_x_end > nxrg ) sc_x_end = nxrg |
---|
4258 | IF ( sc_y_start < nysg ) sc_y_start = nysg |
---|
4259 | IF ( sc_y_end > nyng ) sc_y_end = nyng |
---|
4260 | |
---|
4261 | sra = sra**2 |
---|
4262 | ! |
---|
4263 | !-- Loop over all previously found relevant gridboxes |
---|
4264 | DO il = sc_x_start, sc_x_end |
---|
4265 | DO jl = sc_y_start, sc_y_end |
---|
4266 | noa = agt_count(jl,il) |
---|
4267 | IF ( noa <= 0 ) CYCLE |
---|
4268 | l_agts => grid_agents(jl,il)%agents(1:noa) |
---|
4269 | DO no = 1, noa |
---|
4270 | ! |
---|
4271 | !-- Skip self |
---|
4272 | IF ( jl == jp .AND. il == ip .AND. no == nl ) CYCLE |
---|
4273 | pos_rel_x = l_agts(no)%x - x_a |
---|
4274 | pos_rel_y = l_agts(no)%y - y_a |
---|
4275 | dist_sq = pos_rel_x**2 + pos_rel_y**2 |
---|
4276 | IF ( dist_sq > sra ) CYCLE |
---|
4277 | r_sq = (2*radius_agent)**2 |
---|
4278 | v_rel_x = agents(nl)%speed_x - l_agts(no)%speed_x |
---|
4279 | v_rel_y = agents(nl)%speed_y - l_agts(no)%speed_y |
---|
4280 | ! |
---|
4281 | !-- Collision is already occuring, default to standard |
---|
4282 | !-- social forces |
---|
4283 | IF ( dist_sq <= r_sq ) THEN |
---|
4284 | dist = SQRT(dist_sq) + 1.0d-12 |
---|
4285 | ax_semimaj = .5_wp*SQRT( dist ) |
---|
4286 | |
---|
4287 | force_x = force_x - 0.125_wp * repuls_agent & |
---|
4288 | * d_sigma_rep_agent / ax_semimaj & |
---|
4289 | * EXP( -ax_semimaj*d_sigma_rep_agent ) & |
---|
4290 | * (pos_rel_x/dist) |
---|
4291 | |
---|
4292 | force_y = force_y - 0.125_wp * repuls_agent & |
---|
4293 | * d_sigma_rep_agent / ax_semimaj & |
---|
4294 | * EXP( -ax_semimaj*d_sigma_rep_agent ) & |
---|
4295 | * (pos_rel_y/dist) |
---|
4296 | ! |
---|
4297 | !-- Currently no collision, calculate collision avoidance |
---|
4298 | !-- force according to Karamouzas et al (2014, PRL 113,238701) |
---|
4299 | ELSE |
---|
4300 | ! |
---|
4301 | !-- factors |
---|
4302 | a_pl = v_rel_x**2 + v_rel_y**2 |
---|
4303 | b_pl = pos_rel_x*v_rel_x + pos_rel_y*v_rel_y |
---|
4304 | c_pl = dist_sq - r_sq |
---|
4305 | d_pl = b_pl**2 - a_pl*c_pl |
---|
4306 | ! |
---|
4307 | !-- If the two agents are moving non-parallel, calculate |
---|
4308 | !-- collision avoidance social force |
---|
4309 | IF ( d_pl > 0.0_wp .AND. & |
---|
4310 | ( a_pl < -0.00001 .OR. a_pl > 0.00001 ) ) & |
---|
4311 | THEN |
---|
4312 | |
---|
4313 | d_pl = SQRT(d_pl) |
---|
4314 | coll_t = (b_pl - d_pl)/a_pl |
---|
4315 | IF ( coll_t > 0.0_wp ) THEN |
---|
4316 | ! |
---|
4317 | !-- Dummy factor |
---|
4318 | ddum_f = 1. / ( a_pl * coll_t**2 ) & |
---|
4319 | * ( 2. / coll_t + 1.0 * d_coll_t_0 ) |
---|
4320 | ! |
---|
4321 | !-- x-component of social force |
---|
4322 | force_x = force_x - k_pl * & |
---|
4323 | EXP( -coll_t * d_coll_t_0 ) * & |
---|
4324 | ( v_rel_x - & |
---|
4325 | ( b_pl * v_rel_x - & |
---|
4326 | a_pl * pos_rel_x ) / d_pl ) * & |
---|
4327 | ddum_f |
---|
4328 | ! |
---|
4329 | !-- y-component of social force |
---|
4330 | force_y = force_y - k_pl * & |
---|
4331 | EXP( -coll_t * d_coll_t_0 ) * & |
---|
4332 | ( v_rel_y - & |
---|
4333 | ( b_pl * v_rel_y - & |
---|
4334 | a_pl * pos_rel_y ) / d_pl ) * & |
---|
4335 | ddum_f |
---|
4336 | |
---|
4337 | ENDIF |
---|
4338 | ENDIF |
---|
4339 | ENDIF |
---|
4340 | ENDDO |
---|
4341 | ENDDO |
---|
4342 | ENDDO |
---|
4343 | |
---|
4344 | CASE ( 'walls' ) |
---|
4345 | |
---|
4346 | srw = scan_radius_wall |
---|
4347 | corner_found = .FALSE. |
---|
4348 | ! |
---|
4349 | !-- find relevant grid boxes (those that could contain topography |
---|
4350 | !-- within radius) |
---|
4351 | sc_x_start = (x_a - srw) * ddx |
---|
4352 | sc_x_end = (x_a + srw) * ddx |
---|
4353 | sc_y_start = (y_a - srw) * ddx |
---|
4354 | sc_y_end = (y_a + srw) * ddx |
---|
4355 | IF ( sc_x_start < nxlg ) sc_x_start = nxlg |
---|
4356 | IF ( sc_x_end > nxrg ) sc_x_end = nxrg |
---|
4357 | IF ( sc_y_start < nysg ) sc_y_start = nysg |
---|
4358 | IF ( sc_y_end > nyng ) sc_y_end = nyng |
---|
4359 | ! |
---|
4360 | !-- Find "walls" ( i.e. topography steps (up or down) higher than one |
---|
4361 | !-- grid box ) that are perpendicular to the agent within the defined |
---|
4362 | !-- search radius. Such obstacles cannot be passed and a social force |
---|
4363 | !-- to that effect is applied. |
---|
4364 | !-- Walls only apply a force perpendicular to the wall to the agent. |
---|
4365 | !-- There is therefore a search for walls directly right, left, south |
---|
4366 | !-- and north of the agent. All other walls are ignored. |
---|
4367 | !-- |
---|
4368 | !-- Check for wall left of current agent |
---|
4369 | ij_dum = 0 |
---|
4370 | IF ( sc_x_start < ip ) THEN |
---|
4371 | DO il = ip - 1, sc_x_start, -1 |
---|
4372 | ! |
---|
4373 | !-- Going left from the agent, check for a right wall |
---|
4374 | IF ( BTEST( obstacle_flags(jp,il), 2 ) ) THEN |
---|
4375 | ! |
---|
4376 | !-- obstacle found in grid box il, wall at right side |
---|
4377 | x_wall = (il+1)*dx |
---|
4378 | ! |
---|
4379 | !-- Calculate force of found wall on agent |
---|
4380 | CALL mas_timestep_wall_corner_force( x_a, x_wall, y_a, & |
---|
4381 | y_a ) |
---|
4382 | ! |
---|
4383 | !-- calculate new x starting index for later scan for corners |
---|
4384 | ij_dum = il + 1 |
---|
4385 | EXIT |
---|
4386 | ENDIF |
---|
4387 | ENDDO |
---|
4388 | ENDIF |
---|
4389 | IF ( ij_dum /= 0 ) sc_x_start = ij_dum |
---|
4390 | |
---|
4391 | ! |
---|
4392 | !-- Check for wall right of current agent |
---|
4393 | ij_dum = 0 |
---|
4394 | IF ( sc_x_end > ip ) THEN |
---|
4395 | DO il = ip + 1, sc_x_end |
---|
4396 | ! |
---|
4397 | !-- Going right from the agent, check for a left wall |
---|
4398 | IF ( BTEST( obstacle_flags(jp,il), 6 ) ) THEN |
---|
4399 | ! |
---|
4400 | !-- obstacle found in grid box il, wall at left side |
---|
4401 | x_wall = il*dx |
---|
4402 | ! |
---|
4403 | !-- Calculate force of found wall on agent |
---|
4404 | CALL mas_timestep_wall_corner_force( x_a, x_wall, y_a, & |
---|
4405 | y_a ) |
---|
4406 | ! |
---|
4407 | !-- calculate new x end index for later scan for corners |
---|
4408 | ij_dum = il - 1 |
---|
4409 | EXIT |
---|
4410 | ENDIF |
---|
4411 | ENDDO |
---|
4412 | ENDIF |
---|
4413 | IF ( ij_dum /= 0 ) sc_x_end = ij_dum |
---|
4414 | |
---|
4415 | ! |
---|
4416 | !-- Check for wall south of current agent |
---|
4417 | ij_dum = 0 |
---|
4418 | IF ( sc_y_start < jp ) THEN |
---|
4419 | DO jl = jp - 1, sc_y_start, -1 |
---|
4420 | ! |
---|
4421 | !-- Going south from the agent, check for a north wall |
---|
4422 | IF ( BTEST( obstacle_flags(jl,ip), 0 ) ) THEN |
---|
4423 | ! |
---|
4424 | !-- obstacle found in grid box jl, wall at left side |
---|
4425 | y_wall = (jl+1)*dy |
---|
4426 | |
---|
4427 | CALL mas_timestep_wall_corner_force( x_a, x_a, y_a, & |
---|
4428 | y_wall ) |
---|
4429 | ! |
---|
4430 | !-- calculate new y starting index for later scan for corners |
---|
4431 | ij_dum = jl + 1 |
---|
4432 | EXIT |
---|
4433 | ENDIF |
---|
4434 | ENDDO |
---|
4435 | ENDIF |
---|
4436 | IF ( ij_dum /= 0 ) sc_y_start = ij_dum |
---|
4437 | |
---|
4438 | ! |
---|
4439 | !-- Check for wall north of current agent |
---|
4440 | ij_dum = 0 |
---|
4441 | IF ( sc_y_end > jp ) THEN |
---|
4442 | DO jl = jp + 1, sc_y_end |
---|
4443 | ! |
---|
4444 | !-- Going north from the agent, check for a south wall |
---|
4445 | IF ( BTEST( obstacle_flags(jl,ip), 4 ) ) THEN |
---|
4446 | ! |
---|
4447 | !-- obstacle found in grid box jl, wall at left side |
---|
4448 | y_wall = jl*dy |
---|
4449 | |
---|
4450 | CALL mas_timestep_wall_corner_force( x_a, x_a, y_a, & |
---|
4451 | y_wall ) |
---|
4452 | ! |
---|
4453 | !-- calculate new y end index for later scan for corners |
---|
4454 | ij_dum = jl - 1 |
---|
4455 | ENDIF |
---|
4456 | ENDDO |
---|
4457 | ENDIF |
---|
4458 | IF ( ij_dum /= 0 ) sc_y_end = ij_dum |
---|
4459 | |
---|
4460 | ! |
---|
4461 | !-- Scan for corners surrounding current agent. |
---|
4462 | !-- Only gridcells that are closer than the closest wall in each |
---|
4463 | !-- direction (n,s,r,l) are considered in the search since those |
---|
4464 | !-- further away would have a significantly smaller resulting force |
---|
4465 | !-- than the closer wall. |
---|
4466 | DO il = sc_x_start, sc_x_end |
---|
4467 | DO jl = sc_y_start, sc_y_end |
---|
4468 | IF ( il == ip .OR. jl == jp ) CYCLE |
---|
4469 | ! |
---|
4470 | !-- corners left of agent |
---|
4471 | IF ( il < ip ) THEN |
---|
4472 | ! |
---|
4473 | !-- south left quadrant: look for north right corner |
---|
4474 | IF ( jl < jp ) THEN |
---|
4475 | IF ( BTEST( obstacle_flags(jl,il), 1 ) ) THEN |
---|
4476 | ! |
---|
4477 | !-- calculate coordinates of the found corner |
---|
4478 | x_wall = (il+1)*dx |
---|
4479 | y_wall = (jl+1)*dy |
---|
4480 | |
---|
4481 | CALL mas_timestep_wall_corner_force( x_a, x_wall, & |
---|
4482 | y_a, y_wall ) |
---|
4483 | |
---|
4484 | ENDIF |
---|
4485 | ! |
---|
4486 | !-- north left quadrant: look for south right corner |
---|
4487 | ELSEIF ( jl > jp ) THEN |
---|
4488 | IF ( BTEST( obstacle_flags(jl,il), 3 ) ) THEN |
---|
4489 | ! |
---|
4490 | !-- calculate coordinates of the corner of said gridcell |
---|
4491 | !-- that is closest to the current agent |
---|
4492 | x_wall = (il+1)*dx |
---|
4493 | y_wall = jl*dy |
---|
4494 | |
---|
4495 | CALL mas_timestep_wall_corner_force( x_a, x_wall, & |
---|
4496 | y_a, y_wall ) |
---|
4497 | |
---|
4498 | ENDIF |
---|
4499 | ENDIF |
---|
4500 | ELSEIF ( il > ip ) THEN |
---|
4501 | ! |
---|
4502 | !-- south right quadrant: look for north left corner |
---|
4503 | IF ( jl < jp ) THEN |
---|
4504 | IF ( BTEST( obstacle_flags(jl,il), 7 ) ) THEN |
---|
4505 | ! |
---|
4506 | !-- calculate coordinates of the corner of said gridcell |
---|
4507 | !-- that is closest to the current agent |
---|
4508 | x_wall = il*dx |
---|
4509 | y_wall = (jl+1)*dy |
---|
4510 | |
---|
4511 | CALL mas_timestep_wall_corner_force( x_a, x_wall, & |
---|
4512 | y_a, y_wall ) |
---|
4513 | |
---|
4514 | ENDIF |
---|
4515 | ! |
---|
4516 | !-- north right quadrant: look for south left corner |
---|
4517 | ELSEIF ( jl > jp ) THEN |
---|
4518 | IF ( BTEST( obstacle_flags(jl,il), 5 ) ) THEN |
---|
4519 | ! |
---|
4520 | !-- calculate coordinates of the corner of said gridcell |
---|
4521 | !-- that is closest to the current agent |
---|
4522 | x_wall = il*dx |
---|
4523 | y_wall = jl*dy |
---|
4524 | |
---|
4525 | CALL mas_timestep_wall_corner_force( x_a, x_wall, & |
---|
4526 | y_a, y_wall ) |
---|
4527 | |
---|
4528 | ENDIF |
---|
4529 | ENDIF |
---|
4530 | ENDIF |
---|
4531 | ENDDO |
---|
4532 | ENDDO |
---|
4533 | |
---|
4534 | CASE DEFAULT |
---|
4535 | |
---|
4536 | END SELECT |
---|
4537 | |
---|
4538 | END SUBROUTINE mas_timestep_social_forces |
---|
4539 | |
---|
4540 | !------------------------------------------------------------------------------! |
---|
4541 | ! Description: |
---|
4542 | ! ------------ |
---|
4543 | !> Given a distance to the current agent, calculates the force a found corner |
---|
4544 | !> or wall exerts on that agent |
---|
4545 | !------------------------------------------------------------------------------! |
---|
4546 | SUBROUTINE mas_timestep_wall_corner_force( xa, xw, ya, yw ) |
---|
4547 | |
---|
4548 | IMPLICIT NONE |
---|
4549 | |
---|
4550 | REAL(wp) :: dist_l !< distance to obstacle |
---|
4551 | REAL(wp) :: force_d_x !< increment of social force, x-direction |
---|
4552 | REAL(wp) :: force_d_y !< increment of social force, x-direction |
---|
4553 | REAL(wp) :: xa !< x-position of agent |
---|
4554 | REAL(wp) :: xw !< x-position of wall |
---|
4555 | REAL(wp) :: ya !< x-position of agent |
---|
4556 | REAL(wp) :: yw !< y-position of wall |
---|
4557 | |
---|
4558 | force_d_x = 0.0_wp |
---|
4559 | force_d_y = 0.0_wp |
---|
4560 | ! |
---|
4561 | !-- calculate coordinates of corner relative to agent |
---|
4562 | !-- postion and distance between corner and agent |
---|
4563 | xw = xa - xw |
---|
4564 | yw = ya - yw |
---|
4565 | dist_l = SQRT( (xw)**2 + (yw)**2 ) |
---|
4566 | ! |
---|
4567 | !-- calculate x and y component of repulsive force |
---|
4568 | !-- induced by previously found corner |
---|
4569 | IF ( dist_l > 0 ) THEN |
---|
4570 | force_d_x = repuls_wall * d_sigma_rep_wall & |
---|
4571 | * EXP( -dist_l * d_sigma_rep_wall ) & |
---|
4572 | * xw / (dist_l) |
---|
4573 | force_d_y = repuls_wall * d_sigma_rep_wall & |
---|
4574 | * EXP( -dist_l * d_sigma_rep_wall ) & |
---|
4575 | * yw / (dist_l) |
---|
4576 | ENDIF |
---|
4577 | |
---|
4578 | ! !-- forces that are located outside of a sight radius of |
---|
4579 | ! !-- 200 degrees (-> COS(100./180.*pi) = COS(.555*pi)) of |
---|
4580 | ! !-- current agent are considered to have an effect of 50% |
---|
4581 | ! IF ( force_d_x * agents(nl)%speed_e_x + & |
---|
4582 | ! force_d_y * agents(nl)%speed_e_y < & |
---|
4583 | ! SQRT(force_d_x**2 + force_d_y**2) * & |
---|
4584 | ! COS( .55555555 * 3.1415 ) ) & |
---|
4585 | ! THEN |
---|
4586 | ! force_d_x = force_d_x * .5_wp |
---|
4587 | ! force_d_y = force_d_y * .5_wp |
---|
4588 | ! ENDIF |
---|
4589 | |
---|
4590 | ! |
---|
4591 | !-- add force increment to total force of current agent |
---|
4592 | force_x = force_x + force_d_x |
---|
4593 | force_y = force_y + force_d_y |
---|
4594 | |
---|
4595 | END SUBROUTINE mas_timestep_wall_corner_force |
---|
4596 | |
---|
4597 | ! |
---|
4598 | !-- Calculates distance of point P to edge (A,B). If A = B, calculates |
---|
4599 | !-- point-to-point distance from A/B to P |
---|
4600 | FUNCTION dist_point_to_edge ( a_x, a_y, b_x, b_y, p_x, p_y ) |
---|
4601 | |
---|
4602 | IMPLICIT NONE |
---|
4603 | |
---|
4604 | REAL(wp) :: ab_x !< x-coordinate of vector from A to B |
---|
4605 | REAL(wp) :: ab_y !< y-coordinate of vector from A to B |
---|
4606 | REAL(wp) :: ab_d !< inverse length of vector from A to B |
---|
4607 | REAL(wp) :: ab_u_x !< x-coordinate of vector with direction of ab and length 1 |
---|
4608 | REAL(wp) :: ab_u_y !< y-coordinate of vector with direction of ab and length 1 |
---|
4609 | REAL(wp) :: ba_x !< x-coordinate of vector from B to A |
---|
4610 | REAL(wp) :: ba_y !< y-coordinate of vector from B to A |
---|
4611 | REAL(wp) :: ap_x !< x-coordinate of vector from A to P |
---|
4612 | REAL(wp) :: ap_y !< y-coordinate of vector from A to P |
---|
4613 | REAL(wp) :: bp_x !< x-coordinate of vector from B to P |
---|
4614 | REAL(wp) :: bp_y !< y-coordinate of vector from B to P |
---|
4615 | REAL(wp) :: a_x !< x-coordinate of point A of edge |
---|
4616 | REAL(wp) :: a_y !< y-coordinate of point A of edge |
---|
4617 | REAL(wp) :: b_x !< x-coordinate of point B of edge |
---|
4618 | REAL(wp) :: b_y !< y-coordinate of point B of edge |
---|
4619 | REAL(wp) :: p_x !< x-coordinate of point P |
---|
4620 | REAL(wp) :: p_y !< y-coordinate of point P |
---|
4621 | REAL(wp) :: dist_x !< x-coordinate of point P |
---|
4622 | REAL(wp) :: dist_y !< y-coordinate of point P |
---|
4623 | REAL(wp) :: dist_point_to_edge !< y-coordinate of point P |
---|
4624 | |
---|
4625 | ab_x = - a_x + b_x |
---|
4626 | ab_y = - a_y + b_y |
---|
4627 | ba_x = - b_x + a_x |
---|
4628 | ba_y = - b_y + a_y |
---|
4629 | ap_x = - a_x + p_x |
---|
4630 | ap_y = - a_y + p_y |
---|
4631 | bp_x = - b_x + p_x |
---|
4632 | bp_y = - b_y + p_y |
---|
4633 | |
---|
4634 | IF ( ab_x * ap_x + ab_y * ap_y <= 0. ) THEN |
---|
4635 | dist_point_to_edge = SQRT((a_x - p_x)**2 + (a_y - p_y)**2) |
---|
4636 | ELSEIF ( ba_x * bp_x + ba_y * bp_y <= 0. ) THEN |
---|
4637 | dist_point_to_edge = SQRT((b_x - p_x)**2 + (b_y - p_y)**2) |
---|
4638 | ELSE |
---|
4639 | ab_d = 1./SQRT((ab_x)**2+(ab_y)**2) |
---|
4640 | ab_u_x = ab_x*ab_d |
---|
4641 | ab_u_y = ab_y*ab_d |
---|
4642 | dist_x = ap_x - (ap_x*ab_u_x+ap_y*ab_u_y)*ab_u_x |
---|
4643 | dist_y = ap_y - (ap_x*ab_u_x+ap_y*ab_u_y)*ab_u_y |
---|
4644 | dist_point_to_edge = SQRT( dist_x**2 + dist_y**2 ) |
---|
4645 | ENDIF |
---|
4646 | |
---|
4647 | END FUNCTION dist_point_to_edge |
---|
4648 | |
---|
4649 | ! |
---|
4650 | !-- Returns the heuristic between points A and B (currently the straight |
---|
4651 | !-- distance) |
---|
4652 | FUNCTION heuristic ( ax, ay, bx, by ) |
---|
4653 | |
---|
4654 | IMPLICIT NONE |
---|
4655 | |
---|
4656 | REAL(wp) :: ax !< x-coordinate of point A |
---|
4657 | REAL(wp) :: ay !< y-coordinate of point A |
---|
4658 | REAL(wp) :: bx !< x-coordinate of point B |
---|
4659 | REAL(wp) :: by !< y-coordinate of point B |
---|
4660 | REAL(wp) :: heuristic !< return value |
---|
4661 | |
---|
4662 | heuristic = SQRT(( ax - bx )**2 + ( ay - by )**2) |
---|
4663 | |
---|
4664 | END FUNCTION heuristic |
---|
4665 | |
---|
4666 | ! |
---|
4667 | !-- Calculates if point P is left of the infinite |
---|
4668 | !-- line that contains A and B (direction: A to B) |
---|
4669 | !-- Concept: 2D rotation of two vectors |
---|
4670 | FUNCTION is_left ( ax, ay, bx, by, px, py ) |
---|
4671 | |
---|
4672 | IMPLICIT NONE |
---|
4673 | |
---|
4674 | LOGICAL :: is_left !< return value; TRUE if P is left of AB |
---|
4675 | |
---|
4676 | REAL(wp) :: ax !< x-coordinate of point A |
---|
4677 | REAL(wp) :: ay !< y-coordinate of point A |
---|
4678 | REAL(wp) :: bx !< x-coordinate of point B |
---|
4679 | REAL(wp) :: by !< y-coordinate of point B |
---|
4680 | REAL(wp) :: px !< x-coordinate of point P |
---|
4681 | REAL(wp) :: py !< y-coordinate of point P |
---|
4682 | |
---|
4683 | is_left = (bx-ax)*(py-ay)-(px-ax)*(by-ay) > 0 |
---|
4684 | IF ( (ABS(ax-px) < .001 .AND. ABS(ay-py) < .001) .OR. & |
---|
4685 | (ABS(bx-px) < .001 .AND. ABS(by-py) < .001) ) & |
---|
4686 | THEN |
---|
4687 | is_left = .FALSE. |
---|
4688 | ENDIF |
---|
4689 | |
---|
4690 | RETURN |
---|
4691 | |
---|
4692 | END FUNCTION is_left |
---|
4693 | |
---|
4694 | ! |
---|
4695 | !-- Calculates if point P is right of the infinite |
---|
4696 | !-- line that contains A and B (direction: A to B) |
---|
4697 | !-- Concept: 2D rotation of two vectors |
---|
4698 | FUNCTION is_right ( ax, ay, bx, by, px, py ) |
---|
4699 | |
---|
4700 | IMPLICIT NONE |
---|
4701 | |
---|
4702 | LOGICAL :: is_right !< return value; TRUE if P is right of AB |
---|
4703 | |
---|
4704 | REAL(wp), INTENT(IN) :: ax !< x-coordinate of point A |
---|
4705 | REAL(wp), INTENT(IN) :: ay !< y-coordinate of point A |
---|
4706 | REAL(wp), INTENT(IN) :: bx !< x-coordinate of point B |
---|
4707 | REAL(wp), INTENT(IN) :: by !< y-coordinate of point B |
---|
4708 | REAL(wp), INTENT(IN) :: px !< x-coordinate of point P |
---|
4709 | REAL(wp), INTENT(IN) :: py !< y-coordinate of point P |
---|
4710 | |
---|
4711 | is_right = (bx-ax)*(py-ay)-(px-ax)*(by-ay) < 0 |
---|
4712 | IF ( (ABS(ax-px) < .001 .AND. ABS(ay-py) < .001) .OR. & |
---|
4713 | (ABS(bx-px) < .001 .AND. ABS(by-py) < .001) ) & |
---|
4714 | THEN |
---|
4715 | is_right = .FALSE. |
---|
4716 | ENDIF |
---|
4717 | |
---|
4718 | RETURN |
---|
4719 | |
---|
4720 | END FUNCTION is_right |
---|
4721 | |
---|
4722 | ! |
---|
4723 | !-- Returns true if the line segments AB and PQ share an intersection |
---|
4724 | FUNCTION intersect ( ax, ay, bx, by, px, py, qx, qy ) |
---|
4725 | |
---|
4726 | IMPLICIT NONE |
---|
4727 | |
---|
4728 | LOGICAL :: intersect !< return value; TRUE if intersection was found |
---|
4729 | LOGICAL :: la !< T if a is left of PQ |
---|
4730 | LOGICAL :: lb !< T if b is left of PQ |
---|
4731 | LOGICAL :: lp !< T if p is left of AB |
---|
4732 | LOGICAL :: lq !< T if q is left of AB |
---|
4733 | LOGICAL :: poss !< flag that indicates if an intersection is still possible |
---|
4734 | LOGICAL :: ra !< T if a is right of PQ |
---|
4735 | LOGICAL :: rb !< T if b is right of PQ |
---|
4736 | LOGICAL :: rp !< T if p is right of AB |
---|
4737 | LOGICAL :: rq !< T if q is right of AB |
---|
4738 | |
---|
4739 | REAL(wp) :: ax !< x-coordinate of point A |
---|
4740 | REAL(wp) :: ay !< y-coordinate of point A |
---|
4741 | REAL(wp) :: bx !< x-coordinate of point B |
---|
4742 | REAL(wp) :: by !< y-coordinate of point B |
---|
4743 | REAL(wp) :: px !< x-coordinate of point P |
---|
4744 | REAL(wp) :: py !< y-coordinate of point P |
---|
4745 | REAL(wp) :: qx !< x-coordinate of point Q |
---|
4746 | REAL(wp) :: qy !< y-coordinate of point Q |
---|
4747 | |
---|
4748 | intersect = .FALSE. |
---|
4749 | poss = .FALSE. |
---|
4750 | ! |
---|
4751 | !-- Intersection is possible only if P and Q are on opposing sides of AB |
---|
4752 | lp = is_left(ax,ay,bx,by,px,py) |
---|
4753 | rq = is_right(ax,ay,bx,by,qx,qy) |
---|
4754 | IF ( lp .AND. rq ) poss = .TRUE. |
---|
4755 | IF ( .NOT. poss ) THEN |
---|
4756 | lq = is_left(ax,ay,bx,by,qx,qy) |
---|
4757 | rp = is_right(ax,ay,bx,by,px,py) |
---|
4758 | IF ( lq .AND. rp ) poss = .TRUE. |
---|
4759 | ENDIF |
---|
4760 | ! |
---|
4761 | !-- Intersection occurs only if above test (poss) was true AND |
---|
4762 | !-- A and B are on opposing sides of PQ |
---|
4763 | IF ( poss ) THEN |
---|
4764 | la = is_left(px,py,qx,qy,ax,ay) |
---|
4765 | rb = is_right(px,py,qx,qy,bx,by) |
---|
4766 | IF ( la .AND. rb ) intersect = .TRUE. |
---|
4767 | IF ( .NOT. intersect ) THEN |
---|
4768 | lb = is_left(px,py,qx,qy,bx,by) |
---|
4769 | ra = is_right(px,py,qx,qy,ax,ay) |
---|
4770 | IF ( lb .AND. ra ) intersect = .TRUE. |
---|
4771 | ENDIF |
---|
4772 | ENDIF |
---|
4773 | |
---|
4774 | RETURN |
---|
4775 | |
---|
4776 | END FUNCTION intersect |
---|
4777 | |
---|
4778 | ! |
---|
4779 | !-- Gives a nuber randomly distributed around an average |
---|
4780 | FUNCTION random_normal ( avg, variation ) |
---|
4781 | |
---|
4782 | IMPLICIT NONE |
---|
4783 | |
---|
4784 | REAL(wp) :: avg !< x-coordinate of vector from A to B |
---|
4785 | REAL(wp) :: variation !< y-coordinate of vector from A to B |
---|
4786 | REAL(wp) :: random_normal !< y-coordinate of vector from A to B |
---|
4787 | |
---|
4788 | REAL(wp), DIMENSION(12) :: random_arr !< inverse length of vector from A to B |
---|
4789 | |
---|
4790 | CALL RANDOM_NUMBER(random_arr) |
---|
4791 | random_normal = avg + variation*(SUM(random_arr)-6.) |
---|
4792 | |
---|
4793 | END FUNCTION random_normal |
---|
4794 | |
---|
4795 | |
---|
4796 | END MODULE multi_agent_system_mod |
---|