1 | !> @file model_1d_mod.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2019 Leibniz Universitaet Hannover |
---|
18 | !------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ----------------- |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: model_1d_mod.f90 4180 2019-08-21 14:37:54Z scharf $ |
---|
27 | ! Modularization of all bulk cloud physics code components |
---|
28 | ! |
---|
29 | ! |
---|
30 | ! Description: |
---|
31 | ! ------------ |
---|
32 | !> 1D-model to initialize the 3D-arrays. |
---|
33 | !> The temperature profile is set as steady and a corresponding steady solution |
---|
34 | !> of the wind profile is being computed. |
---|
35 | !> All subroutines required can be found within this file. |
---|
36 | !> |
---|
37 | !> @todo harmonize code with new surface_layer_fluxes module |
---|
38 | !> @bug 1D model crashes when using small grid spacings in the order of 1 m |
---|
39 | !> @fixme option "as_in_3d_model" seems to be an inappropriate option because |
---|
40 | !> the 1D model uses different turbulence closure approaches at least if |
---|
41 | !> the 3D model is set to LES-mode. |
---|
42 | !------------------------------------------------------------------------------! |
---|
43 | MODULE model_1d_mod |
---|
44 | |
---|
45 | USE arrays_3d, & |
---|
46 | ONLY: dd2zu, ddzu, ddzw, dzu, dzw, pt_init, q_init, ug, u_init, & |
---|
47 | vg, v_init, zu |
---|
48 | |
---|
49 | USE basic_constants_and_equations_mod, & |
---|
50 | ONLY: g, kappa, pi |
---|
51 | |
---|
52 | USE control_parameters, & |
---|
53 | ONLY: constant_diffusion, constant_flux_layer, dissipation_1d, f, & |
---|
54 | humidity, ibc_e_b, intermediate_timestep_count, & |
---|
55 | intermediate_timestep_count_max, km_constant, & |
---|
56 | message_string, mixing_length_1d, prandtl_number, & |
---|
57 | roughness_length, run_description_header, simulated_time_chr, & |
---|
58 | timestep_scheme, tsc, z0h_factor |
---|
59 | |
---|
60 | USE indices, & |
---|
61 | ONLY: nzb, nzb_diff, nzt |
---|
62 | |
---|
63 | USE kinds |
---|
64 | |
---|
65 | USE pegrid, & |
---|
66 | ONLY: myid |
---|
67 | |
---|
68 | |
---|
69 | IMPLICIT NONE |
---|
70 | |
---|
71 | INTEGER(iwp) :: current_timestep_number_1d = 0 !< current timestep number (1d-model) |
---|
72 | INTEGER(iwp) :: damp_level_ind_1d !< lower grid index of damping layer (1d-model) |
---|
73 | |
---|
74 | LOGICAL :: run_control_header_1d = .FALSE. !< flag for output of run control header (1d-model) |
---|
75 | LOGICAL :: stop_dt_1d = .FALSE. !< termination flag, used in case of too small timestep (1d-model) |
---|
76 | |
---|
77 | REAL(wp) :: alpha_buoyancy !< model constant according to Koblitz (2013) |
---|
78 | REAL(wp) :: c_0 = 0.416179145_wp !< = 0.03^0.25; model constant according to Koblitz (2013) |
---|
79 | REAL(wp) :: c_1 = 1.52_wp !< model constant according to Koblitz (2013) |
---|
80 | REAL(wp) :: c_2 = 1.83_wp !< model constant according to Koblitz (2013) |
---|
81 | REAL(wp) :: c_3 !< model constant |
---|
82 | REAL(wp) :: c_mu !< model constant |
---|
83 | REAL(wp) :: damp_level_1d = -1.0_wp !< namelist parameter |
---|
84 | REAL(wp) :: dt_1d = 60.0_wp !< dynamic timestep (1d-model) |
---|
85 | REAL(wp) :: dt_max_1d = 300.0_wp !< timestep limit (1d-model) |
---|
86 | REAL(wp) :: dt_pr_1d = 9999999.9_wp !< namelist parameter |
---|
87 | REAL(wp) :: dt_run_control_1d = 60.0_wp !< namelist parameter |
---|
88 | REAL(wp) :: end_time_1d = 864000.0_wp !< namelist parameter |
---|
89 | REAL(wp) :: lambda !< maximum mixing length |
---|
90 | REAL(wp) :: qs1d !< characteristic humidity scale (1d-model) |
---|
91 | REAL(wp) :: simulated_time_1d = 0.0_wp !< updated simulated time (1d-model) |
---|
92 | REAL(wp) :: sig_diss = 2.95_wp !< model constant according to Koblitz (2013) |
---|
93 | REAL(wp) :: sig_e = 2.95_wp !< model constant according to Koblitz (2013) |
---|
94 | REAL(wp) :: time_pr_1d = 0.0_wp !< updated simulated time for profile output (1d-model) |
---|
95 | REAL(wp) :: time_run_control_1d = 0.0_wp !< updated simulated time for run-control output (1d-model) |
---|
96 | REAL(wp) :: ts1d !< characteristic temperature scale (1d-model) |
---|
97 | REAL(wp) :: us1d !< friction velocity (1d-model) |
---|
98 | REAL(wp) :: usws1d !< u-component of the momentum flux (1d-model) |
---|
99 | REAL(wp) :: vsws1d !< v-component of the momentum flux (1d-model) |
---|
100 | REAL(wp) :: z01d !< roughness length for momentum (1d-model) |
---|
101 | REAL(wp) :: z0h1d !< roughness length for scalars (1d-model) |
---|
102 | |
---|
103 | REAL(wp), DIMENSION(:), ALLOCATABLE :: diss1d !< tke dissipation rate (1d-model) |
---|
104 | REAL(wp), DIMENSION(:), ALLOCATABLE :: diss1d_p !< prognostic value of tke dissipation rate (1d-model) |
---|
105 | REAL(wp), DIMENSION(:), ALLOCATABLE :: e1d !< tke (1d-model) |
---|
106 | REAL(wp), DIMENSION(:), ALLOCATABLE :: e1d_p !< prognostic value of tke (1d-model) |
---|
107 | REAL(wp), DIMENSION(:), ALLOCATABLE :: kh1d !< turbulent diffusion coefficient for heat (1d-model) |
---|
108 | REAL(wp), DIMENSION(:), ALLOCATABLE :: km1d !< turbulent diffusion coefficient for momentum (1d-model) |
---|
109 | REAL(wp), DIMENSION(:), ALLOCATABLE :: l1d !< mixing length for turbulent diffusion coefficients (1d-model) |
---|
110 | REAL(wp), DIMENSION(:), ALLOCATABLE :: l1d_init !< initial mixing length (1d-model) |
---|
111 | REAL(wp), DIMENSION(:), ALLOCATABLE :: l1d_diss !< mixing length for dissipation (1d-model) |
---|
112 | REAL(wp), DIMENSION(:), ALLOCATABLE :: rif1d !< Richardson flux number (1d-model) |
---|
113 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_diss !< tendency of diss (1d-model) |
---|
114 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_dissm !< weighted tendency of diss for previous sub-timestep (1d-model) |
---|
115 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_e !< tendency of e (1d-model) |
---|
116 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_em !< weighted tendency of e for previous sub-timestep (1d-model) |
---|
117 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_u !< tendency of u (1d-model) |
---|
118 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_um !< weighted tendency of u for previous sub-timestep (1d-model) |
---|
119 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_v !< tendency of v (1d-model) |
---|
120 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_vm !< weighted tendency of v for previous sub-timestep (1d-model) |
---|
121 | REAL(wp), DIMENSION(:), ALLOCATABLE :: u1d !< u-velocity component (1d-model) |
---|
122 | REAL(wp), DIMENSION(:), ALLOCATABLE :: u1d_p !< prognostic value of u-velocity component (1d-model) |
---|
123 | REAL(wp), DIMENSION(:), ALLOCATABLE :: v1d !< v-velocity component (1d-model) |
---|
124 | REAL(wp), DIMENSION(:), ALLOCATABLE :: v1d_p !< prognostic value of v-velocity component (1d-model) |
---|
125 | |
---|
126 | ! |
---|
127 | !-- Initialize 1D model |
---|
128 | INTERFACE init_1d_model |
---|
129 | MODULE PROCEDURE init_1d_model |
---|
130 | END INTERFACE init_1d_model |
---|
131 | |
---|
132 | ! |
---|
133 | !-- Print profiles |
---|
134 | INTERFACE print_1d_model |
---|
135 | MODULE PROCEDURE print_1d_model |
---|
136 | END INTERFACE print_1d_model |
---|
137 | |
---|
138 | ! |
---|
139 | !-- Print run control information |
---|
140 | INTERFACE run_control_1d |
---|
141 | MODULE PROCEDURE run_control_1d |
---|
142 | END INTERFACE run_control_1d |
---|
143 | |
---|
144 | ! |
---|
145 | !-- Main procedure |
---|
146 | INTERFACE time_integration_1d |
---|
147 | MODULE PROCEDURE time_integration_1d |
---|
148 | END INTERFACE time_integration_1d |
---|
149 | |
---|
150 | ! |
---|
151 | !-- Calculate time step |
---|
152 | INTERFACE timestep_1d |
---|
153 | MODULE PROCEDURE timestep_1d |
---|
154 | END INTERFACE timestep_1d |
---|
155 | |
---|
156 | SAVE |
---|
157 | |
---|
158 | PRIVATE |
---|
159 | ! |
---|
160 | !-- Public interfaces |
---|
161 | PUBLIC init_1d_model |
---|
162 | |
---|
163 | ! |
---|
164 | !-- Public variables |
---|
165 | PUBLIC damp_level_1d, damp_level_ind_1d, diss1d, dt_pr_1d, & |
---|
166 | dt_run_control_1d, e1d, end_time_1d, kh1d, km1d, l1d, rif1d, u1d, & |
---|
167 | us1d, usws1d, v1d, vsws1d |
---|
168 | |
---|
169 | |
---|
170 | CONTAINS |
---|
171 | |
---|
172 | SUBROUTINE init_1d_model |
---|
173 | |
---|
174 | USE grid_variables, & |
---|
175 | ONLY: dx, dy |
---|
176 | |
---|
177 | IMPLICIT NONE |
---|
178 | |
---|
179 | CHARACTER (LEN=9) :: time_to_string !< function to transform time from real to character string |
---|
180 | |
---|
181 | INTEGER(iwp) :: k !< loop index |
---|
182 | |
---|
183 | ! |
---|
184 | !-- Allocate required 1D-arrays |
---|
185 | ALLOCATE( diss1d(nzb:nzt+1), diss1d_p(nzb:nzt+1), & |
---|
186 | e1d(nzb:nzt+1), e1d_p(nzb:nzt+1), kh1d(nzb:nzt+1), & |
---|
187 | km1d(nzb:nzt+1), l1d(nzb:nzt+1), l1d_init(nzb:nzt+1), & |
---|
188 | l1d_diss(nzb:nzt+1), rif1d(nzb:nzt+1), te_diss(nzb:nzt+1), & |
---|
189 | te_dissm(nzb:nzt+1), te_e(nzb:nzt+1), & |
---|
190 | te_em(nzb:nzt+1), te_u(nzb:nzt+1), te_um(nzb:nzt+1), & |
---|
191 | te_v(nzb:nzt+1), te_vm(nzb:nzt+1), u1d(nzb:nzt+1), & |
---|
192 | u1d_p(nzb:nzt+1), v1d(nzb:nzt+1), v1d_p(nzb:nzt+1) ) |
---|
193 | |
---|
194 | ! |
---|
195 | !-- Initialize arrays |
---|
196 | IF ( constant_diffusion ) THEN |
---|
197 | km1d = km_constant |
---|
198 | kh1d = km_constant / prandtl_number |
---|
199 | ELSE |
---|
200 | diss1d = 0.0_wp; diss1d_p = 0.0_wp |
---|
201 | e1d = 0.0_wp; e1d_p = 0.0_wp |
---|
202 | kh1d = 0.0_wp; km1d = 0.0_wp |
---|
203 | rif1d = 0.0_wp |
---|
204 | ! |
---|
205 | !-- Compute the mixing length |
---|
206 | l1d_init(nzb) = 0.0_wp |
---|
207 | |
---|
208 | IF ( TRIM( mixing_length_1d ) == 'blackadar' ) THEN |
---|
209 | ! |
---|
210 | !-- Blackadar mixing length |
---|
211 | IF ( f /= 0.0_wp ) THEN |
---|
212 | lambda = 2.7E-4_wp * SQRT( ug(nzt+1)**2 + vg(nzt+1)**2 ) / & |
---|
213 | ABS( f ) + 1E-10_wp |
---|
214 | ELSE |
---|
215 | lambda = 30.0_wp |
---|
216 | ENDIF |
---|
217 | |
---|
218 | DO k = nzb+1, nzt+1 |
---|
219 | l1d_init(k) = kappa * zu(k) / ( 1.0_wp + kappa * zu(k) / lambda ) |
---|
220 | ENDDO |
---|
221 | |
---|
222 | ELSEIF ( TRIM( mixing_length_1d ) == 'as_in_3d_model' ) THEN |
---|
223 | ! |
---|
224 | !-- Use the same mixing length as in 3D model (LES-mode) |
---|
225 | !> @todo rename (delete?) this option |
---|
226 | !> As the mixing length is different between RANS and LES mode, it |
---|
227 | !> must be distinguished here between these modes. For RANS mode, |
---|
228 | !> the mixing length is calculated accoding to Blackadar, which is |
---|
229 | !> the other option at this point. |
---|
230 | !> Maybe delete this option entirely (not appropriate in LES case) |
---|
231 | !> 2018-03-20, gronemeier |
---|
232 | DO k = nzb+1, nzt |
---|
233 | l1d_init(k) = ( dx * dy * dzw(k) )**0.33333333333333_wp |
---|
234 | ENDDO |
---|
235 | l1d_init(nzt+1) = l1d_init(nzt) |
---|
236 | |
---|
237 | ENDIF |
---|
238 | ENDIF |
---|
239 | l1d = l1d_init |
---|
240 | l1d_diss = l1d_init |
---|
241 | u1d = u_init |
---|
242 | u1d_p = u_init |
---|
243 | v1d = v_init |
---|
244 | v1d_p = v_init |
---|
245 | |
---|
246 | ! |
---|
247 | !-- Set initial horizontal velocities at the lowest grid levels to a very small |
---|
248 | !-- value in order to avoid too small time steps caused by the diffusion limit |
---|
249 | !-- in the initial phase of a run (at k=1, dz/2 occurs in the limiting formula!) |
---|
250 | u1d(0:1) = 0.1_wp |
---|
251 | u1d_p(0:1) = 0.1_wp |
---|
252 | v1d(0:1) = 0.1_wp |
---|
253 | v1d_p(0:1) = 0.1_wp |
---|
254 | |
---|
255 | ! |
---|
256 | !-- For u*, theta* and the momentum fluxes plausible values are set |
---|
257 | IF ( constant_flux_layer ) THEN |
---|
258 | us1d = 0.1_wp ! without initial friction the flow would not change |
---|
259 | ELSE |
---|
260 | diss1d(nzb+1) = 0.001_wp |
---|
261 | e1d(nzb+1) = 1.0_wp |
---|
262 | km1d(nzb+1) = 1.0_wp |
---|
263 | us1d = 0.0_wp |
---|
264 | ENDIF |
---|
265 | ts1d = 0.0_wp |
---|
266 | usws1d = 0.0_wp |
---|
267 | vsws1d = 0.0_wp |
---|
268 | z01d = roughness_length |
---|
269 | z0h1d = z0h_factor * z01d |
---|
270 | IF ( humidity ) qs1d = 0.0_wp |
---|
271 | |
---|
272 | ! |
---|
273 | !-- Tendencies must be preset in order to avoid runtime errors |
---|
274 | te_diss = 0.0_wp |
---|
275 | te_dissm = 0.0_wp |
---|
276 | te_e = 0.0_wp |
---|
277 | te_em = 0.0_wp |
---|
278 | te_um = 0.0_wp |
---|
279 | te_vm = 0.0_wp |
---|
280 | |
---|
281 | ! |
---|
282 | !-- Set model constant |
---|
283 | IF ( dissipation_1d == 'as_in_3d_model' ) c_0 = 0.1_wp |
---|
284 | c_mu = c_0**4 |
---|
285 | |
---|
286 | ! |
---|
287 | !-- Set start time in hh:mm:ss - format |
---|
288 | simulated_time_chr = time_to_string( simulated_time_1d ) |
---|
289 | |
---|
290 | ! |
---|
291 | !-- Integrate the 1D-model equations using the Runge-Kutta scheme |
---|
292 | CALL time_integration_1d |
---|
293 | |
---|
294 | |
---|
295 | END SUBROUTINE init_1d_model |
---|
296 | |
---|
297 | |
---|
298 | |
---|
299 | !------------------------------------------------------------------------------! |
---|
300 | ! Description: |
---|
301 | ! ------------ |
---|
302 | !> Runge-Kutta time differencing scheme for the 1D-model. |
---|
303 | !------------------------------------------------------------------------------! |
---|
304 | |
---|
305 | SUBROUTINE time_integration_1d |
---|
306 | |
---|
307 | IMPLICIT NONE |
---|
308 | |
---|
309 | CHARACTER (LEN=9) :: time_to_string !< function to transform time from real to character string |
---|
310 | |
---|
311 | INTEGER(iwp) :: k !< loop index |
---|
312 | |
---|
313 | REAL(wp) :: a !< auxiliary variable |
---|
314 | REAL(wp) :: b !< auxiliary variable |
---|
315 | REAL(wp) :: dpt_dz !< vertical temperature gradient |
---|
316 | REAL(wp) :: flux !< vertical temperature gradient |
---|
317 | REAL(wp) :: kmzm !< Km(z-dz/2) |
---|
318 | REAL(wp) :: kmzp !< Km(z+dz/2) |
---|
319 | REAL(wp) :: l_stable !< mixing length for stable case |
---|
320 | REAL(wp) :: pt_0 !< reference temperature |
---|
321 | REAL(wp) :: uv_total !< horizontal wind speed |
---|
322 | |
---|
323 | ! |
---|
324 | !-- Determine the time step at the start of a 1D-simulation and |
---|
325 | !-- determine and printout quantities used for run control |
---|
326 | dt_1d = 0.01_wp |
---|
327 | CALL run_control_1d |
---|
328 | |
---|
329 | ! |
---|
330 | !-- Start of time loop |
---|
331 | DO WHILE ( simulated_time_1d < end_time_1d .AND. .NOT. stop_dt_1d ) |
---|
332 | |
---|
333 | ! |
---|
334 | !-- Depending on the timestep scheme, carry out one or more intermediate |
---|
335 | !-- timesteps |
---|
336 | |
---|
337 | intermediate_timestep_count = 0 |
---|
338 | DO WHILE ( intermediate_timestep_count < & |
---|
339 | intermediate_timestep_count_max ) |
---|
340 | |
---|
341 | intermediate_timestep_count = intermediate_timestep_count + 1 |
---|
342 | |
---|
343 | CALL timestep_scheme_steering |
---|
344 | |
---|
345 | ! |
---|
346 | !-- Compute all tendency terms. If a constant-flux layer is simulated, |
---|
347 | !-- k starts at nzb+2. |
---|
348 | DO k = nzb_diff, nzt |
---|
349 | |
---|
350 | kmzm = 0.5_wp * ( km1d(k-1) + km1d(k) ) |
---|
351 | kmzp = 0.5_wp * ( km1d(k) + km1d(k+1) ) |
---|
352 | ! |
---|
353 | !-- u-component |
---|
354 | te_u(k) = f * ( v1d(k) - vg(k) ) + ( & |
---|
355 | kmzp * ( u1d(k+1) - u1d(k) ) * ddzu(k+1) & |
---|
356 | - kmzm * ( u1d(k) - u1d(k-1) ) * ddzu(k) & |
---|
357 | ) * ddzw(k) |
---|
358 | ! |
---|
359 | !-- v-component |
---|
360 | te_v(k) = -f * ( u1d(k) - ug(k) ) + ( & |
---|
361 | kmzp * ( v1d(k+1) - v1d(k) ) * ddzu(k+1) & |
---|
362 | - kmzm * ( v1d(k) - v1d(k-1) ) * ddzu(k) & |
---|
363 | ) * ddzw(k) |
---|
364 | ENDDO |
---|
365 | IF ( .NOT. constant_diffusion ) THEN |
---|
366 | DO k = nzb_diff, nzt |
---|
367 | ! |
---|
368 | !-- TKE and dissipation rate |
---|
369 | kmzm = 0.5_wp * ( km1d(k-1) + km1d(k) ) |
---|
370 | kmzp = 0.5_wp * ( km1d(k) + km1d(k+1) ) |
---|
371 | IF ( .NOT. humidity ) THEN |
---|
372 | pt_0 = pt_init(k) |
---|
373 | flux = ( pt_init(k+1)-pt_init(k-1) ) * dd2zu(k) |
---|
374 | ELSE |
---|
375 | pt_0 = pt_init(k) * ( 1.0_wp + 0.61_wp * q_init(k) ) |
---|
376 | flux = ( ( pt_init(k+1) - pt_init(k-1) ) + & |
---|
377 | 0.61_wp * ( pt_init(k+1) * q_init(k+1) - & |
---|
378 | pt_init(k-1) * q_init(k-1) ) & |
---|
379 | ) * dd2zu(k) |
---|
380 | ENDIF |
---|
381 | |
---|
382 | ! |
---|
383 | !-- Calculate dissipation rate if no prognostic equation is used for |
---|
384 | !-- dissipation rate |
---|
385 | IF ( dissipation_1d == 'detering' ) THEN |
---|
386 | diss1d(k) = c_0**3 * e1d(k) * SQRT( e1d(k) ) / l1d_diss(k) |
---|
387 | ELSEIF ( dissipation_1d == 'as_in_3d_model' ) THEN |
---|
388 | diss1d(k) = ( 0.19_wp + 0.74_wp * l1d_diss(k) / l1d_init(k) & |
---|
389 | ) * e1d(k) * SQRT( e1d(k) ) / l1d_diss(k) |
---|
390 | ENDIF |
---|
391 | ! |
---|
392 | !-- TKE |
---|
393 | te_e(k) = km1d(k) * ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2& |
---|
394 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2& |
---|
395 | ) & |
---|
396 | - g / pt_0 * kh1d(k) * flux & |
---|
397 | + ( & |
---|
398 | kmzp * ( e1d(k+1) - e1d(k) ) * ddzu(k+1) & |
---|
399 | - kmzm * ( e1d(k) - e1d(k-1) ) * ddzu(k) & |
---|
400 | ) * ddzw(k) / sig_e & |
---|
401 | - diss1d(k) |
---|
402 | |
---|
403 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
404 | ! |
---|
405 | !-- dissipation rate |
---|
406 | IF ( rif1d(k) >= 0.0_wp ) THEN |
---|
407 | alpha_buoyancy = 1.0_wp - l1d(k) / lambda |
---|
408 | ELSE |
---|
409 | alpha_buoyancy = 1.0_wp - ( 1.0_wp + ( c_2 - 1.0_wp ) & |
---|
410 | / ( c_2 - c_1 ) ) & |
---|
411 | * l1d(k) / lambda |
---|
412 | ENDIF |
---|
413 | c_3 = ( c_1 - c_2 ) * alpha_buoyancy + 1.0_wp |
---|
414 | te_diss(k) = ( km1d(k) * & |
---|
415 | ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2 & |
---|
416 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2 & |
---|
417 | ) * ( c_1 + (c_2 - c_1) * l1d(k) / lambda ) & |
---|
418 | - g / pt_0 * kh1d(k) * flux * c_3 & |
---|
419 | - c_2 * diss1d(k) & |
---|
420 | ) * diss1d(k) / ( e1d(k) + 1.0E-20_wp ) & |
---|
421 | + ( kmzp * ( diss1d(k+1) - diss1d(k) ) & |
---|
422 | * ddzu(k+1) & |
---|
423 | - kmzm * ( diss1d(k) - diss1d(k-1) ) & |
---|
424 | * ddzu(k) & |
---|
425 | ) * ddzw(k) / sig_diss |
---|
426 | |
---|
427 | ENDIF |
---|
428 | |
---|
429 | ENDDO |
---|
430 | ENDIF |
---|
431 | |
---|
432 | ! |
---|
433 | !-- Tendency terms at the top of the constant-flux layer. |
---|
434 | !-- Finite differences of the momentum fluxes are computed using half the |
---|
435 | !-- normal grid length (2.0*ddzw(k)) for the sake of enhanced accuracy |
---|
436 | IF ( constant_flux_layer ) THEN |
---|
437 | |
---|
438 | k = nzb+1 |
---|
439 | kmzm = 0.5_wp * ( km1d(k-1) + km1d(k) ) |
---|
440 | kmzp = 0.5_wp * ( km1d(k) + km1d(k+1) ) |
---|
441 | IF ( .NOT. humidity ) THEN |
---|
442 | pt_0 = pt_init(k) |
---|
443 | flux = ( pt_init(k+1)-pt_init(k-1) ) * dd2zu(k) |
---|
444 | ELSE |
---|
445 | pt_0 = pt_init(k) * ( 1.0_wp + 0.61_wp * q_init(k) ) |
---|
446 | flux = ( ( pt_init(k+1) - pt_init(k-1) ) + & |
---|
447 | 0.61_wp * ( pt_init(k+1) * q_init(k+1) - & |
---|
448 | pt_init(k-1) * q_init(k-1) ) & |
---|
449 | ) * dd2zu(k) |
---|
450 | ENDIF |
---|
451 | |
---|
452 | ! |
---|
453 | !-- Calculate dissipation rate if no prognostic equation is used for |
---|
454 | !-- dissipation rate |
---|
455 | IF ( dissipation_1d == 'detering' ) THEN |
---|
456 | diss1d(k) = c_0**3 * e1d(k) * SQRT( e1d(k) ) / l1d_diss(k) |
---|
457 | ELSEIF ( dissipation_1d == 'as_in_3d_model' ) THEN |
---|
458 | diss1d(k) = ( 0.19_wp + 0.74_wp * l1d_diss(k) / l1d_init(k) ) & |
---|
459 | * e1d(k) * SQRT( e1d(k) ) / l1d_diss(k) |
---|
460 | ENDIF |
---|
461 | |
---|
462 | ! |
---|
463 | !-- u-component |
---|
464 | te_u(k) = f * ( v1d(k) - vg(k) ) + ( & |
---|
465 | kmzp * ( u1d(k+1) - u1d(k) ) * ddzu(k+1) + usws1d & |
---|
466 | ) * 2.0_wp * ddzw(k) |
---|
467 | ! |
---|
468 | !-- v-component |
---|
469 | te_v(k) = -f * ( u1d(k) - ug(k) ) + ( & |
---|
470 | kmzp * ( v1d(k+1) - v1d(k) ) * ddzu(k+1) + vsws1d & |
---|
471 | ) * 2.0_wp * ddzw(k) |
---|
472 | ! |
---|
473 | !-- TKE |
---|
474 | IF ( .NOT. dissipation_1d == 'prognostic' ) THEN |
---|
475 | !> @query why integrate over 2dz |
---|
476 | !> Why is it allowed to integrate over two delta-z for e |
---|
477 | !> while for u and v it is not? |
---|
478 | !> 2018-04-23, gronemeier |
---|
479 | te_e(k) = km1d(k) * ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2& |
---|
480 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2& |
---|
481 | ) & |
---|
482 | - g / pt_0 * kh1d(k) * flux & |
---|
483 | + ( & |
---|
484 | kmzp * ( e1d(k+1) - e1d(k) ) * ddzu(k+1) & |
---|
485 | - kmzm * ( e1d(k) - e1d(k-1) ) * ddzu(k) & |
---|
486 | ) * ddzw(k) / sig_e & |
---|
487 | - diss1d(k) |
---|
488 | ENDIF |
---|
489 | |
---|
490 | ENDIF |
---|
491 | |
---|
492 | ! |
---|
493 | !-- Prognostic equations for all 1D variables |
---|
494 | DO k = nzb+1, nzt |
---|
495 | |
---|
496 | u1d_p(k) = u1d(k) + dt_1d * ( tsc(2) * te_u(k) + & |
---|
497 | tsc(3) * te_um(k) ) |
---|
498 | v1d_p(k) = v1d(k) + dt_1d * ( tsc(2) * te_v(k) + & |
---|
499 | tsc(3) * te_vm(k) ) |
---|
500 | |
---|
501 | ENDDO |
---|
502 | IF ( .NOT. constant_diffusion ) THEN |
---|
503 | |
---|
504 | DO k = nzb+1, nzt |
---|
505 | e1d_p(k) = e1d(k) + dt_1d * ( tsc(2) * te_e(k) + & |
---|
506 | tsc(3) * te_em(k) ) |
---|
507 | ENDDO |
---|
508 | |
---|
509 | ! |
---|
510 | !-- Eliminate negative TKE values, which can result from the |
---|
511 | !-- integration due to numerical inaccuracies. In such cases the TKE |
---|
512 | !-- value is reduced to 10 percent of its old value. |
---|
513 | WHERE ( e1d_p < 0.0_wp ) e1d_p = 0.1_wp * e1d |
---|
514 | |
---|
515 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
516 | DO k = nzb+1, nzt |
---|
517 | diss1d_p(k) = diss1d(k) + dt_1d * ( tsc(2) * te_diss(k) + & |
---|
518 | tsc(3) * te_dissm(k) ) |
---|
519 | ENDDO |
---|
520 | WHERE ( diss1d_p < 0.0_wp ) diss1d_p = 0.1_wp * diss1d |
---|
521 | ENDIF |
---|
522 | ENDIF |
---|
523 | |
---|
524 | ! |
---|
525 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
526 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
527 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
528 | |
---|
529 | DO k = nzb+1, nzt |
---|
530 | te_um(k) = te_u(k) |
---|
531 | te_vm(k) = te_v(k) |
---|
532 | ENDDO |
---|
533 | |
---|
534 | IF ( .NOT. constant_diffusion ) THEN |
---|
535 | DO k = nzb+1, nzt |
---|
536 | te_em(k) = te_e(k) |
---|
537 | ENDDO |
---|
538 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
539 | DO k = nzb+1, nzt |
---|
540 | te_dissm(k) = te_diss(k) |
---|
541 | ENDDO |
---|
542 | ENDIF |
---|
543 | ENDIF |
---|
544 | |
---|
545 | ELSEIF ( intermediate_timestep_count < & |
---|
546 | intermediate_timestep_count_max ) THEN |
---|
547 | |
---|
548 | DO k = nzb+1, nzt |
---|
549 | te_um(k) = -9.5625_wp * te_u(k) + 5.3125_wp * te_um(k) |
---|
550 | te_vm(k) = -9.5625_wp * te_v(k) + 5.3125_wp * te_vm(k) |
---|
551 | ENDDO |
---|
552 | |
---|
553 | IF ( .NOT. constant_diffusion ) THEN |
---|
554 | DO k = nzb+1, nzt |
---|
555 | te_em(k) = -9.5625_wp * te_e(k) + 5.3125_wp * te_em(k) |
---|
556 | ENDDO |
---|
557 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
558 | DO k = nzb+1, nzt |
---|
559 | te_dissm(k) = -9.5625_wp * te_diss(k) & |
---|
560 | + 5.3125_wp * te_dissm(k) |
---|
561 | ENDDO |
---|
562 | ENDIF |
---|
563 | ENDIF |
---|
564 | |
---|
565 | ENDIF |
---|
566 | ENDIF |
---|
567 | |
---|
568 | ! |
---|
569 | !-- Boundary conditions for the prognostic variables. |
---|
570 | !-- At the top boundary (nzt+1) u, v, e, and diss keep their initial |
---|
571 | !-- values (ug(nzt+1), vg(nzt+1), 0, 0). |
---|
572 | !-- At the bottom boundary, Dirichlet condition is used for u and v (0) |
---|
573 | !-- and Neumann condition for e and diss (e(nzb)=e(nzb+1)). |
---|
574 | u1d_p(nzb) = 0.0_wp |
---|
575 | v1d_p(nzb) = 0.0_wp |
---|
576 | |
---|
577 | ! |
---|
578 | !-- Swap the time levels in preparation for the next time step. |
---|
579 | u1d = u1d_p |
---|
580 | v1d = v1d_p |
---|
581 | IF ( .NOT. constant_diffusion ) THEN |
---|
582 | e1d = e1d_p |
---|
583 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
584 | diss1d = diss1d_p |
---|
585 | ENDIF |
---|
586 | ENDIF |
---|
587 | |
---|
588 | ! |
---|
589 | !-- Compute diffusion quantities |
---|
590 | IF ( .NOT. constant_diffusion ) THEN |
---|
591 | |
---|
592 | ! |
---|
593 | !-- First compute the vertical fluxes in the constant-flux layer |
---|
594 | IF ( constant_flux_layer ) THEN |
---|
595 | ! |
---|
596 | !-- Compute theta* using Rif numbers of the previous time step |
---|
597 | IF ( rif1d(nzb+1) >= 0.0_wp ) THEN |
---|
598 | ! |
---|
599 | !-- Stable stratification |
---|
600 | ts1d = kappa * ( pt_init(nzb+1) - pt_init(nzb) ) / & |
---|
601 | ( LOG( zu(nzb+1) / z0h1d ) + 5.0_wp * rif1d(nzb+1) * & |
---|
602 | ( zu(nzb+1) - z0h1d ) / zu(nzb+1) & |
---|
603 | ) |
---|
604 | ELSE |
---|
605 | ! |
---|
606 | !-- Unstable stratification |
---|
607 | a = SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) ) |
---|
608 | b = SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) / & |
---|
609 | zu(nzb+1) * z0h1d ) |
---|
610 | |
---|
611 | ts1d = kappa * ( pt_init(nzb+1) - pt_init(nzb) ) / & |
---|
612 | LOG( (a-1.0_wp) / (a+1.0_wp) * & |
---|
613 | (b+1.0_wp) / (b-1.0_wp) ) |
---|
614 | ENDIF |
---|
615 | |
---|
616 | ENDIF ! constant_flux_layer |
---|
617 | !> @todo combine if clauses |
---|
618 | !> The previous and following if clauses can be combined into a |
---|
619 | !> single clause |
---|
620 | !> 2018-04-23, gronemeier |
---|
621 | ! |
---|
622 | !-- Compute the Richardson-flux numbers, |
---|
623 | !-- first at the top of the constant-flux layer using u* of the |
---|
624 | !-- previous time step (+1E-30, if u* = 0), then in the remaining area. |
---|
625 | !-- There the rif-numbers of the previous time step are used. |
---|
626 | |
---|
627 | IF ( constant_flux_layer ) THEN |
---|
628 | IF ( .NOT. humidity ) THEN |
---|
629 | pt_0 = pt_init(nzb+1) |
---|
630 | flux = ts1d |
---|
631 | ELSE |
---|
632 | pt_0 = pt_init(nzb+1) * ( 1.0_wp + 0.61_wp * q_init(nzb+1) ) |
---|
633 | flux = ts1d + 0.61_wp * pt_init(k) * qs1d |
---|
634 | ENDIF |
---|
635 | rif1d(nzb+1) = zu(nzb+1) * kappa * g * flux / & |
---|
636 | ( pt_0 * ( us1d**2 + 1E-30_wp ) ) |
---|
637 | ENDIF |
---|
638 | |
---|
639 | DO k = nzb_diff, nzt |
---|
640 | IF ( .NOT. humidity ) THEN |
---|
641 | pt_0 = pt_init(k) |
---|
642 | flux = ( pt_init(k+1) - pt_init(k-1) ) * dd2zu(k) |
---|
643 | ELSE |
---|
644 | pt_0 = pt_init(k) * ( 1.0_wp + 0.61_wp * q_init(k) ) |
---|
645 | flux = ( ( pt_init(k+1) - pt_init(k-1) ) & |
---|
646 | + 0.61_wp & |
---|
647 | * ( pt_init(k+1) * q_init(k+1) & |
---|
648 | - pt_init(k-1) * q_init(k-1) ) & |
---|
649 | ) * dd2zu(k) |
---|
650 | ENDIF |
---|
651 | IF ( rif1d(k) >= 0.0_wp ) THEN |
---|
652 | rif1d(k) = g / pt_0 * flux / & |
---|
653 | ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2 & |
---|
654 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2 & |
---|
655 | + 1E-30_wp & |
---|
656 | ) |
---|
657 | ELSE |
---|
658 | rif1d(k) = g / pt_0 * flux / & |
---|
659 | ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2 & |
---|
660 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2 & |
---|
661 | + 1E-30_wp & |
---|
662 | ) * ( 1.0_wp - 16.0_wp * rif1d(k) )**0.25_wp |
---|
663 | ENDIF |
---|
664 | ENDDO |
---|
665 | ! |
---|
666 | !-- Richardson-numbers must remain restricted to a realistic value |
---|
667 | !-- range. It is exceeded excessively for very small velocities |
---|
668 | !-- (u,v --> 0). |
---|
669 | WHERE ( rif1d < -5.0_wp ) rif1d = -5.0_wp |
---|
670 | WHERE ( rif1d > 1.0_wp ) rif1d = 1.0_wp |
---|
671 | |
---|
672 | ! |
---|
673 | !-- Compute u* from the absolute velocity value |
---|
674 | IF ( constant_flux_layer ) THEN |
---|
675 | uv_total = SQRT( u1d(nzb+1)**2 + v1d(nzb+1)**2 ) |
---|
676 | |
---|
677 | IF ( rif1d(nzb+1) >= 0.0_wp ) THEN |
---|
678 | ! |
---|
679 | !-- Stable stratification |
---|
680 | us1d = kappa * uv_total / ( & |
---|
681 | LOG( zu(nzb+1) / z01d ) + 5.0_wp * rif1d(nzb+1) * & |
---|
682 | ( zu(nzb+1) - z01d ) / zu(nzb+1) & |
---|
683 | ) |
---|
684 | ELSE |
---|
685 | ! |
---|
686 | !-- Unstable stratification |
---|
687 | a = 1.0_wp / SQRT( SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) ) ) |
---|
688 | b = 1.0_wp / SQRT( SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) / & |
---|
689 | zu(nzb+1) * z01d ) ) |
---|
690 | us1d = kappa * uv_total / ( & |
---|
691 | LOG( (1.0_wp+b) / (1.0_wp-b) * (1.0_wp-a) / & |
---|
692 | (1.0_wp+a) ) + & |
---|
693 | 2.0_wp * ( ATAN( b ) - ATAN( a ) ) & |
---|
694 | ) |
---|
695 | ENDIF |
---|
696 | |
---|
697 | ! |
---|
698 | !-- Compute the momentum fluxes for the diffusion terms |
---|
699 | usws1d = - u1d(nzb+1) / uv_total * us1d**2 |
---|
700 | vsws1d = - v1d(nzb+1) / uv_total * us1d**2 |
---|
701 | |
---|
702 | ! |
---|
703 | !-- Boundary condition for the turbulent kinetic energy and |
---|
704 | !-- dissipation rate at the top of the constant-flux layer. |
---|
705 | !-- Additional Neumann condition de/dz = 0 at nzb is set to ensure |
---|
706 | !-- compatibility with the 3D model. |
---|
707 | IF ( ibc_e_b == 2 ) THEN |
---|
708 | e1d(nzb+1) = ( us1d / c_0 )**2 |
---|
709 | ENDIF |
---|
710 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
711 | e1d(nzb+1) = ( us1d / c_0 )**2 |
---|
712 | diss1d(nzb+1) = us1d**3 / ( kappa * zu(nzb+1) ) |
---|
713 | diss1d(nzb) = diss1d(nzb+1) |
---|
714 | ENDIF |
---|
715 | e1d(nzb) = e1d(nzb+1) |
---|
716 | |
---|
717 | IF ( humidity ) THEN |
---|
718 | ! |
---|
719 | !-- Compute q* |
---|
720 | IF ( rif1d(nzb+1) >= 0.0_wp ) THEN |
---|
721 | ! |
---|
722 | !-- Stable stratification |
---|
723 | qs1d = kappa * ( q_init(nzb+1) - q_init(nzb) ) / & |
---|
724 | ( LOG( zu(nzb+1) / z0h1d ) + 5.0_wp * rif1d(nzb+1) * & |
---|
725 | ( zu(nzb+1) - z0h1d ) / zu(nzb+1) & |
---|
726 | ) |
---|
727 | ELSE |
---|
728 | ! |
---|
729 | !-- Unstable stratification |
---|
730 | a = SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) ) |
---|
731 | b = SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) / & |
---|
732 | zu(nzb+1) * z0h1d ) |
---|
733 | qs1d = kappa * ( q_init(nzb+1) - q_init(nzb) ) / & |
---|
734 | LOG( (a-1.0_wp) / (a+1.0_wp) * & |
---|
735 | (b+1.0_wp) / (b-1.0_wp) ) |
---|
736 | ENDIF |
---|
737 | ELSE |
---|
738 | qs1d = 0.0_wp |
---|
739 | ENDIF |
---|
740 | |
---|
741 | ENDIF ! constant_flux_layer |
---|
742 | |
---|
743 | ! |
---|
744 | !-- Compute the diabatic mixing length. The unstable stratification |
---|
745 | !-- must not be considered for l1d (km1d) as it is already considered |
---|
746 | !-- in the dissipation of TKE via l1d_diss. Otherwise, km1d would be |
---|
747 | !-- too large. |
---|
748 | IF ( dissipation_1d /= 'prognostic' ) THEN |
---|
749 | IF ( mixing_length_1d == 'blackadar' ) THEN |
---|
750 | DO k = nzb+1, nzt |
---|
751 | IF ( rif1d(k) >= 0.0_wp ) THEN |
---|
752 | l1d(k) = l1d_init(k) / ( 1.0_wp + 5.0_wp * rif1d(k) ) |
---|
753 | l1d_diss(k) = l1d(k) |
---|
754 | ELSE |
---|
755 | l1d(k) = l1d_init(k) |
---|
756 | l1d_diss(k) = l1d_init(k) * & |
---|
757 | SQRT( 1.0_wp - 16.0_wp * rif1d(k) ) |
---|
758 | ENDIF |
---|
759 | ENDDO |
---|
760 | ELSEIF ( mixing_length_1d == 'as_in_3d_model' ) THEN |
---|
761 | DO k = nzb+1, nzt |
---|
762 | dpt_dz = ( pt_init(k+1) - pt_init(k-1) ) * dd2zu(k) |
---|
763 | IF ( dpt_dz > 0.0_wp ) THEN |
---|
764 | l_stable = 0.76_wp * SQRT( e1d(k) ) & |
---|
765 | / SQRT( g / pt_init(k) * dpt_dz ) + 1E-5_wp |
---|
766 | ELSE |
---|
767 | l_stable = l1d_init(k) |
---|
768 | ENDIF |
---|
769 | l1d(k) = MIN( l1d_init(k), l_stable ) |
---|
770 | l1d_diss(k) = l1d(k) |
---|
771 | ENDDO |
---|
772 | ENDIF |
---|
773 | ELSE |
---|
774 | DO k = nzb+1, nzt |
---|
775 | l1d(k) = c_0**3 * e1d(k) * SQRT( e1d(k) ) & |
---|
776 | / ( diss1d(k) + 1.0E-30_wp ) |
---|
777 | ENDDO |
---|
778 | ENDIF |
---|
779 | |
---|
780 | ! |
---|
781 | !-- Compute the diffusion coefficients for momentum via the |
---|
782 | !-- corresponding Prandtl-layer relationship and according to |
---|
783 | !-- Prandtl-Kolmogorov, respectively |
---|
784 | IF ( constant_flux_layer ) THEN |
---|
785 | IF ( rif1d(nzb+1) >= 0.0_wp ) THEN |
---|
786 | km1d(nzb+1) = us1d * kappa * zu(nzb+1) / & |
---|
787 | ( 1.0_wp + 5.0_wp * rif1d(nzb+1) ) |
---|
788 | ELSE |
---|
789 | km1d(nzb+1) = us1d * kappa * zu(nzb+1) * & |
---|
790 | ( 1.0_wp - 16.0_wp * rif1d(nzb+1) )**0.25_wp |
---|
791 | ENDIF |
---|
792 | ENDIF |
---|
793 | |
---|
794 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
795 | DO k = nzb_diff, nzt |
---|
796 | km1d(k) = c_mu * e1d(k)**2 / ( diss1d(k) + 1.0E-30_wp ) |
---|
797 | ENDDO |
---|
798 | ELSE |
---|
799 | DO k = nzb_diff, nzt |
---|
800 | km1d(k) = c_0 * SQRT( e1d(k) ) * l1d(k) |
---|
801 | ENDDO |
---|
802 | ENDIF |
---|
803 | |
---|
804 | ! |
---|
805 | !-- Add damping layer |
---|
806 | DO k = damp_level_ind_1d+1, nzt+1 |
---|
807 | km1d(k) = 1.1_wp * km1d(k-1) |
---|
808 | km1d(k) = MIN( km1d(k), 10.0_wp ) |
---|
809 | ENDDO |
---|
810 | |
---|
811 | ! |
---|
812 | !-- Compute the diffusion coefficient for heat via the relationship |
---|
813 | !-- kh = phim / phih * km |
---|
814 | DO k = nzb+1, nzt |
---|
815 | IF ( rif1d(k) >= 0.0_wp ) THEN |
---|
816 | kh1d(k) = km1d(k) |
---|
817 | ELSE |
---|
818 | kh1d(k) = km1d(k) * ( 1.0_wp - 16.0_wp * rif1d(k) )**0.25_wp |
---|
819 | ENDIF |
---|
820 | ENDDO |
---|
821 | |
---|
822 | ENDIF ! .NOT. constant_diffusion |
---|
823 | |
---|
824 | ENDDO ! intermediate step loop |
---|
825 | |
---|
826 | ! |
---|
827 | !-- Increment simulated time and output times |
---|
828 | current_timestep_number_1d = current_timestep_number_1d + 1 |
---|
829 | simulated_time_1d = simulated_time_1d + dt_1d |
---|
830 | simulated_time_chr = time_to_string( simulated_time_1d ) |
---|
831 | time_pr_1d = time_pr_1d + dt_1d |
---|
832 | time_run_control_1d = time_run_control_1d + dt_1d |
---|
833 | |
---|
834 | ! |
---|
835 | !-- Determine and print out quantities for run control |
---|
836 | IF ( time_run_control_1d >= dt_run_control_1d ) THEN |
---|
837 | CALL run_control_1d |
---|
838 | time_run_control_1d = time_run_control_1d - dt_run_control_1d |
---|
839 | ENDIF |
---|
840 | |
---|
841 | ! |
---|
842 | !-- Profile output on file |
---|
843 | IF ( time_pr_1d >= dt_pr_1d ) THEN |
---|
844 | CALL print_1d_model |
---|
845 | time_pr_1d = time_pr_1d - dt_pr_1d |
---|
846 | ENDIF |
---|
847 | |
---|
848 | ! |
---|
849 | !-- Determine size of next time step |
---|
850 | CALL timestep_1d |
---|
851 | |
---|
852 | ENDDO ! time loop |
---|
853 | |
---|
854 | |
---|
855 | END SUBROUTINE time_integration_1d |
---|
856 | |
---|
857 | |
---|
858 | !------------------------------------------------------------------------------! |
---|
859 | ! Description: |
---|
860 | ! ------------ |
---|
861 | !> Compute and print out quantities for run control of the 1D model. |
---|
862 | !------------------------------------------------------------------------------! |
---|
863 | |
---|
864 | SUBROUTINE run_control_1d |
---|
865 | |
---|
866 | |
---|
867 | IMPLICIT NONE |
---|
868 | |
---|
869 | INTEGER(iwp) :: k !< loop index |
---|
870 | |
---|
871 | REAL(wp) :: alpha !< angle of wind vector at top of constant-flux layer |
---|
872 | REAL(wp) :: energy !< kinetic energy |
---|
873 | REAL(wp) :: umax !< maximum of u |
---|
874 | REAL(wp) :: uv_total !< horizontal wind speed |
---|
875 | REAL(wp) :: vmax !< maximum of v |
---|
876 | |
---|
877 | ! |
---|
878 | !-- Output |
---|
879 | IF ( myid == 0 ) THEN |
---|
880 | ! |
---|
881 | !-- If necessary, write header |
---|
882 | IF ( .NOT. run_control_header_1d ) THEN |
---|
883 | CALL check_open( 15 ) |
---|
884 | WRITE ( 15, 100 ) |
---|
885 | run_control_header_1d = .TRUE. |
---|
886 | ENDIF |
---|
887 | |
---|
888 | ! |
---|
889 | !-- Compute control quantities |
---|
890 | !-- grid level nzp is excluded due to mirror boundary condition |
---|
891 | umax = 0.0_wp; vmax = 0.0_wp; energy = 0.0_wp |
---|
892 | DO k = nzb+1, nzt+1 |
---|
893 | umax = MAX( ABS( umax ), ABS( u1d(k) ) ) |
---|
894 | vmax = MAX( ABS( vmax ), ABS( v1d(k) ) ) |
---|
895 | energy = energy + 0.5_wp * ( u1d(k)**2 + v1d(k)**2 ) |
---|
896 | ENDDO |
---|
897 | energy = energy / REAL( nzt - nzb + 1, KIND=wp ) |
---|
898 | |
---|
899 | uv_total = SQRT( u1d(nzb+1)**2 + v1d(nzb+1)**2 ) |
---|
900 | IF ( ABS( v1d(nzb+1) ) < 1.0E-5_wp ) THEN |
---|
901 | alpha = ACOS( SIGN( 1.0_wp , u1d(nzb+1) ) ) |
---|
902 | ELSE |
---|
903 | alpha = ACOS( u1d(nzb+1) / uv_total ) |
---|
904 | IF ( v1d(nzb+1) <= 0.0_wp ) alpha = 2.0_wp * pi - alpha |
---|
905 | ENDIF |
---|
906 | alpha = alpha / ( 2.0_wp * pi ) * 360.0_wp |
---|
907 | |
---|
908 | WRITE ( 15, 101 ) current_timestep_number_1d, simulated_time_chr, & |
---|
909 | dt_1d, umax, vmax, us1d, alpha, energy |
---|
910 | ! |
---|
911 | !-- Write buffer contents to disc immediately |
---|
912 | FLUSH( 15 ) |
---|
913 | |
---|
914 | ENDIF |
---|
915 | |
---|
916 | ! |
---|
917 | !-- formats |
---|
918 | 100 FORMAT (///'1D run control output:'/ & |
---|
919 | &'------------------------------'// & |
---|
920 | &'ITER. HH:MM:SS DT UMAX VMAX U* ALPHA ENERG.'/ & |
---|
921 | &'-------------------------------------------------------------') |
---|
922 | 101 FORMAT (I7,1X,A9,1X,F6.2,2X,F6.2,1X,F6.2,1X,F6.3,2X,F5.1,2X,F7.2) |
---|
923 | |
---|
924 | |
---|
925 | END SUBROUTINE run_control_1d |
---|
926 | |
---|
927 | |
---|
928 | |
---|
929 | !------------------------------------------------------------------------------! |
---|
930 | ! Description: |
---|
931 | ! ------------ |
---|
932 | !> Compute the time step w.r.t. the diffusion criterion |
---|
933 | !------------------------------------------------------------------------------! |
---|
934 | |
---|
935 | SUBROUTINE timestep_1d |
---|
936 | |
---|
937 | IMPLICIT NONE |
---|
938 | |
---|
939 | INTEGER(iwp) :: k !< loop index |
---|
940 | |
---|
941 | REAL(wp) :: dt_diff !< time step accorind to diffusion criterion |
---|
942 | REAL(wp) :: dt_old !< previous time step |
---|
943 | REAL(wp) :: fac !< factor of criterion |
---|
944 | REAL(wp) :: value !< auxiliary variable |
---|
945 | |
---|
946 | ! |
---|
947 | !-- Save previous time step |
---|
948 | dt_old = dt_1d |
---|
949 | |
---|
950 | ! |
---|
951 | !-- Compute the currently feasible time step according to the diffusion |
---|
952 | !-- criterion. At nzb+1 the half grid length is used. |
---|
953 | fac = 0.125 |
---|
954 | dt_diff = dt_max_1d |
---|
955 | DO k = nzb+2, nzt |
---|
956 | value = fac * dzu(k) * dzu(k) / ( km1d(k) + 1E-20_wp ) |
---|
957 | dt_diff = MIN( value, dt_diff ) |
---|
958 | ENDDO |
---|
959 | value = fac * zu(nzb+1) * zu(nzb+1) / ( km1d(nzb+1) + 1E-20_wp ) |
---|
960 | dt_1d = MIN( value, dt_diff ) |
---|
961 | |
---|
962 | ! |
---|
963 | !-- Limit the new time step to a maximum of 10 times the previous time step |
---|
964 | dt_1d = MIN( dt_old * 10.0_wp, dt_1d ) |
---|
965 | |
---|
966 | ! |
---|
967 | !-- Set flag when the time step becomes too small |
---|
968 | IF ( dt_1d < ( 1.0E-15_wp * dt_max_1d ) ) THEN |
---|
969 | stop_dt_1d = .TRUE. |
---|
970 | |
---|
971 | WRITE( message_string, * ) 'timestep has exceeded the lower limit&', & |
---|
972 | 'dt_1d = ',dt_1d,' s simulation stopped!' |
---|
973 | CALL message( 'timestep_1d', 'PA0192', 1, 2, 0, 6, 0 ) |
---|
974 | |
---|
975 | ENDIF |
---|
976 | |
---|
977 | END SUBROUTINE timestep_1d |
---|
978 | |
---|
979 | |
---|
980 | |
---|
981 | !------------------------------------------------------------------------------! |
---|
982 | ! Description: |
---|
983 | ! ------------ |
---|
984 | !> List output of profiles from the 1D-model |
---|
985 | !------------------------------------------------------------------------------! |
---|
986 | |
---|
987 | SUBROUTINE print_1d_model |
---|
988 | |
---|
989 | IMPLICIT NONE |
---|
990 | |
---|
991 | INTEGER(iwp) :: k !< loop parameter |
---|
992 | |
---|
993 | LOGICAL, SAVE :: write_first = .TRUE. !< flag for writing header |
---|
994 | |
---|
995 | |
---|
996 | IF ( myid == 0 ) THEN |
---|
997 | ! |
---|
998 | !-- Open list output file for profiles from the 1D-model |
---|
999 | CALL check_open( 17 ) |
---|
1000 | |
---|
1001 | ! |
---|
1002 | !-- Write Header |
---|
1003 | IF ( write_first ) THEN |
---|
1004 | WRITE ( 17, 100 ) TRIM( run_description_header ) |
---|
1005 | write_first = .FALSE. |
---|
1006 | ENDIF |
---|
1007 | |
---|
1008 | ! |
---|
1009 | !-- Write the values |
---|
1010 | WRITE ( 17, 104 ) TRIM( simulated_time_chr ) |
---|
1011 | WRITE ( 17, 101 ) |
---|
1012 | WRITE ( 17, 102 ) |
---|
1013 | WRITE ( 17, 101 ) |
---|
1014 | DO k = nzt+1, nzb, -1 |
---|
1015 | WRITE ( 17, 103) k, zu(k), u1d(k), v1d(k), pt_init(k), e1d(k), & |
---|
1016 | rif1d(k), km1d(k), kh1d(k), l1d(k), diss1d(k) |
---|
1017 | ENDDO |
---|
1018 | WRITE ( 17, 101 ) |
---|
1019 | WRITE ( 17, 102 ) |
---|
1020 | WRITE ( 17, 101 ) |
---|
1021 | |
---|
1022 | ! |
---|
1023 | !-- Write buffer contents to disc immediately |
---|
1024 | FLUSH( 17 ) |
---|
1025 | |
---|
1026 | ENDIF |
---|
1027 | |
---|
1028 | ! |
---|
1029 | !-- Formats |
---|
1030 | 100 FORMAT ('# ',A/'#',10('-')/'# 1d-model profiles') |
---|
1031 | 104 FORMAT (//'# Time: ',A) |
---|
1032 | 101 FORMAT ('#',111('-')) |
---|
1033 | 102 FORMAT ('# k zu u v pt e ', & |
---|
1034 | 'rif Km Kh l diss ') |
---|
1035 | 103 FORMAT (1X,I4,1X,F7.1,9(1X,E10.3)) |
---|
1036 | |
---|
1037 | |
---|
1038 | END SUBROUTINE print_1d_model |
---|
1039 | |
---|
1040 | |
---|
1041 | END MODULE |
---|