[1682] | 1 | !> @file microphysics.f90 |
---|
[1093] | 2 | !--------------------------------------------------------------------------------! |
---|
| 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
| 5 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 6 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 7 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 8 | ! |
---|
| 9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 10 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 11 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 12 | ! |
---|
| 13 | ! You should have received a copy of the GNU General Public License along with |
---|
| 14 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 15 | ! |
---|
[1310] | 16 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1093] | 17 | !--------------------------------------------------------------------------------! |
---|
| 18 | ! |
---|
[1000] | 19 | ! Current revisions: |
---|
[1092] | 20 | ! ------------------ |
---|
[1682] | 21 | ! Code annotations made doxygen readable |
---|
[1647] | 22 | ! |
---|
[1321] | 23 | ! Former revisions: |
---|
| 24 | ! ----------------- |
---|
| 25 | ! $Id: microphysics.f90 1682 2015-10-07 23:56:08Z knoop $ |
---|
| 26 | ! |
---|
[1647] | 27 | ! 1646 2015-09-02 16:00:10Z hoffmann |
---|
| 28 | ! Bugfix: Wrong computation of d_mean. |
---|
| 29 | ! |
---|
[1362] | 30 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
| 31 | ! Bugfix in sedimentation_rain: Index corrected. |
---|
| 32 | ! Vectorized version of adjust_cloud added. |
---|
| 33 | ! Little reformatting of the code. |
---|
| 34 | ! |
---|
[1354] | 35 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 36 | ! REAL constants provided with KIND-attribute |
---|
| 37 | ! |
---|
[1347] | 38 | ! 1346 2014-03-27 13:18:20Z heinze |
---|
| 39 | ! Bugfix: REAL constants provided with KIND-attribute especially in call of |
---|
| 40 | ! intrinsic function like MAX, MIN, SIGN |
---|
| 41 | ! |
---|
[1335] | 42 | ! 1334 2014-03-25 12:21:40Z heinze |
---|
| 43 | ! Bugfix: REAL constants provided with KIND-attribute |
---|
| 44 | ! |
---|
[1323] | 45 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 46 | ! REAL constants defined as wp-kind |
---|
| 47 | ! |
---|
[1321] | 48 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 49 | ! ONLY-attribute added to USE-statements, |
---|
| 50 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 51 | ! kinds are defined in new module kinds, |
---|
| 52 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 53 | ! all variable declaration statements |
---|
[1000] | 54 | ! |
---|
[1242] | 55 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 56 | ! hyp and rho have to be calculated at each time step if data from external |
---|
| 57 | ! file LSF_DATA are used |
---|
| 58 | ! |
---|
[1116] | 59 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 60 | ! microphyical tendencies are calculated in microphysics_control in an optimized |
---|
| 61 | ! way; unrealistic values are prevented; bugfix in evaporation; some reformatting |
---|
| 62 | ! |
---|
[1107] | 63 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 64 | ! small changes in code formatting |
---|
| 65 | ! |
---|
[1093] | 66 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 67 | ! unused variables removed |
---|
| 68 | ! file put under GPL |
---|
| 69 | ! |
---|
[1066] | 70 | ! 1065 2012-11-22 17:42:36Z hoffmann |
---|
| 71 | ! Sedimentation process implemented according to Stevens and Seifert (2008). |
---|
[1115] | 72 | ! Turbulence effects on autoconversion and accretion added (Seifert, Nuijens |
---|
[1066] | 73 | ! and Stevens, 2010). |
---|
| 74 | ! |
---|
[1054] | 75 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
| 76 | ! initial revision |
---|
[1000] | 77 | ! |
---|
| 78 | ! Description: |
---|
| 79 | ! ------------ |
---|
[1682] | 80 | !> Calculate cloud microphysics according to the two moment bulk |
---|
| 81 | !> scheme by Seifert and Beheng (2006). |
---|
[1000] | 82 | !------------------------------------------------------------------------------! |
---|
[1682] | 83 | MODULE microphysics_mod |
---|
| 84 | |
---|
[1000] | 85 | |
---|
| 86 | PRIVATE |
---|
[1115] | 87 | PUBLIC microphysics_control |
---|
[1000] | 88 | |
---|
[1115] | 89 | INTERFACE microphysics_control |
---|
| 90 | MODULE PROCEDURE microphysics_control |
---|
| 91 | MODULE PROCEDURE microphysics_control_ij |
---|
| 92 | END INTERFACE microphysics_control |
---|
[1022] | 93 | |
---|
[1115] | 94 | INTERFACE adjust_cloud |
---|
| 95 | MODULE PROCEDURE adjust_cloud |
---|
| 96 | MODULE PROCEDURE adjust_cloud_ij |
---|
| 97 | END INTERFACE adjust_cloud |
---|
| 98 | |
---|
[1000] | 99 | INTERFACE autoconversion |
---|
| 100 | MODULE PROCEDURE autoconversion |
---|
| 101 | MODULE PROCEDURE autoconversion_ij |
---|
| 102 | END INTERFACE autoconversion |
---|
| 103 | |
---|
| 104 | INTERFACE accretion |
---|
| 105 | MODULE PROCEDURE accretion |
---|
| 106 | MODULE PROCEDURE accretion_ij |
---|
| 107 | END INTERFACE accretion |
---|
[1005] | 108 | |
---|
| 109 | INTERFACE selfcollection_breakup |
---|
| 110 | MODULE PROCEDURE selfcollection_breakup |
---|
| 111 | MODULE PROCEDURE selfcollection_breakup_ij |
---|
| 112 | END INTERFACE selfcollection_breakup |
---|
[1012] | 113 | |
---|
| 114 | INTERFACE evaporation_rain |
---|
| 115 | MODULE PROCEDURE evaporation_rain |
---|
| 116 | MODULE PROCEDURE evaporation_rain_ij |
---|
| 117 | END INTERFACE evaporation_rain |
---|
| 118 | |
---|
| 119 | INTERFACE sedimentation_cloud |
---|
| 120 | MODULE PROCEDURE sedimentation_cloud |
---|
| 121 | MODULE PROCEDURE sedimentation_cloud_ij |
---|
| 122 | END INTERFACE sedimentation_cloud |
---|
[1000] | 123 | |
---|
[1012] | 124 | INTERFACE sedimentation_rain |
---|
| 125 | MODULE PROCEDURE sedimentation_rain |
---|
| 126 | MODULE PROCEDURE sedimentation_rain_ij |
---|
| 127 | END INTERFACE sedimentation_rain |
---|
| 128 | |
---|
[1000] | 129 | CONTAINS |
---|
| 130 | |
---|
| 131 | |
---|
| 132 | !------------------------------------------------------------------------------! |
---|
[1682] | 133 | ! Description: |
---|
| 134 | ! ------------ |
---|
| 135 | !> Call for all grid points |
---|
[1000] | 136 | !------------------------------------------------------------------------------! |
---|
[1115] | 137 | SUBROUTINE microphysics_control |
---|
[1022] | 138 | |
---|
[1361] | 139 | USE arrays_3d, & |
---|
| 140 | ONLY: hyp, nr, pt, pt_init, q, qc, qr, zu |
---|
| 141 | |
---|
| 142 | USE cloud_parameters, & |
---|
| 143 | ONLY: cp, hyrho, nc_const, pt_d_t, r_d, t_d_pt |
---|
| 144 | |
---|
| 145 | USE control_parameters, & |
---|
| 146 | ONLY: call_microphysics_at_all_substeps, drizzle, dt_3d, dt_micro, & |
---|
| 147 | g, intermediate_timestep_count, & |
---|
| 148 | large_scale_forcing, lsf_surf, precipitation, pt_surface, & |
---|
| 149 | rho_surface,surface_pressure |
---|
| 150 | |
---|
| 151 | USE indices, & |
---|
| 152 | ONLY: nzb, nzt |
---|
| 153 | |
---|
[1320] | 154 | USE kinds |
---|
[1115] | 155 | |
---|
[1361] | 156 | USE statistics, & |
---|
| 157 | ONLY: weight_pres |
---|
| 158 | |
---|
[1115] | 159 | IMPLICIT NONE |
---|
| 160 | |
---|
[1682] | 161 | INTEGER(iwp) :: i !< |
---|
| 162 | INTEGER(iwp) :: j !< |
---|
| 163 | INTEGER(iwp) :: k !< |
---|
[1115] | 164 | |
---|
[1682] | 165 | REAL(wp) :: t_surface !< |
---|
[1361] | 166 | |
---|
| 167 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
| 168 | ! |
---|
| 169 | !-- Calculate: |
---|
| 170 | !-- pt / t : ratio of potential and actual temperature (pt_d_t) |
---|
| 171 | !-- t / pt : ratio of actual and potential temperature (t_d_pt) |
---|
| 172 | !-- p_0(z) : vertical profile of the hydrostatic pressure (hyp) |
---|
| 173 | t_surface = pt_surface * ( surface_pressure / 1000.0_wp )**0.286_wp |
---|
| 174 | DO k = nzb, nzt+1 |
---|
| 175 | hyp(k) = surface_pressure * 100.0_wp * & |
---|
| 176 | ( ( t_surface - g / cp * zu(k) ) / & |
---|
| 177 | t_surface )**(1.0_wp / 0.286_wp) |
---|
| 178 | pt_d_t(k) = ( 100000.0_wp / hyp(k) )**0.286_wp |
---|
| 179 | t_d_pt(k) = 1.0_wp / pt_d_t(k) |
---|
| 180 | hyrho(k) = hyp(k) / ( r_d * t_d_pt(k) * pt_init(k) ) |
---|
[1115] | 181 | ENDDO |
---|
[1361] | 182 | ! |
---|
| 183 | !-- Compute reference density |
---|
| 184 | rho_surface = surface_pressure * 100.0_wp / ( r_d * t_surface ) |
---|
| 185 | ENDIF |
---|
[1115] | 186 | |
---|
[1361] | 187 | ! |
---|
| 188 | !-- Compute length of time step |
---|
| 189 | IF ( call_microphysics_at_all_substeps ) THEN |
---|
| 190 | dt_micro = dt_3d * weight_pres(intermediate_timestep_count) |
---|
| 191 | ELSE |
---|
| 192 | dt_micro = dt_3d |
---|
| 193 | ENDIF |
---|
| 194 | |
---|
| 195 | ! |
---|
| 196 | !-- Compute cloud physics |
---|
| 197 | IF ( precipitation ) THEN |
---|
| 198 | CALL adjust_cloud |
---|
| 199 | CALL autoconversion |
---|
| 200 | CALL accretion |
---|
| 201 | CALL selfcollection_breakup |
---|
| 202 | CALL evaporation_rain |
---|
| 203 | CALL sedimentation_rain |
---|
| 204 | ENDIF |
---|
| 205 | |
---|
| 206 | IF ( drizzle ) CALL sedimentation_cloud |
---|
| 207 | |
---|
[1115] | 208 | END SUBROUTINE microphysics_control |
---|
| 209 | |
---|
[1682] | 210 | !------------------------------------------------------------------------------! |
---|
| 211 | ! Description: |
---|
| 212 | ! ------------ |
---|
| 213 | !> Adjust number of raindrops to avoid nonlinear effects in sedimentation and |
---|
| 214 | !> evaporation of rain drops due to too small or too big weights |
---|
| 215 | !> of rain drops (Stevens and Seifert, 2008). |
---|
| 216 | !------------------------------------------------------------------------------! |
---|
[1115] | 217 | SUBROUTINE adjust_cloud |
---|
| 218 | |
---|
[1361] | 219 | USE arrays_3d, & |
---|
| 220 | ONLY: qr, nr |
---|
| 221 | |
---|
| 222 | USE cloud_parameters, & |
---|
| 223 | ONLY: eps_sb, xrmin, xrmax, hyrho, k_cc, x0 |
---|
| 224 | |
---|
| 225 | USE cpulog, & |
---|
| 226 | ONLY: cpu_log, log_point_s |
---|
| 227 | |
---|
| 228 | USE indices, & |
---|
| 229 | ONLY: nxl, nxr, nys, nyn, nzb, nzb_s_inner, nzt |
---|
| 230 | |
---|
[1320] | 231 | USE kinds |
---|
[1022] | 232 | |
---|
| 233 | IMPLICIT NONE |
---|
| 234 | |
---|
[1682] | 235 | INTEGER(iwp) :: i !< |
---|
| 236 | INTEGER(iwp) :: j !< |
---|
| 237 | INTEGER(iwp) :: k !< |
---|
[1022] | 238 | |
---|
[1361] | 239 | CALL cpu_log( log_point_s(54), 'adjust_cloud', 'start' ) |
---|
| 240 | |
---|
[1022] | 241 | DO i = nxl, nxr |
---|
| 242 | DO j = nys, nyn |
---|
[1115] | 243 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1361] | 244 | IF ( qr(k,j,i) <= eps_sb ) THEN |
---|
| 245 | qr(k,j,i) = 0.0_wp |
---|
| 246 | nr(k,j,i) = 0.0_wp |
---|
| 247 | ELSE |
---|
| 248 | IF ( nr(k,j,i) * xrmin > qr(k,j,i) * hyrho(k) ) THEN |
---|
| 249 | nr(k,j,i) = qr(k,j,i) * hyrho(k) / xrmin |
---|
| 250 | ELSEIF ( nr(k,j,i) * xrmax < qr(k,j,i) * hyrho(k) ) THEN |
---|
| 251 | nr(k,j,i) = qr(k,j,i) * hyrho(k) / xrmax |
---|
| 252 | ENDIF |
---|
| 253 | ENDIF |
---|
[1022] | 254 | ENDDO |
---|
| 255 | ENDDO |
---|
| 256 | ENDDO |
---|
| 257 | |
---|
[1361] | 258 | CALL cpu_log( log_point_s(54), 'adjust_cloud', 'stop' ) |
---|
| 259 | |
---|
[1115] | 260 | END SUBROUTINE adjust_cloud |
---|
[1022] | 261 | |
---|
[1106] | 262 | |
---|
[1682] | 263 | !------------------------------------------------------------------------------! |
---|
| 264 | ! Description: |
---|
| 265 | ! ------------ |
---|
| 266 | !> Autoconversion rate (Seifert and Beheng, 2006). |
---|
| 267 | !------------------------------------------------------------------------------! |
---|
[1000] | 268 | SUBROUTINE autoconversion |
---|
| 269 | |
---|
[1361] | 270 | USE arrays_3d, & |
---|
| 271 | ONLY: diss, dzu, nr, qc, qr |
---|
| 272 | |
---|
| 273 | USE cloud_parameters, & |
---|
| 274 | ONLY: a_1, a_2, a_3, b_1, b_2, b_3, beta_cc, c_1, c_2, c_3, & |
---|
| 275 | c_const, dpirho_l, eps_sb, hyrho, k_cc, kin_vis_air, & |
---|
| 276 | nc_const, x0 |
---|
| 277 | |
---|
| 278 | USE control_parameters, & |
---|
| 279 | ONLY: dt_micro, rho_surface, turbulence |
---|
| 280 | |
---|
| 281 | USE cpulog, & |
---|
| 282 | ONLY: cpu_log, log_point_s |
---|
| 283 | |
---|
| 284 | USE grid_variables, & |
---|
| 285 | ONLY: dx, dy |
---|
| 286 | |
---|
| 287 | USE indices, & |
---|
| 288 | ONLY: nxl, nxr, nys, nyn, nzb, nzb_s_inner, nzt |
---|
| 289 | |
---|
[1320] | 290 | USE kinds |
---|
[1000] | 291 | |
---|
| 292 | IMPLICIT NONE |
---|
| 293 | |
---|
[1682] | 294 | INTEGER(iwp) :: i !< |
---|
| 295 | INTEGER(iwp) :: j !< |
---|
| 296 | INTEGER(iwp) :: k !< |
---|
[1000] | 297 | |
---|
[1682] | 298 | REAL(wp) :: alpha_cc !< |
---|
| 299 | REAL(wp) :: autocon !< |
---|
| 300 | REAL(wp) :: dissipation !< |
---|
| 301 | REAL(wp) :: k_au !< |
---|
| 302 | REAL(wp) :: l_mix !< |
---|
| 303 | REAL(wp) :: nu_c !< |
---|
| 304 | REAL(wp) :: phi_au !< |
---|
| 305 | REAL(wp) :: r_cc !< |
---|
| 306 | REAL(wp) :: rc !< |
---|
| 307 | REAL(wp) :: re_lambda !< |
---|
| 308 | REAL(wp) :: selfcoll !< |
---|
| 309 | REAL(wp) :: sigma_cc !< |
---|
| 310 | REAL(wp) :: tau_cloud !< |
---|
| 311 | REAL(wp) :: xc !< |
---|
[1361] | 312 | |
---|
| 313 | CALL cpu_log( log_point_s(55), 'autoconversion', 'start' ) |
---|
| 314 | |
---|
[1000] | 315 | DO i = nxl, nxr |
---|
| 316 | DO j = nys, nyn |
---|
[1115] | 317 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1000] | 318 | |
---|
[1361] | 319 | IF ( qc(k,j,i) > eps_sb ) THEN |
---|
| 320 | |
---|
| 321 | k_au = k_cc / ( 20.0_wp * x0 ) |
---|
| 322 | ! |
---|
| 323 | !-- Intern time scale of coagulation (Seifert and Beheng, 2006): |
---|
| 324 | !-- (1.0_wp - qc(k,j,i) / ( qc(k,j,i) + qr(k,j,i) )) |
---|
| 325 | tau_cloud = 1.0_wp - qc(k,j,i) / ( qr(k,j,i) + qc(k,j,i) ) |
---|
| 326 | ! |
---|
| 327 | !-- Universal function for autoconversion process |
---|
| 328 | !-- (Seifert and Beheng, 2006): |
---|
| 329 | phi_au = 600.0_wp * tau_cloud**0.68_wp * & |
---|
| 330 | ( 1.0_wp - tau_cloud**0.68_wp )**3 |
---|
| 331 | ! |
---|
| 332 | !-- Shape parameter of gamma distribution (Geoffroy et al., 2010): |
---|
| 333 | !-- (Use constant nu_c = 1.0_wp instead?) |
---|
| 334 | nu_c = 1.0_wp !MAX( 0.0_wp, 1580.0_wp * hyrho(k) * qc(k,j,i) - 0.28_wp ) |
---|
| 335 | ! |
---|
| 336 | !-- Mean weight of cloud droplets: |
---|
| 337 | xc = hyrho(k) * qc(k,j,i) / nc_const |
---|
| 338 | ! |
---|
| 339 | !-- Parameterized turbulence effects on autoconversion (Seifert, |
---|
| 340 | !-- Nuijens and Stevens, 2010) |
---|
| 341 | IF ( turbulence ) THEN |
---|
| 342 | ! |
---|
| 343 | !-- Weight averaged radius of cloud droplets: |
---|
| 344 | rc = 0.5_wp * ( xc * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
| 345 | |
---|
| 346 | alpha_cc = ( a_1 + a_2 * nu_c ) / ( 1.0_wp + a_3 * nu_c ) |
---|
| 347 | r_cc = ( b_1 + b_2 * nu_c ) / ( 1.0_wp + b_3 * nu_c ) |
---|
| 348 | sigma_cc = ( c_1 + c_2 * nu_c ) / ( 1.0_wp + c_3 * nu_c ) |
---|
| 349 | ! |
---|
| 350 | !-- Mixing length (neglecting distance to ground and |
---|
| 351 | !-- stratification) |
---|
| 352 | l_mix = ( dx * dy * dzu(k) )**( 1.0_wp / 3.0_wp ) |
---|
| 353 | ! |
---|
| 354 | !-- Limit dissipation rate according to Seifert, Nuijens and |
---|
| 355 | !-- Stevens (2010) |
---|
| 356 | dissipation = MIN( 0.06_wp, diss(k,j,i) ) |
---|
| 357 | ! |
---|
| 358 | !-- Compute Taylor-microscale Reynolds number: |
---|
| 359 | re_lambda = 6.0_wp / 11.0_wp * & |
---|
| 360 | ( l_mix / c_const )**( 2.0_wp / 3.0_wp ) * & |
---|
| 361 | SQRT( 15.0_wp / kin_vis_air ) * & |
---|
| 362 | dissipation**( 1.0_wp / 6.0_wp ) |
---|
| 363 | ! |
---|
| 364 | !-- The factor of 1.0E4 is needed to convert the dissipation |
---|
| 365 | !-- rate from m2 s-3 to cm2 s-3. |
---|
| 366 | k_au = k_au * ( 1.0_wp + & |
---|
| 367 | dissipation * 1.0E4_wp * & |
---|
| 368 | ( re_lambda * 1.0E-3_wp )**0.25_wp * & |
---|
| 369 | ( alpha_cc * EXP( -1.0_wp * ( ( rc - & |
---|
| 370 | r_cc ) / & |
---|
| 371 | sigma_cc )**2 & |
---|
| 372 | ) + beta_cc & |
---|
| 373 | ) & |
---|
| 374 | ) |
---|
| 375 | ENDIF |
---|
| 376 | ! |
---|
| 377 | !-- Autoconversion rate (Seifert and Beheng, 2006): |
---|
| 378 | autocon = k_au * ( nu_c + 2.0_wp ) * ( nu_c + 4.0_wp ) / & |
---|
| 379 | ( nu_c + 1.0_wp )**2 * qc(k,j,i)**2 * xc**2 * & |
---|
| 380 | ( 1.0_wp + phi_au / ( 1.0_wp - tau_cloud )**2 ) * & |
---|
| 381 | rho_surface |
---|
| 382 | autocon = MIN( autocon, qc(k,j,i) / dt_micro ) |
---|
| 383 | |
---|
| 384 | qr(k,j,i) = qr(k,j,i) + autocon * dt_micro |
---|
| 385 | qc(k,j,i) = qc(k,j,i) - autocon * dt_micro |
---|
| 386 | nr(k,j,i) = nr(k,j,i) + autocon / x0 * hyrho(k) * dt_micro |
---|
| 387 | |
---|
| 388 | ENDIF |
---|
| 389 | |
---|
[1000] | 390 | ENDDO |
---|
| 391 | ENDDO |
---|
| 392 | ENDDO |
---|
| 393 | |
---|
[1361] | 394 | CALL cpu_log( log_point_s(55), 'autoconversion', 'stop' ) |
---|
| 395 | |
---|
[1000] | 396 | END SUBROUTINE autoconversion |
---|
| 397 | |
---|
[1106] | 398 | |
---|
[1682] | 399 | !------------------------------------------------------------------------------! |
---|
| 400 | ! Description: |
---|
| 401 | ! ------------ |
---|
| 402 | !> Accretion rate (Seifert and Beheng, 2006). |
---|
| 403 | !------------------------------------------------------------------------------! |
---|
[1005] | 404 | SUBROUTINE accretion |
---|
[1000] | 405 | |
---|
[1361] | 406 | USE arrays_3d, & |
---|
| 407 | ONLY: diss, qc, qr |
---|
| 408 | |
---|
| 409 | USE cloud_parameters, & |
---|
| 410 | ONLY: eps_sb, hyrho, k_cr0 |
---|
| 411 | |
---|
| 412 | USE control_parameters, & |
---|
| 413 | ONLY: dt_micro, rho_surface, turbulence |
---|
| 414 | |
---|
| 415 | USE cpulog, & |
---|
| 416 | ONLY: cpu_log, log_point_s |
---|
| 417 | |
---|
| 418 | USE indices, & |
---|
| 419 | ONLY: nxl, nxr, nys, nyn, nzb, nzb_s_inner, nzt |
---|
| 420 | |
---|
[1320] | 421 | USE kinds |
---|
[1005] | 422 | |
---|
[1000] | 423 | IMPLICIT NONE |
---|
| 424 | |
---|
[1682] | 425 | INTEGER(iwp) :: i !< |
---|
| 426 | INTEGER(iwp) :: j !< |
---|
| 427 | INTEGER(iwp) :: k !< |
---|
[1000] | 428 | |
---|
[1682] | 429 | REAL(wp) :: accr !< |
---|
| 430 | REAL(wp) :: k_cr !< |
---|
| 431 | REAL(wp) :: phi_ac !< |
---|
| 432 | REAL(wp) :: tau_cloud !< |
---|
| 433 | REAL(wp) :: xc !< |
---|
[1361] | 434 | |
---|
| 435 | CALL cpu_log( log_point_s(56), 'accretion', 'start' ) |
---|
| 436 | |
---|
[1005] | 437 | DO i = nxl, nxr |
---|
| 438 | DO j = nys, nyn |
---|
[1115] | 439 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1000] | 440 | |
---|
[1361] | 441 | IF ( ( qc(k,j,i) > eps_sb ) .AND. ( qr(k,j,i) > eps_sb ) ) THEN |
---|
| 442 | ! |
---|
| 443 | !-- Intern time scale of coagulation (Seifert and Beheng, 2006): |
---|
| 444 | tau_cloud = 1.0_wp - qc(k,j,i) / ( qc(k,j,i) + qr(k,j,i) ) |
---|
| 445 | ! |
---|
| 446 | !-- Universal function for accretion process (Seifert and |
---|
| 447 | !-- Beheng, 2001): |
---|
| 448 | phi_ac = ( tau_cloud / ( tau_cloud + 5.0E-5_wp ) )**4 |
---|
| 449 | ! |
---|
| 450 | !-- Parameterized turbulence effects on autoconversion (Seifert, |
---|
| 451 | !-- Nuijens and Stevens, 2010). The factor of 1.0E4 is needed to |
---|
| 452 | !-- convert the dissipation rate (diss) from m2 s-3 to cm2 s-3. |
---|
| 453 | IF ( turbulence ) THEN |
---|
| 454 | k_cr = k_cr0 * ( 1.0_wp + 0.05_wp * & |
---|
| 455 | MIN( 600.0_wp, & |
---|
| 456 | diss(k,j,i) * 1.0E4_wp )**0.25_wp & |
---|
| 457 | ) |
---|
| 458 | ELSE |
---|
| 459 | k_cr = k_cr0 |
---|
| 460 | ENDIF |
---|
| 461 | ! |
---|
| 462 | !-- Accretion rate (Seifert and Beheng, 2006): |
---|
| 463 | accr = k_cr * qc(k,j,i) * qr(k,j,i) * phi_ac * & |
---|
| 464 | SQRT( rho_surface * hyrho(k) ) |
---|
| 465 | accr = MIN( accr, qc(k,j,i) / dt_micro ) |
---|
| 466 | |
---|
| 467 | qr(k,j,i) = qr(k,j,i) + accr * dt_micro |
---|
| 468 | qc(k,j,i) = qc(k,j,i) - accr * dt_micro |
---|
| 469 | |
---|
| 470 | ENDIF |
---|
| 471 | |
---|
[1005] | 472 | ENDDO |
---|
| 473 | ENDDO |
---|
[1000] | 474 | ENDDO |
---|
| 475 | |
---|
[1361] | 476 | CALL cpu_log( log_point_s(56), 'accretion', 'stop' ) |
---|
| 477 | |
---|
[1005] | 478 | END SUBROUTINE accretion |
---|
[1000] | 479 | |
---|
[1106] | 480 | |
---|
[1682] | 481 | !------------------------------------------------------------------------------! |
---|
| 482 | ! Description: |
---|
| 483 | ! ------------ |
---|
| 484 | !> Collisional breakup rate (Seifert, 2008). |
---|
| 485 | !------------------------------------------------------------------------------! |
---|
[1005] | 486 | SUBROUTINE selfcollection_breakup |
---|
[1000] | 487 | |
---|
[1361] | 488 | USE arrays_3d, & |
---|
| 489 | ONLY: nr, qr |
---|
| 490 | |
---|
| 491 | USE cloud_parameters, & |
---|
| 492 | ONLY: dpirho_l, eps_sb, hyrho, k_br, k_rr |
---|
| 493 | |
---|
| 494 | USE control_parameters, & |
---|
| 495 | ONLY: dt_micro, rho_surface |
---|
| 496 | |
---|
| 497 | USE cpulog, & |
---|
| 498 | ONLY: cpu_log, log_point_s |
---|
| 499 | |
---|
| 500 | USE indices, & |
---|
| 501 | ONLY: nxl, nxr, nys, nyn, nzb, nzb_s_inner, nzt |
---|
| 502 | |
---|
[1320] | 503 | USE kinds |
---|
[1361] | 504 | |
---|
[1000] | 505 | IMPLICIT NONE |
---|
| 506 | |
---|
[1682] | 507 | INTEGER(iwp) :: i !< |
---|
| 508 | INTEGER(iwp) :: j !< |
---|
| 509 | INTEGER(iwp) :: k !< |
---|
[1000] | 510 | |
---|
[1682] | 511 | REAL(wp) :: breakup !< |
---|
| 512 | REAL(wp) :: dr !< |
---|
| 513 | REAL(wp) :: phi_br !< |
---|
| 514 | REAL(wp) :: selfcoll !< |
---|
[1361] | 515 | |
---|
| 516 | CALL cpu_log( log_point_s(57), 'selfcollection', 'start' ) |
---|
| 517 | |
---|
[1000] | 518 | DO i = nxl, nxr |
---|
| 519 | DO j = nys, nyn |
---|
[1115] | 520 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1361] | 521 | IF ( qr(k,j,i) > eps_sb ) THEN |
---|
| 522 | ! |
---|
| 523 | !-- Selfcollection rate (Seifert and Beheng, 2001): |
---|
| 524 | selfcoll = k_rr * nr(k,j,i) * qr(k,j,i) * & |
---|
| 525 | SQRT( hyrho(k) * rho_surface ) |
---|
| 526 | ! |
---|
| 527 | !-- Weight averaged diameter of rain drops: |
---|
| 528 | dr = ( hyrho(k) * qr(k,j,i) / & |
---|
| 529 | nr(k,j,i) * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
| 530 | ! |
---|
| 531 | !-- Collisional breakup rate (Seifert, 2008): |
---|
| 532 | IF ( dr >= 0.3E-3_wp ) THEN |
---|
| 533 | phi_br = k_br * ( dr - 1.1E-3_wp ) |
---|
| 534 | breakup = selfcoll * ( phi_br + 1.0_wp ) |
---|
| 535 | ELSE |
---|
| 536 | breakup = 0.0_wp |
---|
| 537 | ENDIF |
---|
[1000] | 538 | |
---|
[1361] | 539 | selfcoll = MAX( breakup - selfcoll, -nr(k,j,i) / dt_micro ) |
---|
| 540 | nr(k,j,i) = nr(k,j,i) + selfcoll * dt_micro |
---|
| 541 | |
---|
| 542 | ENDIF |
---|
[1000] | 543 | ENDDO |
---|
| 544 | ENDDO |
---|
| 545 | ENDDO |
---|
| 546 | |
---|
[1361] | 547 | CALL cpu_log( log_point_s(57), 'selfcollection', 'stop' ) |
---|
| 548 | |
---|
[1005] | 549 | END SUBROUTINE selfcollection_breakup |
---|
[1000] | 550 | |
---|
[1106] | 551 | |
---|
[1682] | 552 | !------------------------------------------------------------------------------! |
---|
| 553 | ! Description: |
---|
| 554 | ! ------------ |
---|
| 555 | !> Evaporation of precipitable water. Condensation is neglected for |
---|
| 556 | !> precipitable water. |
---|
| 557 | !------------------------------------------------------------------------------! |
---|
[1012] | 558 | SUBROUTINE evaporation_rain |
---|
[1000] | 559 | |
---|
[1361] | 560 | USE arrays_3d, & |
---|
| 561 | ONLY: hyp, nr, pt, q, qc, qr |
---|
| 562 | |
---|
| 563 | USE cloud_parameters, & |
---|
| 564 | ONLY: a_term, a_vent, b_term, b_vent, c_evap, c_term, diff_coeff_l,& |
---|
| 565 | dpirho_l, eps_sb, hyrho, kin_vis_air, k_st, l_d_cp, l_d_r, & |
---|
| 566 | l_v, rho_l, r_v, schmidt_p_1d3, thermal_conductivity_l, & |
---|
| 567 | t_d_pt, ventilation_effect |
---|
| 568 | |
---|
| 569 | USE constants, & |
---|
| 570 | ONLY: pi |
---|
| 571 | |
---|
| 572 | USE control_parameters, & |
---|
| 573 | ONLY: dt_micro |
---|
| 574 | |
---|
| 575 | USE cpulog, & |
---|
| 576 | ONLY: cpu_log, log_point_s |
---|
| 577 | |
---|
| 578 | USE indices, & |
---|
| 579 | ONLY: nxl, nxr, nys, nyn, nzb, nzb_s_inner, nzt |
---|
| 580 | |
---|
[1320] | 581 | USE kinds |
---|
[1012] | 582 | |
---|
| 583 | IMPLICIT NONE |
---|
| 584 | |
---|
[1682] | 585 | INTEGER(iwp) :: i !< |
---|
| 586 | INTEGER(iwp) :: j !< |
---|
| 587 | INTEGER(iwp) :: k !< |
---|
[1361] | 588 | |
---|
[1682] | 589 | REAL(wp) :: alpha !< |
---|
| 590 | REAL(wp) :: dr !< |
---|
| 591 | REAL(wp) :: e_s !< |
---|
| 592 | REAL(wp) :: evap !< |
---|
| 593 | REAL(wp) :: evap_nr !< |
---|
| 594 | REAL(wp) :: f_vent !< |
---|
| 595 | REAL(wp) :: g_evap !< |
---|
| 596 | REAL(wp) :: lambda_r !< |
---|
| 597 | REAL(wp) :: mu_r !< |
---|
| 598 | REAL(wp) :: mu_r_2 !< |
---|
| 599 | REAL(wp) :: mu_r_5d2 !< |
---|
| 600 | REAL(wp) :: nr_0 !< |
---|
| 601 | REAL(wp) :: q_s !< |
---|
| 602 | REAL(wp) :: sat !< |
---|
| 603 | REAL(wp) :: t_l !< |
---|
| 604 | REAL(wp) :: temp !< |
---|
| 605 | REAL(wp) :: xr !< |
---|
[1361] | 606 | |
---|
| 607 | CALL cpu_log( log_point_s(58), 'evaporation', 'start' ) |
---|
| 608 | |
---|
[1012] | 609 | DO i = nxl, nxr |
---|
| 610 | DO j = nys, nyn |
---|
[1115] | 611 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1361] | 612 | IF ( qr(k,j,i) > eps_sb ) THEN |
---|
| 613 | ! |
---|
| 614 | !-- Actual liquid water temperature: |
---|
| 615 | t_l = t_d_pt(k) * pt(k,j,i) |
---|
| 616 | ! |
---|
| 617 | !-- Saturation vapor pressure at t_l: |
---|
| 618 | e_s = 610.78_wp * EXP( 17.269_wp * ( t_l - 273.16_wp ) / & |
---|
| 619 | ( t_l - 35.86_wp ) & |
---|
| 620 | ) |
---|
| 621 | ! |
---|
| 622 | !-- Computation of saturation humidity: |
---|
| 623 | q_s = 0.622_wp * e_s / ( hyp(k) - 0.378_wp * e_s ) |
---|
| 624 | alpha = 0.622_wp * l_d_r * l_d_cp / ( t_l * t_l ) |
---|
| 625 | q_s = q_s * ( 1.0_wp + alpha * q(k,j,i) ) / & |
---|
| 626 | ( 1.0_wp + alpha * q_s ) |
---|
| 627 | ! |
---|
| 628 | !-- Supersaturation: |
---|
| 629 | sat = ( q(k,j,i) - qr(k,j,i) - qc(k,j,i) ) / q_s - 1.0_wp |
---|
| 630 | ! |
---|
| 631 | !-- Evaporation needs only to be calculated in subsaturated regions |
---|
| 632 | IF ( sat < 0.0_wp ) THEN |
---|
| 633 | ! |
---|
| 634 | !-- Actual temperature: |
---|
| 635 | temp = t_l + l_d_cp * ( qc(k,j,i) + qr(k,j,i) ) |
---|
| 636 | |
---|
| 637 | g_evap = 1.0_wp / ( ( l_v / ( r_v * temp ) - 1.0_wp ) * & |
---|
| 638 | l_v / ( thermal_conductivity_l * temp ) & |
---|
| 639 | + r_v * temp / ( diff_coeff_l * e_s ) & |
---|
| 640 | ) |
---|
| 641 | ! |
---|
| 642 | !-- Mean weight of rain drops |
---|
| 643 | xr = hyrho(k) * qr(k,j,i) / nr(k,j,i) |
---|
| 644 | ! |
---|
| 645 | !-- Weight averaged diameter of rain drops: |
---|
| 646 | dr = ( xr * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
| 647 | ! |
---|
| 648 | !-- Compute ventilation factor and intercept parameter |
---|
| 649 | !-- (Seifert and Beheng, 2006; Seifert, 2008): |
---|
| 650 | IF ( ventilation_effect ) THEN |
---|
| 651 | ! |
---|
| 652 | !-- Shape parameter of gamma distribution (Milbrandt and Yau, |
---|
| 653 | !-- 2005; Stevens and Seifert, 2008): |
---|
| 654 | mu_r = 10.0_wp * ( 1.0_wp + TANH( 1.2E3_wp * & |
---|
| 655 | ( dr - 1.4E-3_wp ) ) ) |
---|
| 656 | ! |
---|
| 657 | !-- Slope parameter of gamma distribution (Seifert, 2008): |
---|
| 658 | lambda_r = ( ( mu_r + 3.0_wp ) * ( mu_r + 2.0_wp ) * & |
---|
| 659 | ( mu_r + 1.0_wp ) & |
---|
| 660 | )**( 1.0_wp / 3.0_wp ) / dr |
---|
[1012] | 661 | |
---|
[1361] | 662 | mu_r_2 = mu_r + 2.0_wp |
---|
| 663 | mu_r_5d2 = mu_r + 2.5_wp |
---|
| 664 | |
---|
| 665 | f_vent = a_vent * gamm( mu_r_2 ) * & |
---|
| 666 | lambda_r**( -mu_r_2 ) + b_vent * & |
---|
| 667 | schmidt_p_1d3 * SQRT( a_term / kin_vis_air ) *& |
---|
| 668 | gamm( mu_r_5d2 ) * lambda_r**( -mu_r_5d2 ) * & |
---|
| 669 | ( 1.0_wp - & |
---|
| 670 | 0.5_wp * ( b_term / a_term ) * & |
---|
| 671 | ( lambda_r / ( c_term + lambda_r ) & |
---|
| 672 | )**mu_r_5d2 - & |
---|
| 673 | 0.125_wp * ( b_term / a_term )**2 * & |
---|
| 674 | ( lambda_r / ( 2.0_wp * c_term + lambda_r ) & |
---|
| 675 | )**mu_r_5d2 - & |
---|
| 676 | 0.0625_wp * ( b_term / a_term )**3 * & |
---|
| 677 | ( lambda_r / ( 3.0_wp * c_term + lambda_r ) & |
---|
| 678 | )**mu_r_5d2 - & |
---|
| 679 | 0.0390625_wp * ( b_term / a_term )**4 * & |
---|
| 680 | ( lambda_r / ( 4.0_wp * c_term + lambda_r ) & |
---|
| 681 | )**mu_r_5d2 & |
---|
| 682 | ) |
---|
| 683 | |
---|
| 684 | nr_0 = nr(k,j,i) * lambda_r**( mu_r + 1.0_wp ) / & |
---|
| 685 | gamm( mu_r + 1.0_wp ) |
---|
| 686 | ELSE |
---|
| 687 | f_vent = 1.0_wp |
---|
| 688 | nr_0 = nr(k,j,i) * dr |
---|
| 689 | ENDIF |
---|
| 690 | ! |
---|
| 691 | !-- Evaporation rate of rain water content (Seifert and |
---|
| 692 | !-- Beheng, 2006): |
---|
| 693 | evap = 2.0_wp * pi * nr_0 * g_evap * f_vent * sat / & |
---|
| 694 | hyrho(k) |
---|
| 695 | evap = MAX( evap, -qr(k,j,i) / dt_micro ) |
---|
| 696 | evap_nr = MAX( c_evap * evap / xr * hyrho(k), & |
---|
| 697 | -nr(k,j,i) / dt_micro ) |
---|
| 698 | |
---|
| 699 | qr(k,j,i) = qr(k,j,i) + evap * dt_micro |
---|
| 700 | nr(k,j,i) = nr(k,j,i) + evap_nr * dt_micro |
---|
| 701 | |
---|
| 702 | ENDIF |
---|
| 703 | ENDIF |
---|
| 704 | |
---|
[1012] | 705 | ENDDO |
---|
| 706 | ENDDO |
---|
| 707 | ENDDO |
---|
| 708 | |
---|
[1361] | 709 | CALL cpu_log( log_point_s(58), 'evaporation', 'stop' ) |
---|
| 710 | |
---|
[1012] | 711 | END SUBROUTINE evaporation_rain |
---|
| 712 | |
---|
[1106] | 713 | |
---|
[1682] | 714 | !------------------------------------------------------------------------------! |
---|
| 715 | ! Description: |
---|
| 716 | ! ------------ |
---|
| 717 | !> Sedimentation of cloud droplets (Ackermann et al., 2009, MWR). |
---|
| 718 | !------------------------------------------------------------------------------! |
---|
[1012] | 719 | SUBROUTINE sedimentation_cloud |
---|
| 720 | |
---|
[1361] | 721 | USE arrays_3d, & |
---|
| 722 | ONLY: ddzu, dzu, pt, q, qc |
---|
| 723 | |
---|
| 724 | USE cloud_parameters, & |
---|
| 725 | ONLY: eps_sb, hyrho, l_d_cp, nc_const, pt_d_t, sed_qc_const |
---|
| 726 | |
---|
| 727 | USE constants, & |
---|
| 728 | ONLY: pi |
---|
| 729 | |
---|
| 730 | USE control_parameters, & |
---|
| 731 | ONLY: dt_do2d_xy, dt_micro, intermediate_timestep_count |
---|
| 732 | |
---|
| 733 | USE cpulog, & |
---|
| 734 | ONLY: cpu_log, log_point_s |
---|
| 735 | |
---|
| 736 | USE indices, & |
---|
| 737 | ONLY: nxl, nxr, nys, nyn, nzb, nzb_s_inner, nzt |
---|
| 738 | |
---|
[1320] | 739 | USE kinds |
---|
[1361] | 740 | |
---|
[1012] | 741 | IMPLICIT NONE |
---|
| 742 | |
---|
[1682] | 743 | INTEGER(iwp) :: i !< |
---|
| 744 | INTEGER(iwp) :: j !< |
---|
| 745 | INTEGER(iwp) :: k !< |
---|
[1361] | 746 | |
---|
[1682] | 747 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_qc !< |
---|
[1361] | 748 | |
---|
| 749 | CALL cpu_log( log_point_s(59), 'sed_cloud', 'start' ) |
---|
| 750 | |
---|
| 751 | sed_qc(nzt+1) = 0.0_wp |
---|
| 752 | |
---|
[1012] | 753 | DO i = nxl, nxr |
---|
| 754 | DO j = nys, nyn |
---|
[1361] | 755 | DO k = nzt, nzb_s_inner(j,i)+1, -1 |
---|
[1012] | 756 | |
---|
[1361] | 757 | IF ( qc(k,j,i) > eps_sb ) THEN |
---|
| 758 | sed_qc(k) = sed_qc_const * nc_const**( -2.0_wp / 3.0_wp ) * & |
---|
| 759 | ( qc(k,j,i) * hyrho(k) )**( 5.0_wp / 3.0_wp ) |
---|
| 760 | ELSE |
---|
| 761 | sed_qc(k) = 0.0_wp |
---|
| 762 | ENDIF |
---|
| 763 | |
---|
| 764 | sed_qc(k) = MIN( sed_qc(k), hyrho(k) * dzu(k+1) * q(k,j,i) / & |
---|
| 765 | dt_micro + sed_qc(k+1) & |
---|
| 766 | ) |
---|
| 767 | |
---|
| 768 | q(k,j,i) = q(k,j,i) + ( sed_qc(k+1) - sed_qc(k) ) * & |
---|
| 769 | ddzu(k+1) / hyrho(k) * dt_micro |
---|
| 770 | qc(k,j,i) = qc(k,j,i) + ( sed_qc(k+1) - sed_qc(k) ) * & |
---|
| 771 | ddzu(k+1) / hyrho(k) * dt_micro |
---|
| 772 | pt(k,j,i) = pt(k,j,i) - ( sed_qc(k+1) - sed_qc(k) ) * & |
---|
| 773 | ddzu(k+1) / hyrho(k) * l_d_cp * & |
---|
| 774 | pt_d_t(k) * dt_micro |
---|
| 775 | |
---|
[1012] | 776 | ENDDO |
---|
| 777 | ENDDO |
---|
| 778 | ENDDO |
---|
| 779 | |
---|
[1361] | 780 | CALL cpu_log( log_point_s(59), 'sed_cloud', 'stop' ) |
---|
| 781 | |
---|
[1012] | 782 | END SUBROUTINE sedimentation_cloud |
---|
| 783 | |
---|
[1106] | 784 | |
---|
[1682] | 785 | !------------------------------------------------------------------------------! |
---|
| 786 | ! Description: |
---|
| 787 | ! ------------ |
---|
| 788 | !> Computation of sedimentation flux. Implementation according to Stevens |
---|
| 789 | !> and Seifert (2008). Code is based on UCLA-LES. |
---|
| 790 | !------------------------------------------------------------------------------! |
---|
[1012] | 791 | SUBROUTINE sedimentation_rain |
---|
| 792 | |
---|
[1361] | 793 | USE arrays_3d, & |
---|
| 794 | ONLY: ddzu, dzu, nr, pt, q, qr |
---|
| 795 | |
---|
| 796 | USE cloud_parameters, & |
---|
| 797 | ONLY: a_term, b_term, c_term, cof, dpirho_l, eps_sb, hyrho, & |
---|
| 798 | limiter_sedimentation, l_d_cp, precipitation_amount, prr, & |
---|
| 799 | pt_d_t, stp |
---|
| 800 | |
---|
| 801 | USE control_parameters, & |
---|
| 802 | ONLY: call_microphysics_at_all_substeps, dt_do2d_xy, dt_micro, & |
---|
| 803 | dt_3d, intermediate_timestep_count, & |
---|
| 804 | intermediate_timestep_count_max, & |
---|
| 805 | precipitation_amount_interval, time_do2d_xy |
---|
| 806 | |
---|
| 807 | USE cpulog, & |
---|
| 808 | ONLY: cpu_log, log_point_s |
---|
| 809 | |
---|
| 810 | USE indices, & |
---|
| 811 | ONLY: nxl, nxr, nys, nyn, nzb, nzb_s_inner, nzt |
---|
| 812 | |
---|
[1320] | 813 | USE kinds |
---|
[1012] | 814 | |
---|
[1361] | 815 | USE statistics, & |
---|
| 816 | ONLY: weight_substep |
---|
| 817 | |
---|
[1012] | 818 | IMPLICIT NONE |
---|
| 819 | |
---|
[1682] | 820 | INTEGER(iwp) :: i !< |
---|
| 821 | INTEGER(iwp) :: j !< |
---|
| 822 | INTEGER(iwp) :: k !< |
---|
| 823 | INTEGER(iwp) :: k_run !< |
---|
[1361] | 824 | |
---|
[1682] | 825 | REAL(wp) :: c_run !< |
---|
| 826 | REAL(wp) :: d_max !< |
---|
| 827 | REAL(wp) :: d_mean !< |
---|
| 828 | REAL(wp) :: d_min !< |
---|
| 829 | REAL(wp) :: dr !< |
---|
| 830 | REAL(wp) :: dt_sedi !< |
---|
| 831 | REAL(wp) :: flux !< |
---|
| 832 | REAL(wp) :: lambda_r !< |
---|
| 833 | REAL(wp) :: mu_r !< |
---|
| 834 | REAL(wp) :: z_run !< |
---|
[1361] | 835 | |
---|
[1682] | 836 | REAL(wp), DIMENSION(nzb:nzt+1) :: c_nr !< |
---|
| 837 | REAL(wp), DIMENSION(nzb:nzt+1) :: c_qr !< |
---|
| 838 | REAL(wp), DIMENSION(nzb:nzt+1) :: d_nr !< |
---|
| 839 | REAL(wp), DIMENSION(nzb:nzt+1) :: d_qr !< |
---|
| 840 | REAL(wp), DIMENSION(nzb:nzt+1) :: nr_slope !< |
---|
| 841 | REAL(wp), DIMENSION(nzb:nzt+1) :: qr_slope !< |
---|
| 842 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_nr !< |
---|
| 843 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_qr !< |
---|
| 844 | REAL(wp), DIMENSION(nzb:nzt+1) :: w_nr !< |
---|
| 845 | REAL(wp), DIMENSION(nzb:nzt+1) :: w_qr !< |
---|
[1361] | 846 | |
---|
| 847 | CALL cpu_log( log_point_s(60), 'sed_rain', 'start' ) |
---|
[1682] | 848 | |
---|
[1361] | 849 | IF ( intermediate_timestep_count == 1 ) prr(:,:,:) = 0.0_wp |
---|
| 850 | ! |
---|
| 851 | !-- Compute velocities |
---|
[1012] | 852 | DO i = nxl, nxr |
---|
| 853 | DO j = nys, nyn |
---|
[1115] | 854 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1361] | 855 | IF ( qr(k,j,i) > eps_sb ) THEN |
---|
| 856 | ! |
---|
| 857 | !-- Weight averaged diameter of rain drops: |
---|
| 858 | dr = ( hyrho(k) * qr(k,j,i) / & |
---|
| 859 | nr(k,j,i) * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
| 860 | ! |
---|
| 861 | !-- Shape parameter of gamma distribution (Milbrandt and Yau, 2005; |
---|
| 862 | !-- Stevens and Seifert, 2008): |
---|
| 863 | mu_r = 10.0_wp * ( 1.0_wp + TANH( 1.2E3_wp * & |
---|
| 864 | ( dr - 1.4E-3_wp ) ) ) |
---|
| 865 | ! |
---|
| 866 | !-- Slope parameter of gamma distribution (Seifert, 2008): |
---|
| 867 | lambda_r = ( ( mu_r + 3.0_wp ) * ( mu_r + 2.0_wp ) * & |
---|
| 868 | ( mu_r + 1.0_wp ) )**( 1.0_wp / 3.0_wp ) / dr |
---|
[1012] | 869 | |
---|
[1361] | 870 | w_nr(k) = MAX( 0.1_wp, MIN( 20.0_wp, & |
---|
| 871 | a_term - b_term * ( 1.0_wp + & |
---|
| 872 | c_term / & |
---|
| 873 | lambda_r )**( -1.0_wp * & |
---|
| 874 | ( mu_r + 1.0_wp ) ) & |
---|
| 875 | ) & |
---|
| 876 | ) |
---|
| 877 | |
---|
| 878 | w_qr(k) = MAX( 0.1_wp, MIN( 20.0_wp, & |
---|
| 879 | a_term - b_term * ( 1.0_wp + & |
---|
| 880 | c_term / & |
---|
| 881 | lambda_r )**( -1.0_wp * & |
---|
| 882 | ( mu_r + 4.0_wp ) ) & |
---|
| 883 | ) & |
---|
| 884 | ) |
---|
| 885 | ELSE |
---|
| 886 | w_nr(k) = 0.0_wp |
---|
| 887 | w_qr(k) = 0.0_wp |
---|
| 888 | ENDIF |
---|
[1012] | 889 | ENDDO |
---|
[1361] | 890 | ! |
---|
| 891 | !-- Adjust boundary values |
---|
| 892 | w_nr(nzb_s_inner(j,i)) = w_nr(nzb_s_inner(j,i)+1) |
---|
| 893 | w_qr(nzb_s_inner(j,i)) = w_qr(nzb_s_inner(j,i)+1) |
---|
| 894 | w_nr(nzt+1) = 0.0_wp |
---|
| 895 | w_qr(nzt+1) = 0.0_wp |
---|
| 896 | ! |
---|
| 897 | !-- Compute Courant number |
---|
| 898 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 899 | c_nr(k) = 0.25_wp * ( w_nr(k-1) + & |
---|
| 900 | 2.0_wp * w_nr(k) + w_nr(k+1) ) * & |
---|
| 901 | dt_micro * ddzu(k) |
---|
| 902 | c_qr(k) = 0.25_wp * ( w_qr(k-1) + & |
---|
| 903 | 2.0_wp * w_qr(k) + w_qr(k+1) ) * & |
---|
| 904 | dt_micro * ddzu(k) |
---|
| 905 | ENDDO |
---|
| 906 | ! |
---|
| 907 | !-- Limit slopes with monotonized centered (MC) limiter (van Leer, 1977): |
---|
| 908 | IF ( limiter_sedimentation ) THEN |
---|
| 909 | |
---|
| 910 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1646] | 911 | d_mean = 0.5_wp * ( qr(k+1,j,i) - qr(k-1,j,i) ) |
---|
[1361] | 912 | d_min = qr(k,j,i) - MIN( qr(k+1,j,i), qr(k,j,i), qr(k-1,j,i) ) |
---|
| 913 | d_max = MAX( qr(k+1,j,i), qr(k,j,i), qr(k-1,j,i) ) - qr(k,j,i) |
---|
| 914 | |
---|
| 915 | qr_slope(k) = SIGN(1.0_wp, d_mean) * MIN ( 2.0_wp * d_min, & |
---|
| 916 | 2.0_wp * d_max, & |
---|
| 917 | ABS( d_mean ) ) |
---|
| 918 | |
---|
[1646] | 919 | d_mean = 0.5_wp * ( nr(k+1,j,i) - nr(k-1,j,i) ) |
---|
[1361] | 920 | d_min = nr(k,j,i) - MIN( nr(k+1,j,i), nr(k,j,i), nr(k-1,j,i) ) |
---|
| 921 | d_max = MAX( nr(k+1,j,i), nr(k,j,i), nr(k-1,j,i) ) - nr(k,j,i) |
---|
| 922 | |
---|
| 923 | nr_slope(k) = SIGN(1.0_wp, d_mean) * MIN ( 2.0_wp * d_min, & |
---|
| 924 | 2.0_wp * d_max, & |
---|
| 925 | ABS( d_mean ) ) |
---|
| 926 | ENDDO |
---|
| 927 | |
---|
| 928 | ELSE |
---|
| 929 | |
---|
| 930 | nr_slope = 0.0_wp |
---|
| 931 | qr_slope = 0.0_wp |
---|
| 932 | |
---|
| 933 | ENDIF |
---|
| 934 | |
---|
| 935 | sed_nr(nzt+1) = 0.0_wp |
---|
| 936 | sed_qr(nzt+1) = 0.0_wp |
---|
| 937 | ! |
---|
| 938 | !-- Compute sedimentation flux |
---|
| 939 | DO k = nzt, nzb_s_inner(j,i)+1, -1 |
---|
| 940 | ! |
---|
| 941 | !-- Sum up all rain drop number densities which contribute to the flux |
---|
| 942 | !-- through k-1/2 |
---|
| 943 | flux = 0.0_wp |
---|
| 944 | z_run = 0.0_wp ! height above z(k) |
---|
| 945 | k_run = k |
---|
| 946 | c_run = MIN( 1.0_wp, c_nr(k) ) |
---|
| 947 | DO WHILE ( c_run > 0.0_wp .AND. k_run <= nzt ) |
---|
| 948 | flux = flux + hyrho(k_run) * & |
---|
| 949 | ( nr(k_run,j,i) + nr_slope(k_run) * & |
---|
| 950 | ( 1.0_wp - c_run ) * 0.5_wp ) * c_run * dzu(k_run) |
---|
| 951 | z_run = z_run + dzu(k_run) |
---|
| 952 | k_run = k_run + 1 |
---|
| 953 | c_run = MIN( 1.0_wp, c_nr(k_run) - z_run * ddzu(k_run) ) |
---|
| 954 | ENDDO |
---|
| 955 | ! |
---|
| 956 | !-- It is not allowed to sediment more rain drop number density than |
---|
| 957 | !-- available |
---|
| 958 | flux = MIN( flux, & |
---|
| 959 | hyrho(k) * dzu(k+1) * nr(k,j,i) + sed_nr(k+1) * & |
---|
| 960 | dt_micro & |
---|
| 961 | ) |
---|
| 962 | |
---|
| 963 | sed_nr(k) = flux / dt_micro |
---|
| 964 | nr(k,j,i) = nr(k,j,i) + ( sed_nr(k+1) - sed_nr(k) ) * & |
---|
| 965 | ddzu(k+1) / hyrho(k) * dt_micro |
---|
| 966 | ! |
---|
| 967 | !-- Sum up all rain water content which contributes to the flux |
---|
| 968 | !-- through k-1/2 |
---|
| 969 | flux = 0.0_wp |
---|
| 970 | z_run = 0.0_wp ! height above z(k) |
---|
| 971 | k_run = k |
---|
| 972 | c_run = MIN( 1.0_wp, c_qr(k) ) |
---|
| 973 | |
---|
| 974 | DO WHILE ( c_run > 0.0_wp .AND. k_run <= nzt ) |
---|
| 975 | |
---|
| 976 | flux = flux + hyrho(k_run) * ( qr(k_run,j,i) + & |
---|
| 977 | qr_slope(k_run) * ( 1.0_wp - c_run ) * & |
---|
| 978 | 0.5_wp ) * c_run * dzu(k_run) |
---|
| 979 | z_run = z_run + dzu(k_run) |
---|
| 980 | k_run = k_run + 1 |
---|
| 981 | c_run = MIN( 1.0_wp, c_qr(k_run) - z_run * ddzu(k_run) ) |
---|
| 982 | |
---|
| 983 | ENDDO |
---|
| 984 | ! |
---|
| 985 | !-- It is not allowed to sediment more rain water content than |
---|
| 986 | !-- available |
---|
| 987 | flux = MIN( flux, & |
---|
| 988 | hyrho(k) * dzu(k) * qr(k,j,i) + sed_qr(k+1) * & |
---|
| 989 | dt_micro & |
---|
| 990 | ) |
---|
| 991 | |
---|
| 992 | sed_qr(k) = flux / dt_micro |
---|
| 993 | |
---|
| 994 | qr(k,j,i) = qr(k,j,i) + ( sed_qr(k+1) - sed_qr(k) ) * & |
---|
| 995 | ddzu(k+1) / hyrho(k) * dt_micro |
---|
| 996 | q(k,j,i) = q(k,j,i) + ( sed_qr(k+1) - sed_qr(k) ) * & |
---|
| 997 | ddzu(k+1) / hyrho(k) * dt_micro |
---|
| 998 | pt(k,j,i) = pt(k,j,i) - ( sed_qr(k+1) - sed_qr(k) ) * & |
---|
| 999 | ddzu(k+1) / hyrho(k) * l_d_cp * & |
---|
| 1000 | pt_d_t(k) * dt_micro |
---|
| 1001 | ! |
---|
| 1002 | !-- Compute the rain rate |
---|
| 1003 | IF ( call_microphysics_at_all_substeps ) THEN |
---|
| 1004 | prr(k,j,i) = prr(k,j,i) + sed_qr(k) / hyrho(k) * & |
---|
| 1005 | weight_substep(intermediate_timestep_count) |
---|
| 1006 | ELSE |
---|
| 1007 | prr(k,j,i) = sed_qr(k) / hyrho(k) |
---|
| 1008 | ENDIF |
---|
| 1009 | |
---|
| 1010 | ENDDO |
---|
[1012] | 1011 | ENDDO |
---|
| 1012 | ENDDO |
---|
| 1013 | |
---|
[1361] | 1014 | ! |
---|
| 1015 | !-- Precipitation amount |
---|
| 1016 | IF ( intermediate_timestep_count == intermediate_timestep_count_max & |
---|
| 1017 | .AND. ( dt_do2d_xy - time_do2d_xy ) < & |
---|
| 1018 | precipitation_amount_interval ) THEN |
---|
| 1019 | DO i = nxl, nxr |
---|
| 1020 | DO j = nys, nyn |
---|
| 1021 | precipitation_amount(j,i) = precipitation_amount(j,i) + & |
---|
| 1022 | prr(nzb_s_inner(j,i)+1,j,i) * & |
---|
| 1023 | hyrho(nzb_s_inner(j,i)+1) * dt_3d |
---|
| 1024 | ENDDO |
---|
| 1025 | ENDDO |
---|
| 1026 | ENDIF |
---|
| 1027 | |
---|
| 1028 | CALL cpu_log( log_point_s(60), 'sed_rain', 'stop' ) |
---|
| 1029 | |
---|
[1012] | 1030 | END SUBROUTINE sedimentation_rain |
---|
| 1031 | |
---|
| 1032 | |
---|
[1000] | 1033 | !------------------------------------------------------------------------------! |
---|
[1682] | 1034 | ! Description: |
---|
| 1035 | ! ------------ |
---|
| 1036 | !> Call for grid point i,j |
---|
[1000] | 1037 | !------------------------------------------------------------------------------! |
---|
[1022] | 1038 | |
---|
[1115] | 1039 | SUBROUTINE microphysics_control_ij( i, j ) |
---|
| 1040 | |
---|
[1320] | 1041 | USE arrays_3d, & |
---|
[1361] | 1042 | ONLY: hyp, nc_1d, nr, nr_1d, pt, pt_init, pt_1d, q, q_1d, qc, & |
---|
| 1043 | qc_1d, qr, qr_1d, zu |
---|
[1115] | 1044 | |
---|
[1320] | 1045 | USE cloud_parameters, & |
---|
| 1046 | ONLY: cp, hyrho, nc_const, pt_d_t, r_d, t_d_pt |
---|
| 1047 | |
---|
| 1048 | USE control_parameters, & |
---|
[1361] | 1049 | ONLY: call_microphysics_at_all_substeps, drizzle, dt_3d, dt_micro, & |
---|
| 1050 | g, intermediate_timestep_count, large_scale_forcing, & |
---|
| 1051 | lsf_surf, precipitation, pt_surface, & |
---|
[1320] | 1052 | rho_surface,surface_pressure |
---|
| 1053 | |
---|
| 1054 | USE indices, & |
---|
| 1055 | ONLY: nzb, nzt |
---|
| 1056 | |
---|
| 1057 | USE kinds |
---|
| 1058 | |
---|
| 1059 | USE statistics, & |
---|
| 1060 | ONLY: weight_pres |
---|
| 1061 | |
---|
[1022] | 1062 | IMPLICIT NONE |
---|
| 1063 | |
---|
[1682] | 1064 | INTEGER(iwp) :: i !< |
---|
| 1065 | INTEGER(iwp) :: j !< |
---|
| 1066 | INTEGER(iwp) :: k !< |
---|
[1115] | 1067 | |
---|
[1682] | 1068 | REAL(wp) :: t_surface !< |
---|
[1320] | 1069 | |
---|
[1361] | 1070 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
[1241] | 1071 | ! |
---|
| 1072 | !-- Calculate: |
---|
| 1073 | !-- pt / t : ratio of potential and actual temperature (pt_d_t) |
---|
| 1074 | !-- t / pt : ratio of actual and potential temperature (t_d_pt) |
---|
| 1075 | !-- p_0(z) : vertical profile of the hydrostatic pressure (hyp) |
---|
[1353] | 1076 | t_surface = pt_surface * ( surface_pressure / 1000.0_wp )**0.286_wp |
---|
[1241] | 1077 | DO k = nzb, nzt+1 |
---|
[1353] | 1078 | hyp(k) = surface_pressure * 100.0_wp * & |
---|
[1361] | 1079 | ( ( t_surface - g / cp * zu(k) ) / t_surface )**(1.0_wp / 0.286_wp) |
---|
[1353] | 1080 | pt_d_t(k) = ( 100000.0_wp / hyp(k) )**0.286_wp |
---|
| 1081 | t_d_pt(k) = 1.0_wp / pt_d_t(k) |
---|
[1241] | 1082 | hyrho(k) = hyp(k) / ( r_d * t_d_pt(k) * pt_init(k) ) |
---|
| 1083 | ENDDO |
---|
| 1084 | ! |
---|
| 1085 | !-- Compute reference density |
---|
[1353] | 1086 | rho_surface = surface_pressure * 100.0_wp / ( r_d * t_surface ) |
---|
[1241] | 1087 | ENDIF |
---|
| 1088 | |
---|
[1361] | 1089 | ! |
---|
| 1090 | !-- Compute length of time step |
---|
| 1091 | IF ( call_microphysics_at_all_substeps ) THEN |
---|
| 1092 | dt_micro = dt_3d * weight_pres(intermediate_timestep_count) |
---|
| 1093 | ELSE |
---|
| 1094 | dt_micro = dt_3d |
---|
| 1095 | ENDIF |
---|
[1241] | 1096 | |
---|
[1115] | 1097 | ! |
---|
[1361] | 1098 | !-- Use 1d arrays |
---|
[1115] | 1099 | q_1d(:) = q(:,j,i) |
---|
| 1100 | pt_1d(:) = pt(:,j,i) |
---|
| 1101 | qc_1d(:) = qc(:,j,i) |
---|
| 1102 | nc_1d(:) = nc_const |
---|
| 1103 | IF ( precipitation ) THEN |
---|
| 1104 | qr_1d(:) = qr(:,j,i) |
---|
| 1105 | nr_1d(:) = nr(:,j,i) |
---|
| 1106 | ENDIF |
---|
[1361] | 1107 | |
---|
[1115] | 1108 | ! |
---|
| 1109 | !-- Compute cloud physics |
---|
| 1110 | IF ( precipitation ) THEN |
---|
[1361] | 1111 | CALL adjust_cloud( i,j ) |
---|
[1115] | 1112 | CALL autoconversion( i,j ) |
---|
| 1113 | CALL accretion( i,j ) |
---|
| 1114 | CALL selfcollection_breakup( i,j ) |
---|
| 1115 | CALL evaporation_rain( i,j ) |
---|
| 1116 | CALL sedimentation_rain( i,j ) |
---|
| 1117 | ENDIF |
---|
| 1118 | |
---|
| 1119 | IF ( drizzle ) CALL sedimentation_cloud( i,j ) |
---|
[1361] | 1120 | |
---|
[1115] | 1121 | ! |
---|
[1361] | 1122 | !-- Store results on the 3d arrays |
---|
| 1123 | q(:,j,i) = q_1d(:) |
---|
| 1124 | pt(:,j,i) = pt_1d(:) |
---|
[1115] | 1125 | IF ( precipitation ) THEN |
---|
[1361] | 1126 | qr(:,j,i) = qr_1d(:) |
---|
| 1127 | nr(:,j,i) = nr_1d(:) |
---|
[1115] | 1128 | ENDIF |
---|
| 1129 | |
---|
| 1130 | END SUBROUTINE microphysics_control_ij |
---|
| 1131 | |
---|
[1682] | 1132 | !------------------------------------------------------------------------------! |
---|
| 1133 | ! Description: |
---|
| 1134 | ! ------------ |
---|
| 1135 | !> Adjust number of raindrops to avoid nonlinear effects in |
---|
| 1136 | !> sedimentation and evaporation of rain drops due to too small or |
---|
| 1137 | !> too big weights of rain drops (Stevens and Seifert, 2008). |
---|
| 1138 | !> The same procedure is applied to cloud droplets if they are determined |
---|
| 1139 | !> prognostically. Call for grid point i,j |
---|
| 1140 | !------------------------------------------------------------------------------! |
---|
[1115] | 1141 | SUBROUTINE adjust_cloud_ij( i, j ) |
---|
| 1142 | |
---|
[1320] | 1143 | USE arrays_3d, & |
---|
[1361] | 1144 | ONLY: qr_1d, nr_1d |
---|
[1115] | 1145 | |
---|
[1320] | 1146 | USE cloud_parameters, & |
---|
| 1147 | ONLY: eps_sb, xrmin, xrmax, hyrho, k_cc, x0 |
---|
| 1148 | |
---|
| 1149 | USE indices, & |
---|
| 1150 | ONLY: nzb, nzb_s_inner, nzt |
---|
| 1151 | |
---|
| 1152 | USE kinds |
---|
| 1153 | |
---|
[1115] | 1154 | IMPLICIT NONE |
---|
| 1155 | |
---|
[1682] | 1156 | INTEGER(iwp) :: i !< |
---|
| 1157 | INTEGER(iwp) :: j !< |
---|
| 1158 | INTEGER(iwp) :: k !< |
---|
| 1159 | |
---|
[1115] | 1160 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1022] | 1161 | |
---|
[1361] | 1162 | IF ( qr_1d(k) <= eps_sb ) THEN |
---|
| 1163 | qr_1d(k) = 0.0_wp |
---|
| 1164 | nr_1d(k) = 0.0_wp |
---|
[1065] | 1165 | ELSE |
---|
[1022] | 1166 | ! |
---|
[1048] | 1167 | !-- Adjust number of raindrops to avoid nonlinear effects in |
---|
| 1168 | !-- sedimentation and evaporation of rain drops due to too small or |
---|
[1065] | 1169 | !-- too big weights of rain drops (Stevens and Seifert, 2008). |
---|
[1361] | 1170 | IF ( nr_1d(k) * xrmin > qr_1d(k) * hyrho(k) ) THEN |
---|
| 1171 | nr_1d(k) = qr_1d(k) * hyrho(k) / xrmin |
---|
| 1172 | ELSEIF ( nr_1d(k) * xrmax < qr_1d(k) * hyrho(k) ) THEN |
---|
| 1173 | nr_1d(k) = qr_1d(k) * hyrho(k) / xrmax |
---|
[1048] | 1174 | ENDIF |
---|
[1115] | 1175 | |
---|
[1022] | 1176 | ENDIF |
---|
[1115] | 1177 | |
---|
[1022] | 1178 | ENDDO |
---|
| 1179 | |
---|
[1115] | 1180 | END SUBROUTINE adjust_cloud_ij |
---|
[1022] | 1181 | |
---|
[1106] | 1182 | |
---|
[1682] | 1183 | !------------------------------------------------------------------------------! |
---|
| 1184 | ! Description: |
---|
| 1185 | ! ------------ |
---|
| 1186 | !> Autoconversion rate (Seifert and Beheng, 2006). Call for grid point i,j |
---|
| 1187 | !------------------------------------------------------------------------------! |
---|
[1005] | 1188 | SUBROUTINE autoconversion_ij( i, j ) |
---|
[1000] | 1189 | |
---|
[1320] | 1190 | USE arrays_3d, & |
---|
| 1191 | ONLY: diss, dzu, nc_1d, nr_1d, qc_1d, qr_1d |
---|
[1115] | 1192 | |
---|
[1320] | 1193 | USE cloud_parameters, & |
---|
| 1194 | ONLY: a_1, a_2, a_3, b_1, b_2, b_3, beta_cc, c_1, c_2, c_3, & |
---|
| 1195 | c_const, dpirho_l, eps_sb, hyrho, k_cc, kin_vis_air, x0 |
---|
| 1196 | |
---|
| 1197 | USE control_parameters, & |
---|
| 1198 | ONLY: dt_micro, rho_surface, turbulence |
---|
| 1199 | |
---|
| 1200 | USE grid_variables, & |
---|
| 1201 | ONLY: dx, dy |
---|
| 1202 | |
---|
| 1203 | USE indices, & |
---|
| 1204 | ONLY: nzb, nzb_s_inner, nzt |
---|
| 1205 | |
---|
| 1206 | USE kinds |
---|
| 1207 | |
---|
[1000] | 1208 | IMPLICIT NONE |
---|
| 1209 | |
---|
[1682] | 1210 | INTEGER(iwp) :: i !< |
---|
| 1211 | INTEGER(iwp) :: j !< |
---|
| 1212 | INTEGER(iwp) :: k !< |
---|
[1000] | 1213 | |
---|
[1682] | 1214 | REAL(wp) :: alpha_cc !< |
---|
| 1215 | REAL(wp) :: autocon !< |
---|
| 1216 | REAL(wp) :: dissipation !< |
---|
| 1217 | REAL(wp) :: k_au !< |
---|
| 1218 | REAL(wp) :: l_mix !< |
---|
| 1219 | REAL(wp) :: nu_c !< |
---|
| 1220 | REAL(wp) :: phi_au !< |
---|
| 1221 | REAL(wp) :: r_cc !< |
---|
| 1222 | REAL(wp) :: rc !< |
---|
| 1223 | REAL(wp) :: re_lambda !< |
---|
| 1224 | REAL(wp) :: selfcoll !< |
---|
| 1225 | REAL(wp) :: sigma_cc !< |
---|
| 1226 | REAL(wp) :: tau_cloud !< |
---|
| 1227 | REAL(wp) :: xc !< |
---|
[1106] | 1228 | |
---|
[1115] | 1229 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1000] | 1230 | |
---|
[1115] | 1231 | IF ( qc_1d(k) > eps_sb ) THEN |
---|
[1361] | 1232 | |
---|
| 1233 | k_au = k_cc / ( 20.0_wp * x0 ) |
---|
[1012] | 1234 | ! |
---|
[1048] | 1235 | !-- Intern time scale of coagulation (Seifert and Beheng, 2006): |
---|
[1353] | 1236 | !-- (1.0_wp - qc(k,j,i) / ( qc(k,j,i) + qr_1d(k) )) |
---|
| 1237 | tau_cloud = 1.0_wp - qc_1d(k) / ( qr_1d(k) + qc_1d(k) ) |
---|
[1012] | 1238 | ! |
---|
| 1239 | !-- Universal function for autoconversion process |
---|
| 1240 | !-- (Seifert and Beheng, 2006): |
---|
[1361] | 1241 | phi_au = 600.0_wp * tau_cloud**0.68_wp * ( 1.0_wp - tau_cloud**0.68_wp )**3 |
---|
[1012] | 1242 | ! |
---|
| 1243 | !-- Shape parameter of gamma distribution (Geoffroy et al., 2010): |
---|
[1353] | 1244 | !-- (Use constant nu_c = 1.0_wp instead?) |
---|
[1361] | 1245 | nu_c = 1.0_wp !MAX( 0.0_wp, 1580.0_wp * hyrho(k) * qc_1d(k) - 0.28_wp ) |
---|
[1012] | 1246 | ! |
---|
| 1247 | !-- Mean weight of cloud droplets: |
---|
[1115] | 1248 | xc = hyrho(k) * qc_1d(k) / nc_1d(k) |
---|
[1012] | 1249 | ! |
---|
[1065] | 1250 | !-- Parameterized turbulence effects on autoconversion (Seifert, |
---|
| 1251 | !-- Nuijens and Stevens, 2010) |
---|
| 1252 | IF ( turbulence ) THEN |
---|
| 1253 | ! |
---|
| 1254 | !-- Weight averaged radius of cloud droplets: |
---|
[1353] | 1255 | rc = 0.5_wp * ( xc * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
[1065] | 1256 | |
---|
[1353] | 1257 | alpha_cc = ( a_1 + a_2 * nu_c ) / ( 1.0_wp + a_3 * nu_c ) |
---|
| 1258 | r_cc = ( b_1 + b_2 * nu_c ) / ( 1.0_wp + b_3 * nu_c ) |
---|
| 1259 | sigma_cc = ( c_1 + c_2 * nu_c ) / ( 1.0_wp + c_3 * nu_c ) |
---|
[1065] | 1260 | ! |
---|
| 1261 | !-- Mixing length (neglecting distance to ground and stratification) |
---|
[1334] | 1262 | l_mix = ( dx * dy * dzu(k) )**( 1.0_wp / 3.0_wp ) |
---|
[1065] | 1263 | ! |
---|
| 1264 | !-- Limit dissipation rate according to Seifert, Nuijens and |
---|
| 1265 | !-- Stevens (2010) |
---|
[1361] | 1266 | dissipation = MIN( 0.06_wp, diss(k,j,i) ) |
---|
[1065] | 1267 | ! |
---|
| 1268 | !-- Compute Taylor-microscale Reynolds number: |
---|
[1361] | 1269 | re_lambda = 6.0_wp / 11.0_wp * & |
---|
| 1270 | ( l_mix / c_const )**( 2.0_wp / 3.0_wp ) * & |
---|
| 1271 | SQRT( 15.0_wp / kin_vis_air ) * & |
---|
| 1272 | dissipation**( 1.0_wp / 6.0_wp ) |
---|
[1065] | 1273 | ! |
---|
| 1274 | !-- The factor of 1.0E4 is needed to convert the dissipation rate |
---|
| 1275 | !-- from m2 s-3 to cm2 s-3. |
---|
[1361] | 1276 | k_au = k_au * ( 1.0_wp + & |
---|
| 1277 | dissipation * 1.0E4_wp * & |
---|
| 1278 | ( re_lambda * 1.0E-3_wp )**0.25_wp * & |
---|
| 1279 | ( alpha_cc * EXP( -1.0_wp * ( ( rc - r_cc ) / & |
---|
| 1280 | sigma_cc )**2 & |
---|
| 1281 | ) + beta_cc & |
---|
| 1282 | ) & |
---|
| 1283 | ) |
---|
[1065] | 1284 | ENDIF |
---|
| 1285 | ! |
---|
[1012] | 1286 | !-- Autoconversion rate (Seifert and Beheng, 2006): |
---|
[1361] | 1287 | autocon = k_au * ( nu_c + 2.0_wp ) * ( nu_c + 4.0_wp ) / & |
---|
| 1288 | ( nu_c + 1.0_wp )**2 * qc_1d(k)**2 * xc**2 * & |
---|
| 1289 | ( 1.0_wp + phi_au / ( 1.0_wp - tau_cloud )**2 ) * & |
---|
[1115] | 1290 | rho_surface |
---|
| 1291 | autocon = MIN( autocon, qc_1d(k) / dt_micro ) |
---|
[1106] | 1292 | |
---|
[1115] | 1293 | qr_1d(k) = qr_1d(k) + autocon * dt_micro |
---|
| 1294 | qc_1d(k) = qc_1d(k) - autocon * dt_micro |
---|
| 1295 | nr_1d(k) = nr_1d(k) + autocon / x0 * hyrho(k) * dt_micro |
---|
| 1296 | |
---|
[1005] | 1297 | ENDIF |
---|
[1000] | 1298 | |
---|
| 1299 | ENDDO |
---|
| 1300 | |
---|
[1005] | 1301 | END SUBROUTINE autoconversion_ij |
---|
| 1302 | |
---|
[1106] | 1303 | |
---|
[1682] | 1304 | !------------------------------------------------------------------------------! |
---|
| 1305 | ! Description: |
---|
| 1306 | ! ------------ |
---|
| 1307 | !> Accretion rate (Seifert and Beheng, 2006). Call for grid point i,j |
---|
| 1308 | !------------------------------------------------------------------------------! |
---|
[1005] | 1309 | SUBROUTINE accretion_ij( i, j ) |
---|
| 1310 | |
---|
[1320] | 1311 | USE arrays_3d, & |
---|
| 1312 | ONLY: diss, qc_1d, qr_1d |
---|
[1115] | 1313 | |
---|
[1320] | 1314 | USE cloud_parameters, & |
---|
| 1315 | ONLY: eps_sb, hyrho, k_cr0 |
---|
| 1316 | |
---|
| 1317 | USE control_parameters, & |
---|
| 1318 | ONLY: dt_micro, rho_surface, turbulence |
---|
| 1319 | |
---|
| 1320 | USE indices, & |
---|
| 1321 | ONLY: nzb, nzb_s_inner, nzt |
---|
| 1322 | |
---|
| 1323 | USE kinds |
---|
| 1324 | |
---|
[1005] | 1325 | IMPLICIT NONE |
---|
| 1326 | |
---|
[1682] | 1327 | INTEGER(iwp) :: i !< |
---|
| 1328 | INTEGER(iwp) :: j !< |
---|
| 1329 | INTEGER(iwp) :: k !< |
---|
[1005] | 1330 | |
---|
[1682] | 1331 | REAL(wp) :: accr !< |
---|
| 1332 | REAL(wp) :: k_cr !< |
---|
| 1333 | REAL(wp) :: phi_ac !< |
---|
| 1334 | REAL(wp) :: tau_cloud !< |
---|
| 1335 | REAL(wp) :: xc !< |
---|
[1320] | 1336 | |
---|
[1115] | 1337 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1338 | IF ( ( qc_1d(k) > eps_sb ) .AND. ( qr_1d(k) > eps_sb ) ) THEN |
---|
[1012] | 1339 | ! |
---|
[1048] | 1340 | !-- Intern time scale of coagulation (Seifert and Beheng, 2006): |
---|
[1353] | 1341 | tau_cloud = 1.0_wp - qc_1d(k) / ( qc_1d(k) + qr_1d(k) ) |
---|
[1012] | 1342 | ! |
---|
| 1343 | !-- Universal function for accretion process |
---|
[1048] | 1344 | !-- (Seifert and Beheng, 2001): |
---|
[1361] | 1345 | phi_ac = ( tau_cloud / ( tau_cloud + 5.0E-5_wp ) )**4 |
---|
[1012] | 1346 | ! |
---|
[1065] | 1347 | !-- Parameterized turbulence effects on autoconversion (Seifert, |
---|
| 1348 | !-- Nuijens and Stevens, 2010). The factor of 1.0E4 is needed to |
---|
[1361] | 1349 | !-- convert the dissipation rate (diss) from m2 s-3 to cm2 s-3. |
---|
[1065] | 1350 | IF ( turbulence ) THEN |
---|
[1361] | 1351 | k_cr = k_cr0 * ( 1.0_wp + 0.05_wp * & |
---|
| 1352 | MIN( 600.0_wp, & |
---|
| 1353 | diss(k,j,i) * 1.0E4_wp )**0.25_wp & |
---|
| 1354 | ) |
---|
[1065] | 1355 | ELSE |
---|
| 1356 | k_cr = k_cr0 |
---|
| 1357 | ENDIF |
---|
| 1358 | ! |
---|
[1012] | 1359 | !-- Accretion rate (Seifert and Beheng, 2006): |
---|
[1361] | 1360 | accr = k_cr * qc_1d(k) * qr_1d(k) * phi_ac * SQRT( rho_surface * hyrho(k) ) |
---|
[1115] | 1361 | accr = MIN( accr, qc_1d(k) / dt_micro ) |
---|
[1106] | 1362 | |
---|
[1115] | 1363 | qr_1d(k) = qr_1d(k) + accr * dt_micro |
---|
| 1364 | qc_1d(k) = qc_1d(k) - accr * dt_micro |
---|
| 1365 | |
---|
[1005] | 1366 | ENDIF |
---|
[1106] | 1367 | |
---|
[1005] | 1368 | ENDDO |
---|
| 1369 | |
---|
[1000] | 1370 | END SUBROUTINE accretion_ij |
---|
| 1371 | |
---|
[1005] | 1372 | |
---|
[1682] | 1373 | !------------------------------------------------------------------------------! |
---|
| 1374 | ! Description: |
---|
| 1375 | ! ------------ |
---|
| 1376 | !> Collisional breakup rate (Seifert, 2008). Call for grid point i,j |
---|
| 1377 | !------------------------------------------------------------------------------! |
---|
[1005] | 1378 | SUBROUTINE selfcollection_breakup_ij( i, j ) |
---|
| 1379 | |
---|
[1320] | 1380 | USE arrays_3d, & |
---|
| 1381 | ONLY: nr_1d, qr_1d |
---|
| 1382 | |
---|
| 1383 | USE cloud_parameters, & |
---|
| 1384 | ONLY: dpirho_l, eps_sb, hyrho, k_br, k_rr |
---|
| 1385 | |
---|
| 1386 | USE control_parameters, & |
---|
| 1387 | ONLY: dt_micro, rho_surface |
---|
| 1388 | |
---|
| 1389 | USE indices, & |
---|
| 1390 | ONLY: nzb, nzb_s_inner, nzt |
---|
| 1391 | |
---|
| 1392 | USE kinds |
---|
[1005] | 1393 | |
---|
| 1394 | IMPLICIT NONE |
---|
| 1395 | |
---|
[1682] | 1396 | INTEGER(iwp) :: i !< |
---|
| 1397 | INTEGER(iwp) :: j !< |
---|
| 1398 | INTEGER(iwp) :: k !< |
---|
[1005] | 1399 | |
---|
[1682] | 1400 | REAL(wp) :: breakup !< |
---|
| 1401 | REAL(wp) :: dr !< |
---|
| 1402 | REAL(wp) :: phi_br !< |
---|
| 1403 | REAL(wp) :: selfcoll !< |
---|
[1320] | 1404 | |
---|
[1115] | 1405 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1406 | IF ( qr_1d(k) > eps_sb ) THEN |
---|
[1012] | 1407 | ! |
---|
[1115] | 1408 | !-- Selfcollection rate (Seifert and Beheng, 2001): |
---|
[1361] | 1409 | selfcoll = k_rr * nr_1d(k) * qr_1d(k) * SQRT( hyrho(k) * rho_surface ) |
---|
[1012] | 1410 | ! |
---|
[1115] | 1411 | !-- Weight averaged diameter of rain drops: |
---|
[1334] | 1412 | dr = ( hyrho(k) * qr_1d(k) / nr_1d(k) * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
[1115] | 1413 | ! |
---|
[1048] | 1414 | !-- Collisional breakup rate (Seifert, 2008): |
---|
[1353] | 1415 | IF ( dr >= 0.3E-3_wp ) THEN |
---|
| 1416 | phi_br = k_br * ( dr - 1.1E-3_wp ) |
---|
| 1417 | breakup = selfcoll * ( phi_br + 1.0_wp ) |
---|
[1005] | 1418 | ELSE |
---|
[1353] | 1419 | breakup = 0.0_wp |
---|
[1005] | 1420 | ENDIF |
---|
[1048] | 1421 | |
---|
[1115] | 1422 | selfcoll = MAX( breakup - selfcoll, -nr_1d(k) / dt_micro ) |
---|
| 1423 | nr_1d(k) = nr_1d(k) + selfcoll * dt_micro |
---|
[1106] | 1424 | |
---|
[1005] | 1425 | ENDIF |
---|
| 1426 | ENDDO |
---|
| 1427 | |
---|
| 1428 | END SUBROUTINE selfcollection_breakup_ij |
---|
| 1429 | |
---|
[1106] | 1430 | |
---|
[1682] | 1431 | !------------------------------------------------------------------------------! |
---|
| 1432 | ! Description: |
---|
| 1433 | ! ------------ |
---|
| 1434 | !> Evaporation of precipitable water. Condensation is neglected for |
---|
| 1435 | !> precipitable water. Call for grid point i,j |
---|
| 1436 | !------------------------------------------------------------------------------! |
---|
[1012] | 1437 | SUBROUTINE evaporation_rain_ij( i, j ) |
---|
| 1438 | |
---|
[1320] | 1439 | USE arrays_3d, & |
---|
| 1440 | ONLY: hyp, nr_1d, pt_1d, q_1d, qc_1d, qr_1d |
---|
[1048] | 1441 | |
---|
[1320] | 1442 | USE cloud_parameters, & |
---|
| 1443 | ONLY: a_term, a_vent, b_term, b_vent, c_evap, c_term, diff_coeff_l,& |
---|
| 1444 | dpirho_l, eps_sb, hyrho, kin_vis_air, k_st, l_d_cp, l_d_r, & |
---|
| 1445 | l_v, rho_l, r_v, schmidt_p_1d3, thermal_conductivity_l, & |
---|
| 1446 | t_d_pt, ventilation_effect |
---|
| 1447 | |
---|
| 1448 | USE constants, & |
---|
| 1449 | ONLY: pi |
---|
| 1450 | |
---|
| 1451 | USE control_parameters, & |
---|
| 1452 | ONLY: dt_micro |
---|
| 1453 | |
---|
| 1454 | USE indices, & |
---|
| 1455 | ONLY: nzb, nzb_s_inner, nzt |
---|
| 1456 | |
---|
| 1457 | USE kinds |
---|
| 1458 | |
---|
[1012] | 1459 | IMPLICIT NONE |
---|
| 1460 | |
---|
[1682] | 1461 | INTEGER(iwp) :: i !< |
---|
| 1462 | INTEGER(iwp) :: j !< |
---|
| 1463 | INTEGER(iwp) :: k !< |
---|
[1012] | 1464 | |
---|
[1682] | 1465 | REAL(wp) :: alpha !< |
---|
| 1466 | REAL(wp) :: dr !< |
---|
| 1467 | REAL(wp) :: e_s !< |
---|
| 1468 | REAL(wp) :: evap !< |
---|
| 1469 | REAL(wp) :: evap_nr !< |
---|
| 1470 | REAL(wp) :: f_vent !< |
---|
| 1471 | REAL(wp) :: g_evap !< |
---|
| 1472 | REAL(wp) :: lambda_r !< |
---|
| 1473 | REAL(wp) :: mu_r !< |
---|
| 1474 | REAL(wp) :: mu_r_2 !< |
---|
| 1475 | REAL(wp) :: mu_r_5d2 !< |
---|
| 1476 | REAL(wp) :: nr_0 !< |
---|
| 1477 | REAL(wp) :: q_s !< |
---|
| 1478 | REAL(wp) :: sat !< |
---|
| 1479 | REAL(wp) :: t_l !< |
---|
| 1480 | REAL(wp) :: temp !< |
---|
| 1481 | REAL(wp) :: xr !< |
---|
[1320] | 1482 | |
---|
[1115] | 1483 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1484 | IF ( qr_1d(k) > eps_sb ) THEN |
---|
[1012] | 1485 | ! |
---|
| 1486 | !-- Actual liquid water temperature: |
---|
[1115] | 1487 | t_l = t_d_pt(k) * pt_1d(k) |
---|
[1012] | 1488 | ! |
---|
| 1489 | !-- Saturation vapor pressure at t_l: |
---|
[1361] | 1490 | e_s = 610.78_wp * EXP( 17.269_wp * ( t_l - 273.16_wp ) / & |
---|
| 1491 | ( t_l - 35.86_wp ) & |
---|
| 1492 | ) |
---|
[1012] | 1493 | ! |
---|
| 1494 | !-- Computation of saturation humidity: |
---|
[1361] | 1495 | q_s = 0.622_wp * e_s / ( hyp(k) - 0.378_wp * e_s ) |
---|
[1353] | 1496 | alpha = 0.622_wp * l_d_r * l_d_cp / ( t_l * t_l ) |
---|
[1361] | 1497 | q_s = q_s * ( 1.0_wp + alpha * q_1d(k) ) / ( 1.0_wp + alpha * q_s ) |
---|
[1012] | 1498 | ! |
---|
[1106] | 1499 | !-- Supersaturation: |
---|
[1361] | 1500 | sat = ( q_1d(k) - qr_1d(k) - qc_1d(k) ) / q_s - 1.0_wp |
---|
[1012] | 1501 | ! |
---|
[1361] | 1502 | !-- Evaporation needs only to be calculated in subsaturated regions |
---|
| 1503 | IF ( sat < 0.0_wp ) THEN |
---|
[1012] | 1504 | ! |
---|
[1361] | 1505 | !-- Actual temperature: |
---|
| 1506 | temp = t_l + l_d_cp * ( qc_1d(k) + qr_1d(k) ) |
---|
| 1507 | |
---|
| 1508 | g_evap = 1.0_wp / ( ( l_v / ( r_v * temp ) - 1.0_wp ) * l_v / & |
---|
| 1509 | ( thermal_conductivity_l * temp ) + & |
---|
| 1510 | r_v * temp / ( diff_coeff_l * e_s ) & |
---|
| 1511 | ) |
---|
[1012] | 1512 | ! |
---|
[1361] | 1513 | !-- Mean weight of rain drops |
---|
| 1514 | xr = hyrho(k) * qr_1d(k) / nr_1d(k) |
---|
[1115] | 1515 | ! |
---|
[1361] | 1516 | !-- Weight averaged diameter of rain drops: |
---|
| 1517 | dr = ( xr * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
[1115] | 1518 | ! |
---|
[1361] | 1519 | !-- Compute ventilation factor and intercept parameter |
---|
| 1520 | !-- (Seifert and Beheng, 2006; Seifert, 2008): |
---|
| 1521 | IF ( ventilation_effect ) THEN |
---|
[1115] | 1522 | ! |
---|
[1361] | 1523 | !-- Shape parameter of gamma distribution (Milbrandt and Yau, 2005; |
---|
| 1524 | !-- Stevens and Seifert, 2008): |
---|
| 1525 | mu_r = 10.0_wp * ( 1.0_wp + TANH( 1.2E3_wp * ( dr - 1.4E-3_wp ) ) ) |
---|
| 1526 | ! |
---|
| 1527 | !-- Slope parameter of gamma distribution (Seifert, 2008): |
---|
| 1528 | lambda_r = ( ( mu_r + 3.0_wp ) * ( mu_r + 2.0_wp ) * & |
---|
| 1529 | ( mu_r + 1.0_wp ) & |
---|
| 1530 | )**( 1.0_wp / 3.0_wp ) / dr |
---|
[1115] | 1531 | |
---|
[1361] | 1532 | mu_r_2 = mu_r + 2.0_wp |
---|
| 1533 | mu_r_5d2 = mu_r + 2.5_wp |
---|
| 1534 | |
---|
| 1535 | f_vent = a_vent * gamm( mu_r_2 ) * lambda_r**( -mu_r_2 ) + & |
---|
| 1536 | b_vent * schmidt_p_1d3 * & |
---|
| 1537 | SQRT( a_term / kin_vis_air ) * gamm( mu_r_5d2 ) * & |
---|
| 1538 | lambda_r**( -mu_r_5d2 ) * & |
---|
| 1539 | ( 1.0_wp - & |
---|
| 1540 | 0.5_wp * ( b_term / a_term ) * & |
---|
| 1541 | ( lambda_r / ( c_term + lambda_r ) & |
---|
| 1542 | )**mu_r_5d2 - & |
---|
| 1543 | 0.125_wp * ( b_term / a_term )**2 * & |
---|
| 1544 | ( lambda_r / ( 2.0_wp * c_term + lambda_r ) & |
---|
| 1545 | )**mu_r_5d2 - & |
---|
| 1546 | 0.0625_wp * ( b_term / a_term )**3 * & |
---|
| 1547 | ( lambda_r / ( 3.0_wp * c_term + lambda_r ) & |
---|
| 1548 | )**mu_r_5d2 - & |
---|
| 1549 | 0.0390625_wp * ( b_term / a_term )**4 * & |
---|
| 1550 | ( lambda_r / ( 4.0_wp * c_term + lambda_r ) & |
---|
| 1551 | )**mu_r_5d2 & |
---|
| 1552 | ) |
---|
| 1553 | |
---|
| 1554 | nr_0 = nr_1d(k) * lambda_r**( mu_r + 1.0_wp ) / & |
---|
| 1555 | gamm( mu_r + 1.0_wp ) |
---|
| 1556 | ELSE |
---|
| 1557 | f_vent = 1.0_wp |
---|
| 1558 | nr_0 = nr_1d(k) * dr |
---|
| 1559 | ENDIF |
---|
[1012] | 1560 | ! |
---|
[1361] | 1561 | !-- Evaporation rate of rain water content (Seifert and Beheng, 2006): |
---|
| 1562 | evap = 2.0_wp * pi * nr_0 * g_evap * f_vent * sat / hyrho(k) |
---|
| 1563 | evap = MAX( evap, -qr_1d(k) / dt_micro ) |
---|
| 1564 | evap_nr = MAX( c_evap * evap / xr * hyrho(k), & |
---|
| 1565 | -nr_1d(k) / dt_micro ) |
---|
[1106] | 1566 | |
---|
[1361] | 1567 | qr_1d(k) = qr_1d(k) + evap * dt_micro |
---|
| 1568 | nr_1d(k) = nr_1d(k) + evap_nr * dt_micro |
---|
[1115] | 1569 | |
---|
[1361] | 1570 | ENDIF |
---|
[1012] | 1571 | ENDIF |
---|
[1106] | 1572 | |
---|
[1012] | 1573 | ENDDO |
---|
| 1574 | |
---|
| 1575 | END SUBROUTINE evaporation_rain_ij |
---|
| 1576 | |
---|
[1106] | 1577 | |
---|
[1682] | 1578 | !------------------------------------------------------------------------------! |
---|
| 1579 | ! Description: |
---|
| 1580 | ! ------------ |
---|
| 1581 | !> Sedimentation of cloud droplets (Ackermann et al., 2009, MWR). |
---|
| 1582 | !> Call for grid point i,j |
---|
| 1583 | !------------------------------------------------------------------------------! |
---|
[1012] | 1584 | SUBROUTINE sedimentation_cloud_ij( i, j ) |
---|
| 1585 | |
---|
[1320] | 1586 | USE arrays_3d, & |
---|
| 1587 | ONLY: ddzu, dzu, nc_1d, pt_1d, q_1d, qc_1d |
---|
| 1588 | |
---|
| 1589 | USE cloud_parameters, & |
---|
[1361] | 1590 | ONLY: eps_sb, hyrho, l_d_cp, pt_d_t, sed_qc_const |
---|
[1320] | 1591 | |
---|
| 1592 | USE constants, & |
---|
| 1593 | ONLY: pi |
---|
| 1594 | |
---|
| 1595 | USE control_parameters, & |
---|
| 1596 | ONLY: dt_do2d_xy, dt_micro, intermediate_timestep_count |
---|
| 1597 | |
---|
| 1598 | USE indices, & |
---|
| 1599 | ONLY: nzb, nzb_s_inner, nzt |
---|
| 1600 | |
---|
| 1601 | USE kinds |
---|
[1012] | 1602 | |
---|
| 1603 | IMPLICIT NONE |
---|
| 1604 | |
---|
[1682] | 1605 | INTEGER(iwp) :: i !< |
---|
| 1606 | INTEGER(iwp) :: j !< |
---|
| 1607 | INTEGER(iwp) :: k !< |
---|
[1106] | 1608 | |
---|
[1682] | 1609 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_qc !< |
---|
[1115] | 1610 | |
---|
[1353] | 1611 | sed_qc(nzt+1) = 0.0_wp |
---|
[1012] | 1612 | |
---|
[1115] | 1613 | DO k = nzt, nzb_s_inner(j,i)+1, -1 |
---|
| 1614 | IF ( qc_1d(k) > eps_sb ) THEN |
---|
[1361] | 1615 | sed_qc(k) = sed_qc_const * nc_1d(k)**( -2.0_wp / 3.0_wp ) * & |
---|
| 1616 | ( qc_1d(k) * hyrho(k) )**( 5.0_wp / 3.0_wp ) |
---|
[1115] | 1617 | ELSE |
---|
[1353] | 1618 | sed_qc(k) = 0.0_wp |
---|
[1012] | 1619 | ENDIF |
---|
[1115] | 1620 | |
---|
[1361] | 1621 | sed_qc(k) = MIN( sed_qc(k), hyrho(k) * dzu(k+1) * q_1d(k) / & |
---|
| 1622 | dt_micro + sed_qc(k+1) & |
---|
| 1623 | ) |
---|
[1115] | 1624 | |
---|
[1361] | 1625 | q_1d(k) = q_1d(k) + ( sed_qc(k+1) - sed_qc(k) ) * ddzu(k+1) / & |
---|
[1115] | 1626 | hyrho(k) * dt_micro |
---|
[1361] | 1627 | qc_1d(k) = qc_1d(k) + ( sed_qc(k+1) - sed_qc(k) ) * ddzu(k+1) / & |
---|
[1115] | 1628 | hyrho(k) * dt_micro |
---|
[1361] | 1629 | pt_1d(k) = pt_1d(k) - ( sed_qc(k+1) - sed_qc(k) ) * ddzu(k+1) / & |
---|
[1115] | 1630 | hyrho(k) * l_d_cp * pt_d_t(k) * dt_micro |
---|
| 1631 | |
---|
[1012] | 1632 | ENDDO |
---|
| 1633 | |
---|
| 1634 | END SUBROUTINE sedimentation_cloud_ij |
---|
| 1635 | |
---|
[1106] | 1636 | |
---|
[1682] | 1637 | !------------------------------------------------------------------------------! |
---|
| 1638 | ! Description: |
---|
| 1639 | ! ------------ |
---|
| 1640 | !> Computation of sedimentation flux. Implementation according to Stevens |
---|
| 1641 | !> and Seifert (2008). Code is based on UCLA-LES. Call for grid point i,j |
---|
| 1642 | !------------------------------------------------------------------------------! |
---|
[1012] | 1643 | SUBROUTINE sedimentation_rain_ij( i, j ) |
---|
| 1644 | |
---|
[1320] | 1645 | USE arrays_3d, & |
---|
| 1646 | ONLY: ddzu, dzu, nr_1d, pt_1d, q_1d, qr_1d |
---|
| 1647 | |
---|
| 1648 | USE cloud_parameters, & |
---|
| 1649 | ONLY: a_term, b_term, c_term, cof, dpirho_l, eps_sb, hyrho, & |
---|
| 1650 | limiter_sedimentation, l_d_cp, precipitation_amount, prr, & |
---|
| 1651 | pt_d_t, stp |
---|
| 1652 | |
---|
| 1653 | USE control_parameters, & |
---|
[1361] | 1654 | ONLY: call_microphysics_at_all_substeps, dt_do2d_xy, dt_micro, & |
---|
| 1655 | dt_3d, intermediate_timestep_count, & |
---|
[1320] | 1656 | intermediate_timestep_count_max, & |
---|
| 1657 | precipitation_amount_interval, time_do2d_xy |
---|
| 1658 | |
---|
| 1659 | USE indices, & |
---|
| 1660 | ONLY: nzb, nzb_s_inner, nzt |
---|
| 1661 | |
---|
| 1662 | USE kinds |
---|
| 1663 | |
---|
| 1664 | USE statistics, & |
---|
| 1665 | ONLY: weight_substep |
---|
[1012] | 1666 | |
---|
| 1667 | IMPLICIT NONE |
---|
| 1668 | |
---|
[1682] | 1669 | INTEGER(iwp) :: i !< |
---|
| 1670 | INTEGER(iwp) :: j !< |
---|
| 1671 | INTEGER(iwp) :: k !< |
---|
| 1672 | INTEGER(iwp) :: k_run !< |
---|
[1012] | 1673 | |
---|
[1682] | 1674 | REAL(wp) :: c_run !< |
---|
| 1675 | REAL(wp) :: d_max !< |
---|
| 1676 | REAL(wp) :: d_mean !< |
---|
| 1677 | REAL(wp) :: d_min !< |
---|
| 1678 | REAL(wp) :: dr !< |
---|
| 1679 | REAL(wp) :: dt_sedi !< |
---|
| 1680 | REAL(wp) :: flux !< |
---|
| 1681 | REAL(wp) :: lambda_r !< |
---|
| 1682 | REAL(wp) :: mu_r !< |
---|
| 1683 | REAL(wp) :: z_run !< |
---|
[1320] | 1684 | |
---|
[1682] | 1685 | REAL(wp), DIMENSION(nzb:nzt+1) :: c_nr !< |
---|
| 1686 | REAL(wp), DIMENSION(nzb:nzt+1) :: c_qr !< |
---|
| 1687 | REAL(wp), DIMENSION(nzb:nzt+1) :: d_nr !< |
---|
| 1688 | REAL(wp), DIMENSION(nzb:nzt+1) :: d_qr !< |
---|
| 1689 | REAL(wp), DIMENSION(nzb:nzt+1) :: nr_slope !< |
---|
| 1690 | REAL(wp), DIMENSION(nzb:nzt+1) :: qr_slope !< |
---|
| 1691 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_nr !< |
---|
| 1692 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_qr !< |
---|
| 1693 | REAL(wp), DIMENSION(nzb:nzt+1) :: w_nr !< |
---|
| 1694 | REAL(wp), DIMENSION(nzb:nzt+1) :: w_qr !< |
---|
[1320] | 1695 | |
---|
[1353] | 1696 | IF ( intermediate_timestep_count == 1 ) prr(:,j,i) = 0.0_wp |
---|
[1012] | 1697 | ! |
---|
[1065] | 1698 | !-- Compute velocities |
---|
| 1699 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 1700 | IF ( qr_1d(k) > eps_sb ) THEN |
---|
| 1701 | ! |
---|
| 1702 | !-- Weight averaged diameter of rain drops: |
---|
[1334] | 1703 | dr = ( hyrho(k) * qr_1d(k) / nr_1d(k) * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
[1115] | 1704 | ! |
---|
| 1705 | !-- Shape parameter of gamma distribution (Milbrandt and Yau, 2005; |
---|
| 1706 | !-- Stevens and Seifert, 2008): |
---|
[1353] | 1707 | mu_r = 10.0_wp * ( 1.0_wp + TANH( 1.2E3_wp * ( dr - 1.4E-3_wp ) ) ) |
---|
[1115] | 1708 | ! |
---|
| 1709 | !-- Slope parameter of gamma distribution (Seifert, 2008): |
---|
[1361] | 1710 | lambda_r = ( ( mu_r + 3.0_wp ) * ( mu_r + 2.0_wp ) * & |
---|
| 1711 | ( mu_r + 1.0_wp ) )**( 1.0_wp / 3.0_wp ) / dr |
---|
[1115] | 1712 | |
---|
[1361] | 1713 | w_nr(k) = MAX( 0.1_wp, MIN( 20.0_wp, & |
---|
| 1714 | a_term - b_term * ( 1.0_wp + & |
---|
| 1715 | c_term / lambda_r )**( -1.0_wp * & |
---|
| 1716 | ( mu_r + 1.0_wp ) ) & |
---|
| 1717 | ) & |
---|
| 1718 | ) |
---|
| 1719 | w_qr(k) = MAX( 0.1_wp, MIN( 20.0_wp, & |
---|
| 1720 | a_term - b_term * ( 1.0_wp + & |
---|
| 1721 | c_term / lambda_r )**( -1.0_wp * & |
---|
| 1722 | ( mu_r + 4.0_wp ) ) & |
---|
| 1723 | ) & |
---|
| 1724 | ) |
---|
[1065] | 1725 | ELSE |
---|
[1353] | 1726 | w_nr(k) = 0.0_wp |
---|
| 1727 | w_qr(k) = 0.0_wp |
---|
[1065] | 1728 | ENDIF |
---|
| 1729 | ENDDO |
---|
[1048] | 1730 | ! |
---|
[1065] | 1731 | !-- Adjust boundary values |
---|
[1115] | 1732 | w_nr(nzb_s_inner(j,i)) = w_nr(nzb_s_inner(j,i)+1) |
---|
| 1733 | w_qr(nzb_s_inner(j,i)) = w_qr(nzb_s_inner(j,i)+1) |
---|
[1353] | 1734 | w_nr(nzt+1) = 0.0_wp |
---|
| 1735 | w_qr(nzt+1) = 0.0_wp |
---|
[1065] | 1736 | ! |
---|
| 1737 | !-- Compute Courant number |
---|
[1115] | 1738 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1361] | 1739 | c_nr(k) = 0.25_wp * ( w_nr(k-1) + 2.0_wp * w_nr(k) + w_nr(k+1) ) * & |
---|
[1115] | 1740 | dt_micro * ddzu(k) |
---|
[1361] | 1741 | c_qr(k) = 0.25_wp * ( w_qr(k-1) + 2.0_wp * w_qr(k) + w_qr(k+1) ) * & |
---|
[1115] | 1742 | dt_micro * ddzu(k) |
---|
| 1743 | ENDDO |
---|
[1065] | 1744 | ! |
---|
| 1745 | !-- Limit slopes with monotonized centered (MC) limiter (van Leer, 1977): |
---|
| 1746 | IF ( limiter_sedimentation ) THEN |
---|
| 1747 | |
---|
[1115] | 1748 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1646] | 1749 | d_mean = 0.5_wp * ( qr_1d(k+1) - qr_1d(k-1) ) |
---|
[1115] | 1750 | d_min = qr_1d(k) - MIN( qr_1d(k+1), qr_1d(k), qr_1d(k-1) ) |
---|
| 1751 | d_max = MAX( qr_1d(k+1), qr_1d(k), qr_1d(k-1) ) - qr_1d(k) |
---|
[1065] | 1752 | |
---|
[1361] | 1753 | qr_slope(k) = SIGN(1.0_wp, d_mean) * MIN ( 2.0_wp * d_min, & |
---|
| 1754 | 2.0_wp * d_max, & |
---|
| 1755 | ABS( d_mean ) ) |
---|
[1065] | 1756 | |
---|
[1646] | 1757 | d_mean = 0.5_wp * ( nr_1d(k+1) - nr_1d(k-1) ) |
---|
[1115] | 1758 | d_min = nr_1d(k) - MIN( nr_1d(k+1), nr_1d(k), nr_1d(k-1) ) |
---|
| 1759 | d_max = MAX( nr_1d(k+1), nr_1d(k), nr_1d(k-1) ) - nr_1d(k) |
---|
[1065] | 1760 | |
---|
[1361] | 1761 | nr_slope(k) = SIGN(1.0_wp, d_mean) * MIN ( 2.0_wp * d_min, & |
---|
| 1762 | 2.0_wp * d_max, & |
---|
| 1763 | ABS( d_mean ) ) |
---|
[1022] | 1764 | ENDDO |
---|
[1048] | 1765 | |
---|
[1065] | 1766 | ELSE |
---|
[1106] | 1767 | |
---|
[1353] | 1768 | nr_slope = 0.0_wp |
---|
| 1769 | qr_slope = 0.0_wp |
---|
[1106] | 1770 | |
---|
[1065] | 1771 | ENDIF |
---|
[1115] | 1772 | |
---|
[1353] | 1773 | sed_nr(nzt+1) = 0.0_wp |
---|
| 1774 | sed_qr(nzt+1) = 0.0_wp |
---|
[1065] | 1775 | ! |
---|
| 1776 | !-- Compute sedimentation flux |
---|
[1115] | 1777 | DO k = nzt, nzb_s_inner(j,i)+1, -1 |
---|
[1065] | 1778 | ! |
---|
| 1779 | !-- Sum up all rain drop number densities which contribute to the flux |
---|
| 1780 | !-- through k-1/2 |
---|
[1353] | 1781 | flux = 0.0_wp |
---|
| 1782 | z_run = 0.0_wp ! height above z(k) |
---|
[1065] | 1783 | k_run = k |
---|
[1346] | 1784 | c_run = MIN( 1.0_wp, c_nr(k) ) |
---|
[1353] | 1785 | DO WHILE ( c_run > 0.0_wp .AND. k_run <= nzt ) |
---|
[1361] | 1786 | flux = flux + hyrho(k_run) * & |
---|
| 1787 | ( nr_1d(k_run) + nr_slope(k_run) * ( 1.0_wp - c_run ) * & |
---|
[1353] | 1788 | 0.5_wp ) * c_run * dzu(k_run) |
---|
[1065] | 1789 | z_run = z_run + dzu(k_run) |
---|
| 1790 | k_run = k_run + 1 |
---|
[1346] | 1791 | c_run = MIN( 1.0_wp, c_nr(k_run) - z_run * ddzu(k_run) ) |
---|
[1022] | 1792 | ENDDO |
---|
| 1793 | ! |
---|
[1065] | 1794 | !-- It is not allowed to sediment more rain drop number density than |
---|
| 1795 | !-- available |
---|
[1361] | 1796 | flux = MIN( flux, & |
---|
[1115] | 1797 | hyrho(k) * dzu(k+1) * nr_1d(k) + sed_nr(k+1) * dt_micro ) |
---|
[1065] | 1798 | |
---|
[1115] | 1799 | sed_nr(k) = flux / dt_micro |
---|
[1361] | 1800 | nr_1d(k) = nr_1d(k) + ( sed_nr(k+1) - sed_nr(k) ) * ddzu(k+1) / & |
---|
| 1801 | hyrho(k) * dt_micro |
---|
[1065] | 1802 | ! |
---|
| 1803 | !-- Sum up all rain water content which contributes to the flux |
---|
| 1804 | !-- through k-1/2 |
---|
[1353] | 1805 | flux = 0.0_wp |
---|
| 1806 | z_run = 0.0_wp ! height above z(k) |
---|
[1065] | 1807 | k_run = k |
---|
[1346] | 1808 | c_run = MIN( 1.0_wp, c_qr(k) ) |
---|
[1106] | 1809 | |
---|
[1361] | 1810 | DO WHILE ( c_run > 0.0_wp .AND. k_run <= nzt ) |
---|
[1106] | 1811 | |
---|
[1361] | 1812 | flux = flux + hyrho(k_run) * & |
---|
| 1813 | ( qr_1d(k_run) + qr_slope(k_run) * ( 1.0_wp - c_run ) * & |
---|
[1353] | 1814 | 0.5_wp ) * c_run * dzu(k_run) |
---|
[1065] | 1815 | z_run = z_run + dzu(k_run) |
---|
| 1816 | k_run = k_run + 1 |
---|
[1346] | 1817 | c_run = MIN( 1.0_wp, c_qr(k_run) - z_run * ddzu(k_run) ) |
---|
[1106] | 1818 | |
---|
[1065] | 1819 | ENDDO |
---|
| 1820 | ! |
---|
| 1821 | !-- It is not allowed to sediment more rain water content than available |
---|
[1361] | 1822 | flux = MIN( flux, & |
---|
[1115] | 1823 | hyrho(k) * dzu(k) * qr_1d(k) + sed_qr(k+1) * dt_micro ) |
---|
[1065] | 1824 | |
---|
[1115] | 1825 | sed_qr(k) = flux / dt_micro |
---|
| 1826 | |
---|
[1361] | 1827 | qr_1d(k) = qr_1d(k) + ( sed_qr(k+1) - sed_qr(k) ) * ddzu(k+1) / & |
---|
[1115] | 1828 | hyrho(k) * dt_micro |
---|
[1361] | 1829 | q_1d(k) = q_1d(k) + ( sed_qr(k+1) - sed_qr(k) ) * ddzu(k+1) / & |
---|
[1115] | 1830 | hyrho(k) * dt_micro |
---|
[1361] | 1831 | pt_1d(k) = pt_1d(k) - ( sed_qr(k+1) - sed_qr(k) ) * ddzu(k+1) / & |
---|
[1115] | 1832 | hyrho(k) * l_d_cp * pt_d_t(k) * dt_micro |
---|
[1065] | 1833 | ! |
---|
| 1834 | !-- Compute the rain rate |
---|
[1361] | 1835 | IF ( call_microphysics_at_all_substeps ) THEN |
---|
| 1836 | prr(k,j,i) = prr(k,j,i) + sed_qr(k) / hyrho(k) * & |
---|
| 1837 | weight_substep(intermediate_timestep_count) |
---|
| 1838 | ELSE |
---|
| 1839 | prr(k,j,i) = sed_qr(k) / hyrho(k) |
---|
| 1840 | ENDIF |
---|
| 1841 | |
---|
[1065] | 1842 | ENDDO |
---|
[1115] | 1843 | |
---|
[1065] | 1844 | ! |
---|
[1048] | 1845 | !-- Precipitation amount |
---|
[1361] | 1846 | IF ( intermediate_timestep_count == intermediate_timestep_count_max & |
---|
| 1847 | .AND. ( dt_do2d_xy - time_do2d_xy ) < & |
---|
| 1848 | precipitation_amount_interval ) THEN |
---|
[1012] | 1849 | |
---|
[1361] | 1850 | precipitation_amount(j,i) = precipitation_amount(j,i) + & |
---|
| 1851 | prr(nzb_s_inner(j,i)+1,j,i) * & |
---|
[1115] | 1852 | hyrho(nzb_s_inner(j,i)+1) * dt_3d |
---|
[1048] | 1853 | ENDIF |
---|
| 1854 | |
---|
[1012] | 1855 | END SUBROUTINE sedimentation_rain_ij |
---|
| 1856 | |
---|
[1682] | 1857 | |
---|
[1361] | 1858 | !------------------------------------------------------------------------------! |
---|
[1682] | 1859 | ! Description: |
---|
| 1860 | ! ------------ |
---|
| 1861 | !> This function computes the gamma function (Press et al., 1992). |
---|
| 1862 | !> The gamma function is needed for the calculation of the evaporation |
---|
| 1863 | !> of rain drops. |
---|
[1361] | 1864 | !------------------------------------------------------------------------------! |
---|
[1012] | 1865 | FUNCTION gamm( xx ) |
---|
[1048] | 1866 | |
---|
[1320] | 1867 | USE cloud_parameters, & |
---|
| 1868 | ONLY: cof, stp |
---|
| 1869 | |
---|
| 1870 | USE kinds |
---|
| 1871 | |
---|
[1012] | 1872 | IMPLICIT NONE |
---|
[1106] | 1873 | |
---|
[1682] | 1874 | INTEGER(iwp) :: j !< |
---|
[1320] | 1875 | |
---|
[1682] | 1876 | REAL(wp) :: gamm !< |
---|
| 1877 | REAL(wp) :: ser !< |
---|
| 1878 | REAL(wp) :: tmp !< |
---|
| 1879 | REAL(wp) :: x_gamm !< |
---|
| 1880 | REAL(wp) :: xx !< |
---|
| 1881 | REAL(wp) :: y_gamm !< |
---|
[1320] | 1882 | |
---|
[1012] | 1883 | x_gamm = xx |
---|
| 1884 | y_gamm = x_gamm |
---|
[1353] | 1885 | tmp = x_gamm + 5.5_wp |
---|
| 1886 | tmp = ( x_gamm + 0.5_wp ) * LOG( tmp ) - tmp |
---|
[1334] | 1887 | ser = 1.000000000190015_wp |
---|
[1106] | 1888 | |
---|
| 1889 | DO j = 1, 6 |
---|
[1353] | 1890 | y_gamm = y_gamm + 1.0_wp |
---|
[1012] | 1891 | ser = ser + cof( j ) / y_gamm |
---|
[1106] | 1892 | ENDDO |
---|
| 1893 | |
---|
[1012] | 1894 | ! |
---|
| 1895 | !-- Until this point the algorithm computes the logarithm of the gamma |
---|
| 1896 | !-- function. Hence, the exponential function is used. |
---|
| 1897 | ! gamm = EXP( tmp + LOG( stp * ser / x_gamm ) ) |
---|
| 1898 | gamm = EXP( tmp ) * stp * ser / x_gamm |
---|
[1106] | 1899 | |
---|
[1012] | 1900 | RETURN |
---|
| 1901 | |
---|
| 1902 | END FUNCTION gamm |
---|
| 1903 | |
---|
| 1904 | END MODULE microphysics_mod |
---|