1 | MODULE microphysics_mod |
---|
2 | |
---|
3 | !--------------------------------------------------------------------------------! |
---|
4 | ! This file is part of PALM. |
---|
5 | ! |
---|
6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
8 | ! either version 3 of the License, or (at your option) any later version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
18 | !--------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ------------------ |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: microphysics.f90 1647 2015-09-02 16:01:24Z hoffmann $ |
---|
27 | ! |
---|
28 | ! 1646 2015-09-02 16:00:10Z hoffmann |
---|
29 | ! Bugfix: Wrong computation of d_mean. |
---|
30 | ! |
---|
31 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
32 | ! Bugfix in sedimentation_rain: Index corrected. |
---|
33 | ! Vectorized version of adjust_cloud added. |
---|
34 | ! Little reformatting of the code. |
---|
35 | ! |
---|
36 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
37 | ! REAL constants provided with KIND-attribute |
---|
38 | ! |
---|
39 | ! 1346 2014-03-27 13:18:20Z heinze |
---|
40 | ! Bugfix: REAL constants provided with KIND-attribute especially in call of |
---|
41 | ! intrinsic function like MAX, MIN, SIGN |
---|
42 | ! |
---|
43 | ! 1334 2014-03-25 12:21:40Z heinze |
---|
44 | ! Bugfix: REAL constants provided with KIND-attribute |
---|
45 | ! |
---|
46 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
47 | ! REAL constants defined as wp-kind |
---|
48 | ! |
---|
49 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
50 | ! ONLY-attribute added to USE-statements, |
---|
51 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
52 | ! kinds are defined in new module kinds, |
---|
53 | ! comment fields (!:) to be used for variable explanations added to |
---|
54 | ! all variable declaration statements |
---|
55 | ! |
---|
56 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
57 | ! hyp and rho have to be calculated at each time step if data from external |
---|
58 | ! file LSF_DATA are used |
---|
59 | ! |
---|
60 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
61 | ! microphyical tendencies are calculated in microphysics_control in an optimized |
---|
62 | ! way; unrealistic values are prevented; bugfix in evaporation; some reformatting |
---|
63 | ! |
---|
64 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
65 | ! small changes in code formatting |
---|
66 | ! |
---|
67 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
68 | ! unused variables removed |
---|
69 | ! file put under GPL |
---|
70 | ! |
---|
71 | ! 1065 2012-11-22 17:42:36Z hoffmann |
---|
72 | ! Sedimentation process implemented according to Stevens and Seifert (2008). |
---|
73 | ! Turbulence effects on autoconversion and accretion added (Seifert, Nuijens |
---|
74 | ! and Stevens, 2010). |
---|
75 | ! |
---|
76 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
77 | ! initial revision |
---|
78 | ! |
---|
79 | ! Description: |
---|
80 | ! ------------ |
---|
81 | ! Calculate cloud microphysics according to the two moment bulk |
---|
82 | ! scheme by Seifert and Beheng (2006). |
---|
83 | !------------------------------------------------------------------------------! |
---|
84 | |
---|
85 | PRIVATE |
---|
86 | PUBLIC microphysics_control |
---|
87 | |
---|
88 | INTERFACE microphysics_control |
---|
89 | MODULE PROCEDURE microphysics_control |
---|
90 | MODULE PROCEDURE microphysics_control_ij |
---|
91 | END INTERFACE microphysics_control |
---|
92 | |
---|
93 | INTERFACE adjust_cloud |
---|
94 | MODULE PROCEDURE adjust_cloud |
---|
95 | MODULE PROCEDURE adjust_cloud_ij |
---|
96 | END INTERFACE adjust_cloud |
---|
97 | |
---|
98 | INTERFACE autoconversion |
---|
99 | MODULE PROCEDURE autoconversion |
---|
100 | MODULE PROCEDURE autoconversion_ij |
---|
101 | END INTERFACE autoconversion |
---|
102 | |
---|
103 | INTERFACE accretion |
---|
104 | MODULE PROCEDURE accretion |
---|
105 | MODULE PROCEDURE accretion_ij |
---|
106 | END INTERFACE accretion |
---|
107 | |
---|
108 | INTERFACE selfcollection_breakup |
---|
109 | MODULE PROCEDURE selfcollection_breakup |
---|
110 | MODULE PROCEDURE selfcollection_breakup_ij |
---|
111 | END INTERFACE selfcollection_breakup |
---|
112 | |
---|
113 | INTERFACE evaporation_rain |
---|
114 | MODULE PROCEDURE evaporation_rain |
---|
115 | MODULE PROCEDURE evaporation_rain_ij |
---|
116 | END INTERFACE evaporation_rain |
---|
117 | |
---|
118 | INTERFACE sedimentation_cloud |
---|
119 | MODULE PROCEDURE sedimentation_cloud |
---|
120 | MODULE PROCEDURE sedimentation_cloud_ij |
---|
121 | END INTERFACE sedimentation_cloud |
---|
122 | |
---|
123 | INTERFACE sedimentation_rain |
---|
124 | MODULE PROCEDURE sedimentation_rain |
---|
125 | MODULE PROCEDURE sedimentation_rain_ij |
---|
126 | END INTERFACE sedimentation_rain |
---|
127 | |
---|
128 | CONTAINS |
---|
129 | |
---|
130 | |
---|
131 | !------------------------------------------------------------------------------! |
---|
132 | ! Call for all grid points |
---|
133 | !------------------------------------------------------------------------------! |
---|
134 | SUBROUTINE microphysics_control |
---|
135 | |
---|
136 | USE arrays_3d, & |
---|
137 | ONLY: hyp, nr, pt, pt_init, q, qc, qr, zu |
---|
138 | |
---|
139 | USE cloud_parameters, & |
---|
140 | ONLY: cp, hyrho, nc_const, pt_d_t, r_d, t_d_pt |
---|
141 | |
---|
142 | USE control_parameters, & |
---|
143 | ONLY: call_microphysics_at_all_substeps, drizzle, dt_3d, dt_micro, & |
---|
144 | g, intermediate_timestep_count, & |
---|
145 | large_scale_forcing, lsf_surf, precipitation, pt_surface, & |
---|
146 | rho_surface,surface_pressure |
---|
147 | |
---|
148 | USE indices, & |
---|
149 | ONLY: nzb, nzt |
---|
150 | |
---|
151 | USE kinds |
---|
152 | |
---|
153 | USE statistics, & |
---|
154 | ONLY: weight_pres |
---|
155 | |
---|
156 | IMPLICIT NONE |
---|
157 | |
---|
158 | INTEGER(iwp) :: i !: |
---|
159 | INTEGER(iwp) :: j !: |
---|
160 | INTEGER(iwp) :: k !: |
---|
161 | |
---|
162 | REAL(wp) :: t_surface !: |
---|
163 | |
---|
164 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
165 | ! |
---|
166 | !-- Calculate: |
---|
167 | !-- pt / t : ratio of potential and actual temperature (pt_d_t) |
---|
168 | !-- t / pt : ratio of actual and potential temperature (t_d_pt) |
---|
169 | !-- p_0(z) : vertical profile of the hydrostatic pressure (hyp) |
---|
170 | t_surface = pt_surface * ( surface_pressure / 1000.0_wp )**0.286_wp |
---|
171 | DO k = nzb, nzt+1 |
---|
172 | hyp(k) = surface_pressure * 100.0_wp * & |
---|
173 | ( ( t_surface - g / cp * zu(k) ) / & |
---|
174 | t_surface )**(1.0_wp / 0.286_wp) |
---|
175 | pt_d_t(k) = ( 100000.0_wp / hyp(k) )**0.286_wp |
---|
176 | t_d_pt(k) = 1.0_wp / pt_d_t(k) |
---|
177 | hyrho(k) = hyp(k) / ( r_d * t_d_pt(k) * pt_init(k) ) |
---|
178 | ENDDO |
---|
179 | ! |
---|
180 | !-- Compute reference density |
---|
181 | rho_surface = surface_pressure * 100.0_wp / ( r_d * t_surface ) |
---|
182 | ENDIF |
---|
183 | |
---|
184 | ! |
---|
185 | !-- Compute length of time step |
---|
186 | IF ( call_microphysics_at_all_substeps ) THEN |
---|
187 | dt_micro = dt_3d * weight_pres(intermediate_timestep_count) |
---|
188 | ELSE |
---|
189 | dt_micro = dt_3d |
---|
190 | ENDIF |
---|
191 | |
---|
192 | ! |
---|
193 | !-- Compute cloud physics |
---|
194 | IF ( precipitation ) THEN |
---|
195 | CALL adjust_cloud |
---|
196 | CALL autoconversion |
---|
197 | CALL accretion |
---|
198 | CALL selfcollection_breakup |
---|
199 | CALL evaporation_rain |
---|
200 | CALL sedimentation_rain |
---|
201 | ENDIF |
---|
202 | |
---|
203 | IF ( drizzle ) CALL sedimentation_cloud |
---|
204 | |
---|
205 | END SUBROUTINE microphysics_control |
---|
206 | |
---|
207 | SUBROUTINE adjust_cloud |
---|
208 | |
---|
209 | USE arrays_3d, & |
---|
210 | ONLY: qr, nr |
---|
211 | |
---|
212 | USE cloud_parameters, & |
---|
213 | ONLY: eps_sb, xrmin, xrmax, hyrho, k_cc, x0 |
---|
214 | |
---|
215 | USE cpulog, & |
---|
216 | ONLY: cpu_log, log_point_s |
---|
217 | |
---|
218 | USE indices, & |
---|
219 | ONLY: nxl, nxr, nys, nyn, nzb, nzb_s_inner, nzt |
---|
220 | |
---|
221 | USE kinds |
---|
222 | |
---|
223 | IMPLICIT NONE |
---|
224 | |
---|
225 | INTEGER(iwp) :: i !: |
---|
226 | INTEGER(iwp) :: j !: |
---|
227 | INTEGER(iwp) :: k !: |
---|
228 | |
---|
229 | CALL cpu_log( log_point_s(54), 'adjust_cloud', 'start' ) |
---|
230 | |
---|
231 | DO i = nxl, nxr |
---|
232 | DO j = nys, nyn |
---|
233 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
234 | IF ( qr(k,j,i) <= eps_sb ) THEN |
---|
235 | qr(k,j,i) = 0.0_wp |
---|
236 | nr(k,j,i) = 0.0_wp |
---|
237 | ELSE |
---|
238 | ! |
---|
239 | !-- Adjust number of raindrops to avoid nonlinear effects in |
---|
240 | !-- sedimentation and evaporation of rain drops due to too small |
---|
241 | !-- or too big weights of rain drops (Stevens and Seifert, 2008). |
---|
242 | IF ( nr(k,j,i) * xrmin > qr(k,j,i) * hyrho(k) ) THEN |
---|
243 | nr(k,j,i) = qr(k,j,i) * hyrho(k) / xrmin |
---|
244 | ELSEIF ( nr(k,j,i) * xrmax < qr(k,j,i) * hyrho(k) ) THEN |
---|
245 | nr(k,j,i) = qr(k,j,i) * hyrho(k) / xrmax |
---|
246 | ENDIF |
---|
247 | |
---|
248 | ENDIF |
---|
249 | ENDDO |
---|
250 | ENDDO |
---|
251 | ENDDO |
---|
252 | |
---|
253 | CALL cpu_log( log_point_s(54), 'adjust_cloud', 'stop' ) |
---|
254 | |
---|
255 | END SUBROUTINE adjust_cloud |
---|
256 | |
---|
257 | |
---|
258 | SUBROUTINE autoconversion |
---|
259 | |
---|
260 | USE arrays_3d, & |
---|
261 | ONLY: diss, dzu, nr, qc, qr |
---|
262 | |
---|
263 | USE cloud_parameters, & |
---|
264 | ONLY: a_1, a_2, a_3, b_1, b_2, b_3, beta_cc, c_1, c_2, c_3, & |
---|
265 | c_const, dpirho_l, eps_sb, hyrho, k_cc, kin_vis_air, & |
---|
266 | nc_const, x0 |
---|
267 | |
---|
268 | USE control_parameters, & |
---|
269 | ONLY: dt_micro, rho_surface, turbulence |
---|
270 | |
---|
271 | USE cpulog, & |
---|
272 | ONLY: cpu_log, log_point_s |
---|
273 | |
---|
274 | USE grid_variables, & |
---|
275 | ONLY: dx, dy |
---|
276 | |
---|
277 | USE indices, & |
---|
278 | ONLY: nxl, nxr, nys, nyn, nzb, nzb_s_inner, nzt |
---|
279 | |
---|
280 | USE kinds |
---|
281 | |
---|
282 | IMPLICIT NONE |
---|
283 | |
---|
284 | INTEGER(iwp) :: i !: |
---|
285 | INTEGER(iwp) :: j !: |
---|
286 | INTEGER(iwp) :: k !: |
---|
287 | |
---|
288 | REAL(wp) :: alpha_cc !: |
---|
289 | REAL(wp) :: autocon !: |
---|
290 | REAL(wp) :: dissipation !: |
---|
291 | REAL(wp) :: k_au !: |
---|
292 | REAL(wp) :: l_mix !: |
---|
293 | REAL(wp) :: nu_c !: |
---|
294 | REAL(wp) :: phi_au !: |
---|
295 | REAL(wp) :: r_cc !: |
---|
296 | REAL(wp) :: rc !: |
---|
297 | REAL(wp) :: re_lambda !: |
---|
298 | REAL(wp) :: selfcoll !: |
---|
299 | REAL(wp) :: sigma_cc !: |
---|
300 | REAL(wp) :: tau_cloud !: |
---|
301 | REAL(wp) :: xc !: |
---|
302 | |
---|
303 | CALL cpu_log( log_point_s(55), 'autoconversion', 'start' ) |
---|
304 | |
---|
305 | DO i = nxl, nxr |
---|
306 | DO j = nys, nyn |
---|
307 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
308 | |
---|
309 | IF ( qc(k,j,i) > eps_sb ) THEN |
---|
310 | |
---|
311 | k_au = k_cc / ( 20.0_wp * x0 ) |
---|
312 | ! |
---|
313 | !-- Intern time scale of coagulation (Seifert and Beheng, 2006): |
---|
314 | !-- (1.0_wp - qc(k,j,i) / ( qc(k,j,i) + qr(k,j,i) )) |
---|
315 | tau_cloud = 1.0_wp - qc(k,j,i) / ( qr(k,j,i) + qc(k,j,i) ) |
---|
316 | ! |
---|
317 | !-- Universal function for autoconversion process |
---|
318 | !-- (Seifert and Beheng, 2006): |
---|
319 | phi_au = 600.0_wp * tau_cloud**0.68_wp * & |
---|
320 | ( 1.0_wp - tau_cloud**0.68_wp )**3 |
---|
321 | ! |
---|
322 | !-- Shape parameter of gamma distribution (Geoffroy et al., 2010): |
---|
323 | !-- (Use constant nu_c = 1.0_wp instead?) |
---|
324 | nu_c = 1.0_wp !MAX( 0.0_wp, 1580.0_wp * hyrho(k) * qc(k,j,i) - 0.28_wp ) |
---|
325 | ! |
---|
326 | !-- Mean weight of cloud droplets: |
---|
327 | xc = hyrho(k) * qc(k,j,i) / nc_const |
---|
328 | ! |
---|
329 | !-- Parameterized turbulence effects on autoconversion (Seifert, |
---|
330 | !-- Nuijens and Stevens, 2010) |
---|
331 | IF ( turbulence ) THEN |
---|
332 | ! |
---|
333 | !-- Weight averaged radius of cloud droplets: |
---|
334 | rc = 0.5_wp * ( xc * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
335 | |
---|
336 | alpha_cc = ( a_1 + a_2 * nu_c ) / ( 1.0_wp + a_3 * nu_c ) |
---|
337 | r_cc = ( b_1 + b_2 * nu_c ) / ( 1.0_wp + b_3 * nu_c ) |
---|
338 | sigma_cc = ( c_1 + c_2 * nu_c ) / ( 1.0_wp + c_3 * nu_c ) |
---|
339 | ! |
---|
340 | !-- Mixing length (neglecting distance to ground and |
---|
341 | !-- stratification) |
---|
342 | l_mix = ( dx * dy * dzu(k) )**( 1.0_wp / 3.0_wp ) |
---|
343 | ! |
---|
344 | !-- Limit dissipation rate according to Seifert, Nuijens and |
---|
345 | !-- Stevens (2010) |
---|
346 | dissipation = MIN( 0.06_wp, diss(k,j,i) ) |
---|
347 | ! |
---|
348 | !-- Compute Taylor-microscale Reynolds number: |
---|
349 | re_lambda = 6.0_wp / 11.0_wp * & |
---|
350 | ( l_mix / c_const )**( 2.0_wp / 3.0_wp ) * & |
---|
351 | SQRT( 15.0_wp / kin_vis_air ) * & |
---|
352 | dissipation**( 1.0_wp / 6.0_wp ) |
---|
353 | ! |
---|
354 | !-- The factor of 1.0E4 is needed to convert the dissipation |
---|
355 | !-- rate from m2 s-3 to cm2 s-3. |
---|
356 | k_au = k_au * ( 1.0_wp + & |
---|
357 | dissipation * 1.0E4_wp * & |
---|
358 | ( re_lambda * 1.0E-3_wp )**0.25_wp * & |
---|
359 | ( alpha_cc * EXP( -1.0_wp * ( ( rc - & |
---|
360 | r_cc ) / & |
---|
361 | sigma_cc )**2 & |
---|
362 | ) + beta_cc & |
---|
363 | ) & |
---|
364 | ) |
---|
365 | ENDIF |
---|
366 | ! |
---|
367 | !-- Autoconversion rate (Seifert and Beheng, 2006): |
---|
368 | autocon = k_au * ( nu_c + 2.0_wp ) * ( nu_c + 4.0_wp ) / & |
---|
369 | ( nu_c + 1.0_wp )**2 * qc(k,j,i)**2 * xc**2 * & |
---|
370 | ( 1.0_wp + phi_au / ( 1.0_wp - tau_cloud )**2 ) * & |
---|
371 | rho_surface |
---|
372 | autocon = MIN( autocon, qc(k,j,i) / dt_micro ) |
---|
373 | |
---|
374 | qr(k,j,i) = qr(k,j,i) + autocon * dt_micro |
---|
375 | qc(k,j,i) = qc(k,j,i) - autocon * dt_micro |
---|
376 | nr(k,j,i) = nr(k,j,i) + autocon / x0 * hyrho(k) * dt_micro |
---|
377 | |
---|
378 | ENDIF |
---|
379 | |
---|
380 | ENDDO |
---|
381 | ENDDO |
---|
382 | ENDDO |
---|
383 | |
---|
384 | CALL cpu_log( log_point_s(55), 'autoconversion', 'stop' ) |
---|
385 | |
---|
386 | END SUBROUTINE autoconversion |
---|
387 | |
---|
388 | |
---|
389 | SUBROUTINE accretion |
---|
390 | |
---|
391 | USE arrays_3d, & |
---|
392 | ONLY: diss, qc, qr |
---|
393 | |
---|
394 | USE cloud_parameters, & |
---|
395 | ONLY: eps_sb, hyrho, k_cr0 |
---|
396 | |
---|
397 | USE control_parameters, & |
---|
398 | ONLY: dt_micro, rho_surface, turbulence |
---|
399 | |
---|
400 | USE cpulog, & |
---|
401 | ONLY: cpu_log, log_point_s |
---|
402 | |
---|
403 | USE indices, & |
---|
404 | ONLY: nxl, nxr, nys, nyn, nzb, nzb_s_inner, nzt |
---|
405 | |
---|
406 | USE kinds |
---|
407 | |
---|
408 | IMPLICIT NONE |
---|
409 | |
---|
410 | INTEGER(iwp) :: i !: |
---|
411 | INTEGER(iwp) :: j !: |
---|
412 | INTEGER(iwp) :: k !: |
---|
413 | |
---|
414 | REAL(wp) :: accr !: |
---|
415 | REAL(wp) :: k_cr !: |
---|
416 | REAL(wp) :: phi_ac !: |
---|
417 | REAL(wp) :: tau_cloud !: |
---|
418 | REAL(wp) :: xc !: |
---|
419 | |
---|
420 | CALL cpu_log( log_point_s(56), 'accretion', 'start' ) |
---|
421 | |
---|
422 | DO i = nxl, nxr |
---|
423 | DO j = nys, nyn |
---|
424 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
425 | |
---|
426 | IF ( ( qc(k,j,i) > eps_sb ) .AND. ( qr(k,j,i) > eps_sb ) ) THEN |
---|
427 | ! |
---|
428 | !-- Intern time scale of coagulation (Seifert and Beheng, 2006): |
---|
429 | tau_cloud = 1.0_wp - qc(k,j,i) / ( qc(k,j,i) + qr(k,j,i) ) |
---|
430 | ! |
---|
431 | !-- Universal function for accretion process (Seifert and |
---|
432 | !-- Beheng, 2001): |
---|
433 | phi_ac = ( tau_cloud / ( tau_cloud + 5.0E-5_wp ) )**4 |
---|
434 | ! |
---|
435 | !-- Parameterized turbulence effects on autoconversion (Seifert, |
---|
436 | !-- Nuijens and Stevens, 2010). The factor of 1.0E4 is needed to |
---|
437 | !-- convert the dissipation rate (diss) from m2 s-3 to cm2 s-3. |
---|
438 | IF ( turbulence ) THEN |
---|
439 | k_cr = k_cr0 * ( 1.0_wp + 0.05_wp * & |
---|
440 | MIN( 600.0_wp, & |
---|
441 | diss(k,j,i) * 1.0E4_wp )**0.25_wp & |
---|
442 | ) |
---|
443 | ELSE |
---|
444 | k_cr = k_cr0 |
---|
445 | ENDIF |
---|
446 | ! |
---|
447 | !-- Accretion rate (Seifert and Beheng, 2006): |
---|
448 | accr = k_cr * qc(k,j,i) * qr(k,j,i) * phi_ac * & |
---|
449 | SQRT( rho_surface * hyrho(k) ) |
---|
450 | accr = MIN( accr, qc(k,j,i) / dt_micro ) |
---|
451 | |
---|
452 | qr(k,j,i) = qr(k,j,i) + accr * dt_micro |
---|
453 | qc(k,j,i) = qc(k,j,i) - accr * dt_micro |
---|
454 | |
---|
455 | ENDIF |
---|
456 | |
---|
457 | ENDDO |
---|
458 | ENDDO |
---|
459 | ENDDO |
---|
460 | |
---|
461 | CALL cpu_log( log_point_s(56), 'accretion', 'stop' ) |
---|
462 | |
---|
463 | END SUBROUTINE accretion |
---|
464 | |
---|
465 | |
---|
466 | SUBROUTINE selfcollection_breakup |
---|
467 | |
---|
468 | USE arrays_3d, & |
---|
469 | ONLY: nr, qr |
---|
470 | |
---|
471 | USE cloud_parameters, & |
---|
472 | ONLY: dpirho_l, eps_sb, hyrho, k_br, k_rr |
---|
473 | |
---|
474 | USE control_parameters, & |
---|
475 | ONLY: dt_micro, rho_surface |
---|
476 | |
---|
477 | USE cpulog, & |
---|
478 | ONLY: cpu_log, log_point_s |
---|
479 | |
---|
480 | USE indices, & |
---|
481 | ONLY: nxl, nxr, nys, nyn, nzb, nzb_s_inner, nzt |
---|
482 | |
---|
483 | USE kinds |
---|
484 | |
---|
485 | IMPLICIT NONE |
---|
486 | |
---|
487 | INTEGER(iwp) :: i !: |
---|
488 | INTEGER(iwp) :: j !: |
---|
489 | INTEGER(iwp) :: k !: |
---|
490 | |
---|
491 | REAL(wp) :: breakup !: |
---|
492 | REAL(wp) :: dr !: |
---|
493 | REAL(wp) :: phi_br !: |
---|
494 | REAL(wp) :: selfcoll !: |
---|
495 | |
---|
496 | CALL cpu_log( log_point_s(57), 'selfcollection', 'start' ) |
---|
497 | |
---|
498 | DO i = nxl, nxr |
---|
499 | DO j = nys, nyn |
---|
500 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
501 | IF ( qr(k,j,i) > eps_sb ) THEN |
---|
502 | ! |
---|
503 | !-- Selfcollection rate (Seifert and Beheng, 2001): |
---|
504 | selfcoll = k_rr * nr(k,j,i) * qr(k,j,i) * & |
---|
505 | SQRT( hyrho(k) * rho_surface ) |
---|
506 | ! |
---|
507 | !-- Weight averaged diameter of rain drops: |
---|
508 | dr = ( hyrho(k) * qr(k,j,i) / & |
---|
509 | nr(k,j,i) * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
510 | ! |
---|
511 | !-- Collisional breakup rate (Seifert, 2008): |
---|
512 | IF ( dr >= 0.3E-3_wp ) THEN |
---|
513 | phi_br = k_br * ( dr - 1.1E-3_wp ) |
---|
514 | breakup = selfcoll * ( phi_br + 1.0_wp ) |
---|
515 | ELSE |
---|
516 | breakup = 0.0_wp |
---|
517 | ENDIF |
---|
518 | |
---|
519 | selfcoll = MAX( breakup - selfcoll, -nr(k,j,i) / dt_micro ) |
---|
520 | nr(k,j,i) = nr(k,j,i) + selfcoll * dt_micro |
---|
521 | |
---|
522 | ENDIF |
---|
523 | ENDDO |
---|
524 | ENDDO |
---|
525 | ENDDO |
---|
526 | |
---|
527 | CALL cpu_log( log_point_s(57), 'selfcollection', 'stop' ) |
---|
528 | |
---|
529 | END SUBROUTINE selfcollection_breakup |
---|
530 | |
---|
531 | |
---|
532 | SUBROUTINE evaporation_rain |
---|
533 | |
---|
534 | ! |
---|
535 | !-- Evaporation of precipitable water. Condensation is neglected for |
---|
536 | !-- precipitable water. |
---|
537 | |
---|
538 | USE arrays_3d, & |
---|
539 | ONLY: hyp, nr, pt, q, qc, qr |
---|
540 | |
---|
541 | USE cloud_parameters, & |
---|
542 | ONLY: a_term, a_vent, b_term, b_vent, c_evap, c_term, diff_coeff_l,& |
---|
543 | dpirho_l, eps_sb, hyrho, kin_vis_air, k_st, l_d_cp, l_d_r, & |
---|
544 | l_v, rho_l, r_v, schmidt_p_1d3, thermal_conductivity_l, & |
---|
545 | t_d_pt, ventilation_effect |
---|
546 | |
---|
547 | USE constants, & |
---|
548 | ONLY: pi |
---|
549 | |
---|
550 | USE control_parameters, & |
---|
551 | ONLY: dt_micro |
---|
552 | |
---|
553 | USE cpulog, & |
---|
554 | ONLY: cpu_log, log_point_s |
---|
555 | |
---|
556 | USE indices, & |
---|
557 | ONLY: nxl, nxr, nys, nyn, nzb, nzb_s_inner, nzt |
---|
558 | |
---|
559 | USE kinds |
---|
560 | |
---|
561 | IMPLICIT NONE |
---|
562 | |
---|
563 | INTEGER(iwp) :: i !: |
---|
564 | INTEGER(iwp) :: j !: |
---|
565 | INTEGER(iwp) :: k !: |
---|
566 | |
---|
567 | REAL(wp) :: alpha !: |
---|
568 | REAL(wp) :: dr !: |
---|
569 | REAL(wp) :: e_s !: |
---|
570 | REAL(wp) :: evap !: |
---|
571 | REAL(wp) :: evap_nr !: |
---|
572 | REAL(wp) :: f_vent !: |
---|
573 | REAL(wp) :: g_evap !: |
---|
574 | REAL(wp) :: lambda_r !: |
---|
575 | REAL(wp) :: mu_r !: |
---|
576 | REAL(wp) :: mu_r_2 !: |
---|
577 | REAL(wp) :: mu_r_5d2 !: |
---|
578 | REAL(wp) :: nr_0 !: |
---|
579 | REAL(wp) :: q_s !: |
---|
580 | REAL(wp) :: sat !: |
---|
581 | REAL(wp) :: t_l !: |
---|
582 | REAL(wp) :: temp !: |
---|
583 | REAL(wp) :: xr !: |
---|
584 | |
---|
585 | CALL cpu_log( log_point_s(58), 'evaporation', 'start' ) |
---|
586 | |
---|
587 | DO i = nxl, nxr |
---|
588 | DO j = nys, nyn |
---|
589 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
590 | IF ( qr(k,j,i) > eps_sb ) THEN |
---|
591 | ! |
---|
592 | !-- Actual liquid water temperature: |
---|
593 | t_l = t_d_pt(k) * pt(k,j,i) |
---|
594 | ! |
---|
595 | !-- Saturation vapor pressure at t_l: |
---|
596 | e_s = 610.78_wp * EXP( 17.269_wp * ( t_l - 273.16_wp ) / & |
---|
597 | ( t_l - 35.86_wp ) & |
---|
598 | ) |
---|
599 | ! |
---|
600 | !-- Computation of saturation humidity: |
---|
601 | q_s = 0.622_wp * e_s / ( hyp(k) - 0.378_wp * e_s ) |
---|
602 | alpha = 0.622_wp * l_d_r * l_d_cp / ( t_l * t_l ) |
---|
603 | q_s = q_s * ( 1.0_wp + alpha * q(k,j,i) ) / & |
---|
604 | ( 1.0_wp + alpha * q_s ) |
---|
605 | ! |
---|
606 | !-- Supersaturation: |
---|
607 | sat = ( q(k,j,i) - qr(k,j,i) - qc(k,j,i) ) / q_s - 1.0_wp |
---|
608 | ! |
---|
609 | !-- Evaporation needs only to be calculated in subsaturated regions |
---|
610 | IF ( sat < 0.0_wp ) THEN |
---|
611 | ! |
---|
612 | !-- Actual temperature: |
---|
613 | temp = t_l + l_d_cp * ( qc(k,j,i) + qr(k,j,i) ) |
---|
614 | |
---|
615 | g_evap = 1.0_wp / ( ( l_v / ( r_v * temp ) - 1.0_wp ) * & |
---|
616 | l_v / ( thermal_conductivity_l * temp ) & |
---|
617 | + r_v * temp / ( diff_coeff_l * e_s ) & |
---|
618 | ) |
---|
619 | ! |
---|
620 | !-- Mean weight of rain drops |
---|
621 | xr = hyrho(k) * qr(k,j,i) / nr(k,j,i) |
---|
622 | ! |
---|
623 | !-- Weight averaged diameter of rain drops: |
---|
624 | dr = ( xr * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
625 | ! |
---|
626 | !-- Compute ventilation factor and intercept parameter |
---|
627 | !-- (Seifert and Beheng, 2006; Seifert, 2008): |
---|
628 | IF ( ventilation_effect ) THEN |
---|
629 | ! |
---|
630 | !-- Shape parameter of gamma distribution (Milbrandt and Yau, |
---|
631 | !-- 2005; Stevens and Seifert, 2008): |
---|
632 | mu_r = 10.0_wp * ( 1.0_wp + TANH( 1.2E3_wp * & |
---|
633 | ( dr - 1.4E-3_wp ) ) ) |
---|
634 | ! |
---|
635 | !-- Slope parameter of gamma distribution (Seifert, 2008): |
---|
636 | lambda_r = ( ( mu_r + 3.0_wp ) * ( mu_r + 2.0_wp ) * & |
---|
637 | ( mu_r + 1.0_wp ) & |
---|
638 | )**( 1.0_wp / 3.0_wp ) / dr |
---|
639 | |
---|
640 | mu_r_2 = mu_r + 2.0_wp |
---|
641 | mu_r_5d2 = mu_r + 2.5_wp |
---|
642 | |
---|
643 | f_vent = a_vent * gamm( mu_r_2 ) * & |
---|
644 | lambda_r**( -mu_r_2 ) + b_vent * & |
---|
645 | schmidt_p_1d3 * SQRT( a_term / kin_vis_air ) *& |
---|
646 | gamm( mu_r_5d2 ) * lambda_r**( -mu_r_5d2 ) * & |
---|
647 | ( 1.0_wp - & |
---|
648 | 0.5_wp * ( b_term / a_term ) * & |
---|
649 | ( lambda_r / ( c_term + lambda_r ) & |
---|
650 | )**mu_r_5d2 - & |
---|
651 | 0.125_wp * ( b_term / a_term )**2 * & |
---|
652 | ( lambda_r / ( 2.0_wp * c_term + lambda_r ) & |
---|
653 | )**mu_r_5d2 - & |
---|
654 | 0.0625_wp * ( b_term / a_term )**3 * & |
---|
655 | ( lambda_r / ( 3.0_wp * c_term + lambda_r ) & |
---|
656 | )**mu_r_5d2 - & |
---|
657 | 0.0390625_wp * ( b_term / a_term )**4 * & |
---|
658 | ( lambda_r / ( 4.0_wp * c_term + lambda_r ) & |
---|
659 | )**mu_r_5d2 & |
---|
660 | ) |
---|
661 | |
---|
662 | nr_0 = nr(k,j,i) * lambda_r**( mu_r + 1.0_wp ) / & |
---|
663 | gamm( mu_r + 1.0_wp ) |
---|
664 | ELSE |
---|
665 | f_vent = 1.0_wp |
---|
666 | nr_0 = nr(k,j,i) * dr |
---|
667 | ENDIF |
---|
668 | ! |
---|
669 | !-- Evaporation rate of rain water content (Seifert and |
---|
670 | !-- Beheng, 2006): |
---|
671 | evap = 2.0_wp * pi * nr_0 * g_evap * f_vent * sat / & |
---|
672 | hyrho(k) |
---|
673 | evap = MAX( evap, -qr(k,j,i) / dt_micro ) |
---|
674 | evap_nr = MAX( c_evap * evap / xr * hyrho(k), & |
---|
675 | -nr(k,j,i) / dt_micro ) |
---|
676 | |
---|
677 | qr(k,j,i) = qr(k,j,i) + evap * dt_micro |
---|
678 | nr(k,j,i) = nr(k,j,i) + evap_nr * dt_micro |
---|
679 | |
---|
680 | ENDIF |
---|
681 | ENDIF |
---|
682 | |
---|
683 | ENDDO |
---|
684 | ENDDO |
---|
685 | ENDDO |
---|
686 | |
---|
687 | CALL cpu_log( log_point_s(58), 'evaporation', 'stop' ) |
---|
688 | |
---|
689 | END SUBROUTINE evaporation_rain |
---|
690 | |
---|
691 | |
---|
692 | SUBROUTINE sedimentation_cloud |
---|
693 | |
---|
694 | USE arrays_3d, & |
---|
695 | ONLY: ddzu, dzu, pt, q, qc |
---|
696 | |
---|
697 | USE cloud_parameters, & |
---|
698 | ONLY: eps_sb, hyrho, l_d_cp, nc_const, pt_d_t, sed_qc_const |
---|
699 | |
---|
700 | USE constants, & |
---|
701 | ONLY: pi |
---|
702 | |
---|
703 | USE control_parameters, & |
---|
704 | ONLY: dt_do2d_xy, dt_micro, intermediate_timestep_count |
---|
705 | |
---|
706 | USE cpulog, & |
---|
707 | ONLY: cpu_log, log_point_s |
---|
708 | |
---|
709 | USE indices, & |
---|
710 | ONLY: nxl, nxr, nys, nyn, nzb, nzb_s_inner, nzt |
---|
711 | |
---|
712 | USE kinds |
---|
713 | |
---|
714 | IMPLICIT NONE |
---|
715 | |
---|
716 | INTEGER(iwp) :: i !: |
---|
717 | INTEGER(iwp) :: j !: |
---|
718 | INTEGER(iwp) :: k !: |
---|
719 | |
---|
720 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_qc !: |
---|
721 | |
---|
722 | CALL cpu_log( log_point_s(59), 'sed_cloud', 'start' ) |
---|
723 | |
---|
724 | ! |
---|
725 | !-- Sedimentation of cloud droplets (Ackermann et al., 2009, MWR): |
---|
726 | sed_qc(nzt+1) = 0.0_wp |
---|
727 | |
---|
728 | DO i = nxl, nxr |
---|
729 | DO j = nys, nyn |
---|
730 | DO k = nzt, nzb_s_inner(j,i)+1, -1 |
---|
731 | |
---|
732 | IF ( qc(k,j,i) > eps_sb ) THEN |
---|
733 | sed_qc(k) = sed_qc_const * nc_const**( -2.0_wp / 3.0_wp ) * & |
---|
734 | ( qc(k,j,i) * hyrho(k) )**( 5.0_wp / 3.0_wp ) |
---|
735 | ELSE |
---|
736 | sed_qc(k) = 0.0_wp |
---|
737 | ENDIF |
---|
738 | |
---|
739 | sed_qc(k) = MIN( sed_qc(k), hyrho(k) * dzu(k+1) * q(k,j,i) / & |
---|
740 | dt_micro + sed_qc(k+1) & |
---|
741 | ) |
---|
742 | |
---|
743 | q(k,j,i) = q(k,j,i) + ( sed_qc(k+1) - sed_qc(k) ) * & |
---|
744 | ddzu(k+1) / hyrho(k) * dt_micro |
---|
745 | qc(k,j,i) = qc(k,j,i) + ( sed_qc(k+1) - sed_qc(k) ) * & |
---|
746 | ddzu(k+1) / hyrho(k) * dt_micro |
---|
747 | pt(k,j,i) = pt(k,j,i) - ( sed_qc(k+1) - sed_qc(k) ) * & |
---|
748 | ddzu(k+1) / hyrho(k) * l_d_cp * & |
---|
749 | pt_d_t(k) * dt_micro |
---|
750 | |
---|
751 | ENDDO |
---|
752 | ENDDO |
---|
753 | ENDDO |
---|
754 | |
---|
755 | CALL cpu_log( log_point_s(59), 'sed_cloud', 'stop' ) |
---|
756 | |
---|
757 | END SUBROUTINE sedimentation_cloud |
---|
758 | |
---|
759 | |
---|
760 | SUBROUTINE sedimentation_rain |
---|
761 | |
---|
762 | USE arrays_3d, & |
---|
763 | ONLY: ddzu, dzu, nr, pt, q, qr |
---|
764 | |
---|
765 | USE cloud_parameters, & |
---|
766 | ONLY: a_term, b_term, c_term, cof, dpirho_l, eps_sb, hyrho, & |
---|
767 | limiter_sedimentation, l_d_cp, precipitation_amount, prr, & |
---|
768 | pt_d_t, stp |
---|
769 | |
---|
770 | USE control_parameters, & |
---|
771 | ONLY: call_microphysics_at_all_substeps, dt_do2d_xy, dt_micro, & |
---|
772 | dt_3d, intermediate_timestep_count, & |
---|
773 | intermediate_timestep_count_max, & |
---|
774 | precipitation_amount_interval, time_do2d_xy |
---|
775 | |
---|
776 | USE cpulog, & |
---|
777 | ONLY: cpu_log, log_point_s |
---|
778 | |
---|
779 | USE indices, & |
---|
780 | ONLY: nxl, nxr, nys, nyn, nzb, nzb_s_inner, nzt |
---|
781 | |
---|
782 | USE kinds |
---|
783 | |
---|
784 | USE statistics, & |
---|
785 | ONLY: weight_substep |
---|
786 | |
---|
787 | IMPLICIT NONE |
---|
788 | |
---|
789 | INTEGER(iwp) :: i !: |
---|
790 | INTEGER(iwp) :: j !: |
---|
791 | INTEGER(iwp) :: k !: |
---|
792 | INTEGER(iwp) :: k_run !: |
---|
793 | |
---|
794 | REAL(wp) :: c_run !: |
---|
795 | REAL(wp) :: d_max !: |
---|
796 | REAL(wp) :: d_mean !: |
---|
797 | REAL(wp) :: d_min !: |
---|
798 | REAL(wp) :: dr !: |
---|
799 | REAL(wp) :: dt_sedi !: |
---|
800 | REAL(wp) :: flux !: |
---|
801 | REAL(wp) :: lambda_r !: |
---|
802 | REAL(wp) :: mu_r !: |
---|
803 | REAL(wp) :: z_run !: |
---|
804 | |
---|
805 | REAL(wp), DIMENSION(nzb:nzt+1) :: c_nr !: |
---|
806 | REAL(wp), DIMENSION(nzb:nzt+1) :: c_qr !: |
---|
807 | REAL(wp), DIMENSION(nzb:nzt+1) :: d_nr !: |
---|
808 | REAL(wp), DIMENSION(nzb:nzt+1) :: d_qr !: |
---|
809 | REAL(wp), DIMENSION(nzb:nzt+1) :: nr_slope !: |
---|
810 | REAL(wp), DIMENSION(nzb:nzt+1) :: qr_slope !: |
---|
811 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_nr !: |
---|
812 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_qr !: |
---|
813 | REAL(wp), DIMENSION(nzb:nzt+1) :: w_nr !: |
---|
814 | REAL(wp), DIMENSION(nzb:nzt+1) :: w_qr !: |
---|
815 | |
---|
816 | CALL cpu_log( log_point_s(60), 'sed_rain', 'start' ) |
---|
817 | ! |
---|
818 | !-- Computation of sedimentation flux. Implementation according to Stevens |
---|
819 | !-- and Seifert (2008). Code is based on UCLA-LES. |
---|
820 | IF ( intermediate_timestep_count == 1 ) prr(:,:,:) = 0.0_wp |
---|
821 | ! |
---|
822 | !-- Compute velocities |
---|
823 | DO i = nxl, nxr |
---|
824 | DO j = nys, nyn |
---|
825 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
826 | IF ( qr(k,j,i) > eps_sb ) THEN |
---|
827 | ! |
---|
828 | !-- Weight averaged diameter of rain drops: |
---|
829 | dr = ( hyrho(k) * qr(k,j,i) / & |
---|
830 | nr(k,j,i) * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
831 | ! |
---|
832 | !-- Shape parameter of gamma distribution (Milbrandt and Yau, 2005; |
---|
833 | !-- Stevens and Seifert, 2008): |
---|
834 | mu_r = 10.0_wp * ( 1.0_wp + TANH( 1.2E3_wp * & |
---|
835 | ( dr - 1.4E-3_wp ) ) ) |
---|
836 | ! |
---|
837 | !-- Slope parameter of gamma distribution (Seifert, 2008): |
---|
838 | lambda_r = ( ( mu_r + 3.0_wp ) * ( mu_r + 2.0_wp ) * & |
---|
839 | ( mu_r + 1.0_wp ) )**( 1.0_wp / 3.0_wp ) / dr |
---|
840 | |
---|
841 | w_nr(k) = MAX( 0.1_wp, MIN( 20.0_wp, & |
---|
842 | a_term - b_term * ( 1.0_wp + & |
---|
843 | c_term / & |
---|
844 | lambda_r )**( -1.0_wp * & |
---|
845 | ( mu_r + 1.0_wp ) ) & |
---|
846 | ) & |
---|
847 | ) |
---|
848 | |
---|
849 | w_qr(k) = MAX( 0.1_wp, MIN( 20.0_wp, & |
---|
850 | a_term - b_term * ( 1.0_wp + & |
---|
851 | c_term / & |
---|
852 | lambda_r )**( -1.0_wp * & |
---|
853 | ( mu_r + 4.0_wp ) ) & |
---|
854 | ) & |
---|
855 | ) |
---|
856 | ELSE |
---|
857 | w_nr(k) = 0.0_wp |
---|
858 | w_qr(k) = 0.0_wp |
---|
859 | ENDIF |
---|
860 | ENDDO |
---|
861 | ! |
---|
862 | !-- Adjust boundary values |
---|
863 | w_nr(nzb_s_inner(j,i)) = w_nr(nzb_s_inner(j,i)+1) |
---|
864 | w_qr(nzb_s_inner(j,i)) = w_qr(nzb_s_inner(j,i)+1) |
---|
865 | w_nr(nzt+1) = 0.0_wp |
---|
866 | w_qr(nzt+1) = 0.0_wp |
---|
867 | ! |
---|
868 | !-- Compute Courant number |
---|
869 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
870 | c_nr(k) = 0.25_wp * ( w_nr(k-1) + & |
---|
871 | 2.0_wp * w_nr(k) + w_nr(k+1) ) * & |
---|
872 | dt_micro * ddzu(k) |
---|
873 | c_qr(k) = 0.25_wp * ( w_qr(k-1) + & |
---|
874 | 2.0_wp * w_qr(k) + w_qr(k+1) ) * & |
---|
875 | dt_micro * ddzu(k) |
---|
876 | ENDDO |
---|
877 | ! |
---|
878 | !-- Limit slopes with monotonized centered (MC) limiter (van Leer, 1977): |
---|
879 | IF ( limiter_sedimentation ) THEN |
---|
880 | |
---|
881 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
882 | d_mean = 0.5_wp * ( qr(k+1,j,i) - qr(k-1,j,i) ) |
---|
883 | d_min = qr(k,j,i) - MIN( qr(k+1,j,i), qr(k,j,i), qr(k-1,j,i) ) |
---|
884 | d_max = MAX( qr(k+1,j,i), qr(k,j,i), qr(k-1,j,i) ) - qr(k,j,i) |
---|
885 | |
---|
886 | qr_slope(k) = SIGN(1.0_wp, d_mean) * MIN ( 2.0_wp * d_min, & |
---|
887 | 2.0_wp * d_max, & |
---|
888 | ABS( d_mean ) ) |
---|
889 | |
---|
890 | d_mean = 0.5_wp * ( nr(k+1,j,i) - nr(k-1,j,i) ) |
---|
891 | d_min = nr(k,j,i) - MIN( nr(k+1,j,i), nr(k,j,i), nr(k-1,j,i) ) |
---|
892 | d_max = MAX( nr(k+1,j,i), nr(k,j,i), nr(k-1,j,i) ) - nr(k,j,i) |
---|
893 | |
---|
894 | nr_slope(k) = SIGN(1.0_wp, d_mean) * MIN ( 2.0_wp * d_min, & |
---|
895 | 2.0_wp * d_max, & |
---|
896 | ABS( d_mean ) ) |
---|
897 | ENDDO |
---|
898 | |
---|
899 | ELSE |
---|
900 | |
---|
901 | nr_slope = 0.0_wp |
---|
902 | qr_slope = 0.0_wp |
---|
903 | |
---|
904 | ENDIF |
---|
905 | |
---|
906 | sed_nr(nzt+1) = 0.0_wp |
---|
907 | sed_qr(nzt+1) = 0.0_wp |
---|
908 | ! |
---|
909 | !-- Compute sedimentation flux |
---|
910 | DO k = nzt, nzb_s_inner(j,i)+1, -1 |
---|
911 | ! |
---|
912 | !-- Sum up all rain drop number densities which contribute to the flux |
---|
913 | !-- through k-1/2 |
---|
914 | flux = 0.0_wp |
---|
915 | z_run = 0.0_wp ! height above z(k) |
---|
916 | k_run = k |
---|
917 | c_run = MIN( 1.0_wp, c_nr(k) ) |
---|
918 | DO WHILE ( c_run > 0.0_wp .AND. k_run <= nzt ) |
---|
919 | flux = flux + hyrho(k_run) * & |
---|
920 | ( nr(k_run,j,i) + nr_slope(k_run) * & |
---|
921 | ( 1.0_wp - c_run ) * 0.5_wp ) * c_run * dzu(k_run) |
---|
922 | z_run = z_run + dzu(k_run) |
---|
923 | k_run = k_run + 1 |
---|
924 | c_run = MIN( 1.0_wp, c_nr(k_run) - z_run * ddzu(k_run) ) |
---|
925 | ENDDO |
---|
926 | ! |
---|
927 | !-- It is not allowed to sediment more rain drop number density than |
---|
928 | !-- available |
---|
929 | flux = MIN( flux, & |
---|
930 | hyrho(k) * dzu(k+1) * nr(k,j,i) + sed_nr(k+1) * & |
---|
931 | dt_micro & |
---|
932 | ) |
---|
933 | |
---|
934 | sed_nr(k) = flux / dt_micro |
---|
935 | nr(k,j,i) = nr(k,j,i) + ( sed_nr(k+1) - sed_nr(k) ) * & |
---|
936 | ddzu(k+1) / hyrho(k) * dt_micro |
---|
937 | ! |
---|
938 | !-- Sum up all rain water content which contributes to the flux |
---|
939 | !-- through k-1/2 |
---|
940 | flux = 0.0_wp |
---|
941 | z_run = 0.0_wp ! height above z(k) |
---|
942 | k_run = k |
---|
943 | c_run = MIN( 1.0_wp, c_qr(k) ) |
---|
944 | |
---|
945 | DO WHILE ( c_run > 0.0_wp .AND. k_run <= nzt ) |
---|
946 | |
---|
947 | flux = flux + hyrho(k_run) * ( qr(k_run,j,i) + & |
---|
948 | qr_slope(k_run) * ( 1.0_wp - c_run ) * & |
---|
949 | 0.5_wp ) * c_run * dzu(k_run) |
---|
950 | z_run = z_run + dzu(k_run) |
---|
951 | k_run = k_run + 1 |
---|
952 | c_run = MIN( 1.0_wp, c_qr(k_run) - z_run * ddzu(k_run) ) |
---|
953 | |
---|
954 | ENDDO |
---|
955 | ! |
---|
956 | !-- It is not allowed to sediment more rain water content than |
---|
957 | !-- available |
---|
958 | flux = MIN( flux, & |
---|
959 | hyrho(k) * dzu(k) * qr(k,j,i) + sed_qr(k+1) * & |
---|
960 | dt_micro & |
---|
961 | ) |
---|
962 | |
---|
963 | sed_qr(k) = flux / dt_micro |
---|
964 | |
---|
965 | qr(k,j,i) = qr(k,j,i) + ( sed_qr(k+1) - sed_qr(k) ) * & |
---|
966 | ddzu(k+1) / hyrho(k) * dt_micro |
---|
967 | q(k,j,i) = q(k,j,i) + ( sed_qr(k+1) - sed_qr(k) ) * & |
---|
968 | ddzu(k+1) / hyrho(k) * dt_micro |
---|
969 | pt(k,j,i) = pt(k,j,i) - ( sed_qr(k+1) - sed_qr(k) ) * & |
---|
970 | ddzu(k+1) / hyrho(k) * l_d_cp * & |
---|
971 | pt_d_t(k) * dt_micro |
---|
972 | ! |
---|
973 | !-- Compute the rain rate |
---|
974 | IF ( call_microphysics_at_all_substeps ) THEN |
---|
975 | prr(k,j,i) = prr(k,j,i) + sed_qr(k) / hyrho(k) * & |
---|
976 | weight_substep(intermediate_timestep_count) |
---|
977 | ELSE |
---|
978 | prr(k,j,i) = sed_qr(k) / hyrho(k) |
---|
979 | ENDIF |
---|
980 | |
---|
981 | ENDDO |
---|
982 | ENDDO |
---|
983 | ENDDO |
---|
984 | |
---|
985 | ! |
---|
986 | !-- Precipitation amount |
---|
987 | IF ( intermediate_timestep_count == intermediate_timestep_count_max & |
---|
988 | .AND. ( dt_do2d_xy - time_do2d_xy ) < & |
---|
989 | precipitation_amount_interval ) THEN |
---|
990 | DO i = nxl, nxr |
---|
991 | DO j = nys, nyn |
---|
992 | precipitation_amount(j,i) = precipitation_amount(j,i) + & |
---|
993 | prr(nzb_s_inner(j,i)+1,j,i) * & |
---|
994 | hyrho(nzb_s_inner(j,i)+1) * dt_3d |
---|
995 | ENDDO |
---|
996 | ENDDO |
---|
997 | ENDIF |
---|
998 | |
---|
999 | CALL cpu_log( log_point_s(60), 'sed_rain', 'stop' ) |
---|
1000 | |
---|
1001 | END SUBROUTINE sedimentation_rain |
---|
1002 | |
---|
1003 | |
---|
1004 | !------------------------------------------------------------------------------! |
---|
1005 | ! Call for grid point i,j |
---|
1006 | !------------------------------------------------------------------------------! |
---|
1007 | |
---|
1008 | SUBROUTINE microphysics_control_ij( i, j ) |
---|
1009 | |
---|
1010 | USE arrays_3d, & |
---|
1011 | ONLY: hyp, nc_1d, nr, nr_1d, pt, pt_init, pt_1d, q, q_1d, qc, & |
---|
1012 | qc_1d, qr, qr_1d, zu |
---|
1013 | |
---|
1014 | USE cloud_parameters, & |
---|
1015 | ONLY: cp, hyrho, nc_const, pt_d_t, r_d, t_d_pt |
---|
1016 | |
---|
1017 | USE control_parameters, & |
---|
1018 | ONLY: call_microphysics_at_all_substeps, drizzle, dt_3d, dt_micro, & |
---|
1019 | g, intermediate_timestep_count, large_scale_forcing, & |
---|
1020 | lsf_surf, precipitation, pt_surface, & |
---|
1021 | rho_surface,surface_pressure |
---|
1022 | |
---|
1023 | USE indices, & |
---|
1024 | ONLY: nzb, nzt |
---|
1025 | |
---|
1026 | USE kinds |
---|
1027 | |
---|
1028 | USE statistics, & |
---|
1029 | ONLY: weight_pres |
---|
1030 | |
---|
1031 | IMPLICIT NONE |
---|
1032 | |
---|
1033 | INTEGER(iwp) :: i !: |
---|
1034 | INTEGER(iwp) :: j !: |
---|
1035 | INTEGER(iwp) :: k !: |
---|
1036 | |
---|
1037 | REAL(wp) :: t_surface !: |
---|
1038 | |
---|
1039 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
1040 | ! |
---|
1041 | !-- Calculate: |
---|
1042 | !-- pt / t : ratio of potential and actual temperature (pt_d_t) |
---|
1043 | !-- t / pt : ratio of actual and potential temperature (t_d_pt) |
---|
1044 | !-- p_0(z) : vertical profile of the hydrostatic pressure (hyp) |
---|
1045 | t_surface = pt_surface * ( surface_pressure / 1000.0_wp )**0.286_wp |
---|
1046 | DO k = nzb, nzt+1 |
---|
1047 | hyp(k) = surface_pressure * 100.0_wp * & |
---|
1048 | ( ( t_surface - g / cp * zu(k) ) / t_surface )**(1.0_wp / 0.286_wp) |
---|
1049 | pt_d_t(k) = ( 100000.0_wp / hyp(k) )**0.286_wp |
---|
1050 | t_d_pt(k) = 1.0_wp / pt_d_t(k) |
---|
1051 | hyrho(k) = hyp(k) / ( r_d * t_d_pt(k) * pt_init(k) ) |
---|
1052 | ENDDO |
---|
1053 | ! |
---|
1054 | !-- Compute reference density |
---|
1055 | rho_surface = surface_pressure * 100.0_wp / ( r_d * t_surface ) |
---|
1056 | ENDIF |
---|
1057 | |
---|
1058 | ! |
---|
1059 | !-- Compute length of time step |
---|
1060 | IF ( call_microphysics_at_all_substeps ) THEN |
---|
1061 | dt_micro = dt_3d * weight_pres(intermediate_timestep_count) |
---|
1062 | ELSE |
---|
1063 | dt_micro = dt_3d |
---|
1064 | ENDIF |
---|
1065 | |
---|
1066 | ! |
---|
1067 | !-- Use 1d arrays |
---|
1068 | q_1d(:) = q(:,j,i) |
---|
1069 | pt_1d(:) = pt(:,j,i) |
---|
1070 | qc_1d(:) = qc(:,j,i) |
---|
1071 | nc_1d(:) = nc_const |
---|
1072 | IF ( precipitation ) THEN |
---|
1073 | qr_1d(:) = qr(:,j,i) |
---|
1074 | nr_1d(:) = nr(:,j,i) |
---|
1075 | ENDIF |
---|
1076 | |
---|
1077 | ! |
---|
1078 | !-- Compute cloud physics |
---|
1079 | IF ( precipitation ) THEN |
---|
1080 | CALL adjust_cloud( i,j ) |
---|
1081 | CALL autoconversion( i,j ) |
---|
1082 | CALL accretion( i,j ) |
---|
1083 | CALL selfcollection_breakup( i,j ) |
---|
1084 | CALL evaporation_rain( i,j ) |
---|
1085 | CALL sedimentation_rain( i,j ) |
---|
1086 | ENDIF |
---|
1087 | |
---|
1088 | IF ( drizzle ) CALL sedimentation_cloud( i,j ) |
---|
1089 | |
---|
1090 | ! |
---|
1091 | !-- Store results on the 3d arrays |
---|
1092 | q(:,j,i) = q_1d(:) |
---|
1093 | pt(:,j,i) = pt_1d(:) |
---|
1094 | IF ( precipitation ) THEN |
---|
1095 | qr(:,j,i) = qr_1d(:) |
---|
1096 | nr(:,j,i) = nr_1d(:) |
---|
1097 | ENDIF |
---|
1098 | |
---|
1099 | END SUBROUTINE microphysics_control_ij |
---|
1100 | |
---|
1101 | SUBROUTINE adjust_cloud_ij( i, j ) |
---|
1102 | |
---|
1103 | USE arrays_3d, & |
---|
1104 | ONLY: qr_1d, nr_1d |
---|
1105 | |
---|
1106 | USE cloud_parameters, & |
---|
1107 | ONLY: eps_sb, xrmin, xrmax, hyrho, k_cc, x0 |
---|
1108 | |
---|
1109 | USE indices, & |
---|
1110 | ONLY: nzb, nzb_s_inner, nzt |
---|
1111 | |
---|
1112 | USE kinds |
---|
1113 | |
---|
1114 | IMPLICIT NONE |
---|
1115 | |
---|
1116 | INTEGER(iwp) :: i !: |
---|
1117 | INTEGER(iwp) :: j !: |
---|
1118 | INTEGER(iwp) :: k !: |
---|
1119 | ! |
---|
1120 | !-- Adjust number of raindrops to avoid nonlinear effects in |
---|
1121 | !-- sedimentation and evaporation of rain drops due to too small or |
---|
1122 | !-- too big weights of rain drops (Stevens and Seifert, 2008). |
---|
1123 | !-- The same procedure is applied to cloud droplets if they are determined |
---|
1124 | !-- prognostically. |
---|
1125 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1126 | |
---|
1127 | IF ( qr_1d(k) <= eps_sb ) THEN |
---|
1128 | qr_1d(k) = 0.0_wp |
---|
1129 | nr_1d(k) = 0.0_wp |
---|
1130 | ELSE |
---|
1131 | ! |
---|
1132 | !-- Adjust number of raindrops to avoid nonlinear effects in |
---|
1133 | !-- sedimentation and evaporation of rain drops due to too small or |
---|
1134 | !-- too big weights of rain drops (Stevens and Seifert, 2008). |
---|
1135 | IF ( nr_1d(k) * xrmin > qr_1d(k) * hyrho(k) ) THEN |
---|
1136 | nr_1d(k) = qr_1d(k) * hyrho(k) / xrmin |
---|
1137 | ELSEIF ( nr_1d(k) * xrmax < qr_1d(k) * hyrho(k) ) THEN |
---|
1138 | nr_1d(k) = qr_1d(k) * hyrho(k) / xrmax |
---|
1139 | ENDIF |
---|
1140 | |
---|
1141 | ENDIF |
---|
1142 | |
---|
1143 | ENDDO |
---|
1144 | |
---|
1145 | END SUBROUTINE adjust_cloud_ij |
---|
1146 | |
---|
1147 | |
---|
1148 | SUBROUTINE autoconversion_ij( i, j ) |
---|
1149 | |
---|
1150 | USE arrays_3d, & |
---|
1151 | ONLY: diss, dzu, nc_1d, nr_1d, qc_1d, qr_1d |
---|
1152 | |
---|
1153 | USE cloud_parameters, & |
---|
1154 | ONLY: a_1, a_2, a_3, b_1, b_2, b_3, beta_cc, c_1, c_2, c_3, & |
---|
1155 | c_const, dpirho_l, eps_sb, hyrho, k_cc, kin_vis_air, x0 |
---|
1156 | |
---|
1157 | USE control_parameters, & |
---|
1158 | ONLY: dt_micro, rho_surface, turbulence |
---|
1159 | |
---|
1160 | USE grid_variables, & |
---|
1161 | ONLY: dx, dy |
---|
1162 | |
---|
1163 | USE indices, & |
---|
1164 | ONLY: nzb, nzb_s_inner, nzt |
---|
1165 | |
---|
1166 | USE kinds |
---|
1167 | |
---|
1168 | IMPLICIT NONE |
---|
1169 | |
---|
1170 | INTEGER(iwp) :: i !: |
---|
1171 | INTEGER(iwp) :: j !: |
---|
1172 | INTEGER(iwp) :: k !: |
---|
1173 | |
---|
1174 | REAL(wp) :: alpha_cc !: |
---|
1175 | REAL(wp) :: autocon !: |
---|
1176 | REAL(wp) :: dissipation !: |
---|
1177 | REAL(wp) :: k_au !: |
---|
1178 | REAL(wp) :: l_mix !: |
---|
1179 | REAL(wp) :: nu_c !: |
---|
1180 | REAL(wp) :: phi_au !: |
---|
1181 | REAL(wp) :: r_cc !: |
---|
1182 | REAL(wp) :: rc !: |
---|
1183 | REAL(wp) :: re_lambda !: |
---|
1184 | REAL(wp) :: selfcoll !: |
---|
1185 | REAL(wp) :: sigma_cc !: |
---|
1186 | REAL(wp) :: tau_cloud !: |
---|
1187 | REAL(wp) :: xc !: |
---|
1188 | |
---|
1189 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1190 | |
---|
1191 | IF ( qc_1d(k) > eps_sb ) THEN |
---|
1192 | |
---|
1193 | k_au = k_cc / ( 20.0_wp * x0 ) |
---|
1194 | ! |
---|
1195 | !-- Intern time scale of coagulation (Seifert and Beheng, 2006): |
---|
1196 | !-- (1.0_wp - qc(k,j,i) / ( qc(k,j,i) + qr_1d(k) )) |
---|
1197 | tau_cloud = 1.0_wp - qc_1d(k) / ( qr_1d(k) + qc_1d(k) ) |
---|
1198 | ! |
---|
1199 | !-- Universal function for autoconversion process |
---|
1200 | !-- (Seifert and Beheng, 2006): |
---|
1201 | phi_au = 600.0_wp * tau_cloud**0.68_wp * ( 1.0_wp - tau_cloud**0.68_wp )**3 |
---|
1202 | ! |
---|
1203 | !-- Shape parameter of gamma distribution (Geoffroy et al., 2010): |
---|
1204 | !-- (Use constant nu_c = 1.0_wp instead?) |
---|
1205 | nu_c = 1.0_wp !MAX( 0.0_wp, 1580.0_wp * hyrho(k) * qc_1d(k) - 0.28_wp ) |
---|
1206 | ! |
---|
1207 | !-- Mean weight of cloud droplets: |
---|
1208 | xc = hyrho(k) * qc_1d(k) / nc_1d(k) |
---|
1209 | ! |
---|
1210 | !-- Parameterized turbulence effects on autoconversion (Seifert, |
---|
1211 | !-- Nuijens and Stevens, 2010) |
---|
1212 | IF ( turbulence ) THEN |
---|
1213 | ! |
---|
1214 | !-- Weight averaged radius of cloud droplets: |
---|
1215 | rc = 0.5_wp * ( xc * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
1216 | |
---|
1217 | alpha_cc = ( a_1 + a_2 * nu_c ) / ( 1.0_wp + a_3 * nu_c ) |
---|
1218 | r_cc = ( b_1 + b_2 * nu_c ) / ( 1.0_wp + b_3 * nu_c ) |
---|
1219 | sigma_cc = ( c_1 + c_2 * nu_c ) / ( 1.0_wp + c_3 * nu_c ) |
---|
1220 | ! |
---|
1221 | !-- Mixing length (neglecting distance to ground and stratification) |
---|
1222 | l_mix = ( dx * dy * dzu(k) )**( 1.0_wp / 3.0_wp ) |
---|
1223 | ! |
---|
1224 | !-- Limit dissipation rate according to Seifert, Nuijens and |
---|
1225 | !-- Stevens (2010) |
---|
1226 | dissipation = MIN( 0.06_wp, diss(k,j,i) ) |
---|
1227 | ! |
---|
1228 | !-- Compute Taylor-microscale Reynolds number: |
---|
1229 | re_lambda = 6.0_wp / 11.0_wp * & |
---|
1230 | ( l_mix / c_const )**( 2.0_wp / 3.0_wp ) * & |
---|
1231 | SQRT( 15.0_wp / kin_vis_air ) * & |
---|
1232 | dissipation**( 1.0_wp / 6.0_wp ) |
---|
1233 | ! |
---|
1234 | !-- The factor of 1.0E4 is needed to convert the dissipation rate |
---|
1235 | !-- from m2 s-3 to cm2 s-3. |
---|
1236 | k_au = k_au * ( 1.0_wp + & |
---|
1237 | dissipation * 1.0E4_wp * & |
---|
1238 | ( re_lambda * 1.0E-3_wp )**0.25_wp * & |
---|
1239 | ( alpha_cc * EXP( -1.0_wp * ( ( rc - r_cc ) / & |
---|
1240 | sigma_cc )**2 & |
---|
1241 | ) + beta_cc & |
---|
1242 | ) & |
---|
1243 | ) |
---|
1244 | ENDIF |
---|
1245 | ! |
---|
1246 | !-- Autoconversion rate (Seifert and Beheng, 2006): |
---|
1247 | autocon = k_au * ( nu_c + 2.0_wp ) * ( nu_c + 4.0_wp ) / & |
---|
1248 | ( nu_c + 1.0_wp )**2 * qc_1d(k)**2 * xc**2 * & |
---|
1249 | ( 1.0_wp + phi_au / ( 1.0_wp - tau_cloud )**2 ) * & |
---|
1250 | rho_surface |
---|
1251 | autocon = MIN( autocon, qc_1d(k) / dt_micro ) |
---|
1252 | |
---|
1253 | qr_1d(k) = qr_1d(k) + autocon * dt_micro |
---|
1254 | qc_1d(k) = qc_1d(k) - autocon * dt_micro |
---|
1255 | nr_1d(k) = nr_1d(k) + autocon / x0 * hyrho(k) * dt_micro |
---|
1256 | |
---|
1257 | ENDIF |
---|
1258 | |
---|
1259 | ENDDO |
---|
1260 | |
---|
1261 | END SUBROUTINE autoconversion_ij |
---|
1262 | |
---|
1263 | |
---|
1264 | SUBROUTINE accretion_ij( i, j ) |
---|
1265 | |
---|
1266 | USE arrays_3d, & |
---|
1267 | ONLY: diss, qc_1d, qr_1d |
---|
1268 | |
---|
1269 | USE cloud_parameters, & |
---|
1270 | ONLY: eps_sb, hyrho, k_cr0 |
---|
1271 | |
---|
1272 | USE control_parameters, & |
---|
1273 | ONLY: dt_micro, rho_surface, turbulence |
---|
1274 | |
---|
1275 | USE indices, & |
---|
1276 | ONLY: nzb, nzb_s_inner, nzt |
---|
1277 | |
---|
1278 | USE kinds |
---|
1279 | |
---|
1280 | IMPLICIT NONE |
---|
1281 | |
---|
1282 | INTEGER(iwp) :: i !: |
---|
1283 | INTEGER(iwp) :: j !: |
---|
1284 | INTEGER(iwp) :: k !: |
---|
1285 | |
---|
1286 | REAL(wp) :: accr !: |
---|
1287 | REAL(wp) :: k_cr !: |
---|
1288 | REAL(wp) :: phi_ac !: |
---|
1289 | REAL(wp) :: tau_cloud !: |
---|
1290 | REAL(wp) :: xc !: |
---|
1291 | |
---|
1292 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1293 | IF ( ( qc_1d(k) > eps_sb ) .AND. ( qr_1d(k) > eps_sb ) ) THEN |
---|
1294 | ! |
---|
1295 | !-- Intern time scale of coagulation (Seifert and Beheng, 2006): |
---|
1296 | tau_cloud = 1.0_wp - qc_1d(k) / ( qc_1d(k) + qr_1d(k) ) |
---|
1297 | ! |
---|
1298 | !-- Universal function for accretion process |
---|
1299 | !-- (Seifert and Beheng, 2001): |
---|
1300 | phi_ac = ( tau_cloud / ( tau_cloud + 5.0E-5_wp ) )**4 |
---|
1301 | ! |
---|
1302 | !-- Parameterized turbulence effects on autoconversion (Seifert, |
---|
1303 | !-- Nuijens and Stevens, 2010). The factor of 1.0E4 is needed to |
---|
1304 | !-- convert the dissipation rate (diss) from m2 s-3 to cm2 s-3. |
---|
1305 | IF ( turbulence ) THEN |
---|
1306 | k_cr = k_cr0 * ( 1.0_wp + 0.05_wp * & |
---|
1307 | MIN( 600.0_wp, & |
---|
1308 | diss(k,j,i) * 1.0E4_wp )**0.25_wp & |
---|
1309 | ) |
---|
1310 | ELSE |
---|
1311 | k_cr = k_cr0 |
---|
1312 | ENDIF |
---|
1313 | ! |
---|
1314 | !-- Accretion rate (Seifert and Beheng, 2006): |
---|
1315 | accr = k_cr * qc_1d(k) * qr_1d(k) * phi_ac * SQRT( rho_surface * hyrho(k) ) |
---|
1316 | accr = MIN( accr, qc_1d(k) / dt_micro ) |
---|
1317 | |
---|
1318 | qr_1d(k) = qr_1d(k) + accr * dt_micro |
---|
1319 | qc_1d(k) = qc_1d(k) - accr * dt_micro |
---|
1320 | |
---|
1321 | ENDIF |
---|
1322 | |
---|
1323 | ENDDO |
---|
1324 | |
---|
1325 | END SUBROUTINE accretion_ij |
---|
1326 | |
---|
1327 | |
---|
1328 | SUBROUTINE selfcollection_breakup_ij( i, j ) |
---|
1329 | |
---|
1330 | USE arrays_3d, & |
---|
1331 | ONLY: nr_1d, qr_1d |
---|
1332 | |
---|
1333 | USE cloud_parameters, & |
---|
1334 | ONLY: dpirho_l, eps_sb, hyrho, k_br, k_rr |
---|
1335 | |
---|
1336 | USE control_parameters, & |
---|
1337 | ONLY: dt_micro, rho_surface |
---|
1338 | |
---|
1339 | USE indices, & |
---|
1340 | ONLY: nzb, nzb_s_inner, nzt |
---|
1341 | |
---|
1342 | USE kinds |
---|
1343 | |
---|
1344 | IMPLICIT NONE |
---|
1345 | |
---|
1346 | INTEGER(iwp) :: i !: |
---|
1347 | INTEGER(iwp) :: j !: |
---|
1348 | INTEGER(iwp) :: k !: |
---|
1349 | |
---|
1350 | REAL(wp) :: breakup !: |
---|
1351 | REAL(wp) :: dr !: |
---|
1352 | REAL(wp) :: phi_br !: |
---|
1353 | REAL(wp) :: selfcoll !: |
---|
1354 | |
---|
1355 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1356 | IF ( qr_1d(k) > eps_sb ) THEN |
---|
1357 | ! |
---|
1358 | !-- Selfcollection rate (Seifert and Beheng, 2001): |
---|
1359 | selfcoll = k_rr * nr_1d(k) * qr_1d(k) * SQRT( hyrho(k) * rho_surface ) |
---|
1360 | ! |
---|
1361 | !-- Weight averaged diameter of rain drops: |
---|
1362 | dr = ( hyrho(k) * qr_1d(k) / nr_1d(k) * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
1363 | ! |
---|
1364 | !-- Collisional breakup rate (Seifert, 2008): |
---|
1365 | IF ( dr >= 0.3E-3_wp ) THEN |
---|
1366 | phi_br = k_br * ( dr - 1.1E-3_wp ) |
---|
1367 | breakup = selfcoll * ( phi_br + 1.0_wp ) |
---|
1368 | ELSE |
---|
1369 | breakup = 0.0_wp |
---|
1370 | ENDIF |
---|
1371 | |
---|
1372 | selfcoll = MAX( breakup - selfcoll, -nr_1d(k) / dt_micro ) |
---|
1373 | nr_1d(k) = nr_1d(k) + selfcoll * dt_micro |
---|
1374 | |
---|
1375 | ENDIF |
---|
1376 | ENDDO |
---|
1377 | |
---|
1378 | END SUBROUTINE selfcollection_breakup_ij |
---|
1379 | |
---|
1380 | |
---|
1381 | SUBROUTINE evaporation_rain_ij( i, j ) |
---|
1382 | ! |
---|
1383 | !-- Evaporation of precipitable water. Condensation is neglected for |
---|
1384 | !-- precipitable water. |
---|
1385 | |
---|
1386 | USE arrays_3d, & |
---|
1387 | ONLY: hyp, nr_1d, pt_1d, q_1d, qc_1d, qr_1d |
---|
1388 | |
---|
1389 | USE cloud_parameters, & |
---|
1390 | ONLY: a_term, a_vent, b_term, b_vent, c_evap, c_term, diff_coeff_l,& |
---|
1391 | dpirho_l, eps_sb, hyrho, kin_vis_air, k_st, l_d_cp, l_d_r, & |
---|
1392 | l_v, rho_l, r_v, schmidt_p_1d3, thermal_conductivity_l, & |
---|
1393 | t_d_pt, ventilation_effect |
---|
1394 | |
---|
1395 | USE constants, & |
---|
1396 | ONLY: pi |
---|
1397 | |
---|
1398 | USE control_parameters, & |
---|
1399 | ONLY: dt_micro |
---|
1400 | |
---|
1401 | USE indices, & |
---|
1402 | ONLY: nzb, nzb_s_inner, nzt |
---|
1403 | |
---|
1404 | USE kinds |
---|
1405 | |
---|
1406 | IMPLICIT NONE |
---|
1407 | |
---|
1408 | INTEGER(iwp) :: i !: |
---|
1409 | INTEGER(iwp) :: j !: |
---|
1410 | INTEGER(iwp) :: k !: |
---|
1411 | |
---|
1412 | REAL(wp) :: alpha !: |
---|
1413 | REAL(wp) :: dr !: |
---|
1414 | REAL(wp) :: e_s !: |
---|
1415 | REAL(wp) :: evap !: |
---|
1416 | REAL(wp) :: evap_nr !: |
---|
1417 | REAL(wp) :: f_vent !: |
---|
1418 | REAL(wp) :: g_evap !: |
---|
1419 | REAL(wp) :: lambda_r !: |
---|
1420 | REAL(wp) :: mu_r !: |
---|
1421 | REAL(wp) :: mu_r_2 !: |
---|
1422 | REAL(wp) :: mu_r_5d2 !: |
---|
1423 | REAL(wp) :: nr_0 !: |
---|
1424 | REAL(wp) :: q_s !: |
---|
1425 | REAL(wp) :: sat !: |
---|
1426 | REAL(wp) :: t_l !: |
---|
1427 | REAL(wp) :: temp !: |
---|
1428 | REAL(wp) :: xr !: |
---|
1429 | |
---|
1430 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1431 | IF ( qr_1d(k) > eps_sb ) THEN |
---|
1432 | ! |
---|
1433 | !-- Actual liquid water temperature: |
---|
1434 | t_l = t_d_pt(k) * pt_1d(k) |
---|
1435 | ! |
---|
1436 | !-- Saturation vapor pressure at t_l: |
---|
1437 | e_s = 610.78_wp * EXP( 17.269_wp * ( t_l - 273.16_wp ) / & |
---|
1438 | ( t_l - 35.86_wp ) & |
---|
1439 | ) |
---|
1440 | ! |
---|
1441 | !-- Computation of saturation humidity: |
---|
1442 | q_s = 0.622_wp * e_s / ( hyp(k) - 0.378_wp * e_s ) |
---|
1443 | alpha = 0.622_wp * l_d_r * l_d_cp / ( t_l * t_l ) |
---|
1444 | q_s = q_s * ( 1.0_wp + alpha * q_1d(k) ) / ( 1.0_wp + alpha * q_s ) |
---|
1445 | ! |
---|
1446 | !-- Supersaturation: |
---|
1447 | sat = ( q_1d(k) - qr_1d(k) - qc_1d(k) ) / q_s - 1.0_wp |
---|
1448 | ! |
---|
1449 | !-- Evaporation needs only to be calculated in subsaturated regions |
---|
1450 | IF ( sat < 0.0_wp ) THEN |
---|
1451 | ! |
---|
1452 | !-- Actual temperature: |
---|
1453 | temp = t_l + l_d_cp * ( qc_1d(k) + qr_1d(k) ) |
---|
1454 | |
---|
1455 | g_evap = 1.0_wp / ( ( l_v / ( r_v * temp ) - 1.0_wp ) * l_v / & |
---|
1456 | ( thermal_conductivity_l * temp ) + & |
---|
1457 | r_v * temp / ( diff_coeff_l * e_s ) & |
---|
1458 | ) |
---|
1459 | ! |
---|
1460 | !-- Mean weight of rain drops |
---|
1461 | xr = hyrho(k) * qr_1d(k) / nr_1d(k) |
---|
1462 | ! |
---|
1463 | !-- Weight averaged diameter of rain drops: |
---|
1464 | dr = ( xr * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
1465 | ! |
---|
1466 | !-- Compute ventilation factor and intercept parameter |
---|
1467 | !-- (Seifert and Beheng, 2006; Seifert, 2008): |
---|
1468 | IF ( ventilation_effect ) THEN |
---|
1469 | ! |
---|
1470 | !-- Shape parameter of gamma distribution (Milbrandt and Yau, 2005; |
---|
1471 | !-- Stevens and Seifert, 2008): |
---|
1472 | mu_r = 10.0_wp * ( 1.0_wp + TANH( 1.2E3_wp * ( dr - 1.4E-3_wp ) ) ) |
---|
1473 | ! |
---|
1474 | !-- Slope parameter of gamma distribution (Seifert, 2008): |
---|
1475 | lambda_r = ( ( mu_r + 3.0_wp ) * ( mu_r + 2.0_wp ) * & |
---|
1476 | ( mu_r + 1.0_wp ) & |
---|
1477 | )**( 1.0_wp / 3.0_wp ) / dr |
---|
1478 | |
---|
1479 | mu_r_2 = mu_r + 2.0_wp |
---|
1480 | mu_r_5d2 = mu_r + 2.5_wp |
---|
1481 | |
---|
1482 | f_vent = a_vent * gamm( mu_r_2 ) * lambda_r**( -mu_r_2 ) + & |
---|
1483 | b_vent * schmidt_p_1d3 * & |
---|
1484 | SQRT( a_term / kin_vis_air ) * gamm( mu_r_5d2 ) * & |
---|
1485 | lambda_r**( -mu_r_5d2 ) * & |
---|
1486 | ( 1.0_wp - & |
---|
1487 | 0.5_wp * ( b_term / a_term ) * & |
---|
1488 | ( lambda_r / ( c_term + lambda_r ) & |
---|
1489 | )**mu_r_5d2 - & |
---|
1490 | 0.125_wp * ( b_term / a_term )**2 * & |
---|
1491 | ( lambda_r / ( 2.0_wp * c_term + lambda_r ) & |
---|
1492 | )**mu_r_5d2 - & |
---|
1493 | 0.0625_wp * ( b_term / a_term )**3 * & |
---|
1494 | ( lambda_r / ( 3.0_wp * c_term + lambda_r ) & |
---|
1495 | )**mu_r_5d2 - & |
---|
1496 | 0.0390625_wp * ( b_term / a_term )**4 * & |
---|
1497 | ( lambda_r / ( 4.0_wp * c_term + lambda_r ) & |
---|
1498 | )**mu_r_5d2 & |
---|
1499 | ) |
---|
1500 | |
---|
1501 | nr_0 = nr_1d(k) * lambda_r**( mu_r + 1.0_wp ) / & |
---|
1502 | gamm( mu_r + 1.0_wp ) |
---|
1503 | ELSE |
---|
1504 | f_vent = 1.0_wp |
---|
1505 | nr_0 = nr_1d(k) * dr |
---|
1506 | ENDIF |
---|
1507 | ! |
---|
1508 | !-- Evaporation rate of rain water content (Seifert and Beheng, 2006): |
---|
1509 | evap = 2.0_wp * pi * nr_0 * g_evap * f_vent * sat / hyrho(k) |
---|
1510 | evap = MAX( evap, -qr_1d(k) / dt_micro ) |
---|
1511 | evap_nr = MAX( c_evap * evap / xr * hyrho(k), & |
---|
1512 | -nr_1d(k) / dt_micro ) |
---|
1513 | |
---|
1514 | qr_1d(k) = qr_1d(k) + evap * dt_micro |
---|
1515 | nr_1d(k) = nr_1d(k) + evap_nr * dt_micro |
---|
1516 | |
---|
1517 | ENDIF |
---|
1518 | ENDIF |
---|
1519 | |
---|
1520 | ENDDO |
---|
1521 | |
---|
1522 | END SUBROUTINE evaporation_rain_ij |
---|
1523 | |
---|
1524 | |
---|
1525 | SUBROUTINE sedimentation_cloud_ij( i, j ) |
---|
1526 | |
---|
1527 | USE arrays_3d, & |
---|
1528 | ONLY: ddzu, dzu, nc_1d, pt_1d, q_1d, qc_1d |
---|
1529 | |
---|
1530 | USE cloud_parameters, & |
---|
1531 | ONLY: eps_sb, hyrho, l_d_cp, pt_d_t, sed_qc_const |
---|
1532 | |
---|
1533 | USE constants, & |
---|
1534 | ONLY: pi |
---|
1535 | |
---|
1536 | USE control_parameters, & |
---|
1537 | ONLY: dt_do2d_xy, dt_micro, intermediate_timestep_count |
---|
1538 | |
---|
1539 | USE indices, & |
---|
1540 | ONLY: nzb, nzb_s_inner, nzt |
---|
1541 | |
---|
1542 | USE kinds |
---|
1543 | |
---|
1544 | IMPLICIT NONE |
---|
1545 | |
---|
1546 | INTEGER(iwp) :: i !: |
---|
1547 | INTEGER(iwp) :: j !: |
---|
1548 | INTEGER(iwp) :: k !: |
---|
1549 | |
---|
1550 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_qc !: |
---|
1551 | |
---|
1552 | ! |
---|
1553 | !-- Sedimentation of cloud droplets (Ackermann et al., 2009, MWR): |
---|
1554 | sed_qc(nzt+1) = 0.0_wp |
---|
1555 | |
---|
1556 | DO k = nzt, nzb_s_inner(j,i)+1, -1 |
---|
1557 | IF ( qc_1d(k) > eps_sb ) THEN |
---|
1558 | sed_qc(k) = sed_qc_const * nc_1d(k)**( -2.0_wp / 3.0_wp ) * & |
---|
1559 | ( qc_1d(k) * hyrho(k) )**( 5.0_wp / 3.0_wp ) |
---|
1560 | ELSE |
---|
1561 | sed_qc(k) = 0.0_wp |
---|
1562 | ENDIF |
---|
1563 | |
---|
1564 | sed_qc(k) = MIN( sed_qc(k), hyrho(k) * dzu(k+1) * q_1d(k) / & |
---|
1565 | dt_micro + sed_qc(k+1) & |
---|
1566 | ) |
---|
1567 | |
---|
1568 | q_1d(k) = q_1d(k) + ( sed_qc(k+1) - sed_qc(k) ) * ddzu(k+1) / & |
---|
1569 | hyrho(k) * dt_micro |
---|
1570 | qc_1d(k) = qc_1d(k) + ( sed_qc(k+1) - sed_qc(k) ) * ddzu(k+1) / & |
---|
1571 | hyrho(k) * dt_micro |
---|
1572 | pt_1d(k) = pt_1d(k) - ( sed_qc(k+1) - sed_qc(k) ) * ddzu(k+1) / & |
---|
1573 | hyrho(k) * l_d_cp * pt_d_t(k) * dt_micro |
---|
1574 | |
---|
1575 | ENDDO |
---|
1576 | |
---|
1577 | END SUBROUTINE sedimentation_cloud_ij |
---|
1578 | |
---|
1579 | |
---|
1580 | SUBROUTINE sedimentation_rain_ij( i, j ) |
---|
1581 | |
---|
1582 | USE arrays_3d, & |
---|
1583 | ONLY: ddzu, dzu, nr_1d, pt_1d, q_1d, qr_1d |
---|
1584 | |
---|
1585 | USE cloud_parameters, & |
---|
1586 | ONLY: a_term, b_term, c_term, cof, dpirho_l, eps_sb, hyrho, & |
---|
1587 | limiter_sedimentation, l_d_cp, precipitation_amount, prr, & |
---|
1588 | pt_d_t, stp |
---|
1589 | |
---|
1590 | USE control_parameters, & |
---|
1591 | ONLY: call_microphysics_at_all_substeps, dt_do2d_xy, dt_micro, & |
---|
1592 | dt_3d, intermediate_timestep_count, & |
---|
1593 | intermediate_timestep_count_max, & |
---|
1594 | precipitation_amount_interval, time_do2d_xy |
---|
1595 | |
---|
1596 | USE indices, & |
---|
1597 | ONLY: nzb, nzb_s_inner, nzt |
---|
1598 | |
---|
1599 | USE kinds |
---|
1600 | |
---|
1601 | USE statistics, & |
---|
1602 | ONLY: weight_substep |
---|
1603 | |
---|
1604 | IMPLICIT NONE |
---|
1605 | |
---|
1606 | INTEGER(iwp) :: i !: |
---|
1607 | INTEGER(iwp) :: j !: |
---|
1608 | INTEGER(iwp) :: k !: |
---|
1609 | INTEGER(iwp) :: k_run !: |
---|
1610 | |
---|
1611 | REAL(wp) :: c_run !: |
---|
1612 | REAL(wp) :: d_max !: |
---|
1613 | REAL(wp) :: d_mean !: |
---|
1614 | REAL(wp) :: d_min !: |
---|
1615 | REAL(wp) :: dr !: |
---|
1616 | REAL(wp) :: dt_sedi !: |
---|
1617 | REAL(wp) :: flux !: |
---|
1618 | REAL(wp) :: lambda_r !: |
---|
1619 | REAL(wp) :: mu_r !: |
---|
1620 | REAL(wp) :: z_run !: |
---|
1621 | |
---|
1622 | REAL(wp), DIMENSION(nzb:nzt+1) :: c_nr !: |
---|
1623 | REAL(wp), DIMENSION(nzb:nzt+1) :: c_qr !: |
---|
1624 | REAL(wp), DIMENSION(nzb:nzt+1) :: d_nr !: |
---|
1625 | REAL(wp), DIMENSION(nzb:nzt+1) :: d_qr !: |
---|
1626 | REAL(wp), DIMENSION(nzb:nzt+1) :: nr_slope !: |
---|
1627 | REAL(wp), DIMENSION(nzb:nzt+1) :: qr_slope !: |
---|
1628 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_nr !: |
---|
1629 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_qr !: |
---|
1630 | REAL(wp), DIMENSION(nzb:nzt+1) :: w_nr !: |
---|
1631 | REAL(wp), DIMENSION(nzb:nzt+1) :: w_qr !: |
---|
1632 | |
---|
1633 | |
---|
1634 | ! |
---|
1635 | !-- Computation of sedimentation flux. Implementation according to Stevens |
---|
1636 | !-- and Seifert (2008). Code is based on UCLA-LES. |
---|
1637 | IF ( intermediate_timestep_count == 1 ) prr(:,j,i) = 0.0_wp |
---|
1638 | ! |
---|
1639 | !-- Compute velocities |
---|
1640 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1641 | IF ( qr_1d(k) > eps_sb ) THEN |
---|
1642 | ! |
---|
1643 | !-- Weight averaged diameter of rain drops: |
---|
1644 | dr = ( hyrho(k) * qr_1d(k) / nr_1d(k) * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
1645 | ! |
---|
1646 | !-- Shape parameter of gamma distribution (Milbrandt and Yau, 2005; |
---|
1647 | !-- Stevens and Seifert, 2008): |
---|
1648 | mu_r = 10.0_wp * ( 1.0_wp + TANH( 1.2E3_wp * ( dr - 1.4E-3_wp ) ) ) |
---|
1649 | ! |
---|
1650 | !-- Slope parameter of gamma distribution (Seifert, 2008): |
---|
1651 | lambda_r = ( ( mu_r + 3.0_wp ) * ( mu_r + 2.0_wp ) * & |
---|
1652 | ( mu_r + 1.0_wp ) )**( 1.0_wp / 3.0_wp ) / dr |
---|
1653 | |
---|
1654 | w_nr(k) = MAX( 0.1_wp, MIN( 20.0_wp, & |
---|
1655 | a_term - b_term * ( 1.0_wp + & |
---|
1656 | c_term / lambda_r )**( -1.0_wp * & |
---|
1657 | ( mu_r + 1.0_wp ) ) & |
---|
1658 | ) & |
---|
1659 | ) |
---|
1660 | w_qr(k) = MAX( 0.1_wp, MIN( 20.0_wp, & |
---|
1661 | a_term - b_term * ( 1.0_wp + & |
---|
1662 | c_term / lambda_r )**( -1.0_wp * & |
---|
1663 | ( mu_r + 4.0_wp ) ) & |
---|
1664 | ) & |
---|
1665 | ) |
---|
1666 | ELSE |
---|
1667 | w_nr(k) = 0.0_wp |
---|
1668 | w_qr(k) = 0.0_wp |
---|
1669 | ENDIF |
---|
1670 | ENDDO |
---|
1671 | ! |
---|
1672 | !-- Adjust boundary values |
---|
1673 | w_nr(nzb_s_inner(j,i)) = w_nr(nzb_s_inner(j,i)+1) |
---|
1674 | w_qr(nzb_s_inner(j,i)) = w_qr(nzb_s_inner(j,i)+1) |
---|
1675 | w_nr(nzt+1) = 0.0_wp |
---|
1676 | w_qr(nzt+1) = 0.0_wp |
---|
1677 | ! |
---|
1678 | !-- Compute Courant number |
---|
1679 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1680 | c_nr(k) = 0.25_wp * ( w_nr(k-1) + 2.0_wp * w_nr(k) + w_nr(k+1) ) * & |
---|
1681 | dt_micro * ddzu(k) |
---|
1682 | c_qr(k) = 0.25_wp * ( w_qr(k-1) + 2.0_wp * w_qr(k) + w_qr(k+1) ) * & |
---|
1683 | dt_micro * ddzu(k) |
---|
1684 | ENDDO |
---|
1685 | ! |
---|
1686 | !-- Limit slopes with monotonized centered (MC) limiter (van Leer, 1977): |
---|
1687 | IF ( limiter_sedimentation ) THEN |
---|
1688 | |
---|
1689 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1690 | d_mean = 0.5_wp * ( qr_1d(k+1) - qr_1d(k-1) ) |
---|
1691 | d_min = qr_1d(k) - MIN( qr_1d(k+1), qr_1d(k), qr_1d(k-1) ) |
---|
1692 | d_max = MAX( qr_1d(k+1), qr_1d(k), qr_1d(k-1) ) - qr_1d(k) |
---|
1693 | |
---|
1694 | qr_slope(k) = SIGN(1.0_wp, d_mean) * MIN ( 2.0_wp * d_min, & |
---|
1695 | 2.0_wp * d_max, & |
---|
1696 | ABS( d_mean ) ) |
---|
1697 | |
---|
1698 | d_mean = 0.5_wp * ( nr_1d(k+1) - nr_1d(k-1) ) |
---|
1699 | d_min = nr_1d(k) - MIN( nr_1d(k+1), nr_1d(k), nr_1d(k-1) ) |
---|
1700 | d_max = MAX( nr_1d(k+1), nr_1d(k), nr_1d(k-1) ) - nr_1d(k) |
---|
1701 | |
---|
1702 | nr_slope(k) = SIGN(1.0_wp, d_mean) * MIN ( 2.0_wp * d_min, & |
---|
1703 | 2.0_wp * d_max, & |
---|
1704 | ABS( d_mean ) ) |
---|
1705 | ENDDO |
---|
1706 | |
---|
1707 | ELSE |
---|
1708 | |
---|
1709 | nr_slope = 0.0_wp |
---|
1710 | qr_slope = 0.0_wp |
---|
1711 | |
---|
1712 | ENDIF |
---|
1713 | |
---|
1714 | sed_nr(nzt+1) = 0.0_wp |
---|
1715 | sed_qr(nzt+1) = 0.0_wp |
---|
1716 | ! |
---|
1717 | !-- Compute sedimentation flux |
---|
1718 | DO k = nzt, nzb_s_inner(j,i)+1, -1 |
---|
1719 | ! |
---|
1720 | !-- Sum up all rain drop number densities which contribute to the flux |
---|
1721 | !-- through k-1/2 |
---|
1722 | flux = 0.0_wp |
---|
1723 | z_run = 0.0_wp ! height above z(k) |
---|
1724 | k_run = k |
---|
1725 | c_run = MIN( 1.0_wp, c_nr(k) ) |
---|
1726 | DO WHILE ( c_run > 0.0_wp .AND. k_run <= nzt ) |
---|
1727 | flux = flux + hyrho(k_run) * & |
---|
1728 | ( nr_1d(k_run) + nr_slope(k_run) * ( 1.0_wp - c_run ) * & |
---|
1729 | 0.5_wp ) * c_run * dzu(k_run) |
---|
1730 | z_run = z_run + dzu(k_run) |
---|
1731 | k_run = k_run + 1 |
---|
1732 | c_run = MIN( 1.0_wp, c_nr(k_run) - z_run * ddzu(k_run) ) |
---|
1733 | ENDDO |
---|
1734 | ! |
---|
1735 | !-- It is not allowed to sediment more rain drop number density than |
---|
1736 | !-- available |
---|
1737 | flux = MIN( flux, & |
---|
1738 | hyrho(k) * dzu(k+1) * nr_1d(k) + sed_nr(k+1) * dt_micro ) |
---|
1739 | |
---|
1740 | sed_nr(k) = flux / dt_micro |
---|
1741 | nr_1d(k) = nr_1d(k) + ( sed_nr(k+1) - sed_nr(k) ) * ddzu(k+1) / & |
---|
1742 | hyrho(k) * dt_micro |
---|
1743 | ! |
---|
1744 | !-- Sum up all rain water content which contributes to the flux |
---|
1745 | !-- through k-1/2 |
---|
1746 | flux = 0.0_wp |
---|
1747 | z_run = 0.0_wp ! height above z(k) |
---|
1748 | k_run = k |
---|
1749 | c_run = MIN( 1.0_wp, c_qr(k) ) |
---|
1750 | |
---|
1751 | DO WHILE ( c_run > 0.0_wp .AND. k_run <= nzt ) |
---|
1752 | |
---|
1753 | flux = flux + hyrho(k_run) * & |
---|
1754 | ( qr_1d(k_run) + qr_slope(k_run) * ( 1.0_wp - c_run ) * & |
---|
1755 | 0.5_wp ) * c_run * dzu(k_run) |
---|
1756 | z_run = z_run + dzu(k_run) |
---|
1757 | k_run = k_run + 1 |
---|
1758 | c_run = MIN( 1.0_wp, c_qr(k_run) - z_run * ddzu(k_run) ) |
---|
1759 | |
---|
1760 | ENDDO |
---|
1761 | ! |
---|
1762 | !-- It is not allowed to sediment more rain water content than available |
---|
1763 | flux = MIN( flux, & |
---|
1764 | hyrho(k) * dzu(k) * qr_1d(k) + sed_qr(k+1) * dt_micro ) |
---|
1765 | |
---|
1766 | sed_qr(k) = flux / dt_micro |
---|
1767 | |
---|
1768 | qr_1d(k) = qr_1d(k) + ( sed_qr(k+1) - sed_qr(k) ) * ddzu(k+1) / & |
---|
1769 | hyrho(k) * dt_micro |
---|
1770 | q_1d(k) = q_1d(k) + ( sed_qr(k+1) - sed_qr(k) ) * ddzu(k+1) / & |
---|
1771 | hyrho(k) * dt_micro |
---|
1772 | pt_1d(k) = pt_1d(k) - ( sed_qr(k+1) - sed_qr(k) ) * ddzu(k+1) / & |
---|
1773 | hyrho(k) * l_d_cp * pt_d_t(k) * dt_micro |
---|
1774 | ! |
---|
1775 | !-- Compute the rain rate |
---|
1776 | IF ( call_microphysics_at_all_substeps ) THEN |
---|
1777 | prr(k,j,i) = prr(k,j,i) + sed_qr(k) / hyrho(k) * & |
---|
1778 | weight_substep(intermediate_timestep_count) |
---|
1779 | ELSE |
---|
1780 | prr(k,j,i) = sed_qr(k) / hyrho(k) |
---|
1781 | ENDIF |
---|
1782 | |
---|
1783 | ENDDO |
---|
1784 | |
---|
1785 | ! |
---|
1786 | !-- Precipitation amount |
---|
1787 | IF ( intermediate_timestep_count == intermediate_timestep_count_max & |
---|
1788 | .AND. ( dt_do2d_xy - time_do2d_xy ) < & |
---|
1789 | precipitation_amount_interval ) THEN |
---|
1790 | |
---|
1791 | precipitation_amount(j,i) = precipitation_amount(j,i) + & |
---|
1792 | prr(nzb_s_inner(j,i)+1,j,i) * & |
---|
1793 | hyrho(nzb_s_inner(j,i)+1) * dt_3d |
---|
1794 | ENDIF |
---|
1795 | |
---|
1796 | END SUBROUTINE sedimentation_rain_ij |
---|
1797 | |
---|
1798 | !------------------------------------------------------------------------------! |
---|
1799 | ! Call for all optimizations |
---|
1800 | !------------------------------------------------------------------------------! |
---|
1801 | ! |
---|
1802 | !-- This function computes the gamma function (Press et al., 1992). |
---|
1803 | !-- The gamma function is needed for the calculation of the evaporation |
---|
1804 | !-- of rain drops. |
---|
1805 | FUNCTION gamm( xx ) |
---|
1806 | |
---|
1807 | USE cloud_parameters, & |
---|
1808 | ONLY: cof, stp |
---|
1809 | |
---|
1810 | USE kinds |
---|
1811 | |
---|
1812 | IMPLICIT NONE |
---|
1813 | |
---|
1814 | INTEGER(iwp) :: j !: |
---|
1815 | |
---|
1816 | REAL(wp) :: gamm !: |
---|
1817 | REAL(wp) :: ser !: |
---|
1818 | REAL(wp) :: tmp !: |
---|
1819 | REAL(wp) :: x_gamm !: |
---|
1820 | REAL(wp) :: xx !: |
---|
1821 | REAL(wp) :: y_gamm !: |
---|
1822 | |
---|
1823 | x_gamm = xx |
---|
1824 | y_gamm = x_gamm |
---|
1825 | tmp = x_gamm + 5.5_wp |
---|
1826 | tmp = ( x_gamm + 0.5_wp ) * LOG( tmp ) - tmp |
---|
1827 | ser = 1.000000000190015_wp |
---|
1828 | |
---|
1829 | DO j = 1, 6 |
---|
1830 | y_gamm = y_gamm + 1.0_wp |
---|
1831 | ser = ser + cof( j ) / y_gamm |
---|
1832 | ENDDO |
---|
1833 | |
---|
1834 | ! |
---|
1835 | !-- Until this point the algorithm computes the logarithm of the gamma |
---|
1836 | !-- function. Hence, the exponential function is used. |
---|
1837 | ! gamm = EXP( tmp + LOG( stp * ser / x_gamm ) ) |
---|
1838 | gamm = EXP( tmp ) * stp * ser / x_gamm |
---|
1839 | |
---|
1840 | RETURN |
---|
1841 | |
---|
1842 | END FUNCTION gamm |
---|
1843 | |
---|
1844 | END MODULE microphysics_mod |
---|