[1000] | 1 | MODULE microphysics_mod |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
| 4 | ! Current revisions: |
---|
| 5 | ! ----------------- |
---|
| 6 | ! |
---|
| 7 | ! Former revisions: |
---|
| 8 | ! ----------------- |
---|
[1052] | 9 | ! $Id: microphysics.f90 1066 2012-11-22 17:52:43Z hoffmann $ |
---|
[1054] | 10 | ! |
---|
[1066] | 11 | ! 1065 2012-11-22 17:42:36Z hoffmann |
---|
| 12 | ! Sedimentation process implemented according to Stevens and Seifert (2008). |
---|
| 13 | ! Turbulence effects on autoconversion and accretion added (Seifert, Nuijens |
---|
| 14 | ! and Stevens, 2010). |
---|
| 15 | ! |
---|
[1054] | 16 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
| 17 | ! initial revision |
---|
[1000] | 18 | ! |
---|
| 19 | ! Description: |
---|
| 20 | ! ------------ |
---|
| 21 | ! Calculate cloud microphysics according to the two moment bulk |
---|
| 22 | ! scheme by Seifert and Beheng (2006). |
---|
| 23 | !------------------------------------------------------------------------------! |
---|
| 24 | |
---|
| 25 | PRIVATE |
---|
[1022] | 26 | PUBLIC dsd_properties, autoconversion, accretion, selfcollection_breakup, & |
---|
[1012] | 27 | evaporation_rain, sedimentation_cloud, sedimentation_rain |
---|
[1000] | 28 | |
---|
[1022] | 29 | INTERFACE dsd_properties |
---|
| 30 | MODULE PROCEDURE dsd_properties |
---|
| 31 | MODULE PROCEDURE dsd_properties_ij |
---|
| 32 | END INTERFACE dsd_properties |
---|
| 33 | |
---|
[1000] | 34 | INTERFACE autoconversion |
---|
| 35 | MODULE PROCEDURE autoconversion |
---|
| 36 | MODULE PROCEDURE autoconversion_ij |
---|
| 37 | END INTERFACE autoconversion |
---|
| 38 | |
---|
| 39 | INTERFACE accretion |
---|
| 40 | MODULE PROCEDURE accretion |
---|
| 41 | MODULE PROCEDURE accretion_ij |
---|
| 42 | END INTERFACE accretion |
---|
[1005] | 43 | |
---|
| 44 | INTERFACE selfcollection_breakup |
---|
| 45 | MODULE PROCEDURE selfcollection_breakup |
---|
| 46 | MODULE PROCEDURE selfcollection_breakup_ij |
---|
| 47 | END INTERFACE selfcollection_breakup |
---|
[1012] | 48 | |
---|
| 49 | INTERFACE evaporation_rain |
---|
| 50 | MODULE PROCEDURE evaporation_rain |
---|
| 51 | MODULE PROCEDURE evaporation_rain_ij |
---|
| 52 | END INTERFACE evaporation_rain |
---|
| 53 | |
---|
| 54 | INTERFACE sedimentation_cloud |
---|
| 55 | MODULE PROCEDURE sedimentation_cloud |
---|
| 56 | MODULE PROCEDURE sedimentation_cloud_ij |
---|
| 57 | END INTERFACE sedimentation_cloud |
---|
[1000] | 58 | |
---|
[1012] | 59 | INTERFACE sedimentation_rain |
---|
| 60 | MODULE PROCEDURE sedimentation_rain |
---|
| 61 | MODULE PROCEDURE sedimentation_rain_ij |
---|
| 62 | END INTERFACE sedimentation_rain |
---|
| 63 | |
---|
[1000] | 64 | CONTAINS |
---|
| 65 | |
---|
| 66 | |
---|
| 67 | !------------------------------------------------------------------------------! |
---|
| 68 | ! Call for all grid points |
---|
| 69 | !------------------------------------------------------------------------------! |
---|
[1022] | 70 | SUBROUTINE dsd_properties |
---|
| 71 | |
---|
| 72 | USE arrays_3d |
---|
| 73 | USE cloud_parameters |
---|
| 74 | USE constants |
---|
| 75 | USE indices |
---|
| 76 | |
---|
| 77 | IMPLICIT NONE |
---|
| 78 | |
---|
| 79 | INTEGER :: i, j, k |
---|
| 80 | REAL :: dqdt_precip |
---|
| 81 | |
---|
| 82 | |
---|
| 83 | DO i = nxl, nxr |
---|
| 84 | DO j = nys, nyn |
---|
| 85 | DO k = nzb_2d(j,i)+1, nzt |
---|
| 86 | |
---|
| 87 | ENDDO |
---|
| 88 | ENDDO |
---|
| 89 | ENDDO |
---|
| 90 | |
---|
| 91 | END SUBROUTINE dsd_properties |
---|
| 92 | |
---|
[1000] | 93 | SUBROUTINE autoconversion |
---|
| 94 | |
---|
| 95 | USE arrays_3d |
---|
| 96 | USE cloud_parameters |
---|
| 97 | USE constants |
---|
| 98 | USE indices |
---|
| 99 | |
---|
| 100 | IMPLICIT NONE |
---|
| 101 | |
---|
| 102 | INTEGER :: i, j, k |
---|
| 103 | REAL :: dqdt_precip |
---|
| 104 | |
---|
| 105 | |
---|
| 106 | DO i = nxl, nxr |
---|
| 107 | DO j = nys, nyn |
---|
| 108 | DO k = nzb_2d(j,i)+1, nzt |
---|
| 109 | |
---|
| 110 | ENDDO |
---|
| 111 | ENDDO |
---|
| 112 | ENDDO |
---|
| 113 | |
---|
| 114 | END SUBROUTINE autoconversion |
---|
| 115 | |
---|
[1005] | 116 | SUBROUTINE accretion |
---|
[1000] | 117 | |
---|
| 118 | USE arrays_3d |
---|
| 119 | USE cloud_parameters |
---|
| 120 | USE constants |
---|
| 121 | USE indices |
---|
[1005] | 122 | |
---|
[1000] | 123 | IMPLICIT NONE |
---|
| 124 | |
---|
| 125 | INTEGER :: i, j, k |
---|
[1005] | 126 | REAL :: dqdt_precip |
---|
[1000] | 127 | |
---|
[1005] | 128 | |
---|
| 129 | DO i = nxl, nxr |
---|
| 130 | DO j = nys, nyn |
---|
| 131 | DO k = nzb_2d(j,i)+1, nzt |
---|
[1000] | 132 | |
---|
[1005] | 133 | ENDDO |
---|
| 134 | ENDDO |
---|
[1000] | 135 | ENDDO |
---|
| 136 | |
---|
[1005] | 137 | END SUBROUTINE accretion |
---|
[1000] | 138 | |
---|
[1005] | 139 | SUBROUTINE selfcollection_breakup |
---|
[1000] | 140 | |
---|
| 141 | USE arrays_3d |
---|
| 142 | USE cloud_parameters |
---|
| 143 | USE constants |
---|
| 144 | USE indices |
---|
| 145 | |
---|
| 146 | IMPLICIT NONE |
---|
| 147 | |
---|
| 148 | INTEGER :: i, j, k |
---|
| 149 | REAL :: dqdt_precip |
---|
| 150 | |
---|
| 151 | |
---|
| 152 | DO i = nxl, nxr |
---|
| 153 | DO j = nys, nyn |
---|
| 154 | DO k = nzb_2d(j,i)+1, nzt |
---|
| 155 | |
---|
| 156 | ENDDO |
---|
| 157 | ENDDO |
---|
| 158 | ENDDO |
---|
| 159 | |
---|
[1005] | 160 | END SUBROUTINE selfcollection_breakup |
---|
[1000] | 161 | |
---|
[1012] | 162 | SUBROUTINE evaporation_rain |
---|
[1000] | 163 | |
---|
[1012] | 164 | USE arrays_3d |
---|
| 165 | USE cloud_parameters |
---|
| 166 | USE constants |
---|
| 167 | USE indices |
---|
| 168 | |
---|
| 169 | IMPLICIT NONE |
---|
| 170 | |
---|
| 171 | INTEGER :: i, j, k |
---|
| 172 | REAL :: dqdt_precip |
---|
| 173 | |
---|
| 174 | |
---|
| 175 | DO i = nxl, nxr |
---|
| 176 | DO j = nys, nyn |
---|
| 177 | DO k = nzb_2d(j,i)+1, nzt |
---|
| 178 | |
---|
| 179 | ENDDO |
---|
| 180 | ENDDO |
---|
| 181 | ENDDO |
---|
| 182 | |
---|
| 183 | END SUBROUTINE evaporation_rain |
---|
| 184 | |
---|
| 185 | SUBROUTINE sedimentation_cloud |
---|
| 186 | |
---|
| 187 | USE arrays_3d |
---|
| 188 | USE cloud_parameters |
---|
| 189 | USE constants |
---|
| 190 | USE indices |
---|
| 191 | |
---|
| 192 | IMPLICIT NONE |
---|
| 193 | |
---|
| 194 | INTEGER :: i, j, k |
---|
| 195 | REAL :: dqdt_precip |
---|
| 196 | |
---|
| 197 | |
---|
| 198 | DO i = nxl, nxr |
---|
| 199 | DO j = nys, nyn |
---|
| 200 | DO k = nzb_2d(j,i)+1, nzt |
---|
| 201 | |
---|
| 202 | ENDDO |
---|
| 203 | ENDDO |
---|
| 204 | ENDDO |
---|
| 205 | |
---|
| 206 | END SUBROUTINE sedimentation_cloud |
---|
| 207 | |
---|
| 208 | SUBROUTINE sedimentation_rain |
---|
| 209 | |
---|
| 210 | USE arrays_3d |
---|
| 211 | USE cloud_parameters |
---|
| 212 | USE constants |
---|
| 213 | USE indices |
---|
| 214 | |
---|
| 215 | IMPLICIT NONE |
---|
| 216 | |
---|
| 217 | INTEGER :: i, j, k |
---|
| 218 | REAL :: dqdt_precip |
---|
| 219 | |
---|
| 220 | |
---|
| 221 | DO i = nxl, nxr |
---|
| 222 | DO j = nys, nyn |
---|
| 223 | DO k = nzb_2d(j,i)+1, nzt |
---|
| 224 | |
---|
| 225 | ENDDO |
---|
| 226 | ENDDO |
---|
| 227 | ENDDO |
---|
| 228 | |
---|
| 229 | |
---|
| 230 | END SUBROUTINE sedimentation_rain |
---|
| 231 | |
---|
| 232 | |
---|
[1000] | 233 | !------------------------------------------------------------------------------! |
---|
| 234 | ! Call for grid point i,j |
---|
| 235 | !------------------------------------------------------------------------------! |
---|
[1022] | 236 | SUBROUTINE dsd_properties_ij( i, j ) |
---|
| 237 | |
---|
| 238 | USE arrays_3d |
---|
| 239 | USE cloud_parameters |
---|
| 240 | USE constants |
---|
| 241 | USE indices |
---|
| 242 | USE control_parameters |
---|
[1048] | 243 | USE user |
---|
[1022] | 244 | |
---|
| 245 | IMPLICIT NONE |
---|
| 246 | |
---|
| 247 | INTEGER :: i, j, k |
---|
| 248 | |
---|
| 249 | DO k = nzb_2d(j,i)+1, nzt |
---|
[1065] | 250 | |
---|
| 251 | IF ( qr(k,j,i) <= eps_sb ) THEN |
---|
| 252 | qr(k,j,i) = 0.0 |
---|
| 253 | ELSE |
---|
[1022] | 254 | ! |
---|
[1048] | 255 | !-- Adjust number of raindrops to avoid nonlinear effects in |
---|
| 256 | !-- sedimentation and evaporation of rain drops due to too small or |
---|
[1065] | 257 | !-- too big weights of rain drops (Stevens and Seifert, 2008). |
---|
| 258 | IF ( nr(k,j,i) * xrmin > qr(k,j,i) * hyrho(k) ) THEN |
---|
| 259 | nr(k,j,i) = qr(k,j,i) * hyrho(k) / xrmin |
---|
| 260 | ELSEIF ( nr(k,j,i) * xrmax < qr(k,j,i) * hyrho(k) ) THEN |
---|
| 261 | nr(k,j,i) = qr(k,j,i) * hyrho(k) / xrmax |
---|
[1048] | 262 | ENDIF |
---|
[1065] | 263 | xr(k) = hyrho(k) * qr(k,j,i) / nr(k,j,i) |
---|
[1022] | 264 | ! |
---|
[1065] | 265 | !-- Weight averaged diameter of rain drops: |
---|
| 266 | dr(k) = ( hyrho(k) * qr(k,j,i) / nr(k,j,i) * & |
---|
| 267 | dpirho_l )**( 1.0 / 3.0 ) |
---|
[1048] | 268 | ! |
---|
[1049] | 269 | !-- Shape parameter of gamma distribution (Milbrandt and Yau, 2005; |
---|
| 270 | !-- Stevens and Seifert, 2008): |
---|
[1065] | 271 | mu_r(k) = 10.0 * ( 1.0 + TANH( 1.2E3 * ( dr(k) - 1.4E-3 ) ) ) |
---|
[1049] | 272 | ! |
---|
[1022] | 273 | !-- Slope parameter of gamma distribution (Seifert, 2008): |
---|
[1048] | 274 | lambda_r(k) = ( ( mu_r(k) + 3.0 ) * ( mu_r(k) + 2.0 ) * & |
---|
| 275 | ( mu_r(k) + 1.0 ) )**( 1.0 / 3.0 ) / dr(k) |
---|
[1022] | 276 | ENDIF |
---|
| 277 | ENDDO |
---|
| 278 | |
---|
| 279 | END SUBROUTINE dsd_properties_ij |
---|
| 280 | |
---|
[1005] | 281 | SUBROUTINE autoconversion_ij( i, j ) |
---|
[1000] | 282 | |
---|
| 283 | USE arrays_3d |
---|
| 284 | USE cloud_parameters |
---|
| 285 | USE constants |
---|
| 286 | USE indices |
---|
[1005] | 287 | USE control_parameters |
---|
[1048] | 288 | USE statistics |
---|
[1065] | 289 | USE grid_variables |
---|
[1000] | 290 | |
---|
| 291 | IMPLICIT NONE |
---|
| 292 | |
---|
| 293 | INTEGER :: i, j, k |
---|
[1065] | 294 | REAL :: k_au, autocon, phi_au, tau_cloud, xc, nu_c, rc, & |
---|
| 295 | l_mix, re_lambda, alpha_cc, r_cc, sigma_cc, epsilon |
---|
[1000] | 296 | |
---|
[1005] | 297 | k_au = k_cc / ( 20.0 * x0 ) |
---|
| 298 | |
---|
[1000] | 299 | DO k = nzb_2d(j,i)+1, nzt |
---|
| 300 | |
---|
[1048] | 301 | IF ( ql(k,j,i) > 0.0 ) THEN |
---|
[1012] | 302 | ! |
---|
[1048] | 303 | !-- Intern time scale of coagulation (Seifert and Beheng, 2006): |
---|
[1012] | 304 | !-- (1.0 - ql(k,j,i) / ( ql(k,j,i) + qr(k,j,i) )) |
---|
[1048] | 305 | tau_cloud = 1.0 - ql(k,j,i) / ( ql(k,j,i) + qr(k,j,i) + 1.0E-20 ) |
---|
[1012] | 306 | ! |
---|
| 307 | !-- Universal function for autoconversion process |
---|
| 308 | !-- (Seifert and Beheng, 2006): |
---|
[1048] | 309 | phi_au = 600.0 * tau_cloud**0.68 * ( 1.0 - tau_cloud**0.68 )**3 |
---|
[1012] | 310 | ! |
---|
| 311 | !-- Shape parameter of gamma distribution (Geoffroy et al., 2010): |
---|
| 312 | !-- (Use constant nu_c = 1.0 instead?) |
---|
[1065] | 313 | nu_c = 1.0 !MAX( 0.0, 1580.0 * hyrho(k) * ql(k,j,i) - 0.28 ) |
---|
[1012] | 314 | ! |
---|
| 315 | !-- Mean weight of cloud droplets: |
---|
[1005] | 316 | xc = hyrho(k) * ql(k,j,i) / nc |
---|
[1012] | 317 | ! |
---|
[1065] | 318 | !-- Parameterized turbulence effects on autoconversion (Seifert, |
---|
| 319 | !-- Nuijens and Stevens, 2010) |
---|
| 320 | IF ( turbulence ) THEN |
---|
| 321 | ! |
---|
| 322 | !-- Weight averaged radius of cloud droplets: |
---|
| 323 | rc = 0.5 * ( xc * dpirho_l )**( 1.0 / 3.0 ) |
---|
| 324 | |
---|
| 325 | alpha_cc = ( a_1 + a_2 * nu_c ) / ( 1.0 + a_3 * nu_c ) |
---|
| 326 | r_cc = ( b_1 + b_2 * nu_c ) / ( 1.0 + b_3 * nu_c ) |
---|
| 327 | sigma_cc = ( c_1 + c_2 * nu_c ) / ( 1.0 + c_3 * nu_c ) |
---|
| 328 | ! |
---|
| 329 | !-- Mixing length (neglecting distance to ground and stratification) |
---|
| 330 | l_mix = ( dx * dy * dzu(k) )**( 1.0 / 3.0 ) |
---|
| 331 | ! |
---|
| 332 | !-- Limit dissipation rate according to Seifert, Nuijens and |
---|
| 333 | !-- Stevens (2010) |
---|
| 334 | epsilon = MIN( 0.06, diss(k,j,i) ) |
---|
| 335 | ! |
---|
| 336 | !-- Compute Taylor-microscale Reynolds number: |
---|
| 337 | re_lambda = 6.0 / 11.0 * ( l_mix / c_const )**( 2.0 / 3.0 ) * & |
---|
| 338 | SQRT( 15.0 / kin_vis_air ) * epsilon**( 1.0 / 6.0 ) |
---|
| 339 | ! |
---|
| 340 | !-- The factor of 1.0E4 is needed to convert the dissipation rate |
---|
| 341 | !-- from m2 s-3 to cm2 s-3. |
---|
| 342 | k_au = k_au * ( 1.0 + & |
---|
| 343 | epsilon * 1.0E4 * ( re_lambda * 1.0E-3 )**0.25 * & |
---|
| 344 | ( alpha_cc * EXP( -1.0 * ( ( rc - r_cc ) / & |
---|
| 345 | sigma_cc )**2 ) + beta_cc ) ) |
---|
| 346 | ENDIF |
---|
| 347 | ! |
---|
[1012] | 348 | !-- Autoconversion rate (Seifert and Beheng, 2006): |
---|
[1065] | 349 | autocon = k_au * ( nu_c + 2.0 ) * ( nu_c + 4.0 ) / & |
---|
| 350 | ( nu_c + 1.0 )**2 * ql(k,j,i)**2 * xc**2 * & |
---|
| 351 | ( 1.0 + phi_au / ( 1.0 - tau_cloud )**2 ) * & |
---|
[1048] | 352 | rho_surface |
---|
[1065] | 353 | autocon = MIN( autocon, ql(k,j,i) / ( dt_3d * & |
---|
[1048] | 354 | weight_substep(intermediate_timestep_count) ) ) |
---|
[1012] | 355 | ! |
---|
[1022] | 356 | !-- Tendencies for q, qr, nr, pt: |
---|
[1005] | 357 | tend_qr(k,j,i) = tend_qr(k,j,i) + autocon |
---|
| 358 | tend_q(k,j,i) = tend_q(k,j,i) - autocon |
---|
| 359 | tend_nr(k,j,i) = tend_nr(k,j,i) + autocon / x0 * hyrho(k) |
---|
[1048] | 360 | tend_pt(k,j,i) = tend_pt(k,j,i) + autocon * l_d_cp * pt_d_t(k) |
---|
[1005] | 361 | ENDIF |
---|
[1000] | 362 | |
---|
| 363 | ENDDO |
---|
| 364 | |
---|
[1005] | 365 | END SUBROUTINE autoconversion_ij |
---|
| 366 | |
---|
| 367 | SUBROUTINE accretion_ij( i, j ) |
---|
| 368 | |
---|
| 369 | USE arrays_3d |
---|
| 370 | USE cloud_parameters |
---|
| 371 | USE constants |
---|
| 372 | USE indices |
---|
| 373 | USE control_parameters |
---|
[1048] | 374 | USE statistics |
---|
[1005] | 375 | |
---|
| 376 | IMPLICIT NONE |
---|
| 377 | |
---|
| 378 | INTEGER :: i, j, k |
---|
[1065] | 379 | REAL :: accr, phi_ac, tau_cloud, k_cr |
---|
[1005] | 380 | |
---|
| 381 | DO k = nzb_2d(j,i)+1, nzt |
---|
[1048] | 382 | IF ( ( ql(k,j,i) > 0.0 ) .AND. ( qr(k,j,i) > eps_sb ) ) THEN |
---|
[1012] | 383 | ! |
---|
[1048] | 384 | !-- Intern time scale of coagulation (Seifert and Beheng, 2006): |
---|
| 385 | tau_cloud = 1.0 - ql(k,j,i) / ( ql(k,j,i) + qr(k,j,i) + 1.0E-20) |
---|
[1012] | 386 | ! |
---|
| 387 | !-- Universal function for accretion process |
---|
[1048] | 388 | !-- (Seifert and Beheng, 2001): |
---|
[1065] | 389 | phi_ac = tau_cloud / ( tau_cloud + 5.0E-5 ) |
---|
| 390 | phi_ac = ( phi_ac**2 )**2 |
---|
[1012] | 391 | ! |
---|
[1065] | 392 | !-- Parameterized turbulence effects on autoconversion (Seifert, |
---|
| 393 | !-- Nuijens and Stevens, 2010). The factor of 1.0E4 is needed to |
---|
| 394 | !-- convert the dissipation (diss) from m2 s-3 to cm2 s-3. |
---|
| 395 | IF ( turbulence ) THEN |
---|
| 396 | k_cr = k_cr0 * ( 1.0 + 0.05 * & |
---|
| 397 | MIN( 600.0, diss(k,j,i) * 1.0E4 )**0.25 ) |
---|
| 398 | ELSE |
---|
| 399 | k_cr = k_cr0 |
---|
| 400 | ENDIF |
---|
| 401 | ! |
---|
[1012] | 402 | !-- Accretion rate (Seifert and Beheng, 2006): |
---|
[1065] | 403 | accr = k_cr * ql(k,j,i) * qr(k,j,i) * phi_ac * & |
---|
| 404 | SQRT( rho_surface * hyrho(k) ) |
---|
| 405 | accr = MIN( accr, ql(k,j,i) / ( dt_3d * & |
---|
| 406 | weight_substep(intermediate_timestep_count) ) ) |
---|
[1012] | 407 | ! |
---|
[1022] | 408 | !-- Tendencies for q, qr, pt: |
---|
[1005] | 409 | tend_qr(k,j,i) = tend_qr(k,j,i) + accr |
---|
| 410 | tend_q(k,j,i) = tend_q(k,j,i) - accr |
---|
[1048] | 411 | tend_pt(k,j,i) = tend_pt(k,j,i) + accr * l_d_cp * pt_d_t(k) |
---|
[1005] | 412 | ENDIF |
---|
| 413 | ENDDO |
---|
| 414 | |
---|
[1000] | 415 | END SUBROUTINE accretion_ij |
---|
| 416 | |
---|
[1005] | 417 | |
---|
| 418 | SUBROUTINE selfcollection_breakup_ij( i, j ) |
---|
| 419 | |
---|
| 420 | USE arrays_3d |
---|
| 421 | USE cloud_parameters |
---|
| 422 | USE constants |
---|
| 423 | USE indices |
---|
| 424 | USE control_parameters |
---|
[1048] | 425 | USE statistics |
---|
[1005] | 426 | |
---|
| 427 | IMPLICIT NONE |
---|
| 428 | |
---|
| 429 | INTEGER :: i, j, k |
---|
[1048] | 430 | REAL :: selfcoll, breakup, phi_br, phi_sc |
---|
[1005] | 431 | |
---|
| 432 | DO k = nzb_2d(j,i)+1, nzt |
---|
[1065] | 433 | IF ( qr(k,j,i) > eps_sb ) THEN |
---|
[1012] | 434 | ! |
---|
| 435 | !-- Selfcollection rate (Seifert and Beheng, 2006): |
---|
[1048] | 436 | !-- pirho_l**( 1.0 / 3.0 ) is necessary to convert [lambda_r] = m-1 to |
---|
| 437 | !-- kg**( 1.0 / 3.0 ). |
---|
[1065] | 438 | phi_sc = 1.0 !( 1.0 + kappa_rr / lambda_r(k) * & |
---|
| 439 | !pirho_l**( 1.0 / 3.0 ) )**( -9 ) |
---|
[1048] | 440 | |
---|
| 441 | selfcoll = k_rr * nr(k,j,i) * qr(k,j,i) * phi_sc * & |
---|
[1005] | 442 | SQRT( hyrho(k) * rho_surface ) |
---|
[1012] | 443 | ! |
---|
[1048] | 444 | !-- Collisional breakup rate (Seifert, 2008): |
---|
| 445 | IF ( dr(k) >= 0.3E-3 ) THEN |
---|
| 446 | phi_br = k_br * ( dr(k) - 1.1E-3 ) |
---|
[1005] | 447 | breakup = selfcoll * ( phi_br + 1.0 ) |
---|
| 448 | ELSE |
---|
| 449 | breakup = 0.0 |
---|
| 450 | ENDIF |
---|
[1048] | 451 | |
---|
| 452 | selfcoll = MAX( breakup - selfcoll, -nr(k,j,i) / ( dt_3d * & |
---|
| 453 | weight_substep(intermediate_timestep_count) ) ) |
---|
[1012] | 454 | ! |
---|
| 455 | !-- Tendency for nr: |
---|
[1048] | 456 | tend_nr(k,j,i) = tend_nr(k,j,i) + selfcoll |
---|
[1005] | 457 | ENDIF |
---|
| 458 | ENDDO |
---|
| 459 | |
---|
| 460 | END SUBROUTINE selfcollection_breakup_ij |
---|
| 461 | |
---|
[1012] | 462 | SUBROUTINE evaporation_rain_ij( i, j ) |
---|
[1022] | 463 | ! |
---|
| 464 | !-- Evaporation of precipitable water. Condensation is neglected for |
---|
| 465 | !-- precipitable water. |
---|
[1012] | 466 | |
---|
| 467 | USE arrays_3d |
---|
| 468 | USE cloud_parameters |
---|
| 469 | USE constants |
---|
| 470 | USE indices |
---|
| 471 | USE control_parameters |
---|
[1048] | 472 | USE statistics |
---|
| 473 | |
---|
[1012] | 474 | IMPLICIT NONE |
---|
| 475 | |
---|
| 476 | INTEGER :: i, j, k |
---|
| 477 | REAL :: evap, alpha, e_s, q_s, t_l, sat, temp, g_evap, f_vent, & |
---|
[1049] | 478 | mu_r_2, mu_r_5d2, nr_0 |
---|
[1012] | 479 | |
---|
| 480 | DO k = nzb_2d(j,i)+1, nzt |
---|
[1065] | 481 | IF ( qr(k,j,i) > eps_sb ) THEN |
---|
[1012] | 482 | ! |
---|
| 483 | !-- Actual liquid water temperature: |
---|
| 484 | t_l = t_d_pt(k) * pt(k,j,i) |
---|
| 485 | ! |
---|
| 486 | !-- Saturation vapor pressure at t_l: |
---|
| 487 | e_s = 610.78 * EXP( 17.269 * ( t_l - 273.16 ) / ( t_l - 35.86 ) ) |
---|
| 488 | ! |
---|
| 489 | !-- Computation of saturation humidity: |
---|
| 490 | q_s = 0.622 * e_s / ( hyp(k) - 0.378 * e_s ) |
---|
| 491 | alpha = 0.622 * l_d_r * l_d_cp / ( t_l * t_l ) |
---|
| 492 | q_s = q_s * ( 1.0 + alpha * q(k,j,i) ) / ( 1.0 + alpha * q_s ) |
---|
| 493 | ! |
---|
| 494 | !-- Oversaturation: |
---|
| 495 | sat = MIN( 0.0, ( q(k,j,i) - ql(k,j,i) ) / q_s - 1.0 ) |
---|
| 496 | ! |
---|
| 497 | !-- Actual temperature: |
---|
[1048] | 498 | temp = t_l + l_d_cp * ql(k,j,i) |
---|
[1012] | 499 | ! |
---|
| 500 | !-- |
---|
| 501 | g_evap = ( l_v / ( r_v * temp ) - 1.0 ) * l_v / & |
---|
[1048] | 502 | ( thermal_conductivity_l * temp ) + rho_l * r_v * temp /& |
---|
[1022] | 503 | ( diff_coeff_l * e_s ) |
---|
[1012] | 504 | g_evap = 1.0 / g_evap |
---|
| 505 | ! |
---|
[1049] | 506 | !-- Compute ventilation factor and intercept parameter |
---|
| 507 | !-- (Seifert and Beheng, 2006; Seifert, 2008): |
---|
[1048] | 508 | IF ( ventilation_effect ) THEN |
---|
| 509 | mu_r_2 = mu_r(k) + 2.0 |
---|
| 510 | mu_r_5d2 = mu_r(k) + 2.5 |
---|
| 511 | f_vent = a_vent * gamm( mu_r_2 ) * & |
---|
| 512 | lambda_r(k)**( -mu_r_2 ) + & |
---|
| 513 | b_vent * schmidt_p_1d3 * & |
---|
| 514 | SQRT( a_term / kin_vis_air ) * gamm( mu_r_5d2 ) * & |
---|
| 515 | lambda_r(k)**( -mu_r_5d2 ) * & |
---|
| 516 | ( 1.0 - 0.5 * ( b_term / a_term ) * & |
---|
| 517 | ( lambda_r(k) / & |
---|
| 518 | ( c_term + lambda_r(k) ) )**mu_r_5d2 - & |
---|
| 519 | 0.125 * ( b_term / a_term )**2 * & |
---|
| 520 | ( lambda_r(k) / & |
---|
| 521 | ( 2.0 * c_term + lambda_r(k) ) )**mu_r_5d2 - & |
---|
| 522 | 0.0625 * ( b_term / a_term )**3 * & |
---|
| 523 | ( lambda_r(k) / & |
---|
| 524 | ( 3.0 * c_term + lambda_r(k) ) )**mu_r_5d2 - & |
---|
| 525 | 0.0390625 * ( b_term / a_term )**4 * & |
---|
| 526 | ( lambda_r(k) / & |
---|
| 527 | ( 4.0 * c_term + lambda_r(k) ) )**mu_r_5d2 ) |
---|
[1049] | 528 | nr_0 = nr(k,j,i) * lambda_r(k)**( mu_r(k) + 1.0 ) / & |
---|
| 529 | gamm( mu_r(k) + 1.0 ) |
---|
[1048] | 530 | ELSE |
---|
| 531 | f_vent = 1.0 |
---|
[1049] | 532 | nr_0 = nr(k,j,i) * dr(k) |
---|
[1048] | 533 | ENDIF |
---|
[1012] | 534 | ! |
---|
[1048] | 535 | !-- Evaporation rate of rain water content (Seifert and Beheng, 2006): |
---|
[1049] | 536 | evap = 2.0 * pi * nr_0 * g_evap * f_vent * sat / & |
---|
[1048] | 537 | hyrho(k) |
---|
| 538 | evap = MAX( evap, -qr(k,j,i) / ( dt_3d * & |
---|
| 539 | weight_substep(intermediate_timestep_count) ) ) |
---|
[1012] | 540 | ! |
---|
[1022] | 541 | !-- Tendencies for q, qr, nr, pt: |
---|
[1012] | 542 | tend_qr(k,j,i) = tend_qr(k,j,i) + evap |
---|
| 543 | tend_q(k,j,i) = tend_q(k,j,i) - evap |
---|
[1049] | 544 | tend_nr(k,j,i) = tend_nr(k,j,i) + c_evap * evap / xr(k) * hyrho(k) |
---|
[1048] | 545 | tend_pt(k,j,i) = tend_pt(k,j,i) + evap * l_d_cp * pt_d_t(k) |
---|
[1012] | 546 | ENDIF |
---|
| 547 | ENDDO |
---|
| 548 | |
---|
| 549 | END SUBROUTINE evaporation_rain_ij |
---|
| 550 | |
---|
| 551 | SUBROUTINE sedimentation_cloud_ij( i, j ) |
---|
| 552 | |
---|
| 553 | USE arrays_3d |
---|
| 554 | USE cloud_parameters |
---|
| 555 | USE constants |
---|
| 556 | USE indices |
---|
| 557 | USE control_parameters |
---|
| 558 | |
---|
| 559 | IMPLICIT NONE |
---|
| 560 | |
---|
| 561 | INTEGER :: i, j, k |
---|
[1022] | 562 | REAL :: sed_q_const, sigma_gc = 1.3, k_st = 1.2E8 |
---|
[1012] | 563 | ! |
---|
| 564 | !-- Sedimentation of cloud droplets (Heus et al., 2010): |
---|
[1022] | 565 | sed_q_const = k_st * ( 3.0 / ( 4.0 * pi * rho_l ))**( 2.0 / 3.0 ) * & |
---|
[1048] | 566 | EXP( 5.0 * LOG( sigma_gc )**2 ) |
---|
[1012] | 567 | |
---|
[1022] | 568 | sed_q = 0.0 |
---|
[1012] | 569 | |
---|
| 570 | DO k = nzb_2d(j,i)+1, nzt |
---|
[1048] | 571 | IF ( ql(k,j,i) > 0.0 ) THEN |
---|
[1022] | 572 | sed_q(k) = sed_q_const * nc**( -2.0 / 3.0 ) * & |
---|
[1012] | 573 | ( ql(k,j,i) * hyrho(k) )**( 5.0 / 3.0 ) |
---|
| 574 | ENDIF |
---|
| 575 | ENDDO |
---|
| 576 | ! |
---|
[1022] | 577 | !-- Tendency for q, pt: |
---|
[1012] | 578 | DO k = nzb_2d(j,i)+1, nzt |
---|
[1048] | 579 | tend_q(k,j,i) = tend_q(k,j,i) + ( sed_q(k+1) - sed_q(k) ) * & |
---|
| 580 | ddzu(k+1) / hyrho(k) |
---|
[1022] | 581 | tend_pt(k,j,i) = tend_pt(k,j,i) - ( sed_q(k+1) - sed_q(k) ) * & |
---|
[1048] | 582 | ddzu(k+1) / hyrho(k) * l_d_cp * pt_d_t(k) |
---|
[1012] | 583 | ENDDO |
---|
| 584 | |
---|
| 585 | END SUBROUTINE sedimentation_cloud_ij |
---|
| 586 | |
---|
| 587 | SUBROUTINE sedimentation_rain_ij( i, j ) |
---|
| 588 | |
---|
| 589 | USE arrays_3d |
---|
| 590 | USE cloud_parameters |
---|
| 591 | USE constants |
---|
| 592 | USE indices |
---|
| 593 | USE control_parameters |
---|
[1048] | 594 | USE statistics |
---|
[1012] | 595 | |
---|
| 596 | IMPLICIT NONE |
---|
| 597 | |
---|
[1065] | 598 | INTEGER :: i, j, k, k_run, n, n_substep |
---|
| 599 | REAL :: c_run, d_max, d_mean, d_min, dt_sedi, flux, mean, z_run |
---|
[1012] | 600 | |
---|
[1065] | 601 | REAL, DIMENSION(nzb:nzt) :: c_nr, c_qr, d_nr, d_qr, nr_slope, qr_slope, & |
---|
| 602 | w_nr, w_qr |
---|
| 603 | ! |
---|
| 604 | !-- Computation of sedimentation flux. Implementation according to Stevens |
---|
| 605 | !-- and Seifert (2008). |
---|
| 606 | |
---|
[1048] | 607 | IF ( intermediate_timestep_count == 1 ) prr(:,j,i) = 0.0 |
---|
[1012] | 608 | |
---|
[1065] | 609 | dt_sedi = dt_3d * weight_substep(intermediate_timestep_count) |
---|
[1022] | 610 | |
---|
[1065] | 611 | w_nr = 0.0 |
---|
| 612 | w_qr = 0.0 |
---|
[1012] | 613 | ! |
---|
[1065] | 614 | !-- Compute velocities |
---|
| 615 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 616 | IF ( qr(k,j,i) > eps_sb ) THEN |
---|
| 617 | w_nr(k) = MAX( 0.1, MIN( 20.0, a_term - b_term * ( 1.0 + & |
---|
| 618 | c_term / lambda_r(k) )**( -1.0 * ( mu_r(k) + 1.0 ) ) ) ) |
---|
| 619 | w_qr(k) = MAX( 0.1, MIN( 20.0, a_term - b_term * ( 1.0 + & |
---|
| 620 | c_term / lambda_r(k) )**( -1.0 * ( mu_r(k) + 4.0 ) ) ) ) |
---|
| 621 | ELSE |
---|
| 622 | w_nr(k) = 0.0 |
---|
| 623 | w_qr(k) = 0.0 |
---|
| 624 | ENDIF |
---|
| 625 | ENDDO |
---|
[1048] | 626 | ! |
---|
[1065] | 627 | !-- Adjust boundary values |
---|
| 628 | w_nr(nzb_2d(j,i)) = w_nr(nzb_2d(j,i)+1) |
---|
| 629 | w_qr(nzb_2d(j,i)) = w_qr(nzb_2d(j,i)+1) |
---|
| 630 | w_nr(nzt) = w_nr(nzt-1) |
---|
| 631 | w_qr(nzt) = w_qr(nzt-1) |
---|
| 632 | ! |
---|
| 633 | !-- Compute Courant number |
---|
| 634 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
| 635 | c_nr(k) = 0.25 * ( w_nr(k-1) + 2.0 * w_nr(k) + w_nr(k+1) ) * & |
---|
| 636 | dt_sedi * ddzu(k) |
---|
| 637 | c_qr(k) = 0.25 * ( w_qr(k-1) + 2.0 * w_qr(k) + w_qr(k+1) ) * & |
---|
| 638 | dt_sedi * ddzu(k) |
---|
| 639 | ENDDO |
---|
| 640 | ! |
---|
| 641 | !-- Limit slopes with monotonized centered (MC) limiter (van Leer, 1977): |
---|
| 642 | IF ( limiter_sedimentation ) THEN |
---|
| 643 | |
---|
| 644 | qr(nzb_s_inner(j,i),j,i) = 0.0 |
---|
| 645 | nr(nzb_s_inner(j,i),j,i) = 0.0 |
---|
| 646 | qr(nzt,j,i) = 0.0 |
---|
| 647 | nr(nzt,j,i) = 0.0 |
---|
| 648 | |
---|
| 649 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
| 650 | d_mean = 0.5 * ( qr(k+1,j,i) + qr(k-1,j,i) ) |
---|
| 651 | d_min = qr(k,j,i) - MIN( qr(k+1,j,i), qr(k,j,i), qr(k-1,j,i) ) |
---|
| 652 | d_max = MAX( qr(k+1,j,i), qr(k,j,i), qr(k-1,j,i) ) - qr(k,j,i) |
---|
| 653 | |
---|
| 654 | qr_slope(k) = SIGN(1.0, d_mean) * MIN ( 2.0 * d_min, 2.0 * d_max, & |
---|
| 655 | ABS( d_mean ) ) |
---|
| 656 | |
---|
| 657 | d_mean = 0.5 * ( nr(k+1,j,i) + nr(k-1,j,i) ) |
---|
| 658 | d_min = nr(k,j,i) - MIN( nr(k+1,j,i), nr(k,j,i), nr(k-1,j,i) ) |
---|
| 659 | d_max = MAX( nr(k+1,j,i), nr(k,j,i), nr(k-1,j,i) ) - nr(k,j,i) |
---|
| 660 | |
---|
| 661 | nr_slope(k) = SIGN(1.0, d_mean) * MIN ( 2.0 * d_min, 2.0 * d_max, & |
---|
| 662 | ABS( d_mean ) ) |
---|
[1022] | 663 | ENDDO |
---|
[1048] | 664 | |
---|
[1065] | 665 | ELSE |
---|
| 666 | nr_slope = 0.0 |
---|
| 667 | qr_slope = 0.0 |
---|
| 668 | ENDIF |
---|
| 669 | ! |
---|
| 670 | !-- Compute sedimentation flux |
---|
| 671 | DO k = nzt-2, nzb_s_inner(j,i)+1, -1 |
---|
| 672 | ! |
---|
| 673 | !-- Sum up all rain drop number densities which contribute to the flux |
---|
| 674 | !-- through k-1/2 |
---|
| 675 | flux = 0.0 |
---|
| 676 | z_run = 0.0 ! height above z(k) |
---|
| 677 | k_run = k |
---|
| 678 | c_run = MIN( 1.0, c_nr(k) ) |
---|
| 679 | DO WHILE ( c_run > 0.0 .AND. k_run <= nzt-1 ) |
---|
| 680 | flux = flux + hyrho(k_run) * & |
---|
| 681 | ( nr(k_run,j,i) + nr_slope(k_run) * ( 1.0 - c_run ) * & |
---|
| 682 | 0.5 ) * c_run * dzu(k_run) |
---|
| 683 | z_run = z_run + dzu(k_run) |
---|
| 684 | k_run = k_run + 1 |
---|
| 685 | c_run = MIN( 1.0, c_nr(k_run) - z_run * ddzu(k_run) ) |
---|
[1022] | 686 | ENDDO |
---|
| 687 | ! |
---|
[1065] | 688 | !-- It is not allowed to sediment more rain drop number density than |
---|
| 689 | !-- available |
---|
| 690 | flux = MIN( flux, & |
---|
| 691 | hyrho(k) * dzu(k) * nr(k,j,i) + sed_nr(k+1) * dt_sedi ) |
---|
| 692 | |
---|
| 693 | sed_nr(k) = flux / dt_sedi |
---|
| 694 | tend_nr(k,j,i) = tend_nr(k,j,i) + ( sed_nr(k+1) - sed_nr(k) ) * & |
---|
| 695 | ddzu(k+1) / hyrho(k) |
---|
| 696 | ! |
---|
| 697 | !-- Sum up all rain water content which contributes to the flux |
---|
| 698 | !-- through k-1/2 |
---|
| 699 | flux = 0.0 |
---|
| 700 | z_run = 0.0 ! height above z(k) |
---|
| 701 | k_run = k |
---|
| 702 | c_run = MIN( 1.0, c_qr(k) ) |
---|
| 703 | DO WHILE ( c_run > 0.0 .AND. k_run <= nzt-1 ) |
---|
| 704 | flux = flux + hyrho(k_run) * & |
---|
| 705 | ( qr(k_run,j,i) + qr_slope(k_run) * ( 1.0 - c_run ) * & |
---|
| 706 | 0.5 ) * c_run * dzu(k_run) |
---|
| 707 | z_run = z_run + dzu(k_run) |
---|
| 708 | k_run = k_run + 1 |
---|
| 709 | c_run = MIN( 1.0, c_qr(k_run) - z_run * ddzu(k_run) ) |
---|
| 710 | ENDDO |
---|
| 711 | ! |
---|
| 712 | !-- It is not allowed to sediment more rain water content than available |
---|
| 713 | flux = MIN( flux, & |
---|
| 714 | hyrho(k) * dzu(k) * qr(k,j,i) + sed_qr(k+1) * dt_sedi ) |
---|
| 715 | |
---|
| 716 | sed_qr(k) = flux / dt_sedi |
---|
| 717 | tend_qr(k,j,i) = tend_qr(k,j,i) + ( sed_qr(k+1) - sed_qr(k) ) * & |
---|
| 718 | ddzu(k+1) / hyrho(k) |
---|
| 719 | ! |
---|
| 720 | !-- Compute the rain rate |
---|
| 721 | prr(k,j,i) = prr(k,j,i) + sed_qr(k) / hyrho(k) * & |
---|
| 722 | weight_substep(intermediate_timestep_count) |
---|
| 723 | ENDDO |
---|
| 724 | ! |
---|
[1048] | 725 | !-- Precipitation amount |
---|
| 726 | IF ( intermediate_timestep_count == intermediate_timestep_count_max & |
---|
| 727 | .AND. ( dt_do2d_xy - time_do2d_xy ) < & |
---|
| 728 | precipitation_amount_interval ) THEN |
---|
[1012] | 729 | |
---|
[1048] | 730 | precipitation_amount(j,i) = precipitation_amount(j,i) + & |
---|
| 731 | prr(nzb_2d(j,i)+1,j,i) * & |
---|
| 732 | hyrho(nzb_2d(j,i)+1) * dt_3d |
---|
| 733 | ENDIF |
---|
| 734 | |
---|
[1012] | 735 | END SUBROUTINE sedimentation_rain_ij |
---|
| 736 | |
---|
| 737 | ! |
---|
| 738 | !-- This function computes the gamma function (Press et al., 1992). |
---|
| 739 | !-- The gamma function is needed for the calculation of the evaporation |
---|
| 740 | !-- of rain drops. |
---|
| 741 | FUNCTION gamm( xx ) |
---|
[1048] | 742 | |
---|
| 743 | USE cloud_parameters |
---|
[1012] | 744 | |
---|
| 745 | IMPLICIT NONE |
---|
| 746 | |
---|
[1065] | 747 | REAL :: gamm, ser, tmp, x_gamm, xx, y_gamm |
---|
[1012] | 748 | INTEGER :: j |
---|
| 749 | |
---|
| 750 | x_gamm = xx |
---|
| 751 | y_gamm = x_gamm |
---|
| 752 | tmp = x_gamm + 5.5 |
---|
| 753 | tmp = ( x_gamm + 0.5 ) * LOG( tmp ) - tmp |
---|
| 754 | ser = 1.000000000190015 |
---|
| 755 | do j = 1, 6 |
---|
| 756 | y_gamm = y_gamm + 1.0 |
---|
| 757 | ser = ser + cof( j ) / y_gamm |
---|
| 758 | enddo |
---|
| 759 | ! |
---|
| 760 | !-- Until this point the algorithm computes the logarithm of the gamma |
---|
| 761 | !-- function. Hence, the exponential function is used. |
---|
| 762 | ! gamm = EXP( tmp + LOG( stp * ser / x_gamm ) ) |
---|
| 763 | gamm = EXP( tmp ) * stp * ser / x_gamm |
---|
| 764 | RETURN |
---|
| 765 | |
---|
| 766 | END FUNCTION gamm |
---|
| 767 | |
---|
| 768 | END MODULE microphysics_mod |
---|