1 | MODULE microphysics_mod |
---|
2 | |
---|
3 | !------------------------------------------------------------------------------! |
---|
4 | ! Current revisions: |
---|
5 | ! ----------------- |
---|
6 | ! |
---|
7 | ! Former revisions: |
---|
8 | ! ----------------- |
---|
9 | ! $Id: microphysics.f90 1066 2012-11-22 17:52:43Z hoffmann $ |
---|
10 | ! |
---|
11 | ! 1065 2012-11-22 17:42:36Z hoffmann |
---|
12 | ! Sedimentation process implemented according to Stevens and Seifert (2008). |
---|
13 | ! Turbulence effects on autoconversion and accretion added (Seifert, Nuijens |
---|
14 | ! and Stevens, 2010). |
---|
15 | ! |
---|
16 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
17 | ! initial revision |
---|
18 | ! |
---|
19 | ! Description: |
---|
20 | ! ------------ |
---|
21 | ! Calculate cloud microphysics according to the two moment bulk |
---|
22 | ! scheme by Seifert and Beheng (2006). |
---|
23 | !------------------------------------------------------------------------------! |
---|
24 | |
---|
25 | PRIVATE |
---|
26 | PUBLIC dsd_properties, autoconversion, accretion, selfcollection_breakup, & |
---|
27 | evaporation_rain, sedimentation_cloud, sedimentation_rain |
---|
28 | |
---|
29 | INTERFACE dsd_properties |
---|
30 | MODULE PROCEDURE dsd_properties |
---|
31 | MODULE PROCEDURE dsd_properties_ij |
---|
32 | END INTERFACE dsd_properties |
---|
33 | |
---|
34 | INTERFACE autoconversion |
---|
35 | MODULE PROCEDURE autoconversion |
---|
36 | MODULE PROCEDURE autoconversion_ij |
---|
37 | END INTERFACE autoconversion |
---|
38 | |
---|
39 | INTERFACE accretion |
---|
40 | MODULE PROCEDURE accretion |
---|
41 | MODULE PROCEDURE accretion_ij |
---|
42 | END INTERFACE accretion |
---|
43 | |
---|
44 | INTERFACE selfcollection_breakup |
---|
45 | MODULE PROCEDURE selfcollection_breakup |
---|
46 | MODULE PROCEDURE selfcollection_breakup_ij |
---|
47 | END INTERFACE selfcollection_breakup |
---|
48 | |
---|
49 | INTERFACE evaporation_rain |
---|
50 | MODULE PROCEDURE evaporation_rain |
---|
51 | MODULE PROCEDURE evaporation_rain_ij |
---|
52 | END INTERFACE evaporation_rain |
---|
53 | |
---|
54 | INTERFACE sedimentation_cloud |
---|
55 | MODULE PROCEDURE sedimentation_cloud |
---|
56 | MODULE PROCEDURE sedimentation_cloud_ij |
---|
57 | END INTERFACE sedimentation_cloud |
---|
58 | |
---|
59 | INTERFACE sedimentation_rain |
---|
60 | MODULE PROCEDURE sedimentation_rain |
---|
61 | MODULE PROCEDURE sedimentation_rain_ij |
---|
62 | END INTERFACE sedimentation_rain |
---|
63 | |
---|
64 | CONTAINS |
---|
65 | |
---|
66 | |
---|
67 | !------------------------------------------------------------------------------! |
---|
68 | ! Call for all grid points |
---|
69 | !------------------------------------------------------------------------------! |
---|
70 | SUBROUTINE dsd_properties |
---|
71 | |
---|
72 | USE arrays_3d |
---|
73 | USE cloud_parameters |
---|
74 | USE constants |
---|
75 | USE indices |
---|
76 | |
---|
77 | IMPLICIT NONE |
---|
78 | |
---|
79 | INTEGER :: i, j, k |
---|
80 | REAL :: dqdt_precip |
---|
81 | |
---|
82 | |
---|
83 | DO i = nxl, nxr |
---|
84 | DO j = nys, nyn |
---|
85 | DO k = nzb_2d(j,i)+1, nzt |
---|
86 | |
---|
87 | ENDDO |
---|
88 | ENDDO |
---|
89 | ENDDO |
---|
90 | |
---|
91 | END SUBROUTINE dsd_properties |
---|
92 | |
---|
93 | SUBROUTINE autoconversion |
---|
94 | |
---|
95 | USE arrays_3d |
---|
96 | USE cloud_parameters |
---|
97 | USE constants |
---|
98 | USE indices |
---|
99 | |
---|
100 | IMPLICIT NONE |
---|
101 | |
---|
102 | INTEGER :: i, j, k |
---|
103 | REAL :: dqdt_precip |
---|
104 | |
---|
105 | |
---|
106 | DO i = nxl, nxr |
---|
107 | DO j = nys, nyn |
---|
108 | DO k = nzb_2d(j,i)+1, nzt |
---|
109 | |
---|
110 | ENDDO |
---|
111 | ENDDO |
---|
112 | ENDDO |
---|
113 | |
---|
114 | END SUBROUTINE autoconversion |
---|
115 | |
---|
116 | SUBROUTINE accretion |
---|
117 | |
---|
118 | USE arrays_3d |
---|
119 | USE cloud_parameters |
---|
120 | USE constants |
---|
121 | USE indices |
---|
122 | |
---|
123 | IMPLICIT NONE |
---|
124 | |
---|
125 | INTEGER :: i, j, k |
---|
126 | REAL :: dqdt_precip |
---|
127 | |
---|
128 | |
---|
129 | DO i = nxl, nxr |
---|
130 | DO j = nys, nyn |
---|
131 | DO k = nzb_2d(j,i)+1, nzt |
---|
132 | |
---|
133 | ENDDO |
---|
134 | ENDDO |
---|
135 | ENDDO |
---|
136 | |
---|
137 | END SUBROUTINE accretion |
---|
138 | |
---|
139 | SUBROUTINE selfcollection_breakup |
---|
140 | |
---|
141 | USE arrays_3d |
---|
142 | USE cloud_parameters |
---|
143 | USE constants |
---|
144 | USE indices |
---|
145 | |
---|
146 | IMPLICIT NONE |
---|
147 | |
---|
148 | INTEGER :: i, j, k |
---|
149 | REAL :: dqdt_precip |
---|
150 | |
---|
151 | |
---|
152 | DO i = nxl, nxr |
---|
153 | DO j = nys, nyn |
---|
154 | DO k = nzb_2d(j,i)+1, nzt |
---|
155 | |
---|
156 | ENDDO |
---|
157 | ENDDO |
---|
158 | ENDDO |
---|
159 | |
---|
160 | END SUBROUTINE selfcollection_breakup |
---|
161 | |
---|
162 | SUBROUTINE evaporation_rain |
---|
163 | |
---|
164 | USE arrays_3d |
---|
165 | USE cloud_parameters |
---|
166 | USE constants |
---|
167 | USE indices |
---|
168 | |
---|
169 | IMPLICIT NONE |
---|
170 | |
---|
171 | INTEGER :: i, j, k |
---|
172 | REAL :: dqdt_precip |
---|
173 | |
---|
174 | |
---|
175 | DO i = nxl, nxr |
---|
176 | DO j = nys, nyn |
---|
177 | DO k = nzb_2d(j,i)+1, nzt |
---|
178 | |
---|
179 | ENDDO |
---|
180 | ENDDO |
---|
181 | ENDDO |
---|
182 | |
---|
183 | END SUBROUTINE evaporation_rain |
---|
184 | |
---|
185 | SUBROUTINE sedimentation_cloud |
---|
186 | |
---|
187 | USE arrays_3d |
---|
188 | USE cloud_parameters |
---|
189 | USE constants |
---|
190 | USE indices |
---|
191 | |
---|
192 | IMPLICIT NONE |
---|
193 | |
---|
194 | INTEGER :: i, j, k |
---|
195 | REAL :: dqdt_precip |
---|
196 | |
---|
197 | |
---|
198 | DO i = nxl, nxr |
---|
199 | DO j = nys, nyn |
---|
200 | DO k = nzb_2d(j,i)+1, nzt |
---|
201 | |
---|
202 | ENDDO |
---|
203 | ENDDO |
---|
204 | ENDDO |
---|
205 | |
---|
206 | END SUBROUTINE sedimentation_cloud |
---|
207 | |
---|
208 | SUBROUTINE sedimentation_rain |
---|
209 | |
---|
210 | USE arrays_3d |
---|
211 | USE cloud_parameters |
---|
212 | USE constants |
---|
213 | USE indices |
---|
214 | |
---|
215 | IMPLICIT NONE |
---|
216 | |
---|
217 | INTEGER :: i, j, k |
---|
218 | REAL :: dqdt_precip |
---|
219 | |
---|
220 | |
---|
221 | DO i = nxl, nxr |
---|
222 | DO j = nys, nyn |
---|
223 | DO k = nzb_2d(j,i)+1, nzt |
---|
224 | |
---|
225 | ENDDO |
---|
226 | ENDDO |
---|
227 | ENDDO |
---|
228 | |
---|
229 | |
---|
230 | END SUBROUTINE sedimentation_rain |
---|
231 | |
---|
232 | |
---|
233 | !------------------------------------------------------------------------------! |
---|
234 | ! Call for grid point i,j |
---|
235 | !------------------------------------------------------------------------------! |
---|
236 | SUBROUTINE dsd_properties_ij( i, j ) |
---|
237 | |
---|
238 | USE arrays_3d |
---|
239 | USE cloud_parameters |
---|
240 | USE constants |
---|
241 | USE indices |
---|
242 | USE control_parameters |
---|
243 | USE user |
---|
244 | |
---|
245 | IMPLICIT NONE |
---|
246 | |
---|
247 | INTEGER :: i, j, k |
---|
248 | |
---|
249 | DO k = nzb_2d(j,i)+1, nzt |
---|
250 | |
---|
251 | IF ( qr(k,j,i) <= eps_sb ) THEN |
---|
252 | qr(k,j,i) = 0.0 |
---|
253 | ELSE |
---|
254 | ! |
---|
255 | !-- Adjust number of raindrops to avoid nonlinear effects in |
---|
256 | !-- sedimentation and evaporation of rain drops due to too small or |
---|
257 | !-- too big weights of rain drops (Stevens and Seifert, 2008). |
---|
258 | IF ( nr(k,j,i) * xrmin > qr(k,j,i) * hyrho(k) ) THEN |
---|
259 | nr(k,j,i) = qr(k,j,i) * hyrho(k) / xrmin |
---|
260 | ELSEIF ( nr(k,j,i) * xrmax < qr(k,j,i) * hyrho(k) ) THEN |
---|
261 | nr(k,j,i) = qr(k,j,i) * hyrho(k) / xrmax |
---|
262 | ENDIF |
---|
263 | xr(k) = hyrho(k) * qr(k,j,i) / nr(k,j,i) |
---|
264 | ! |
---|
265 | !-- Weight averaged diameter of rain drops: |
---|
266 | dr(k) = ( hyrho(k) * qr(k,j,i) / nr(k,j,i) * & |
---|
267 | dpirho_l )**( 1.0 / 3.0 ) |
---|
268 | ! |
---|
269 | !-- Shape parameter of gamma distribution (Milbrandt and Yau, 2005; |
---|
270 | !-- Stevens and Seifert, 2008): |
---|
271 | mu_r(k) = 10.0 * ( 1.0 + TANH( 1.2E3 * ( dr(k) - 1.4E-3 ) ) ) |
---|
272 | ! |
---|
273 | !-- Slope parameter of gamma distribution (Seifert, 2008): |
---|
274 | lambda_r(k) = ( ( mu_r(k) + 3.0 ) * ( mu_r(k) + 2.0 ) * & |
---|
275 | ( mu_r(k) + 1.0 ) )**( 1.0 / 3.0 ) / dr(k) |
---|
276 | ENDIF |
---|
277 | ENDDO |
---|
278 | |
---|
279 | END SUBROUTINE dsd_properties_ij |
---|
280 | |
---|
281 | SUBROUTINE autoconversion_ij( i, j ) |
---|
282 | |
---|
283 | USE arrays_3d |
---|
284 | USE cloud_parameters |
---|
285 | USE constants |
---|
286 | USE indices |
---|
287 | USE control_parameters |
---|
288 | USE statistics |
---|
289 | USE grid_variables |
---|
290 | |
---|
291 | IMPLICIT NONE |
---|
292 | |
---|
293 | INTEGER :: i, j, k |
---|
294 | REAL :: k_au, autocon, phi_au, tau_cloud, xc, nu_c, rc, & |
---|
295 | l_mix, re_lambda, alpha_cc, r_cc, sigma_cc, epsilon |
---|
296 | |
---|
297 | k_au = k_cc / ( 20.0 * x0 ) |
---|
298 | |
---|
299 | DO k = nzb_2d(j,i)+1, nzt |
---|
300 | |
---|
301 | IF ( ql(k,j,i) > 0.0 ) THEN |
---|
302 | ! |
---|
303 | !-- Intern time scale of coagulation (Seifert and Beheng, 2006): |
---|
304 | !-- (1.0 - ql(k,j,i) / ( ql(k,j,i) + qr(k,j,i) )) |
---|
305 | tau_cloud = 1.0 - ql(k,j,i) / ( ql(k,j,i) + qr(k,j,i) + 1.0E-20 ) |
---|
306 | ! |
---|
307 | !-- Universal function for autoconversion process |
---|
308 | !-- (Seifert and Beheng, 2006): |
---|
309 | phi_au = 600.0 * tau_cloud**0.68 * ( 1.0 - tau_cloud**0.68 )**3 |
---|
310 | ! |
---|
311 | !-- Shape parameter of gamma distribution (Geoffroy et al., 2010): |
---|
312 | !-- (Use constant nu_c = 1.0 instead?) |
---|
313 | nu_c = 1.0 !MAX( 0.0, 1580.0 * hyrho(k) * ql(k,j,i) - 0.28 ) |
---|
314 | ! |
---|
315 | !-- Mean weight of cloud droplets: |
---|
316 | xc = hyrho(k) * ql(k,j,i) / nc |
---|
317 | ! |
---|
318 | !-- Parameterized turbulence effects on autoconversion (Seifert, |
---|
319 | !-- Nuijens and Stevens, 2010) |
---|
320 | IF ( turbulence ) THEN |
---|
321 | ! |
---|
322 | !-- Weight averaged radius of cloud droplets: |
---|
323 | rc = 0.5 * ( xc * dpirho_l )**( 1.0 / 3.0 ) |
---|
324 | |
---|
325 | alpha_cc = ( a_1 + a_2 * nu_c ) / ( 1.0 + a_3 * nu_c ) |
---|
326 | r_cc = ( b_1 + b_2 * nu_c ) / ( 1.0 + b_3 * nu_c ) |
---|
327 | sigma_cc = ( c_1 + c_2 * nu_c ) / ( 1.0 + c_3 * nu_c ) |
---|
328 | ! |
---|
329 | !-- Mixing length (neglecting distance to ground and stratification) |
---|
330 | l_mix = ( dx * dy * dzu(k) )**( 1.0 / 3.0 ) |
---|
331 | ! |
---|
332 | !-- Limit dissipation rate according to Seifert, Nuijens and |
---|
333 | !-- Stevens (2010) |
---|
334 | epsilon = MIN( 0.06, diss(k,j,i) ) |
---|
335 | ! |
---|
336 | !-- Compute Taylor-microscale Reynolds number: |
---|
337 | re_lambda = 6.0 / 11.0 * ( l_mix / c_const )**( 2.0 / 3.0 ) * & |
---|
338 | SQRT( 15.0 / kin_vis_air ) * epsilon**( 1.0 / 6.0 ) |
---|
339 | ! |
---|
340 | !-- The factor of 1.0E4 is needed to convert the dissipation rate |
---|
341 | !-- from m2 s-3 to cm2 s-3. |
---|
342 | k_au = k_au * ( 1.0 + & |
---|
343 | epsilon * 1.0E4 * ( re_lambda * 1.0E-3 )**0.25 * & |
---|
344 | ( alpha_cc * EXP( -1.0 * ( ( rc - r_cc ) / & |
---|
345 | sigma_cc )**2 ) + beta_cc ) ) |
---|
346 | ENDIF |
---|
347 | ! |
---|
348 | !-- Autoconversion rate (Seifert and Beheng, 2006): |
---|
349 | autocon = k_au * ( nu_c + 2.0 ) * ( nu_c + 4.0 ) / & |
---|
350 | ( nu_c + 1.0 )**2 * ql(k,j,i)**2 * xc**2 * & |
---|
351 | ( 1.0 + phi_au / ( 1.0 - tau_cloud )**2 ) * & |
---|
352 | rho_surface |
---|
353 | autocon = MIN( autocon, ql(k,j,i) / ( dt_3d * & |
---|
354 | weight_substep(intermediate_timestep_count) ) ) |
---|
355 | ! |
---|
356 | !-- Tendencies for q, qr, nr, pt: |
---|
357 | tend_qr(k,j,i) = tend_qr(k,j,i) + autocon |
---|
358 | tend_q(k,j,i) = tend_q(k,j,i) - autocon |
---|
359 | tend_nr(k,j,i) = tend_nr(k,j,i) + autocon / x0 * hyrho(k) |
---|
360 | tend_pt(k,j,i) = tend_pt(k,j,i) + autocon * l_d_cp * pt_d_t(k) |
---|
361 | ENDIF |
---|
362 | |
---|
363 | ENDDO |
---|
364 | |
---|
365 | END SUBROUTINE autoconversion_ij |
---|
366 | |
---|
367 | SUBROUTINE accretion_ij( i, j ) |
---|
368 | |
---|
369 | USE arrays_3d |
---|
370 | USE cloud_parameters |
---|
371 | USE constants |
---|
372 | USE indices |
---|
373 | USE control_parameters |
---|
374 | USE statistics |
---|
375 | |
---|
376 | IMPLICIT NONE |
---|
377 | |
---|
378 | INTEGER :: i, j, k |
---|
379 | REAL :: accr, phi_ac, tau_cloud, k_cr |
---|
380 | |
---|
381 | DO k = nzb_2d(j,i)+1, nzt |
---|
382 | IF ( ( ql(k,j,i) > 0.0 ) .AND. ( qr(k,j,i) > eps_sb ) ) THEN |
---|
383 | ! |
---|
384 | !-- Intern time scale of coagulation (Seifert and Beheng, 2006): |
---|
385 | tau_cloud = 1.0 - ql(k,j,i) / ( ql(k,j,i) + qr(k,j,i) + 1.0E-20) |
---|
386 | ! |
---|
387 | !-- Universal function for accretion process |
---|
388 | !-- (Seifert and Beheng, 2001): |
---|
389 | phi_ac = tau_cloud / ( tau_cloud + 5.0E-5 ) |
---|
390 | phi_ac = ( phi_ac**2 )**2 |
---|
391 | ! |
---|
392 | !-- Parameterized turbulence effects on autoconversion (Seifert, |
---|
393 | !-- Nuijens and Stevens, 2010). The factor of 1.0E4 is needed to |
---|
394 | !-- convert the dissipation (diss) from m2 s-3 to cm2 s-3. |
---|
395 | IF ( turbulence ) THEN |
---|
396 | k_cr = k_cr0 * ( 1.0 + 0.05 * & |
---|
397 | MIN( 600.0, diss(k,j,i) * 1.0E4 )**0.25 ) |
---|
398 | ELSE |
---|
399 | k_cr = k_cr0 |
---|
400 | ENDIF |
---|
401 | ! |
---|
402 | !-- Accretion rate (Seifert and Beheng, 2006): |
---|
403 | accr = k_cr * ql(k,j,i) * qr(k,j,i) * phi_ac * & |
---|
404 | SQRT( rho_surface * hyrho(k) ) |
---|
405 | accr = MIN( accr, ql(k,j,i) / ( dt_3d * & |
---|
406 | weight_substep(intermediate_timestep_count) ) ) |
---|
407 | ! |
---|
408 | !-- Tendencies for q, qr, pt: |
---|
409 | tend_qr(k,j,i) = tend_qr(k,j,i) + accr |
---|
410 | tend_q(k,j,i) = tend_q(k,j,i) - accr |
---|
411 | tend_pt(k,j,i) = tend_pt(k,j,i) + accr * l_d_cp * pt_d_t(k) |
---|
412 | ENDIF |
---|
413 | ENDDO |
---|
414 | |
---|
415 | END SUBROUTINE accretion_ij |
---|
416 | |
---|
417 | |
---|
418 | SUBROUTINE selfcollection_breakup_ij( i, j ) |
---|
419 | |
---|
420 | USE arrays_3d |
---|
421 | USE cloud_parameters |
---|
422 | USE constants |
---|
423 | USE indices |
---|
424 | USE control_parameters |
---|
425 | USE statistics |
---|
426 | |
---|
427 | IMPLICIT NONE |
---|
428 | |
---|
429 | INTEGER :: i, j, k |
---|
430 | REAL :: selfcoll, breakup, phi_br, phi_sc |
---|
431 | |
---|
432 | DO k = nzb_2d(j,i)+1, nzt |
---|
433 | IF ( qr(k,j,i) > eps_sb ) THEN |
---|
434 | ! |
---|
435 | !-- Selfcollection rate (Seifert and Beheng, 2006): |
---|
436 | !-- pirho_l**( 1.0 / 3.0 ) is necessary to convert [lambda_r] = m-1 to |
---|
437 | !-- kg**( 1.0 / 3.0 ). |
---|
438 | phi_sc = 1.0 !( 1.0 + kappa_rr / lambda_r(k) * & |
---|
439 | !pirho_l**( 1.0 / 3.0 ) )**( -9 ) |
---|
440 | |
---|
441 | selfcoll = k_rr * nr(k,j,i) * qr(k,j,i) * phi_sc * & |
---|
442 | SQRT( hyrho(k) * rho_surface ) |
---|
443 | ! |
---|
444 | !-- Collisional breakup rate (Seifert, 2008): |
---|
445 | IF ( dr(k) >= 0.3E-3 ) THEN |
---|
446 | phi_br = k_br * ( dr(k) - 1.1E-3 ) |
---|
447 | breakup = selfcoll * ( phi_br + 1.0 ) |
---|
448 | ELSE |
---|
449 | breakup = 0.0 |
---|
450 | ENDIF |
---|
451 | |
---|
452 | selfcoll = MAX( breakup - selfcoll, -nr(k,j,i) / ( dt_3d * & |
---|
453 | weight_substep(intermediate_timestep_count) ) ) |
---|
454 | ! |
---|
455 | !-- Tendency for nr: |
---|
456 | tend_nr(k,j,i) = tend_nr(k,j,i) + selfcoll |
---|
457 | ENDIF |
---|
458 | ENDDO |
---|
459 | |
---|
460 | END SUBROUTINE selfcollection_breakup_ij |
---|
461 | |
---|
462 | SUBROUTINE evaporation_rain_ij( i, j ) |
---|
463 | ! |
---|
464 | !-- Evaporation of precipitable water. Condensation is neglected for |
---|
465 | !-- precipitable water. |
---|
466 | |
---|
467 | USE arrays_3d |
---|
468 | USE cloud_parameters |
---|
469 | USE constants |
---|
470 | USE indices |
---|
471 | USE control_parameters |
---|
472 | USE statistics |
---|
473 | |
---|
474 | IMPLICIT NONE |
---|
475 | |
---|
476 | INTEGER :: i, j, k |
---|
477 | REAL :: evap, alpha, e_s, q_s, t_l, sat, temp, g_evap, f_vent, & |
---|
478 | mu_r_2, mu_r_5d2, nr_0 |
---|
479 | |
---|
480 | DO k = nzb_2d(j,i)+1, nzt |
---|
481 | IF ( qr(k,j,i) > eps_sb ) THEN |
---|
482 | ! |
---|
483 | !-- Actual liquid water temperature: |
---|
484 | t_l = t_d_pt(k) * pt(k,j,i) |
---|
485 | ! |
---|
486 | !-- Saturation vapor pressure at t_l: |
---|
487 | e_s = 610.78 * EXP( 17.269 * ( t_l - 273.16 ) / ( t_l - 35.86 ) ) |
---|
488 | ! |
---|
489 | !-- Computation of saturation humidity: |
---|
490 | q_s = 0.622 * e_s / ( hyp(k) - 0.378 * e_s ) |
---|
491 | alpha = 0.622 * l_d_r * l_d_cp / ( t_l * t_l ) |
---|
492 | q_s = q_s * ( 1.0 + alpha * q(k,j,i) ) / ( 1.0 + alpha * q_s ) |
---|
493 | ! |
---|
494 | !-- Oversaturation: |
---|
495 | sat = MIN( 0.0, ( q(k,j,i) - ql(k,j,i) ) / q_s - 1.0 ) |
---|
496 | ! |
---|
497 | !-- Actual temperature: |
---|
498 | temp = t_l + l_d_cp * ql(k,j,i) |
---|
499 | ! |
---|
500 | !-- |
---|
501 | g_evap = ( l_v / ( r_v * temp ) - 1.0 ) * l_v / & |
---|
502 | ( thermal_conductivity_l * temp ) + rho_l * r_v * temp /& |
---|
503 | ( diff_coeff_l * e_s ) |
---|
504 | g_evap = 1.0 / g_evap |
---|
505 | ! |
---|
506 | !-- Compute ventilation factor and intercept parameter |
---|
507 | !-- (Seifert and Beheng, 2006; Seifert, 2008): |
---|
508 | IF ( ventilation_effect ) THEN |
---|
509 | mu_r_2 = mu_r(k) + 2.0 |
---|
510 | mu_r_5d2 = mu_r(k) + 2.5 |
---|
511 | f_vent = a_vent * gamm( mu_r_2 ) * & |
---|
512 | lambda_r(k)**( -mu_r_2 ) + & |
---|
513 | b_vent * schmidt_p_1d3 * & |
---|
514 | SQRT( a_term / kin_vis_air ) * gamm( mu_r_5d2 ) * & |
---|
515 | lambda_r(k)**( -mu_r_5d2 ) * & |
---|
516 | ( 1.0 - 0.5 * ( b_term / a_term ) * & |
---|
517 | ( lambda_r(k) / & |
---|
518 | ( c_term + lambda_r(k) ) )**mu_r_5d2 - & |
---|
519 | 0.125 * ( b_term / a_term )**2 * & |
---|
520 | ( lambda_r(k) / & |
---|
521 | ( 2.0 * c_term + lambda_r(k) ) )**mu_r_5d2 - & |
---|
522 | 0.0625 * ( b_term / a_term )**3 * & |
---|
523 | ( lambda_r(k) / & |
---|
524 | ( 3.0 * c_term + lambda_r(k) ) )**mu_r_5d2 - & |
---|
525 | 0.0390625 * ( b_term / a_term )**4 * & |
---|
526 | ( lambda_r(k) / & |
---|
527 | ( 4.0 * c_term + lambda_r(k) ) )**mu_r_5d2 ) |
---|
528 | nr_0 = nr(k,j,i) * lambda_r(k)**( mu_r(k) + 1.0 ) / & |
---|
529 | gamm( mu_r(k) + 1.0 ) |
---|
530 | ELSE |
---|
531 | f_vent = 1.0 |
---|
532 | nr_0 = nr(k,j,i) * dr(k) |
---|
533 | ENDIF |
---|
534 | ! |
---|
535 | !-- Evaporation rate of rain water content (Seifert and Beheng, 2006): |
---|
536 | evap = 2.0 * pi * nr_0 * g_evap * f_vent * sat / & |
---|
537 | hyrho(k) |
---|
538 | evap = MAX( evap, -qr(k,j,i) / ( dt_3d * & |
---|
539 | weight_substep(intermediate_timestep_count) ) ) |
---|
540 | ! |
---|
541 | !-- Tendencies for q, qr, nr, pt: |
---|
542 | tend_qr(k,j,i) = tend_qr(k,j,i) + evap |
---|
543 | tend_q(k,j,i) = tend_q(k,j,i) - evap |
---|
544 | tend_nr(k,j,i) = tend_nr(k,j,i) + c_evap * evap / xr(k) * hyrho(k) |
---|
545 | tend_pt(k,j,i) = tend_pt(k,j,i) + evap * l_d_cp * pt_d_t(k) |
---|
546 | ENDIF |
---|
547 | ENDDO |
---|
548 | |
---|
549 | END SUBROUTINE evaporation_rain_ij |
---|
550 | |
---|
551 | SUBROUTINE sedimentation_cloud_ij( i, j ) |
---|
552 | |
---|
553 | USE arrays_3d |
---|
554 | USE cloud_parameters |
---|
555 | USE constants |
---|
556 | USE indices |
---|
557 | USE control_parameters |
---|
558 | |
---|
559 | IMPLICIT NONE |
---|
560 | |
---|
561 | INTEGER :: i, j, k |
---|
562 | REAL :: sed_q_const, sigma_gc = 1.3, k_st = 1.2E8 |
---|
563 | ! |
---|
564 | !-- Sedimentation of cloud droplets (Heus et al., 2010): |
---|
565 | sed_q_const = k_st * ( 3.0 / ( 4.0 * pi * rho_l ))**( 2.0 / 3.0 ) * & |
---|
566 | EXP( 5.0 * LOG( sigma_gc )**2 ) |
---|
567 | |
---|
568 | sed_q = 0.0 |
---|
569 | |
---|
570 | DO k = nzb_2d(j,i)+1, nzt |
---|
571 | IF ( ql(k,j,i) > 0.0 ) THEN |
---|
572 | sed_q(k) = sed_q_const * nc**( -2.0 / 3.0 ) * & |
---|
573 | ( ql(k,j,i) * hyrho(k) )**( 5.0 / 3.0 ) |
---|
574 | ENDIF |
---|
575 | ENDDO |
---|
576 | ! |
---|
577 | !-- Tendency for q, pt: |
---|
578 | DO k = nzb_2d(j,i)+1, nzt |
---|
579 | tend_q(k,j,i) = tend_q(k,j,i) + ( sed_q(k+1) - sed_q(k) ) * & |
---|
580 | ddzu(k+1) / hyrho(k) |
---|
581 | tend_pt(k,j,i) = tend_pt(k,j,i) - ( sed_q(k+1) - sed_q(k) ) * & |
---|
582 | ddzu(k+1) / hyrho(k) * l_d_cp * pt_d_t(k) |
---|
583 | ENDDO |
---|
584 | |
---|
585 | END SUBROUTINE sedimentation_cloud_ij |
---|
586 | |
---|
587 | SUBROUTINE sedimentation_rain_ij( i, j ) |
---|
588 | |
---|
589 | USE arrays_3d |
---|
590 | USE cloud_parameters |
---|
591 | USE constants |
---|
592 | USE indices |
---|
593 | USE control_parameters |
---|
594 | USE statistics |
---|
595 | |
---|
596 | IMPLICIT NONE |
---|
597 | |
---|
598 | INTEGER :: i, j, k, k_run, n, n_substep |
---|
599 | REAL :: c_run, d_max, d_mean, d_min, dt_sedi, flux, mean, z_run |
---|
600 | |
---|
601 | REAL, DIMENSION(nzb:nzt) :: c_nr, c_qr, d_nr, d_qr, nr_slope, qr_slope, & |
---|
602 | w_nr, w_qr |
---|
603 | ! |
---|
604 | !-- Computation of sedimentation flux. Implementation according to Stevens |
---|
605 | !-- and Seifert (2008). |
---|
606 | |
---|
607 | IF ( intermediate_timestep_count == 1 ) prr(:,j,i) = 0.0 |
---|
608 | |
---|
609 | dt_sedi = dt_3d * weight_substep(intermediate_timestep_count) |
---|
610 | |
---|
611 | w_nr = 0.0 |
---|
612 | w_qr = 0.0 |
---|
613 | ! |
---|
614 | !-- Compute velocities |
---|
615 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
616 | IF ( qr(k,j,i) > eps_sb ) THEN |
---|
617 | w_nr(k) = MAX( 0.1, MIN( 20.0, a_term - b_term * ( 1.0 + & |
---|
618 | c_term / lambda_r(k) )**( -1.0 * ( mu_r(k) + 1.0 ) ) ) ) |
---|
619 | w_qr(k) = MAX( 0.1, MIN( 20.0, a_term - b_term * ( 1.0 + & |
---|
620 | c_term / lambda_r(k) )**( -1.0 * ( mu_r(k) + 4.0 ) ) ) ) |
---|
621 | ELSE |
---|
622 | w_nr(k) = 0.0 |
---|
623 | w_qr(k) = 0.0 |
---|
624 | ENDIF |
---|
625 | ENDDO |
---|
626 | ! |
---|
627 | !-- Adjust boundary values |
---|
628 | w_nr(nzb_2d(j,i)) = w_nr(nzb_2d(j,i)+1) |
---|
629 | w_qr(nzb_2d(j,i)) = w_qr(nzb_2d(j,i)+1) |
---|
630 | w_nr(nzt) = w_nr(nzt-1) |
---|
631 | w_qr(nzt) = w_qr(nzt-1) |
---|
632 | ! |
---|
633 | !-- Compute Courant number |
---|
634 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
635 | c_nr(k) = 0.25 * ( w_nr(k-1) + 2.0 * w_nr(k) + w_nr(k+1) ) * & |
---|
636 | dt_sedi * ddzu(k) |
---|
637 | c_qr(k) = 0.25 * ( w_qr(k-1) + 2.0 * w_qr(k) + w_qr(k+1) ) * & |
---|
638 | dt_sedi * ddzu(k) |
---|
639 | ENDDO |
---|
640 | ! |
---|
641 | !-- Limit slopes with monotonized centered (MC) limiter (van Leer, 1977): |
---|
642 | IF ( limiter_sedimentation ) THEN |
---|
643 | |
---|
644 | qr(nzb_s_inner(j,i),j,i) = 0.0 |
---|
645 | nr(nzb_s_inner(j,i),j,i) = 0.0 |
---|
646 | qr(nzt,j,i) = 0.0 |
---|
647 | nr(nzt,j,i) = 0.0 |
---|
648 | |
---|
649 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
650 | d_mean = 0.5 * ( qr(k+1,j,i) + qr(k-1,j,i) ) |
---|
651 | d_min = qr(k,j,i) - MIN( qr(k+1,j,i), qr(k,j,i), qr(k-1,j,i) ) |
---|
652 | d_max = MAX( qr(k+1,j,i), qr(k,j,i), qr(k-1,j,i) ) - qr(k,j,i) |
---|
653 | |
---|
654 | qr_slope(k) = SIGN(1.0, d_mean) * MIN ( 2.0 * d_min, 2.0 * d_max, & |
---|
655 | ABS( d_mean ) ) |
---|
656 | |
---|
657 | d_mean = 0.5 * ( nr(k+1,j,i) + nr(k-1,j,i) ) |
---|
658 | d_min = nr(k,j,i) - MIN( nr(k+1,j,i), nr(k,j,i), nr(k-1,j,i) ) |
---|
659 | d_max = MAX( nr(k+1,j,i), nr(k,j,i), nr(k-1,j,i) ) - nr(k,j,i) |
---|
660 | |
---|
661 | nr_slope(k) = SIGN(1.0, d_mean) * MIN ( 2.0 * d_min, 2.0 * d_max, & |
---|
662 | ABS( d_mean ) ) |
---|
663 | ENDDO |
---|
664 | |
---|
665 | ELSE |
---|
666 | nr_slope = 0.0 |
---|
667 | qr_slope = 0.0 |
---|
668 | ENDIF |
---|
669 | ! |
---|
670 | !-- Compute sedimentation flux |
---|
671 | DO k = nzt-2, nzb_s_inner(j,i)+1, -1 |
---|
672 | ! |
---|
673 | !-- Sum up all rain drop number densities which contribute to the flux |
---|
674 | !-- through k-1/2 |
---|
675 | flux = 0.0 |
---|
676 | z_run = 0.0 ! height above z(k) |
---|
677 | k_run = k |
---|
678 | c_run = MIN( 1.0, c_nr(k) ) |
---|
679 | DO WHILE ( c_run > 0.0 .AND. k_run <= nzt-1 ) |
---|
680 | flux = flux + hyrho(k_run) * & |
---|
681 | ( nr(k_run,j,i) + nr_slope(k_run) * ( 1.0 - c_run ) * & |
---|
682 | 0.5 ) * c_run * dzu(k_run) |
---|
683 | z_run = z_run + dzu(k_run) |
---|
684 | k_run = k_run + 1 |
---|
685 | c_run = MIN( 1.0, c_nr(k_run) - z_run * ddzu(k_run) ) |
---|
686 | ENDDO |
---|
687 | ! |
---|
688 | !-- It is not allowed to sediment more rain drop number density than |
---|
689 | !-- available |
---|
690 | flux = MIN( flux, & |
---|
691 | hyrho(k) * dzu(k) * nr(k,j,i) + sed_nr(k+1) * dt_sedi ) |
---|
692 | |
---|
693 | sed_nr(k) = flux / dt_sedi |
---|
694 | tend_nr(k,j,i) = tend_nr(k,j,i) + ( sed_nr(k+1) - sed_nr(k) ) * & |
---|
695 | ddzu(k+1) / hyrho(k) |
---|
696 | ! |
---|
697 | !-- Sum up all rain water content which contributes to the flux |
---|
698 | !-- through k-1/2 |
---|
699 | flux = 0.0 |
---|
700 | z_run = 0.0 ! height above z(k) |
---|
701 | k_run = k |
---|
702 | c_run = MIN( 1.0, c_qr(k) ) |
---|
703 | DO WHILE ( c_run > 0.0 .AND. k_run <= nzt-1 ) |
---|
704 | flux = flux + hyrho(k_run) * & |
---|
705 | ( qr(k_run,j,i) + qr_slope(k_run) * ( 1.0 - c_run ) * & |
---|
706 | 0.5 ) * c_run * dzu(k_run) |
---|
707 | z_run = z_run + dzu(k_run) |
---|
708 | k_run = k_run + 1 |
---|
709 | c_run = MIN( 1.0, c_qr(k_run) - z_run * ddzu(k_run) ) |
---|
710 | ENDDO |
---|
711 | ! |
---|
712 | !-- It is not allowed to sediment more rain water content than available |
---|
713 | flux = MIN( flux, & |
---|
714 | hyrho(k) * dzu(k) * qr(k,j,i) + sed_qr(k+1) * dt_sedi ) |
---|
715 | |
---|
716 | sed_qr(k) = flux / dt_sedi |
---|
717 | tend_qr(k,j,i) = tend_qr(k,j,i) + ( sed_qr(k+1) - sed_qr(k) ) * & |
---|
718 | ddzu(k+1) / hyrho(k) |
---|
719 | ! |
---|
720 | !-- Compute the rain rate |
---|
721 | prr(k,j,i) = prr(k,j,i) + sed_qr(k) / hyrho(k) * & |
---|
722 | weight_substep(intermediate_timestep_count) |
---|
723 | ENDDO |
---|
724 | ! |
---|
725 | !-- Precipitation amount |
---|
726 | IF ( intermediate_timestep_count == intermediate_timestep_count_max & |
---|
727 | .AND. ( dt_do2d_xy - time_do2d_xy ) < & |
---|
728 | precipitation_amount_interval ) THEN |
---|
729 | |
---|
730 | precipitation_amount(j,i) = precipitation_amount(j,i) + & |
---|
731 | prr(nzb_2d(j,i)+1,j,i) * & |
---|
732 | hyrho(nzb_2d(j,i)+1) * dt_3d |
---|
733 | ENDIF |
---|
734 | |
---|
735 | END SUBROUTINE sedimentation_rain_ij |
---|
736 | |
---|
737 | ! |
---|
738 | !-- This function computes the gamma function (Press et al., 1992). |
---|
739 | !-- The gamma function is needed for the calculation of the evaporation |
---|
740 | !-- of rain drops. |
---|
741 | FUNCTION gamm( xx ) |
---|
742 | |
---|
743 | USE cloud_parameters |
---|
744 | |
---|
745 | IMPLICIT NONE |
---|
746 | |
---|
747 | REAL :: gamm, ser, tmp, x_gamm, xx, y_gamm |
---|
748 | INTEGER :: j |
---|
749 | |
---|
750 | x_gamm = xx |
---|
751 | y_gamm = x_gamm |
---|
752 | tmp = x_gamm + 5.5 |
---|
753 | tmp = ( x_gamm + 0.5 ) * LOG( tmp ) - tmp |
---|
754 | ser = 1.000000000190015 |
---|
755 | do j = 1, 6 |
---|
756 | y_gamm = y_gamm + 1.0 |
---|
757 | ser = ser + cof( j ) / y_gamm |
---|
758 | enddo |
---|
759 | ! |
---|
760 | !-- Until this point the algorithm computes the logarithm of the gamma |
---|
761 | !-- function. Hence, the exponential function is used. |
---|
762 | ! gamm = EXP( tmp + LOG( stp * ser / x_gamm ) ) |
---|
763 | gamm = EXP( tmp ) * stp * ser / x_gamm |
---|
764 | RETURN |
---|
765 | |
---|
766 | END FUNCTION gamm |
---|
767 | |
---|
768 | END MODULE microphysics_mod |
---|