1 | MODULE land_surface_model_mod |
---|
2 | |
---|
3 | !--------------------------------------------------------------------------------! |
---|
4 | ! This file is part of PALM. |
---|
5 | ! |
---|
6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
8 | ! either version 3 of the License, or (at your option) any later version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
18 | !--------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ----------------- |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: land_surface_model.f90 1556 2015-03-04 17:45:02Z suehring $ |
---|
27 | ! Bugfix: REAL constants provided with KIND-attribute in call of |
---|
28 | ! 1555 2015-03-04 17:44:27Z maronga |
---|
29 | ! Added output of r_a and r_s |
---|
30 | ! |
---|
31 | ! 1553 2015-03-03 17:33:54Z maronga |
---|
32 | ! Improved better treatment of roughness lengths. Added default soil temperature |
---|
33 | ! profile |
---|
34 | ! |
---|
35 | ! 1551 2015-03-03 14:18:16Z maronga |
---|
36 | ! Flux calculation is now done in prandtl_fluxes. Added support for data output. |
---|
37 | ! Vertical indices have been replaced. Restart runs are now possible. Some |
---|
38 | ! variables have beem renamed. Bugfix in the prognostic equation for the surface |
---|
39 | ! temperature. Introduced z0_eb and z0h_eb, which overwrite the setting of |
---|
40 | ! roughness_length and z0_factor. Added Clapp & Hornberger parametrization for |
---|
41 | ! the hydraulic conductivity. Bugfix for root fraction and extraction |
---|
42 | ! calculation |
---|
43 | ! |
---|
44 | ! intrinsic function MAX and MIN |
---|
45 | ! |
---|
46 | ! 1500 2014-12-03 17:42:41Z maronga |
---|
47 | ! Corrected calculation of aerodynamic resistance (r_a). |
---|
48 | ! Precipitation is now added to liquid water reservoir using LE_liq. |
---|
49 | ! Added support for dry runs. |
---|
50 | ! |
---|
51 | ! 1496 2014-12-02 17:25:50Z maronga |
---|
52 | ! Initial revision |
---|
53 | ! |
---|
54 | ! |
---|
55 | ! Description: |
---|
56 | ! ------------ |
---|
57 | ! Land surface model, consisting of a solver for the energy balance at the |
---|
58 | ! surface and a four layer soil scheme. The scheme is similar to the TESSEL |
---|
59 | ! scheme implemented in the ECMWF IFS model, with modifications according to |
---|
60 | ! H-TESSEL. The implementation is based on the formulation implemented in the |
---|
61 | ! DALES and UCLA-LES models. |
---|
62 | ! |
---|
63 | ! To do list: |
---|
64 | ! ----------- |
---|
65 | ! - Check dewfall parametrization for fog simulations |
---|
66 | ! - Consider partial absorption of the net shortwave radiation by the surface layer |
---|
67 | ! - Allow for water surfaces, check performance for bare soils |
---|
68 | ! - Invert indices (running from -3 to 0. Currently: nzb_soil=0, nzt_soil=3)) |
---|
69 | ! - Implement surface runoff model (required when performing long-term LES with |
---|
70 | ! considerable precipitation |
---|
71 | ! Notes: |
---|
72 | ! ------ |
---|
73 | ! - No time step criterion is required as long as the soil layers do not become |
---|
74 | ! too thin |
---|
75 | !------------------------------------------------------------------------------! |
---|
76 | USE arrays_3d, & |
---|
77 | ONLY: pt, pt_p, q, q_p, qsws, rif, shf, ts, us, z0, z0h |
---|
78 | |
---|
79 | USE cloud_parameters, & |
---|
80 | ONLY: cp, l_d_r, l_v, precipitation_rate, rho_l, r_d, r_v |
---|
81 | |
---|
82 | USE control_parameters, & |
---|
83 | ONLY: cloud_physics, dt_3d, humidity, intermediate_timestep_count, & |
---|
84 | initializing_actions, intermediate_timestep_count_max, & |
---|
85 | max_masks, precipitation, pt_surface, rho_surface, & |
---|
86 | roughness_length, surface_pressure, timestep_scheme, tsc, & |
---|
87 | z0h_factor |
---|
88 | |
---|
89 | USE indices, & |
---|
90 | ONLY: nxlg, nxrg, nyng, nysg, nzb_s_inner |
---|
91 | |
---|
92 | USE kinds |
---|
93 | |
---|
94 | USE netcdf_control, & |
---|
95 | ONLY: dots_label, dots_num, dots_unit |
---|
96 | |
---|
97 | USE radiation_model_mod, & |
---|
98 | ONLY: irad_scheme, rad_net, rad_sw_in, sigma_SB |
---|
99 | |
---|
100 | USE statistics, & |
---|
101 | ONLY: hom, statistic_regions |
---|
102 | |
---|
103 | IMPLICIT NONE |
---|
104 | |
---|
105 | ! |
---|
106 | !-- LSM model constants |
---|
107 | INTEGER(iwp), PARAMETER :: nzb_soil = 0, & !: bottom of the soil model (to be switched) |
---|
108 | nzt_soil = 3, & !: top of the soil model (to be switched) |
---|
109 | nzs = 4 !: number of soil layers (fixed for now) |
---|
110 | |
---|
111 | INTEGER(iwp) :: dots_soil = 0 !: starting index for timeseries output |
---|
112 | |
---|
113 | INTEGER(iwp), DIMENSION(0:1) :: id_dim_zs_xy, id_dim_zs_xz, id_dim_zs_yz, & |
---|
114 | id_dim_zs_3d, id_var_zs_xy, & |
---|
115 | id_var_zs_xz, id_var_zs_yz, id_var_zs_3d |
---|
116 | |
---|
117 | INTEGER(iwp), DIMENSION(1:max_masks,0:1) :: id_dim_zs_mask, id_var_zs_mask |
---|
118 | |
---|
119 | REAL(wp), PARAMETER :: & |
---|
120 | b_ch = 6.04_wp, & ! Clapp & Hornberger exponent |
---|
121 | lambda_h_dry = 0.19_wp, & ! heat conductivity for dry soil |
---|
122 | lambda_h_sm = 3.44_wp, & ! heat conductivity of the soil matrix |
---|
123 | lambda_h_water = 0.57_wp, & ! heat conductivity of water |
---|
124 | psi_sat = -0.388_wp, & ! soil matrix potential at saturation |
---|
125 | rho_c_soil = 2.19E6_wp, & ! volumetric heat capacity of soil |
---|
126 | rho_c_water = 4.20E6_wp, & ! volumetric heat capacity of water |
---|
127 | m_max_depth = 0.0002_wp ! Maximum capacity of the water reservoir (m) |
---|
128 | |
---|
129 | |
---|
130 | ! |
---|
131 | !-- LSM variables |
---|
132 | INTEGER(iwp) :: veg_type = 2, & !: vegetation type, 0: user-defined, 1-19: generic (see list) |
---|
133 | soil_type = 3 !: soil type, 0: user-defined, 1-6: generic (see list) |
---|
134 | |
---|
135 | LOGICAL :: conserve_water_content = .TRUE., & !: open or closed bottom surface for the soil model |
---|
136 | dewfall = .TRUE., & !: allow/inhibit dewfall |
---|
137 | land_surface = .FALSE. !: flag parameter indicating wheather the lsm is used |
---|
138 | |
---|
139 | ! value 9999999.9_wp -> generic available or user-defined value must be set |
---|
140 | ! otherwise -> no generic variable and user setting is optional |
---|
141 | REAL(wp) :: alpha_vangenuchten = 9999999.9_wp, & !: NAMELIST alpha_vg |
---|
142 | canopy_resistance_coefficient = 9999999.9_wp, & !: NAMELIST g_d |
---|
143 | c_surface = 20000.0_wp, & !: Surface (skin) heat capacity |
---|
144 | drho_l_lv, & !: (rho_l * l_v)**-1 |
---|
145 | exn, & !: value of the Exner function |
---|
146 | e_s = 0.0_wp, & !: saturation water vapour pressure |
---|
147 | field_capacity = 9999999.9_wp, & !: NAMELIST m_fc |
---|
148 | f_shortwave_incoming = 9999999.9_wp, & !: NAMELIST f_sw_in |
---|
149 | hydraulic_conductivity = 9999999.9_wp, & !: NAMELIST gamma_w_sat |
---|
150 | ke = 0.0_wp, & !: Kersten number |
---|
151 | lambda_surface_stable = 9999999.9_wp, & !: NAMELIST lambda_surface_s |
---|
152 | lambda_surface_unstable = 9999999.9_wp, & !: NAMELIST lambda_surface_u |
---|
153 | leaf_area_index = 9999999.9_wp, & !: NAMELIST lai |
---|
154 | l_vangenuchten = 9999999.9_wp, & !: NAMELIST l_vg |
---|
155 | min_canopy_resistance = 9999999.9_wp, & !: NAMELIST r_canopy_min |
---|
156 | min_soil_resistance = 50.0_wp, & !: NAMELIST r_soil_min |
---|
157 | m_total = 0.0_wp, & !: weighted total water content of the soil (m3/m3) |
---|
158 | n_vangenuchten = 9999999.9_wp, & !: NAMELIST n_vg |
---|
159 | q_s = 0.0_wp, & !: saturation specific humidity |
---|
160 | residual_moisture = 9999999.9_wp, & !: NAMELIST m_res |
---|
161 | rho_cp, & !: rho_surface * cp |
---|
162 | rho_lv, & !: rho * l_v |
---|
163 | rd_d_rv, & !: r_d / r_v |
---|
164 | saturation_moisture = 9999999.9_wp, & !: NAMELIST m_sat |
---|
165 | vegetation_coverage = 9999999.9_wp, & !: NAMELIST c_veg |
---|
166 | wilting_point = 9999999.9_wp, & !: NAMELIST m_wilt |
---|
167 | z0_eb = 9999999.9_wp, & !: NAMELIST z0 (lsm_par) |
---|
168 | z0h_eb = 9999999.9_wp !: NAMELIST z0h (lsm_par) |
---|
169 | |
---|
170 | REAL(wp), DIMENSION(nzb_soil:nzt_soil) :: & |
---|
171 | ddz_soil, & !: 1/dz_soil |
---|
172 | ddz_soil_stag, & !: 1/dz_soil_stag |
---|
173 | dz_soil, & !: soil grid spacing (center-center) |
---|
174 | dz_soil_stag, & !: soil grid spacing (edge-edge) |
---|
175 | root_extr = 0.0_wp, & !: root extraction |
---|
176 | root_fraction = (/9999999.9_wp, 9999999.9_wp, & |
---|
177 | 9999999.9_wp, 9999999.9_wp /), & !: distribution of root surface area to the individual soil layers |
---|
178 | zs = (/0.07_wp, 0.28_wp, 1.00_wp, 2.89_wp/), & !: soil layer depths (m) |
---|
179 | soil_moisture = 0.0_wp !: soil moisture content (m3/m3) |
---|
180 | |
---|
181 | REAL(wp), DIMENSION(nzb_soil:nzt_soil+1) :: & |
---|
182 | soil_temperature = (/290.0_wp, 287.0_wp, 285.0_wp, 283.0_wp, & |
---|
183 | 283.0_wp /) !: soil temperature (K) |
---|
184 | |
---|
185 | #if defined( __nopointer ) |
---|
186 | REAL(wp), DIMENSION(:,:), ALLOCATABLE, TARGET :: t_surface, & !: surface temperature (K) |
---|
187 | t_surface_p, & !: progn. surface temperature (K) |
---|
188 | m_liq_eb, & !: liquid water reservoir (m) |
---|
189 | m_liq_eb_av, & !: liquid water reservoir (m) |
---|
190 | m_liq_eb_p !: progn. liquid water reservoir (m) |
---|
191 | #else |
---|
192 | REAL(wp), DIMENSION(:,:), POINTER :: t_surface, & |
---|
193 | t_surface_p, & |
---|
194 | m_liq_eb, & |
---|
195 | m_liq_eb_p |
---|
196 | |
---|
197 | REAL(wp), DIMENSION(:,:), ALLOCATABLE, TARGET :: t_surface_1, t_surface_2, & |
---|
198 | m_liq_eb_av, & |
---|
199 | m_liq_eb_1, m_liq_eb_2 |
---|
200 | #endif |
---|
201 | |
---|
202 | ! |
---|
203 | !-- Temporal tendencies for time stepping |
---|
204 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: tt_surface_m, & !: surface temperature tendency (K) |
---|
205 | tm_liq_eb_m !: liquid water reservoir tendency (m) |
---|
206 | |
---|
207 | ! |
---|
208 | !-- Energy balance variables |
---|
209 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: & |
---|
210 | alpha_vg, & !: coef. of Van Genuchten |
---|
211 | c_liq, & !: liquid water coverage (of vegetated area) |
---|
212 | c_liq_av, & !: average of c_liq |
---|
213 | c_soil_av, & !: average of c_soil |
---|
214 | c_veg, & !: vegetation coverage |
---|
215 | c_veg_av, & !: average of c_veg |
---|
216 | f_sw_in, & !: fraction of absorbed shortwave radiation by the surface layer (not implemented yet) |
---|
217 | ghf_eb, & !: ground heat flux |
---|
218 | ghf_eb_av, & !: average of ghf_eb |
---|
219 | gamma_w_sat, & !: hydraulic conductivity at saturation |
---|
220 | g_d, & !: coefficient for dependence of r_canopy on water vapour pressure deficit |
---|
221 | lai, & !: leaf area index |
---|
222 | lai_av, & !: average of lai |
---|
223 | lambda_h_sat, & !: heat conductivity for dry soil |
---|
224 | lambda_surface_s, & !: coupling between surface and soil (depends on vegetation type) |
---|
225 | lambda_surface_u, & !: coupling between surface and soil (depends on vegetation type) |
---|
226 | l_vg, & !: coef. of Van Genuchten |
---|
227 | m_fc, & !: soil moisture at field capacity (m3/m3) |
---|
228 | m_res, & !: residual soil moisture |
---|
229 | m_sat, & !: saturation soil moisture (m3/m3) |
---|
230 | m_wilt, & !: soil moisture at permanent wilting point (m3/m3) |
---|
231 | n_vg, & !: coef. Van Genuchten |
---|
232 | qsws_eb, & !: surface flux of latent heat (total) |
---|
233 | qsws_eb_av, & !: average of qsws_eb |
---|
234 | qsws_liq_eb, & !: surface flux of latent heat (liquid water portion) |
---|
235 | qsws_liq_eb_av, & !: average of qsws_liq_eb |
---|
236 | qsws_soil_eb, & !: surface flux of latent heat (soil portion) |
---|
237 | qsws_soil_eb_av, & !: average of qsws_soil_eb |
---|
238 | qsws_veg_eb, & !: surface flux of latent heat (vegetation portion) |
---|
239 | qsws_veg_eb_av, & !: average of qsws_veg_eb |
---|
240 | r_a, & !: aerodynamic resistance |
---|
241 | r_a_av, & !: avergae of r_a |
---|
242 | r_canopy, & !: canopy resistance |
---|
243 | r_soil, & !: soil resitance |
---|
244 | r_soil_min, & !: minimum soil resistance |
---|
245 | r_s, & !: total surface resistance (combination of r_soil and r_canopy) |
---|
246 | r_s_av, & !: avergae of r_s |
---|
247 | r_canopy_min, & !: minimum canopy (stomatal) resistance |
---|
248 | shf_eb, & !: surface flux of sensible heat |
---|
249 | shf_eb_av !: average of shf_eb |
---|
250 | |
---|
251 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: & |
---|
252 | lambda_h, & !: heat conductivity of soil (?) |
---|
253 | lambda_w, & !: hydraulic diffusivity of soil (?) |
---|
254 | gamma_w, & !: hydraulic conductivity of soil (?) |
---|
255 | rho_c_total !: volumetric heat capacity of the actual soil matrix (?) |
---|
256 | |
---|
257 | #if defined( __nopointer ) |
---|
258 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE, TARGET :: & |
---|
259 | t_soil, & !: Soil temperature (K) |
---|
260 | t_soil_av, & !: Average of t_soil |
---|
261 | t_soil_p, & !: Prog. soil temperature (K) |
---|
262 | m_soil, & !: Soil moisture (m3/m3) |
---|
263 | m_soil_av, & !: Average of m_soil |
---|
264 | m_soil_p !: Prog. soil moisture (m3/m3) |
---|
265 | #else |
---|
266 | REAL(wp), DIMENSION(:,:,:), POINTER :: & |
---|
267 | t_soil, t_soil_p, & |
---|
268 | m_soil, m_soil_p |
---|
269 | |
---|
270 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE, TARGET :: & |
---|
271 | t_soil_av, t_soil_1, t_soil_2, & |
---|
272 | m_soil_av, m_soil_1, m_soil_2 |
---|
273 | |
---|
274 | |
---|
275 | #endif |
---|
276 | |
---|
277 | |
---|
278 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: & |
---|
279 | tt_soil_m, & !: t_soil storage array |
---|
280 | tm_soil_m, & !: m_soil storage array |
---|
281 | root_fr !: root fraction (sum=1) |
---|
282 | |
---|
283 | |
---|
284 | ! |
---|
285 | !-- Predefined Land surface classes (veg_type) |
---|
286 | CHARACTER(26), DIMENSION(0:19) :: veg_type_name = (/ & |
---|
287 | 'user defined', & ! 0 |
---|
288 | 'crops, mixed farming', & ! 1 |
---|
289 | 'short grass', & ! 2 |
---|
290 | 'evergreen needleleaf trees', & ! 3 |
---|
291 | 'deciduous needleleaf trees', & ! 4 |
---|
292 | 'evergreen broadleaf trees' , & ! 5 |
---|
293 | 'deciduous broadleaf trees', & ! 6 |
---|
294 | 'tall grass', & ! 7 |
---|
295 | 'desert', & ! 8 |
---|
296 | 'tundra', & ! 9 |
---|
297 | 'irrigated crops', & ! 10 |
---|
298 | 'semidesert', & ! 11 |
---|
299 | 'ice caps and glaciers' , & ! 12 |
---|
300 | 'bogs and marshes', & ! 13 |
---|
301 | 'inland water', & ! 14 |
---|
302 | 'ocean', & ! 15 |
---|
303 | 'evergreen shrubs', & ! 16 |
---|
304 | 'deciduous shrubs', & ! 17 |
---|
305 | 'mixed forest/woodland', & ! 18 |
---|
306 | 'interrupted forest' & ! 19 |
---|
307 | /) |
---|
308 | |
---|
309 | ! |
---|
310 | !-- Soil model classes (soil_type) |
---|
311 | CHARACTER(12), DIMENSION(0:7) :: soil_type_name = (/ & |
---|
312 | 'user defined', & ! 0 |
---|
313 | 'coarse', & ! 1 |
---|
314 | 'medium', & ! 2 |
---|
315 | 'medium-fine', & ! 3 |
---|
316 | 'fine', & ! 4 |
---|
317 | 'very fine' , & ! 5 |
---|
318 | 'organic', & ! 6 |
---|
319 | 'loamy (CH)' & ! 7 |
---|
320 | /) |
---|
321 | ! |
---|
322 | !-- Land surface parameters according to the respective classes (veg_type) |
---|
323 | |
---|
324 | ! |
---|
325 | !-- Land surface parameters I |
---|
326 | !-- r_canopy_min, lai, c_veg, g_d |
---|
327 | REAL(wp), DIMENSION(0:3,1:19) :: veg_pars = RESHAPE( (/ & |
---|
328 | 180.0_wp, 3.00_wp, 0.90_wp, 0.00_wp, & ! 1 |
---|
329 | 110.0_wp, 2.00_wp, 0.85_wp, 0.00_wp, & ! 2 |
---|
330 | 500.0_wp, 5.00_wp, 0.90_wp, 0.03_wp, & ! 3 |
---|
331 | 500.0_wp, 5.00_wp, 0.90_wp, 0.03_wp, & ! 4 |
---|
332 | 175.0_wp, 5.00_wp, 0.90_wp, 0.03_wp, & ! 5 |
---|
333 | 240.0_wp, 6.00_wp, 0.99_wp, 0.13_wp, & ! 6 |
---|
334 | 100.0_wp, 2.00_wp, 0.70_wp, 0.00_wp, & ! 7 |
---|
335 | 250.0_wp, 0.05_wp, 0.00_wp, 0.00_wp, & ! 8 |
---|
336 | 80.0_wp, 1.00_wp, 0.50_wp, 0.00_wp, & ! 9 |
---|
337 | 180.0_wp, 3.00_wp, 0.90_wp, 0.00_wp, & ! 10 |
---|
338 | 150.0_wp, 0.50_wp, 0.10_wp, 0.00_wp, & ! 11 |
---|
339 | 0.0_wp, 0.00_wp, 0.00_wp, 0.00_wp, & ! 12 |
---|
340 | 240.0_wp, 4.00_wp, 0.60_wp, 0.00_wp, & ! 13 |
---|
341 | 0.0_wp, 0.00_wp, 0.00_wp, 0.00_wp, & ! 14 |
---|
342 | 0.0_wp, 0.00_wp, 0.00_wp, 0.00_wp, & ! 15 |
---|
343 | 225.0_wp, 3.00_wp, 0.50_wp, 0.00_wp, & ! 16 |
---|
344 | 225.0_wp, 1.50_wp, 0.50_wp, 0.00_wp, & ! 17 |
---|
345 | 250.0_wp, 5.00_wp, 0.90_wp, 0.03_wp, & ! 18 |
---|
346 | 175.0_wp, 2.50_wp, 0.90_wp, 0.03_wp & ! 19 |
---|
347 | /), (/ 4, 19 /) ) |
---|
348 | |
---|
349 | ! |
---|
350 | !-- Land surface parameters II z0, z0h |
---|
351 | REAL(wp), DIMENSION(0:1,1:19) :: roughness_par = RESHAPE( (/ & |
---|
352 | 0.25_wp, 0.25E-2_wp, & ! 1 |
---|
353 | 0.20_wp, 0.20E-2_wp, & ! 2 |
---|
354 | 2.00_wp, 2.00_wp, & ! 3 |
---|
355 | 2.00_wp, 2.00_wp, & ! 4 |
---|
356 | 2.00_wp, 2.00_wp, & ! 5 |
---|
357 | 2.00_wp, 2.00_wp, & ! 6 |
---|
358 | 0.47_wp, 0.47E-2_wp, & ! 7 |
---|
359 | 0.013_wp, 0.013E-2_wp, & ! 8 |
---|
360 | 0.034_wp, 0.034E-2_wp, & ! 9 |
---|
361 | 0.5_wp, 0.50E-2_wp, & ! 10 |
---|
362 | 0.17_wp, 0.17E-2_wp, & ! 11 |
---|
363 | 1.3E-3_wp, 1.3E-4_wp, & ! 12 |
---|
364 | 0.83_wp, 0.83E-2_wp, & ! 13 |
---|
365 | 0.00_wp, 0.00E-2_wp, & ! 14 |
---|
366 | 0.00_wp, 0.00E-2_wp, & ! 15 |
---|
367 | 0.10_wp, 0.10E-2_wp, & ! 16 |
---|
368 | 0.25_wp, 0.25E-2_wp, & ! 17 |
---|
369 | 2.00_wp, 2.00E-2_wp, & ! 18 |
---|
370 | 1.10_wp, 1.10E-2_wp & ! 19 |
---|
371 | /), (/ 2, 19 /) ) |
---|
372 | |
---|
373 | ! |
---|
374 | !-- Land surface parameters III lambda_surface_s, lambda_surface_u, f_sw_in |
---|
375 | REAL(wp), DIMENSION(0:2,1:19) :: surface_pars = RESHAPE( (/ & |
---|
376 | 10.0_wp, 10.0_wp, 0.05_wp, & ! 1 |
---|
377 | 10.0_wp, 10.0_wp, 0.05_wp, & ! 2 |
---|
378 | 20.0_wp, 15.0_wp, 0.03_wp, & ! 3 |
---|
379 | 20.0_wp, 15.0_wp, 0.03_wp, & ! 4 |
---|
380 | 20.0_wp, 15.0_wp, 0.03_wp, & ! 5 |
---|
381 | 20.0_wp, 15.0_wp, 0.03_wp, & ! 6 |
---|
382 | 10.0_wp, 10.0_wp, 0.05_wp, & ! 7 |
---|
383 | 15.0_wp, 15.0_wp, 0.00_wp, & ! 8 |
---|
384 | 10.0_wp, 10.0_wp, 0.05_wp, & ! 9 |
---|
385 | 10.0_wp, 10.0_wp, 0.05_wp, & ! 10 |
---|
386 | 10.0_wp, 10.0_wp, 0.05_wp, & ! 11 |
---|
387 | 58.0_wp, 58.0_wp, 0.00_wp, & ! 12 |
---|
388 | 10.0_wp, 10.0_wp, 0.05_wp, & ! 13 |
---|
389 | 1.0E20_wp, 1.0E20_wp, 0.00_wp, & ! 14 |
---|
390 | 1.0E20_wp, 1.0E20_wp, 0.00_wp, & ! 15 |
---|
391 | 10.0_wp, 10.0_wp, 0.05_wp, & ! 16 |
---|
392 | 10.0_wp, 10.0_wp, 0.05_wp, & ! 17 |
---|
393 | 20.0_wp, 15.0_wp, 0.03_wp, & ! 18 |
---|
394 | 20.0_wp, 15.0_wp, 0.03_wp & ! 19 |
---|
395 | /), (/ 3, 19 /) ) |
---|
396 | |
---|
397 | ! |
---|
398 | !-- Root distribution (sum = 1) level 1, level 2, level 3, level 4, |
---|
399 | REAL(wp), DIMENSION(0:3,1:19) :: root_distribution = RESHAPE( (/ & |
---|
400 | 0.24_wp, 0.41_wp, 0.31_wp, 0.04_wp, & ! 1 |
---|
401 | 0.35_wp, 0.38_wp, 0.23_wp, 0.04_wp, & ! 2 |
---|
402 | 0.26_wp, 0.39_wp, 0.29_wp, 0.06_wp, & ! 3 |
---|
403 | 0.26_wp, 0.38_wp, 0.29_wp, 0.07_wp, & ! 4 |
---|
404 | 0.24_wp, 0.38_wp, 0.31_wp, 0.07_wp, & ! 5 |
---|
405 | 0.25_wp, 0.34_wp, 0.27_wp, 0.14_wp, & ! 6 |
---|
406 | 0.27_wp, 0.27_wp, 0.27_wp, 0.09_wp, & ! 7 |
---|
407 | 1.00_wp, 0.00_wp, 0.00_wp, 0.00_wp, & ! 8 |
---|
408 | 0.47_wp, 0.45_wp, 0.08_wp, 0.00_wp, & ! 9 |
---|
409 | 0.24_wp, 0.41_wp, 0.31_wp, 0.04_wp, & ! 10 |
---|
410 | 0.17_wp, 0.31_wp, 0.33_wp, 0.19_wp, & ! 11 |
---|
411 | 0.00_wp, 0.00_wp, 0.00_wp, 0.00_wp, & ! 12 |
---|
412 | 0.25_wp, 0.34_wp, 0.27_wp, 0.11_wp, & ! 13 |
---|
413 | 0.00_wp, 0.00_wp, 0.00_wp, 0.00_wp, & ! 14 |
---|
414 | 0.00_wp, 0.00_wp, 0.00_wp, 0.00_wp, & ! 15 |
---|
415 | 0.23_wp, 0.36_wp, 0.30_wp, 0.11_wp, & ! 16 |
---|
416 | 0.23_wp, 0.36_wp, 0.30_wp, 0.11_wp, & ! 17 |
---|
417 | 0.19_wp, 0.35_wp, 0.36_wp, 0.10_wp, & ! 18 |
---|
418 | 0.19_wp, 0.35_wp, 0.36_wp, 0.10_wp & ! 19 |
---|
419 | /), (/ 4, 19 /) ) |
---|
420 | |
---|
421 | ! |
---|
422 | !-- Soil parameters according to the following porosity classes (soil_type) |
---|
423 | |
---|
424 | ! |
---|
425 | !-- Soil parameters I alpha_vg, l_vg, n_vg, gamma_w_sat |
---|
426 | REAL(wp), DIMENSION(0:3,1:7) :: soil_pars = RESHAPE( (/ & |
---|
427 | 3.83_wp, 1.250_wp, 1.38_wp, 6.94E-6_wp, & ! 1 |
---|
428 | 3.14_wp, -2.342_wp, 1.28_wp, 1.16E-6_wp, & ! 2 |
---|
429 | 0.83_wp, -0.588_wp, 1.25_wp, 0.26E-6_wp, & ! 3 |
---|
430 | 3.67_wp, -1.977_wp, 1.10_wp, 2.87E-6_wp, & ! 4 |
---|
431 | 2.65_wp, 2.500_wp, 1.10_wp, 1.74E-6_wp, & ! 5 |
---|
432 | 1.30_wp, 0.400_wp, 1.20_wp, 0.93E-6_wp, & ! 6 |
---|
433 | 0.00_wp, 0.00_wp, 0.00_wp, 0.57E-6_wp & ! 7 |
---|
434 | /), (/ 4, 7 /) ) |
---|
435 | |
---|
436 | ! |
---|
437 | !-- Soil parameters II m_sat, m_fc, m_wilt, m_res |
---|
438 | REAL(wp), DIMENSION(0:3,1:7) :: m_soil_pars = RESHAPE( (/ & |
---|
439 | 0.403_wp, 0.244_wp, 0.059_wp, 0.025_wp, & ! 1 |
---|
440 | 0.439_wp, 0.347_wp, 0.151_wp, 0.010_wp, & ! 2 |
---|
441 | 0.430_wp, 0.383_wp, 0.133_wp, 0.010_wp, & ! 3 |
---|
442 | 0.520_wp, 0.448_wp, 0.279_wp, 0.010_wp, & ! 4 |
---|
443 | 0.614_wp, 0.541_wp, 0.335_wp, 0.010_wp, & ! 5 |
---|
444 | 0.766_wp, 0.663_wp, 0.267_wp, 0.010_wp, & ! 6 |
---|
445 | 0.472_wp, 0.323_wp, 0.171_wp, 0.000_wp & ! 7 |
---|
446 | /), (/ 4, 7 /) ) |
---|
447 | |
---|
448 | |
---|
449 | SAVE |
---|
450 | |
---|
451 | |
---|
452 | PRIVATE |
---|
453 | |
---|
454 | |
---|
455 | ! |
---|
456 | !-- Public parameters, constants and initial values |
---|
457 | PUBLIC alpha_vangenuchten, c_surface, canopy_resistance_coefficient, & |
---|
458 | conserve_water_content, dewfall, field_capacity, & |
---|
459 | f_shortwave_incoming, hydraulic_conductivity, init_lsm, & |
---|
460 | init_lsm_arrays, lambda_surface_stable, lambda_surface_unstable, & |
---|
461 | land_surface, leaf_area_index, lsm_energy_balance, lsm_soil_model, & |
---|
462 | lsm_swap_timelevel, l_vangenuchten, min_canopy_resistance, & |
---|
463 | min_soil_resistance, n_vangenuchten, residual_moisture, rho_cp, & |
---|
464 | rho_lv, root_fraction, saturation_moisture, soil_moisture, & |
---|
465 | soil_temperature, soil_type, soil_type_name, vegetation_coverage, & |
---|
466 | veg_type, veg_type_name, wilting_point, z0_eb, z0h_eb |
---|
467 | |
---|
468 | ! |
---|
469 | !-- Public grid and NetCDF variables |
---|
470 | PUBLIC dots_soil, id_dim_zs_xy, id_dim_zs_xz, id_dim_zs_yz, & |
---|
471 | id_dim_zs_3d, id_dim_zs_mask, id_var_zs_xy, id_var_zs_xz, & |
---|
472 | id_var_zs_yz, id_var_zs_3d, id_var_zs_mask, nzb_soil, nzs, nzt_soil,& |
---|
473 | zs |
---|
474 | |
---|
475 | |
---|
476 | ! |
---|
477 | !-- Public 2D output variables |
---|
478 | PUBLIC c_liq, c_liq_av, c_soil_av, c_veg, c_veg_av, ghf_eb, ghf_eb_av, & |
---|
479 | lai, lai_av, qsws_eb, qsws_eb_av, qsws_liq_eb, qsws_liq_eb_av, & |
---|
480 | qsws_soil_eb, qsws_soil_eb_av, qsws_veg_eb, qsws_veg_eb_av, & |
---|
481 | r_a, r_a_av, r_s, r_s_av, shf_eb, shf_eb_av |
---|
482 | |
---|
483 | |
---|
484 | ! |
---|
485 | !-- Public prognostic variables |
---|
486 | PUBLIC m_liq_eb, m_liq_eb_av, m_soil, m_soil_av, t_soil, t_soil_av |
---|
487 | |
---|
488 | |
---|
489 | INTERFACE init_lsm |
---|
490 | MODULE PROCEDURE init_lsm |
---|
491 | END INTERFACE init_lsm |
---|
492 | |
---|
493 | INTERFACE lsm_energy_balance |
---|
494 | MODULE PROCEDURE lsm_energy_balance |
---|
495 | END INTERFACE lsm_energy_balance |
---|
496 | |
---|
497 | INTERFACE lsm_soil_model |
---|
498 | MODULE PROCEDURE lsm_soil_model |
---|
499 | END INTERFACE lsm_soil_model |
---|
500 | |
---|
501 | INTERFACE lsm_swap_timelevel |
---|
502 | MODULE PROCEDURE lsm_swap_timelevel |
---|
503 | END INTERFACE lsm_swap_timelevel |
---|
504 | |
---|
505 | CONTAINS |
---|
506 | |
---|
507 | |
---|
508 | !------------------------------------------------------------------------------! |
---|
509 | ! Description: |
---|
510 | ! ------------ |
---|
511 | !-- Allocate land surface model arrays and define pointers |
---|
512 | !------------------------------------------------------------------------------! |
---|
513 | SUBROUTINE init_lsm_arrays |
---|
514 | |
---|
515 | |
---|
516 | IMPLICIT NONE |
---|
517 | |
---|
518 | ! |
---|
519 | !-- Allocate surface and soil temperature / humidity |
---|
520 | #if defined( __nopointer ) |
---|
521 | ALLOCATE ( m_liq_eb(nysg:nyng,nxlg:nxrg) ) |
---|
522 | ALLOCATE ( m_liq_eb_p(nysg:nyng,nxlg:nxrg) ) |
---|
523 | ALLOCATE ( m_soil(nzb_soil:nzt_soil,nysg:nyng,nxlg:nxrg) ) |
---|
524 | ALLOCATE ( m_soil_p(nzb_soil:nzt_soil,nysg:nyng,nxlg:nxrg) ) |
---|
525 | ALLOCATE ( t_surface(nysg:nyng,nxlg:nxrg) ) |
---|
526 | ALLOCATE ( t_surface_p(nysg:nyng,nxlg:nxrg) ) |
---|
527 | ALLOCATE ( t_soil(nzb_soil:nzt_soil+1,nysg:nyng,nxlg:nxrg) ) |
---|
528 | ALLOCATE ( t_soil_p(nzb_soil:nzt_soil+1,nysg:nyng,nxlg:nxrg) ) |
---|
529 | #else |
---|
530 | ALLOCATE ( m_liq_eb_1(nysg:nyng,nxlg:nxrg) ) |
---|
531 | ALLOCATE ( m_liq_eb_2(nysg:nyng,nxlg:nxrg) ) |
---|
532 | ALLOCATE ( m_soil_1(nzb_soil:nzt_soil,nysg:nyng,nxlg:nxrg) ) |
---|
533 | ALLOCATE ( m_soil_2(nzb_soil:nzt_soil,nysg:nyng,nxlg:nxrg) ) |
---|
534 | ALLOCATE ( t_surface_1(nysg:nyng,nxlg:nxrg) ) |
---|
535 | ALLOCATE ( t_surface_2(nysg:nyng,nxlg:nxrg) ) |
---|
536 | ALLOCATE ( t_soil_1(nzb_soil:nzt_soil+1,nysg:nyng,nxlg:nxrg) ) |
---|
537 | ALLOCATE ( t_soil_2(nzb_soil:nzt_soil+1,nysg:nyng,nxlg:nxrg) ) |
---|
538 | #endif |
---|
539 | |
---|
540 | ! |
---|
541 | !-- Allocate intermediate timestep arrays |
---|
542 | ALLOCATE ( tm_liq_eb_m(nysg:nyng,nxlg:nxrg) ) |
---|
543 | ALLOCATE ( tm_soil_m(nzb_soil:nzt_soil,nysg:nyng,nxlg:nxrg) ) |
---|
544 | ALLOCATE ( tt_surface_m(nysg:nyng,nxlg:nxrg) ) |
---|
545 | ALLOCATE ( tt_soil_m(nzb_soil:nzt_soil,nysg:nyng,nxlg:nxrg) ) |
---|
546 | |
---|
547 | ! |
---|
548 | !-- Allocate 2D vegetation model arrays |
---|
549 | ALLOCATE ( alpha_vg(nysg:nyng,nxlg:nxrg) ) |
---|
550 | ALLOCATE ( c_liq(nysg:nyng,nxlg:nxrg) ) |
---|
551 | ALLOCATE ( c_veg(nysg:nyng,nxlg:nxrg) ) |
---|
552 | ALLOCATE ( f_sw_in(nysg:nyng,nxlg:nxrg) ) |
---|
553 | ALLOCATE ( ghf_eb(nysg:nyng,nxlg:nxrg) ) |
---|
554 | ALLOCATE ( gamma_w_sat(nysg:nyng,nxlg:nxrg) ) |
---|
555 | ALLOCATE ( g_d(nysg:nyng,nxlg:nxrg) ) |
---|
556 | ALLOCATE ( lai(nysg:nyng,nxlg:nxrg) ) |
---|
557 | ALLOCATE ( l_vg(nysg:nyng,nxlg:nxrg) ) |
---|
558 | ALLOCATE ( lambda_h_sat(nysg:nyng,nxlg:nxrg) ) |
---|
559 | ALLOCATE ( lambda_surface_u(nysg:nyng,nxlg:nxrg) ) |
---|
560 | ALLOCATE ( lambda_surface_s(nysg:nyng,nxlg:nxrg) ) |
---|
561 | ALLOCATE ( m_fc(nysg:nyng,nxlg:nxrg) ) |
---|
562 | ALLOCATE ( m_res(nysg:nyng,nxlg:nxrg) ) |
---|
563 | ALLOCATE ( m_sat(nysg:nyng,nxlg:nxrg) ) |
---|
564 | ALLOCATE ( m_wilt(nysg:nyng,nxlg:nxrg) ) |
---|
565 | ALLOCATE ( n_vg(nysg:nyng,nxlg:nxrg) ) |
---|
566 | ALLOCATE ( qsws_eb(nysg:nyng,nxlg:nxrg) ) |
---|
567 | ALLOCATE ( qsws_soil_eb(nysg:nyng,nxlg:nxrg) ) |
---|
568 | ALLOCATE ( qsws_liq_eb(nysg:nyng,nxlg:nxrg) ) |
---|
569 | ALLOCATE ( qsws_veg_eb(nysg:nyng,nxlg:nxrg) ) |
---|
570 | ALLOCATE ( r_a(nysg:nyng,nxlg:nxrg) ) |
---|
571 | ALLOCATE ( r_canopy(nysg:nyng,nxlg:nxrg) ) |
---|
572 | ALLOCATE ( r_soil(nysg:nyng,nxlg:nxrg) ) |
---|
573 | ALLOCATE ( r_soil_min(nysg:nyng,nxlg:nxrg) ) |
---|
574 | ALLOCATE ( r_s(nysg:nyng,nxlg:nxrg) ) |
---|
575 | ALLOCATE ( r_canopy_min(nysg:nyng,nxlg:nxrg) ) |
---|
576 | ALLOCATE ( shf_eb(nysg:nyng,nxlg:nxrg) ) |
---|
577 | |
---|
578 | #if ! defined( __nopointer ) |
---|
579 | ! |
---|
580 | !-- Initial assignment of the pointers |
---|
581 | t_soil => t_soil_1; t_soil_p => t_soil_2 |
---|
582 | t_surface => t_surface_1; t_surface_p => t_surface_2 |
---|
583 | m_soil => m_soil_1; m_soil_p => m_soil_2 |
---|
584 | m_liq_eb => m_liq_eb_1; m_liq_eb_p => m_liq_eb_2 |
---|
585 | #endif |
---|
586 | |
---|
587 | |
---|
588 | END SUBROUTINE init_lsm_arrays |
---|
589 | |
---|
590 | !------------------------------------------------------------------------------! |
---|
591 | ! Description: |
---|
592 | ! ------------ |
---|
593 | !-- Initialization of the land surface model |
---|
594 | !------------------------------------------------------------------------------! |
---|
595 | SUBROUTINE init_lsm |
---|
596 | |
---|
597 | |
---|
598 | IMPLICIT NONE |
---|
599 | |
---|
600 | INTEGER(iwp) :: i !: running index |
---|
601 | INTEGER(iwp) :: j !: running index |
---|
602 | INTEGER(iwp) :: k !: running index |
---|
603 | |
---|
604 | |
---|
605 | ! |
---|
606 | !-- Calculate Exner function |
---|
607 | exn = ( surface_pressure / 1000.0_wp )**0.286_wp |
---|
608 | |
---|
609 | |
---|
610 | ! |
---|
611 | !-- If no cloud physics is used, rho_surface has not been calculated before |
---|
612 | IF ( .NOT. cloud_physics ) THEN |
---|
613 | rho_surface = surface_pressure * 100.0_wp / ( r_d * pt_surface * exn ) |
---|
614 | ENDIF |
---|
615 | |
---|
616 | ! |
---|
617 | !-- Calculate frequently used parameters |
---|
618 | rho_cp = cp * rho_surface |
---|
619 | rd_d_rv = r_d / r_v |
---|
620 | rho_lv = rho_surface * l_v |
---|
621 | drho_l_lv = 1.0_wp / (rho_l * l_v) |
---|
622 | |
---|
623 | ! |
---|
624 | !-- Set inital values for prognostic quantities |
---|
625 | tt_surface_m = 0.0_wp |
---|
626 | tt_soil_m = 0.0_wp |
---|
627 | tm_liq_eb_m = 0.0_wp |
---|
628 | c_liq = 0.0_wp |
---|
629 | |
---|
630 | ghf_eb = 0.0_wp |
---|
631 | shf_eb = rho_cp * shf |
---|
632 | |
---|
633 | IF ( humidity ) THEN |
---|
634 | qsws_eb = rho_l * l_v * qsws |
---|
635 | ELSE |
---|
636 | qsws_eb = 0.0_wp |
---|
637 | ENDIF |
---|
638 | |
---|
639 | qsws_liq_eb = 0.0_wp |
---|
640 | qsws_soil_eb = qsws_eb |
---|
641 | qsws_veg_eb = 0.0_wp |
---|
642 | |
---|
643 | r_a = 50.0_wp |
---|
644 | r_s = 50.0_wp |
---|
645 | r_canopy = 0.0_wp |
---|
646 | r_soil = 0.0_wp |
---|
647 | |
---|
648 | ! |
---|
649 | !-- Allocate 3D soil model arrays |
---|
650 | ALLOCATE ( root_fr(nzb_soil:nzt_soil,nysg:nyng,nxlg:nxrg) ) |
---|
651 | ALLOCATE ( lambda_h(nzb_soil:nzt_soil,nysg:nyng,nxlg:nxrg) ) |
---|
652 | ALLOCATE ( rho_c_total(nzb_soil:nzt_soil,nysg:nyng,nxlg:nxrg) ) |
---|
653 | |
---|
654 | lambda_h = 0.0_wp |
---|
655 | ! |
---|
656 | !-- If required, allocate humidity-related variables for the soil model |
---|
657 | IF ( humidity ) THEN |
---|
658 | ALLOCATE ( lambda_w(nzb_soil:nzt_soil,nysg:nyng,nxlg:nxrg) ) |
---|
659 | ALLOCATE ( gamma_w(nzb_soil:nzt_soil,nysg:nyng,nxlg:nxrg) ) |
---|
660 | |
---|
661 | lambda_w = 0.0_wp |
---|
662 | ENDIF |
---|
663 | |
---|
664 | ! |
---|
665 | !-- Calculate grid spacings. Temperature and moisture are defined at |
---|
666 | !-- the center of the soil layers, whereas gradients/fluxes are defined |
---|
667 | !-- at the edges (_stag) |
---|
668 | dz_soil_stag(nzb_soil) = zs(nzb_soil) |
---|
669 | |
---|
670 | DO k = nzb_soil+1, nzt_soil |
---|
671 | dz_soil_stag(k) = zs(k) - zs(k-1) |
---|
672 | ENDDO |
---|
673 | |
---|
674 | DO k = nzb_soil, nzt_soil-1 |
---|
675 | dz_soil(k) = 0.5 * (dz_soil_stag(k+1) + dz_soil_stag(k)) |
---|
676 | ENDDO |
---|
677 | dz_soil(nzt_soil) = dz_soil_stag(nzt_soil) |
---|
678 | |
---|
679 | ddz_soil = 1.0_wp / dz_soil |
---|
680 | ddz_soil_stag = 1.0_wp / dz_soil_stag |
---|
681 | |
---|
682 | ! |
---|
683 | !-- Initialize standard soil types. It is possible to overwrite each |
---|
684 | !-- parameter by setting the respecticy NAMELIST variable to a |
---|
685 | !-- value /= 9999999.9. |
---|
686 | IF ( soil_type /= 0 ) THEN |
---|
687 | |
---|
688 | IF ( alpha_vangenuchten == 9999999.9_wp ) THEN |
---|
689 | alpha_vangenuchten = soil_pars(0,soil_type) |
---|
690 | ENDIF |
---|
691 | |
---|
692 | IF ( l_vangenuchten == 9999999.9_wp ) THEN |
---|
693 | l_vangenuchten = soil_pars(1,soil_type) |
---|
694 | ENDIF |
---|
695 | |
---|
696 | IF ( n_vangenuchten == 9999999.9_wp ) THEN |
---|
697 | n_vangenuchten = soil_pars(2,soil_type) |
---|
698 | ENDIF |
---|
699 | |
---|
700 | IF ( hydraulic_conductivity == 9999999.9_wp ) THEN |
---|
701 | hydraulic_conductivity = soil_pars(3,soil_type) |
---|
702 | ENDIF |
---|
703 | |
---|
704 | IF ( saturation_moisture == 9999999.9_wp ) THEN |
---|
705 | saturation_moisture = m_soil_pars(0,soil_type) |
---|
706 | ENDIF |
---|
707 | |
---|
708 | IF ( field_capacity == 9999999.9_wp ) THEN |
---|
709 | field_capacity = m_soil_pars(1,soil_type) |
---|
710 | ENDIF |
---|
711 | |
---|
712 | IF ( wilting_point == 9999999.9_wp ) THEN |
---|
713 | wilting_point = m_soil_pars(2,soil_type) |
---|
714 | ENDIF |
---|
715 | |
---|
716 | IF ( residual_moisture == 9999999.9_wp ) THEN |
---|
717 | residual_moisture = m_soil_pars(3,soil_type) |
---|
718 | ENDIF |
---|
719 | |
---|
720 | ENDIF |
---|
721 | |
---|
722 | alpha_vg = alpha_vangenuchten |
---|
723 | l_vg = l_vangenuchten |
---|
724 | n_vg = n_vangenuchten |
---|
725 | gamma_w_sat = hydraulic_conductivity |
---|
726 | m_sat = saturation_moisture |
---|
727 | m_fc = field_capacity |
---|
728 | m_wilt = wilting_point |
---|
729 | m_res = residual_moisture |
---|
730 | r_soil_min = min_soil_resistance |
---|
731 | |
---|
732 | ! |
---|
733 | !-- Initial run actions |
---|
734 | IF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN |
---|
735 | |
---|
736 | t_soil = 0.0_wp |
---|
737 | m_liq_eb = 0.0_wp |
---|
738 | m_soil = 0.0_wp |
---|
739 | |
---|
740 | ! |
---|
741 | !-- Map user settings of T and q for each soil layer |
---|
742 | !-- (make sure that the soil moisture does not drop below the permanent |
---|
743 | !-- wilting point) -> problems with devision by zero) |
---|
744 | DO k = nzb_soil, nzt_soil |
---|
745 | t_soil(k,:,:) = soil_temperature(k) |
---|
746 | m_soil(k,:,:) = MAX(soil_moisture(k),m_wilt(:,:)) |
---|
747 | soil_moisture(k) = MAX(soil_moisture(k),wilting_point) |
---|
748 | ENDDO |
---|
749 | t_soil(nzt_soil+1,:,:) = soil_temperature(nzt_soil+1) |
---|
750 | |
---|
751 | ! |
---|
752 | !-- Calculate surface temperature |
---|
753 | t_surface = pt_surface * exn |
---|
754 | |
---|
755 | ! |
---|
756 | !-- Set artifical values for ts and us so that r_a has its initial value for |
---|
757 | !-- the first time step |
---|
758 | DO i = nxlg, nxrg |
---|
759 | DO j = nysg, nyng |
---|
760 | k = nzb_s_inner(j,i) |
---|
761 | |
---|
762 | ! |
---|
763 | !-- Assure that r_a cannot be zero at model start |
---|
764 | IF ( pt(k+1,j,i) == pt(k,j,i) ) pt(k+1,j,i) = pt(k+1,j,i) & |
---|
765 | + 1.0E-10_wp |
---|
766 | |
---|
767 | us(j,i) = 0.1_wp |
---|
768 | ts(j,i) = (pt(k+1,j,i) - pt(k,j,i)) / r_a(j,i) |
---|
769 | shf(j,i) = - us(j,i) * ts(j,i) |
---|
770 | ENDDO |
---|
771 | ENDDO |
---|
772 | |
---|
773 | ! |
---|
774 | !-- Actions for restart runs |
---|
775 | ELSE |
---|
776 | |
---|
777 | DO i = nxlg, nxrg |
---|
778 | DO j = nysg, nyng |
---|
779 | k = nzb_s_inner(j,i) |
---|
780 | t_surface(j,i) = pt(k,j,i) * exn |
---|
781 | ENDDO |
---|
782 | ENDDO |
---|
783 | |
---|
784 | ENDIF |
---|
785 | |
---|
786 | ! |
---|
787 | !-- Calculate saturation soil heat conductivity |
---|
788 | lambda_h_sat(:,:) = lambda_h_sm ** (1.0_wp - m_sat(:,:)) * & |
---|
789 | lambda_h_water ** m_sat(:,:) |
---|
790 | |
---|
791 | |
---|
792 | |
---|
793 | |
---|
794 | DO k = nzb_soil, nzt_soil |
---|
795 | root_fr(k,:,:) = root_fraction(k) |
---|
796 | ENDDO |
---|
797 | |
---|
798 | IF ( veg_type /= 0 ) THEN |
---|
799 | IF ( min_canopy_resistance == 9999999.9_wp ) THEN |
---|
800 | min_canopy_resistance = veg_pars(0,veg_type) |
---|
801 | ENDIF |
---|
802 | IF ( leaf_area_index == 9999999.9_wp ) THEN |
---|
803 | leaf_area_index = veg_pars(1,veg_type) |
---|
804 | ENDIF |
---|
805 | IF ( vegetation_coverage == 9999999.9_wp ) THEN |
---|
806 | vegetation_coverage = veg_pars(2,veg_type) |
---|
807 | ENDIF |
---|
808 | IF ( canopy_resistance_coefficient == 9999999.9_wp ) THEN |
---|
809 | canopy_resistance_coefficient= veg_pars(3,veg_type) |
---|
810 | ENDIF |
---|
811 | IF ( lambda_surface_stable == 9999999.9_wp ) THEN |
---|
812 | lambda_surface_stable = surface_pars(0,veg_type) |
---|
813 | ENDIF |
---|
814 | IF ( lambda_surface_unstable == 9999999.9_wp ) THEN |
---|
815 | lambda_surface_unstable = surface_pars(1,veg_type) |
---|
816 | ENDIF |
---|
817 | IF ( f_shortwave_incoming == 9999999.9_wp ) THEN |
---|
818 | f_shortwave_incoming = surface_pars(2,veg_type) |
---|
819 | ENDIF |
---|
820 | IF ( z0_eb == 9999999.9_wp ) THEN |
---|
821 | roughness_length = roughness_par(0,veg_type) |
---|
822 | z0_eb = roughness_par(0,veg_type) |
---|
823 | ENDIF |
---|
824 | IF ( z0h_eb == 9999999.9_wp ) THEN |
---|
825 | z0h_eb = roughness_par(1,veg_type) |
---|
826 | ENDIF |
---|
827 | z0h_factor = z0h_eb / z0_eb |
---|
828 | |
---|
829 | IF ( ANY( root_fraction == 9999999.9_wp ) ) THEN |
---|
830 | DO k = nzb_soil, nzt_soil |
---|
831 | root_fr(k,:,:) = root_distribution(k,veg_type) |
---|
832 | root_fraction(k) = root_distribution(k,veg_type) |
---|
833 | ENDDO |
---|
834 | ENDIF |
---|
835 | |
---|
836 | ELSE |
---|
837 | |
---|
838 | IF ( z0_eb == 9999999.9_wp ) THEN |
---|
839 | z0_eb = roughness_length |
---|
840 | ENDIF |
---|
841 | IF ( z0h_eb == 9999999.9_wp ) THEN |
---|
842 | z0h_eb = z0_eb * z0h_factor |
---|
843 | ENDIF |
---|
844 | |
---|
845 | ENDIF |
---|
846 | |
---|
847 | ! |
---|
848 | !-- Initialize vegetation |
---|
849 | r_canopy_min = min_canopy_resistance |
---|
850 | lai = leaf_area_index |
---|
851 | c_veg = vegetation_coverage |
---|
852 | g_d = canopy_resistance_coefficient |
---|
853 | lambda_surface_s = lambda_surface_stable |
---|
854 | lambda_surface_u = lambda_surface_unstable |
---|
855 | f_sw_in = f_shortwave_incoming |
---|
856 | z0 = z0_eb |
---|
857 | z0h = z0h_eb |
---|
858 | |
---|
859 | ! |
---|
860 | !-- Possibly do user-defined actions (e.g. define heterogeneous land surface) |
---|
861 | CALL user_init_land_surface |
---|
862 | |
---|
863 | |
---|
864 | t_soil_p = t_soil |
---|
865 | m_soil_p = m_soil |
---|
866 | m_liq_eb_p = m_liq_eb |
---|
867 | |
---|
868 | !-- Store initial profiles of t_soil and m_soil (assuming they are |
---|
869 | !-- horizontally homogeneous on this PE) |
---|
870 | hom(nzb_soil:nzt_soil,1,90,:) = SPREAD( t_soil(nzb_soil:nzt_soil, & |
---|
871 | nysg,nxlg), 2, & |
---|
872 | statistic_regions+1 ) |
---|
873 | hom(nzb_soil:nzt_soil,1,92,:) = SPREAD( m_soil(nzb_soil:nzt_soil, & |
---|
874 | nysg,nxlg), 2, & |
---|
875 | statistic_regions+1 ) |
---|
876 | |
---|
877 | ! |
---|
878 | !-- Calculate humidity at the surface |
---|
879 | IF ( humidity ) THEN |
---|
880 | CALL calc_q_surface |
---|
881 | ENDIF |
---|
882 | |
---|
883 | |
---|
884 | |
---|
885 | ! |
---|
886 | !-- Add timeseries for land surface model |
---|
887 | dots_label(dots_num+1) = "ghf_eb" |
---|
888 | dots_label(dots_num+2) = "shf_eb" |
---|
889 | dots_label(dots_num+3) = "qsws_eb" |
---|
890 | dots_label(dots_num+4) = "qsws_liq_eb" |
---|
891 | dots_label(dots_num+5) = "qsws_soil_eb" |
---|
892 | dots_label(dots_num+6) = "qsws_veg_eb" |
---|
893 | dots_unit(dots_num+1:dots_num+6) = "W/m2" |
---|
894 | |
---|
895 | dots_label(dots_num+7) = "r_a" |
---|
896 | dots_label(dots_num+8) = "r_s" |
---|
897 | dots_unit(dots_num+7:dots_num+8) = "s/m" |
---|
898 | |
---|
899 | dots_soil = dots_num + 1 |
---|
900 | dots_num = dots_num + 8 |
---|
901 | |
---|
902 | |
---|
903 | RETURN |
---|
904 | |
---|
905 | END SUBROUTINE init_lsm |
---|
906 | |
---|
907 | |
---|
908 | |
---|
909 | !------------------------------------------------------------------------------! |
---|
910 | ! Description: |
---|
911 | ! ------------ |
---|
912 | ! Solver for the energy balance at the surface. |
---|
913 | ! |
---|
914 | ! Note: surface fluxes are calculated in the land surface model, but these are |
---|
915 | ! not used in the atmospheric code. The fluxes are calculated afterwards in |
---|
916 | ! prandtl_fluxes using the surface values of temperature and humidity as |
---|
917 | ! provided by the land surface model. In this way, the fluxes in the land |
---|
918 | ! surface model are not equal to the ones calculated in prandtl_fluxes |
---|
919 | !------------------------------------------------------------------------------! |
---|
920 | SUBROUTINE lsm_energy_balance |
---|
921 | |
---|
922 | |
---|
923 | IMPLICIT NONE |
---|
924 | |
---|
925 | INTEGER(iwp) :: i !: running index |
---|
926 | INTEGER(iwp) :: j !: running index |
---|
927 | INTEGER(iwp) :: k, ks !: running index |
---|
928 | |
---|
929 | REAL(wp) :: f1, & !: resistance correction term 1 |
---|
930 | f2, & !: resistance correction term 2 |
---|
931 | f3, & !: resistance correction term 3 |
---|
932 | m_min, & !: minimum soil moisture |
---|
933 | T_1, & !: actual temperature at first grid point |
---|
934 | e, & !: water vapour pressure |
---|
935 | e_s, & !: water vapour saturation pressure |
---|
936 | e_s_dT, & !: derivate of e_s with respect to T |
---|
937 | tend, & !: tendency |
---|
938 | dq_s_dT, & !: derivate of q_s with respect to T |
---|
939 | coef_1, & !: coef. for prognostic equation |
---|
940 | coef_2, & !: coef. for prognostic equation |
---|
941 | f_qsws, & !: factor for qsws_eb |
---|
942 | f_qsws_veg, & !: factor for qsws_veg_eb |
---|
943 | f_qsws_soil, & !: factor for qsws_soil_eb |
---|
944 | f_qsws_liq, & !: factor for qsws_liq_eb |
---|
945 | f_shf, & !: factor for shf_eb |
---|
946 | lambda_surface, & !: Current value of lambda_surface |
---|
947 | m_liq_eb_max !: maxmimum value of the liq. water reservoir |
---|
948 | |
---|
949 | |
---|
950 | ! |
---|
951 | !-- Calculate the exner function for the current time step |
---|
952 | exn = ( surface_pressure / 1000.0_wp )**0.286_wp |
---|
953 | |
---|
954 | |
---|
955 | DO i = nxlg, nxrg |
---|
956 | DO j = nysg, nyng |
---|
957 | k = nzb_s_inner(j,i) |
---|
958 | |
---|
959 | ! |
---|
960 | !-- Set lambda_surface according to stratification |
---|
961 | IF ( rif(j,i) >= 0.0_wp ) THEN |
---|
962 | lambda_surface = lambda_surface_s(j,i) |
---|
963 | ELSE |
---|
964 | lambda_surface = lambda_surface_u(j,i) |
---|
965 | ENDIF |
---|
966 | |
---|
967 | ! |
---|
968 | !-- First step: calculate aerodyamic resistance. As pt, us, ts |
---|
969 | !-- are not available for the prognostic time step, data from the last |
---|
970 | !-- time step is used here. Note that this formulation is the |
---|
971 | !-- equivalent to the ECMWF formulation using drag coefficients |
---|
972 | r_a(j,i) = (pt(k+1,j,i) - pt(k,j,i)) / (ts(j,i) * us(j,i) + & |
---|
973 | 1.0E-20_wp) |
---|
974 | |
---|
975 | ! |
---|
976 | !-- Second step: calculate canopy resistance r_canopy |
---|
977 | !-- f1-f3 here are defined as 1/f1-f3 as in ECMWF documentation |
---|
978 | |
---|
979 | !-- f1: correction for incoming shortwave radiation (stomata close at |
---|
980 | !-- night) |
---|
981 | IF ( irad_scheme /= 0 ) THEN |
---|
982 | f1 = MIN(1.0_wp, ( 0.004_wp * rad_sw_in(j,i) + 0.05_wp ) / & |
---|
983 | (0.81_wp * (0.004_wp * rad_sw_in(j,i) + 1.0_wp) )) |
---|
984 | ELSE |
---|
985 | f1 = 1.0_wp |
---|
986 | ENDIF |
---|
987 | |
---|
988 | ! |
---|
989 | !-- f2: correction for soil moisture availability to plants (the |
---|
990 | !-- integrated soil moisture must thus be considered here) |
---|
991 | !-- f2 = 0 for very dry soils |
---|
992 | m_total = 0.0_wp |
---|
993 | DO ks = nzb_soil, nzt_soil |
---|
994 | m_total = m_total + root_fr(ks,j,i) & |
---|
995 | * MAX(m_soil(ks,j,i),m_wilt(j,i)) |
---|
996 | ENDDO |
---|
997 | |
---|
998 | IF ( m_total .GT. m_wilt(j,i) .AND. m_total .LT. m_fc(j,i) ) THEN |
---|
999 | f2 = ( m_total - m_wilt(j,i) ) / (m_fc(j,i) - m_wilt(j,i) ) |
---|
1000 | ELSEIF ( m_total .GE. m_fc(j,i) ) THEN |
---|
1001 | f2 = 1.0_wp |
---|
1002 | ELSE |
---|
1003 | f2 = 1.0E-20_wp |
---|
1004 | ENDIF |
---|
1005 | |
---|
1006 | ! |
---|
1007 | !-- Calculate water vapour pressure at saturation |
---|
1008 | e_s = 0.01_wp * 610.78_wp * EXP( 17.269_wp * ( t_surface(j,i) & |
---|
1009 | - 273.16_wp ) / ( t_surface(j,i) - 35.86_wp ) ) |
---|
1010 | |
---|
1011 | ! |
---|
1012 | !-- f3: correction for vapour pressure deficit |
---|
1013 | IF ( g_d(j,i) /= 0.0_wp ) THEN |
---|
1014 | ! |
---|
1015 | !-- Calculate vapour pressure |
---|
1016 | e = q_p(k+1,j,i) * surface_pressure / 0.622_wp |
---|
1017 | f3 = EXP ( -g_d(j,i) * (e_s - e) ) |
---|
1018 | ELSE |
---|
1019 | f3 = 1.0_wp |
---|
1020 | ENDIF |
---|
1021 | |
---|
1022 | ! |
---|
1023 | !-- Calculate canopy resistance. In case that c_veg is 0 (bare soils), |
---|
1024 | !-- this calculation is obsolete, as r_canopy is not used below. |
---|
1025 | !-- To do: check for very dry soil -> r_canopy goes to infinity |
---|
1026 | r_canopy(j,i) = r_canopy_min(j,i) / (lai(j,i) * f1 * f2 * f3 & |
---|
1027 | + 1.0E-20_wp) |
---|
1028 | |
---|
1029 | ! |
---|
1030 | !-- Third step: calculate bare soil resistance r_soil. The Clapp & |
---|
1031 | !-- Hornberger parametrization does not consider c_veg. |
---|
1032 | IF ( soil_type /= 7 ) THEN |
---|
1033 | m_min = c_veg(j,i) * m_wilt(j,i) + (1.0_wp - c_veg(j,i)) * & |
---|
1034 | m_res(j,i) |
---|
1035 | ELSE |
---|
1036 | m_min = m_wilt(j,i) |
---|
1037 | ENDIF |
---|
1038 | |
---|
1039 | f2 = ( m_soil(nzb_soil,j,i) - m_min ) / ( m_fc(j,i) - m_min ) |
---|
1040 | f2 = MAX(f2,1.0E-20_wp) |
---|
1041 | f2 = MIN(f2,1.0_wp) |
---|
1042 | |
---|
1043 | r_soil(j,i) = r_soil_min(j,i) / f2 |
---|
1044 | |
---|
1045 | ! |
---|
1046 | !-- Calculate fraction of liquid water reservoir |
---|
1047 | m_liq_eb_max = m_max_depth * lai(j,i) |
---|
1048 | c_liq(j,i) = MIN(1.0_wp, m_liq_eb(j,i) / (m_liq_eb_max+1.0E-20_wp)) |
---|
1049 | |
---|
1050 | |
---|
1051 | ! |
---|
1052 | !-- Calculate saturation specific humidity |
---|
1053 | q_s = 0.622_wp * e_s / surface_pressure |
---|
1054 | |
---|
1055 | ! |
---|
1056 | !-- In case of dewfall, set evapotranspiration to zero |
---|
1057 | !-- All super-saturated water is then removed from the air |
---|
1058 | IF ( humidity .AND. dewfall .AND. q_s .LE. q_p(k+1,j,i) ) THEN |
---|
1059 | r_canopy(j,i) = 0.0_wp |
---|
1060 | r_soil(j,i) = 0.0_wp |
---|
1061 | ENDIF |
---|
1062 | |
---|
1063 | ! |
---|
1064 | !-- Calculate coefficients for the total evapotranspiration |
---|
1065 | f_qsws_veg = rho_lv * c_veg(j,i) * (1.0_wp - c_liq(j,i))/ & |
---|
1066 | (r_a(j,i) + r_canopy(j,i)) |
---|
1067 | |
---|
1068 | f_qsws_soil = rho_lv * (1.0_wp - c_veg(j,i)) / (r_a(j,i) + & |
---|
1069 | r_soil(j,i)) |
---|
1070 | f_qsws_liq = rho_lv * c_veg(j,i) * c_liq(j,i) / r_a(j,i) |
---|
1071 | |
---|
1072 | |
---|
1073 | ! |
---|
1074 | !-- If soil moisture is below wilting point, plants do no longer |
---|
1075 | !-- transpirate. |
---|
1076 | ! IF ( m_soil(k,j,i) .LT. m_wilt(j,i) ) THEN |
---|
1077 | ! f_qsws_veg = 0.0_wp |
---|
1078 | ! ENDIF |
---|
1079 | |
---|
1080 | ! |
---|
1081 | !-- If dewfall is deactivated, vegetation, soil and liquid water |
---|
1082 | !-- reservoir are not allowed to take up water from the super-saturated |
---|
1083 | !-- air. |
---|
1084 | IF ( humidity ) THEN |
---|
1085 | IF ( q_s .LE. q_p(k+1,j,i) ) THEN |
---|
1086 | IF ( .NOT. dewfall ) THEN |
---|
1087 | f_qsws_veg = 0.0_wp |
---|
1088 | f_qsws_soil = 0.0_wp |
---|
1089 | f_qsws_liq = 0.0_wp |
---|
1090 | ENDIF |
---|
1091 | ENDIF |
---|
1092 | ENDIF |
---|
1093 | |
---|
1094 | f_shf = rho_cp / r_a(j,i) |
---|
1095 | f_qsws = f_qsws_veg + f_qsws_soil + f_qsws_liq |
---|
1096 | |
---|
1097 | ! |
---|
1098 | !-- Calculate derivative of q_s for Taylor series expansion |
---|
1099 | e_s_dT = e_s * ( 17.269_wp / (t_surface(j,i) - 35.86_wp) - & |
---|
1100 | 17.269_wp*(t_surface(j,i) - 273.16_wp) & |
---|
1101 | / (t_surface(j,i) - 35.86_wp)**2 ) |
---|
1102 | |
---|
1103 | dq_s_dT = 0.622_wp * e_s_dT / surface_pressure |
---|
1104 | |
---|
1105 | T_1 = pt_p(k+1,j,i) * exn |
---|
1106 | |
---|
1107 | ! |
---|
1108 | !-- Add LW up so that it can be removed in prognostic equation |
---|
1109 | rad_net(j,i) = rad_net(j,i) + sigma_SB * t_surface(j,i) ** 4 |
---|
1110 | |
---|
1111 | IF ( humidity ) THEN |
---|
1112 | |
---|
1113 | ! |
---|
1114 | !-- Numerator of the prognostic equation |
---|
1115 | coef_1 = rad_net(j,i) + 3.0_wp * sigma_SB * t_surface(j,i) ** 4& |
---|
1116 | + f_shf / exn * T_1 + f_qsws * ( q_p(k+1,j,i) - q_s & |
---|
1117 | + dq_s_dT * t_surface(j,i) ) + lambda_surface & |
---|
1118 | * t_soil(nzb_soil,j,i) |
---|
1119 | |
---|
1120 | ! |
---|
1121 | !-- Denominator of the prognostic equation |
---|
1122 | coef_2 = 4.0_wp * sigma_SB * t_surface(j,i) ** 3 + f_qsws & |
---|
1123 | * dq_s_dT + lambda_surface + f_shf / exn |
---|
1124 | |
---|
1125 | ELSE |
---|
1126 | |
---|
1127 | ! |
---|
1128 | !-- Numerator of the prognostic equation |
---|
1129 | coef_1 = rad_net(j,i) + 3.0_wp * sigma_SB * t_surface(j,i) ** 4& |
---|
1130 | + f_shf / exn * T_1 + lambda_surface & |
---|
1131 | * t_soil(nzb_soil,j,i) |
---|
1132 | |
---|
1133 | ! |
---|
1134 | !-- Denominator of the prognostic equation |
---|
1135 | coef_2 = 4.0_wp * sigma_SB * t_surface(j,i) ** 3 & |
---|
1136 | + lambda_surface + f_shf / exn |
---|
1137 | |
---|
1138 | ENDIF |
---|
1139 | |
---|
1140 | tend = 0.0_wp |
---|
1141 | |
---|
1142 | ! |
---|
1143 | !-- Implicit solution when the surface layer has no heat capacity, |
---|
1144 | !-- otherwise use RK3 scheme. |
---|
1145 | t_surface_p(j,i) = ( coef_1 * dt_3d * tsc(2) + c_surface * & |
---|
1146 | t_surface(j,i) ) / ( c_surface + coef_2 * dt_3d& |
---|
1147 | * tsc(2) ) |
---|
1148 | ! |
---|
1149 | !-- Add RK3 term |
---|
1150 | t_surface_p(j,i) = t_surface_p(j,i) + dt_3d * tsc(3) & |
---|
1151 | * tt_surface_m(j,i) |
---|
1152 | |
---|
1153 | ! |
---|
1154 | !-- Calculate true tendency |
---|
1155 | tend = (t_surface_p(j,i) - t_surface(j,i) - dt_3d * tsc(3) & |
---|
1156 | * tt_surface_m(j,i)) / (dt_3d * tsc(2)) |
---|
1157 | ! |
---|
1158 | !-- Calculate t_surface tendencies for the next Runge-Kutta step |
---|
1159 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1160 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1161 | tt_surface_m(j,i) = tend |
---|
1162 | ELSEIF ( intermediate_timestep_count < & |
---|
1163 | intermediate_timestep_count_max ) THEN |
---|
1164 | tt_surface_m(j,i) = -9.5625_wp * tend + 5.3125_wp & |
---|
1165 | * tt_surface_m(j,i) |
---|
1166 | ENDIF |
---|
1167 | ENDIF |
---|
1168 | |
---|
1169 | pt_p(k,j,i) = t_surface_p(j,i) / exn |
---|
1170 | ! |
---|
1171 | !-- Calculate fluxes |
---|
1172 | rad_net(j,i) = rad_net(j,i) + 3.0_wp * sigma_SB & |
---|
1173 | * t_surface(j,i)**4 - 4.0_wp * sigma_SB & |
---|
1174 | * t_surface(j,i)**3 * t_surface_p(j,i) |
---|
1175 | ghf_eb(j,i) = lambda_surface * (t_surface_p(j,i) & |
---|
1176 | - t_soil(nzb_soil,j,i)) |
---|
1177 | shf_eb(j,i) = - f_shf * ( pt_p(k+1,j,i) - pt_p(k,j,i) ) |
---|
1178 | |
---|
1179 | IF ( humidity ) THEN |
---|
1180 | qsws_eb(j,i) = - f_qsws * ( q_p(k+1,j,i) - q_s + dq_s_dT & |
---|
1181 | * t_surface(j,i) - dq_s_dT * t_surface_p(j,i) ) |
---|
1182 | |
---|
1183 | qsws_veg_eb(j,i) = - f_qsws_veg * ( q_p(k+1,j,i) - q_s & |
---|
1184 | + dq_s_dT * t_surface(j,i) - dq_s_dT & |
---|
1185 | * t_surface_p(j,i) ) |
---|
1186 | |
---|
1187 | qsws_soil_eb(j,i) = - f_qsws_soil * ( q_p(k+1,j,i) - q_s & |
---|
1188 | + dq_s_dT * t_surface(j,i) - dq_s_dT & |
---|
1189 | * t_surface_p(j,i) ) |
---|
1190 | |
---|
1191 | qsws_liq_eb(j,i) = - f_qsws_liq * ( q_p(k+1,j,i) - q_s & |
---|
1192 | + dq_s_dT * t_surface(j,i) - dq_s_dT & |
---|
1193 | * t_surface_p(j,i) ) |
---|
1194 | ENDIF |
---|
1195 | |
---|
1196 | ! |
---|
1197 | !-- Calculate the true surface resistance |
---|
1198 | IF ( qsws_eb(j,i) .EQ. 0.0_wp ) THEN |
---|
1199 | r_s(j,i) = 1.0E10_wp |
---|
1200 | ELSE |
---|
1201 | r_s(j,i) = - rho_lv * ( q_p(k+1,j,i) - q_s + dq_s_dT & |
---|
1202 | * t_surface(j,i) - dq_s_dT * t_surface_p(j,i) ) & |
---|
1203 | / qsws_eb(j,i) - r_a(j,i) |
---|
1204 | ENDIF |
---|
1205 | |
---|
1206 | ! |
---|
1207 | !-- Calculate change in liquid water reservoir due to dew fall or |
---|
1208 | !-- evaporation of liquid water |
---|
1209 | IF ( humidity ) THEN |
---|
1210 | ! |
---|
1211 | !-- If precipitation is activated, add rain water to qsws_liq_eb. |
---|
1212 | !-- precipitation_rate is given in mm. |
---|
1213 | IF ( precipitation ) THEN |
---|
1214 | qsws_liq_eb(j,i) = qsws_liq_eb(j,i) & |
---|
1215 | + precipitation_rate(j,i) * 0.001_wp & |
---|
1216 | * rho_l * l_v |
---|
1217 | ENDIF |
---|
1218 | ! |
---|
1219 | !-- If the air is saturated, check the reservoir water level |
---|
1220 | IF ( q_s .LE. q_p(k+1,j,i)) THEN |
---|
1221 | ! |
---|
1222 | !-- Check if reservoir is full (avoid values > m_liq_eb_max) |
---|
1223 | !-- In that case, qsws_liq_eb goes to qsws_soil_eb. In this |
---|
1224 | !-- case qsws_veg_eb is zero anyway (because c_liq = 1), |
---|
1225 | !-- so that tend is zero and no further check is needed |
---|
1226 | IF ( m_liq_eb(j,i) .EQ. m_liq_eb_max ) THEN |
---|
1227 | qsws_soil_eb(j,i) = qsws_soil_eb(j,i) & |
---|
1228 | + qsws_liq_eb(j,i) |
---|
1229 | qsws_liq_eb(j,i) = 0.0_wp |
---|
1230 | ENDIF |
---|
1231 | |
---|
1232 | ! |
---|
1233 | !-- In case qsws_veg_eb becomes negative (unphysical behavior), |
---|
1234 | !-- let the water enter the liquid water reservoir as dew on the |
---|
1235 | !-- plant |
---|
1236 | IF ( qsws_veg_eb(j,i) .LT. 0.0_wp ) THEN |
---|
1237 | qsws_liq_eb(j,i) = qsws_liq_eb(j,i) + qsws_veg_eb(j,i) |
---|
1238 | qsws_veg_eb(j,i) = 0.0_wp |
---|
1239 | ENDIF |
---|
1240 | ENDIF |
---|
1241 | |
---|
1242 | tend = - qsws_liq_eb(j,i) * drho_l_lv |
---|
1243 | |
---|
1244 | m_liq_eb_p(j,i) = m_liq_eb(j,i) + dt_3d * ( tsc(2) * tend & |
---|
1245 | + tsc(3) * tm_liq_eb_m(j,i) ) |
---|
1246 | |
---|
1247 | ! |
---|
1248 | !-- Check if reservoir is overfull -> reduce to maximum |
---|
1249 | !-- (conservation of water is violated here) |
---|
1250 | m_liq_eb_p(j,i) = MIN(m_liq_eb_p(j,i),m_liq_eb_max) |
---|
1251 | |
---|
1252 | ! |
---|
1253 | !-- Check if reservoir is empty (avoid values < 0.0) |
---|
1254 | !-- (conservation of water is violated here) |
---|
1255 | m_liq_eb_p(j,i) = MAX(m_liq_eb_p(j,i),0.0_wp) |
---|
1256 | |
---|
1257 | |
---|
1258 | ! |
---|
1259 | !-- Calculate m_liq_eb tendencies for the next Runge-Kutta step |
---|
1260 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1261 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1262 | tm_liq_eb_m(j,i) = tend |
---|
1263 | ELSEIF ( intermediate_timestep_count < & |
---|
1264 | intermediate_timestep_count_max ) THEN |
---|
1265 | tm_liq_eb_m(j,i) = -9.5625_wp * tend + 5.3125_wp & |
---|
1266 | * tm_liq_eb_m(j,i) |
---|
1267 | ENDIF |
---|
1268 | ENDIF |
---|
1269 | |
---|
1270 | ENDIF |
---|
1271 | |
---|
1272 | ENDDO |
---|
1273 | ENDDO |
---|
1274 | |
---|
1275 | END SUBROUTINE lsm_energy_balance |
---|
1276 | |
---|
1277 | |
---|
1278 | !------------------------------------------------------------------------------! |
---|
1279 | ! Description: |
---|
1280 | ! ------------ |
---|
1281 | ! |
---|
1282 | ! Soil model as part of the land surface model. The model predicts soil |
---|
1283 | ! temperature and water content. |
---|
1284 | !------------------------------------------------------------------------------! |
---|
1285 | SUBROUTINE lsm_soil_model |
---|
1286 | |
---|
1287 | |
---|
1288 | IMPLICIT NONE |
---|
1289 | |
---|
1290 | INTEGER(iwp) :: i !: running index |
---|
1291 | INTEGER(iwp) :: j !: running index |
---|
1292 | INTEGER(iwp) :: k !: running index |
---|
1293 | |
---|
1294 | REAL(wp) :: h_vg !: Van Genuchten coef. h |
---|
1295 | |
---|
1296 | REAL(wp), DIMENSION(nzb_soil:nzt_soil) :: gamma_temp, & !: temp. gamma |
---|
1297 | lambda_temp, & !: temp. lambda |
---|
1298 | tend !: tendency |
---|
1299 | |
---|
1300 | DO i = nxlg, nxrg |
---|
1301 | DO j = nysg, nyng |
---|
1302 | DO k = nzb_soil, nzt_soil |
---|
1303 | ! |
---|
1304 | !-- Calculate volumetric heat capacity of the soil, taking into |
---|
1305 | !-- account water content |
---|
1306 | rho_c_total(k,j,i) = (rho_c_soil * (1.0_wp - m_sat(j,i)) & |
---|
1307 | + rho_c_water * m_soil(k,j,i)) |
---|
1308 | |
---|
1309 | ! |
---|
1310 | !-- Calculate soil heat conductivity at the center of the soil |
---|
1311 | !-- layers |
---|
1312 | ke = 1.0_wp + LOG10(MAX(0.1_wp,m_soil(k,j,i) / m_sat(j,i))) |
---|
1313 | lambda_temp(k) = ke * (lambda_h_sat(j,i) + lambda_h_dry) + & |
---|
1314 | lambda_h_dry |
---|
1315 | |
---|
1316 | ENDDO |
---|
1317 | |
---|
1318 | ! |
---|
1319 | !-- Calculate soil heat conductivity (lambda_h) at the _stag level |
---|
1320 | !-- using linear interpolation |
---|
1321 | DO k = nzb_soil, nzt_soil-1 |
---|
1322 | |
---|
1323 | lambda_h(k,j,i) = lambda_temp(k) + & |
---|
1324 | ( lambda_temp(k+1) - lambda_temp(k) ) & |
---|
1325 | * 0.5 * dz_soil_stag(k) * ddz_soil(k+1) |
---|
1326 | |
---|
1327 | ENDDO |
---|
1328 | lambda_h(nzt_soil,j,i) = lambda_temp(nzt_soil) |
---|
1329 | |
---|
1330 | ! |
---|
1331 | !-- Prognostic equation for soil temperature t_soil |
---|
1332 | tend(:) = 0.0_wp |
---|
1333 | tend(0) = (1.0_wp/rho_c_total(nzb_soil,j,i)) * & |
---|
1334 | ( lambda_h(nzb_soil,j,i) * ( t_soil(nzb_soil+1,j,i) & |
---|
1335 | - t_soil(nzb_soil,j,i) ) * ddz_soil(nzb_soil) & |
---|
1336 | + ghf_eb(j,i) ) * ddz_soil_stag(nzb_soil) |
---|
1337 | |
---|
1338 | DO k = 1, nzt_soil |
---|
1339 | tend(k) = (1.0_wp/rho_c_total(k,j,i)) & |
---|
1340 | * ( lambda_h(k,j,i) & |
---|
1341 | * ( t_soil(k+1,j,i) - t_soil(k,j,i) ) & |
---|
1342 | * ddz_soil(k) & |
---|
1343 | - lambda_h(k-1,j,i) & |
---|
1344 | * ( t_soil(k,j,i) - t_soil(k-1,j,i) ) & |
---|
1345 | * ddz_soil(k-1) & |
---|
1346 | ) * ddz_soil_stag(k) |
---|
1347 | ENDDO |
---|
1348 | |
---|
1349 | t_soil_p(nzb_soil:nzt_soil,j,i) = t_soil(nzb_soil:nzt_soil,j,i) & |
---|
1350 | + dt_3d * ( tsc(2) & |
---|
1351 | * tend(:) + tsc(3) & |
---|
1352 | * tt_soil_m(:,j,i) ) |
---|
1353 | |
---|
1354 | ! |
---|
1355 | !-- Calculate t_soil tendencies for the next Runge-Kutta step |
---|
1356 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1357 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1358 | DO k = nzb_soil, nzt_soil |
---|
1359 | tt_soil_m(k,j,i) = tend(k) |
---|
1360 | ENDDO |
---|
1361 | ELSEIF ( intermediate_timestep_count < & |
---|
1362 | intermediate_timestep_count_max ) THEN |
---|
1363 | DO k = nzb_soil, nzt_soil |
---|
1364 | tt_soil_m(k,j,i) = -9.5625_wp * tend(k) + 5.3125_wp & |
---|
1365 | * tt_soil_m(k,j,i) |
---|
1366 | ENDDO |
---|
1367 | ENDIF |
---|
1368 | ENDIF |
---|
1369 | |
---|
1370 | |
---|
1371 | DO k = nzb_soil, nzt_soil |
---|
1372 | |
---|
1373 | ! |
---|
1374 | !-- Calculate soil diffusivity at the center of the soil layers |
---|
1375 | lambda_temp(k) = (- b_ch * gamma_w_sat(j,i) * psi_sat & |
---|
1376 | / m_sat(j,i) ) * ( MAX(m_soil(k,j,i), & |
---|
1377 | m_wilt(j,i)) / m_sat(j,i) )**(b_ch + 2.0_wp) |
---|
1378 | |
---|
1379 | ! |
---|
1380 | !-- Parametrization of Van Genuchten |
---|
1381 | IF ( soil_type /= 7 ) THEN |
---|
1382 | ! |
---|
1383 | !-- Calculate the hydraulic conductivity after Van Genuchten |
---|
1384 | !-- (1980) |
---|
1385 | h_vg = ( ( (m_res(j,i) - m_sat(j,i)) / ( m_res(j,i) - & |
---|
1386 | MAX(m_soil(k,j,i),m_wilt(j,i)) ) )**(n_vg(j,i) & |
---|
1387 | / (n_vg(j,i)-1.0_wp)) - 1.0_wp & |
---|
1388 | )**(1.0_wp/n_vg(j,i)) / alpha_vg(j,i) |
---|
1389 | |
---|
1390 | gamma_temp(k) = gamma_w_sat(j,i) * ( ( (1.0_wp + & |
---|
1391 | (alpha_vg(j,i)*h_vg)**n_vg(j,i))**(1.0_wp & |
---|
1392 | -1.0_wp/n_vg(j,i)) - (alpha_vg(j,i)*h_vg & |
---|
1393 | )**(n_vg(j,i)-1.0_wp))**2 ) & |
---|
1394 | / ( (1.0_wp + (alpha_vg(j,i)*h_vg & |
---|
1395 | )**n_vg(j,i))**((1.0_wp - 1.0_wp/n_vg(j,i)) & |
---|
1396 | *(l_vg(j,i) + 2.0_wp)) ) |
---|
1397 | |
---|
1398 | ! |
---|
1399 | !-- Parametrization of Clapp & Hornberger |
---|
1400 | ELSE |
---|
1401 | gamma_temp(k) = gamma_w_sat(j,i) * (m_soil(k,j,i) & |
---|
1402 | / m_sat(j,i) )**(2.0_wp * b_ch + 3.0_wp) |
---|
1403 | ENDIF |
---|
1404 | |
---|
1405 | ENDDO |
---|
1406 | |
---|
1407 | |
---|
1408 | IF ( humidity ) THEN |
---|
1409 | ! |
---|
1410 | !-- Calculate soil diffusivity (lambda_w) at the _stag level |
---|
1411 | !-- using linear interpolation. To do: replace this with |
---|
1412 | !-- ECMWF-IFS Eq. 8.81 |
---|
1413 | DO k = nzb_soil, nzt_soil-1 |
---|
1414 | |
---|
1415 | lambda_w(k,j,i) = lambda_temp(k) + & |
---|
1416 | ( lambda_temp(k+1) - lambda_temp(k) ) & |
---|
1417 | * 0.5_wp * dz_soil_stag(k) * ddz_soil(k+1) |
---|
1418 | gamma_w(k,j,i) = gamma_temp(k) + & |
---|
1419 | ( gamma_temp(k+1) - gamma_temp(k) ) & |
---|
1420 | * 0.5_wp * dz_soil_stag(k) * ddz_soil(k+1) |
---|
1421 | |
---|
1422 | ENDDO |
---|
1423 | |
---|
1424 | ! |
---|
1425 | ! |
---|
1426 | !-- In case of a closed bottom (= water content is conserved), set |
---|
1427 | !-- hydraulic conductivity to zero to that no water will be lost |
---|
1428 | !-- in the bottom layer. |
---|
1429 | IF ( conserve_water_content ) THEN |
---|
1430 | gamma_w(nzt_soil,j,i) = 0.0_wp |
---|
1431 | ELSE |
---|
1432 | gamma_w(nzt_soil,j,i) = lambda_temp(nzt_soil) |
---|
1433 | ENDIF |
---|
1434 | |
---|
1435 | !-- The root extraction (= root_extr * qsws_veg_eb / (rho_l * l_v)) |
---|
1436 | !-- ensures the mass conservation for water. The transpiration of |
---|
1437 | !-- plants equals the cumulative withdrawals by the roots in the |
---|
1438 | !-- soil. The scheme takes into account the availability of water |
---|
1439 | !-- in the soil layers as well as the root fraction in the |
---|
1440 | !-- respective layer. Layer with moisture below wilting point will |
---|
1441 | !-- not contribute, which reflects the preference of plants to |
---|
1442 | !-- take water from moister layers. |
---|
1443 | |
---|
1444 | ! |
---|
1445 | !-- Calculate the root extraction (ECMWF 7.69, modified so that the |
---|
1446 | !-- sum of root_extr = 1). The energy balance solver guarantees a |
---|
1447 | !-- positive transpiration, so that there is no need for an |
---|
1448 | !-- additional check. |
---|
1449 | |
---|
1450 | m_total = 0.0_wp |
---|
1451 | DO k = nzb_soil, nzt_soil |
---|
1452 | IF ( m_soil(k,j,i) .GT. m_wilt(j,i) ) THEN |
---|
1453 | m_total = m_total + root_fr(k,j,i) * m_soil(k,j,i) |
---|
1454 | ENDIF |
---|
1455 | ENDDO |
---|
1456 | |
---|
1457 | DO k = nzb_soil, nzt_soil |
---|
1458 | IF ( m_soil(k,j,i) .GT. m_wilt(j,i) ) THEN |
---|
1459 | root_extr(k) = root_fr(k,j,i) * m_soil(k,j,i) / m_total |
---|
1460 | ELSE |
---|
1461 | root_extr(k) = 0.0_wp |
---|
1462 | ENDIF |
---|
1463 | ENDDO |
---|
1464 | |
---|
1465 | ! |
---|
1466 | !-- Prognostic equation for soil water content m_soil |
---|
1467 | tend(:) = 0.0_wp |
---|
1468 | tend(nzb_soil) = ( lambda_w(nzb_soil,j,i) * ( & |
---|
1469 | m_soil(nzb_soil+1,j,i) - m_soil(nzb_soil,j,i) ) & |
---|
1470 | * ddz_soil(nzb_soil) - gamma_w(nzb_soil,j,i) - ( & |
---|
1471 | root_extr(nzb_soil) * qsws_veg_eb(j,i) & |
---|
1472 | + qsws_soil_eb(j,i) ) * drho_l_lv ) & |
---|
1473 | * ddz_soil_stag(nzb_soil) |
---|
1474 | |
---|
1475 | DO k = nzb_soil+1, nzt_soil-1 |
---|
1476 | tend(k) = ( lambda_w(k,j,i) * ( m_soil(k+1,j,i) & |
---|
1477 | - m_soil(k,j,i) ) * ddz_soil(k) - gamma_w(k,j,i)& |
---|
1478 | - lambda_w(k-1,j,i) * (m_soil(k,j,i) - & |
---|
1479 | m_soil(k-1,j,i)) * ddz_soil(k-1) & |
---|
1480 | + gamma_w(k-1,j,i) - (root_extr(k) & |
---|
1481 | * qsws_veg_eb(j,i) * drho_l_lv) & |
---|
1482 | ) * ddz_soil_stag(k) |
---|
1483 | |
---|
1484 | ENDDO |
---|
1485 | tend(nzt_soil) = ( - gamma_w(nzt_soil,j,i) & |
---|
1486 | - lambda_w(nzt_soil-1,j,i) & |
---|
1487 | * (m_soil(nzt_soil,j,i) & |
---|
1488 | - m_soil(nzt_soil-1,j,i)) & |
---|
1489 | * ddz_soil(nzt_soil-1) & |
---|
1490 | + gamma_w(nzt_soil-1,j,i) - ( & |
---|
1491 | root_extr(nzt_soil) & |
---|
1492 | * qsws_veg_eb(j,i) * drho_l_lv ) & |
---|
1493 | ) * ddz_soil_stag(nzt_soil) |
---|
1494 | |
---|
1495 | m_soil_p(nzb_soil:nzt_soil,j,i) = m_soil(nzb_soil:nzt_soil,j,i)& |
---|
1496 | + dt_3d * ( tsc(2) * tend(:) & |
---|
1497 | + tsc(3) * tm_soil_m(:,j,i) ) |
---|
1498 | |
---|
1499 | ! |
---|
1500 | !-- Account for dry soils (find a better solution here!) |
---|
1501 | m_soil_p(:,j,i) = MAX(m_soil_p(:,j,i),0.0_wp) |
---|
1502 | |
---|
1503 | ! |
---|
1504 | !-- Calculate m_soil tendencies for the next Runge-Kutta step |
---|
1505 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1506 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1507 | DO k = nzb_soil, nzt_soil |
---|
1508 | tm_soil_m(k,j,i) = tend(k) |
---|
1509 | ENDDO |
---|
1510 | ELSEIF ( intermediate_timestep_count < & |
---|
1511 | intermediate_timestep_count_max ) THEN |
---|
1512 | DO k = nzb_soil, nzt_soil |
---|
1513 | tm_soil_m(k,j,i) = -9.5625_wp * tend(k) + 5.3125_wp & |
---|
1514 | * tm_soil_m(k,j,i) |
---|
1515 | ENDDO |
---|
1516 | ENDIF |
---|
1517 | ENDIF |
---|
1518 | |
---|
1519 | ENDIF |
---|
1520 | |
---|
1521 | ENDDO |
---|
1522 | ENDDO |
---|
1523 | |
---|
1524 | ! |
---|
1525 | !-- Calculate surface specific humidity |
---|
1526 | IF ( humidity ) THEN |
---|
1527 | CALL calc_q_surface |
---|
1528 | ENDIF |
---|
1529 | |
---|
1530 | |
---|
1531 | END SUBROUTINE lsm_soil_model |
---|
1532 | |
---|
1533 | |
---|
1534 | !------------------------------------------------------------------------------! |
---|
1535 | ! Description: |
---|
1536 | ! ------------ |
---|
1537 | ! Calculation of specific humidity of the surface layer (surface) |
---|
1538 | !------------------------------------------------------------------------------! |
---|
1539 | SUBROUTINE calc_q_surface |
---|
1540 | |
---|
1541 | IMPLICIT NONE |
---|
1542 | |
---|
1543 | INTEGER :: i !: running index |
---|
1544 | INTEGER :: j !: running index |
---|
1545 | INTEGER :: k !: running index |
---|
1546 | REAL(wp) :: resistance !: aerodynamic and soil resistance term |
---|
1547 | |
---|
1548 | DO i = nxlg, nxrg |
---|
1549 | DO j = nysg, nyng |
---|
1550 | k = nzb_s_inner(j,i) |
---|
1551 | |
---|
1552 | ! |
---|
1553 | !-- Calculate water vapour pressure at saturation |
---|
1554 | e_s = 0.01_wp * 610.78_wp * EXP( 17.269_wp * ( t_surface(j,i) & |
---|
1555 | - 273.16_wp ) / ( t_surface(j,i) & |
---|
1556 | - 35.86_wp ) ) |
---|
1557 | |
---|
1558 | ! |
---|
1559 | !-- Calculate specific humidity at saturation |
---|
1560 | q_s = 0.622_wp * e_s / surface_pressure |
---|
1561 | |
---|
1562 | |
---|
1563 | resistance = r_a(j,i) / (r_a(j,i) + r_s(j,i)) |
---|
1564 | |
---|
1565 | ! |
---|
1566 | !-- Calculate specific humidity at surface |
---|
1567 | q_p(k,j,i) = resistance * q_s + (1.0_wp - resistance) & |
---|
1568 | * q_p(k+1,j,i) |
---|
1569 | |
---|
1570 | ENDDO |
---|
1571 | ENDDO |
---|
1572 | |
---|
1573 | END SUBROUTINE calc_q_surface |
---|
1574 | |
---|
1575 | !------------------------------------------------------------------------------! |
---|
1576 | ! Description: |
---|
1577 | ! ------------ |
---|
1578 | ! Swapping of timelevels |
---|
1579 | !------------------------------------------------------------------------------! |
---|
1580 | SUBROUTINE lsm_swap_timelevel ( mod_count ) |
---|
1581 | |
---|
1582 | IMPLICIT NONE |
---|
1583 | |
---|
1584 | INTEGER, INTENT(IN) :: mod_count |
---|
1585 | |
---|
1586 | #if defined( __nopointer ) |
---|
1587 | |
---|
1588 | t_surface = t_surface_p |
---|
1589 | t_soil = t_soil_p |
---|
1590 | IF ( humidity ) THEN |
---|
1591 | m_soil = m_soil_p |
---|
1592 | m_liq_eb = m_liq_eb_p |
---|
1593 | ENDIF |
---|
1594 | |
---|
1595 | #else |
---|
1596 | |
---|
1597 | SELECT CASE ( mod_count ) |
---|
1598 | |
---|
1599 | CASE ( 0 ) |
---|
1600 | |
---|
1601 | t_surface = t_surface_p |
---|
1602 | t_soil = t_soil_p |
---|
1603 | IF ( humidity ) THEN |
---|
1604 | m_soil = m_soil_p |
---|
1605 | m_liq_eb = m_liq_eb_p |
---|
1606 | ENDIF |
---|
1607 | |
---|
1608 | |
---|
1609 | CASE ( 1 ) |
---|
1610 | |
---|
1611 | t_surface => t_surface_1; t_surface_p => t_surface_2 |
---|
1612 | t_soil => t_soil_1; t_soil_p => t_soil_2 |
---|
1613 | IF ( humidity ) THEN |
---|
1614 | m_soil => m_soil_1; m_soil_p => m_soil_2 |
---|
1615 | m_liq_eb => m_liq_eb_1; m_liq_eb_p => m_liq_eb_2 |
---|
1616 | ENDIF |
---|
1617 | |
---|
1618 | END SELECT |
---|
1619 | #endif |
---|
1620 | |
---|
1621 | END SUBROUTINE lsm_swap_timelevel |
---|
1622 | |
---|
1623 | |
---|
1624 | END MODULE land_surface_model_mod |
---|