[1682] | 1 | !> @file init_grid.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[4360] | 17 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[254] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[2233] | 22 | ! |
---|
[4110] | 23 | ! |
---|
[2233] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: init_grid.f90 4386 2020-01-27 15:07:30Z gronemeier $ |
---|
[4386] | 27 | ! Allocation statements, comments, naming of variables revised and _wp added to |
---|
| 28 | ! real type values |
---|
| 29 | ! |
---|
| 30 | ! 4360 2020-01-07 11:25:50Z suehring |
---|
[4356] | 31 | ! Revise error messages for generic tunnel setup. |
---|
| 32 | ! |
---|
| 33 | ! 4346 2019-12-18 11:55:56Z motisi |
---|
[4346] | 34 | ! Introduction of wall_flags_total_0, which currently sets bits based on static |
---|
| 35 | ! topography information used in wall_flags_static_0 |
---|
| 36 | ! |
---|
| 37 | ! 4340 2019-12-16 08:17:03Z Giersch |
---|
[4340] | 38 | ! Topography closed channel flow with symmetric boundaries implemented |
---|
| 39 | ! |
---|
| 40 | ! 4329 2019-12-10 15:46:36Z motisi |
---|
[4329] | 41 | ! Renamed wall_flags_0 to wall_flags_static_0 |
---|
| 42 | ! |
---|
| 43 | ! 4328 2019-12-09 18:53:04Z suehring |
---|
[4328] | 44 | ! Minor change in nzb_max computation. Commentation added. |
---|
| 45 | ! |
---|
| 46 | ! 4314 2019-11-29 10:29:20Z suehring |
---|
[4314] | 47 | ! Set additional topography flag 4 to mark topography grid points emerged |
---|
| 48 | ! from the filtering process. |
---|
| 49 | ! |
---|
| 50 | ! 4294 2019-11-13 18:34:16Z suehring |
---|
[4294] | 51 | ! Bugfix, always set bit 5 and 6 of wall_flags, indicating terrain- and |
---|
| 52 | ! building surfaces in all cases, in order to enable terrain-following output |
---|
| 53 | ! also when no land- or urban-surface model is applied. |
---|
| 54 | ! |
---|
| 55 | ! 4265 2019-10-15 16:16:24Z suehring |
---|
[4265] | 56 | ! Bugfix for last commit, exchange oro_max variable only when it is allocated |
---|
| 57 | ! (not necessarily the case when topography is input from ASCII file). |
---|
| 58 | ! |
---|
| 59 | ! 4245 2019-09-30 08:40:37Z pavelkrc |
---|
[4245] | 60 | ! Store oro_max (building z-offset) in 2D for building surfaces |
---|
| 61 | ! |
---|
| 62 | ! 4189 2019-08-26 16:19:38Z suehring |
---|
[4189] | 63 | ! - Add check for proper setting of namelist parameter topography |
---|
| 64 | ! - Set flag to indicate land surfaces in case no topography is provided |
---|
| 65 | ! |
---|
| 66 | ! 4182 2019-08-22 15:20:23Z scharf |
---|
[4182] | 67 | ! Corrected "Former revisions" section |
---|
| 68 | ! |
---|
| 69 | ! 4168 2019-08-16 13:50:17Z suehring |
---|
[4168] | 70 | ! Pre-calculate topography top index and store it on an array (replaces former |
---|
| 71 | ! functions get_topography_top_index) |
---|
| 72 | ! |
---|
| 73 | ! 4159 2019-08-15 13:31:35Z suehring |
---|
[4159] | 74 | ! Revision of topography processing. This was not consistent between 2D and 3D |
---|
| 75 | ! buildings. |
---|
| 76 | ! |
---|
| 77 | ! 4144 2019-08-06 09:11:47Z raasch |
---|
[4144] | 78 | ! relational operators .EQ., .NE., etc. replaced by ==, /=, etc. |
---|
| 79 | ! |
---|
| 80 | ! 4115 2019-07-24 12:50:49Z suehring |
---|
[4115] | 81 | ! Bugfix in setting near-surface flag 24, inidicating wall-bounded grid points |
---|
| 82 | ! |
---|
| 83 | ! 4110 2019-07-22 17:05:21Z suehring |
---|
[4110] | 84 | ! - Separate initialization of advection flags for momentum and scalars. |
---|
| 85 | ! - Change subroutine interface for ws_init_flags_scalar to pass boundary flags |
---|
| 86 | ! |
---|
| 87 | ! 4109 2019-07-22 17:00:34Z suehring |
---|
[3927] | 88 | ! Fix bad commit |
---|
| 89 | ! |
---|
| 90 | ! 3926 2019-04-23 12:56:42Z suehring |
---|
[3925] | 91 | ! Minor bugfix in building mapping when all building IDs in the model domain |
---|
| 92 | ! are missing |
---|
| 93 | ! |
---|
| 94 | ! 3857 2019-04-03 13:00:16Z knoop |
---|
[3855] | 95 | ! In projection of non-building 3D objects onto numerical grid remove |
---|
| 96 | ! dependency on building_type |
---|
| 97 | ! |
---|
| 98 | ! 3763 2019-02-25 17:33:49Z suehring |
---|
[3763] | 99 | ! Replace work-around for ghost point exchange of 1-byte arrays with specific |
---|
| 100 | ! routine as already done in other routines |
---|
| 101 | ! |
---|
| 102 | ! 3761 2019-02-25 15:31:42Z raasch |
---|
[3761] | 103 | ! unused variables removed |
---|
| 104 | ! |
---|
| 105 | ! 3661 2019-01-08 18:22:50Z suehring |
---|
[3661] | 106 | ! Remove setting of nzb_max to nzt at non-cyclic boundary PEs, instead, |
---|
| 107 | ! order degradation of advection scheme is handeled directly in advec_ws |
---|
| 108 | ! |
---|
| 109 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
[3538] | 110 | ! Comment added |
---|
[2716] | 111 | ! |
---|
[4182] | 112 | ! Revision 1.1 1997/08/11 06:17:45 raasch |
---|
| 113 | ! Initial revision (Testversion) |
---|
| 114 | ! |
---|
| 115 | ! |
---|
[1] | 116 | ! Description: |
---|
[2696] | 117 | ! -----------------------------------------------------------------------------! |
---|
[1682] | 118 | !> Creating grid depending constants |
---|
[2696] | 119 | !> @todo: Rearrange topo flag list |
---|
| 120 | !> @todo: reference 3D buildings on top of orography is not tested and may need |
---|
| 121 | !> further improvement for steep slopes |
---|
| 122 | !> @todo: Use more advanced setting of building type at filled holes |
---|
[1] | 123 | !------------------------------------------------------------------------------! |
---|
[1682] | 124 | SUBROUTINE init_grid |
---|
| 125 | |
---|
[1942] | 126 | USE advec_ws, & |
---|
[4109] | 127 | ONLY: ws_init_flags_momentum, ws_init_flags_scalar |
---|
[1] | 128 | |
---|
[1320] | 129 | USE arrays_3d, & |
---|
[3857] | 130 | ONLY: dd2zu, ddzu, ddzu_pres, ddzw, dzu, dzw, x, xu, y, yv, zu, zw |
---|
[1320] | 131 | |
---|
[1353] | 132 | USE control_parameters, & |
---|
[3761] | 133 | ONLY: bc_lr_cyc, bc_ns_cyc, & |
---|
[4109] | 134 | bc_dirichlet_l, & |
---|
| 135 | bc_dirichlet_n, & |
---|
| 136 | bc_dirichlet_r, & |
---|
| 137 | bc_dirichlet_s, & |
---|
| 138 | bc_radiation_l, & |
---|
| 139 | bc_radiation_n, & |
---|
| 140 | bc_radiation_r, & |
---|
| 141 | bc_radiation_s, & |
---|
[3241] | 142 | constant_flux_layer, dz, dz_max, dz_stretch_factor, & |
---|
[3065] | 143 | dz_stretch_factor_array, dz_stretch_level, dz_stretch_level_end,& |
---|
| 144 | dz_stretch_level_end_index, dz_stretch_level_start_index, & |
---|
[3241] | 145 | dz_stretch_level_start, ibc_uv_b, message_string, & |
---|
[3182] | 146 | momentum_advec, number_stretch_level_end, & |
---|
[3294] | 147 | number_stretch_level_start, ocean_mode, psolver, scalar_advec, & |
---|
[4340] | 148 | symmetry_flag, topography, use_surface_fluxes |
---|
[2021] | 149 | |
---|
[1320] | 150 | USE grid_variables, & |
---|
[2232] | 151 | ONLY: ddx, ddx2, ddy, ddy2, dx, dx2, dy, dy2, zu_s_inner, zw_w_inner |
---|
[1320] | 152 | |
---|
| 153 | USE indices, & |
---|
[4109] | 154 | ONLY: advc_flags_m, & |
---|
| 155 | advc_flags_s, & |
---|
| 156 | nbgp, nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, nz, & |
---|
[2232] | 157 | nzb, nzb_diff, nzb_diff_s_inner, nzb_diff_s_outer, & |
---|
| 158 | nzb_max, nzb_s_inner, nzb_s_outer, nzb_u_inner, & |
---|
[1845] | 159 | nzb_u_outer, nzb_v_inner, nzb_v_outer, nzb_w_inner, & |
---|
[4168] | 160 | nzb_w_outer, nzt, topo_top_ind, topo_min_level |
---|
[1320] | 161 | |
---|
| 162 | USE kinds |
---|
[2696] | 163 | |
---|
[1] | 164 | USE pegrid |
---|
| 165 | |
---|
[2696] | 166 | USE poismg_noopt_mod |
---|
| 167 | |
---|
[2232] | 168 | USE surface_mod, & |
---|
[4168] | 169 | ONLY: init_bc |
---|
[2232] | 170 | |
---|
[2365] | 171 | USE vertical_nesting_mod, & |
---|
| 172 | ONLY: vnested, vnest_init_grid |
---|
| 173 | |
---|
[1] | 174 | IMPLICIT NONE |
---|
| 175 | |
---|
[3182] | 176 | INTEGER(iwp) :: i !< index variable along x |
---|
| 177 | INTEGER(iwp) :: j !< index variable along y |
---|
| 178 | INTEGER(iwp) :: k !< index variable along z |
---|
| 179 | INTEGER(iwp) :: k_top !< topography top index on local PE |
---|
| 180 | INTEGER(iwp) :: n !< loop variable for stretching |
---|
| 181 | INTEGER(iwp) :: number_dz !< number of user-specified dz values |
---|
| 182 | INTEGER(iwp) :: nzb_local_max !< vertical grid index of maximum topography height |
---|
| 183 | INTEGER(iwp) :: nzb_local_min !< vertical grid index of minimum topography height |
---|
[2232] | 184 | |
---|
[3065] | 185 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: nzb_local !< index for topography top at cell-center |
---|
| 186 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: nzb_tmp !< dummy to calculate topography indices on u- and v-grid |
---|
[1] | 187 | |
---|
[2696] | 188 | INTEGER(iwp), DIMENSION(:,:,:), ALLOCATABLE :: topo !< input array for 3D topography and dummy array for setting "outer"-flags |
---|
[2232] | 189 | |
---|
[3065] | 190 | REAL(wp) :: dz_level_end !< distance between calculated height level for u/v-grid and user-specified end level for stretching |
---|
[1886] | 191 | REAL(wp) :: dz_stretched !< stretched vertical grid spacing |
---|
[3065] | 192 | |
---|
| 193 | REAL(wp), DIMENSION(:), ALLOCATABLE :: min_dz_stretch_level_end !< Array that contains all minimum heights where the stretching can end |
---|
[861] | 194 | |
---|
[1] | 195 | |
---|
| 196 | ! |
---|
[709] | 197 | !-- Calculation of horizontal array bounds including ghost layers |
---|
[667] | 198 | nxlg = nxl - nbgp |
---|
| 199 | nxrg = nxr + nbgp |
---|
| 200 | nysg = nys - nbgp |
---|
| 201 | nyng = nyn + nbgp |
---|
[709] | 202 | |
---|
[667] | 203 | ! |
---|
[1] | 204 | !-- Allocate grid arrays |
---|
[4386] | 205 | ALLOCATE( x(0:nx) ) |
---|
| 206 | ALLOCATE( xu(0:nx) ) |
---|
| 207 | |
---|
[3857] | 208 | DO i = 0, nx |
---|
| 209 | xu(i) = i * dx |
---|
| 210 | x(i) = i * dx + 0.5_wp * dx |
---|
| 211 | ENDDO |
---|
| 212 | |
---|
[4386] | 213 | ALLOCATE( y(0:ny) ) |
---|
| 214 | ALLOCATE( yv(0:ny) ) |
---|
| 215 | |
---|
[3857] | 216 | DO j = 0, ny |
---|
| 217 | yv(j) = j * dy |
---|
| 218 | y(j) = j * dy + 0.5_wp * dy |
---|
| 219 | ENDDO |
---|
| 220 | |
---|
[4386] | 221 | ALLOCATE( ddzu(1:nzt+1) ) |
---|
| 222 | ALLOCATE( ddzw(1:nzt+1) ) |
---|
| 223 | ALLOCATE( dd2zu(1:nzt) ) |
---|
| 224 | ALLOCATE( dzu(1:nzt+1) ) |
---|
| 225 | ALLOCATE( dzw(1:nzt+1) ) |
---|
| 226 | ALLOCATE( zu(nzb:nzt+1) ) |
---|
| 227 | ALLOCATE( zw(nzb:nzt+1) ) |
---|
[1] | 228 | |
---|
| 229 | ! |
---|
[4386] | 230 | !-- For constructing an appropriate grid, the vertical grid spacing dz has to |
---|
| 231 | !-- be specified with a non-negative value in the parameter file |
---|
[3065] | 232 | IF ( dz(1) == -1.0_wp ) THEN |
---|
[254] | 233 | message_string = 'missing dz' |
---|
| 234 | CALL message( 'init_grid', 'PA0200', 1, 2, 0, 6, 0 ) |
---|
[3065] | 235 | ELSEIF ( dz(1) <= 0.0_wp ) THEN |
---|
| 236 | WRITE( message_string, * ) 'dz=',dz(1),' <= 0.0' |
---|
[254] | 237 | CALL message( 'init_grid', 'PA0201', 1, 2, 0, 6, 0 ) |
---|
[1] | 238 | ENDIF |
---|
[94] | 239 | |
---|
[1] | 240 | ! |
---|
[3065] | 241 | !-- Initialize dz_stretch_level_start with the value of dz_stretch_level |
---|
| 242 | !-- if it was set by the user |
---|
| 243 | IF ( dz_stretch_level /= -9999999.9_wp ) THEN |
---|
| 244 | dz_stretch_level_start(1) = dz_stretch_level |
---|
| 245 | ENDIF |
---|
| 246 | |
---|
| 247 | ! |
---|
| 248 | !-- Determine number of dz values and stretching levels specified by the |
---|
| 249 | !-- user to allow right controlling of the stretching mechanism and to |
---|
[3139] | 250 | !-- perform error checks. The additional requirement that dz /= dz_max |
---|
| 251 | !-- for counting number of user-specified dz values is necessary. Otherwise |
---|
| 252 | !-- restarts would abort if the old stretching mechanism with dz_stretch_level |
---|
| 253 | !-- is used (Attention: The user is not allowed to specify a dz value equal |
---|
| 254 | !-- to the default of dz_max = 999.0). |
---|
| 255 | number_dz = COUNT( dz /= -1.0_wp .AND. dz /= dz_max) |
---|
[3065] | 256 | number_stretch_level_start = COUNT( dz_stretch_level_start /= & |
---|
| 257 | -9999999.9_wp ) |
---|
| 258 | number_stretch_level_end = COUNT( dz_stretch_level_end /= & |
---|
| 259 | 9999999.9_wp ) |
---|
| 260 | |
---|
| 261 | ! |
---|
[4386] | 262 | !-- The number of specified end levels +1 has to be the same as the number |
---|
[3065] | 263 | !-- of specified dz values |
---|
| 264 | IF ( number_dz /= number_stretch_level_end + 1 ) THEN |
---|
[4386] | 265 | WRITE( message_string, * ) 'The number of values for dz = ', & |
---|
| 266 | number_dz, 'has to be the same as& ', & |
---|
| 267 | 'the number of values for ', & |
---|
| 268 | 'dz_stretch_level_end + 1 = ', & |
---|
[3065] | 269 | number_stretch_level_end+1 |
---|
| 270 | CALL message( 'init_grid', 'PA0156', 1, 2, 0, 6, 0 ) |
---|
| 271 | ENDIF |
---|
| 272 | |
---|
| 273 | ! |
---|
[4386] | 274 | !-- The number of specified start levels has to be the same or one less than |
---|
| 275 | !-- the number of specified dz values |
---|
| 276 | IF ( number_dz /= number_stretch_level_start + 1 .AND. & |
---|
[3065] | 277 | number_dz /= number_stretch_level_start ) THEN |
---|
[4386] | 278 | WRITE( message_string, * ) 'The number of values for dz = ', & |
---|
| 279 | number_dz, 'has to be the same as or one ', & |
---|
| 280 | 'more than& the number of values for ', & |
---|
| 281 | 'dz_stretch_level_start = ', & |
---|
[3065] | 282 | number_stretch_level_start |
---|
| 283 | CALL message( 'init_grid', 'PA0211', 1, 2, 0, 6, 0 ) |
---|
| 284 | ENDIF |
---|
| 285 | |
---|
[4386] | 286 | !-- The number of specified start levels has to be the same or one more than |
---|
| 287 | !-- the number of specified end levels |
---|
| 288 | IF ( number_stretch_level_start /= number_stretch_level_end + 1 .AND. & |
---|
[3065] | 289 | number_stretch_level_start /= number_stretch_level_end ) THEN |
---|
[4386] | 290 | WRITE( message_string, * ) 'The number of values for ', & |
---|
| 291 | 'dz_stretch_level_start = ', & |
---|
| 292 | dz_stretch_level_start, 'has to be the ', & |
---|
| 293 | 'same or one more than& the number of ', & |
---|
| 294 | 'values for dz_stretch_level_end = ', & |
---|
[3065] | 295 | number_stretch_level_end |
---|
| 296 | CALL message( 'init_grid', 'PA0216', 1, 2, 0, 6, 0 ) |
---|
| 297 | ENDIF |
---|
| 298 | |
---|
| 299 | ! |
---|
| 300 | !-- Initialize dz for the free atmosphere with the value of dz_max |
---|
| 301 | IF ( dz(number_stretch_level_start+1) == -1.0_wp .AND. & |
---|
| 302 | number_stretch_level_start /= 0 ) THEN |
---|
| 303 | dz(number_stretch_level_start+1) = dz_max |
---|
| 304 | ENDIF |
---|
| 305 | |
---|
| 306 | ! |
---|
| 307 | !-- Initialize the stretching factor if (infinitely) stretching in the free |
---|
| 308 | !-- atmosphere is desired (dz_stretch_level_end was not specified for the |
---|
| 309 | !-- free atmosphere) |
---|
| 310 | IF ( number_stretch_level_start == number_stretch_level_end + 1 ) THEN |
---|
| 311 | dz_stretch_factor_array(number_stretch_level_start) = & |
---|
| 312 | dz_stretch_factor |
---|
| 313 | ENDIF |
---|
| 314 | |
---|
| 315 | ! |
---|
| 316 | !-- Allocation of arrays for stretching |
---|
| 317 | ALLOCATE( min_dz_stretch_level_end(number_stretch_level_start) ) |
---|
[3066] | 318 | |
---|
[3065] | 319 | ! |
---|
[4386] | 320 | !-- Define the vertical grid levels. Start with atmosphere branch |
---|
[3294] | 321 | IF ( .NOT. ocean_mode ) THEN |
---|
[3065] | 322 | |
---|
[94] | 323 | ! |
---|
[3065] | 324 | !-- The stretching region has to be large enough to allow for a smooth |
---|
[4386] | 325 | !-- transition between two different grid spacings. The number 4 is an |
---|
| 326 | !-- empirical value |
---|
[3065] | 327 | DO n = 1, number_stretch_level_start |
---|
| 328 | min_dz_stretch_level_end(n) = dz_stretch_level_start(n) + & |
---|
| 329 | 4 * MAX( dz(n),dz(n+1) ) |
---|
| 330 | ENDDO |
---|
| 331 | |
---|
[3066] | 332 | IF ( ANY( min_dz_stretch_level_end(1:number_stretch_level_start) > & |
---|
| 333 | dz_stretch_level_end(1:number_stretch_level_start) ) ) THEN |
---|
[4386] | 334 | message_string= 'Each dz_stretch_level_end has to be larger ' // & |
---|
[3065] | 335 | 'than its corresponding value for &' // & |
---|
| 336 | 'dz_stretch_level_start + 4*MAX(dz(n),dz(n+1)) '//& |
---|
| 337 | 'to allow for smooth grid stretching' |
---|
| 338 | CALL message( 'init_grid', 'PA0224', 1, 2, 0, 6, 0 ) |
---|
| 339 | ENDIF |
---|
| 340 | |
---|
| 341 | ! |
---|
[4386] | 342 | !-- Stretching must not be applied within the surface layer |
---|
[3065] | 343 | !-- (first two grid points). For the default case dz_stretch_level_start |
---|
| 344 | !-- is negative. Therefore the absolut value is checked here. |
---|
[4386] | 345 | IF ( ANY( ABS( dz_stretch_level_start ) <= dz(1) * 1.5_wp ) ) THEN |
---|
| 346 | WRITE( message_string, * ) 'Each dz_stretch_level_start has to be ',& |
---|
[3065] | 347 | 'larger than ', dz(1) * 1.5 |
---|
| 348 | CALL message( 'init_grid', 'PA0226', 1, 2, 0, 6, 0 ) |
---|
| 349 | ENDIF |
---|
| 350 | |
---|
| 351 | ! |
---|
| 352 | !-- The stretching has to start and end on a grid level. Therefore |
---|
[4386] | 353 | !-- user-specified values are mapped to the next lowest level. The |
---|
| 354 | !-- calculation of the first level is realized differently just because of |
---|
| 355 | !-- historical reasons (the advanced/new stretching mechanism was realized |
---|
| 356 | !-- in a way that results don't change if the old parameters |
---|
| 357 | !-- dz_stretch_level, dz_stretch_factor and dz_max are used) |
---|
[3065] | 358 | IF ( number_stretch_level_start /= 0 ) THEN |
---|
| 359 | dz_stretch_level_start(1) = INT( (dz_stretch_level_start(1) - & |
---|
| 360 | dz(1)/2.0) / dz(1) ) & |
---|
| 361 | * dz(1) + dz(1)/2.0 |
---|
| 362 | ENDIF |
---|
| 363 | |
---|
| 364 | IF ( number_stretch_level_start > 1 ) THEN |
---|
| 365 | DO n = 2, number_stretch_level_start |
---|
| 366 | dz_stretch_level_start(n) = INT( dz_stretch_level_start(n) / & |
---|
| 367 | dz(n) ) * dz(n) |
---|
| 368 | ENDDO |
---|
| 369 | ENDIF |
---|
| 370 | |
---|
| 371 | IF ( number_stretch_level_end /= 0 ) THEN |
---|
| 372 | DO n = 1, number_stretch_level_end |
---|
| 373 | dz_stretch_level_end(n) = INT( dz_stretch_level_end(n) / & |
---|
| 374 | dz(n+1) ) * dz(n+1) |
---|
| 375 | ENDDO |
---|
| 376 | ENDIF |
---|
[4386] | 377 | |
---|
[3065] | 378 | ! |
---|
| 379 | !-- Determine stretching factor if necessary |
---|
| 380 | IF ( number_stretch_level_end >= 1 ) THEN |
---|
| 381 | CALL calculate_stretching_factor( number_stretch_level_end ) |
---|
| 382 | ENDIF |
---|
| 383 | |
---|
| 384 | ! |
---|
[94] | 385 | !-- Grid for atmosphere with surface at z=0 (k=0, w-grid). |
---|
[3065] | 386 | !-- First compute the u- and v-levels. In case of dirichlet bc for u and v |
---|
| 387 | !-- the first u/v- and w-level (k=0) are defined at same height (z=0). |
---|
[843] | 388 | !-- The second u-level (k=1) corresponds to the top of the |
---|
[4386] | 389 | !-- surface layer. In case of symmetric boundaries (closed channel flow), |
---|
[4340] | 390 | !-- the first grid point is always at z=0. |
---|
| 391 | IF ( ibc_uv_b == 0 .OR. ibc_uv_b == 2 .OR. & |
---|
| 392 | topography == 'closed_channel' ) THEN |
---|
[1353] | 393 | zu(0) = 0.0_wp |
---|
[667] | 394 | ELSE |
---|
[3065] | 395 | zu(0) = - dz(1) * 0.5_wp |
---|
[667] | 396 | ENDIF |
---|
[3065] | 397 | |
---|
| 398 | zu(1) = dz(1) * 0.5_wp |
---|
| 399 | |
---|
| 400 | ! |
---|
| 401 | !-- Determine u and v height levels considering the possibility of grid |
---|
| 402 | !-- stretching in several heights. |
---|
| 403 | n = 1 |
---|
| 404 | dz_stretch_level_start_index = nzt+1 |
---|
| 405 | dz_stretch_level_end_index = nzt+1 |
---|
| 406 | dz_stretched = dz(1) |
---|
[1] | 407 | |
---|
[3065] | 408 | !-- The default value of dz_stretch_level_start is negative, thus the first |
---|
[4386] | 409 | !-- condition is true even if no stretching shall be applied. Hence, the |
---|
| 410 | !-- second condition is also necessary. |
---|
[4340] | 411 | DO k = 2, nzt+1-symmetry_flag |
---|
[3065] | 412 | IF ( dz_stretch_level_start(n) <= zu(k-1) .AND. & |
---|
| 413 | dz_stretch_level_start(n) /= -9999999.9_wp ) THEN |
---|
| 414 | dz_stretched = dz_stretched * dz_stretch_factor_array(n) |
---|
| 415 | |
---|
| 416 | IF ( dz(n) > dz(n+1) ) THEN |
---|
| 417 | dz_stretched = MAX( dz_stretched, dz(n+1) ) !Restrict dz_stretched to the user-specified (higher) dz |
---|
| 418 | ELSE |
---|
| 419 | dz_stretched = MIN( dz_stretched, dz(n+1) ) !Restrict dz_stretched to the user-specified (lower) dz |
---|
| 420 | ENDIF |
---|
| 421 | |
---|
| 422 | IF ( dz_stretch_level_start_index(n) == nzt+1 ) & |
---|
| 423 | dz_stretch_level_start_index(n) = k-1 |
---|
| 424 | |
---|
[94] | 425 | ENDIF |
---|
[3065] | 426 | |
---|
[94] | 427 | zu(k) = zu(k-1) + dz_stretched |
---|
[3065] | 428 | |
---|
| 429 | ! |
---|
| 430 | !-- Make sure that the stretching ends exactly at dz_stretch_level_end |
---|
| 431 | dz_level_end = ABS( zu(k) - dz_stretch_level_end(n) ) |
---|
| 432 | |
---|
| 433 | IF ( dz_level_end < dz(n+1)/3.0 ) THEN |
---|
| 434 | zu(k) = dz_stretch_level_end(n) |
---|
| 435 | dz_stretched = dz(n+1) |
---|
| 436 | dz_stretch_level_end_index(n) = k |
---|
| 437 | n = n + 1 |
---|
| 438 | ENDIF |
---|
[94] | 439 | ENDDO |
---|
[4340] | 440 | |
---|
| 441 | ! |
---|
| 442 | !-- If a closed channel flow is simulated, make sure that grid structure is |
---|
| 443 | !-- the same for both bottom and top boundary. (Hint: Using a different dz |
---|
| 444 | !-- at the bottom and at the top makes no sense due to symmetric boundaries |
---|
| 445 | !-- where dz should be equal. Therefore, different dz at the bottom and top |
---|
| 446 | !-- causes an abort (see check_parameters).) |
---|
| 447 | IF ( topography == 'closed_channel' ) THEN |
---|
| 448 | zu(nzt+1) = zu(nzt) + dz(1) * 0.5_wp |
---|
| 449 | ENDIF |
---|
[1] | 450 | |
---|
| 451 | ! |
---|
[94] | 452 | !-- Compute the w-levels. They are always staggered half-way between the |
---|
[843] | 453 | !-- corresponding u-levels. In case of dirichlet bc for u and v at the |
---|
| 454 | !-- ground the first u- and w-level (k=0) are defined at same height (z=0). |
---|
[4340] | 455 | !-- Per default, the top w-level is extrapolated linearly. In case of |
---|
| 456 | !-- a closed channel flow, zu(nzt+1) and zw(nzt) must be set explicitely. |
---|
| 457 | !-- (Hint: Using a different dz at the bottom and at the top makes no sense |
---|
| 458 | !-- due to symmetric boundaries where dz should be equal. Therefore, |
---|
| 459 | !-- different dz at the bottom and top causes an abort (see |
---|
| 460 | !-- check_parameters).) |
---|
[1353] | 461 | zw(0) = 0.0_wp |
---|
[4340] | 462 | DO k = 1, nzt-symmetry_flag |
---|
[1353] | 463 | zw(k) = ( zu(k) + zu(k+1) ) * 0.5_wp |
---|
[94] | 464 | ENDDO |
---|
[4340] | 465 | IF ( topography == 'closed_channel' ) THEN |
---|
| 466 | zw(nzt) = zw(nzt-1) + dz(1) |
---|
| 467 | zw(nzt+1) = zw(nzt) + dz(1) |
---|
| 468 | ELSE |
---|
| 469 | zw(nzt+1) = zw(nzt) + 2.0_wp * ( zu(nzt+1) - zw(nzt) ) |
---|
| 470 | ENDIF |
---|
[1] | 471 | |
---|
[4386] | 472 | ELSE !ocean branch |
---|
[3065] | 473 | |
---|
[1] | 474 | ! |
---|
[3065] | 475 | !-- The stretching region has to be large enough to allow for a smooth |
---|
[4386] | 476 | !-- transition between two different grid spacings. The number 4 is an |
---|
| 477 | !-- empirical value |
---|
[3065] | 478 | DO n = 1, number_stretch_level_start |
---|
| 479 | min_dz_stretch_level_end(n) = dz_stretch_level_start(n) - & |
---|
| 480 | 4 * MAX( dz(n),dz(n+1) ) |
---|
| 481 | ENDDO |
---|
| 482 | |
---|
[3066] | 483 | IF ( ANY( min_dz_stretch_level_end (1:number_stretch_level_start) < & |
---|
| 484 | dz_stretch_level_end(1:number_stretch_level_start) ) ) THEN |
---|
[4386] | 485 | message_string= 'Each dz_stretch_level_end has to be less ' // & |
---|
[3065] | 486 | 'than its corresponding value for &' // & |
---|
| 487 | 'dz_stretch_level_start - 4*MAX(dz(n),dz(n+1)) '//& |
---|
| 488 | 'to allow for smooth grid stretching' |
---|
| 489 | CALL message( 'init_grid', 'PA0224', 1, 2, 0, 6, 0 ) |
---|
| 490 | ENDIF |
---|
| 491 | |
---|
| 492 | ! |
---|
[3068] | 493 | !-- Stretching must not be applied close to the surface (last two grid |
---|
| 494 | !-- points). For the default case dz_stretch_level_start is negative. |
---|
[4386] | 495 | IF ( ANY( dz_stretch_level_start >= - dz(1) * 1.5_wp ) ) THEN |
---|
| 496 | WRITE( message_string, * ) 'Each dz_stretch_level_start has to be ',& |
---|
| 497 | 'less than ', -dz(1) * 1.5 |
---|
[3065] | 498 | CALL message( 'init_grid', 'PA0226', 1, 2, 0, 6, 0 ) |
---|
| 499 | ENDIF |
---|
| 500 | |
---|
| 501 | ! |
---|
| 502 | !-- The stretching has to start and end on a grid level. Therefore |
---|
[4386] | 503 | !-- user-specified values are mapped to the next highest level. The |
---|
| 504 | !-- calculation of the first level is realized differently just because of |
---|
| 505 | !-- historical reasons (the advanced/new stretching mechanism was realized |
---|
| 506 | !-- in a way that results don't change if the old parameters |
---|
| 507 | !-- dz_stretch_level, dz_stretch_factor and dz_max are used) |
---|
[3065] | 508 | IF ( number_stretch_level_start /= 0 ) THEN |
---|
| 509 | dz_stretch_level_start(1) = INT( (dz_stretch_level_start(1) + & |
---|
| 510 | dz(1)/2.0) / dz(1) ) & |
---|
| 511 | * dz(1) - dz(1)/2.0 |
---|
| 512 | ENDIF |
---|
| 513 | |
---|
| 514 | IF ( number_stretch_level_start > 1 ) THEN |
---|
| 515 | DO n = 2, number_stretch_level_start |
---|
| 516 | dz_stretch_level_start(n) = INT( dz_stretch_level_start(n) / & |
---|
| 517 | dz(n) ) * dz(n) |
---|
| 518 | ENDDO |
---|
| 519 | ENDIF |
---|
| 520 | |
---|
| 521 | IF ( number_stretch_level_end /= 0 ) THEN |
---|
| 522 | DO n = 1, number_stretch_level_end |
---|
| 523 | dz_stretch_level_end(n) = INT( dz_stretch_level_end(n) / & |
---|
| 524 | dz(n+1) ) * dz(n+1) |
---|
| 525 | ENDDO |
---|
| 526 | ENDIF |
---|
| 527 | |
---|
| 528 | ! |
---|
| 529 | !-- Determine stretching factor if necessary |
---|
| 530 | IF ( number_stretch_level_end >= 1 ) THEN |
---|
| 531 | CALL calculate_stretching_factor( number_stretch_level_end ) |
---|
| 532 | ENDIF |
---|
| 533 | |
---|
| 534 | ! |
---|
[843] | 535 | !-- Grid for ocean with free water surface is at k=nzt (w-grid). |
---|
| 536 | !-- In case of neumann bc at the ground the first first u-level (k=0) lies |
---|
| 537 | !-- below the first w-level (k=0). In case of dirichlet bc the first u- and |
---|
| 538 | !-- w-level are defined at same height, but staggered from the second level. |
---|
[4386] | 539 | !-- The second u-level (k=1) corresponds to the top of the surface layer. |
---|
[3065] | 540 | !-- z values are negative starting from z=0 (surface) |
---|
| 541 | zu(nzt+1) = dz(1) * 0.5_wp |
---|
| 542 | zu(nzt) = - dz(1) * 0.5_wp |
---|
[94] | 543 | |
---|
[3065] | 544 | ! |
---|
| 545 | !-- Determine u and v height levels considering the possibility of grid |
---|
| 546 | !-- stretching in several heights. |
---|
| 547 | n = 1 |
---|
| 548 | dz_stretch_level_start_index = 0 |
---|
| 549 | dz_stretch_level_end_index = 0 |
---|
| 550 | dz_stretched = dz(1) |
---|
| 551 | |
---|
[94] | 552 | DO k = nzt-1, 0, -1 |
---|
[3065] | 553 | |
---|
| 554 | IF ( dz_stretch_level_start(n) >= zu(k+1) ) THEN |
---|
| 555 | dz_stretched = dz_stretched * dz_stretch_factor_array(n) |
---|
| 556 | |
---|
| 557 | IF ( dz(n) > dz(n+1) ) THEN |
---|
| 558 | dz_stretched = MAX( dz_stretched, dz(n+1) ) !Restrict dz_stretched to the user-specified (higher) dz |
---|
| 559 | ELSE |
---|
| 560 | dz_stretched = MIN( dz_stretched, dz(n+1) ) !Restrict dz_stretched to the user-specified (lower) dz |
---|
| 561 | ENDIF |
---|
| 562 | |
---|
| 563 | IF ( dz_stretch_level_start_index(n) == 0 ) & |
---|
| 564 | dz_stretch_level_start_index(n) = k+1 |
---|
| 565 | |
---|
| 566 | ENDIF |
---|
| 567 | |
---|
| 568 | zu(k) = zu(k+1) - dz_stretched |
---|
| 569 | |
---|
[1418] | 570 | ! |
---|
[3065] | 571 | !-- Make sure that the stretching ends exactly at dz_stretch_level_end |
---|
| 572 | dz_level_end = ABS( zu(k) - dz_stretch_level_end(n) ) |
---|
| 573 | |
---|
| 574 | IF ( dz_level_end < dz(n+1)/3.0 ) THEN |
---|
| 575 | zu(k) = dz_stretch_level_end(n) |
---|
| 576 | dz_stretched = dz(n+1) |
---|
| 577 | dz_stretch_level_end_index(n) = k |
---|
| 578 | n = n + 1 |
---|
[94] | 579 | ENDIF |
---|
| 580 | ENDDO |
---|
[3065] | 581 | |
---|
[94] | 582 | ! |
---|
| 583 | !-- Compute the w-levels. They are always staggered half-way between the |
---|
[843] | 584 | !-- corresponding u-levels, except in case of dirichlet bc for u and v |
---|
| 585 | !-- at the ground. In this case the first u- and w-level are defined at |
---|
| 586 | !-- same height. The top w-level (nzt+1) is not used but set for |
---|
| 587 | !-- consistency, since w and all scalar variables are defined up tp nzt+1. |
---|
[3065] | 588 | zw(nzt+1) = dz(1) |
---|
[1353] | 589 | zw(nzt) = 0.0_wp |
---|
[94] | 590 | DO k = 0, nzt |
---|
[1353] | 591 | zw(k) = ( zu(k) + zu(k+1) ) * 0.5_wp |
---|
[94] | 592 | ENDDO |
---|
| 593 | |
---|
[843] | 594 | ! |
---|
| 595 | !-- In case of dirichlet bc for u and v the first u- and w-level are defined |
---|
| 596 | !-- at same height. |
---|
| 597 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 598 | zu(0) = zw(0) |
---|
| 599 | ENDIF |
---|
| 600 | |
---|
[4386] | 601 | ENDIF !End of defining the vertical grid levels |
---|
[94] | 602 | |
---|
| 603 | ! |
---|
[1] | 604 | !-- Compute grid lengths. |
---|
| 605 | DO k = 1, nzt+1 |
---|
| 606 | dzu(k) = zu(k) - zu(k-1) |
---|
[1353] | 607 | ddzu(k) = 1.0_wp / dzu(k) |
---|
[1] | 608 | dzw(k) = zw(k) - zw(k-1) |
---|
[1353] | 609 | ddzw(k) = 1.0_wp / dzw(k) |
---|
[1] | 610 | ENDDO |
---|
| 611 | |
---|
| 612 | DO k = 1, nzt |
---|
[1353] | 613 | dd2zu(k) = 1.0_wp / ( dzu(k) + dzu(k+1) ) |
---|
[1] | 614 | ENDDO |
---|
[667] | 615 | |
---|
| 616 | ! |
---|
[709] | 617 | !-- The FFT- SOR-pressure solvers assume grid spacings of a staggered grid |
---|
| 618 | !-- everywhere. For the actual grid, the grid spacing at the lowest level |
---|
| 619 | !-- is only dz/2, but should be dz. Therefore, an additional array |
---|
| 620 | !-- containing with appropriate grid information is created for these |
---|
| 621 | !-- solvers. |
---|
[1575] | 622 | IF ( psolver(1:9) /= 'multigrid' ) THEN |
---|
[667] | 623 | ALLOCATE( ddzu_pres(1:nzt+1) ) |
---|
| 624 | ddzu_pres = ddzu |
---|
[864] | 625 | ddzu_pres(1) = ddzu_pres(2) ! change for lowest level |
---|
[1] | 626 | ENDIF |
---|
| 627 | |
---|
| 628 | ! |
---|
| 629 | !-- Compute the reciprocal values of the horizontal grid lengths. |
---|
[1353] | 630 | ddx = 1.0_wp / dx |
---|
| 631 | ddy = 1.0_wp / dy |
---|
[1] | 632 | dx2 = dx * dx |
---|
| 633 | dy2 = dy * dy |
---|
[1353] | 634 | ddx2 = 1.0_wp / dx2 |
---|
| 635 | ddy2 = 1.0_wp / dy2 |
---|
[1] | 636 | |
---|
| 637 | ! |
---|
[2696] | 638 | !-- Allocate 3D array to set topography |
---|
| 639 | ALLOCATE( topo(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 640 | topo = 0 |
---|
| 641 | ! |
---|
[4386] | 642 | !-- Initialize topography by generic topography or read topography from file. |
---|
[2696] | 643 | CALL init_topo( topo ) |
---|
| 644 | ! |
---|
| 645 | !-- Set flags to mask topography on the grid. |
---|
| 646 | CALL set_topo_flags( topo ) |
---|
| 647 | ! |
---|
| 648 | !-- Calculate wall flag arrays for the multigrid method. |
---|
| 649 | !-- Please note, wall flags are only applied in the non-optimized version. |
---|
[4109] | 650 | IF ( psolver == 'multigrid_noopt' ) CALL poismg_noopt_init |
---|
[2696] | 651 | |
---|
| 652 | ! |
---|
| 653 | !-- Init flags for ws-scheme to degrade order of the numerics near walls, i.e. |
---|
[4109] | 654 | !-- to decrease the numerical stencil appropriately. The order of the scheme |
---|
| 655 | !-- is degraded near solid walls as well as near non-cyclic inflow and outflow |
---|
| 656 | !-- boundaries. Do this separately for momentum and scalars. |
---|
| 657 | IF ( momentum_advec == 'ws-scheme' ) THEN |
---|
| 658 | ALLOCATE( advc_flags_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 659 | CALL ws_init_flags_momentum |
---|
| 660 | ENDIF |
---|
| 661 | IF ( scalar_advec == 'ws-scheme' ) THEN |
---|
| 662 | ALLOCATE( advc_flags_s(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 663 | advc_flags_s = 0 |
---|
| 664 | |
---|
| 665 | CALL ws_init_flags_scalar( bc_dirichlet_l .OR. bc_radiation_l, & |
---|
| 666 | bc_dirichlet_n .OR. bc_radiation_n, & |
---|
| 667 | bc_dirichlet_r .OR. bc_radiation_r, & |
---|
| 668 | bc_dirichlet_s .OR. bc_radiation_s, & |
---|
| 669 | advc_flags_s ) |
---|
| 670 | ENDIF |
---|
[2696] | 671 | |
---|
| 672 | ! |
---|
| 673 | !-- Determine the maximum level of topography. It is used for |
---|
| 674 | !-- steering the degradation of order of the applied advection scheme, |
---|
[4328] | 675 | !-- as well in the lpm. |
---|
[2696] | 676 | k_top = 0 |
---|
| 677 | DO i = nxl, nxr |
---|
| 678 | DO j = nys, nyn |
---|
| 679 | DO k = nzb, nzt + 1 |
---|
[4109] | 680 | k_top = MAX( k_top, MERGE( k, 0, .NOT. BTEST( topo(k,j,i), 0 ) ) ) |
---|
[2696] | 681 | ENDDO |
---|
| 682 | ENDDO |
---|
[1] | 683 | ENDDO |
---|
[2696] | 684 | #if defined( __parallel ) |
---|
[4328] | 685 | CALL MPI_ALLREDUCE( k_top, nzb_max, 1, MPI_INTEGER, & |
---|
[2696] | 686 | MPI_MAX, comm2d, ierr ) |
---|
| 687 | #else |
---|
[4328] | 688 | nzb_max = k_top |
---|
[2696] | 689 | #endif |
---|
[1] | 690 | ! |
---|
[4328] | 691 | !-- Increment nzb_max by 1 in order to allow for proper diverengence correction. |
---|
| 692 | !-- Further, in case topography extents up to the model top, limit to nzt. |
---|
| 693 | nzb_max = MIN( nzb_max+1, nzt ) |
---|
| 694 | ! |
---|
[2968] | 695 | !-- Determine minimum index of topography. Usually, this will be nzb. In case |
---|
| 696 | !-- there is elevated topography, however, the lowest topography will be higher. |
---|
| 697 | !-- This index is e.g. used to calculate mean first-grid point atmosphere |
---|
| 698 | !-- temperature, surface pressure and density, etc. . |
---|
| 699 | topo_min_level = 0 |
---|
| 700 | #if defined( __parallel ) |
---|
[4168] | 701 | CALL MPI_ALLREDUCE( MINVAL( topo_top_ind(nys:nyn,nxl:nxr,0) ), & |
---|
[2968] | 702 | topo_min_level, 1, MPI_INTEGER, MPI_MIN, comm2d, ierr ) |
---|
| 703 | #else |
---|
[4168] | 704 | topo_min_level = MINVAL( topo_top_ind(nys:nyn,nxl:nxr,0) ) |
---|
[2968] | 705 | #endif |
---|
| 706 | ! |
---|
[2696] | 707 | !-- Initialize boundary conditions via surface type |
---|
| 708 | CALL init_bc |
---|
[3182] | 709 | |
---|
[2696] | 710 | ! |
---|
| 711 | !-- Allocate and set topography height arrays required for data output |
---|
| 712 | IF ( TRIM( topography ) /= 'flat' ) THEN |
---|
| 713 | ! |
---|
| 714 | !-- Allocate and set the arrays containing the topography height |
---|
| 715 | IF ( nxr == nx .AND. nyn /= ny ) THEN |
---|
[4386] | 716 | ALLOCATE( zu_s_inner(nxl:nxr+1,nys:nyn) ) |
---|
| 717 | ALLOCATE( zw_w_inner(nxl:nxr+1,nys:nyn) ) |
---|
[2696] | 718 | ELSEIF ( nxr /= nx .AND. nyn == ny ) THEN |
---|
[4386] | 719 | ALLOCATE( zu_s_inner(nxl:nxr,nys:nyn+1) ) |
---|
| 720 | ALLOCATE( zw_w_inner(nxl:nxr,nys:nyn+1) ) |
---|
[2696] | 721 | ELSEIF ( nxr == nx .AND. nyn == ny ) THEN |
---|
[4386] | 722 | ALLOCATE( zu_s_inner(nxl:nxr+1,nys:nyn+1) ) |
---|
| 723 | ALLOCATE( zw_w_inner(nxl:nxr+1,nys:nyn+1) ) |
---|
[2696] | 724 | ELSE |
---|
[4386] | 725 | ALLOCATE( zu_s_inner(nxl:nxr,nys:nyn) ) |
---|
| 726 | ALLOCATE( zw_w_inner(nxl:nxr,nys:nyn) ) |
---|
[2696] | 727 | ENDIF |
---|
| 728 | |
---|
| 729 | zu_s_inner = 0.0_wp |
---|
| 730 | zw_w_inner = 0.0_wp |
---|
| 731 | ! |
---|
| 732 | !-- Determine local topography height on scalar and w-grid. Note, setting |
---|
[4329] | 733 | !-- lateral boundary values is not necessary, realized via wall_flags_static_0 |
---|
[2696] | 734 | !-- array. Further, please note that loop bounds are different from |
---|
| 735 | !-- nxl to nxr and nys to nyn on south and right model boundary, hence, |
---|
| 736 | !-- use intrinsic lbound and ubound functions to infer array bounds. |
---|
| 737 | DO i = LBOUND(zu_s_inner, 1), UBOUND(zu_s_inner, 1) |
---|
| 738 | DO j = LBOUND(zu_s_inner, 2), UBOUND(zu_s_inner, 2) |
---|
| 739 | ! |
---|
| 740 | !-- Topography height on scalar grid. Therefore, determine index of |
---|
| 741 | !-- upward-facing surface element on scalar grid. |
---|
[4168] | 742 | zu_s_inner(i,j) = zu(topo_top_ind(j,i,0)) |
---|
[2696] | 743 | ! |
---|
| 744 | !-- Topography height on w grid. Therefore, determine index of |
---|
| 745 | !-- upward-facing surface element on w grid. |
---|
[4168] | 746 | zw_w_inner(i,j) = zw(topo_top_ind(j,i,3)) |
---|
[2696] | 747 | ENDDO |
---|
| 748 | ENDDO |
---|
| 749 | ENDIF |
---|
| 750 | |
---|
| 751 | ! |
---|
| 752 | !-- In the following, calculate 2D index arrays. Note, these will be removed |
---|
| 753 | !-- soon. |
---|
[1] | 754 | !-- Allocate outer and inner index arrays for topography and set |
---|
[2232] | 755 | !-- defaults. |
---|
[4386] | 756 | ALLOCATE( nzb_s_inner(nysg:nyng,nxlg:nxrg) ) |
---|
| 757 | ALLOCATE( nzb_s_outer(nysg:nyng,nxlg:nxrg) ) |
---|
| 758 | ALLOCATE( nzb_u_inner(nysg:nyng,nxlg:nxrg) ) |
---|
| 759 | ALLOCATE( nzb_u_outer(nysg:nyng,nxlg:nxrg) ) |
---|
| 760 | ALLOCATE( nzb_v_inner(nysg:nyng,nxlg:nxrg) ) |
---|
| 761 | ALLOCATE( nzb_v_outer(nysg:nyng,nxlg:nxrg) ) |
---|
| 762 | ALLOCATE( nzb_w_inner(nysg:nyng,nxlg:nxrg) ) |
---|
| 763 | ALLOCATE( nzb_w_outer(nysg:nyng,nxlg:nxrg) ) |
---|
| 764 | ALLOCATE( nzb_diff_s_inner(nysg:nyng,nxlg:nxrg) ) |
---|
| 765 | ALLOCATE( nzb_diff_s_outer(nysg:nyng,nxlg:nxrg) ) |
---|
| 766 | ALLOCATE( nzb_local(nysg:nyng,nxlg:nxrg) ) |
---|
| 767 | ALLOCATE( nzb_tmp(nysg:nyng,nxlg:nxrg) ) |
---|
[2696] | 768 | ! |
---|
| 769 | !-- Initialize 2D-index arrays. Note, these will be removed soon! |
---|
[4168] | 770 | nzb_local(nys:nyn,nxl:nxr) = topo_top_ind(nys:nyn,nxl:nxr,0) |
---|
[2696] | 771 | CALL exchange_horiz_2d_int( nzb_local, nys, nyn, nxl, nxr, nbgp ) |
---|
[2968] | 772 | ! |
---|
| 773 | !-- Check topography for consistency with model domain. Therefore, use |
---|
| 774 | !-- maximum and minium topography-top indices. Note, minimum topography top |
---|
| 775 | !-- index is already calculated. |
---|
[2696] | 776 | IF ( TRIM( topography ) /= 'flat' ) THEN |
---|
| 777 | #if defined( __parallel ) |
---|
[4168] | 778 | CALL MPI_ALLREDUCE( MAXVAL( topo_top_ind(nys:nyn,nxl:nxr,0) ), & |
---|
[3182] | 779 | nzb_local_max, 1, MPI_INTEGER, MPI_MAX, comm2d, ierr ) |
---|
[2696] | 780 | #else |
---|
[4168] | 781 | nzb_local_max = MAXVAL( topo_top_ind(nys:nyn,nxl:nxr,0) ) |
---|
[2696] | 782 | #endif |
---|
[2968] | 783 | nzb_local_min = topo_min_level |
---|
[2696] | 784 | ! |
---|
| 785 | !-- Consistency checks |
---|
| 786 | IF ( nzb_local_min < 0 .OR. nzb_local_max > nz + 1 ) THEN |
---|
| 787 | WRITE( message_string, * ) 'nzb_local values are outside the', & |
---|
[3045] | 788 | ' model domain', & |
---|
[3046] | 789 | '&MINVAL( nzb_local ) = ', nzb_local_min, & |
---|
| 790 | '&MAXVAL( nzb_local ) = ', nzb_local_max |
---|
[2696] | 791 | CALL message( 'init_grid', 'PA0210', 1, 2, 0, 6, 0 ) |
---|
| 792 | ENDIF |
---|
| 793 | ENDIF |
---|
[1] | 794 | |
---|
| 795 | nzb_s_inner = nzb; nzb_s_outer = nzb |
---|
| 796 | nzb_u_inner = nzb; nzb_u_outer = nzb |
---|
| 797 | nzb_v_inner = nzb; nzb_v_outer = nzb |
---|
| 798 | nzb_w_inner = nzb; nzb_w_outer = nzb |
---|
| 799 | |
---|
| 800 | ! |
---|
[19] | 801 | !-- Define vertical gridpoint from (or to) which on the usual finite difference |
---|
[1] | 802 | !-- form (which does not use surface fluxes) is applied |
---|
[1691] | 803 | IF ( constant_flux_layer .OR. use_surface_fluxes ) THEN |
---|
[1] | 804 | nzb_diff = nzb + 2 |
---|
| 805 | ELSE |
---|
| 806 | nzb_diff = nzb + 1 |
---|
| 807 | ENDIF |
---|
| 808 | |
---|
| 809 | nzb_diff_s_inner = nzb_diff; nzb_diff_s_outer = nzb_diff |
---|
[2696] | 810 | ! |
---|
| 811 | !-- Set Neumann conditions for topography. Will be removed soon. |
---|
| 812 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
| 813 | IF ( nys == 0 ) THEN |
---|
[2927] | 814 | DO i = 1, nbgp |
---|
| 815 | nzb_local(nys-i,:) = nzb_local(nys,:) |
---|
| 816 | ENDDO |
---|
[2696] | 817 | ELSEIF ( nyn == ny ) THEN |
---|
[2927] | 818 | DO i = 1, nbgp |
---|
| 819 | nzb_local(ny+i,:) = nzb_local(ny,:) |
---|
| 820 | ENDDO |
---|
[2696] | 821 | ENDIF |
---|
| 822 | ENDIF |
---|
[1] | 823 | |
---|
[2696] | 824 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
| 825 | IF ( nxl == 0 ) THEN |
---|
[2927] | 826 | DO i = 1, nbgp |
---|
| 827 | nzb_local(:,nxl-i) = nzb_local(:,nxl) |
---|
| 828 | ENDDO |
---|
[2696] | 829 | ELSEIF ( nxr == nx ) THEN |
---|
[2927] | 830 | DO i = 1, nbgp |
---|
| 831 | nzb_local(:,nx+i) = nzb_local(:,nx) |
---|
| 832 | ENDDO |
---|
[2696] | 833 | ENDIF |
---|
| 834 | ENDIF |
---|
[1] | 835 | ! |
---|
[2696] | 836 | !-- Initialization of 2D index arrays, will be removed soon! |
---|
| 837 | !-- Initialize nzb_s_inner and nzb_w_inner |
---|
| 838 | nzb_s_inner = nzb_local |
---|
| 839 | nzb_w_inner = nzb_local |
---|
| 840 | |
---|
| 841 | ! |
---|
| 842 | !-- Initialize remaining index arrays: |
---|
| 843 | !-- first pre-initialize them with nzb_s_inner... |
---|
| 844 | nzb_u_inner = nzb_s_inner |
---|
| 845 | nzb_u_outer = nzb_s_inner |
---|
| 846 | nzb_v_inner = nzb_s_inner |
---|
| 847 | nzb_v_outer = nzb_s_inner |
---|
| 848 | nzb_w_outer = nzb_s_inner |
---|
| 849 | nzb_s_outer = nzb_s_inner |
---|
| 850 | |
---|
| 851 | ! |
---|
| 852 | !-- nzb_s_outer: |
---|
| 853 | !-- extend nzb_local east-/westwards first, then north-/southwards |
---|
| 854 | nzb_tmp = nzb_local |
---|
| 855 | DO j = nys, nyn |
---|
| 856 | DO i = nxl, nxr |
---|
| 857 | nzb_tmp(j,i) = MAX( nzb_local(j,i-1), nzb_local(j,i), & |
---|
| 858 | nzb_local(j,i+1) ) |
---|
| 859 | ENDDO |
---|
| 860 | ENDDO |
---|
| 861 | |
---|
| 862 | CALL exchange_horiz_2d_int( nzb_tmp, nys, nyn, nxl, nxr, nbgp ) |
---|
| 863 | |
---|
| 864 | DO i = nxl, nxr |
---|
| 865 | DO j = nys, nyn |
---|
| 866 | nzb_s_outer(j,i) = MAX( nzb_tmp(j-1,i), nzb_tmp(j,i), & |
---|
| 867 | nzb_tmp(j+1,i) ) |
---|
| 868 | ENDDO |
---|
| 869 | ! |
---|
| 870 | !-- non-cyclic boundary conditions (overwritten by call of |
---|
| 871 | !-- exchange_horiz_2d_int below in case of cyclic boundary conditions) |
---|
| 872 | IF ( nys == 0 ) THEN |
---|
| 873 | j = -1 |
---|
| 874 | nzb_s_outer(j,i) = MAX( nzb_tmp(j+1,i), nzb_tmp(j,i) ) |
---|
| 875 | ENDIF |
---|
| 876 | IF ( nyn == ny ) THEN |
---|
| 877 | j = ny + 1 |
---|
| 878 | nzb_s_outer(j,i) = MAX( nzb_tmp(j-1,i), nzb_tmp(j,i) ) |
---|
| 879 | ENDIF |
---|
| 880 | ENDDO |
---|
| 881 | ! |
---|
| 882 | !-- nzb_w_outer: |
---|
| 883 | !-- identical to nzb_s_outer |
---|
| 884 | nzb_w_outer = nzb_s_outer |
---|
| 885 | ! |
---|
| 886 | !-- nzb_u_inner: |
---|
| 887 | !-- extend nzb_local rightwards only |
---|
| 888 | nzb_tmp = nzb_local |
---|
| 889 | DO j = nys, nyn |
---|
| 890 | DO i = nxl, nxr |
---|
| 891 | nzb_tmp(j,i) = MAX( nzb_local(j,i-1), nzb_local(j,i) ) |
---|
| 892 | ENDDO |
---|
| 893 | ENDDO |
---|
| 894 | |
---|
| 895 | CALL exchange_horiz_2d_int( nzb_tmp, nys, nyn, nxl, nxr, nbgp ) |
---|
| 896 | |
---|
| 897 | nzb_u_inner = nzb_tmp |
---|
| 898 | ! |
---|
| 899 | !-- nzb_u_outer: |
---|
| 900 | !-- extend current nzb_tmp (nzb_u_inner) north-/southwards |
---|
| 901 | DO i = nxl, nxr |
---|
| 902 | DO j = nys, nyn |
---|
| 903 | nzb_u_outer(j,i) = MAX( nzb_tmp(j-1,i), nzb_tmp(j,i), & |
---|
| 904 | nzb_tmp(j+1,i) ) |
---|
| 905 | ENDDO |
---|
| 906 | ! |
---|
| 907 | !-- non-cyclic boundary conditions (overwritten by call of |
---|
| 908 | !-- exchange_horiz_2d_int below in case of cyclic boundary conditions) |
---|
| 909 | IF ( nys == 0 ) THEN |
---|
| 910 | j = -1 |
---|
| 911 | nzb_u_outer(j,i) = MAX( nzb_tmp(j+1,i), nzb_tmp(j,i) ) |
---|
| 912 | ENDIF |
---|
| 913 | IF ( nyn == ny ) THEN |
---|
| 914 | j = ny + 1 |
---|
| 915 | nzb_u_outer(j,i) = MAX( nzb_tmp(j-1,i), nzb_tmp(j,i) ) |
---|
| 916 | ENDIF |
---|
| 917 | ENDDO |
---|
| 918 | |
---|
| 919 | ! |
---|
| 920 | !-- nzb_v_inner: |
---|
| 921 | !-- extend nzb_local northwards only |
---|
| 922 | nzb_tmp = nzb_local |
---|
| 923 | DO i = nxl, nxr |
---|
| 924 | DO j = nys, nyn |
---|
| 925 | nzb_tmp(j,i) = MAX( nzb_local(j-1,i), nzb_local(j,i) ) |
---|
| 926 | ENDDO |
---|
| 927 | ENDDO |
---|
| 928 | |
---|
| 929 | CALL exchange_horiz_2d_int( nzb_tmp, nys, nyn, nxl, nxr, nbgp ) |
---|
| 930 | nzb_v_inner = nzb_tmp |
---|
| 931 | |
---|
| 932 | ! |
---|
| 933 | !-- nzb_v_outer: |
---|
| 934 | !-- extend current nzb_tmp (nzb_v_inner) right-/leftwards |
---|
| 935 | DO j = nys, nyn |
---|
| 936 | DO i = nxl, nxr |
---|
| 937 | nzb_v_outer(j,i) = MAX( nzb_tmp(j,i-1), nzb_tmp(j,i), & |
---|
| 938 | nzb_tmp(j,i+1) ) |
---|
| 939 | ENDDO |
---|
| 940 | ! |
---|
| 941 | !-- non-cyclic boundary conditions (overwritten by call of |
---|
| 942 | !-- exchange_horiz_2d_int below in case of cyclic boundary conditions) |
---|
| 943 | IF ( nxl == 0 ) THEN |
---|
| 944 | i = -1 |
---|
| 945 | nzb_v_outer(j,i) = MAX( nzb_tmp(j,i+1), nzb_tmp(j,i) ) |
---|
| 946 | ENDIF |
---|
| 947 | IF ( nxr == nx ) THEN |
---|
| 948 | i = nx + 1 |
---|
| 949 | nzb_v_outer(j,i) = MAX( nzb_tmp(j,i-1), nzb_tmp(j,i) ) |
---|
| 950 | ENDIF |
---|
| 951 | ENDDO |
---|
| 952 | |
---|
| 953 | ! |
---|
| 954 | !-- Exchange of lateral boundary values (parallel computers) and cyclic |
---|
| 955 | !-- boundary conditions, if applicable. |
---|
| 956 | !-- Since nzb_s_inner and nzb_w_inner are derived directly from nzb_local |
---|
| 957 | !-- they do not require exchange and are not included here. |
---|
| 958 | CALL exchange_horiz_2d_int( nzb_u_inner, nys, nyn, nxl, nxr, nbgp ) |
---|
| 959 | CALL exchange_horiz_2d_int( nzb_u_outer, nys, nyn, nxl, nxr, nbgp ) |
---|
| 960 | CALL exchange_horiz_2d_int( nzb_v_inner, nys, nyn, nxl, nxr, nbgp ) |
---|
| 961 | CALL exchange_horiz_2d_int( nzb_v_outer, nys, nyn, nxl, nxr, nbgp ) |
---|
| 962 | CALL exchange_horiz_2d_int( nzb_w_outer, nys, nyn, nxl, nxr, nbgp ) |
---|
| 963 | CALL exchange_horiz_2d_int( nzb_s_outer, nys, nyn, nxl, nxr, nbgp ) |
---|
| 964 | |
---|
| 965 | ! |
---|
| 966 | !-- Set the individual index arrays which define the k index from which on |
---|
| 967 | !-- the usual finite difference form (which does not use surface fluxes) is |
---|
| 968 | !-- applied |
---|
| 969 | IF ( constant_flux_layer .OR. use_surface_fluxes ) THEN |
---|
| 970 | nzb_diff_s_inner = nzb_s_inner + 2 |
---|
| 971 | nzb_diff_s_outer = nzb_s_outer + 2 |
---|
| 972 | ELSE |
---|
| 973 | nzb_diff_s_inner = nzb_s_inner + 1 |
---|
| 974 | nzb_diff_s_outer = nzb_s_outer + 1 |
---|
| 975 | ENDIF |
---|
| 976 | ! |
---|
| 977 | !-- Vertical nesting: communicate vertical grid level arrays between fine and |
---|
| 978 | !-- coarse grid |
---|
| 979 | IF ( vnested ) CALL vnest_init_grid |
---|
| 980 | |
---|
| 981 | END SUBROUTINE init_grid |
---|
| 982 | |
---|
[3065] | 983 | |
---|
[2696] | 984 | ! Description: |
---|
| 985 | ! -----------------------------------------------------------------------------! |
---|
[3065] | 986 | !> Calculation of the stretching factor through an iterative method. Ideas were |
---|
| 987 | !> taken from the paper "Regional stretched grid generation and its application |
---|
| 988 | !> to the NCAR RegCM (1999)". Normally, no analytic solution exists because the |
---|
| 989 | !> system of equations has two variables (r,l) but four requirements |
---|
| 990 | !> (l=integer, r=[0,88;1,2], Eq(6), Eq(5) starting from index j=1) which |
---|
| 991 | !> results into an overdetermined system. |
---|
| 992 | !------------------------------------------------------------------------------! |
---|
| 993 | SUBROUTINE calculate_stretching_factor( number_end ) |
---|
| 994 | |
---|
| 995 | USE control_parameters, & |
---|
[3241] | 996 | ONLY: dz, dz_stretch_factor_array, & |
---|
[3065] | 997 | dz_stretch_level_end, dz_stretch_level_start, message_string |
---|
| 998 | |
---|
| 999 | USE kinds |
---|
| 1000 | |
---|
| 1001 | IMPLICIT NONE |
---|
| 1002 | |
---|
| 1003 | INTEGER(iwp) :: iterations !< number of iterations until stretch_factor_lower/upper_limit is reached |
---|
| 1004 | INTEGER(iwp) :: l_rounded !< after l_rounded grid levels dz(n) is strechted to dz(n+1) with stretch_factor_2 |
---|
| 1005 | INTEGER(iwp) :: n !< loop variable for stretching |
---|
| 1006 | |
---|
| 1007 | INTEGER(iwp), INTENT(IN) :: number_end !< number of user-specified end levels for stretching |
---|
| 1008 | |
---|
| 1009 | REAL(wp) :: delta_l !< absolute difference between l and l_rounded |
---|
| 1010 | REAL(wp) :: delta_stretch_factor !< absolute difference between stretch_factor_1 and stretch_factor_2 |
---|
| 1011 | REAL(wp) :: delta_total_new !< sum of delta_l and delta_stretch_factor for the next iteration (should be as small as possible) |
---|
| 1012 | REAL(wp) :: delta_total_old !< sum of delta_l and delta_stretch_factor for the last iteration |
---|
| 1013 | REAL(wp) :: distance !< distance between dz_stretch_level_start and dz_stretch_level_end (stretching region) |
---|
| 1014 | REAL(wp) :: l !< value that fulfil Eq. (5) in the paper mentioned above together with stretch_factor_1 exactly |
---|
| 1015 | REAL(wp) :: numerator !< numerator of the quotient |
---|
| 1016 | REAL(wp) :: stretch_factor_1 !< stretching factor that fulfil Eq. (5) togehter with l exactly |
---|
| 1017 | REAL(wp) :: stretch_factor_2 !< stretching factor that fulfil Eq. (6) togehter with l_rounded exactly |
---|
| 1018 | |
---|
[3068] | 1019 | REAL(wp) :: dz_stretch_factor_array_2(9) = 1.08_wp !< Array that contains all stretch_factor_2 that belongs to stretch_factor_1 |
---|
| 1020 | |
---|
[4386] | 1021 | REAL(wp), PARAMETER :: stretch_factor_interval = 1.0E-06_wp !< interval for sampling possible stretching factors |
---|
| 1022 | REAL(wp), PARAMETER :: stretch_factor_lower_limit = 0.88_wp !< lowest possible stretching factor |
---|
| 1023 | REAL(wp), PARAMETER :: stretch_factor_upper_limit = 1.12_wp !< highest possible stretching factor |
---|
[3065] | 1024 | |
---|
| 1025 | |
---|
[3068] | 1026 | l = 0 |
---|
| 1027 | DO n = 1, number_end |
---|
| 1028 | |
---|
| 1029 | iterations = 1 |
---|
[4386] | 1030 | stretch_factor_1 = 1.0_wp |
---|
| 1031 | stretch_factor_2 = 1.0_wp |
---|
| 1032 | delta_total_old = 1.0_wp |
---|
[3065] | 1033 | |
---|
[4386] | 1034 | ! |
---|
| 1035 | !-- First branch for stretching from rough to fine |
---|
[3068] | 1036 | IF ( dz(n) > dz(n+1) ) THEN |
---|
| 1037 | DO WHILE ( stretch_factor_1 >= stretch_factor_lower_limit ) |
---|
| 1038 | |
---|
[4386] | 1039 | stretch_factor_1 = 1.0_wp - iterations * stretch_factor_interval |
---|
| 1040 | distance = ABS( dz_stretch_level_end(n) - & |
---|
| 1041 | dz_stretch_level_start(n) ) |
---|
| 1042 | numerator = distance*stretch_factor_1/dz(n) + & |
---|
[3068] | 1043 | stretch_factor_1 - distance/dz(n) |
---|
| 1044 | |
---|
[4386] | 1045 | IF ( numerator > 0.0_wp ) THEN |
---|
| 1046 | l = LOG( numerator ) / LOG( stretch_factor_1 ) - 1.0_wp |
---|
[3068] | 1047 | l_rounded = NINT( l ) |
---|
| 1048 | delta_l = ABS( l_rounded - l ) / l |
---|
| 1049 | ENDIF |
---|
| 1050 | |
---|
| 1051 | stretch_factor_2 = EXP( LOG( dz(n+1)/dz(n) ) / (l_rounded) ) |
---|
| 1052 | |
---|
[4386] | 1053 | delta_stretch_factor = ABS( stretch_factor_1 - & |
---|
| 1054 | stretch_factor_2 ) / & |
---|
[3068] | 1055 | stretch_factor_2 |
---|
| 1056 | |
---|
| 1057 | delta_total_new = delta_l + delta_stretch_factor |
---|
[3065] | 1058 | |
---|
| 1059 | ! |
---|
[4386] | 1060 | !-- stretch_factor_1 is taken to guarantee that the stretching |
---|
| 1061 | !-- procedure ends as close as possible to dz_stretch_level_end. |
---|
| 1062 | !-- stretch_factor_2 would guarantee that the stretched dz(n) is |
---|
| 1063 | !-- equal to dz(n+1) after l_rounded grid levels. |
---|
[3068] | 1064 | IF (delta_total_new < delta_total_old) THEN |
---|
| 1065 | dz_stretch_factor_array(n) = stretch_factor_1 |
---|
| 1066 | dz_stretch_factor_array_2(n) = stretch_factor_2 |
---|
| 1067 | delta_total_old = delta_total_new |
---|
| 1068 | ENDIF |
---|
| 1069 | |
---|
| 1070 | iterations = iterations + 1 |
---|
| 1071 | |
---|
| 1072 | ENDDO |
---|
[4386] | 1073 | |
---|
| 1074 | ! |
---|
| 1075 | !-- Second branch for stretching from fine to rough |
---|
[3068] | 1076 | ELSEIF ( dz(n) < dz(n+1) ) THEN |
---|
| 1077 | DO WHILE ( stretch_factor_1 <= stretch_factor_upper_limit ) |
---|
| 1078 | |
---|
[4386] | 1079 | stretch_factor_1 = 1.0_wp + iterations * stretch_factor_interval |
---|
| 1080 | distance = ABS( dz_stretch_level_end(n) - & |
---|
[3068] | 1081 | dz_stretch_level_start(n) ) |
---|
[4386] | 1082 | numerator = distance*stretch_factor_1/dz(n) + & |
---|
[3068] | 1083 | stretch_factor_1 - distance/dz(n) |
---|
| 1084 | |
---|
[4386] | 1085 | l = LOG( numerator ) / LOG( stretch_factor_1 ) - 1.0_wp |
---|
[3068] | 1086 | l_rounded = NINT( l ) |
---|
| 1087 | delta_l = ABS( l_rounded - l ) / l |
---|
| 1088 | |
---|
| 1089 | stretch_factor_2 = EXP( LOG( dz(n+1)/dz(n) ) / (l_rounded) ) |
---|
[3065] | 1090 | |
---|
[4386] | 1091 | delta_stretch_factor = ABS( stretch_factor_1 - & |
---|
| 1092 | stretch_factor_2 ) / & |
---|
[3068] | 1093 | stretch_factor_2 |
---|
| 1094 | |
---|
| 1095 | delta_total_new = delta_l + delta_stretch_factor |
---|
| 1096 | |
---|
[3065] | 1097 | ! |
---|
[4386] | 1098 | !-- stretch_factor_1 is taken to guarantee that the stretching |
---|
| 1099 | !-- procedure ends as close as possible to dz_stretch_level_end. |
---|
| 1100 | !-- stretch_factor_2 would guarantee that the stretched dz(n) is |
---|
| 1101 | !-- equal to dz(n+1) after l_rounded grid levels. |
---|
[3068] | 1102 | IF (delta_total_new < delta_total_old) THEN |
---|
| 1103 | dz_stretch_factor_array(n) = stretch_factor_1 |
---|
| 1104 | dz_stretch_factor_array_2(n) = stretch_factor_2 |
---|
| 1105 | delta_total_old = delta_total_new |
---|
| 1106 | ENDIF |
---|
[3065] | 1107 | |
---|
[3068] | 1108 | iterations = iterations + 1 |
---|
| 1109 | ENDDO |
---|
| 1110 | |
---|
| 1111 | ELSE |
---|
| 1112 | message_string= 'Two adjacent values of dz must be different' |
---|
| 1113 | CALL message( 'init_grid', 'PA0228', 1, 2, 0, 6, 0 ) |
---|
| 1114 | |
---|
| 1115 | ENDIF |
---|
| 1116 | |
---|
| 1117 | ! |
---|
| 1118 | !-- Check if also the second stretching factor fits into the allowed |
---|
| 1119 | !-- interval. If not, print a warning for the user. |
---|
| 1120 | IF ( dz_stretch_factor_array_2(n) < stretch_factor_lower_limit .OR. & |
---|
| 1121 | dz_stretch_factor_array_2(n) > stretch_factor_upper_limit ) THEN |
---|
| 1122 | WRITE( message_string, * ) 'stretch_factor_2 = ', & |
---|
| 1123 | dz_stretch_factor_array_2(n), ' which is',& |
---|
| 1124 | ' responsible for exactly reaching& dz =',& |
---|
| 1125 | dz(n+1), 'after a specific amount of', & |
---|
| 1126 | ' grid levels& exceeds the upper', & |
---|
| 1127 | ' limit =', stretch_factor_upper_limit, & |
---|
| 1128 | ' &or lower limit = ', & |
---|
| 1129 | stretch_factor_lower_limit |
---|
| 1130 | CALL message( 'init_grid', 'PA0499', 0, 1, 0, 6, 0 ) |
---|
| 1131 | |
---|
| 1132 | ENDIF |
---|
| 1133 | ENDDO |
---|
[3065] | 1134 | |
---|
| 1135 | END SUBROUTINE calculate_stretching_factor |
---|
| 1136 | |
---|
| 1137 | |
---|
| 1138 | ! Description: |
---|
| 1139 | ! -----------------------------------------------------------------------------! |
---|
[2696] | 1140 | !> Set temporary topography flags and reference buildings on top of underlying |
---|
| 1141 | !> orography. |
---|
| 1142 | !------------------------------------------------------------------------------! |
---|
| 1143 | SUBROUTINE process_topography( topo_3d ) |
---|
| 1144 | |
---|
| 1145 | USE arrays_3d, & |
---|
[2747] | 1146 | ONLY: zu, zw |
---|
[2696] | 1147 | |
---|
| 1148 | USE control_parameters, & |
---|
[3294] | 1149 | ONLY: bc_lr_cyc, bc_ns_cyc, message_string, ocean_mode |
---|
[2696] | 1150 | |
---|
| 1151 | USE indices, & |
---|
| 1152 | ONLY: nbgp, nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, nzb, & |
---|
| 1153 | nzt |
---|
| 1154 | |
---|
| 1155 | USE netcdf_data_input_mod, & |
---|
[3115] | 1156 | ONLY: buildings_f, building_id_f, building_type_f, input_pids_static, & |
---|
[2696] | 1157 | terrain_height_f |
---|
| 1158 | |
---|
| 1159 | USE kinds |
---|
| 1160 | |
---|
| 1161 | USE pegrid |
---|
| 1162 | |
---|
| 1163 | IMPLICIT NONE |
---|
| 1164 | |
---|
[2867] | 1165 | INTEGER(iwp) :: i !< running index along x-direction |
---|
| 1166 | INTEGER(iwp) :: j !< running index along y-direction |
---|
| 1167 | INTEGER(iwp) :: k !< running index along z-direction with respect to numeric grid |
---|
| 1168 | INTEGER(iwp) :: k2 !< running index along z-direction with respect to netcdf grid |
---|
| 1169 | INTEGER(iwp) :: nr !< index variable indication maximum terrain height for respective building ID |
---|
| 1170 | INTEGER(iwp) :: num_build !< counter for number of buildings |
---|
| 1171 | INTEGER(iwp) :: topo_top_index !< orography top index, used to map 3D buildings onto terrain |
---|
[2696] | 1172 | |
---|
| 1173 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: displace_dum !< displacements of start addresses, used for MPI_ALLGATHERV |
---|
| 1174 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: build_ids !< building IDs on entire model domain |
---|
| 1175 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: build_ids_final !< building IDs on entire model domain, multiple occurences are sorted out |
---|
| 1176 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: build_ids_final_tmp !< temporary array used for resizing |
---|
| 1177 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: build_ids_l !< building IDs on local subdomain |
---|
| 1178 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: build_ids_l_tmp !< temporary array used to resize array of building IDs |
---|
| 1179 | |
---|
| 1180 | INTEGER(iwp), DIMENSION(0:numprocs-1) :: num_buildings !< number of buildings with different ID on entire model domain |
---|
| 1181 | INTEGER(iwp), DIMENSION(0:numprocs-1) :: num_buildings_l !< number of buildings with different ID on local subdomain |
---|
| 1182 | |
---|
| 1183 | INTEGER(iwp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: topo_3d !< input array for 3D topography and dummy array for setting "outer"-flags |
---|
| 1184 | |
---|
| 1185 | REAL(wp) :: ocean_offset !< offset to consider inverse vertical coordinate at topography definition |
---|
[3103] | 1186 | REAL(wp) :: oro_min = 0.0_wp !< minimum terrain height in entire model domain, used to reference terrain to zero |
---|
[2696] | 1187 | REAL(wp), DIMENSION(:), ALLOCATABLE :: oro_max !< maximum terrain height occupied by an building with certain id |
---|
| 1188 | REAL(wp), DIMENSION(:), ALLOCATABLE :: oro_max_l !< maximum terrain height occupied by an building with certain id, on local subdomain |
---|
| 1189 | |
---|
| 1190 | ! |
---|
[3103] | 1191 | !-- Reference lowest terrain height to zero. In case the minimum terrain height |
---|
| 1192 | !-- is non-zero, all grid points of the lower vertical grid levels might be |
---|
| 1193 | !-- entirely below the surface, meaning a waste of computational resources. |
---|
| 1194 | !-- In order to avoid this, remove the lowest terrain height. Please note, |
---|
| 1195 | !-- in case of a nested run, the global minimum from all parent and childs |
---|
| 1196 | !-- need to be remove to avoid steep edges at the child-domain boundaries. |
---|
| 1197 | IF ( input_pids_static ) THEN |
---|
[4159] | 1198 | |
---|
[3200] | 1199 | #if defined( __parallel ) |
---|
[3103] | 1200 | CALL MPI_ALLREDUCE( MINVAL( terrain_height_f%var ), oro_min, 1, & |
---|
| 1201 | MPI_REAL, MPI_MIN, MPI_COMM_WORLD, ierr ) |
---|
[3200] | 1202 | #else |
---|
| 1203 | oro_min = MINVAL( terrain_height_f%var ) |
---|
| 1204 | #endif |
---|
[3103] | 1205 | terrain_height_f%var = terrain_height_f%var - oro_min |
---|
| 1206 | ! |
---|
| 1207 | !-- Give an informative message that terrain height is referenced to zero |
---|
| 1208 | IF ( oro_min > 0.0_wp ) THEN |
---|
| 1209 | WRITE( message_string, * ) 'Terrain height was internally shifted '//& |
---|
| 1210 | 'downwards by ', oro_min, 'meter(s) to save ' // & |
---|
| 1211 | 'computational resources.' |
---|
| 1212 | CALL message( 'init_grid', 'PA0505', 0, 0, 0, 6, 0 ) |
---|
| 1213 | ENDIF |
---|
| 1214 | ENDIF |
---|
| 1215 | |
---|
| 1216 | ! |
---|
[2696] | 1217 | !-- In the following, buildings and orography are further preprocessed |
---|
| 1218 | !-- before they are mapped on the LES grid. |
---|
| 1219 | !-- Buildings are mapped on top of the orography by maintaining the roof |
---|
| 1220 | !-- shape of the building. This can be achieved by referencing building on |
---|
| 1221 | !-- top of the maximum terrain height within the area occupied by the |
---|
| 1222 | !-- respective building. As buildings and terrain height are defined PE-wise, |
---|
| 1223 | !-- parallelization of this referencing is required (a building can be |
---|
| 1224 | !-- distributed between different PEs). |
---|
| 1225 | !-- In a first step, determine the number of buildings with different |
---|
| 1226 | !-- building id on each PE. In a next step, all building ids are gathered |
---|
| 1227 | !-- into one array which is present to all PEs. For each building ID, |
---|
| 1228 | !-- the maximum terrain height occupied by the respective building is |
---|
| 1229 | !-- computed and distributed to each PE. |
---|
| 1230 | !-- Finally, for each building id and its respective reference orography, |
---|
| 1231 | !-- builidings are mapped on top. |
---|
| 1232 | !-- |
---|
| 1233 | !-- First, pre-set topography flags, bit 1 indicates orography, bit 2 |
---|
| 1234 | !-- buildings |
---|
| 1235 | !-- classify the respective surfaces. |
---|
| 1236 | topo_3d = IBSET( topo_3d, 0 ) |
---|
| 1237 | topo_3d(nzb,:,:) = IBCLR( topo_3d(nzb,:,:), 0 ) |
---|
| 1238 | ! |
---|
[3051] | 1239 | !-- In order to map topography on PALM grid also in case of ocean simulations, |
---|
| 1240 | !-- pre-calculate an offset value. |
---|
[3294] | 1241 | ocean_offset = MERGE( zw(0), 0.0_wp, ocean_mode ) |
---|
[3051] | 1242 | ! |
---|
[2696] | 1243 | !-- Reference buildings on top of orography. This is not necessary |
---|
| 1244 | !-- if topography is read from ASCII file as no distinction between buildings |
---|
| 1245 | !-- and terrain height can be made. Moreover, this is also not necessary if |
---|
| 1246 | !-- urban-surface and land-surface model are used at the same time. |
---|
[2897] | 1247 | IF ( input_pids_static ) THEN |
---|
| 1248 | |
---|
| 1249 | IF ( buildings_f%from_file ) THEN |
---|
| 1250 | num_buildings_l = 0 |
---|
| 1251 | num_buildings = 0 |
---|
[2696] | 1252 | ! |
---|
[3925] | 1253 | !-- Allocate at least one element for building ids and give it an inital |
---|
| 1254 | !-- negative value that will be overwritten later. This, however, is |
---|
| 1255 | !-- necessary in case there all IDs in the model domain are fill values. |
---|
[2897] | 1256 | ALLOCATE( build_ids_l(1) ) |
---|
[3925] | 1257 | build_ids_l = -1 |
---|
[2897] | 1258 | DO i = nxl, nxr |
---|
| 1259 | DO j = nys, nyn |
---|
| 1260 | IF ( building_id_f%var(j,i) /= building_id_f%fill ) THEN |
---|
| 1261 | IF ( num_buildings_l(myid) > 0 ) THEN |
---|
[4144] | 1262 | IF ( ANY( building_id_f%var(j,i) == build_ids_l ) ) & |
---|
[2897] | 1263 | THEN |
---|
| 1264 | CYCLE |
---|
| 1265 | ELSE |
---|
| 1266 | num_buildings_l(myid) = num_buildings_l(myid) + 1 |
---|
[2696] | 1267 | ! |
---|
| 1268 | !-- Resize array with different local building ids |
---|
| 1269 | ALLOCATE( build_ids_l_tmp(1:SIZE(build_ids_l)) ) |
---|
| 1270 | build_ids_l_tmp = build_ids_l |
---|
| 1271 | DEALLOCATE( build_ids_l ) |
---|
| 1272 | ALLOCATE( build_ids_l(1:num_buildings_l(myid)) ) |
---|
| 1273 | build_ids_l(1:num_buildings_l(myid)-1) = & |
---|
| 1274 | build_ids_l_tmp(1:num_buildings_l(myid)-1) |
---|
| 1275 | build_ids_l(num_buildings_l(myid)) = building_id_f%var(j,i) |
---|
| 1276 | DEALLOCATE( build_ids_l_tmp ) |
---|
| 1277 | ENDIF |
---|
| 1278 | ! |
---|
[2897] | 1279 | !-- First occuring building id on PE |
---|
| 1280 | ELSE |
---|
| 1281 | num_buildings_l(myid) = num_buildings_l(myid) + 1 |
---|
| 1282 | build_ids_l(1) = building_id_f%var(j,i) |
---|
| 1283 | ENDIF |
---|
[2696] | 1284 | ENDIF |
---|
[2897] | 1285 | ENDDO |
---|
[2696] | 1286 | ENDDO |
---|
| 1287 | ! |
---|
[2897] | 1288 | !-- Determine number of different building ids for the entire domain |
---|
[2696] | 1289 | #if defined( __parallel ) |
---|
[2897] | 1290 | CALL MPI_ALLREDUCE( num_buildings_l, num_buildings, numprocs, & |
---|
| 1291 | MPI_INTEGER, MPI_SUM, comm2d, ierr ) |
---|
[2696] | 1292 | #else |
---|
[2897] | 1293 | num_buildings = num_buildings_l |
---|
[2696] | 1294 | #endif |
---|
| 1295 | ! |
---|
[2897] | 1296 | !-- Gather all buildings ids on each PEs. |
---|
| 1297 | !-- First, allocate array encompassing all building ids in model domain. |
---|
| 1298 | ALLOCATE( build_ids(1:SUM(num_buildings)) ) |
---|
[2696] | 1299 | #if defined( __parallel ) |
---|
| 1300 | ! |
---|
[2897] | 1301 | !-- Allocate array for displacements. |
---|
| 1302 | !-- As each PE may has a different number of buildings, so that |
---|
| 1303 | !-- the block sizes send by each PE may not be equal. Hence, |
---|
| 1304 | !-- information about the respective displacement is required, indicating |
---|
| 1305 | !-- the respective adress where each MPI-task writes into the receive |
---|
| 1306 | !-- buffer array |
---|
| 1307 | ALLOCATE( displace_dum(0:numprocs-1) ) |
---|
| 1308 | displace_dum(0) = 0 |
---|
| 1309 | DO i = 1, numprocs-1 |
---|
| 1310 | displace_dum(i) = displace_dum(i-1) + num_buildings(i-1) |
---|
| 1311 | ENDDO |
---|
[2696] | 1312 | |
---|
[2897] | 1313 | CALL MPI_ALLGATHERV( build_ids_l(1:num_buildings_l(myid)), & |
---|
| 1314 | num_buildings(myid), & |
---|
| 1315 | MPI_INTEGER, & |
---|
| 1316 | build_ids, & |
---|
| 1317 | num_buildings, & |
---|
| 1318 | displace_dum, & |
---|
| 1319 | MPI_INTEGER, & |
---|
| 1320 | comm2d, ierr ) |
---|
[2696] | 1321 | |
---|
[2897] | 1322 | DEALLOCATE( displace_dum ) |
---|
[2696] | 1323 | |
---|
| 1324 | #else |
---|
[2897] | 1325 | build_ids = build_ids_l |
---|
[2696] | 1326 | #endif |
---|
| 1327 | |
---|
| 1328 | ! |
---|
[2897] | 1329 | !-- Note, in parallel mode building ids can occure mutliple times, as |
---|
| 1330 | !-- each PE has send its own ids. Therefore, sort out building ids which |
---|
| 1331 | !-- appear more than one time. |
---|
| 1332 | num_build = 0 |
---|
| 1333 | DO nr = 1, SIZE(build_ids) |
---|
[2696] | 1334 | |
---|
[2897] | 1335 | IF ( ALLOCATED(build_ids_final) ) THEN |
---|
[4144] | 1336 | IF ( ANY( build_ids(nr) == build_ids_final ) ) THEN |
---|
[2897] | 1337 | CYCLE |
---|
| 1338 | ELSE |
---|
| 1339 | num_build = num_build + 1 |
---|
| 1340 | ! |
---|
| 1341 | !-- Resize |
---|
| 1342 | ALLOCATE( build_ids_final_tmp(1:num_build) ) |
---|
| 1343 | build_ids_final_tmp(1:num_build-1) = build_ids_final(1:num_build-1) |
---|
| 1344 | DEALLOCATE( build_ids_final ) |
---|
| 1345 | ALLOCATE( build_ids_final(1:num_build) ) |
---|
| 1346 | build_ids_final(1:num_build-1) = build_ids_final_tmp(1:num_build-1) |
---|
| 1347 | build_ids_final(num_build) = build_ids(nr) |
---|
| 1348 | DEALLOCATE( build_ids_final_tmp ) |
---|
| 1349 | ENDIF |
---|
[2696] | 1350 | ELSE |
---|
| 1351 | num_build = num_build + 1 |
---|
| 1352 | ALLOCATE( build_ids_final(1:num_build) ) |
---|
| 1353 | build_ids_final(num_build) = build_ids(nr) |
---|
[2897] | 1354 | ENDIF |
---|
| 1355 | ENDDO |
---|
[2696] | 1356 | |
---|
| 1357 | ! |
---|
[3051] | 1358 | !-- Determine maximumum terrain height occupied by the respective |
---|
| 1359 | !-- building and temporalily store on oro_max |
---|
[2897] | 1360 | ALLOCATE( oro_max_l(1:SIZE(build_ids_final)) ) |
---|
| 1361 | ALLOCATE( oro_max(1:SIZE(build_ids_final)) ) |
---|
| 1362 | oro_max_l = 0.0_wp |
---|
[2696] | 1363 | |
---|
[2897] | 1364 | DO nr = 1, SIZE(build_ids_final) |
---|
[4159] | 1365 | oro_max_l(nr) = MAXVAL( & |
---|
| 1366 | MERGE( terrain_height_f%var(nys:nyn,nxl:nxr), & |
---|
| 1367 | 0.0_wp, & |
---|
| 1368 | building_id_f%var(nys:nyn,nxl:nxr) == & |
---|
[2897] | 1369 | build_ids_final(nr) ) ) |
---|
| 1370 | ENDDO |
---|
[2696] | 1371 | |
---|
| 1372 | #if defined( __parallel ) |
---|
[2897] | 1373 | IF ( SIZE(build_ids_final) >= 1 ) THEN |
---|
[4159] | 1374 | CALL MPI_ALLREDUCE( oro_max_l, oro_max, SIZE( oro_max ), MPI_REAL,& |
---|
[2897] | 1375 | MPI_MAX, comm2d, ierr ) |
---|
| 1376 | ENDIF |
---|
[2696] | 1377 | #else |
---|
[2897] | 1378 | oro_max = oro_max_l |
---|
[2696] | 1379 | #endif |
---|
[3051] | 1380 | ! |
---|
| 1381 | !-- Finally, determine discrete grid height of maximum orography occupied |
---|
[4159] | 1382 | !-- by a building. Use all-or-nothing approach, i.e. if terrain |
---|
| 1383 | !-- exceeds the scalar level the grid box is fully terrain and the |
---|
| 1384 | !-- maximum terrain is set to the zw level. |
---|
| 1385 | !-- terrain or |
---|
[3051] | 1386 | oro_max_l = 0.0 |
---|
| 1387 | DO nr = 1, SIZE(build_ids_final) |
---|
| 1388 | DO k = nzb, nzt |
---|
| 1389 | IF ( zu(k) - ocean_offset <= oro_max(nr) ) & |
---|
[3142] | 1390 | oro_max_l(nr) = zw(k) - ocean_offset |
---|
[3051] | 1391 | ENDDO |
---|
[3142] | 1392 | oro_max(nr) = oro_max_l(nr) |
---|
[3051] | 1393 | ENDDO |
---|
[2897] | 1394 | ENDIF |
---|
[2696] | 1395 | ! |
---|
[4245] | 1396 | !-- Allocate array for storing terrain height under buildings |
---|
| 1397 | IF ( buildings_f%from_file ) THEN |
---|
| 1398 | ALLOCATE( buildings_f%oro_max(nysg:nyng,nxlg:nxrg) ) |
---|
| 1399 | buildings_f%oro_max = buildings_f%fill1 |
---|
| 1400 | END IF |
---|
| 1401 | ! |
---|
[2867] | 1402 | !-- Map orography as well as buildings onto grid. |
---|
[2696] | 1403 | DO i = nxl, nxr |
---|
| 1404 | DO j = nys, nyn |
---|
[2867] | 1405 | topo_top_index = 0 |
---|
[3142] | 1406 | ! |
---|
| 1407 | !-- Obtain index in global building_id array |
---|
| 1408 | IF ( buildings_f%from_file ) THEN |
---|
| 1409 | IF ( building_id_f%var(j,i) /= building_id_f%fill ) THEN |
---|
| 1410 | ! |
---|
| 1411 | !-- Determine index where maximum terrain height occupied by |
---|
| 1412 | !-- the respective building height is stored. |
---|
| 1413 | nr = MINLOC( ABS( build_ids_final - & |
---|
| 1414 | building_id_f%var(j,i) ), DIM = 1 ) |
---|
[4245] | 1415 | ! |
---|
| 1416 | !-- Save grid-indexed oro_max |
---|
| 1417 | buildings_f%oro_max(j,i) = oro_max(nr) |
---|
[3142] | 1418 | ENDIF |
---|
| 1419 | ENDIF |
---|
[2696] | 1420 | DO k = nzb, nzt |
---|
| 1421 | ! |
---|
| 1422 | !-- In a first step, if grid point is below or equal the given |
---|
| 1423 | !-- terrain height, grid point is flagged to be of type natural. |
---|
| 1424 | !-- Please note, in case there is also a building which is lower |
---|
| 1425 | !-- than the vertical grid spacing, initialization of surface |
---|
| 1426 | !-- attributes will not be correct as given surface information |
---|
| 1427 | !-- will not be in accordance to the classified grid points. |
---|
[4159] | 1428 | !-- Hence, in this case, also a building flag. |
---|
[2747] | 1429 | IF ( zu(k) - ocean_offset <= terrain_height_f%var(j,i) ) THEN |
---|
[4189] | 1430 | topo_3d(k,j,i) = IBCLR( topo_3d(k,j,i), 0 ) |
---|
| 1431 | topo_3d(k,j,i) = IBSET( topo_3d(k,j,i), 1 ) |
---|
| 1432 | topo_top_index = k ! topo_top_index + 1 |
---|
[2696] | 1433 | ENDIF |
---|
| 1434 | ! |
---|
| 1435 | !-- Set building grid points. Here, only consider 2D buildings. |
---|
| 1436 | !-- 3D buildings require separate treatment. |
---|
[2897] | 1437 | IF ( buildings_f%from_file .AND. buildings_f%lod == 1 ) THEN |
---|
[4159] | 1438 | ! |
---|
| 1439 | !-- Fill-up the terrain to the level of maximum orography |
---|
| 1440 | !-- within the building-covered area. |
---|
| 1441 | IF ( building_id_f%var(j,i) /= building_id_f%fill ) THEN |
---|
| 1442 | ! |
---|
| 1443 | !-- Note, oro_max is always on zw level |
---|
| 1444 | IF ( zu(k) - ocean_offset < oro_max(nr) ) THEN |
---|
[2696] | 1445 | topo_3d(k,j,i) = IBCLR( topo_3d(k,j,i), 0 ) |
---|
[4159] | 1446 | topo_3d(k,j,i) = IBSET( topo_3d(k,j,i), 1 ) |
---|
| 1447 | ELSEIF ( zu(k) - ocean_offset <= & |
---|
| 1448 | oro_max(nr) + buildings_f%var_2d(j,i) ) THEN |
---|
| 1449 | topo_3d(k,j,i) = IBCLR( topo_3d(k,j,i), 0 ) |
---|
[2696] | 1450 | topo_3d(k,j,i) = IBSET( topo_3d(k,j,i), 2 ) |
---|
| 1451 | ENDIF |
---|
| 1452 | ENDIF |
---|
| 1453 | ENDIF |
---|
| 1454 | ENDDO |
---|
| 1455 | ! |
---|
[4159] | 1456 | !-- Special treatment for non grid-resolved buildings. This case, |
---|
| 1457 | !-- the uppermost terrain grid point is flagged as building as well |
---|
| 1458 | !-- well, even though no building exists at all. However, the |
---|
| 1459 | !-- surface element will be identified as urban-surface and the |
---|
| 1460 | !-- input data provided by the drivers is consistent to the surface |
---|
| 1461 | !-- classification. Else, all non grid-resolved buildings would vanish |
---|
| 1462 | !-- and identified as terrain grid points, which, however, won't be |
---|
| 1463 | !-- consistent with the input data. |
---|
| 1464 | IF ( buildings_f%from_file .AND. buildings_f%lod == 1 ) THEN |
---|
| 1465 | IF ( building_id_f%var(j,i) /= building_id_f%fill ) THEN |
---|
| 1466 | DO k = nzb, nzt |
---|
| 1467 | IF( zw(k) - ocean_offset == oro_max(nr) ) THEN |
---|
| 1468 | IF ( buildings_f%var_2d(j,i) <= zu(k+1) - zw(k) ) THEN |
---|
| 1469 | topo_3d(k,j,i) = IBSET( topo_3d(k,j,i), 2 ) |
---|
| 1470 | ENDIF |
---|
| 1471 | ENDIF |
---|
| 1472 | ENDDO |
---|
| 1473 | ENDIF |
---|
| 1474 | ENDIF |
---|
| 1475 | ! |
---|
[2696] | 1476 | !-- Map 3D buildings onto terrain height. |
---|
[2867] | 1477 | !-- In case of any slopes, map building on top of maximum terrain |
---|
| 1478 | !-- height covered by the building. In other words, extend |
---|
| 1479 | !-- building down to the respective local terrain-surface height. |
---|
[2897] | 1480 | IF ( buildings_f%from_file .AND. buildings_f%lod == 2 ) THEN |
---|
[2696] | 1481 | IF ( building_id_f%var(j,i) /= building_id_f%fill ) THEN |
---|
| 1482 | ! |
---|
[3051] | 1483 | !-- Extend building down to the terrain surface, i.e. fill-up |
---|
| 1484 | !-- surface irregularities below a building. Note, oro_max |
---|
| 1485 | !-- is already a discrete height according to the all-or-nothing |
---|
| 1486 | !-- approach, i.e. grid box is either topography or atmosphere, |
---|
| 1487 | !-- terrain top is defined at upper bound of the grid box. |
---|
| 1488 | !-- Hence, check for zw in this case. |
---|
[3115] | 1489 | !-- Note, do this only for buildings which are surface mounted, |
---|
| 1490 | !-- i.e. building types 1-6. Below bridges, which are represented |
---|
| 1491 | !-- exclusively by building type 7, terrain shape should be |
---|
| 1492 | !-- maintained. |
---|
[3855] | 1493 | IF ( building_type_f%from_file ) THEN |
---|
| 1494 | IF ( building_type_f%var(j,i) /= 7 ) THEN |
---|
| 1495 | DO k = topo_top_index + 1, nzt + 1 |
---|
[4159] | 1496 | IF ( zu(k) - ocean_offset <= oro_max(nr) ) THEN |
---|
[3855] | 1497 | topo_3d(k,j,i) = IBCLR( topo_3d(k,j,i), 0 ) |
---|
[4159] | 1498 | topo_3d(k,j,i) = IBSET( topo_3d(k,j,i), 1 ) |
---|
[3855] | 1499 | ENDIF |
---|
| 1500 | ENDDO |
---|
| 1501 | ! |
---|
| 1502 | !-- After surface irregularities are smoothen, determine |
---|
| 1503 | !-- lower start index where building starts. |
---|
| 1504 | DO k = nzb, nzt |
---|
[4159] | 1505 | IF ( zu(k) - ocean_offset <= oro_max(nr) ) & |
---|
[3855] | 1506 | topo_top_index = k |
---|
| 1507 | ENDDO |
---|
| 1508 | ENDIF |
---|
[3115] | 1509 | ENDIF |
---|
[3051] | 1510 | ! |
---|
| 1511 | !-- Finally, map building on top. |
---|
[2867] | 1512 | k2 = 0 |
---|
| 1513 | DO k = topo_top_index, nzt + 1 |
---|
[2796] | 1514 | IF ( k2 <= buildings_f%nz-1 ) THEN |
---|
[2696] | 1515 | IF ( buildings_f%var_3d(k2,j,i) == 1 ) THEN |
---|
| 1516 | topo_3d(k,j,i) = IBCLR( topo_3d(k,j,i), 0 ) |
---|
| 1517 | topo_3d(k,j,i) = IBSET( topo_3d(k,j,i), 2 ) |
---|
| 1518 | ENDIF |
---|
| 1519 | ENDIF |
---|
| 1520 | k2 = k2 + 1 |
---|
| 1521 | ENDDO |
---|
| 1522 | ENDIF |
---|
| 1523 | ENDIF |
---|
| 1524 | ENDDO |
---|
| 1525 | ENDDO |
---|
| 1526 | ! |
---|
[4265] | 1527 | !-- Horizontal exchange the oro_max array, which is required to for |
---|
| 1528 | !-- initialization of building-surface properties. |
---|
| 1529 | IF ( ALLOCATED( buildings_f%oro_max ) ) THEN |
---|
| 1530 | CALL exchange_horiz_2d( buildings_f%oro_max(:,:), nbgp ) |
---|
| 1531 | ENDIF |
---|
[4245] | 1532 | ! |
---|
[2696] | 1533 | !-- Deallocate temporary arrays required for processing and reading data |
---|
| 1534 | IF ( ALLOCATED( oro_max ) ) DEALLOCATE( oro_max ) |
---|
| 1535 | IF ( ALLOCATED( oro_max_l ) ) DEALLOCATE( oro_max_l ) |
---|
| 1536 | IF ( ALLOCATED( build_ids_final ) ) DEALLOCATE( build_ids_final ) |
---|
| 1537 | ! |
---|
| 1538 | !-- Topography input via ASCII format. |
---|
| 1539 | ELSE |
---|
[3294] | 1540 | ocean_offset = MERGE( zw(0), 0.0_wp, ocean_mode ) |
---|
[4159] | 1541 | ! |
---|
| 1542 | !-- Initialize topography bit 0 (indicates obstacle) everywhere to zero |
---|
| 1543 | !-- and clear all grid points at nzb, where alway a surface is defined. |
---|
| 1544 | !-- Further, set also bit 1 (indicates terrain) at nzb, which is further |
---|
| 1545 | !-- used for masked data output and further processing. Note, in the |
---|
| 1546 | !-- ASCII case no distinction is made between buildings and terrain, |
---|
| 1547 | !-- so that setting of bit 1 and 2 at the same time has no effect. |
---|
[2696] | 1548 | topo_3d = IBSET( topo_3d, 0 ) |
---|
| 1549 | topo_3d(nzb,:,:) = IBCLR( topo_3d(nzb,:,:), 0 ) |
---|
[4159] | 1550 | topo_3d(nzb,:,:) = IBSET( topo_3d(nzb,:,:), 1 ) |
---|
[2696] | 1551 | DO i = nxl, nxr |
---|
| 1552 | DO j = nys, nyn |
---|
| 1553 | DO k = nzb, nzt |
---|
[3538] | 1554 | ! |
---|
| 1555 | !-- Flag topography for all grid points which are below |
---|
| 1556 | !-- the local topography height. |
---|
| 1557 | !-- Note, each topography is flagged as building. |
---|
[2747] | 1558 | IF ( zu(k) - ocean_offset <= buildings_f%var_2d(j,i) ) THEN |
---|
[4189] | 1559 | topo_3d(k,j,i) = IBCLR( topo_3d(k,j,i), 0 ) |
---|
| 1560 | topo_3d(k,j,i) = IBSET( topo_3d(k,j,i), 2 ) !indicates building |
---|
[2696] | 1561 | ENDIF |
---|
| 1562 | ENDDO |
---|
| 1563 | ENDDO |
---|
| 1564 | ENDDO |
---|
| 1565 | ENDIF |
---|
| 1566 | |
---|
| 1567 | CALL exchange_horiz_int( topo_3d, nys, nyn, nxl, nxr, nzt, nbgp ) |
---|
| 1568 | |
---|
| 1569 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
| 1570 | IF ( nys == 0 ) topo_3d(:,-1,:) = topo_3d(:,0,:) |
---|
| 1571 | IF ( nyn == ny ) topo_3d(:,ny+1,:) = topo_3d(:,ny,:) |
---|
| 1572 | ENDIF |
---|
| 1573 | |
---|
| 1574 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
| 1575 | IF ( nxl == 0 ) topo_3d(:,:,-1) = topo_3d(:,:,0) |
---|
| 1576 | IF ( nxr == nx ) topo_3d(:,:,nx+1) = topo_3d(:,:,nx) |
---|
| 1577 | ENDIF |
---|
| 1578 | |
---|
| 1579 | END SUBROUTINE process_topography |
---|
| 1580 | |
---|
| 1581 | |
---|
| 1582 | ! Description: |
---|
| 1583 | ! -----------------------------------------------------------------------------! |
---|
| 1584 | !> Filter topography, i.e. fill holes resolved by only one grid point. |
---|
| 1585 | !> Such holes are suspected to lead to velocity blow-ups as continuity |
---|
| 1586 | !> equation on discrete grid cannot be fulfilled in such case. |
---|
| 1587 | !------------------------------------------------------------------------------! |
---|
| 1588 | SUBROUTINE filter_topography( topo_3d ) |
---|
| 1589 | |
---|
| 1590 | USE control_parameters, & |
---|
| 1591 | ONLY: bc_lr_cyc, bc_ns_cyc, message_string |
---|
| 1592 | |
---|
| 1593 | USE indices, & |
---|
| 1594 | ONLY: nbgp, nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, nzb, nzt |
---|
| 1595 | |
---|
| 1596 | USE netcdf_data_input_mod, & |
---|
| 1597 | ONLY: building_id_f, building_type_f |
---|
| 1598 | |
---|
| 1599 | USE pegrid |
---|
| 1600 | |
---|
| 1601 | IMPLICIT NONE |
---|
| 1602 | |
---|
[2893] | 1603 | LOGICAL :: filled = .FALSE. !< flag indicating if holes were filled |
---|
| 1604 | |
---|
[2696] | 1605 | INTEGER(iwp) :: i !< running index along x-direction |
---|
| 1606 | INTEGER(iwp) :: j !< running index along y-direction |
---|
| 1607 | INTEGER(iwp) :: k !< running index along z-direction |
---|
| 1608 | INTEGER(iwp) :: num_hole !< number of holes (in topography) resolved by only one grid point |
---|
| 1609 | INTEGER(iwp) :: num_hole_l !< number of holes (in topography) resolved by only one grid point on local PE |
---|
| 1610 | INTEGER(iwp) :: num_wall !< number of surrounding vertical walls for a single grid point |
---|
| 1611 | |
---|
[2955] | 1612 | INTEGER(iwp), DIMENSION(:,:,:), ALLOCATABLE :: topo_tmp !< temporary 3D-topography used to fill holes |
---|
| 1613 | INTEGER(iwp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: topo_3d !< 3D-topography array merging buildings and orography |
---|
[2696] | 1614 | ! |
---|
| 1615 | !-- Before checking for holes, set lateral boundary conditions for |
---|
| 1616 | !-- topography. After hole-filling, boundary conditions must be set again. |
---|
| 1617 | !-- Several iterations are performed, in order to fill holes which might |
---|
| 1618 | !-- emerge by the filling-algorithm itself. |
---|
| 1619 | ALLOCATE( topo_tmp(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 1620 | topo_tmp = 0 |
---|
| 1621 | |
---|
| 1622 | num_hole = 99999 |
---|
| 1623 | DO WHILE ( num_hole > 0 ) |
---|
| 1624 | |
---|
| 1625 | num_hole = 0 |
---|
| 1626 | CALL exchange_horiz_int( topo_3d, nys, nyn, nxl, nxr, nzt, nbgp ) |
---|
[2955] | 1627 | ! |
---|
| 1628 | !-- Exchange also building ID and type. Note, building_type is an one-byte |
---|
| 1629 | !-- variable. |
---|
| 1630 | IF ( building_id_f%from_file ) & |
---|
| 1631 | CALL exchange_horiz_2d_int( building_id_f%var, nys, nyn, nxl, nxr, nbgp ) |
---|
[3763] | 1632 | IF ( building_type_f%from_file ) & |
---|
| 1633 | CALL exchange_horiz_2d_byte( building_type_f%var, nys, nyn, nxl, nxr, nbgp ) |
---|
[2696] | 1634 | |
---|
| 1635 | topo_tmp = topo_3d |
---|
| 1636 | ! |
---|
| 1637 | !-- In case of non-cyclic lateral boundaries, assume lateral boundary to be |
---|
| 1638 | !-- a solid wall. Thus, intermediate spaces of one grid point between |
---|
| 1639 | !-- boundary and some topographic structure will be filled. |
---|
| 1640 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
| 1641 | IF ( nys == 0 ) topo_tmp(:,-1,:) = IBCLR( topo_tmp(:,0,:), 0 ) |
---|
| 1642 | IF ( nyn == ny ) topo_tmp(:,ny+1,:) = IBCLR( topo_tmp(:,ny,:), 0 ) |
---|
| 1643 | ENDIF |
---|
| 1644 | |
---|
| 1645 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
| 1646 | IF ( nxl == 0 ) topo_tmp(:,:,-1) = IBCLR( topo_tmp(:,:,0), 0 ) |
---|
| 1647 | IF ( nxr == nx ) topo_tmp(:,:,nx+1) = IBCLR( topo_tmp(:,:,nx), 0 ) |
---|
| 1648 | ENDIF |
---|
| 1649 | |
---|
| 1650 | num_hole_l = 0 |
---|
| 1651 | DO i = nxl, nxr |
---|
| 1652 | DO j = nys, nyn |
---|
| 1653 | DO k = nzb+1, nzt |
---|
| 1654 | IF ( BTEST( topo_tmp(k,j,i), 0 ) ) THEN |
---|
| 1655 | num_wall = 0 |
---|
| 1656 | IF ( .NOT. BTEST( topo_tmp(k,j-1,i), 0 ) ) & |
---|
| 1657 | num_wall = num_wall + 1 |
---|
| 1658 | IF ( .NOT. BTEST( topo_tmp(k,j+1,i), 0 ) ) & |
---|
| 1659 | num_wall = num_wall + 1 |
---|
| 1660 | IF ( .NOT. BTEST( topo_tmp(k,j,i-1), 0 ) ) & |
---|
| 1661 | num_wall = num_wall + 1 |
---|
| 1662 | IF ( .NOT. BTEST( topo_tmp(k,j,i+1), 0 ) ) & |
---|
| 1663 | num_wall = num_wall + 1 |
---|
| 1664 | IF ( .NOT. BTEST( topo_tmp(k-1,j,i), 0 ) ) & |
---|
| 1665 | num_wall = num_wall + 1 |
---|
| 1666 | IF ( .NOT. BTEST( topo_tmp(k+1,j,i), 0 ) ) & |
---|
| 1667 | num_wall = num_wall + 1 |
---|
| 1668 | |
---|
| 1669 | IF ( num_wall >= 4 ) THEN |
---|
| 1670 | num_hole_l = num_hole_l + 1 |
---|
| 1671 | ! |
---|
[4314] | 1672 | !-- Clear flag 0 and set special flag ( bit 4) to indicate |
---|
[2696] | 1673 | !-- that new topography point is a result of filtering process. |
---|
| 1674 | topo_3d(k,j,i) = IBCLR( topo_3d(k,j,i), 0 ) |
---|
[4314] | 1675 | topo_3d(k,j,i) = IBSET( topo_3d(k,j,i), 4 ) |
---|
[2696] | 1676 | ! |
---|
| 1677 | !-- If filled grid point is occupied by a building, classify |
---|
| 1678 | !-- it as building grid point. |
---|
| 1679 | IF ( building_type_f%from_file ) THEN |
---|
| 1680 | IF ( building_type_f%var(j,i) /= & |
---|
| 1681 | building_type_f%fill .OR. & |
---|
| 1682 | building_type_f%var(j+1,i) /= & |
---|
| 1683 | building_type_f%fill .OR. & |
---|
| 1684 | building_type_f%var(j-1,i) /= & |
---|
| 1685 | building_type_f%fill .OR. & |
---|
| 1686 | building_type_f%var(j,i+1) /= & |
---|
| 1687 | building_type_f%fill .OR. & |
---|
| 1688 | building_type_f%var(j,i-1) /= & |
---|
| 1689 | building_type_f%fill ) THEN |
---|
| 1690 | ! |
---|
| 1691 | !-- Set flag indicating building surfaces |
---|
| 1692 | topo_3d(k,j,i) = IBSET( topo_3d(k,j,i), 2 ) |
---|
| 1693 | ! |
---|
| 1694 | !-- Set building_type and ID at this position if not |
---|
| 1695 | !-- already set. This is required for proper |
---|
| 1696 | !-- initialization of urban-surface energy balance |
---|
| 1697 | !-- solver. |
---|
| 1698 | IF ( building_type_f%var(j,i) == & |
---|
| 1699 | building_type_f%fill ) THEN |
---|
| 1700 | |
---|
| 1701 | IF ( building_type_f%var(j+1,i) /= & |
---|
| 1702 | building_type_f%fill ) THEN |
---|
| 1703 | building_type_f%var(j,i) = & |
---|
| 1704 | building_type_f%var(j+1,i) |
---|
| 1705 | building_id_f%var(j,i) = & |
---|
| 1706 | building_id_f%var(j+1,i) |
---|
| 1707 | ELSEIF ( building_type_f%var(j-1,i) /= & |
---|
| 1708 | building_type_f%fill ) THEN |
---|
| 1709 | building_type_f%var(j,i) = & |
---|
| 1710 | building_type_f%var(j-1,i) |
---|
| 1711 | building_id_f%var(j,i) = & |
---|
| 1712 | building_id_f%var(j-1,i) |
---|
| 1713 | ELSEIF ( building_type_f%var(j,i+1) /= & |
---|
| 1714 | building_type_f%fill ) THEN |
---|
| 1715 | building_type_f%var(j,i) = & |
---|
| 1716 | building_type_f%var(j,i+1) |
---|
| 1717 | building_id_f%var(j,i) = & |
---|
| 1718 | building_id_f%var(j,i+1) |
---|
| 1719 | ELSEIF ( building_type_f%var(j,i-1) /= & |
---|
| 1720 | building_type_f%fill ) THEN |
---|
| 1721 | building_type_f%var(j,i) = & |
---|
| 1722 | building_type_f%var(j,i-1) |
---|
| 1723 | building_id_f%var(j,i) = & |
---|
| 1724 | building_id_f%var(j,i-1) |
---|
| 1725 | ENDIF |
---|
| 1726 | ENDIF |
---|
| 1727 | ENDIF |
---|
| 1728 | ENDIF |
---|
| 1729 | ! |
---|
| 1730 | !-- If filled grid point is already classified as building |
---|
| 1731 | !-- everything is fine, else classify this grid point as |
---|
| 1732 | !-- natural type grid point. This case, values for the |
---|
| 1733 | !-- surface type are already set. |
---|
| 1734 | IF ( .NOT. BTEST( topo_3d(k,j,i), 2 ) ) THEN |
---|
| 1735 | topo_3d(k,j,i) = IBSET( topo_3d(k,j,i), 1 ) |
---|
| 1736 | ENDIF |
---|
| 1737 | ENDIF |
---|
| 1738 | ENDIF |
---|
| 1739 | ENDDO |
---|
| 1740 | ENDDO |
---|
| 1741 | ENDDO |
---|
| 1742 | ! |
---|
| 1743 | !-- Count the total number of holes, required for informative message. |
---|
| 1744 | #if defined( __parallel ) |
---|
| 1745 | CALL MPI_ALLREDUCE( num_hole_l, num_hole, 1, MPI_INTEGER, MPI_SUM, & |
---|
| 1746 | comm2d, ierr ) |
---|
| 1747 | #else |
---|
| 1748 | num_hole = num_hole_l |
---|
| 1749 | #endif |
---|
[2893] | 1750 | IF ( num_hole > 0 .AND. .NOT. filled ) filled = .TRUE. |
---|
[2696] | 1751 | |
---|
[2893] | 1752 | ENDDO |
---|
[2696] | 1753 | ! |
---|
[2893] | 1754 | !-- Create an informative message if any holes were filled. |
---|
| 1755 | IF ( filled ) THEN |
---|
| 1756 | WRITE( message_string, * ) 'Topography was filtered, i.e. holes ' // & |
---|
| 1757 | 'resolved by only one grid point ' // & |
---|
| 1758 | 'were filled during initialization.' |
---|
| 1759 | CALL message( 'init_grid', 'PA0430', 0, 0, 0, 6, 0 ) |
---|
| 1760 | ENDIF |
---|
[2696] | 1761 | |
---|
| 1762 | DEALLOCATE( topo_tmp ) |
---|
| 1763 | ! |
---|
| 1764 | !-- Finally, exchange topo_3d array again and if necessary set Neumann boundary |
---|
| 1765 | !-- condition in case of non-cyclic lateral boundaries. |
---|
| 1766 | CALL exchange_horiz_int( topo_3d, nys, nyn, nxl, nxr, nzt, nbgp ) |
---|
| 1767 | |
---|
| 1768 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
| 1769 | IF ( nys == 0 ) topo_3d(:,-1,:) = topo_3d(:,0,:) |
---|
| 1770 | IF ( nyn == ny ) topo_3d(:,ny+1,:) = topo_3d(:,ny,:) |
---|
| 1771 | ENDIF |
---|
| 1772 | |
---|
| 1773 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
| 1774 | IF ( nxl == 0 ) topo_3d(:,:,-1) = topo_3d(:,:,0) |
---|
| 1775 | IF ( nxr == nx ) topo_3d(:,:,nx+1) = topo_3d(:,:,nx) |
---|
| 1776 | ENDIF |
---|
[2955] | 1777 | ! |
---|
| 1778 | !-- Exchange building ID and type. Note, building_type is an one-byte variable. |
---|
| 1779 | IF ( building_id_f%from_file ) & |
---|
| 1780 | CALL exchange_horiz_2d_int( building_id_f%var, nys, nyn, nxl, nxr, nbgp ) |
---|
[3763] | 1781 | IF ( building_type_f%from_file ) & |
---|
| 1782 | CALL exchange_horiz_2d_byte( building_type_f%var, nys, nyn, nxl, nxr, nbgp ) |
---|
[2696] | 1783 | |
---|
| 1784 | END SUBROUTINE filter_topography |
---|
| 1785 | |
---|
| 1786 | |
---|
| 1787 | ! Description: |
---|
| 1788 | ! -----------------------------------------------------------------------------! |
---|
| 1789 | !> Reads topography information from file or sets generic topography. Moreover, |
---|
| 1790 | !> all topography-relevant topography arrays are initialized, and grid flags |
---|
| 1791 | !> are set. |
---|
| 1792 | !------------------------------------------------------------------------------! |
---|
| 1793 | SUBROUTINE init_topo( topo ) |
---|
| 1794 | |
---|
| 1795 | USE arrays_3d, & |
---|
| 1796 | ONLY: zw |
---|
| 1797 | |
---|
| 1798 | USE control_parameters, & |
---|
| 1799 | ONLY: bc_lr_cyc, bc_ns_cyc, building_height, building_length_x, & |
---|
| 1800 | building_length_y, building_wall_left, building_wall_south, & |
---|
| 1801 | canyon_height, canyon_wall_left, canyon_wall_south, & |
---|
| 1802 | canyon_width_x, canyon_width_y, dp_level_ind_b, dz, & |
---|
[3241] | 1803 | message_string, topography, topography_grid_convention, & |
---|
[2696] | 1804 | tunnel_height, tunnel_length, tunnel_width_x, tunnel_width_y, & |
---|
| 1805 | tunnel_wall_depth |
---|
| 1806 | |
---|
| 1807 | USE grid_variables, & |
---|
| 1808 | ONLY: dx, dy |
---|
| 1809 | |
---|
| 1810 | USE indices, & |
---|
| 1811 | ONLY: nbgp, nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, nz, & |
---|
| 1812 | nzb, nzt |
---|
| 1813 | |
---|
| 1814 | USE kinds |
---|
[4189] | 1815 | |
---|
| 1816 | USE netcdf_data_input_mod, & |
---|
| 1817 | ONLY: buildings_f, terrain_height_f |
---|
[2696] | 1818 | |
---|
| 1819 | USE pegrid |
---|
| 1820 | |
---|
| 1821 | IMPLICIT NONE |
---|
| 1822 | |
---|
[4386] | 1823 | INTEGER(iwp) :: bh !< temporary vertical index of building height |
---|
| 1824 | INTEGER(iwp) :: ngp_bx !< grid point number of building size along x |
---|
| 1825 | INTEGER(iwp) :: ngp_by !< grid point number of building size along y |
---|
| 1826 | INTEGER(iwp) :: index_left_bwall !< index for left building wall |
---|
| 1827 | INTEGER(iwp) :: index_right_bwall !< index for right building wall |
---|
| 1828 | INTEGER(iwp) :: index_north_bwall !< index for north building wall |
---|
| 1829 | INTEGER(iwp) :: index_south_bwall !< index for south building wall |
---|
| 1830 | INTEGER(iwp) :: ch !< temporary vertical index for canyon height |
---|
| 1831 | INTEGER(iwp) :: ngp_cx !< grid point number of canyon size along x |
---|
| 1832 | INTEGER(iwp) :: ngp_cy !< grid point number of canyon size along y |
---|
| 1833 | INTEGER(iwp) :: index_left_cwall !< index for left canyon wall |
---|
| 1834 | INTEGER(iwp) :: index_right_cwall !< index for right canyon wall |
---|
| 1835 | INTEGER(iwp) :: index_north_cwall !< index for north canyon wall |
---|
| 1836 | INTEGER(iwp) :: index_south_cwall !< index for south canyon wall |
---|
| 1837 | INTEGER(iwp) :: i !< index variable along x |
---|
| 1838 | INTEGER(iwp) :: j !< index variable along y |
---|
| 1839 | INTEGER(iwp) :: k !< index variable along z |
---|
| 1840 | INTEGER(iwp) :: hv_in !< heavyside function to model inner tunnel surface |
---|
| 1841 | INTEGER(iwp) :: hv_out !< heavyside function to model outer tunnel surface |
---|
| 1842 | INTEGER(iwp) :: txe_out !< end position of outer tunnel wall in x |
---|
| 1843 | INTEGER(iwp) :: txs_out !< start position of outer tunnel wall in x |
---|
| 1844 | INTEGER(iwp) :: tye_out !< end position of outer tunnel wall in y |
---|
| 1845 | INTEGER(iwp) :: tys_out !< start position of outer tunnel wall in y |
---|
| 1846 | INTEGER(iwp) :: txe_in !< end position of inner tunnel wall in x |
---|
| 1847 | INTEGER(iwp) :: txs_in !< start position of inner tunnel wall in x |
---|
| 1848 | INTEGER(iwp) :: tye_in !< end position of inner tunnel wall in y |
---|
| 1849 | INTEGER(iwp) :: tys_in !< start position of inner tunnel wall in y |
---|
| 1850 | INTEGER(iwp) :: td !< tunnel wall depth |
---|
| 1851 | INTEGER(iwp) :: th !< height of outer tunnel wall |
---|
[2696] | 1852 | |
---|
| 1853 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: nzb_local !< index for topography top at cell-center |
---|
| 1854 | INTEGER(iwp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: topo !< input array for 3D topography and dummy array for setting "outer"-flags |
---|
| 1855 | ! |
---|
[4189] | 1856 | !-- Check for correct setting of the namelist parameter topography. If |
---|
| 1857 | !-- topography information is read from file but topography = 'flat', |
---|
[4386] | 1858 | !-- initialization does not work properly. |
---|
[4189] | 1859 | IF ( ( buildings_f%from_file .OR. terrain_height_f%from_file ) .AND. & |
---|
| 1860 | TRIM( topography ) /= 'read_from_file' ) THEN |
---|
| 1861 | message_string = 'If topography information is provided (via ' // & |
---|
| 1862 | 'Netcdf or ASCII input) topography = ' // & |
---|
| 1863 | '"read_from_file" is required.' |
---|
| 1864 | CALL message( 'init_grid', 'PA0437', 1, 2, 0, 6, 0 ) |
---|
| 1865 | ENDIF |
---|
| 1866 | ! |
---|
[1] | 1867 | !-- Set outer and inner index arrays for non-flat topography. |
---|
| 1868 | !-- Here consistency checks concerning domain size and periodicity are |
---|
| 1869 | !-- necessary. |
---|
| 1870 | !-- Within this SELECT CASE structure only nzb_local is initialized |
---|
| 1871 | !-- individually depending on the chosen topography type, all other index |
---|
| 1872 | !-- arrays are initialized further below. |
---|
| 1873 | SELECT CASE ( TRIM( topography ) ) |
---|
| 1874 | |
---|
| 1875 | CASE ( 'flat' ) |
---|
[2696] | 1876 | ! |
---|
[2232] | 1877 | !-- Initialilize 3D topography array, used later for initializing flags |
---|
[4340] | 1878 | topo(nzb+1:nzt+1,:,:) = IBSET( topo(nzb+1:nzt+1,:,:), 0 ) |
---|
| 1879 | |
---|
| 1880 | CASE ( 'closed_channel' ) |
---|
| 1881 | ! |
---|
| 1882 | !-- Initialilize 3D topography array, used later for initializing flags |
---|
| 1883 | topo(nzb+1:nzt,:,:) = IBSET( topo(nzb+1:nzt,:,:), 0 ) |
---|
[1] | 1884 | |
---|
| 1885 | CASE ( 'single_building' ) |
---|
| 1886 | ! |
---|
| 1887 | !-- Single rectangular building, by default centered in the middle of the |
---|
| 1888 | !-- total domain |
---|
[4386] | 1889 | ngp_bx = NINT( building_length_x / dx ) |
---|
| 1890 | ngp_by = NINT( building_length_y / dy ) |
---|
[2232] | 1891 | bh = MINLOC( ABS( zw - building_height ), 1 ) - 1 |
---|
| 1892 | IF ( ABS( zw(bh) - building_height ) == & |
---|
[1675] | 1893 | ABS( zw(bh+1) - building_height ) ) bh = bh + 1 |
---|
[1322] | 1894 | IF ( building_wall_left == 9999999.9_wp ) THEN |
---|
[4386] | 1895 | building_wall_left = ( nx + 1 - ngp_bx ) / 2 * dx |
---|
[1] | 1896 | ENDIF |
---|
[4386] | 1897 | index_left_bwall = NINT( building_wall_left / dx ) |
---|
| 1898 | index_right_bwall = index_left_bwall + ngp_bx |
---|
[1] | 1899 | |
---|
[1322] | 1900 | IF ( building_wall_south == 9999999.9_wp ) THEN |
---|
[4386] | 1901 | building_wall_south = ( ny + 1 - ngp_by ) / 2 * dy |
---|
[1] | 1902 | ENDIF |
---|
[4386] | 1903 | index_south_bwall = NINT( building_wall_south / dy ) |
---|
| 1904 | index_north_bwall = index_south_bwall + ngp_by |
---|
[1] | 1905 | |
---|
| 1906 | ! |
---|
| 1907 | !-- Building size has to meet some requirements |
---|
[4386] | 1908 | IF ( ( index_left_bwall < 1 ) .OR. ( index_right_bwall > nx-1 ) .OR. & |
---|
| 1909 | ( index_right_bwall < index_left_bwall+3 ) .OR. & |
---|
| 1910 | ( index_south_bwall < 1 ) .OR. ( index_north_bwall > ny-1 ) .OR.& |
---|
| 1911 | ( index_north_bwall < index_south_bwall+3 ) ) THEN |
---|
[274] | 1912 | WRITE( message_string, * ) 'inconsistent building parameters:', & |
---|
[4386] | 1913 | '&index_left_bwall=', index_left_bwall, & |
---|
| 1914 | 'index_right_bwall=', index_right_bwall, & |
---|
| 1915 | 'index_south_bwall=', index_south_bwall, & |
---|
| 1916 | 'index_north_bwall=', index_north_bwall, & |
---|
| 1917 | 'nx=', nx, 'ny=', ny |
---|
[254] | 1918 | CALL message( 'init_grid', 'PA0203', 1, 2, 0, 6, 0 ) |
---|
[1] | 1919 | ENDIF |
---|
| 1920 | |
---|
[2696] | 1921 | ALLOCATE( nzb_local(nysg:nyng,nxlg:nxrg) ) |
---|
[2892] | 1922 | nzb_local = 0 |
---|
[1] | 1923 | ! |
---|
[1968] | 1924 | !-- Define the building. |
---|
[4386] | 1925 | IF ( index_left_bwall <= nxr .AND. index_right_bwall >= nxl .AND. & |
---|
| 1926 | index_south_bwall <= nyn .AND. index_north_bwall >= nys ) & |
---|
| 1927 | nzb_local(MAX(nys,index_south_bwall):MIN(nyn,index_north_bwall), & |
---|
| 1928 | MAX(nxl,index_left_bwall):MIN(nxr,index_right_bwall)) = bh |
---|
[2232] | 1929 | ! |
---|
[2696] | 1930 | !-- Set bit array on basis of nzb_local |
---|
| 1931 | DO i = nxl, nxr |
---|
| 1932 | DO j = nys, nyn |
---|
| 1933 | topo(nzb_local(j,i)+1:nzt+1,j,i) = & |
---|
| 1934 | IBSET( topo(nzb_local(j,i)+1:nzt+1,j,i), 0 ) |
---|
[2232] | 1935 | ENDDO |
---|
| 1936 | ENDDO |
---|
[2696] | 1937 | |
---|
| 1938 | DEALLOCATE( nzb_local ) |
---|
[2232] | 1939 | |
---|
[2696] | 1940 | CALL exchange_horiz_int( topo, nys, nyn, nxl, nxr, nzt, nbgp ) |
---|
[2823] | 1941 | ! |
---|
| 1942 | !-- Set boundary conditions also for flags. Can be interpreted as Neumann |
---|
| 1943 | !-- boundary conditions for topography. |
---|
| 1944 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
| 1945 | IF ( nys == 0 ) THEN |
---|
| 1946 | DO i = 1, nbgp |
---|
| 1947 | topo(:,nys-i,:) = topo(:,nys,:) |
---|
| 1948 | ENDDO |
---|
| 1949 | ENDIF |
---|
| 1950 | IF ( nyn == ny ) THEN |
---|
| 1951 | DO i = 1, nbgp |
---|
| 1952 | topo(:,nyn+i,:) = topo(:,nyn,:) |
---|
| 1953 | ENDDO |
---|
| 1954 | ENDIF |
---|
| 1955 | ENDIF |
---|
| 1956 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
| 1957 | IF ( nxl == 0 ) THEN |
---|
| 1958 | DO i = 1, nbgp |
---|
| 1959 | topo(:,:,nxl-i) = topo(:,:,nxl) |
---|
| 1960 | ENDDO |
---|
| 1961 | ENDIF |
---|
| 1962 | IF ( nxr == nx ) THEN |
---|
| 1963 | DO i = 1, nbgp |
---|
| 1964 | topo(:,:,nxr+i) = topo(:,:,nxr) |
---|
| 1965 | ENDDO |
---|
| 1966 | ENDIF |
---|
| 1967 | ENDIF |
---|
[2232] | 1968 | |
---|
[240] | 1969 | CASE ( 'single_street_canyon' ) |
---|
| 1970 | ! |
---|
| 1971 | !-- Single quasi-2D street canyon of infinite length in x or y direction. |
---|
| 1972 | !-- The canyon is centered in the other direction by default. |
---|
[1322] | 1973 | IF ( canyon_width_x /= 9999999.9_wp ) THEN |
---|
[240] | 1974 | ! |
---|
| 1975 | !-- Street canyon in y direction |
---|
[4386] | 1976 | ngp_cx = NINT( canyon_width_x / dx ) |
---|
[1322] | 1977 | IF ( canyon_wall_left == 9999999.9_wp ) THEN |
---|
[4386] | 1978 | canyon_wall_left = ( nx + 1 - ngp_cx ) / 2 * dx |
---|
[240] | 1979 | ENDIF |
---|
[4386] | 1980 | index_left_cwall= NINT( canyon_wall_left / dx ) |
---|
| 1981 | index_right_cwall= index_left_cwall+ ngp_cx |
---|
[1322] | 1982 | ELSEIF ( canyon_width_y /= 9999999.9_wp ) THEN |
---|
[240] | 1983 | ! |
---|
| 1984 | !-- Street canyon in x direction |
---|
[4386] | 1985 | ngp_cy = NINT( canyon_width_y / dy ) |
---|
[1322] | 1986 | IF ( canyon_wall_south == 9999999.9_wp ) THEN |
---|
[4386] | 1987 | canyon_wall_south = ( ny + 1 - ngp_cy ) / 2 * dy |
---|
[240] | 1988 | ENDIF |
---|
[4386] | 1989 | index_south_cwall = NINT( canyon_wall_south / dy ) |
---|
| 1990 | index_north_cwall = index_south_cwall + ngp_cy |
---|
[2696] | 1991 | |
---|
[240] | 1992 | ELSE |
---|
[254] | 1993 | |
---|
| 1994 | message_string = 'no street canyon width given' |
---|
| 1995 | CALL message( 'init_grid', 'PA0204', 1, 2, 0, 6, 0 ) |
---|
| 1996 | |
---|
[240] | 1997 | ENDIF |
---|
| 1998 | |
---|
[2232] | 1999 | ch = MINLOC( ABS( zw - canyon_height ), 1 ) - 1 |
---|
| 2000 | IF ( ABS( zw(ch) - canyon_height ) == & |
---|
[1675] | 2001 | ABS( zw(ch+1) - canyon_height ) ) ch = ch + 1 |
---|
[240] | 2002 | dp_level_ind_b = ch |
---|
| 2003 | ! |
---|
| 2004 | !-- Street canyon size has to meet some requirements |
---|
[1322] | 2005 | IF ( canyon_width_x /= 9999999.9_wp ) THEN |
---|
[4386] | 2006 | IF ( ( index_left_cwall< 1 ) .OR. ( index_right_cwall> nx-1 ) .OR.& |
---|
| 2007 | ( ngp_cx < 3 ) .OR. ( ch < 3 ) ) THEN |
---|
[1353] | 2008 | WRITE( message_string, * ) 'inconsistent canyon parameters:', & |
---|
[4386] | 2009 | '&index_left_cwall=', index_left_cwall, & |
---|
| 2010 | ' index_right_cwall=', index_right_cwall, & |
---|
| 2011 | ' ngp_cx=', ngp_cx, & |
---|
[3045] | 2012 | ' ch=', ch, ' nx=', nx, ' ny=', ny |
---|
[254] | 2013 | CALL message( 'init_grid', 'PA0205', 1, 2, 0, 6, 0 ) |
---|
[240] | 2014 | ENDIF |
---|
[1322] | 2015 | ELSEIF ( canyon_width_y /= 9999999.9_wp ) THEN |
---|
[4386] | 2016 | IF ( ( index_south_cwall < 1 ) .OR. & |
---|
| 2017 | ( index_north_cwall > ny-1 ) .OR. ( ngp_cy < 3 ) .OR. & |
---|
[2696] | 2018 | ( ch < 3 ) ) THEN |
---|
[1353] | 2019 | WRITE( message_string, * ) 'inconsistent canyon parameters:', & |
---|
[4386] | 2020 | '&index_south_cwall=', index_south_cwall, & |
---|
| 2021 | ' index_north_cwall=', index_north_cwall, & |
---|
| 2022 | ' ngp_cy=', ngp_cy, & |
---|
[3045] | 2023 | ' ch=', ch, ' nx=', nx, ' ny=', ny |
---|
[254] | 2024 | CALL message( 'init_grid', 'PA0206', 1, 2, 0, 6, 0 ) |
---|
[240] | 2025 | ENDIF |
---|
| 2026 | ENDIF |
---|
[1353] | 2027 | IF ( canyon_width_x /= 9999999.9_wp .AND. & |
---|
| 2028 | canyon_width_y /= 9999999.9_wp ) THEN |
---|
| 2029 | message_string = 'inconsistent canyon parameters:' // & |
---|
[3046] | 2030 | '&street canyon can only be oriented' // & |
---|
[3045] | 2031 | ' either in x- or in y-direction' |
---|
[254] | 2032 | CALL message( 'init_grid', 'PA0207', 1, 2, 0, 6, 0 ) |
---|
[240] | 2033 | ENDIF |
---|
| 2034 | |
---|
[2696] | 2035 | ALLOCATE( nzb_local(nysg:nyng,nxlg:nxrg) ) |
---|
[240] | 2036 | nzb_local = ch |
---|
[1322] | 2037 | IF ( canyon_width_x /= 9999999.9_wp ) THEN |
---|
[4386] | 2038 | IF ( index_left_cwall<= nxr .AND. index_right_cwall>= nxl ) & |
---|
| 2039 | nzb_local(:,MAX(nxl,index_left_cwall+1):MIN(nxr,index_right_cwall-1)) = 0 |
---|
[1322] | 2040 | ELSEIF ( canyon_width_y /= 9999999.9_wp ) THEN |
---|
[4386] | 2041 | IF ( index_south_cwall <= nyn .AND. index_north_cwall >= nys ) & |
---|
| 2042 | nzb_local(MAX(nys,index_south_cwall+1):MIN(nyn,index_north_cwall-1),:) = 0 |
---|
[240] | 2043 | ENDIF |
---|
[2232] | 2044 | ! |
---|
[2696] | 2045 | !-- Set bit array on basis of nzb_local |
---|
| 2046 | DO i = nxl, nxr |
---|
| 2047 | DO j = nys, nyn |
---|
| 2048 | topo(nzb_local(j,i)+1:nzt+1,j,i) = & |
---|
| 2049 | IBSET( topo(nzb_local(j,i)+1:nzt+1,j,i), 0 ) |
---|
[2232] | 2050 | ENDDO |
---|
| 2051 | ENDDO |
---|
[2696] | 2052 | DEALLOCATE( nzb_local ) |
---|
[1994] | 2053 | |
---|
[2696] | 2054 | CALL exchange_horiz_int( topo, nys, nyn, nxl, nxr, nzt, nbgp ) |
---|
[2823] | 2055 | ! |
---|
| 2056 | !-- Set boundary conditions also for flags. Can be interpreted as Neumann |
---|
| 2057 | !-- boundary conditions for topography. |
---|
| 2058 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
| 2059 | IF ( nys == 0 ) THEN |
---|
| 2060 | DO i = 1, nbgp |
---|
| 2061 | topo(:,nys-i,:) = topo(:,nys,:) |
---|
| 2062 | ENDDO |
---|
| 2063 | ENDIF |
---|
| 2064 | IF ( nyn == ny ) THEN |
---|
| 2065 | DO i = 1, nbgp |
---|
| 2066 | topo(:,nyn+i,:) = topo(:,nyn,:) |
---|
| 2067 | ENDDO |
---|
| 2068 | ENDIF |
---|
| 2069 | ENDIF |
---|
| 2070 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
| 2071 | IF ( nxl == 0 ) THEN |
---|
| 2072 | DO i = 1, nbgp |
---|
| 2073 | topo(:,:,nxl-i) = topo(:,:,nxl) |
---|
| 2074 | ENDDO |
---|
| 2075 | ENDIF |
---|
| 2076 | IF ( nxr == nx ) THEN |
---|
| 2077 | DO i = 1, nbgp |
---|
| 2078 | topo(:,:,nxr+i) = topo(:,:,nxr) |
---|
| 2079 | ENDDO |
---|
| 2080 | ENDIF |
---|
| 2081 | ENDIF |
---|
[2232] | 2082 | |
---|
| 2083 | CASE ( 'tunnel' ) |
---|
| 2084 | |
---|
| 2085 | ! |
---|
| 2086 | !-- Tunnel height |
---|
| 2087 | IF ( tunnel_height == 9999999.9_wp ) THEN |
---|
| 2088 | th = zw( INT( 0.2 * nz) ) |
---|
| 2089 | ELSE |
---|
| 2090 | th = tunnel_height |
---|
| 2091 | ENDIF |
---|
| 2092 | ! |
---|
| 2093 | !-- Tunnel-wall depth |
---|
[2696] | 2094 | IF ( tunnel_wall_depth == 9999999.9_wp ) THEN |
---|
[3065] | 2095 | td = MAX ( dx, dy, dz(1) ) |
---|
[2232] | 2096 | ELSE |
---|
| 2097 | td = tunnel_wall_depth |
---|
| 2098 | ENDIF |
---|
| 2099 | ! |
---|
| 2100 | !-- Check for tunnel width |
---|
| 2101 | IF ( tunnel_width_x == 9999999.9_wp .AND. & |
---|
| 2102 | tunnel_width_y == 9999999.9_wp ) THEN |
---|
| 2103 | message_string = 'No tunnel width is given. ' |
---|
[2274] | 2104 | CALL message( 'init_grid', 'PA0280', 1, 2, 0, 6, 0 ) |
---|
[2232] | 2105 | ENDIF |
---|
| 2106 | IF ( tunnel_width_x /= 9999999.9_wp .AND. & |
---|
| 2107 | tunnel_width_y /= 9999999.9_wp ) THEN |
---|
| 2108 | message_string = 'Inconsistent tunnel parameters:' // & |
---|
| 2109 | 'tunnel can only be oriented' // & |
---|
| 2110 | 'either in x- or in y-direction.' |
---|
[2274] | 2111 | CALL message( 'init_grid', 'PA0281', 1, 2, 0, 6, 0 ) |
---|
[2232] | 2112 | ENDIF |
---|
| 2113 | ! |
---|
[4356] | 2114 | !-- Check for too small tunnel width in x- and y-direction |
---|
| 2115 | IF ( tunnel_width_x /= 9999999.9_wp .AND. & |
---|
| 2116 | tunnel_width_x - 2.0_wp * td <= 2.0_wp * dx ) THEN |
---|
| 2117 | message_string = 'tunnel_width_x too small' |
---|
| 2118 | CALL message( 'init_grid', 'PA0175', 1, 2, 0, 6, 0 ) |
---|
| 2119 | ENDIF |
---|
| 2120 | IF ( tunnel_width_y /= 9999999.9_wp .AND. & |
---|
| 2121 | tunnel_width_y - 2.0_wp * td <= 2.0_wp * dy ) THEN |
---|
| 2122 | message_string = 'tunnel_width_y too small' |
---|
| 2123 | CALL message( 'init_grid', 'PA0455', 1, 2, 0, 6, 0 ) |
---|
| 2124 | ENDIF |
---|
| 2125 | ! |
---|
| 2126 | !-- Check for too large tunnel width. |
---|
| 2127 | !-- Tunnel axis along y. |
---|
[2232] | 2128 | IF ( tunnel_width_x /= 9999999.9_wp ) THEN |
---|
| 2129 | IF ( tunnel_width_x > ( nx + 1 ) * dx ) THEN |
---|
[4356] | 2130 | message_string = 'tunnel_width_x too large' |
---|
[2274] | 2131 | CALL message( 'init_grid', 'PA0282', 1, 2, 0, 6, 0 ) |
---|
[2232] | 2132 | ENDIF |
---|
| 2133 | |
---|
| 2134 | txs_out = INT( ( nx + 1 ) * 0.5_wp * dx - tunnel_width_x * 0.5_wp ) |
---|
| 2135 | txe_out = INT( ( nx + 1 ) * 0.5_wp * dx + tunnel_width_x * 0.5_wp ) |
---|
| 2136 | txs_in = INT( ( nx + 1 ) * 0.5_wp * dx - & |
---|
| 2137 | ( tunnel_width_x * 0.5_wp - td ) ) |
---|
| 2138 | txe_in = INT( ( nx + 1 ) * 0.5_wp * dx + & |
---|
[2696] | 2139 | ( tunnel_width_x * 0.5_wp - td ) ) |
---|
[2232] | 2140 | |
---|
| 2141 | tys_out = INT( ( ny + 1 ) * 0.5_wp * dy - tunnel_length * 0.5_wp ) |
---|
| 2142 | tye_out = INT( ( ny + 1 ) * 0.5_wp * dy + tunnel_length * 0.5_wp ) |
---|
| 2143 | tys_in = tys_out |
---|
| 2144 | tye_in = tye_out |
---|
| 2145 | ENDIF |
---|
| 2146 | ! |
---|
[4356] | 2147 | !-- Tunnel axis along x. |
---|
[2232] | 2148 | IF ( tunnel_width_y /= 9999999.9_wp ) THEN |
---|
| 2149 | IF ( tunnel_width_y > ( ny + 1 ) * dy ) THEN |
---|
[4356] | 2150 | message_string = 'tunnel_width_y too large' |
---|
[2274] | 2151 | CALL message( 'init_grid', 'PA0456', 1, 2, 0, 6, 0 ) |
---|
[2232] | 2152 | ENDIF |
---|
| 2153 | |
---|
| 2154 | txs_out = INT( ( nx + 1 ) * 0.5_wp * dx - tunnel_length * 0.5_wp ) |
---|
| 2155 | txe_out = INT( ( nx + 1 ) * 0.5_wp * dx + tunnel_length * 0.5_wp ) |
---|
| 2156 | txs_in = txs_out |
---|
| 2157 | txe_in = txe_out |
---|
| 2158 | |
---|
| 2159 | tys_out = INT( ( ny + 1 ) * 0.5_wp * dy - tunnel_width_y * 0.5_wp ) |
---|
| 2160 | tye_out = INT( ( ny + 1 ) * 0.5_wp * dy + tunnel_width_y * 0.5_wp ) |
---|
| 2161 | tys_in = INT( ( ny + 1 ) * 0.5_wp * dy - & |
---|
[2696] | 2162 | ( tunnel_width_y * 0.5_wp - td ) ) |
---|
[2232] | 2163 | tye_in = INT( ( ny + 1 ) * 0.5_wp * dy + & |
---|
| 2164 | ( tunnel_width_y * 0.5_wp - td ) ) |
---|
| 2165 | ENDIF |
---|
| 2166 | |
---|
[2696] | 2167 | topo = 0 |
---|
[2232] | 2168 | DO i = nxl, nxr |
---|
| 2169 | DO j = nys, nyn |
---|
| 2170 | ! |
---|
| 2171 | !-- Use heaviside function to model outer tunnel surface |
---|
| 2172 | hv_out = th * 0.5_wp * & |
---|
| 2173 | ( ( SIGN( 1.0_wp, i * dx - txs_out ) + 1.0_wp ) & |
---|
| 2174 | - ( SIGN( 1.0_wp, i * dx - txe_out ) + 1.0_wp ) ) |
---|
| 2175 | |
---|
| 2176 | hv_out = hv_out * 0.5_wp * & |
---|
| 2177 | ( ( SIGN( 1.0_wp, j * dy - tys_out ) + 1.0_wp ) & |
---|
| 2178 | - ( SIGN( 1.0_wp, j * dy - tye_out ) + 1.0_wp ) ) |
---|
[2696] | 2179 | ! |
---|
[2232] | 2180 | !-- Use heaviside function to model inner tunnel surface |
---|
| 2181 | hv_in = ( th - td ) * 0.5_wp * & |
---|
| 2182 | ( ( SIGN( 1.0_wp, i * dx - txs_in ) + 1.0_wp ) & |
---|
| 2183 | - ( SIGN( 1.0_wp, i * dx - txe_in ) + 1.0_wp ) ) |
---|
| 2184 | |
---|
| 2185 | hv_in = hv_in * 0.5_wp * & |
---|
| 2186 | ( ( SIGN( 1.0_wp, j * dy - tys_in ) + 1.0_wp ) & |
---|
| 2187 | - ( SIGN( 1.0_wp, j * dy - tye_in ) + 1.0_wp ) ) |
---|
| 2188 | ! |
---|
| 2189 | !-- Set flags at x-y-positions without any tunnel surface |
---|
| 2190 | IF ( hv_out - hv_in == 0.0_wp ) THEN |
---|
[2696] | 2191 | topo(nzb+1:nzt+1,j,i) = IBSET( topo(nzb+1:nzt+1,j,i), 0 ) |
---|
[2232] | 2192 | ! |
---|
| 2193 | !-- Set flags at x-y-positions with tunnel surfaces |
---|
| 2194 | ELSE |
---|
| 2195 | DO k = nzb + 1, nzt + 1 |
---|
| 2196 | ! |
---|
| 2197 | !-- Inner tunnel |
---|
| 2198 | IF ( hv_out - hv_in == th ) THEN |
---|
| 2199 | IF ( zw(k) <= hv_out ) THEN |
---|
[2696] | 2200 | topo(k,j,i) = IBCLR( topo(k,j,i), 0 ) |
---|
[2232] | 2201 | ELSE |
---|
[2696] | 2202 | topo(k,j,i) = IBSET( topo(k,j,i), 0 ) |
---|
[2232] | 2203 | ENDIF |
---|
| 2204 | ENDIF |
---|
| 2205 | ! |
---|
| 2206 | !-- Lateral tunnel walls |
---|
| 2207 | IF ( hv_out - hv_in == td ) THEN |
---|
| 2208 | IF ( zw(k) <= hv_in ) THEN |
---|
[2696] | 2209 | topo(k,j,i) = IBSET( topo(k,j,i), 0 ) |
---|
[2232] | 2210 | ELSEIF ( zw(k) > hv_in .AND. zw(k) <= hv_out ) THEN |
---|
[2696] | 2211 | topo(k,j,i) = IBCLR( topo(k,j,i), 0 ) |
---|
[2232] | 2212 | ELSEIF ( zw(k) > hv_out ) THEN |
---|
[2696] | 2213 | topo(k,j,i) = IBSET( topo(k,j,i), 0 ) |
---|
[2232] | 2214 | ENDIF |
---|
| 2215 | ENDIF |
---|
| 2216 | ENDDO |
---|
| 2217 | ENDIF |
---|
| 2218 | ENDDO |
---|
| 2219 | ENDDO |
---|
| 2220 | |
---|
[2696] | 2221 | CALL exchange_horiz_int( topo, nys, nyn, nxl, nxr, nzt, nbgp ) |
---|
[2823] | 2222 | ! |
---|
| 2223 | !-- Set boundary conditions also for flags. Can be interpreted as Neumann |
---|
| 2224 | !-- boundary conditions for topography. |
---|
| 2225 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
| 2226 | IF ( nys == 0 ) THEN |
---|
| 2227 | DO i = 1, nbgp |
---|
| 2228 | topo(:,nys-i,:) = topo(:,nys,:) |
---|
| 2229 | ENDDO |
---|
| 2230 | ENDIF |
---|
| 2231 | IF ( nyn == ny ) THEN |
---|
| 2232 | DO i = 1, nbgp |
---|
| 2233 | topo(:,nyn+i,:) = topo(:,nyn,:) |
---|
| 2234 | ENDDO |
---|
| 2235 | ENDIF |
---|
| 2236 | ENDIF |
---|
| 2237 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
| 2238 | IF ( nxl == 0 ) THEN |
---|
| 2239 | DO i = 1, nbgp |
---|
| 2240 | topo(:,:,nxl-i) = topo(:,:,nxl) |
---|
| 2241 | ENDDO |
---|
| 2242 | ENDIF |
---|
| 2243 | IF ( nxr == nx ) THEN |
---|
| 2244 | DO i = 1, nbgp |
---|
| 2245 | topo(:,:,nxr+i) = topo(:,:,nxr) |
---|
| 2246 | ENDDO |
---|
| 2247 | ENDIF |
---|
| 2248 | ENDIF |
---|
[2232] | 2249 | |
---|
[1] | 2250 | CASE ( 'read_from_file' ) |
---|
| 2251 | ! |
---|
[2696] | 2252 | !-- Note, topography information have been already read. |
---|
| 2253 | !-- If required, further process topography, i.e. reference buildings on |
---|
| 2254 | !-- top of orography and set temporary 3D topography array, which is |
---|
| 2255 | !-- used later to set grid flags. Calling of this rouinte is also |
---|
| 2256 | !-- required in case of ASCII input, even though no distinction between |
---|
| 2257 | !-- terrain- and building height is made in this case. |
---|
| 2258 | CALL process_topography( topo ) |
---|
[1968] | 2259 | ! |
---|
[2696] | 2260 | !-- Filter holes resolved by only one grid-point |
---|
| 2261 | CALL filter_topography( topo ) |
---|
[1968] | 2262 | ! |
---|
[2696] | 2263 | !-- Exchange ghost-points, as well as add cyclic or Neumann boundary |
---|
| 2264 | !-- conditions. |
---|
| 2265 | CALL exchange_horiz_int( topo, nys, nyn, nxl, nxr, nzt, nbgp ) |
---|
[2232] | 2266 | ! |
---|
[4314] | 2267 | !-- Set lateral boundary conditions for topography on all ghost layers |
---|
[1968] | 2268 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
[2550] | 2269 | IF ( nys == 0 ) THEN |
---|
[2696] | 2270 | DO i = 1, nbgp |
---|
| 2271 | topo(:,nys-i,:) = topo(:,nys,:) |
---|
| 2272 | ENDDO |
---|
[2550] | 2273 | ENDIF |
---|
[2696] | 2274 | IF ( nyn == ny ) THEN |
---|
| 2275 | DO i = 1, nbgp |
---|
| 2276 | topo(:,nyn+i,:) = topo(:,nyn,:) |
---|
| 2277 | ENDDO |
---|
| 2278 | ENDIF |
---|
[1942] | 2279 | ENDIF |
---|
[1910] | 2280 | |
---|
[1968] | 2281 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
[2550] | 2282 | IF ( nxl == 0 ) THEN |
---|
[2696] | 2283 | DO i = 1, nbgp |
---|
| 2284 | topo(:,:,nxl-i) = topo(:,:,nxl) |
---|
[2232] | 2285 | ENDDO |
---|
[2696] | 2286 | ENDIF |
---|
| 2287 | IF ( nxr == nx ) THEN |
---|
| 2288 | DO i = 1, nbgp |
---|
| 2289 | topo(:,:,nxr+i) = topo(:,:,nxr) |
---|
| 2290 | ENDDO |
---|
| 2291 | ENDIF |
---|
[2232] | 2292 | ENDIF |
---|
| 2293 | |
---|
[667] | 2294 | |
---|
[1] | 2295 | CASE DEFAULT |
---|
[2696] | 2296 | ! |
---|
[1] | 2297 | !-- The DEFAULT case is reached either if the parameter topography |
---|
[217] | 2298 | !-- contains a wrong character string or if the user has defined a special |
---|
[1] | 2299 | !-- case in the user interface. There, the subroutine user_init_grid |
---|
| 2300 | !-- checks which of these two conditions applies. |
---|
[2696] | 2301 | CALL user_init_grid( topo ) |
---|
| 2302 | CALL filter_topography( topo ) |
---|
[1] | 2303 | |
---|
| 2304 | END SELECT |
---|
| 2305 | ! |
---|
| 2306 | !-- Consistency checks and index array initialization are only required for |
---|
[2696] | 2307 | !-- non-flat topography. |
---|
[1] | 2308 | IF ( TRIM( topography ) /= 'flat' ) THEN |
---|
| 2309 | ! |
---|
[2232] | 2310 | !-- In case of non-flat topography, check whether the convention how to |
---|
| 2311 | !-- define the topography grid has been set correctly, or whether the default |
---|
| 2312 | !-- is applicable. If this is not possible, abort. |
---|
| 2313 | IF ( TRIM( topography_grid_convention ) == ' ' ) THEN |
---|
[4340] | 2314 | IF ( TRIM( topography ) /= 'closed_channel' .AND. & |
---|
| 2315 | TRIM( topography ) /= 'single_building' .AND. & |
---|
[2232] | 2316 | TRIM( topography ) /= 'single_street_canyon' .AND. & |
---|
| 2317 | TRIM( topography ) /= 'tunnel' .AND. & |
---|
| 2318 | TRIM( topography ) /= 'read_from_file') THEN |
---|
| 2319 | !-- The default value is not applicable here, because it is only valid |
---|
[3045] | 2320 | !-- for the four standard cases 'single_building', |
---|
| 2321 | !-- 'single_street_canyon', 'tunnel' and 'read_from_file' |
---|
[2232] | 2322 | !-- defined in init_grid. |
---|
| 2323 | WRITE( message_string, * ) & |
---|
[2696] | 2324 | 'The value for "topography_grid_convention" ', & |
---|
[3046] | 2325 | 'is not set. Its default value is & only valid for ', & |
---|
[3045] | 2326 | '"topography" = ''single_building'', ''tunnel'' ', & |
---|
[4340] | 2327 | '''single_street_canyon'', ''closed_channel'' & or ', & |
---|
| 2328 | '''read_from_file''.', & |
---|
[3046] | 2329 | '& Choose ''cell_edge'' or ''cell_center''.' |
---|
[2232] | 2330 | CALL message( 'init_grid', 'PA0239', 1, 2, 0, 6, 0 ) |
---|
| 2331 | ELSE |
---|
| 2332 | !-- The default value is applicable here. |
---|
| 2333 | !-- Set convention according to topography. |
---|
| 2334 | IF ( TRIM( topography ) == 'single_building' .OR. & |
---|
| 2335 | TRIM( topography ) == 'single_street_canyon' ) THEN |
---|
| 2336 | topography_grid_convention = 'cell_edge' |
---|
| 2337 | ELSEIF ( TRIM( topography ) == 'read_from_file' .OR. & |
---|
| 2338 | TRIM( topography ) == 'tunnel') THEN |
---|
| 2339 | topography_grid_convention = 'cell_center' |
---|
| 2340 | ENDIF |
---|
| 2341 | ENDIF |
---|
| 2342 | ELSEIF ( TRIM( topography_grid_convention ) /= 'cell_edge' .AND. & |
---|
| 2343 | TRIM( topography_grid_convention ) /= 'cell_center' ) THEN |
---|
| 2344 | WRITE( message_string, * ) & |
---|
[2696] | 2345 | 'The value for "topography_grid_convention" is ', & |
---|
[3046] | 2346 | 'not recognized.& Choose ''cell_edge'' or ''cell_center''.' |
---|
[2232] | 2347 | CALL message( 'init_grid', 'PA0240', 1, 2, 0, 6, 0 ) |
---|
| 2348 | ENDIF |
---|
[1] | 2349 | |
---|
[2169] | 2350 | |
---|
[217] | 2351 | IF ( topography_grid_convention == 'cell_edge' ) THEN |
---|
[134] | 2352 | ! |
---|
[217] | 2353 | !-- The array nzb_local as defined using the 'cell_edge' convention |
---|
| 2354 | !-- describes the actual total size of topography which is defined at the |
---|
| 2355 | !-- cell edges where u=0 on the topography walls in x-direction and v=0 |
---|
| 2356 | !-- on the topography walls in y-direction. However, PALM uses individual |
---|
| 2357 | !-- arrays nzb_u|v|w|s_inner|outer that are based on nzb_s_inner. |
---|
| 2358 | !-- Therefore, the extent of topography in nzb_local is now reduced by |
---|
| 2359 | !-- 1dx at the E topography walls and by 1dy at the N topography walls |
---|
[1968] | 2360 | !-- to form the basis for nzb_s_inner. |
---|
| 2361 | !-- Note, the reverse memory access (i-j instead of j-i) is absolutely |
---|
| 2362 | !-- required at this point. |
---|
| 2363 | DO j = nys+1, nyn+1 |
---|
| 2364 | DO i = nxl-1, nxr |
---|
[2232] | 2365 | DO k = nzb, nzt+1 |
---|
[2696] | 2366 | IF ( BTEST( topo(k,j,i), 0 ) .OR. & |
---|
| 2367 | BTEST( topo(k,j,i+1), 0 ) ) & |
---|
| 2368 | topo(k,j,i) = IBSET( topo(k,j,i), 0 ) |
---|
[2232] | 2369 | ENDDO |
---|
| 2370 | ENDDO |
---|
| 2371 | ENDDO |
---|
[2696] | 2372 | CALL exchange_horiz_int( topo, nys, nyn, nxl, nxr, nzt, nbgp ) |
---|
[2232] | 2373 | |
---|
| 2374 | DO i = nxl, nxr+1 |
---|
| 2375 | DO j = nys-1, nyn |
---|
| 2376 | DO k = nzb, nzt+1 |
---|
[2696] | 2377 | IF ( BTEST( topo(k,j,i), 0 ) .OR. & |
---|
| 2378 | BTEST( topo(k,j+1,i), 0 ) ) & |
---|
| 2379 | topo(k,j,i) = IBSET( topo(k,j,i), 0 ) |
---|
[2232] | 2380 | ENDDO |
---|
| 2381 | ENDDO |
---|
| 2382 | ENDDO |
---|
[2696] | 2383 | CALL exchange_horiz_int( topo, nys, nyn, nxl, nxr, nzt, nbgp ) |
---|
[2232] | 2384 | |
---|
[217] | 2385 | ENDIF |
---|
[2696] | 2386 | ENDIF |
---|
[2232] | 2387 | |
---|
[1] | 2388 | |
---|
[2696] | 2389 | END SUBROUTINE init_topo |
---|
[1] | 2390 | |
---|
[2696] | 2391 | SUBROUTINE set_topo_flags(topo) |
---|
[1] | 2392 | |
---|
[2696] | 2393 | USE control_parameters, & |
---|
[4294] | 2394 | ONLY: bc_lr_cyc, bc_ns_cyc, constant_flux_layer, & |
---|
| 2395 | scalar_advec, topography, use_surface_fluxes, use_top_fluxes |
---|
[1] | 2396 | |
---|
[2696] | 2397 | USE indices, & |
---|
[3241] | 2398 | ONLY: nbgp, nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, nzb, & |
---|
[4346] | 2399 | nzt, topo_top_ind, wall_flags_static_0, wall_flags_total_0 |
---|
[1] | 2400 | |
---|
[2696] | 2401 | USE kinds |
---|
[1] | 2402 | |
---|
[2696] | 2403 | IMPLICIT NONE |
---|
[1804] | 2404 | |
---|
[2696] | 2405 | INTEGER(iwp) :: i !< index variable along x |
---|
[4168] | 2406 | INTEGER(iwp) :: ibit !< integer bit position of topgraphy masking array |
---|
[2696] | 2407 | INTEGER(iwp) :: j !< index variable along y |
---|
| 2408 | INTEGER(iwp) :: k !< index variable along z |
---|
[1] | 2409 | |
---|
[2696] | 2410 | INTEGER(iwp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: topo !< input array for 3D topography and dummy array for setting "outer"-flags |
---|
[2232] | 2411 | |
---|
[4329] | 2412 | ALLOCATE( wall_flags_static_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 2413 | wall_flags_static_0 = 0 |
---|
[2232] | 2414 | ! |
---|
[2696] | 2415 | !-- Set-up topography flags. First, set flags only for s, u, v and w-grid. |
---|
| 2416 | !-- Further special flags will be set in following loops. |
---|
[2232] | 2417 | DO i = nxl, nxr |
---|
| 2418 | DO j = nys, nyn |
---|
| 2419 | DO k = nzb, nzt+1 |
---|
| 2420 | ! |
---|
| 2421 | !-- scalar grid |
---|
[4340] | 2422 | IF ( BTEST( topo(k,j,i), 0 ) ) & |
---|
[4329] | 2423 | wall_flags_static_0(k,j,i) = IBSET( wall_flags_static_0(k,j,i), 0 ) |
---|
[2232] | 2424 | ! |
---|
[2696] | 2425 | !-- u grid |
---|
[4340] | 2426 | IF ( BTEST( topo(k,j,i), 0 ) .AND. & |
---|
| 2427 | BTEST( topo(k,j,i-1), 0 ) ) & |
---|
[4329] | 2428 | wall_flags_static_0(k,j,i) = IBSET( wall_flags_static_0(k,j,i), 1 ) |
---|
[2696] | 2429 | ! |
---|
[2232] | 2430 | !-- v grid |
---|
[4340] | 2431 | IF ( BTEST( topo(k,j,i), 0 ) .AND. & |
---|
| 2432 | BTEST( topo(k,j-1,i), 0 ) ) & |
---|
[4329] | 2433 | wall_flags_static_0(k,j,i) = IBSET( wall_flags_static_0(k,j,i), 2 ) |
---|
[2696] | 2434 | |
---|
[2232] | 2435 | ENDDO |
---|
[1] | 2436 | |
---|
[2232] | 2437 | DO k = nzb, nzt |
---|
[1] | 2438 | ! |
---|
[2232] | 2439 | !-- w grid |
---|
[4340] | 2440 | IF ( BTEST( topo(k,j,i), 0 ) .AND. & |
---|
| 2441 | BTEST( topo(k+1,j,i), 0 ) ) & |
---|
[4329] | 2442 | wall_flags_static_0(k,j,i) = IBSET( wall_flags_static_0(k,j,i), 3 ) |
---|
[2232] | 2443 | ENDDO |
---|
[4340] | 2444 | |
---|
| 2445 | IF ( topography /= 'closed_channel' ) THEN |
---|
| 2446 | wall_flags_static_0(nzt+1,j,i) = IBSET( wall_flags_static_0(nzt+1,j,i), 3 ) |
---|
| 2447 | ENDIF |
---|
[2232] | 2448 | |
---|
| 2449 | ENDDO |
---|
| 2450 | ENDDO |
---|
[2696] | 2451 | |
---|
[4329] | 2452 | CALL exchange_horiz_int( wall_flags_static_0, nys, nyn, nxl, nxr, nzt, nbgp ) |
---|
[4346] | 2453 | |
---|
[1] | 2454 | ! |
---|
[4115] | 2455 | !-- Set outer array for scalars to mask near-surface grid points. Note, on |
---|
| 2456 | !-- basis of flag 24 futher flags will be derived which are used to control |
---|
| 2457 | !-- production of subgrid TKE production near walls. |
---|
[4346] | 2458 | |
---|
| 2459 | ALLOCATE( wall_flags_total_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 2460 | wall_flags_total_0 = 0 |
---|
| 2461 | |
---|
[2696] | 2462 | DO i = nxl, nxr |
---|
| 2463 | DO j = nys, nyn |
---|
[2232] | 2464 | DO k = nzb, nzt+1 |
---|
[4346] | 2465 | wall_flags_total_0(k,j,i) = IOR( wall_flags_total_0(k,j,i), wall_flags_static_0(k,j,i) ) |
---|
[2232] | 2466 | ENDDO |
---|
| 2467 | ENDDO |
---|
| 2468 | ENDDO |
---|
[4346] | 2469 | |
---|
| 2470 | CALL exchange_horiz_int( wall_flags_total_0, nys, nyn, nxl, nxr, nzt, nbgp ) |
---|
| 2471 | |
---|
| 2472 | DO i = nxl, nxr |
---|
| 2473 | DO j = nys, nyn |
---|
| 2474 | DO k = nzb, nzt+1 |
---|
| 2475 | IF ( BTEST( wall_flags_total_0(k,j-1,i), 0 ) .AND. & |
---|
| 2476 | BTEST( wall_flags_total_0(k,j+1,i), 0 ) .AND. & |
---|
| 2477 | BTEST( wall_flags_total_0(k,j,i-1), 0 ) .AND. & |
---|
| 2478 | BTEST( wall_flags_total_0(k,j,i+1), 0 ) .AND. & |
---|
| 2479 | BTEST( wall_flags_total_0(k,j-1,i-1), 0 ) .AND. & |
---|
| 2480 | BTEST( wall_flags_total_0(k,j+1,i-1), 0 ) .AND. & |
---|
| 2481 | BTEST( wall_flags_total_0(k,j-1,i+1), 0 ) .AND. & |
---|
| 2482 | BTEST( wall_flags_total_0(k,j+1,i+1), 0 ) ) & |
---|
| 2483 | wall_flags_total_0(k,j,i) = IBSET( wall_flags_total_0(k,j,i), 24 ) |
---|
| 2484 | ENDDO |
---|
| 2485 | ENDDO |
---|
| 2486 | ENDDO |
---|
[1] | 2487 | ! |
---|
[2232] | 2488 | !-- Set further special flags |
---|
| 2489 | DO i = nxl, nxr |
---|
| 2490 | DO j = nys, nyn |
---|
| 2491 | DO k = nzb, nzt+1 |
---|
[1] | 2492 | ! |
---|
[2232] | 2493 | !-- scalar grid, former nzb_diff_s_inner. |
---|
| 2494 | !-- Note, use this flag also to mask topography in diffusion_u and |
---|
| 2495 | !-- diffusion_v along the vertical direction. In case of |
---|
| 2496 | !-- use_surface_fluxes, fluxes are calculated via MOST, else, simple |
---|
| 2497 | !-- gradient approach is applied. Please note, in case of u- and v- |
---|
| 2498 | !-- diffuison, a small error is made at edges (on the east side for u, |
---|
| 2499 | !-- at the north side for v), since topography on scalar grid point |
---|
| 2500 | !-- is used instead of topography on u/v-grid. As number of topography grid |
---|
| 2501 | !-- points on uv-grid is different than s-grid, different number of |
---|
| 2502 | !-- surface elements would be required. In order to avoid this, |
---|
| 2503 | !-- treat edges (u(k,j,i+1)) simply by a gradient approach, i.e. these |
---|
| 2504 | !-- points are not masked within diffusion_u. Tests had shown that the |
---|
| 2505 | !-- effect on the flow is negligible. |
---|
| 2506 | IF ( constant_flux_layer .OR. use_surface_fluxes ) THEN |
---|
[4346] | 2507 | IF ( BTEST( wall_flags_total_0(k,j,i), 0 ) ) & |
---|
| 2508 | wall_flags_total_0(k,j,i) = IBSET( wall_flags_total_0(k,j,i), 8 ) |
---|
[2232] | 2509 | ELSE |
---|
[4346] | 2510 | wall_flags_total_0(k,j,i) = IBSET( wall_flags_total_0(k,j,i), 8 ) |
---|
[2232] | 2511 | ENDIF |
---|
[1] | 2512 | |
---|
[2232] | 2513 | ENDDO |
---|
| 2514 | ! |
---|
| 2515 | !-- Special flag to control vertical diffusion at model top - former |
---|
| 2516 | !-- nzt_diff |
---|
[4346] | 2517 | wall_flags_total_0(:,j,i) = IBSET( wall_flags_total_0(:,j,i), 9 ) |
---|
[2232] | 2518 | IF ( use_top_fluxes ) & |
---|
[4346] | 2519 | wall_flags_total_0(nzt+1,j,i) = IBCLR( wall_flags_total_0(nzt+1,j,i), 9 ) |
---|
[1] | 2520 | |
---|
[2696] | 2521 | |
---|
[2232] | 2522 | DO k = nzb+1, nzt |
---|
| 2523 | ! |
---|
| 2524 | !-- Special flag on u grid, former nzb_u_inner + 1, required |
---|
| 2525 | !-- for disturb_field and initialization. Do not disturb directly at |
---|
| 2526 | !-- topography, as well as initialize u with zero one grid point outside |
---|
| 2527 | !-- of topography. |
---|
[4346] | 2528 | IF ( BTEST( wall_flags_total_0(k-1,j,i), 1 ) .AND. & |
---|
| 2529 | BTEST( wall_flags_total_0(k,j,i), 1 ) .AND. & |
---|
| 2530 | BTEST( wall_flags_total_0(k+1,j,i), 1 ) ) & |
---|
| 2531 | wall_flags_total_0(k,j,i) = IBSET( wall_flags_total_0(k,j,i), 20 ) |
---|
[2232] | 2532 | ! |
---|
| 2533 | !-- Special flag on v grid, former nzb_v_inner + 1, required |
---|
| 2534 | !-- for disturb_field and initialization. Do not disturb directly at |
---|
| 2535 | !-- topography, as well as initialize v with zero one grid point outside |
---|
| 2536 | !-- of topography. |
---|
[4346] | 2537 | IF ( BTEST( wall_flags_total_0(k-1,j,i), 2 ) .AND. & |
---|
| 2538 | BTEST( wall_flags_total_0(k,j,i), 2 ) .AND. & |
---|
| 2539 | BTEST( wall_flags_total_0(k+1,j,i), 2 ) ) & |
---|
| 2540 | wall_flags_total_0(k,j,i) = IBSET( wall_flags_total_0(k,j,i), 21 ) |
---|
[2232] | 2541 | ! |
---|
| 2542 | !-- Special flag on scalar grid, former nzb_s_inner+1. Used for |
---|
| 2543 | !-- lpm_sgs_tke |
---|
[4346] | 2544 | IF ( BTEST( wall_flags_total_0(k,j,i), 0 ) .AND. & |
---|
| 2545 | BTEST( wall_flags_total_0(k-1,j,i), 0 ) .AND. & |
---|
| 2546 | BTEST( wall_flags_total_0(k+1,j,i), 0 ) ) & |
---|
| 2547 | wall_flags_total_0(k,j,i) = IBSET( wall_flags_total_0(k,j,i), 25 ) |
---|
[2232] | 2548 | ! |
---|
| 2549 | !-- Special flag on scalar grid, nzb_diff_s_outer - 1, required in |
---|
| 2550 | !-- in production_e |
---|
| 2551 | IF ( constant_flux_layer .OR. use_surface_fluxes ) THEN |
---|
[4346] | 2552 | IF ( BTEST( wall_flags_total_0(k,j,i), 24 ) .AND. & |
---|
| 2553 | BTEST( wall_flags_total_0(k-1,j,i), 24 ) .AND. & |
---|
| 2554 | BTEST( wall_flags_total_0(k+1,j,i), 0 ) ) & |
---|
| 2555 | wall_flags_total_0(k,j,i) = IBSET( wall_flags_total_0(k,j,i), 29 ) |
---|
[2232] | 2556 | ELSE |
---|
[4346] | 2557 | IF ( BTEST( wall_flags_total_0(k,j,i), 0 ) ) & |
---|
| 2558 | wall_flags_total_0(k,j,i) = IBSET( wall_flags_total_0(k,j,i), 29 ) |
---|
[1] | 2559 | ENDIF |
---|
[2232] | 2560 | ! |
---|
| 2561 | !-- Special flag on scalar grid, nzb_diff_s_outer - 1, required in |
---|
| 2562 | !-- in production_e |
---|
| 2563 | IF ( constant_flux_layer .OR. use_surface_fluxes ) THEN |
---|
[4346] | 2564 | IF ( BTEST( wall_flags_total_0(k,j,i), 0 ) .AND. & |
---|
| 2565 | BTEST( wall_flags_total_0(k-1,j,i), 0 ) .AND. & |
---|
| 2566 | BTEST( wall_flags_total_0(k+1,j,i), 0 ) ) & |
---|
| 2567 | wall_flags_total_0(k,j,i) = IBSET( wall_flags_total_0(k,j,i), 30 ) |
---|
[2232] | 2568 | ELSE |
---|
[4346] | 2569 | IF ( BTEST( wall_flags_total_0(k,j,i), 0 ) ) & |
---|
| 2570 | wall_flags_total_0(k,j,i) = IBSET( wall_flags_total_0(k,j,i), 30 ) |
---|
[2232] | 2571 | ENDIF |
---|
| 2572 | ENDDO |
---|
| 2573 | ! |
---|
| 2574 | !-- Flags indicating downward facing walls |
---|
[4340] | 2575 | DO k = nzb+1, nzt+1 |
---|
[2232] | 2576 | ! |
---|
| 2577 | !-- Scalar grid |
---|
[4346] | 2578 | IF ( BTEST( wall_flags_total_0(k-1,j,i), 0 ) .AND. & |
---|
| 2579 | .NOT. BTEST( wall_flags_total_0(k,j,i), 0 ) ) & |
---|
| 2580 | wall_flags_total_0(k,j,i) = IBSET( wall_flags_total_0(k,j,i), 13 ) |
---|
[2232] | 2581 | ! |
---|
| 2582 | !-- Downward facing wall on u grid |
---|
[4346] | 2583 | IF ( BTEST( wall_flags_total_0(k-1,j,i), 1 ) .AND. & |
---|
| 2584 | .NOT. BTEST( wall_flags_total_0(k,j,i), 1 ) ) & |
---|
| 2585 | wall_flags_total_0(k,j,i) = IBSET( wall_flags_total_0(k,j,i), 15 ) |
---|
[2232] | 2586 | ! |
---|
| 2587 | !-- Downward facing wall on v grid |
---|
[4346] | 2588 | IF ( BTEST( wall_flags_total_0(k-1,j,i), 2 ) .AND. & |
---|
| 2589 | .NOT. BTEST( wall_flags_total_0(k,j,i), 2 ) ) & |
---|
| 2590 | wall_flags_total_0(k,j,i) = IBSET( wall_flags_total_0(k,j,i), 17 ) |
---|
[2232] | 2591 | ! |
---|
| 2592 | !-- Downward facing wall on w grid |
---|
[4346] | 2593 | IF ( BTEST( wall_flags_total_0(k-1,j,i), 3 ) .AND. & |
---|
| 2594 | .NOT. BTEST( wall_flags_total_0(k,j,i), 3 ) ) & |
---|
| 2595 | wall_flags_total_0(k,j,i) = IBSET( wall_flags_total_0(k,j,i), 19 ) |
---|
[2232] | 2596 | ENDDO |
---|
| 2597 | ! |
---|
| 2598 | !-- Flags indicating upward facing walls |
---|
| 2599 | DO k = nzb, nzt |
---|
| 2600 | ! |
---|
| 2601 | !-- Upward facing wall on scalar grid |
---|
[4346] | 2602 | IF ( .NOT. BTEST( wall_flags_total_0(k,j,i), 0 ) .AND. & |
---|
| 2603 | BTEST( wall_flags_total_0(k+1,j,i), 0 ) ) & |
---|
| 2604 | wall_flags_total_0(k,j,i) = IBSET( wall_flags_total_0(k,j,i), 12 ) |
---|
[2232] | 2605 | ! |
---|
| 2606 | !-- Upward facing wall on u grid |
---|
[4346] | 2607 | IF ( .NOT. BTEST( wall_flags_total_0(k,j,i), 1 ) .AND. & |
---|
| 2608 | BTEST( wall_flags_total_0(k+1,j,i), 1 ) ) & |
---|
| 2609 | wall_flags_total_0(k,j,i) = IBSET( wall_flags_total_0(k,j,i), 14 ) |
---|
[1] | 2610 | |
---|
[2696] | 2611 | ! |
---|
[2232] | 2612 | !-- Upward facing wall on v grid |
---|
[4346] | 2613 | IF ( .NOT. BTEST( wall_flags_total_0(k,j,i), 2 ) .AND. & |
---|
| 2614 | BTEST( wall_flags_total_0(k+1,j,i), 2 ) ) & |
---|
| 2615 | wall_flags_total_0(k,j,i) = IBSET( wall_flags_total_0(k,j,i), 16 ) |
---|
[2696] | 2616 | |
---|
[2232] | 2617 | ! |
---|
| 2618 | !-- Upward facing wall on w grid |
---|
[4346] | 2619 | IF ( .NOT. BTEST( wall_flags_total_0(k,j,i), 3 ) .AND. & |
---|
| 2620 | BTEST( wall_flags_total_0(k+1,j,i), 3 ) ) & |
---|
| 2621 | wall_flags_total_0(k,j,i) = IBSET( wall_flags_total_0(k,j,i), 18 ) |
---|
[2232] | 2622 | ! |
---|
| 2623 | !-- Special flag on scalar grid, former nzb_s_inner |
---|
[4346] | 2624 | IF ( BTEST( wall_flags_total_0(k,j,i), 0 ) .OR. & |
---|
| 2625 | BTEST( wall_flags_total_0(k,j,i), 12 ) .OR. & |
---|
| 2626 | BTEST( wall_flags_total_0(k,j,i), 13 ) ) & |
---|
| 2627 | wall_flags_total_0(k,j,i) = IBSET( wall_flags_total_0(k,j,i), 22 ) |
---|
[2232] | 2628 | ! |
---|
| 2629 | !-- Special flag on scalar grid, nzb_diff_s_inner - 1, required for |
---|
| 2630 | !-- flow_statistics |
---|
| 2631 | IF ( constant_flux_layer .OR. use_surface_fluxes ) THEN |
---|
[4346] | 2632 | IF ( BTEST( wall_flags_total_0(k,j,i), 0 ) .AND. & |
---|
| 2633 | BTEST( wall_flags_total_0(k+1,j,i), 0 ) ) & |
---|
| 2634 | wall_flags_total_0(k,j,i) = IBSET( wall_flags_total_0(k,j,i), 23 ) |
---|
[2232] | 2635 | ELSE |
---|
[4346] | 2636 | IF ( BTEST( wall_flags_total_0(k,j,i), 22 ) ) & |
---|
| 2637 | wall_flags_total_0(k,j,i) = IBSET( wall_flags_total_0(k,j,i), 23 ) |
---|
[1] | 2638 | ENDIF |
---|
[2696] | 2639 | |
---|
[1] | 2640 | |
---|
[2232] | 2641 | ENDDO |
---|
[4346] | 2642 | wall_flags_total_0(nzt+1,j,i) = IBSET( wall_flags_total_0(nzt+1,j,i), 22 ) |
---|
| 2643 | wall_flags_total_0(nzt+1,j,i) = IBSET( wall_flags_total_0(nzt+1,j,i), 23 ) |
---|
[4109] | 2644 | ! |
---|
| 2645 | !-- Set flags indicating that topography is close by in horizontal |
---|
| 2646 | !-- direction, i.e. flags that infold the topography. These will be used |
---|
| 2647 | !-- to set advection flags for passive scalars, where due to large |
---|
| 2648 | !-- gradients near buildings stationary numerical oscillations can produce |
---|
| 2649 | !-- unrealistically high concentrations. This is only necessary if |
---|
| 2650 | !-- WS-scheme is applied for scalar advection. Note, these flags will be |
---|
| 2651 | !-- only used for passive scalars such as chemical species or aerosols. |
---|
| 2652 | IF ( scalar_advec == 'ws-scheme' ) THEN |
---|
| 2653 | DO k = nzb, nzt |
---|
[4346] | 2654 | IF ( BTEST( wall_flags_total_0(k,j,i), 0 ) .AND. ( & |
---|
| 2655 | ANY( .NOT. BTEST( wall_flags_total_0(k,j-3:j+3,i-1), 0 ) ) .OR.& |
---|
| 2656 | ANY( .NOT. BTEST( wall_flags_total_0(k,j-3:j+3,i-2), 0 ) ) .OR.& |
---|
| 2657 | ANY( .NOT. BTEST( wall_flags_total_0(k,j-3:j+3,i-3), 0 ) ) .OR.& |
---|
| 2658 | ANY( .NOT. BTEST( wall_flags_total_0(k,j-3:j+3,i+1), 0 ) ) .OR.& |
---|
| 2659 | ANY( .NOT. BTEST( wall_flags_total_0(k,j-3:j+3,i+2), 0 ) ) .OR.& |
---|
| 2660 | ANY( .NOT. BTEST( wall_flags_total_0(k,j-3:j+3,i+3), 0 ) ) .OR.& |
---|
| 2661 | ANY( .NOT. BTEST( wall_flags_total_0(k,j-1,i-3:i+3), 0 ) ) .OR.& |
---|
| 2662 | ANY( .NOT. BTEST( wall_flags_total_0(k,j-2,i-3:i+3), 0 ) ) .OR.& |
---|
| 2663 | ANY( .NOT. BTEST( wall_flags_total_0(k,j-3,i-3:i+3), 0 ) ) .OR.& |
---|
| 2664 | ANY( .NOT. BTEST( wall_flags_total_0(k,j+1,i-3:i+3), 0 ) ) .OR.& |
---|
| 2665 | ANY( .NOT. BTEST( wall_flags_total_0(k,j+2,i-3:i+3), 0 ) ) .OR.& |
---|
| 2666 | ANY( .NOT. BTEST( wall_flags_total_0(k,j+3,i-3:i+3), 0 ) ) & |
---|
| 2667 | ) ) & |
---|
| 2668 | wall_flags_total_0(k,j,i) = IBSET( wall_flags_total_0(k,j,i), 31 ) |
---|
[4109] | 2669 | |
---|
| 2670 | ENDDO |
---|
| 2671 | ENDIF |
---|
[2232] | 2672 | ENDDO |
---|
| 2673 | ENDDO |
---|
| 2674 | ! |
---|
[2696] | 2675 | !-- Finally, set identification flags indicating natural terrain or buildings. |
---|
[4189] | 2676 | !-- Natural terrain grid points. Information on the type of the surface is |
---|
| 2677 | !-- stored in bit 1 of 3D Integer array topo. However, this bit is only set |
---|
| 2678 | !-- when topography is read from file. In order to run the land-surface model |
---|
| 2679 | !-- also without topography information, set bit 1 explicitely in this case. |
---|
[4294] | 2680 | !-- |
---|
| 2681 | !-- Natural terrain grid points |
---|
| 2682 | !-- If no topography is initialized, the land-surface is at k = nzb. |
---|
| 2683 | IF ( TRIM( topography ) /= 'read_from_file' ) THEN |
---|
[4329] | 2684 | wall_flags_static_0(nzb,:,:) = IBSET( wall_flags_static_0(nzb,:,:), 5 ) |
---|
[4294] | 2685 | ELSE |
---|
| 2686 | DO i = nxl, nxr |
---|
| 2687 | DO j = nys, nyn |
---|
| 2688 | DO k = nzb, nzt+1 |
---|
[4189] | 2689 | ! |
---|
[4294] | 2690 | !-- Natural terrain grid point |
---|
| 2691 | IF ( BTEST( topo(k,j,i), 1 ) ) & |
---|
[4329] | 2692 | wall_flags_static_0(k,j,i) = IBSET( wall_flags_static_0(k,j,i), 5 ) |
---|
[2696] | 2693 | ENDDO |
---|
| 2694 | ENDDO |
---|
[4294] | 2695 | ENDDO |
---|
[2696] | 2696 | ENDIF |
---|
| 2697 | ! |
---|
| 2698 | !-- Building grid points. |
---|
[4294] | 2699 | DO i = nxl, nxr |
---|
| 2700 | DO j = nys, nyn |
---|
| 2701 | DO k = nzb, nzt+1 |
---|
| 2702 | IF ( BTEST( topo(k,j,i), 2 ) ) & |
---|
[4329] | 2703 | wall_flags_static_0(k,j,i) = IBSET( wall_flags_static_0(k,j,i), 6 ) |
---|
[2696] | 2704 | ENDDO |
---|
| 2705 | ENDDO |
---|
[4294] | 2706 | ENDDO |
---|
[2696] | 2707 | ! |
---|
[4314] | 2708 | !-- Set flag 4, indicating new topography grid points due to filtering. |
---|
| 2709 | DO i = nxl, nxr |
---|
| 2710 | DO j = nys, nyn |
---|
| 2711 | DO k = nzb, nzt+1 |
---|
| 2712 | IF ( BTEST( topo(k,j,i), 4 ) ) & |
---|
[4329] | 2713 | wall_flags_static_0(k,j,i) = IBSET( wall_flags_static_0(k,j,i), 4 ) |
---|
[4314] | 2714 | ENDDO |
---|
| 2715 | ENDDO |
---|
| 2716 | ENDDO |
---|
[4346] | 2717 | |
---|
| 2718 | CALL exchange_horiz_int( wall_flags_static_0, nys, nyn, nxl, nxr, nzt, nbgp ) |
---|
| 2719 | |
---|
| 2720 | DO i = nxl, nxr |
---|
| 2721 | DO j = nys, nyn |
---|
| 2722 | DO k = nzb, nzt+1 |
---|
| 2723 | wall_flags_total_0(k,j,i) = IOR( wall_flags_total_0(k,j,i), wall_flags_static_0(k,j,i) ) |
---|
| 2724 | ENDDO |
---|
| 2725 | ENDDO |
---|
| 2726 | ENDDO |
---|
[4314] | 2727 | ! |
---|
[2232] | 2728 | !-- Exchange ghost points for wall flags |
---|
[4346] | 2729 | CALL exchange_horiz_int( wall_flags_total_0, nys, nyn, nxl, nxr, nzt, nbgp ) |
---|
[2232] | 2730 | ! |
---|
| 2731 | !-- Set boundary conditions also for flags. Can be interpreted as Neumann |
---|
| 2732 | !-- boundary conditions for topography. |
---|
| 2733 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
[2696] | 2734 | IF ( nys == 0 ) THEN |
---|
| 2735 | DO i = 1, nbgp |
---|
[4346] | 2736 | wall_flags_total_0(:,nys-i,:) = wall_flags_total_0(:,nys,:) |
---|
[2696] | 2737 | ENDDO |
---|
| 2738 | ENDIF |
---|
| 2739 | IF ( nyn == ny ) THEN |
---|
| 2740 | DO i = 1, nbgp |
---|
[4346] | 2741 | wall_flags_total_0(:,nyn+i,:) = wall_flags_total_0(:,nyn,:) |
---|
[2696] | 2742 | ENDDO |
---|
| 2743 | ENDIF |
---|
[2232] | 2744 | ENDIF |
---|
| 2745 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
[2696] | 2746 | IF ( nxl == 0 ) THEN |
---|
| 2747 | DO i = 1, nbgp |
---|
[4346] | 2748 | wall_flags_total_0(:,:,nxl-i) = wall_flags_total_0(:,:,nxl) |
---|
[2696] | 2749 | ENDDO |
---|
[2232] | 2750 | ENDIF |
---|
[2696] | 2751 | IF ( nxr == nx ) THEN |
---|
| 2752 | DO i = 1, nbgp |
---|
[4346] | 2753 | wall_flags_total_0(:,:,nxr+i) = wall_flags_total_0(:,:,nxr) |
---|
[2232] | 2754 | ENDDO |
---|
[2696] | 2755 | ENDIF |
---|
[2232] | 2756 | ENDIF |
---|
[4168] | 2757 | ! |
---|
| 2758 | !-- Pre-calculate topography top indices (former get_topography_top_index |
---|
| 2759 | !-- function) |
---|
| 2760 | ALLOCATE( topo_top_ind(nysg:nyng,nxlg:nxrg,0:4) ) |
---|
| 2761 | ! |
---|
| 2762 | !-- Uppermost topography index on scalar grid |
---|
| 2763 | ibit = 12 |
---|
| 2764 | topo_top_ind(:,:,0) = MAXLOC( & |
---|
| 2765 | MERGE( 1, 0, & |
---|
[4346] | 2766 | BTEST( wall_flags_total_0(:,:,:), ibit ) & |
---|
[4168] | 2767 | ), DIM = 1 & |
---|
| 2768 | ) - 1 |
---|
| 2769 | ! |
---|
| 2770 | !-- Uppermost topography index on u grid |
---|
| 2771 | ibit = 14 |
---|
| 2772 | topo_top_ind(:,:,1) = MAXLOC( & |
---|
| 2773 | MERGE( 1, 0, & |
---|
[4346] | 2774 | BTEST( wall_flags_total_0(:,:,:), ibit ) & |
---|
[4168] | 2775 | ), DIM = 1 & |
---|
| 2776 | ) - 1 |
---|
| 2777 | ! |
---|
| 2778 | !-- Uppermost topography index on v grid |
---|
| 2779 | ibit = 16 |
---|
| 2780 | topo_top_ind(:,:,2) = MAXLOC( & |
---|
| 2781 | MERGE( 1, 0, & |
---|
[4346] | 2782 | BTEST( wall_flags_total_0(:,:,:), ibit ) & |
---|
[4168] | 2783 | ), DIM = 1 & |
---|
| 2784 | ) - 1 |
---|
| 2785 | ! |
---|
| 2786 | !-- Uppermost topography index on w grid |
---|
| 2787 | ibit = 18 |
---|
| 2788 | topo_top_ind(:,:,3) = MAXLOC( & |
---|
| 2789 | MERGE( 1, 0, & |
---|
[4346] | 2790 | BTEST( wall_flags_total_0(:,:,:), ibit ) & |
---|
[4168] | 2791 | ), DIM = 1 & |
---|
| 2792 | ) - 1 |
---|
| 2793 | ! |
---|
| 2794 | !-- Uppermost topography index on scalar outer grid |
---|
| 2795 | ibit = 24 |
---|
| 2796 | topo_top_ind(:,:,4) = MAXLOC( & |
---|
| 2797 | MERGE( 1, 0, & |
---|
[4346] | 2798 | BTEST( wall_flags_total_0(:,:,:), ibit ) & |
---|
[4168] | 2799 | ), DIM = 1 & |
---|
| 2800 | ) - 1 |
---|
[4346] | 2801 | |
---|
[2696] | 2802 | END SUBROUTINE set_topo_flags |
---|
[114] | 2803 | |
---|
| 2804 | |
---|
| 2805 | |
---|