[1682] | 1 | !> @file init_grid.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[3655] | 17 | ! Copyright 1997-2019 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[254] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[2233] | 22 | ! |
---|
[4110] | 23 | ! |
---|
[2233] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: init_grid.f90 4182 2019-08-22 15:20:23Z suehring $ |
---|
[4182] | 27 | ! Corrected "Former revisions" section |
---|
| 28 | ! |
---|
| 29 | ! 4168 2019-08-16 13:50:17Z suehring |
---|
[4168] | 30 | ! Pre-calculate topography top index and store it on an array (replaces former |
---|
| 31 | ! functions get_topography_top_index) |
---|
| 32 | ! |
---|
| 33 | ! 4159 2019-08-15 13:31:35Z suehring |
---|
[4159] | 34 | ! Revision of topography processing. This was not consistent between 2D and 3D |
---|
| 35 | ! buildings. |
---|
| 36 | ! |
---|
| 37 | ! 4144 2019-08-06 09:11:47Z raasch |
---|
[4144] | 38 | ! relational operators .EQ., .NE., etc. replaced by ==, /=, etc. |
---|
| 39 | ! |
---|
| 40 | ! 4115 2019-07-24 12:50:49Z suehring |
---|
[4115] | 41 | ! Bugfix in setting near-surface flag 24, inidicating wall-bounded grid points |
---|
| 42 | ! |
---|
| 43 | ! 4110 2019-07-22 17:05:21Z suehring |
---|
[4110] | 44 | ! - Separate initialization of advection flags for momentum and scalars. |
---|
| 45 | ! - Change subroutine interface for ws_init_flags_scalar to pass boundary flags |
---|
| 46 | ! |
---|
| 47 | ! 4109 2019-07-22 17:00:34Z suehring |
---|
[3927] | 48 | ! Fix bad commit |
---|
| 49 | ! |
---|
| 50 | ! 3926 2019-04-23 12:56:42Z suehring |
---|
[3925] | 51 | ! Minor bugfix in building mapping when all building IDs in the model domain |
---|
| 52 | ! are missing |
---|
| 53 | ! |
---|
| 54 | ! 3857 2019-04-03 13:00:16Z knoop |
---|
[3855] | 55 | ! In projection of non-building 3D objects onto numerical grid remove |
---|
| 56 | ! dependency on building_type |
---|
| 57 | ! |
---|
| 58 | ! 3763 2019-02-25 17:33:49Z suehring |
---|
[3763] | 59 | ! Replace work-around for ghost point exchange of 1-byte arrays with specific |
---|
| 60 | ! routine as already done in other routines |
---|
| 61 | ! |
---|
| 62 | ! 3761 2019-02-25 15:31:42Z raasch |
---|
[3761] | 63 | ! unused variables removed |
---|
| 64 | ! |
---|
| 65 | ! 3661 2019-01-08 18:22:50Z suehring |
---|
[3661] | 66 | ! Remove setting of nzb_max to nzt at non-cyclic boundary PEs, instead, |
---|
| 67 | ! order degradation of advection scheme is handeled directly in advec_ws |
---|
| 68 | ! |
---|
| 69 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
[3538] | 70 | ! Comment added |
---|
[2716] | 71 | ! |
---|
[4182] | 72 | ! Revision 1.1 1997/08/11 06:17:45 raasch |
---|
| 73 | ! Initial revision (Testversion) |
---|
| 74 | ! |
---|
| 75 | ! |
---|
[1] | 76 | ! Description: |
---|
[2696] | 77 | ! -----------------------------------------------------------------------------! |
---|
[1682] | 78 | !> Creating grid depending constants |
---|
[2696] | 79 | !> @todo: Rearrange topo flag list |
---|
| 80 | !> @todo: reference 3D buildings on top of orography is not tested and may need |
---|
| 81 | !> further improvement for steep slopes |
---|
| 82 | !> @todo: Use more advanced setting of building type at filled holes |
---|
[1] | 83 | !------------------------------------------------------------------------------! |
---|
[1682] | 84 | SUBROUTINE init_grid |
---|
| 85 | |
---|
[1942] | 86 | USE advec_ws, & |
---|
[4109] | 87 | ONLY: ws_init_flags_momentum, ws_init_flags_scalar |
---|
[1] | 88 | |
---|
[1320] | 89 | USE arrays_3d, & |
---|
[3857] | 90 | ONLY: dd2zu, ddzu, ddzu_pres, ddzw, dzu, dzw, x, xu, y, yv, zu, zw |
---|
[1320] | 91 | |
---|
[1353] | 92 | USE control_parameters, & |
---|
[3761] | 93 | ONLY: bc_lr_cyc, bc_ns_cyc, & |
---|
[4109] | 94 | bc_dirichlet_l, & |
---|
| 95 | bc_dirichlet_n, & |
---|
| 96 | bc_dirichlet_r, & |
---|
| 97 | bc_dirichlet_s, & |
---|
| 98 | bc_radiation_l, & |
---|
| 99 | bc_radiation_n, & |
---|
| 100 | bc_radiation_r, & |
---|
| 101 | bc_radiation_s, & |
---|
[3241] | 102 | constant_flux_layer, dz, dz_max, dz_stretch_factor, & |
---|
[3065] | 103 | dz_stretch_factor_array, dz_stretch_level, dz_stretch_level_end,& |
---|
| 104 | dz_stretch_level_end_index, dz_stretch_level_start_index, & |
---|
[3241] | 105 | dz_stretch_level_start, ibc_uv_b, message_string, & |
---|
[3182] | 106 | momentum_advec, number_stretch_level_end, & |
---|
[3294] | 107 | number_stretch_level_start, ocean_mode, psolver, scalar_advec, & |
---|
[3241] | 108 | topography, use_surface_fluxes |
---|
[2021] | 109 | |
---|
[1320] | 110 | USE grid_variables, & |
---|
[2232] | 111 | ONLY: ddx, ddx2, ddy, ddy2, dx, dx2, dy, dy2, zu_s_inner, zw_w_inner |
---|
[1320] | 112 | |
---|
| 113 | USE indices, & |
---|
[4109] | 114 | ONLY: advc_flags_m, & |
---|
| 115 | advc_flags_s, & |
---|
| 116 | nbgp, nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, nz, & |
---|
[2232] | 117 | nzb, nzb_diff, nzb_diff_s_inner, nzb_diff_s_outer, & |
---|
| 118 | nzb_max, nzb_s_inner, nzb_s_outer, nzb_u_inner, & |
---|
[1845] | 119 | nzb_u_outer, nzb_v_inner, nzb_v_outer, nzb_w_inner, & |
---|
[4168] | 120 | nzb_w_outer, nzt, topo_top_ind, topo_min_level |
---|
[1320] | 121 | |
---|
| 122 | USE kinds |
---|
[2696] | 123 | |
---|
[1] | 124 | USE pegrid |
---|
| 125 | |
---|
[2696] | 126 | USE poismg_noopt_mod |
---|
| 127 | |
---|
[2232] | 128 | USE surface_mod, & |
---|
[4168] | 129 | ONLY: init_bc |
---|
[2232] | 130 | |
---|
[2365] | 131 | USE vertical_nesting_mod, & |
---|
| 132 | ONLY: vnested, vnest_init_grid |
---|
| 133 | |
---|
[1] | 134 | IMPLICIT NONE |
---|
| 135 | |
---|
[3182] | 136 | INTEGER(iwp) :: i !< index variable along x |
---|
| 137 | INTEGER(iwp) :: j !< index variable along y |
---|
| 138 | INTEGER(iwp) :: k !< index variable along z |
---|
| 139 | INTEGER(iwp) :: k_top !< topography top index on local PE |
---|
| 140 | INTEGER(iwp) :: n !< loop variable for stretching |
---|
| 141 | INTEGER(iwp) :: number_dz !< number of user-specified dz values |
---|
| 142 | INTEGER(iwp) :: nzb_local_max !< vertical grid index of maximum topography height |
---|
| 143 | INTEGER(iwp) :: nzb_local_min !< vertical grid index of minimum topography height |
---|
[2232] | 144 | |
---|
[3065] | 145 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: nzb_local !< index for topography top at cell-center |
---|
| 146 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: nzb_tmp !< dummy to calculate topography indices on u- and v-grid |
---|
[1] | 147 | |
---|
[2696] | 148 | INTEGER(iwp), DIMENSION(:,:,:), ALLOCATABLE :: topo !< input array for 3D topography and dummy array for setting "outer"-flags |
---|
[2232] | 149 | |
---|
[3065] | 150 | REAL(wp) :: dz_level_end !< distance between calculated height level for u/v-grid and user-specified end level for stretching |
---|
[1886] | 151 | REAL(wp) :: dz_stretched !< stretched vertical grid spacing |
---|
[3065] | 152 | |
---|
| 153 | REAL(wp), DIMENSION(:), ALLOCATABLE :: min_dz_stretch_level_end !< Array that contains all minimum heights where the stretching can end |
---|
[861] | 154 | |
---|
[1] | 155 | |
---|
| 156 | ! |
---|
[709] | 157 | !-- Calculation of horizontal array bounds including ghost layers |
---|
[667] | 158 | nxlg = nxl - nbgp |
---|
| 159 | nxrg = nxr + nbgp |
---|
| 160 | nysg = nys - nbgp |
---|
| 161 | nyng = nyn + nbgp |
---|
[709] | 162 | |
---|
[667] | 163 | ! |
---|
[1] | 164 | !-- Allocate grid arrays |
---|
[3857] | 165 | ALLOCATE( x(0:nx), xu(0:nx) ) |
---|
| 166 | DO i = 0, nx |
---|
| 167 | xu(i) = i * dx |
---|
| 168 | x(i) = i * dx + 0.5_wp * dx |
---|
| 169 | ENDDO |
---|
| 170 | |
---|
| 171 | ALLOCATE( y(0:ny), yv(0:ny) ) |
---|
| 172 | DO j = 0, ny |
---|
| 173 | yv(j) = j * dy |
---|
| 174 | y(j) = j * dy + 0.5_wp * dy |
---|
| 175 | ENDDO |
---|
| 176 | |
---|
| 177 | ! |
---|
| 178 | !-- Allocate grid arrays |
---|
[1353] | 179 | ALLOCATE( ddzu(1:nzt+1), ddzw(1:nzt+1), dd2zu(1:nzt), dzu(1:nzt+1), & |
---|
[2696] | 180 | dzw(1:nzt+1), zu(nzb:nzt+1), zw(nzb:nzt+1) ) |
---|
[1] | 181 | |
---|
| 182 | ! |
---|
| 183 | !-- Compute height of u-levels from constant grid length and dz stretch factors |
---|
[3065] | 184 | IF ( dz(1) == -1.0_wp ) THEN |
---|
[254] | 185 | message_string = 'missing dz' |
---|
| 186 | CALL message( 'init_grid', 'PA0200', 1, 2, 0, 6, 0 ) |
---|
[3065] | 187 | ELSEIF ( dz(1) <= 0.0_wp ) THEN |
---|
| 188 | WRITE( message_string, * ) 'dz=',dz(1),' <= 0.0' |
---|
[254] | 189 | CALL message( 'init_grid', 'PA0201', 1, 2, 0, 6, 0 ) |
---|
[1] | 190 | ENDIF |
---|
[94] | 191 | |
---|
[1] | 192 | ! |
---|
[3065] | 193 | !-- Initialize dz_stretch_level_start with the value of dz_stretch_level |
---|
| 194 | !-- if it was set by the user |
---|
| 195 | IF ( dz_stretch_level /= -9999999.9_wp ) THEN |
---|
| 196 | dz_stretch_level_start(1) = dz_stretch_level |
---|
| 197 | ENDIF |
---|
| 198 | |
---|
| 199 | ! |
---|
| 200 | !-- Determine number of dz values and stretching levels specified by the |
---|
| 201 | !-- user to allow right controlling of the stretching mechanism and to |
---|
[3139] | 202 | !-- perform error checks. The additional requirement that dz /= dz_max |
---|
| 203 | !-- for counting number of user-specified dz values is necessary. Otherwise |
---|
| 204 | !-- restarts would abort if the old stretching mechanism with dz_stretch_level |
---|
| 205 | !-- is used (Attention: The user is not allowed to specify a dz value equal |
---|
| 206 | !-- to the default of dz_max = 999.0). |
---|
| 207 | number_dz = COUNT( dz /= -1.0_wp .AND. dz /= dz_max) |
---|
[3065] | 208 | number_stretch_level_start = COUNT( dz_stretch_level_start /= & |
---|
| 209 | -9999999.9_wp ) |
---|
| 210 | number_stretch_level_end = COUNT( dz_stretch_level_end /= & |
---|
| 211 | 9999999.9_wp ) |
---|
| 212 | |
---|
| 213 | ! |
---|
| 214 | !-- The number of specified end levels +1 has to be the same than the number |
---|
| 215 | !-- of specified dz values |
---|
| 216 | IF ( number_dz /= number_stretch_level_end + 1 ) THEN |
---|
| 217 | WRITE( message_string, * ) 'The number of values for dz = ', & |
---|
| 218 | number_dz, 'has to be the same than& ', & |
---|
| 219 | 'the number of values for ', & |
---|
| 220 | 'dz_stretch_level_end + 1 = ', & |
---|
| 221 | number_stretch_level_end+1 |
---|
| 222 | CALL message( 'init_grid', 'PA0156', 1, 2, 0, 6, 0 ) |
---|
| 223 | ENDIF |
---|
| 224 | |
---|
| 225 | ! |
---|
| 226 | !-- The number of specified start levels has to be the same or one less than |
---|
| 227 | !-- the number of specified dz values |
---|
| 228 | IF ( number_dz /= number_stretch_level_start + 1 .AND. & |
---|
| 229 | number_dz /= number_stretch_level_start ) THEN |
---|
| 230 | WRITE( message_string, * ) 'The number of values for dz = ', & |
---|
| 231 | number_dz, 'has to be the same or one ', & |
---|
| 232 | 'more than& the number of values for ', & |
---|
| 233 | 'dz_stretch_level_start = ', & |
---|
| 234 | number_stretch_level_start |
---|
| 235 | CALL message( 'init_grid', 'PA0211', 1, 2, 0, 6, 0 ) |
---|
| 236 | ENDIF |
---|
| 237 | |
---|
| 238 | !-- The number of specified start levels has to be the same or one more than |
---|
| 239 | !-- the number of specified end levels |
---|
| 240 | IF ( number_stretch_level_start /= number_stretch_level_end + 1 .AND. & |
---|
| 241 | number_stretch_level_start /= number_stretch_level_end ) THEN |
---|
| 242 | WRITE( message_string, * ) 'The number of values for ', & |
---|
| 243 | 'dz_stretch_level_start = ', & |
---|
| 244 | dz_stretch_level_start, 'has to be the ',& |
---|
| 245 | 'same or one more than& the number of ', & |
---|
| 246 | 'values for dz_stretch_level_end = ', & |
---|
| 247 | number_stretch_level_end |
---|
| 248 | CALL message( 'init_grid', 'PA0216', 1, 2, 0, 6, 0 ) |
---|
| 249 | ENDIF |
---|
| 250 | |
---|
| 251 | ! |
---|
| 252 | !-- Initialize dz for the free atmosphere with the value of dz_max |
---|
| 253 | IF ( dz(number_stretch_level_start+1) == -1.0_wp .AND. & |
---|
| 254 | number_stretch_level_start /= 0 ) THEN |
---|
| 255 | dz(number_stretch_level_start+1) = dz_max |
---|
| 256 | ENDIF |
---|
| 257 | |
---|
| 258 | ! |
---|
| 259 | !-- Initialize the stretching factor if (infinitely) stretching in the free |
---|
| 260 | !-- atmosphere is desired (dz_stretch_level_end was not specified for the |
---|
| 261 | !-- free atmosphere) |
---|
| 262 | IF ( number_stretch_level_start == number_stretch_level_end + 1 ) THEN |
---|
| 263 | dz_stretch_factor_array(number_stretch_level_start) = & |
---|
| 264 | dz_stretch_factor |
---|
| 265 | ENDIF |
---|
| 266 | |
---|
| 267 | ! |
---|
| 268 | !-- Allocation of arrays for stretching |
---|
| 269 | ALLOCATE( min_dz_stretch_level_end(number_stretch_level_start) ) |
---|
[3066] | 270 | |
---|
[3065] | 271 | ! |
---|
[94] | 272 | !-- Define the vertical grid levels |
---|
[3294] | 273 | IF ( .NOT. ocean_mode ) THEN |
---|
[3065] | 274 | |
---|
[94] | 275 | ! |
---|
[3065] | 276 | !-- The stretching region has to be large enough to allow for a smooth |
---|
| 277 | !-- transition between two different grid spacings |
---|
| 278 | DO n = 1, number_stretch_level_start |
---|
| 279 | min_dz_stretch_level_end(n) = dz_stretch_level_start(n) + & |
---|
| 280 | 4 * MAX( dz(n),dz(n+1) ) |
---|
| 281 | ENDDO |
---|
| 282 | |
---|
[3066] | 283 | IF ( ANY( min_dz_stretch_level_end(1:number_stretch_level_start) > & |
---|
| 284 | dz_stretch_level_end(1:number_stretch_level_start) ) ) THEN |
---|
[3065] | 285 | message_string= 'Eeach dz_stretch_level_end has to be larger ' // & |
---|
| 286 | 'than its corresponding value for &' // & |
---|
| 287 | 'dz_stretch_level_start + 4*MAX(dz(n),dz(n+1)) '//& |
---|
| 288 | 'to allow for smooth grid stretching' |
---|
| 289 | CALL message( 'init_grid', 'PA0224', 1, 2, 0, 6, 0 ) |
---|
| 290 | ENDIF |
---|
| 291 | |
---|
| 292 | ! |
---|
| 293 | !-- Stretching must not be applied within the prandtl_layer |
---|
| 294 | !-- (first two grid points). For the default case dz_stretch_level_start |
---|
| 295 | !-- is negative. Therefore the absolut value is checked here. |
---|
| 296 | IF ( ANY( ABS( dz_stretch_level_start ) < dz(1) * 1.5_wp ) ) THEN |
---|
| 297 | WRITE( message_string, * ) 'Eeach dz_stretch_level_start has to be ',& |
---|
| 298 | 'larger than ', dz(1) * 1.5 |
---|
| 299 | CALL message( 'init_grid', 'PA0226', 1, 2, 0, 6, 0 ) |
---|
| 300 | ENDIF |
---|
| 301 | |
---|
| 302 | ! |
---|
| 303 | !-- The stretching has to start and end on a grid level. Therefore |
---|
| 304 | !-- user-specified values have to ''interpolate'' to the next lowest level |
---|
| 305 | IF ( number_stretch_level_start /= 0 ) THEN |
---|
| 306 | dz_stretch_level_start(1) = INT( (dz_stretch_level_start(1) - & |
---|
| 307 | dz(1)/2.0) / dz(1) ) & |
---|
| 308 | * dz(1) + dz(1)/2.0 |
---|
| 309 | ENDIF |
---|
| 310 | |
---|
| 311 | IF ( number_stretch_level_start > 1 ) THEN |
---|
| 312 | DO n = 2, number_stretch_level_start |
---|
| 313 | dz_stretch_level_start(n) = INT( dz_stretch_level_start(n) / & |
---|
| 314 | dz(n) ) * dz(n) |
---|
| 315 | ENDDO |
---|
| 316 | ENDIF |
---|
| 317 | |
---|
| 318 | IF ( number_stretch_level_end /= 0 ) THEN |
---|
| 319 | DO n = 1, number_stretch_level_end |
---|
| 320 | dz_stretch_level_end(n) = INT( dz_stretch_level_end(n) / & |
---|
| 321 | dz(n+1) ) * dz(n+1) |
---|
| 322 | ENDDO |
---|
| 323 | ENDIF |
---|
| 324 | |
---|
| 325 | ! |
---|
| 326 | !-- Determine stretching factor if necessary |
---|
| 327 | IF ( number_stretch_level_end >= 1 ) THEN |
---|
| 328 | CALL calculate_stretching_factor( number_stretch_level_end ) |
---|
| 329 | ENDIF |
---|
| 330 | |
---|
| 331 | ! |
---|
[94] | 332 | !-- Grid for atmosphere with surface at z=0 (k=0, w-grid). |
---|
[3065] | 333 | !-- First compute the u- and v-levels. In case of dirichlet bc for u and v |
---|
| 334 | !-- the first u/v- and w-level (k=0) are defined at same height (z=0). |
---|
[843] | 335 | !-- The second u-level (k=1) corresponds to the top of the |
---|
[94] | 336 | !-- Prandtl-layer. |
---|
[667] | 337 | IF ( ibc_uv_b == 0 .OR. ibc_uv_b == 2 ) THEN |
---|
[1353] | 338 | zu(0) = 0.0_wp |
---|
[667] | 339 | ELSE |
---|
[3065] | 340 | zu(0) = - dz(1) * 0.5_wp |
---|
[667] | 341 | ENDIF |
---|
[3065] | 342 | |
---|
| 343 | zu(1) = dz(1) * 0.5_wp |
---|
| 344 | |
---|
| 345 | ! |
---|
| 346 | !-- Determine u and v height levels considering the possibility of grid |
---|
| 347 | !-- stretching in several heights. |
---|
| 348 | n = 1 |
---|
| 349 | dz_stretch_level_start_index = nzt+1 |
---|
| 350 | dz_stretch_level_end_index = nzt+1 |
---|
| 351 | dz_stretched = dz(1) |
---|
[1] | 352 | |
---|
[3065] | 353 | !-- The default value of dz_stretch_level_start is negative, thus the first |
---|
| 354 | !-- condition is always true. Hence, the second condition is necessary. |
---|
[94] | 355 | DO k = 2, nzt+1 |
---|
[3065] | 356 | IF ( dz_stretch_level_start(n) <= zu(k-1) .AND. & |
---|
| 357 | dz_stretch_level_start(n) /= -9999999.9_wp ) THEN |
---|
| 358 | dz_stretched = dz_stretched * dz_stretch_factor_array(n) |
---|
| 359 | |
---|
| 360 | IF ( dz(n) > dz(n+1) ) THEN |
---|
| 361 | dz_stretched = MAX( dz_stretched, dz(n+1) ) !Restrict dz_stretched to the user-specified (higher) dz |
---|
| 362 | ELSE |
---|
| 363 | dz_stretched = MIN( dz_stretched, dz(n+1) ) !Restrict dz_stretched to the user-specified (lower) dz |
---|
| 364 | ENDIF |
---|
| 365 | |
---|
| 366 | IF ( dz_stretch_level_start_index(n) == nzt+1 ) & |
---|
| 367 | dz_stretch_level_start_index(n) = k-1 |
---|
| 368 | |
---|
[94] | 369 | ENDIF |
---|
[3065] | 370 | |
---|
[94] | 371 | zu(k) = zu(k-1) + dz_stretched |
---|
[3065] | 372 | |
---|
| 373 | ! |
---|
| 374 | !-- Make sure that the stretching ends exactly at dz_stretch_level_end |
---|
| 375 | dz_level_end = ABS( zu(k) - dz_stretch_level_end(n) ) |
---|
| 376 | |
---|
| 377 | IF ( dz_level_end < dz(n+1)/3.0 ) THEN |
---|
| 378 | zu(k) = dz_stretch_level_end(n) |
---|
| 379 | dz_stretched = dz(n+1) |
---|
| 380 | dz_stretch_level_end_index(n) = k |
---|
| 381 | n = n + 1 |
---|
| 382 | ENDIF |
---|
[94] | 383 | ENDDO |
---|
[1] | 384 | |
---|
| 385 | ! |
---|
[94] | 386 | !-- Compute the w-levels. They are always staggered half-way between the |
---|
[843] | 387 | !-- corresponding u-levels. In case of dirichlet bc for u and v at the |
---|
| 388 | !-- ground the first u- and w-level (k=0) are defined at same height (z=0). |
---|
| 389 | !-- The top w-level is extrapolated linearly. |
---|
[1353] | 390 | zw(0) = 0.0_wp |
---|
[94] | 391 | DO k = 1, nzt |
---|
[1353] | 392 | zw(k) = ( zu(k) + zu(k+1) ) * 0.5_wp |
---|
[94] | 393 | ENDDO |
---|
[1353] | 394 | zw(nzt+1) = zw(nzt) + 2.0_wp * ( zu(nzt+1) - zw(nzt) ) |
---|
[1] | 395 | |
---|
[94] | 396 | ELSE |
---|
[3065] | 397 | |
---|
[1] | 398 | ! |
---|
[3065] | 399 | !-- The stretching region has to be large enough to allow for a smooth |
---|
| 400 | !-- transition between two different grid spacings |
---|
| 401 | DO n = 1, number_stretch_level_start |
---|
| 402 | min_dz_stretch_level_end(n) = dz_stretch_level_start(n) - & |
---|
| 403 | 4 * MAX( dz(n),dz(n+1) ) |
---|
| 404 | ENDDO |
---|
| 405 | |
---|
[3066] | 406 | IF ( ANY( min_dz_stretch_level_end (1:number_stretch_level_start) < & |
---|
| 407 | dz_stretch_level_end(1:number_stretch_level_start) ) ) THEN |
---|
[3065] | 408 | message_string= 'Eeach dz_stretch_level_end has to be less ' // & |
---|
| 409 | 'than its corresponding value for &' // & |
---|
| 410 | 'dz_stretch_level_start - 4*MAX(dz(n),dz(n+1)) '//& |
---|
| 411 | 'to allow for smooth grid stretching' |
---|
| 412 | CALL message( 'init_grid', 'PA0224', 1, 2, 0, 6, 0 ) |
---|
| 413 | ENDIF |
---|
| 414 | |
---|
| 415 | ! |
---|
[3068] | 416 | !-- Stretching must not be applied close to the surface (last two grid |
---|
| 417 | !-- points). For the default case dz_stretch_level_start is negative. |
---|
| 418 | IF ( ANY( dz_stretch_level_start > - dz(1) * 1.5_wp ) ) THEN |
---|
[3065] | 419 | WRITE( message_string, * ) 'Eeach dz_stretch_level_start has to be ',& |
---|
| 420 | 'less than ', dz(1) * 1.5 |
---|
| 421 | CALL message( 'init_grid', 'PA0226', 1, 2, 0, 6, 0 ) |
---|
| 422 | ENDIF |
---|
| 423 | |
---|
| 424 | ! |
---|
| 425 | !-- The stretching has to start and end on a grid level. Therefore |
---|
| 426 | !-- user-specified values have to ''interpolate'' to the next highest level |
---|
| 427 | IF ( number_stretch_level_start /= 0 ) THEN |
---|
| 428 | dz_stretch_level_start(1) = INT( (dz_stretch_level_start(1) + & |
---|
| 429 | dz(1)/2.0) / dz(1) ) & |
---|
| 430 | * dz(1) - dz(1)/2.0 |
---|
| 431 | ENDIF |
---|
| 432 | |
---|
| 433 | IF ( number_stretch_level_start > 1 ) THEN |
---|
| 434 | DO n = 2, number_stretch_level_start |
---|
| 435 | dz_stretch_level_start(n) = INT( dz_stretch_level_start(n) / & |
---|
| 436 | dz(n) ) * dz(n) |
---|
| 437 | ENDDO |
---|
| 438 | ENDIF |
---|
| 439 | |
---|
| 440 | IF ( number_stretch_level_end /= 0 ) THEN |
---|
| 441 | DO n = 1, number_stretch_level_end |
---|
| 442 | dz_stretch_level_end(n) = INT( dz_stretch_level_end(n) / & |
---|
| 443 | dz(n+1) ) * dz(n+1) |
---|
| 444 | ENDDO |
---|
| 445 | ENDIF |
---|
| 446 | |
---|
| 447 | ! |
---|
| 448 | !-- Determine stretching factor if necessary |
---|
| 449 | IF ( number_stretch_level_end >= 1 ) THEN |
---|
| 450 | CALL calculate_stretching_factor( number_stretch_level_end ) |
---|
| 451 | ENDIF |
---|
| 452 | |
---|
| 453 | ! |
---|
[843] | 454 | !-- Grid for ocean with free water surface is at k=nzt (w-grid). |
---|
| 455 | !-- In case of neumann bc at the ground the first first u-level (k=0) lies |
---|
| 456 | !-- below the first w-level (k=0). In case of dirichlet bc the first u- and |
---|
| 457 | !-- w-level are defined at same height, but staggered from the second level. |
---|
| 458 | !-- The second u-level (k=1) corresponds to the top of the Prandtl-layer. |
---|
[3065] | 459 | !-- z values are negative starting from z=0 (surface) |
---|
| 460 | zu(nzt+1) = dz(1) * 0.5_wp |
---|
| 461 | zu(nzt) = - dz(1) * 0.5_wp |
---|
[94] | 462 | |
---|
[3065] | 463 | ! |
---|
| 464 | !-- Determine u and v height levels considering the possibility of grid |
---|
| 465 | !-- stretching in several heights. |
---|
| 466 | n = 1 |
---|
| 467 | dz_stretch_level_start_index = 0 |
---|
| 468 | dz_stretch_level_end_index = 0 |
---|
| 469 | dz_stretched = dz(1) |
---|
| 470 | |
---|
[94] | 471 | DO k = nzt-1, 0, -1 |
---|
[3065] | 472 | |
---|
| 473 | IF ( dz_stretch_level_start(n) >= zu(k+1) ) THEN |
---|
| 474 | dz_stretched = dz_stretched * dz_stretch_factor_array(n) |
---|
| 475 | |
---|
| 476 | IF ( dz(n) > dz(n+1) ) THEN |
---|
| 477 | dz_stretched = MAX( dz_stretched, dz(n+1) ) !Restrict dz_stretched to the user-specified (higher) dz |
---|
| 478 | ELSE |
---|
| 479 | dz_stretched = MIN( dz_stretched, dz(n+1) ) !Restrict dz_stretched to the user-specified (lower) dz |
---|
| 480 | ENDIF |
---|
| 481 | |
---|
| 482 | IF ( dz_stretch_level_start_index(n) == 0 ) & |
---|
| 483 | dz_stretch_level_start_index(n) = k+1 |
---|
| 484 | |
---|
| 485 | ENDIF |
---|
| 486 | |
---|
| 487 | zu(k) = zu(k+1) - dz_stretched |
---|
| 488 | |
---|
[1418] | 489 | ! |
---|
[3065] | 490 | !-- Make sure that the stretching ends exactly at dz_stretch_level_end |
---|
| 491 | dz_level_end = ABS( zu(k) - dz_stretch_level_end(n) ) |
---|
| 492 | |
---|
| 493 | IF ( dz_level_end < dz(n+1)/3.0 ) THEN |
---|
| 494 | zu(k) = dz_stretch_level_end(n) |
---|
| 495 | dz_stretched = dz(n+1) |
---|
| 496 | dz_stretch_level_end_index(n) = k |
---|
| 497 | n = n + 1 |
---|
[94] | 498 | ENDIF |
---|
| 499 | ENDDO |
---|
[3065] | 500 | |
---|
[94] | 501 | ! |
---|
| 502 | !-- Compute the w-levels. They are always staggered half-way between the |
---|
[843] | 503 | !-- corresponding u-levels, except in case of dirichlet bc for u and v |
---|
| 504 | !-- at the ground. In this case the first u- and w-level are defined at |
---|
| 505 | !-- same height. The top w-level (nzt+1) is not used but set for |
---|
| 506 | !-- consistency, since w and all scalar variables are defined up tp nzt+1. |
---|
[3065] | 507 | zw(nzt+1) = dz(1) |
---|
[1353] | 508 | zw(nzt) = 0.0_wp |
---|
[94] | 509 | DO k = 0, nzt |
---|
[1353] | 510 | zw(k) = ( zu(k) + zu(k+1) ) * 0.5_wp |
---|
[94] | 511 | ENDDO |
---|
| 512 | |
---|
[843] | 513 | ! |
---|
| 514 | !-- In case of dirichlet bc for u and v the first u- and w-level are defined |
---|
| 515 | !-- at same height. |
---|
| 516 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 517 | zu(0) = zw(0) |
---|
| 518 | ENDIF |
---|
| 519 | |
---|
[94] | 520 | ENDIF |
---|
| 521 | |
---|
| 522 | ! |
---|
[1] | 523 | !-- Compute grid lengths. |
---|
| 524 | DO k = 1, nzt+1 |
---|
| 525 | dzu(k) = zu(k) - zu(k-1) |
---|
[1353] | 526 | ddzu(k) = 1.0_wp / dzu(k) |
---|
[1] | 527 | dzw(k) = zw(k) - zw(k-1) |
---|
[1353] | 528 | ddzw(k) = 1.0_wp / dzw(k) |
---|
[1] | 529 | ENDDO |
---|
| 530 | |
---|
| 531 | DO k = 1, nzt |
---|
[1353] | 532 | dd2zu(k) = 1.0_wp / ( dzu(k) + dzu(k+1) ) |
---|
[1] | 533 | ENDDO |
---|
[667] | 534 | |
---|
| 535 | ! |
---|
[709] | 536 | !-- The FFT- SOR-pressure solvers assume grid spacings of a staggered grid |
---|
| 537 | !-- everywhere. For the actual grid, the grid spacing at the lowest level |
---|
| 538 | !-- is only dz/2, but should be dz. Therefore, an additional array |
---|
| 539 | !-- containing with appropriate grid information is created for these |
---|
| 540 | !-- solvers. |
---|
[1575] | 541 | IF ( psolver(1:9) /= 'multigrid' ) THEN |
---|
[667] | 542 | ALLOCATE( ddzu_pres(1:nzt+1) ) |
---|
| 543 | ddzu_pres = ddzu |
---|
[864] | 544 | ddzu_pres(1) = ddzu_pres(2) ! change for lowest level |
---|
[1] | 545 | ENDIF |
---|
| 546 | |
---|
| 547 | ! |
---|
| 548 | !-- Compute the reciprocal values of the horizontal grid lengths. |
---|
[1353] | 549 | ddx = 1.0_wp / dx |
---|
| 550 | ddy = 1.0_wp / dy |
---|
[1] | 551 | dx2 = dx * dx |
---|
| 552 | dy2 = dy * dy |
---|
[1353] | 553 | ddx2 = 1.0_wp / dx2 |
---|
| 554 | ddy2 = 1.0_wp / dy2 |
---|
[1] | 555 | |
---|
| 556 | ! |
---|
[2696] | 557 | !-- Allocate 3D array to set topography |
---|
| 558 | ALLOCATE( topo(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 559 | topo = 0 |
---|
| 560 | ! |
---|
| 561 | !-- Initialize topography by generic topography or read from topography from file. |
---|
| 562 | CALL init_topo( topo ) |
---|
| 563 | ! |
---|
| 564 | !-- Set flags to mask topography on the grid. |
---|
| 565 | CALL set_topo_flags( topo ) |
---|
| 566 | ! |
---|
| 567 | !-- Calculate wall flag arrays for the multigrid method. |
---|
| 568 | !-- Please note, wall flags are only applied in the non-optimized version. |
---|
[4109] | 569 | IF ( psolver == 'multigrid_noopt' ) CALL poismg_noopt_init |
---|
[2696] | 570 | |
---|
| 571 | ! |
---|
| 572 | !-- Init flags for ws-scheme to degrade order of the numerics near walls, i.e. |
---|
[4109] | 573 | !-- to decrease the numerical stencil appropriately. The order of the scheme |
---|
| 574 | !-- is degraded near solid walls as well as near non-cyclic inflow and outflow |
---|
| 575 | !-- boundaries. Do this separately for momentum and scalars. |
---|
| 576 | IF ( momentum_advec == 'ws-scheme' ) THEN |
---|
| 577 | ALLOCATE( advc_flags_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 578 | CALL ws_init_flags_momentum |
---|
| 579 | ENDIF |
---|
| 580 | IF ( scalar_advec == 'ws-scheme' ) THEN |
---|
| 581 | ALLOCATE( advc_flags_s(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 582 | advc_flags_s = 0 |
---|
| 583 | |
---|
| 584 | CALL ws_init_flags_scalar( bc_dirichlet_l .OR. bc_radiation_l, & |
---|
| 585 | bc_dirichlet_n .OR. bc_radiation_n, & |
---|
| 586 | bc_dirichlet_r .OR. bc_radiation_r, & |
---|
| 587 | bc_dirichlet_s .OR. bc_radiation_s, & |
---|
| 588 | advc_flags_s ) |
---|
| 589 | ENDIF |
---|
[2696] | 590 | |
---|
| 591 | ! |
---|
| 592 | !-- Determine the maximum level of topography. It is used for |
---|
| 593 | !-- steering the degradation of order of the applied advection scheme, |
---|
| 594 | !-- as well in the lpm. |
---|
| 595 | k_top = 0 |
---|
| 596 | DO i = nxl, nxr |
---|
| 597 | DO j = nys, nyn |
---|
| 598 | DO k = nzb, nzt + 1 |
---|
[4109] | 599 | k_top = MAX( k_top, MERGE( k, 0, .NOT. BTEST( topo(k,j,i), 0 ) ) ) |
---|
[2696] | 600 | ENDDO |
---|
| 601 | ENDDO |
---|
[1] | 602 | ENDDO |
---|
[2696] | 603 | #if defined( __parallel ) |
---|
| 604 | CALL MPI_ALLREDUCE( k_top + 1, nzb_max, 1, MPI_INTEGER, & !is +1 really necessary here? |
---|
| 605 | MPI_MAX, comm2d, ierr ) |
---|
| 606 | #else |
---|
| 607 | nzb_max = k_top + 1 |
---|
| 608 | #endif |
---|
| 609 | ! |
---|
[3661] | 610 | !-- If topography extents up to the model top, limit nzb_max to nzt. |
---|
[3182] | 611 | nzb_max = MIN( nzb_max, nzt ) |
---|
[1] | 612 | ! |
---|
[2968] | 613 | !-- Determine minimum index of topography. Usually, this will be nzb. In case |
---|
| 614 | !-- there is elevated topography, however, the lowest topography will be higher. |
---|
| 615 | !-- This index is e.g. used to calculate mean first-grid point atmosphere |
---|
| 616 | !-- temperature, surface pressure and density, etc. . |
---|
| 617 | topo_min_level = 0 |
---|
| 618 | #if defined( __parallel ) |
---|
[4168] | 619 | CALL MPI_ALLREDUCE( MINVAL( topo_top_ind(nys:nyn,nxl:nxr,0) ), & |
---|
[2968] | 620 | topo_min_level, 1, MPI_INTEGER, MPI_MIN, comm2d, ierr ) |
---|
| 621 | #else |
---|
[4168] | 622 | topo_min_level = MINVAL( topo_top_ind(nys:nyn,nxl:nxr,0) ) |
---|
[2968] | 623 | #endif |
---|
| 624 | ! |
---|
[2696] | 625 | !-- Initialize boundary conditions via surface type |
---|
| 626 | CALL init_bc |
---|
[3182] | 627 | |
---|
[2696] | 628 | ! |
---|
| 629 | !-- Allocate and set topography height arrays required for data output |
---|
| 630 | IF ( TRIM( topography ) /= 'flat' ) THEN |
---|
| 631 | ! |
---|
| 632 | !-- Allocate and set the arrays containing the topography height |
---|
| 633 | IF ( nxr == nx .AND. nyn /= ny ) THEN |
---|
| 634 | ALLOCATE( zu_s_inner(nxl:nxr+1,nys:nyn), & |
---|
| 635 | zw_w_inner(nxl:nxr+1,nys:nyn) ) |
---|
| 636 | ELSEIF ( nxr /= nx .AND. nyn == ny ) THEN |
---|
| 637 | ALLOCATE( zu_s_inner(nxl:nxr,nys:nyn+1), & |
---|
| 638 | zw_w_inner(nxl:nxr,nys:nyn+1) ) |
---|
| 639 | ELSEIF ( nxr == nx .AND. nyn == ny ) THEN |
---|
| 640 | ALLOCATE( zu_s_inner(nxl:nxr+1,nys:nyn+1), & |
---|
| 641 | zw_w_inner(nxl:nxr+1,nys:nyn+1) ) |
---|
| 642 | ELSE |
---|
| 643 | ALLOCATE( zu_s_inner(nxl:nxr,nys:nyn), & |
---|
| 644 | zw_w_inner(nxl:nxr,nys:nyn) ) |
---|
| 645 | ENDIF |
---|
| 646 | |
---|
| 647 | zu_s_inner = 0.0_wp |
---|
| 648 | zw_w_inner = 0.0_wp |
---|
| 649 | ! |
---|
| 650 | !-- Determine local topography height on scalar and w-grid. Note, setting |
---|
| 651 | !-- lateral boundary values is not necessary, realized via wall_flags_0 |
---|
| 652 | !-- array. Further, please note that loop bounds are different from |
---|
| 653 | !-- nxl to nxr and nys to nyn on south and right model boundary, hence, |
---|
| 654 | !-- use intrinsic lbound and ubound functions to infer array bounds. |
---|
| 655 | DO i = LBOUND(zu_s_inner, 1), UBOUND(zu_s_inner, 1) |
---|
| 656 | DO j = LBOUND(zu_s_inner, 2), UBOUND(zu_s_inner, 2) |
---|
| 657 | ! |
---|
| 658 | !-- Topography height on scalar grid. Therefore, determine index of |
---|
| 659 | !-- upward-facing surface element on scalar grid. |
---|
[4168] | 660 | zu_s_inner(i,j) = zu(topo_top_ind(j,i,0)) |
---|
[2696] | 661 | ! |
---|
| 662 | !-- Topography height on w grid. Therefore, determine index of |
---|
| 663 | !-- upward-facing surface element on w grid. |
---|
[4168] | 664 | zw_w_inner(i,j) = zw(topo_top_ind(j,i,3)) |
---|
[2696] | 665 | ENDDO |
---|
| 666 | ENDDO |
---|
| 667 | ENDIF |
---|
| 668 | |
---|
| 669 | ! |
---|
| 670 | !-- In the following, calculate 2D index arrays. Note, these will be removed |
---|
| 671 | !-- soon. |
---|
[1] | 672 | !-- Allocate outer and inner index arrays for topography and set |
---|
[2232] | 673 | !-- defaults. |
---|
[2696] | 674 | ALLOCATE( nzb_s_inner(nysg:nyng,nxlg:nxrg), & |
---|
| 675 | nzb_s_outer(nysg:nyng,nxlg:nxrg), & |
---|
| 676 | nzb_u_inner(nysg:nyng,nxlg:nxrg), & |
---|
| 677 | nzb_u_outer(nysg:nyng,nxlg:nxrg), & |
---|
| 678 | nzb_v_inner(nysg:nyng,nxlg:nxrg), & |
---|
| 679 | nzb_v_outer(nysg:nyng,nxlg:nxrg), & |
---|
| 680 | nzb_w_inner(nysg:nyng,nxlg:nxrg), & |
---|
| 681 | nzb_w_outer(nysg:nyng,nxlg:nxrg), & |
---|
| 682 | nzb_diff_s_inner(nysg:nyng,nxlg:nxrg), & |
---|
| 683 | nzb_diff_s_outer(nysg:nyng,nxlg:nxrg), & |
---|
| 684 | nzb_local(nysg:nyng,nxlg:nxrg), & |
---|
| 685 | nzb_tmp(nysg:nyng,nxlg:nxrg) ) |
---|
| 686 | ! |
---|
| 687 | !-- Initialize 2D-index arrays. Note, these will be removed soon! |
---|
[4168] | 688 | nzb_local(nys:nyn,nxl:nxr) = topo_top_ind(nys:nyn,nxl:nxr,0) |
---|
[2696] | 689 | CALL exchange_horiz_2d_int( nzb_local, nys, nyn, nxl, nxr, nbgp ) |
---|
[2968] | 690 | ! |
---|
| 691 | !-- Check topography for consistency with model domain. Therefore, use |
---|
| 692 | !-- maximum and minium topography-top indices. Note, minimum topography top |
---|
| 693 | !-- index is already calculated. |
---|
[2696] | 694 | IF ( TRIM( topography ) /= 'flat' ) THEN |
---|
| 695 | #if defined( __parallel ) |
---|
[4168] | 696 | CALL MPI_ALLREDUCE( MAXVAL( topo_top_ind(nys:nyn,nxl:nxr,0) ), & |
---|
[3182] | 697 | nzb_local_max, 1, MPI_INTEGER, MPI_MAX, comm2d, ierr ) |
---|
[2696] | 698 | #else |
---|
[4168] | 699 | nzb_local_max = MAXVAL( topo_top_ind(nys:nyn,nxl:nxr,0) ) |
---|
[2696] | 700 | #endif |
---|
[2968] | 701 | nzb_local_min = topo_min_level |
---|
[2696] | 702 | ! |
---|
| 703 | !-- Consistency checks |
---|
| 704 | IF ( nzb_local_min < 0 .OR. nzb_local_max > nz + 1 ) THEN |
---|
| 705 | WRITE( message_string, * ) 'nzb_local values are outside the', & |
---|
[3045] | 706 | ' model domain', & |
---|
[3046] | 707 | '&MINVAL( nzb_local ) = ', nzb_local_min, & |
---|
| 708 | '&MAXVAL( nzb_local ) = ', nzb_local_max |
---|
[2696] | 709 | CALL message( 'init_grid', 'PA0210', 1, 2, 0, 6, 0 ) |
---|
| 710 | ENDIF |
---|
| 711 | ENDIF |
---|
[1] | 712 | |
---|
| 713 | nzb_s_inner = nzb; nzb_s_outer = nzb |
---|
| 714 | nzb_u_inner = nzb; nzb_u_outer = nzb |
---|
| 715 | nzb_v_inner = nzb; nzb_v_outer = nzb |
---|
| 716 | nzb_w_inner = nzb; nzb_w_outer = nzb |
---|
| 717 | |
---|
| 718 | ! |
---|
[19] | 719 | !-- Define vertical gridpoint from (or to) which on the usual finite difference |
---|
[1] | 720 | !-- form (which does not use surface fluxes) is applied |
---|
[1691] | 721 | IF ( constant_flux_layer .OR. use_surface_fluxes ) THEN |
---|
[1] | 722 | nzb_diff = nzb + 2 |
---|
| 723 | ELSE |
---|
| 724 | nzb_diff = nzb + 1 |
---|
| 725 | ENDIF |
---|
| 726 | |
---|
| 727 | nzb_diff_s_inner = nzb_diff; nzb_diff_s_outer = nzb_diff |
---|
[2696] | 728 | ! |
---|
| 729 | !-- Set Neumann conditions for topography. Will be removed soon. |
---|
| 730 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
| 731 | IF ( nys == 0 ) THEN |
---|
[2927] | 732 | DO i = 1, nbgp |
---|
| 733 | nzb_local(nys-i,:) = nzb_local(nys,:) |
---|
| 734 | ENDDO |
---|
[2696] | 735 | ELSEIF ( nyn == ny ) THEN |
---|
[2927] | 736 | DO i = 1, nbgp |
---|
| 737 | nzb_local(ny+i,:) = nzb_local(ny,:) |
---|
| 738 | ENDDO |
---|
[2696] | 739 | ENDIF |
---|
| 740 | ENDIF |
---|
[1] | 741 | |
---|
[2696] | 742 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
| 743 | IF ( nxl == 0 ) THEN |
---|
[2927] | 744 | DO i = 1, nbgp |
---|
| 745 | nzb_local(:,nxl-i) = nzb_local(:,nxl) |
---|
| 746 | ENDDO |
---|
[2696] | 747 | ELSEIF ( nxr == nx ) THEN |
---|
[2927] | 748 | DO i = 1, nbgp |
---|
| 749 | nzb_local(:,nx+i) = nzb_local(:,nx) |
---|
| 750 | ENDDO |
---|
[2696] | 751 | ENDIF |
---|
| 752 | ENDIF |
---|
[1] | 753 | ! |
---|
[2696] | 754 | !-- Initialization of 2D index arrays, will be removed soon! |
---|
| 755 | !-- Initialize nzb_s_inner and nzb_w_inner |
---|
| 756 | nzb_s_inner = nzb_local |
---|
| 757 | nzb_w_inner = nzb_local |
---|
| 758 | |
---|
| 759 | ! |
---|
| 760 | !-- Initialize remaining index arrays: |
---|
| 761 | !-- first pre-initialize them with nzb_s_inner... |
---|
| 762 | nzb_u_inner = nzb_s_inner |
---|
| 763 | nzb_u_outer = nzb_s_inner |
---|
| 764 | nzb_v_inner = nzb_s_inner |
---|
| 765 | nzb_v_outer = nzb_s_inner |
---|
| 766 | nzb_w_outer = nzb_s_inner |
---|
| 767 | nzb_s_outer = nzb_s_inner |
---|
| 768 | |
---|
| 769 | ! |
---|
| 770 | !-- nzb_s_outer: |
---|
| 771 | !-- extend nzb_local east-/westwards first, then north-/southwards |
---|
| 772 | nzb_tmp = nzb_local |
---|
| 773 | DO j = nys, nyn |
---|
| 774 | DO i = nxl, nxr |
---|
| 775 | nzb_tmp(j,i) = MAX( nzb_local(j,i-1), nzb_local(j,i), & |
---|
| 776 | nzb_local(j,i+1) ) |
---|
| 777 | ENDDO |
---|
| 778 | ENDDO |
---|
| 779 | |
---|
| 780 | CALL exchange_horiz_2d_int( nzb_tmp, nys, nyn, nxl, nxr, nbgp ) |
---|
| 781 | |
---|
| 782 | DO i = nxl, nxr |
---|
| 783 | DO j = nys, nyn |
---|
| 784 | nzb_s_outer(j,i) = MAX( nzb_tmp(j-1,i), nzb_tmp(j,i), & |
---|
| 785 | nzb_tmp(j+1,i) ) |
---|
| 786 | ENDDO |
---|
| 787 | ! |
---|
| 788 | !-- non-cyclic boundary conditions (overwritten by call of |
---|
| 789 | !-- exchange_horiz_2d_int below in case of cyclic boundary conditions) |
---|
| 790 | IF ( nys == 0 ) THEN |
---|
| 791 | j = -1 |
---|
| 792 | nzb_s_outer(j,i) = MAX( nzb_tmp(j+1,i), nzb_tmp(j,i) ) |
---|
| 793 | ENDIF |
---|
| 794 | IF ( nyn == ny ) THEN |
---|
| 795 | j = ny + 1 |
---|
| 796 | nzb_s_outer(j,i) = MAX( nzb_tmp(j-1,i), nzb_tmp(j,i) ) |
---|
| 797 | ENDIF |
---|
| 798 | ENDDO |
---|
| 799 | ! |
---|
| 800 | !-- nzb_w_outer: |
---|
| 801 | !-- identical to nzb_s_outer |
---|
| 802 | nzb_w_outer = nzb_s_outer |
---|
| 803 | ! |
---|
| 804 | !-- nzb_u_inner: |
---|
| 805 | !-- extend nzb_local rightwards only |
---|
| 806 | nzb_tmp = nzb_local |
---|
| 807 | DO j = nys, nyn |
---|
| 808 | DO i = nxl, nxr |
---|
| 809 | nzb_tmp(j,i) = MAX( nzb_local(j,i-1), nzb_local(j,i) ) |
---|
| 810 | ENDDO |
---|
| 811 | ENDDO |
---|
| 812 | |
---|
| 813 | CALL exchange_horiz_2d_int( nzb_tmp, nys, nyn, nxl, nxr, nbgp ) |
---|
| 814 | |
---|
| 815 | nzb_u_inner = nzb_tmp |
---|
| 816 | ! |
---|
| 817 | !-- nzb_u_outer: |
---|
| 818 | !-- extend current nzb_tmp (nzb_u_inner) north-/southwards |
---|
| 819 | DO i = nxl, nxr |
---|
| 820 | DO j = nys, nyn |
---|
| 821 | nzb_u_outer(j,i) = MAX( nzb_tmp(j-1,i), nzb_tmp(j,i), & |
---|
| 822 | nzb_tmp(j+1,i) ) |
---|
| 823 | ENDDO |
---|
| 824 | ! |
---|
| 825 | !-- non-cyclic boundary conditions (overwritten by call of |
---|
| 826 | !-- exchange_horiz_2d_int below in case of cyclic boundary conditions) |
---|
| 827 | IF ( nys == 0 ) THEN |
---|
| 828 | j = -1 |
---|
| 829 | nzb_u_outer(j,i) = MAX( nzb_tmp(j+1,i), nzb_tmp(j,i) ) |
---|
| 830 | ENDIF |
---|
| 831 | IF ( nyn == ny ) THEN |
---|
| 832 | j = ny + 1 |
---|
| 833 | nzb_u_outer(j,i) = MAX( nzb_tmp(j-1,i), nzb_tmp(j,i) ) |
---|
| 834 | ENDIF |
---|
| 835 | ENDDO |
---|
| 836 | |
---|
| 837 | ! |
---|
| 838 | !-- nzb_v_inner: |
---|
| 839 | !-- extend nzb_local northwards only |
---|
| 840 | nzb_tmp = nzb_local |
---|
| 841 | DO i = nxl, nxr |
---|
| 842 | DO j = nys, nyn |
---|
| 843 | nzb_tmp(j,i) = MAX( nzb_local(j-1,i), nzb_local(j,i) ) |
---|
| 844 | ENDDO |
---|
| 845 | ENDDO |
---|
| 846 | |
---|
| 847 | CALL exchange_horiz_2d_int( nzb_tmp, nys, nyn, nxl, nxr, nbgp ) |
---|
| 848 | nzb_v_inner = nzb_tmp |
---|
| 849 | |
---|
| 850 | ! |
---|
| 851 | !-- nzb_v_outer: |
---|
| 852 | !-- extend current nzb_tmp (nzb_v_inner) right-/leftwards |
---|
| 853 | DO j = nys, nyn |
---|
| 854 | DO i = nxl, nxr |
---|
| 855 | nzb_v_outer(j,i) = MAX( nzb_tmp(j,i-1), nzb_tmp(j,i), & |
---|
| 856 | nzb_tmp(j,i+1) ) |
---|
| 857 | ENDDO |
---|
| 858 | ! |
---|
| 859 | !-- non-cyclic boundary conditions (overwritten by call of |
---|
| 860 | !-- exchange_horiz_2d_int below in case of cyclic boundary conditions) |
---|
| 861 | IF ( nxl == 0 ) THEN |
---|
| 862 | i = -1 |
---|
| 863 | nzb_v_outer(j,i) = MAX( nzb_tmp(j,i+1), nzb_tmp(j,i) ) |
---|
| 864 | ENDIF |
---|
| 865 | IF ( nxr == nx ) THEN |
---|
| 866 | i = nx + 1 |
---|
| 867 | nzb_v_outer(j,i) = MAX( nzb_tmp(j,i-1), nzb_tmp(j,i) ) |
---|
| 868 | ENDIF |
---|
| 869 | ENDDO |
---|
| 870 | |
---|
| 871 | ! |
---|
| 872 | !-- Exchange of lateral boundary values (parallel computers) and cyclic |
---|
| 873 | !-- boundary conditions, if applicable. |
---|
| 874 | !-- Since nzb_s_inner and nzb_w_inner are derived directly from nzb_local |
---|
| 875 | !-- they do not require exchange and are not included here. |
---|
| 876 | CALL exchange_horiz_2d_int( nzb_u_inner, nys, nyn, nxl, nxr, nbgp ) |
---|
| 877 | CALL exchange_horiz_2d_int( nzb_u_outer, nys, nyn, nxl, nxr, nbgp ) |
---|
| 878 | CALL exchange_horiz_2d_int( nzb_v_inner, nys, nyn, nxl, nxr, nbgp ) |
---|
| 879 | CALL exchange_horiz_2d_int( nzb_v_outer, nys, nyn, nxl, nxr, nbgp ) |
---|
| 880 | CALL exchange_horiz_2d_int( nzb_w_outer, nys, nyn, nxl, nxr, nbgp ) |
---|
| 881 | CALL exchange_horiz_2d_int( nzb_s_outer, nys, nyn, nxl, nxr, nbgp ) |
---|
| 882 | |
---|
| 883 | ! |
---|
| 884 | !-- Set the individual index arrays which define the k index from which on |
---|
| 885 | !-- the usual finite difference form (which does not use surface fluxes) is |
---|
| 886 | !-- applied |
---|
| 887 | IF ( constant_flux_layer .OR. use_surface_fluxes ) THEN |
---|
| 888 | nzb_diff_s_inner = nzb_s_inner + 2 |
---|
| 889 | nzb_diff_s_outer = nzb_s_outer + 2 |
---|
| 890 | ELSE |
---|
| 891 | nzb_diff_s_inner = nzb_s_inner + 1 |
---|
| 892 | nzb_diff_s_outer = nzb_s_outer + 1 |
---|
| 893 | ENDIF |
---|
| 894 | ! |
---|
| 895 | !-- Vertical nesting: communicate vertical grid level arrays between fine and |
---|
| 896 | !-- coarse grid |
---|
| 897 | IF ( vnested ) CALL vnest_init_grid |
---|
| 898 | |
---|
| 899 | END SUBROUTINE init_grid |
---|
| 900 | |
---|
[3065] | 901 | |
---|
[2696] | 902 | ! Description: |
---|
| 903 | ! -----------------------------------------------------------------------------! |
---|
[3065] | 904 | !> Calculation of the stretching factor through an iterative method. Ideas were |
---|
| 905 | !> taken from the paper "Regional stretched grid generation and its application |
---|
| 906 | !> to the NCAR RegCM (1999)". Normally, no analytic solution exists because the |
---|
| 907 | !> system of equations has two variables (r,l) but four requirements |
---|
| 908 | !> (l=integer, r=[0,88;1,2], Eq(6), Eq(5) starting from index j=1) which |
---|
| 909 | !> results into an overdetermined system. |
---|
| 910 | !------------------------------------------------------------------------------! |
---|
| 911 | SUBROUTINE calculate_stretching_factor( number_end ) |
---|
| 912 | |
---|
| 913 | USE control_parameters, & |
---|
[3241] | 914 | ONLY: dz, dz_stretch_factor_array, & |
---|
[3065] | 915 | dz_stretch_level_end, dz_stretch_level_start, message_string |
---|
| 916 | |
---|
| 917 | USE kinds |
---|
| 918 | |
---|
| 919 | IMPLICIT NONE |
---|
| 920 | |
---|
| 921 | INTEGER(iwp) :: iterations !< number of iterations until stretch_factor_lower/upper_limit is reached |
---|
| 922 | INTEGER(iwp) :: l_rounded !< after l_rounded grid levels dz(n) is strechted to dz(n+1) with stretch_factor_2 |
---|
| 923 | INTEGER(iwp) :: n !< loop variable for stretching |
---|
| 924 | |
---|
| 925 | INTEGER(iwp), INTENT(IN) :: number_end !< number of user-specified end levels for stretching |
---|
| 926 | |
---|
| 927 | REAL(wp) :: delta_l !< absolute difference between l and l_rounded |
---|
| 928 | REAL(wp) :: delta_stretch_factor !< absolute difference between stretch_factor_1 and stretch_factor_2 |
---|
| 929 | REAL(wp) :: delta_total_new !< sum of delta_l and delta_stretch_factor for the next iteration (should be as small as possible) |
---|
| 930 | REAL(wp) :: delta_total_old !< sum of delta_l and delta_stretch_factor for the last iteration |
---|
| 931 | REAL(wp) :: distance !< distance between dz_stretch_level_start and dz_stretch_level_end (stretching region) |
---|
| 932 | REAL(wp) :: l !< value that fulfil Eq. (5) in the paper mentioned above together with stretch_factor_1 exactly |
---|
| 933 | REAL(wp) :: numerator !< numerator of the quotient |
---|
| 934 | REAL(wp) :: stretch_factor_1 !< stretching factor that fulfil Eq. (5) togehter with l exactly |
---|
| 935 | REAL(wp) :: stretch_factor_2 !< stretching factor that fulfil Eq. (6) togehter with l_rounded exactly |
---|
| 936 | |
---|
[3068] | 937 | REAL(wp) :: dz_stretch_factor_array_2(9) = 1.08_wp !< Array that contains all stretch_factor_2 that belongs to stretch_factor_1 |
---|
| 938 | |
---|
[3065] | 939 | REAL(wp), PARAMETER :: stretch_factor_interval = 1.0E-06 !< interval for sampling possible stretching factors |
---|
| 940 | REAL(wp), PARAMETER :: stretch_factor_lower_limit = 0.88 !< lowest possible stretching factor |
---|
| 941 | REAL(wp), PARAMETER :: stretch_factor_upper_limit = 1.12 !< highest possible stretching factor |
---|
| 942 | |
---|
| 943 | |
---|
[3068] | 944 | l = 0 |
---|
| 945 | DO n = 1, number_end |
---|
| 946 | |
---|
| 947 | iterations = 1 |
---|
| 948 | stretch_factor_1 = 1.0 |
---|
| 949 | stretch_factor_2 = 1.0 |
---|
| 950 | delta_total_old = 1.0 |
---|
[3065] | 951 | |
---|
[3068] | 952 | IF ( dz(n) > dz(n+1) ) THEN |
---|
| 953 | DO WHILE ( stretch_factor_1 >= stretch_factor_lower_limit ) |
---|
| 954 | |
---|
| 955 | stretch_factor_1 = 1.0 - iterations * stretch_factor_interval |
---|
| 956 | distance = ABS( dz_stretch_level_end(n) - & |
---|
| 957 | dz_stretch_level_start(n) ) |
---|
| 958 | numerator = distance*stretch_factor_1/dz(n) + & |
---|
| 959 | stretch_factor_1 - distance/dz(n) |
---|
| 960 | |
---|
| 961 | IF ( numerator > 0.0 ) THEN |
---|
| 962 | l = LOG( numerator ) / LOG( stretch_factor_1 ) - 1.0 |
---|
| 963 | l_rounded = NINT( l ) |
---|
| 964 | delta_l = ABS( l_rounded - l ) / l |
---|
| 965 | ENDIF |
---|
| 966 | |
---|
| 967 | stretch_factor_2 = EXP( LOG( dz(n+1)/dz(n) ) / (l_rounded) ) |
---|
| 968 | |
---|
| 969 | delta_stretch_factor = ABS( stretch_factor_1 - & |
---|
| 970 | stretch_factor_2 ) / & |
---|
| 971 | stretch_factor_2 |
---|
| 972 | |
---|
| 973 | delta_total_new = delta_l + delta_stretch_factor |
---|
[3065] | 974 | |
---|
| 975 | ! |
---|
| 976 | !-- stretch_factor_1 is taken to guarantee that the stretching |
---|
| 977 | !-- procedure ends as close as possible to dz_stretch_level_end. |
---|
| 978 | !-- stretch_factor_2 would guarantee that the stretched dz(n) is |
---|
| 979 | !-- equal to dz(n+1) after l_rounded grid levels. |
---|
[3068] | 980 | IF (delta_total_new < delta_total_old) THEN |
---|
| 981 | dz_stretch_factor_array(n) = stretch_factor_1 |
---|
| 982 | dz_stretch_factor_array_2(n) = stretch_factor_2 |
---|
| 983 | delta_total_old = delta_total_new |
---|
| 984 | ENDIF |
---|
| 985 | |
---|
| 986 | iterations = iterations + 1 |
---|
| 987 | |
---|
| 988 | ENDDO |
---|
| 989 | |
---|
| 990 | ELSEIF ( dz(n) < dz(n+1) ) THEN |
---|
| 991 | DO WHILE ( stretch_factor_1 <= stretch_factor_upper_limit ) |
---|
| 992 | |
---|
| 993 | stretch_factor_1 = 1.0 + iterations * stretch_factor_interval |
---|
| 994 | distance = ABS( dz_stretch_level_end(n) - & |
---|
| 995 | dz_stretch_level_start(n) ) |
---|
| 996 | numerator = distance*stretch_factor_1/dz(n) + & |
---|
| 997 | stretch_factor_1 - distance/dz(n) |
---|
| 998 | |
---|
| 999 | l = LOG( numerator ) / LOG( stretch_factor_1 ) - 1.0 |
---|
| 1000 | l_rounded = NINT( l ) |
---|
| 1001 | delta_l = ABS( l_rounded - l ) / l |
---|
| 1002 | |
---|
| 1003 | stretch_factor_2 = EXP( LOG( dz(n+1)/dz(n) ) / (l_rounded) ) |
---|
[3065] | 1004 | |
---|
[3068] | 1005 | delta_stretch_factor = ABS( stretch_factor_1 - & |
---|
| 1006 | stretch_factor_2 ) / & |
---|
| 1007 | stretch_factor_2 |
---|
| 1008 | |
---|
| 1009 | delta_total_new = delta_l + delta_stretch_factor |
---|
| 1010 | |
---|
[3065] | 1011 | ! |
---|
| 1012 | !-- stretch_factor_1 is taken to guarantee that the stretching |
---|
| 1013 | !-- procedure ends as close as possible to dz_stretch_level_end. |
---|
| 1014 | !-- stretch_factor_2 would guarantee that the stretched dz(n) is |
---|
| 1015 | !-- equal to dz(n+1) after l_rounded grid levels. |
---|
[3068] | 1016 | IF (delta_total_new < delta_total_old) THEN |
---|
| 1017 | dz_stretch_factor_array(n) = stretch_factor_1 |
---|
| 1018 | dz_stretch_factor_array_2(n) = stretch_factor_2 |
---|
| 1019 | delta_total_old = delta_total_new |
---|
| 1020 | ENDIF |
---|
[3065] | 1021 | |
---|
[3068] | 1022 | iterations = iterations + 1 |
---|
| 1023 | ENDDO |
---|
| 1024 | |
---|
| 1025 | ELSE |
---|
| 1026 | message_string= 'Two adjacent values of dz must be different' |
---|
| 1027 | CALL message( 'init_grid', 'PA0228', 1, 2, 0, 6, 0 ) |
---|
| 1028 | |
---|
| 1029 | ENDIF |
---|
| 1030 | |
---|
| 1031 | ! |
---|
| 1032 | !-- Check if also the second stretching factor fits into the allowed |
---|
| 1033 | !-- interval. If not, print a warning for the user. |
---|
| 1034 | IF ( dz_stretch_factor_array_2(n) < stretch_factor_lower_limit .OR. & |
---|
| 1035 | dz_stretch_factor_array_2(n) > stretch_factor_upper_limit ) THEN |
---|
| 1036 | WRITE( message_string, * ) 'stretch_factor_2 = ', & |
---|
| 1037 | dz_stretch_factor_array_2(n), ' which is',& |
---|
| 1038 | ' responsible for exactly reaching& dz =',& |
---|
| 1039 | dz(n+1), 'after a specific amount of', & |
---|
| 1040 | ' grid levels& exceeds the upper', & |
---|
| 1041 | ' limit =', stretch_factor_upper_limit, & |
---|
| 1042 | ' &or lower limit = ', & |
---|
| 1043 | stretch_factor_lower_limit |
---|
| 1044 | CALL message( 'init_grid', 'PA0499', 0, 1, 0, 6, 0 ) |
---|
| 1045 | |
---|
| 1046 | ENDIF |
---|
| 1047 | ENDDO |
---|
[3065] | 1048 | |
---|
| 1049 | END SUBROUTINE calculate_stretching_factor |
---|
| 1050 | |
---|
| 1051 | |
---|
| 1052 | ! Description: |
---|
| 1053 | ! -----------------------------------------------------------------------------! |
---|
[2696] | 1054 | !> Set temporary topography flags and reference buildings on top of underlying |
---|
| 1055 | !> orography. |
---|
| 1056 | !------------------------------------------------------------------------------! |
---|
| 1057 | SUBROUTINE process_topography( topo_3d ) |
---|
| 1058 | |
---|
| 1059 | USE arrays_3d, & |
---|
[2747] | 1060 | ONLY: zu, zw |
---|
[2696] | 1061 | |
---|
| 1062 | USE control_parameters, & |
---|
[3294] | 1063 | ONLY: bc_lr_cyc, bc_ns_cyc, message_string, ocean_mode |
---|
[2696] | 1064 | |
---|
| 1065 | USE indices, & |
---|
| 1066 | ONLY: nbgp, nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, nzb, & |
---|
| 1067 | nzt |
---|
| 1068 | |
---|
| 1069 | USE netcdf_data_input_mod, & |
---|
[3115] | 1070 | ONLY: buildings_f, building_id_f, building_type_f, input_pids_static, & |
---|
[2696] | 1071 | terrain_height_f |
---|
| 1072 | |
---|
| 1073 | USE kinds |
---|
| 1074 | |
---|
| 1075 | USE pegrid |
---|
| 1076 | |
---|
| 1077 | IMPLICIT NONE |
---|
| 1078 | |
---|
[2867] | 1079 | INTEGER(iwp) :: i !< running index along x-direction |
---|
| 1080 | INTEGER(iwp) :: j !< running index along y-direction |
---|
| 1081 | INTEGER(iwp) :: k !< running index along z-direction with respect to numeric grid |
---|
| 1082 | INTEGER(iwp) :: k2 !< running index along z-direction with respect to netcdf grid |
---|
| 1083 | INTEGER(iwp) :: nr !< index variable indication maximum terrain height for respective building ID |
---|
| 1084 | INTEGER(iwp) :: num_build !< counter for number of buildings |
---|
| 1085 | INTEGER(iwp) :: topo_top_index !< orography top index, used to map 3D buildings onto terrain |
---|
[2696] | 1086 | |
---|
| 1087 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: displace_dum !< displacements of start addresses, used for MPI_ALLGATHERV |
---|
| 1088 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: build_ids !< building IDs on entire model domain |
---|
| 1089 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: build_ids_final !< building IDs on entire model domain, multiple occurences are sorted out |
---|
| 1090 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: build_ids_final_tmp !< temporary array used for resizing |
---|
| 1091 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: build_ids_l !< building IDs on local subdomain |
---|
| 1092 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: build_ids_l_tmp !< temporary array used to resize array of building IDs |
---|
| 1093 | |
---|
| 1094 | INTEGER(iwp), DIMENSION(0:numprocs-1) :: num_buildings !< number of buildings with different ID on entire model domain |
---|
| 1095 | INTEGER(iwp), DIMENSION(0:numprocs-1) :: num_buildings_l !< number of buildings with different ID on local subdomain |
---|
| 1096 | |
---|
| 1097 | INTEGER(iwp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: topo_3d !< input array for 3D topography and dummy array for setting "outer"-flags |
---|
| 1098 | |
---|
| 1099 | REAL(wp) :: ocean_offset !< offset to consider inverse vertical coordinate at topography definition |
---|
[3103] | 1100 | REAL(wp) :: oro_min = 0.0_wp !< minimum terrain height in entire model domain, used to reference terrain to zero |
---|
[2696] | 1101 | REAL(wp), DIMENSION(:), ALLOCATABLE :: oro_max !< maximum terrain height occupied by an building with certain id |
---|
| 1102 | REAL(wp), DIMENSION(:), ALLOCATABLE :: oro_max_l !< maximum terrain height occupied by an building with certain id, on local subdomain |
---|
| 1103 | |
---|
| 1104 | ! |
---|
[3103] | 1105 | !-- Reference lowest terrain height to zero. In case the minimum terrain height |
---|
| 1106 | !-- is non-zero, all grid points of the lower vertical grid levels might be |
---|
| 1107 | !-- entirely below the surface, meaning a waste of computational resources. |
---|
| 1108 | !-- In order to avoid this, remove the lowest terrain height. Please note, |
---|
| 1109 | !-- in case of a nested run, the global minimum from all parent and childs |
---|
| 1110 | !-- need to be remove to avoid steep edges at the child-domain boundaries. |
---|
| 1111 | IF ( input_pids_static ) THEN |
---|
[4159] | 1112 | |
---|
[3200] | 1113 | #if defined( __parallel ) |
---|
[3103] | 1114 | CALL MPI_ALLREDUCE( MINVAL( terrain_height_f%var ), oro_min, 1, & |
---|
| 1115 | MPI_REAL, MPI_MIN, MPI_COMM_WORLD, ierr ) |
---|
[3200] | 1116 | #else |
---|
| 1117 | oro_min = MINVAL( terrain_height_f%var ) |
---|
| 1118 | #endif |
---|
[3103] | 1119 | terrain_height_f%var = terrain_height_f%var - oro_min |
---|
| 1120 | ! |
---|
| 1121 | !-- Give an informative message that terrain height is referenced to zero |
---|
| 1122 | IF ( oro_min > 0.0_wp ) THEN |
---|
| 1123 | WRITE( message_string, * ) 'Terrain height was internally shifted '//& |
---|
| 1124 | 'downwards by ', oro_min, 'meter(s) to save ' // & |
---|
| 1125 | 'computational resources.' |
---|
| 1126 | CALL message( 'init_grid', 'PA0505', 0, 0, 0, 6, 0 ) |
---|
| 1127 | ENDIF |
---|
| 1128 | ENDIF |
---|
| 1129 | |
---|
| 1130 | ! |
---|
[2696] | 1131 | !-- In the following, buildings and orography are further preprocessed |
---|
| 1132 | !-- before they are mapped on the LES grid. |
---|
| 1133 | !-- Buildings are mapped on top of the orography by maintaining the roof |
---|
| 1134 | !-- shape of the building. This can be achieved by referencing building on |
---|
| 1135 | !-- top of the maximum terrain height within the area occupied by the |
---|
| 1136 | !-- respective building. As buildings and terrain height are defined PE-wise, |
---|
| 1137 | !-- parallelization of this referencing is required (a building can be |
---|
| 1138 | !-- distributed between different PEs). |
---|
| 1139 | !-- In a first step, determine the number of buildings with different |
---|
| 1140 | !-- building id on each PE. In a next step, all building ids are gathered |
---|
| 1141 | !-- into one array which is present to all PEs. For each building ID, |
---|
| 1142 | !-- the maximum terrain height occupied by the respective building is |
---|
| 1143 | !-- computed and distributed to each PE. |
---|
| 1144 | !-- Finally, for each building id and its respective reference orography, |
---|
| 1145 | !-- builidings are mapped on top. |
---|
| 1146 | !-- |
---|
| 1147 | !-- First, pre-set topography flags, bit 1 indicates orography, bit 2 |
---|
| 1148 | !-- buildings |
---|
| 1149 | !-- classify the respective surfaces. |
---|
| 1150 | topo_3d = IBSET( topo_3d, 0 ) |
---|
| 1151 | topo_3d(nzb,:,:) = IBCLR( topo_3d(nzb,:,:), 0 ) |
---|
| 1152 | ! |
---|
[3051] | 1153 | !-- In order to map topography on PALM grid also in case of ocean simulations, |
---|
| 1154 | !-- pre-calculate an offset value. |
---|
[3294] | 1155 | ocean_offset = MERGE( zw(0), 0.0_wp, ocean_mode ) |
---|
[3051] | 1156 | ! |
---|
[2696] | 1157 | !-- Reference buildings on top of orography. This is not necessary |
---|
| 1158 | !-- if topography is read from ASCII file as no distinction between buildings |
---|
| 1159 | !-- and terrain height can be made. Moreover, this is also not necessary if |
---|
| 1160 | !-- urban-surface and land-surface model are used at the same time. |
---|
[2897] | 1161 | IF ( input_pids_static ) THEN |
---|
| 1162 | |
---|
| 1163 | IF ( buildings_f%from_file ) THEN |
---|
| 1164 | num_buildings_l = 0 |
---|
| 1165 | num_buildings = 0 |
---|
[2696] | 1166 | ! |
---|
[3925] | 1167 | !-- Allocate at least one element for building ids and give it an inital |
---|
| 1168 | !-- negative value that will be overwritten later. This, however, is |
---|
| 1169 | !-- necessary in case there all IDs in the model domain are fill values. |
---|
[2897] | 1170 | ALLOCATE( build_ids_l(1) ) |
---|
[3925] | 1171 | build_ids_l = -1 |
---|
[2897] | 1172 | DO i = nxl, nxr |
---|
| 1173 | DO j = nys, nyn |
---|
| 1174 | IF ( building_id_f%var(j,i) /= building_id_f%fill ) THEN |
---|
| 1175 | IF ( num_buildings_l(myid) > 0 ) THEN |
---|
[4144] | 1176 | IF ( ANY( building_id_f%var(j,i) == build_ids_l ) ) & |
---|
[2897] | 1177 | THEN |
---|
| 1178 | CYCLE |
---|
| 1179 | ELSE |
---|
| 1180 | num_buildings_l(myid) = num_buildings_l(myid) + 1 |
---|
[2696] | 1181 | ! |
---|
| 1182 | !-- Resize array with different local building ids |
---|
| 1183 | ALLOCATE( build_ids_l_tmp(1:SIZE(build_ids_l)) ) |
---|
| 1184 | build_ids_l_tmp = build_ids_l |
---|
| 1185 | DEALLOCATE( build_ids_l ) |
---|
| 1186 | ALLOCATE( build_ids_l(1:num_buildings_l(myid)) ) |
---|
| 1187 | build_ids_l(1:num_buildings_l(myid)-1) = & |
---|
| 1188 | build_ids_l_tmp(1:num_buildings_l(myid)-1) |
---|
| 1189 | build_ids_l(num_buildings_l(myid)) = building_id_f%var(j,i) |
---|
| 1190 | DEALLOCATE( build_ids_l_tmp ) |
---|
| 1191 | ENDIF |
---|
| 1192 | ! |
---|
[2897] | 1193 | !-- First occuring building id on PE |
---|
| 1194 | ELSE |
---|
| 1195 | num_buildings_l(myid) = num_buildings_l(myid) + 1 |
---|
| 1196 | build_ids_l(1) = building_id_f%var(j,i) |
---|
| 1197 | ENDIF |
---|
[2696] | 1198 | ENDIF |
---|
[2897] | 1199 | ENDDO |
---|
[2696] | 1200 | ENDDO |
---|
| 1201 | ! |
---|
[2897] | 1202 | !-- Determine number of different building ids for the entire domain |
---|
[2696] | 1203 | #if defined( __parallel ) |
---|
[2897] | 1204 | CALL MPI_ALLREDUCE( num_buildings_l, num_buildings, numprocs, & |
---|
| 1205 | MPI_INTEGER, MPI_SUM, comm2d, ierr ) |
---|
[2696] | 1206 | #else |
---|
[2897] | 1207 | num_buildings = num_buildings_l |
---|
[2696] | 1208 | #endif |
---|
| 1209 | ! |
---|
[2897] | 1210 | !-- Gather all buildings ids on each PEs. |
---|
| 1211 | !-- First, allocate array encompassing all building ids in model domain. |
---|
| 1212 | ALLOCATE( build_ids(1:SUM(num_buildings)) ) |
---|
[2696] | 1213 | #if defined( __parallel ) |
---|
| 1214 | ! |
---|
[2897] | 1215 | !-- Allocate array for displacements. |
---|
| 1216 | !-- As each PE may has a different number of buildings, so that |
---|
| 1217 | !-- the block sizes send by each PE may not be equal. Hence, |
---|
| 1218 | !-- information about the respective displacement is required, indicating |
---|
| 1219 | !-- the respective adress where each MPI-task writes into the receive |
---|
| 1220 | !-- buffer array |
---|
| 1221 | ALLOCATE( displace_dum(0:numprocs-1) ) |
---|
| 1222 | displace_dum(0) = 0 |
---|
| 1223 | DO i = 1, numprocs-1 |
---|
| 1224 | displace_dum(i) = displace_dum(i-1) + num_buildings(i-1) |
---|
| 1225 | ENDDO |
---|
[2696] | 1226 | |
---|
[2897] | 1227 | CALL MPI_ALLGATHERV( build_ids_l(1:num_buildings_l(myid)), & |
---|
| 1228 | num_buildings(myid), & |
---|
| 1229 | MPI_INTEGER, & |
---|
| 1230 | build_ids, & |
---|
| 1231 | num_buildings, & |
---|
| 1232 | displace_dum, & |
---|
| 1233 | MPI_INTEGER, & |
---|
| 1234 | comm2d, ierr ) |
---|
[2696] | 1235 | |
---|
[2897] | 1236 | DEALLOCATE( displace_dum ) |
---|
[2696] | 1237 | |
---|
| 1238 | #else |
---|
[2897] | 1239 | build_ids = build_ids_l |
---|
[2696] | 1240 | #endif |
---|
| 1241 | |
---|
| 1242 | ! |
---|
[2897] | 1243 | !-- Note, in parallel mode building ids can occure mutliple times, as |
---|
| 1244 | !-- each PE has send its own ids. Therefore, sort out building ids which |
---|
| 1245 | !-- appear more than one time. |
---|
| 1246 | num_build = 0 |
---|
| 1247 | DO nr = 1, SIZE(build_ids) |
---|
[2696] | 1248 | |
---|
[2897] | 1249 | IF ( ALLOCATED(build_ids_final) ) THEN |
---|
[4144] | 1250 | IF ( ANY( build_ids(nr) == build_ids_final ) ) THEN |
---|
[2897] | 1251 | CYCLE |
---|
| 1252 | ELSE |
---|
| 1253 | num_build = num_build + 1 |
---|
| 1254 | ! |
---|
| 1255 | !-- Resize |
---|
| 1256 | ALLOCATE( build_ids_final_tmp(1:num_build) ) |
---|
| 1257 | build_ids_final_tmp(1:num_build-1) = build_ids_final(1:num_build-1) |
---|
| 1258 | DEALLOCATE( build_ids_final ) |
---|
| 1259 | ALLOCATE( build_ids_final(1:num_build) ) |
---|
| 1260 | build_ids_final(1:num_build-1) = build_ids_final_tmp(1:num_build-1) |
---|
| 1261 | build_ids_final(num_build) = build_ids(nr) |
---|
| 1262 | DEALLOCATE( build_ids_final_tmp ) |
---|
| 1263 | ENDIF |
---|
[2696] | 1264 | ELSE |
---|
| 1265 | num_build = num_build + 1 |
---|
| 1266 | ALLOCATE( build_ids_final(1:num_build) ) |
---|
| 1267 | build_ids_final(num_build) = build_ids(nr) |
---|
[2897] | 1268 | ENDIF |
---|
| 1269 | ENDDO |
---|
[2696] | 1270 | |
---|
| 1271 | ! |
---|
[3051] | 1272 | !-- Determine maximumum terrain height occupied by the respective |
---|
| 1273 | !-- building and temporalily store on oro_max |
---|
[2897] | 1274 | ALLOCATE( oro_max_l(1:SIZE(build_ids_final)) ) |
---|
| 1275 | ALLOCATE( oro_max(1:SIZE(build_ids_final)) ) |
---|
| 1276 | oro_max_l = 0.0_wp |
---|
[2696] | 1277 | |
---|
[2897] | 1278 | DO nr = 1, SIZE(build_ids_final) |
---|
[4159] | 1279 | oro_max_l(nr) = MAXVAL( & |
---|
| 1280 | MERGE( terrain_height_f%var(nys:nyn,nxl:nxr), & |
---|
| 1281 | 0.0_wp, & |
---|
| 1282 | building_id_f%var(nys:nyn,nxl:nxr) == & |
---|
[2897] | 1283 | build_ids_final(nr) ) ) |
---|
| 1284 | ENDDO |
---|
[2696] | 1285 | |
---|
| 1286 | #if defined( __parallel ) |
---|
[2897] | 1287 | IF ( SIZE(build_ids_final) >= 1 ) THEN |
---|
[4159] | 1288 | CALL MPI_ALLREDUCE( oro_max_l, oro_max, SIZE( oro_max ), MPI_REAL,& |
---|
[2897] | 1289 | MPI_MAX, comm2d, ierr ) |
---|
| 1290 | ENDIF |
---|
[2696] | 1291 | #else |
---|
[2897] | 1292 | oro_max = oro_max_l |
---|
[2696] | 1293 | #endif |
---|
[3051] | 1294 | ! |
---|
| 1295 | !-- Finally, determine discrete grid height of maximum orography occupied |
---|
[4159] | 1296 | !-- by a building. Use all-or-nothing approach, i.e. if terrain |
---|
| 1297 | !-- exceeds the scalar level the grid box is fully terrain and the |
---|
| 1298 | !-- maximum terrain is set to the zw level. |
---|
| 1299 | !-- terrain or |
---|
[3051] | 1300 | oro_max_l = 0.0 |
---|
| 1301 | DO nr = 1, SIZE(build_ids_final) |
---|
| 1302 | DO k = nzb, nzt |
---|
| 1303 | IF ( zu(k) - ocean_offset <= oro_max(nr) ) & |
---|
[3142] | 1304 | oro_max_l(nr) = zw(k) - ocean_offset |
---|
[3051] | 1305 | ENDDO |
---|
[3142] | 1306 | oro_max(nr) = oro_max_l(nr) |
---|
[3051] | 1307 | ENDDO |
---|
[2897] | 1308 | ENDIF |
---|
[2696] | 1309 | ! |
---|
[2867] | 1310 | !-- Map orography as well as buildings onto grid. |
---|
[2696] | 1311 | DO i = nxl, nxr |
---|
| 1312 | DO j = nys, nyn |
---|
[2867] | 1313 | topo_top_index = 0 |
---|
[3142] | 1314 | ! |
---|
| 1315 | !-- Obtain index in global building_id array |
---|
| 1316 | IF ( buildings_f%from_file ) THEN |
---|
| 1317 | IF ( building_id_f%var(j,i) /= building_id_f%fill ) THEN |
---|
| 1318 | ! |
---|
| 1319 | !-- Determine index where maximum terrain height occupied by |
---|
| 1320 | !-- the respective building height is stored. |
---|
| 1321 | nr = MINLOC( ABS( build_ids_final - & |
---|
| 1322 | building_id_f%var(j,i) ), DIM = 1 ) |
---|
| 1323 | ENDIF |
---|
| 1324 | ENDIF |
---|
[2696] | 1325 | DO k = nzb, nzt |
---|
| 1326 | ! |
---|
| 1327 | !-- In a first step, if grid point is below or equal the given |
---|
| 1328 | !-- terrain height, grid point is flagged to be of type natural. |
---|
| 1329 | !-- Please note, in case there is also a building which is lower |
---|
| 1330 | !-- than the vertical grid spacing, initialization of surface |
---|
| 1331 | !-- attributes will not be correct as given surface information |
---|
| 1332 | !-- will not be in accordance to the classified grid points. |
---|
[4159] | 1333 | !-- Hence, in this case, also a building flag. |
---|
[2747] | 1334 | IF ( zu(k) - ocean_offset <= terrain_height_f%var(j,i) ) THEN |
---|
[2696] | 1335 | topo_3d(k,j,i) = IBCLR( topo_3d(k,j,i), 0 ) |
---|
[2867] | 1336 | topo_3d(k,j,i) = IBSET( topo_3d(k,j,i), 1 ) |
---|
[3051] | 1337 | topo_top_index = k ! topo_top_index + 1 |
---|
[2696] | 1338 | ENDIF |
---|
| 1339 | ! |
---|
| 1340 | !-- Set building grid points. Here, only consider 2D buildings. |
---|
| 1341 | !-- 3D buildings require separate treatment. |
---|
[2897] | 1342 | IF ( buildings_f%from_file .AND. buildings_f%lod == 1 ) THEN |
---|
[4159] | 1343 | ! |
---|
| 1344 | !-- Fill-up the terrain to the level of maximum orography |
---|
| 1345 | !-- within the building-covered area. |
---|
| 1346 | IF ( building_id_f%var(j,i) /= building_id_f%fill ) THEN |
---|
| 1347 | ! |
---|
| 1348 | !-- Note, oro_max is always on zw level |
---|
| 1349 | IF ( zu(k) - ocean_offset < oro_max(nr) ) THEN |
---|
[2696] | 1350 | topo_3d(k,j,i) = IBCLR( topo_3d(k,j,i), 0 ) |
---|
[4159] | 1351 | topo_3d(k,j,i) = IBSET( topo_3d(k,j,i), 1 ) |
---|
| 1352 | ELSEIF ( zu(k) - ocean_offset <= & |
---|
| 1353 | oro_max(nr) + buildings_f%var_2d(j,i) ) THEN |
---|
| 1354 | topo_3d(k,j,i) = IBCLR( topo_3d(k,j,i), 0 ) |
---|
[2696] | 1355 | topo_3d(k,j,i) = IBSET( topo_3d(k,j,i), 2 ) |
---|
| 1356 | ENDIF |
---|
| 1357 | ENDIF |
---|
| 1358 | ENDIF |
---|
| 1359 | ENDDO |
---|
| 1360 | ! |
---|
[4159] | 1361 | !-- Special treatment for non grid-resolved buildings. This case, |
---|
| 1362 | !-- the uppermost terrain grid point is flagged as building as well |
---|
| 1363 | !-- well, even though no building exists at all. However, the |
---|
| 1364 | !-- surface element will be identified as urban-surface and the |
---|
| 1365 | !-- input data provided by the drivers is consistent to the surface |
---|
| 1366 | !-- classification. Else, all non grid-resolved buildings would vanish |
---|
| 1367 | !-- and identified as terrain grid points, which, however, won't be |
---|
| 1368 | !-- consistent with the input data. |
---|
| 1369 | IF ( buildings_f%from_file .AND. buildings_f%lod == 1 ) THEN |
---|
| 1370 | IF ( building_id_f%var(j,i) /= building_id_f%fill ) THEN |
---|
| 1371 | DO k = nzb, nzt |
---|
| 1372 | IF( zw(k) - ocean_offset == oro_max(nr) ) THEN |
---|
| 1373 | IF ( buildings_f%var_2d(j,i) <= zu(k+1) - zw(k) ) THEN |
---|
| 1374 | topo_3d(k,j,i) = IBSET( topo_3d(k,j,i), 2 ) |
---|
| 1375 | ENDIF |
---|
| 1376 | ENDIF |
---|
| 1377 | ENDDO |
---|
| 1378 | ENDIF |
---|
| 1379 | ENDIF |
---|
| 1380 | ! |
---|
[2696] | 1381 | !-- Map 3D buildings onto terrain height. |
---|
[2867] | 1382 | !-- In case of any slopes, map building on top of maximum terrain |
---|
| 1383 | !-- height covered by the building. In other words, extend |
---|
| 1384 | !-- building down to the respective local terrain-surface height. |
---|
[2897] | 1385 | IF ( buildings_f%from_file .AND. buildings_f%lod == 2 ) THEN |
---|
[2696] | 1386 | IF ( building_id_f%var(j,i) /= building_id_f%fill ) THEN |
---|
| 1387 | ! |
---|
[3051] | 1388 | !-- Extend building down to the terrain surface, i.e. fill-up |
---|
| 1389 | !-- surface irregularities below a building. Note, oro_max |
---|
| 1390 | !-- is already a discrete height according to the all-or-nothing |
---|
| 1391 | !-- approach, i.e. grid box is either topography or atmosphere, |
---|
| 1392 | !-- terrain top is defined at upper bound of the grid box. |
---|
| 1393 | !-- Hence, check for zw in this case. |
---|
[3115] | 1394 | !-- Note, do this only for buildings which are surface mounted, |
---|
| 1395 | !-- i.e. building types 1-6. Below bridges, which are represented |
---|
| 1396 | !-- exclusively by building type 7, terrain shape should be |
---|
| 1397 | !-- maintained. |
---|
[3855] | 1398 | IF ( building_type_f%from_file ) THEN |
---|
| 1399 | IF ( building_type_f%var(j,i) /= 7 ) THEN |
---|
| 1400 | DO k = topo_top_index + 1, nzt + 1 |
---|
[4159] | 1401 | IF ( zu(k) - ocean_offset <= oro_max(nr) ) THEN |
---|
[3855] | 1402 | topo_3d(k,j,i) = IBCLR( topo_3d(k,j,i), 0 ) |
---|
[4159] | 1403 | topo_3d(k,j,i) = IBSET( topo_3d(k,j,i), 1 ) |
---|
[3855] | 1404 | ENDIF |
---|
| 1405 | ENDDO |
---|
| 1406 | ! |
---|
| 1407 | !-- After surface irregularities are smoothen, determine |
---|
| 1408 | !-- lower start index where building starts. |
---|
| 1409 | DO k = nzb, nzt |
---|
[4159] | 1410 | IF ( zu(k) - ocean_offset <= oro_max(nr) ) & |
---|
[3855] | 1411 | topo_top_index = k |
---|
| 1412 | ENDDO |
---|
| 1413 | ENDIF |
---|
[3115] | 1414 | ENDIF |
---|
[3051] | 1415 | ! |
---|
| 1416 | !-- Finally, map building on top. |
---|
[2867] | 1417 | k2 = 0 |
---|
| 1418 | DO k = topo_top_index, nzt + 1 |
---|
[2796] | 1419 | IF ( k2 <= buildings_f%nz-1 ) THEN |
---|
[2696] | 1420 | IF ( buildings_f%var_3d(k2,j,i) == 1 ) THEN |
---|
| 1421 | topo_3d(k,j,i) = IBCLR( topo_3d(k,j,i), 0 ) |
---|
| 1422 | topo_3d(k,j,i) = IBSET( topo_3d(k,j,i), 2 ) |
---|
| 1423 | ENDIF |
---|
| 1424 | ENDIF |
---|
| 1425 | k2 = k2 + 1 |
---|
| 1426 | ENDDO |
---|
| 1427 | ENDIF |
---|
| 1428 | ENDIF |
---|
| 1429 | ENDDO |
---|
| 1430 | ENDDO |
---|
| 1431 | ! |
---|
| 1432 | !-- Deallocate temporary arrays required for processing and reading data |
---|
| 1433 | IF ( ALLOCATED( oro_max ) ) DEALLOCATE( oro_max ) |
---|
| 1434 | IF ( ALLOCATED( oro_max_l ) ) DEALLOCATE( oro_max_l ) |
---|
| 1435 | IF ( ALLOCATED( build_ids_final ) ) DEALLOCATE( build_ids_final ) |
---|
| 1436 | ! |
---|
| 1437 | !-- Topography input via ASCII format. |
---|
| 1438 | ELSE |
---|
[3294] | 1439 | ocean_offset = MERGE( zw(0), 0.0_wp, ocean_mode ) |
---|
[4159] | 1440 | ! |
---|
| 1441 | !-- Initialize topography bit 0 (indicates obstacle) everywhere to zero |
---|
| 1442 | !-- and clear all grid points at nzb, where alway a surface is defined. |
---|
| 1443 | !-- Further, set also bit 1 (indicates terrain) at nzb, which is further |
---|
| 1444 | !-- used for masked data output and further processing. Note, in the |
---|
| 1445 | !-- ASCII case no distinction is made between buildings and terrain, |
---|
| 1446 | !-- so that setting of bit 1 and 2 at the same time has no effect. |
---|
[2696] | 1447 | topo_3d = IBSET( topo_3d, 0 ) |
---|
| 1448 | topo_3d(nzb,:,:) = IBCLR( topo_3d(nzb,:,:), 0 ) |
---|
[4159] | 1449 | topo_3d(nzb,:,:) = IBSET( topo_3d(nzb,:,:), 1 ) |
---|
[2696] | 1450 | DO i = nxl, nxr |
---|
| 1451 | DO j = nys, nyn |
---|
| 1452 | DO k = nzb, nzt |
---|
[3538] | 1453 | ! |
---|
| 1454 | !-- Flag topography for all grid points which are below |
---|
| 1455 | !-- the local topography height. |
---|
| 1456 | !-- Note, each topography is flagged as building. |
---|
[2747] | 1457 | IF ( zu(k) - ocean_offset <= buildings_f%var_2d(j,i) ) THEN |
---|
[2696] | 1458 | topo_3d(k,j,i) = IBCLR( topo_3d(k,j,i), 0 ) |
---|
[3538] | 1459 | topo_3d(k,j,i) = IBSET( topo_3d(k,j,i), 2 ) !indicates building |
---|
[2696] | 1460 | ENDIF |
---|
| 1461 | ENDDO |
---|
| 1462 | ENDDO |
---|
| 1463 | ENDDO |
---|
| 1464 | ENDIF |
---|
| 1465 | |
---|
| 1466 | CALL exchange_horiz_int( topo_3d, nys, nyn, nxl, nxr, nzt, nbgp ) |
---|
| 1467 | |
---|
| 1468 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
| 1469 | IF ( nys == 0 ) topo_3d(:,-1,:) = topo_3d(:,0,:) |
---|
| 1470 | IF ( nyn == ny ) topo_3d(:,ny+1,:) = topo_3d(:,ny,:) |
---|
| 1471 | ENDIF |
---|
| 1472 | |
---|
| 1473 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
| 1474 | IF ( nxl == 0 ) topo_3d(:,:,-1) = topo_3d(:,:,0) |
---|
| 1475 | IF ( nxr == nx ) topo_3d(:,:,nx+1) = topo_3d(:,:,nx) |
---|
| 1476 | ENDIF |
---|
| 1477 | |
---|
| 1478 | END SUBROUTINE process_topography |
---|
| 1479 | |
---|
| 1480 | |
---|
| 1481 | ! Description: |
---|
| 1482 | ! -----------------------------------------------------------------------------! |
---|
| 1483 | !> Filter topography, i.e. fill holes resolved by only one grid point. |
---|
| 1484 | !> Such holes are suspected to lead to velocity blow-ups as continuity |
---|
| 1485 | !> equation on discrete grid cannot be fulfilled in such case. |
---|
| 1486 | !------------------------------------------------------------------------------! |
---|
| 1487 | SUBROUTINE filter_topography( topo_3d ) |
---|
| 1488 | |
---|
| 1489 | USE control_parameters, & |
---|
| 1490 | ONLY: bc_lr_cyc, bc_ns_cyc, message_string |
---|
| 1491 | |
---|
| 1492 | USE indices, & |
---|
| 1493 | ONLY: nbgp, nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, nzb, nzt |
---|
| 1494 | |
---|
| 1495 | USE netcdf_data_input_mod, & |
---|
| 1496 | ONLY: building_id_f, building_type_f |
---|
| 1497 | |
---|
| 1498 | USE pegrid |
---|
| 1499 | |
---|
| 1500 | IMPLICIT NONE |
---|
| 1501 | |
---|
[2893] | 1502 | LOGICAL :: filled = .FALSE. !< flag indicating if holes were filled |
---|
| 1503 | |
---|
[2696] | 1504 | INTEGER(iwp) :: i !< running index along x-direction |
---|
| 1505 | INTEGER(iwp) :: j !< running index along y-direction |
---|
| 1506 | INTEGER(iwp) :: k !< running index along z-direction |
---|
| 1507 | INTEGER(iwp) :: num_hole !< number of holes (in topography) resolved by only one grid point |
---|
| 1508 | INTEGER(iwp) :: num_hole_l !< number of holes (in topography) resolved by only one grid point on local PE |
---|
| 1509 | INTEGER(iwp) :: num_wall !< number of surrounding vertical walls for a single grid point |
---|
| 1510 | |
---|
[2955] | 1511 | INTEGER(iwp), DIMENSION(:,:,:), ALLOCATABLE :: topo_tmp !< temporary 3D-topography used to fill holes |
---|
| 1512 | INTEGER(iwp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: topo_3d !< 3D-topography array merging buildings and orography |
---|
[2696] | 1513 | ! |
---|
| 1514 | !-- Before checking for holes, set lateral boundary conditions for |
---|
| 1515 | !-- topography. After hole-filling, boundary conditions must be set again. |
---|
| 1516 | !-- Several iterations are performed, in order to fill holes which might |
---|
| 1517 | !-- emerge by the filling-algorithm itself. |
---|
| 1518 | ALLOCATE( topo_tmp(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 1519 | topo_tmp = 0 |
---|
| 1520 | |
---|
| 1521 | num_hole = 99999 |
---|
| 1522 | DO WHILE ( num_hole > 0 ) |
---|
| 1523 | |
---|
| 1524 | num_hole = 0 |
---|
| 1525 | CALL exchange_horiz_int( topo_3d, nys, nyn, nxl, nxr, nzt, nbgp ) |
---|
[2955] | 1526 | ! |
---|
| 1527 | !-- Exchange also building ID and type. Note, building_type is an one-byte |
---|
| 1528 | !-- variable. |
---|
| 1529 | IF ( building_id_f%from_file ) & |
---|
| 1530 | CALL exchange_horiz_2d_int( building_id_f%var, nys, nyn, nxl, nxr, nbgp ) |
---|
[3763] | 1531 | IF ( building_type_f%from_file ) & |
---|
| 1532 | CALL exchange_horiz_2d_byte( building_type_f%var, nys, nyn, nxl, nxr, nbgp ) |
---|
[2696] | 1533 | |
---|
| 1534 | topo_tmp = topo_3d |
---|
| 1535 | ! |
---|
| 1536 | !-- In case of non-cyclic lateral boundaries, assume lateral boundary to be |
---|
| 1537 | !-- a solid wall. Thus, intermediate spaces of one grid point between |
---|
| 1538 | !-- boundary and some topographic structure will be filled. |
---|
| 1539 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
| 1540 | IF ( nys == 0 ) topo_tmp(:,-1,:) = IBCLR( topo_tmp(:,0,:), 0 ) |
---|
| 1541 | IF ( nyn == ny ) topo_tmp(:,ny+1,:) = IBCLR( topo_tmp(:,ny,:), 0 ) |
---|
| 1542 | ENDIF |
---|
| 1543 | |
---|
| 1544 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
| 1545 | IF ( nxl == 0 ) topo_tmp(:,:,-1) = IBCLR( topo_tmp(:,:,0), 0 ) |
---|
| 1546 | IF ( nxr == nx ) topo_tmp(:,:,nx+1) = IBCLR( topo_tmp(:,:,nx), 0 ) |
---|
| 1547 | ENDIF |
---|
| 1548 | |
---|
| 1549 | num_hole_l = 0 |
---|
| 1550 | DO i = nxl, nxr |
---|
| 1551 | DO j = nys, nyn |
---|
| 1552 | DO k = nzb+1, nzt |
---|
| 1553 | IF ( BTEST( topo_tmp(k,j,i), 0 ) ) THEN |
---|
| 1554 | num_wall = 0 |
---|
| 1555 | IF ( .NOT. BTEST( topo_tmp(k,j-1,i), 0 ) ) & |
---|
| 1556 | num_wall = num_wall + 1 |
---|
| 1557 | IF ( .NOT. BTEST( topo_tmp(k,j+1,i), 0 ) ) & |
---|
| 1558 | num_wall = num_wall + 1 |
---|
| 1559 | IF ( .NOT. BTEST( topo_tmp(k,j,i-1), 0 ) ) & |
---|
| 1560 | num_wall = num_wall + 1 |
---|
| 1561 | IF ( .NOT. BTEST( topo_tmp(k,j,i+1), 0 ) ) & |
---|
| 1562 | num_wall = num_wall + 1 |
---|
| 1563 | IF ( .NOT. BTEST( topo_tmp(k-1,j,i), 0 ) ) & |
---|
| 1564 | num_wall = num_wall + 1 |
---|
| 1565 | IF ( .NOT. BTEST( topo_tmp(k+1,j,i), 0 ) ) & |
---|
| 1566 | num_wall = num_wall + 1 |
---|
| 1567 | |
---|
| 1568 | IF ( num_wall >= 4 ) THEN |
---|
| 1569 | num_hole_l = num_hole_l + 1 |
---|
| 1570 | ! |
---|
| 1571 | !-- Clear flag 0 and set special flag ( bit 3) to indicate |
---|
| 1572 | !-- that new topography point is a result of filtering process. |
---|
| 1573 | topo_3d(k,j,i) = IBCLR( topo_3d(k,j,i), 0 ) |
---|
| 1574 | topo_3d(k,j,i) = IBSET( topo_3d(k,j,i), 3 ) |
---|
| 1575 | ! |
---|
| 1576 | !-- If filled grid point is occupied by a building, classify |
---|
| 1577 | !-- it as building grid point. |
---|
| 1578 | IF ( building_type_f%from_file ) THEN |
---|
| 1579 | IF ( building_type_f%var(j,i) /= & |
---|
| 1580 | building_type_f%fill .OR. & |
---|
| 1581 | building_type_f%var(j+1,i) /= & |
---|
| 1582 | building_type_f%fill .OR. & |
---|
| 1583 | building_type_f%var(j-1,i) /= & |
---|
| 1584 | building_type_f%fill .OR. & |
---|
| 1585 | building_type_f%var(j,i+1) /= & |
---|
| 1586 | building_type_f%fill .OR. & |
---|
| 1587 | building_type_f%var(j,i-1) /= & |
---|
| 1588 | building_type_f%fill ) THEN |
---|
| 1589 | ! |
---|
| 1590 | !-- Set flag indicating building surfaces |
---|
| 1591 | topo_3d(k,j,i) = IBSET( topo_3d(k,j,i), 2 ) |
---|
| 1592 | ! |
---|
| 1593 | !-- Set building_type and ID at this position if not |
---|
| 1594 | !-- already set. This is required for proper |
---|
| 1595 | !-- initialization of urban-surface energy balance |
---|
| 1596 | !-- solver. |
---|
| 1597 | IF ( building_type_f%var(j,i) == & |
---|
| 1598 | building_type_f%fill ) THEN |
---|
| 1599 | |
---|
| 1600 | IF ( building_type_f%var(j+1,i) /= & |
---|
| 1601 | building_type_f%fill ) THEN |
---|
| 1602 | building_type_f%var(j,i) = & |
---|
| 1603 | building_type_f%var(j+1,i) |
---|
| 1604 | building_id_f%var(j,i) = & |
---|
| 1605 | building_id_f%var(j+1,i) |
---|
| 1606 | ELSEIF ( building_type_f%var(j-1,i) /= & |
---|
| 1607 | building_type_f%fill ) THEN |
---|
| 1608 | building_type_f%var(j,i) = & |
---|
| 1609 | building_type_f%var(j-1,i) |
---|
| 1610 | building_id_f%var(j,i) = & |
---|
| 1611 | building_id_f%var(j-1,i) |
---|
| 1612 | ELSEIF ( building_type_f%var(j,i+1) /= & |
---|
| 1613 | building_type_f%fill ) THEN |
---|
| 1614 | building_type_f%var(j,i) = & |
---|
| 1615 | building_type_f%var(j,i+1) |
---|
| 1616 | building_id_f%var(j,i) = & |
---|
| 1617 | building_id_f%var(j,i+1) |
---|
| 1618 | ELSEIF ( building_type_f%var(j,i-1) /= & |
---|
| 1619 | building_type_f%fill ) THEN |
---|
| 1620 | building_type_f%var(j,i) = & |
---|
| 1621 | building_type_f%var(j,i-1) |
---|
| 1622 | building_id_f%var(j,i) = & |
---|
| 1623 | building_id_f%var(j,i-1) |
---|
| 1624 | ENDIF |
---|
| 1625 | ENDIF |
---|
| 1626 | ENDIF |
---|
| 1627 | ENDIF |
---|
| 1628 | ! |
---|
| 1629 | !-- If filled grid point is already classified as building |
---|
| 1630 | !-- everything is fine, else classify this grid point as |
---|
| 1631 | !-- natural type grid point. This case, values for the |
---|
| 1632 | !-- surface type are already set. |
---|
| 1633 | IF ( .NOT. BTEST( topo_3d(k,j,i), 2 ) ) THEN |
---|
| 1634 | topo_3d(k,j,i) = IBSET( topo_3d(k,j,i), 1 ) |
---|
| 1635 | ENDIF |
---|
| 1636 | ENDIF |
---|
| 1637 | ENDIF |
---|
| 1638 | ENDDO |
---|
| 1639 | ENDDO |
---|
| 1640 | ENDDO |
---|
| 1641 | ! |
---|
| 1642 | !-- Count the total number of holes, required for informative message. |
---|
| 1643 | #if defined( __parallel ) |
---|
| 1644 | CALL MPI_ALLREDUCE( num_hole_l, num_hole, 1, MPI_INTEGER, MPI_SUM, & |
---|
| 1645 | comm2d, ierr ) |
---|
| 1646 | #else |
---|
| 1647 | num_hole = num_hole_l |
---|
| 1648 | #endif |
---|
[2893] | 1649 | IF ( num_hole > 0 .AND. .NOT. filled ) filled = .TRUE. |
---|
[2696] | 1650 | |
---|
[2893] | 1651 | ENDDO |
---|
[2696] | 1652 | ! |
---|
[2893] | 1653 | !-- Create an informative message if any holes were filled. |
---|
| 1654 | IF ( filled ) THEN |
---|
| 1655 | WRITE( message_string, * ) 'Topography was filtered, i.e. holes ' // & |
---|
| 1656 | 'resolved by only one grid point ' // & |
---|
| 1657 | 'were filled during initialization.' |
---|
| 1658 | CALL message( 'init_grid', 'PA0430', 0, 0, 0, 6, 0 ) |
---|
| 1659 | ENDIF |
---|
[2696] | 1660 | |
---|
| 1661 | DEALLOCATE( topo_tmp ) |
---|
| 1662 | ! |
---|
| 1663 | !-- Finally, exchange topo_3d array again and if necessary set Neumann boundary |
---|
| 1664 | !-- condition in case of non-cyclic lateral boundaries. |
---|
| 1665 | CALL exchange_horiz_int( topo_3d, nys, nyn, nxl, nxr, nzt, nbgp ) |
---|
| 1666 | |
---|
| 1667 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
| 1668 | IF ( nys == 0 ) topo_3d(:,-1,:) = topo_3d(:,0,:) |
---|
| 1669 | IF ( nyn == ny ) topo_3d(:,ny+1,:) = topo_3d(:,ny,:) |
---|
| 1670 | ENDIF |
---|
| 1671 | |
---|
| 1672 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
| 1673 | IF ( nxl == 0 ) topo_3d(:,:,-1) = topo_3d(:,:,0) |
---|
| 1674 | IF ( nxr == nx ) topo_3d(:,:,nx+1) = topo_3d(:,:,nx) |
---|
| 1675 | ENDIF |
---|
[2955] | 1676 | ! |
---|
| 1677 | !-- Exchange building ID and type. Note, building_type is an one-byte variable. |
---|
| 1678 | IF ( building_id_f%from_file ) & |
---|
| 1679 | CALL exchange_horiz_2d_int( building_id_f%var, nys, nyn, nxl, nxr, nbgp ) |
---|
[3763] | 1680 | IF ( building_type_f%from_file ) & |
---|
| 1681 | CALL exchange_horiz_2d_byte( building_type_f%var, nys, nyn, nxl, nxr, nbgp ) |
---|
[2696] | 1682 | |
---|
| 1683 | END SUBROUTINE filter_topography |
---|
| 1684 | |
---|
| 1685 | |
---|
| 1686 | ! Description: |
---|
| 1687 | ! -----------------------------------------------------------------------------! |
---|
| 1688 | !> Reads topography information from file or sets generic topography. Moreover, |
---|
| 1689 | !> all topography-relevant topography arrays are initialized, and grid flags |
---|
| 1690 | !> are set. |
---|
| 1691 | !------------------------------------------------------------------------------! |
---|
| 1692 | SUBROUTINE init_topo( topo ) |
---|
| 1693 | |
---|
| 1694 | USE arrays_3d, & |
---|
| 1695 | ONLY: zw |
---|
| 1696 | |
---|
| 1697 | USE control_parameters, & |
---|
| 1698 | ONLY: bc_lr_cyc, bc_ns_cyc, building_height, building_length_x, & |
---|
| 1699 | building_length_y, building_wall_left, building_wall_south, & |
---|
| 1700 | canyon_height, canyon_wall_left, canyon_wall_south, & |
---|
| 1701 | canyon_width_x, canyon_width_y, dp_level_ind_b, dz, & |
---|
[3241] | 1702 | message_string, topography, topography_grid_convention, & |
---|
[2696] | 1703 | tunnel_height, tunnel_length, tunnel_width_x, tunnel_width_y, & |
---|
| 1704 | tunnel_wall_depth |
---|
| 1705 | |
---|
| 1706 | USE grid_variables, & |
---|
| 1707 | ONLY: dx, dy |
---|
| 1708 | |
---|
| 1709 | USE indices, & |
---|
| 1710 | ONLY: nbgp, nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, nz, & |
---|
| 1711 | nzb, nzt |
---|
| 1712 | |
---|
| 1713 | USE kinds |
---|
| 1714 | |
---|
| 1715 | USE pegrid |
---|
| 1716 | |
---|
| 1717 | IMPLICIT NONE |
---|
| 1718 | |
---|
| 1719 | INTEGER(iwp) :: bh !< temporary vertical index of building height |
---|
| 1720 | INTEGER(iwp) :: blx !< grid point number of building size along x |
---|
| 1721 | INTEGER(iwp) :: bly !< grid point number of building size along y |
---|
| 1722 | INTEGER(iwp) :: bxl !< index for left building wall |
---|
| 1723 | INTEGER(iwp) :: bxr !< index for right building wall |
---|
| 1724 | INTEGER(iwp) :: byn !< index for north building wall |
---|
| 1725 | INTEGER(iwp) :: bys !< index for south building wall |
---|
| 1726 | INTEGER(iwp) :: ch !< temporary vertical index for canyon height |
---|
| 1727 | INTEGER(iwp) :: cwx !< grid point number of canyon size along x |
---|
| 1728 | INTEGER(iwp) :: cwy !< grid point number of canyon size along y |
---|
| 1729 | INTEGER(iwp) :: cxl !< index for left canyon wall |
---|
| 1730 | INTEGER(iwp) :: cxr !< index for right canyon wall |
---|
| 1731 | INTEGER(iwp) :: cyn !< index for north canyon wall |
---|
| 1732 | INTEGER(iwp) :: cys !< index for south canyon wall |
---|
| 1733 | INTEGER(iwp) :: i !< index variable along x |
---|
| 1734 | INTEGER(iwp) :: j !< index variable along y |
---|
| 1735 | INTEGER(iwp) :: k !< index variable along z |
---|
| 1736 | INTEGER(iwp) :: hv_in !< heavyside function to model inner tunnel surface |
---|
| 1737 | INTEGER(iwp) :: hv_out !< heavyside function to model outer tunnel surface |
---|
| 1738 | INTEGER(iwp) :: txe_out !< end position of outer tunnel wall in x |
---|
| 1739 | INTEGER(iwp) :: txs_out !< start position of outer tunnel wall in x |
---|
| 1740 | INTEGER(iwp) :: tye_out !< end position of outer tunnel wall in y |
---|
| 1741 | INTEGER(iwp) :: tys_out !< start position of outer tunnel wall in y |
---|
| 1742 | INTEGER(iwp) :: txe_in !< end position of inner tunnel wall in x |
---|
| 1743 | INTEGER(iwp) :: txs_in !< start position of inner tunnel wall in x |
---|
| 1744 | INTEGER(iwp) :: tye_in !< end position of inner tunnel wall in y |
---|
| 1745 | INTEGER(iwp) :: tys_in !< start position of inner tunnel wall in y |
---|
| 1746 | INTEGER(iwp) :: td !< tunnel wall depth |
---|
| 1747 | INTEGER(iwp) :: th !< height of outer tunnel wall |
---|
| 1748 | |
---|
| 1749 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: nzb_local !< index for topography top at cell-center |
---|
| 1750 | INTEGER(iwp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: topo !< input array for 3D topography and dummy array for setting "outer"-flags |
---|
| 1751 | |
---|
| 1752 | |
---|
| 1753 | ! |
---|
[1] | 1754 | !-- Set outer and inner index arrays for non-flat topography. |
---|
| 1755 | !-- Here consistency checks concerning domain size and periodicity are |
---|
| 1756 | !-- necessary. |
---|
| 1757 | !-- Within this SELECT CASE structure only nzb_local is initialized |
---|
| 1758 | !-- individually depending on the chosen topography type, all other index |
---|
| 1759 | !-- arrays are initialized further below. |
---|
| 1760 | SELECT CASE ( TRIM( topography ) ) |
---|
| 1761 | |
---|
| 1762 | CASE ( 'flat' ) |
---|
[2696] | 1763 | ! |
---|
[2232] | 1764 | !-- Initialilize 3D topography array, used later for initializing flags |
---|
[2696] | 1765 | topo(nzb+1:nzt+1,:,:) = IBSET( topo(nzb+1:nzt+1,:,:), 0 ) |
---|
[1] | 1766 | |
---|
| 1767 | CASE ( 'single_building' ) |
---|
| 1768 | ! |
---|
| 1769 | !-- Single rectangular building, by default centered in the middle of the |
---|
| 1770 | !-- total domain |
---|
| 1771 | blx = NINT( building_length_x / dx ) |
---|
| 1772 | bly = NINT( building_length_y / dy ) |
---|
[2232] | 1773 | bh = MINLOC( ABS( zw - building_height ), 1 ) - 1 |
---|
| 1774 | IF ( ABS( zw(bh) - building_height ) == & |
---|
[1675] | 1775 | ABS( zw(bh+1) - building_height ) ) bh = bh + 1 |
---|
[1322] | 1776 | IF ( building_wall_left == 9999999.9_wp ) THEN |
---|
[1] | 1777 | building_wall_left = ( nx + 1 - blx ) / 2 * dx |
---|
| 1778 | ENDIF |
---|
| 1779 | bxl = NINT( building_wall_left / dx ) |
---|
| 1780 | bxr = bxl + blx |
---|
| 1781 | |
---|
[1322] | 1782 | IF ( building_wall_south == 9999999.9_wp ) THEN |
---|
[2696] | 1783 | building_wall_south = ( ny + 1 - bly ) / 2 * dy |
---|
[1] | 1784 | ENDIF |
---|
| 1785 | bys = NINT( building_wall_south / dy ) |
---|
| 1786 | byn = bys + bly |
---|
| 1787 | |
---|
| 1788 | ! |
---|
| 1789 | !-- Building size has to meet some requirements |
---|
[2696] | 1790 | IF ( ( bxl < 1 ) .OR. ( bxr > nx-1 ) .OR. ( bxr < bxl+3 ) .OR. & |
---|
[1] | 1791 | ( bys < 1 ) .OR. ( byn > ny-1 ) .OR. ( byn < bys+3 ) ) THEN |
---|
[274] | 1792 | WRITE( message_string, * ) 'inconsistent building parameters:', & |
---|
[3046] | 1793 | '&bxl=', bxl, 'bxr=', bxr, 'bys=', bys, & |
---|
[274] | 1794 | 'byn=', byn, 'nx=', nx, 'ny=', ny |
---|
[254] | 1795 | CALL message( 'init_grid', 'PA0203', 1, 2, 0, 6, 0 ) |
---|
[1] | 1796 | ENDIF |
---|
| 1797 | |
---|
[2696] | 1798 | ALLOCATE( nzb_local(nysg:nyng,nxlg:nxrg) ) |
---|
[2892] | 1799 | nzb_local = 0 |
---|
[1] | 1800 | ! |
---|
[1968] | 1801 | !-- Define the building. |
---|
| 1802 | IF ( bxl <= nxr .AND. bxr >= nxl .AND. & |
---|
[2696] | 1803 | bys <= nyn .AND. byn >= nys ) & |
---|
[1968] | 1804 | nzb_local(MAX(nys,bys):MIN(nyn,byn),MAX(nxl,bxl):MIN(nxr,bxr)) = bh |
---|
[2232] | 1805 | ! |
---|
[2696] | 1806 | !-- Set bit array on basis of nzb_local |
---|
| 1807 | DO i = nxl, nxr |
---|
| 1808 | DO j = nys, nyn |
---|
| 1809 | topo(nzb_local(j,i)+1:nzt+1,j,i) = & |
---|
| 1810 | IBSET( topo(nzb_local(j,i)+1:nzt+1,j,i), 0 ) |
---|
[2232] | 1811 | ENDDO |
---|
| 1812 | ENDDO |
---|
[2696] | 1813 | |
---|
| 1814 | DEALLOCATE( nzb_local ) |
---|
[2232] | 1815 | |
---|
[2696] | 1816 | CALL exchange_horiz_int( topo, nys, nyn, nxl, nxr, nzt, nbgp ) |
---|
[2823] | 1817 | ! |
---|
| 1818 | !-- Set boundary conditions also for flags. Can be interpreted as Neumann |
---|
| 1819 | !-- boundary conditions for topography. |
---|
| 1820 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
| 1821 | IF ( nys == 0 ) THEN |
---|
| 1822 | DO i = 1, nbgp |
---|
| 1823 | topo(:,nys-i,:) = topo(:,nys,:) |
---|
| 1824 | ENDDO |
---|
| 1825 | ENDIF |
---|
| 1826 | IF ( nyn == ny ) THEN |
---|
| 1827 | DO i = 1, nbgp |
---|
| 1828 | topo(:,nyn+i,:) = topo(:,nyn,:) |
---|
| 1829 | ENDDO |
---|
| 1830 | ENDIF |
---|
| 1831 | ENDIF |
---|
| 1832 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
| 1833 | IF ( nxl == 0 ) THEN |
---|
| 1834 | DO i = 1, nbgp |
---|
| 1835 | topo(:,:,nxl-i) = topo(:,:,nxl) |
---|
| 1836 | ENDDO |
---|
| 1837 | ENDIF |
---|
| 1838 | IF ( nxr == nx ) THEN |
---|
| 1839 | DO i = 1, nbgp |
---|
| 1840 | topo(:,:,nxr+i) = topo(:,:,nxr) |
---|
| 1841 | ENDDO |
---|
| 1842 | ENDIF |
---|
| 1843 | ENDIF |
---|
[2232] | 1844 | |
---|
[240] | 1845 | CASE ( 'single_street_canyon' ) |
---|
| 1846 | ! |
---|
| 1847 | !-- Single quasi-2D street canyon of infinite length in x or y direction. |
---|
| 1848 | !-- The canyon is centered in the other direction by default. |
---|
[1322] | 1849 | IF ( canyon_width_x /= 9999999.9_wp ) THEN |
---|
[240] | 1850 | ! |
---|
| 1851 | !-- Street canyon in y direction |
---|
| 1852 | cwx = NINT( canyon_width_x / dx ) |
---|
[1322] | 1853 | IF ( canyon_wall_left == 9999999.9_wp ) THEN |
---|
[240] | 1854 | canyon_wall_left = ( nx + 1 - cwx ) / 2 * dx |
---|
| 1855 | ENDIF |
---|
| 1856 | cxl = NINT( canyon_wall_left / dx ) |
---|
| 1857 | cxr = cxl + cwx |
---|
[1322] | 1858 | ELSEIF ( canyon_width_y /= 9999999.9_wp ) THEN |
---|
[240] | 1859 | ! |
---|
| 1860 | !-- Street canyon in x direction |
---|
| 1861 | cwy = NINT( canyon_width_y / dy ) |
---|
[1322] | 1862 | IF ( canyon_wall_south == 9999999.9_wp ) THEN |
---|
[240] | 1863 | canyon_wall_south = ( ny + 1 - cwy ) / 2 * dy |
---|
| 1864 | ENDIF |
---|
| 1865 | cys = NINT( canyon_wall_south / dy ) |
---|
| 1866 | cyn = cys + cwy |
---|
[2696] | 1867 | |
---|
[240] | 1868 | ELSE |
---|
[254] | 1869 | |
---|
| 1870 | message_string = 'no street canyon width given' |
---|
| 1871 | CALL message( 'init_grid', 'PA0204', 1, 2, 0, 6, 0 ) |
---|
| 1872 | |
---|
[240] | 1873 | ENDIF |
---|
| 1874 | |
---|
[2232] | 1875 | ch = MINLOC( ABS( zw - canyon_height ), 1 ) - 1 |
---|
| 1876 | IF ( ABS( zw(ch) - canyon_height ) == & |
---|
[1675] | 1877 | ABS( zw(ch+1) - canyon_height ) ) ch = ch + 1 |
---|
[240] | 1878 | dp_level_ind_b = ch |
---|
| 1879 | ! |
---|
| 1880 | !-- Street canyon size has to meet some requirements |
---|
[1322] | 1881 | IF ( canyon_width_x /= 9999999.9_wp ) THEN |
---|
[1353] | 1882 | IF ( ( cxl < 1 ) .OR. ( cxr > nx-1 ) .OR. ( cwx < 3 ) .OR. & |
---|
[2696] | 1883 | ( ch < 3 ) ) THEN |
---|
[1353] | 1884 | WRITE( message_string, * ) 'inconsistent canyon parameters:', & |
---|
[3046] | 1885 | '&cxl=', cxl, ' cxr=', cxr, & |
---|
[3045] | 1886 | ' cwx=', cwx, & |
---|
| 1887 | ' ch=', ch, ' nx=', nx, ' ny=', ny |
---|
[254] | 1888 | CALL message( 'init_grid', 'PA0205', 1, 2, 0, 6, 0 ) |
---|
[240] | 1889 | ENDIF |
---|
[1322] | 1890 | ELSEIF ( canyon_width_y /= 9999999.9_wp ) THEN |
---|
[1353] | 1891 | IF ( ( cys < 1 ) .OR. ( cyn > ny-1 ) .OR. ( cwy < 3 ) .OR. & |
---|
[2696] | 1892 | ( ch < 3 ) ) THEN |
---|
[1353] | 1893 | WRITE( message_string, * ) 'inconsistent canyon parameters:', & |
---|
[3046] | 1894 | '&cys=', cys, ' cyn=', cyn, & |
---|
[3045] | 1895 | ' cwy=', cwy, & |
---|
| 1896 | ' ch=', ch, ' nx=', nx, ' ny=', ny |
---|
[254] | 1897 | CALL message( 'init_grid', 'PA0206', 1, 2, 0, 6, 0 ) |
---|
[240] | 1898 | ENDIF |
---|
| 1899 | ENDIF |
---|
[1353] | 1900 | IF ( canyon_width_x /= 9999999.9_wp .AND. & |
---|
| 1901 | canyon_width_y /= 9999999.9_wp ) THEN |
---|
| 1902 | message_string = 'inconsistent canyon parameters:' // & |
---|
[3046] | 1903 | '&street canyon can only be oriented' // & |
---|
[3045] | 1904 | ' either in x- or in y-direction' |
---|
[254] | 1905 | CALL message( 'init_grid', 'PA0207', 1, 2, 0, 6, 0 ) |
---|
[240] | 1906 | ENDIF |
---|
| 1907 | |
---|
[2696] | 1908 | ALLOCATE( nzb_local(nysg:nyng,nxlg:nxrg) ) |
---|
[240] | 1909 | nzb_local = ch |
---|
[1322] | 1910 | IF ( canyon_width_x /= 9999999.9_wp ) THEN |
---|
[1968] | 1911 | IF ( cxl <= nxr .AND. cxr >= nxl ) & |
---|
| 1912 | nzb_local(:,MAX(nxl,cxl+1):MIN(nxr,cxr-1)) = 0 |
---|
[1322] | 1913 | ELSEIF ( canyon_width_y /= 9999999.9_wp ) THEN |
---|
[1968] | 1914 | IF ( cys <= nyn .AND. cyn >= nys ) & |
---|
| 1915 | nzb_local(MAX(nys,cys+1):MIN(nyn,cyn-1),:) = 0 |
---|
[240] | 1916 | ENDIF |
---|
[2232] | 1917 | ! |
---|
[2696] | 1918 | !-- Set bit array on basis of nzb_local |
---|
| 1919 | DO i = nxl, nxr |
---|
| 1920 | DO j = nys, nyn |
---|
| 1921 | topo(nzb_local(j,i)+1:nzt+1,j,i) = & |
---|
| 1922 | IBSET( topo(nzb_local(j,i)+1:nzt+1,j,i), 0 ) |
---|
[2232] | 1923 | ENDDO |
---|
| 1924 | ENDDO |
---|
[2696] | 1925 | DEALLOCATE( nzb_local ) |
---|
[1994] | 1926 | |
---|
[2696] | 1927 | CALL exchange_horiz_int( topo, nys, nyn, nxl, nxr, nzt, nbgp ) |
---|
[2823] | 1928 | ! |
---|
| 1929 | !-- Set boundary conditions also for flags. Can be interpreted as Neumann |
---|
| 1930 | !-- boundary conditions for topography. |
---|
| 1931 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
| 1932 | IF ( nys == 0 ) THEN |
---|
| 1933 | DO i = 1, nbgp |
---|
| 1934 | topo(:,nys-i,:) = topo(:,nys,:) |
---|
| 1935 | ENDDO |
---|
| 1936 | ENDIF |
---|
| 1937 | IF ( nyn == ny ) THEN |
---|
| 1938 | DO i = 1, nbgp |
---|
| 1939 | topo(:,nyn+i,:) = topo(:,nyn,:) |
---|
| 1940 | ENDDO |
---|
| 1941 | ENDIF |
---|
| 1942 | ENDIF |
---|
| 1943 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
| 1944 | IF ( nxl == 0 ) THEN |
---|
| 1945 | DO i = 1, nbgp |
---|
| 1946 | topo(:,:,nxl-i) = topo(:,:,nxl) |
---|
| 1947 | ENDDO |
---|
| 1948 | ENDIF |
---|
| 1949 | IF ( nxr == nx ) THEN |
---|
| 1950 | DO i = 1, nbgp |
---|
| 1951 | topo(:,:,nxr+i) = topo(:,:,nxr) |
---|
| 1952 | ENDDO |
---|
| 1953 | ENDIF |
---|
| 1954 | ENDIF |
---|
[2232] | 1955 | |
---|
| 1956 | CASE ( 'tunnel' ) |
---|
| 1957 | |
---|
| 1958 | ! |
---|
| 1959 | !-- Tunnel height |
---|
| 1960 | IF ( tunnel_height == 9999999.9_wp ) THEN |
---|
| 1961 | th = zw( INT( 0.2 * nz) ) |
---|
| 1962 | ELSE |
---|
| 1963 | th = tunnel_height |
---|
| 1964 | ENDIF |
---|
| 1965 | ! |
---|
| 1966 | !-- Tunnel-wall depth |
---|
[2696] | 1967 | IF ( tunnel_wall_depth == 9999999.9_wp ) THEN |
---|
[3065] | 1968 | td = MAX ( dx, dy, dz(1) ) |
---|
[2232] | 1969 | ELSE |
---|
| 1970 | td = tunnel_wall_depth |
---|
| 1971 | ENDIF |
---|
| 1972 | ! |
---|
| 1973 | !-- Check for tunnel width |
---|
| 1974 | IF ( tunnel_width_x == 9999999.9_wp .AND. & |
---|
| 1975 | tunnel_width_y == 9999999.9_wp ) THEN |
---|
| 1976 | message_string = 'No tunnel width is given. ' |
---|
[2274] | 1977 | CALL message( 'init_grid', 'PA0280', 1, 2, 0, 6, 0 ) |
---|
[2232] | 1978 | ENDIF |
---|
| 1979 | IF ( tunnel_width_x /= 9999999.9_wp .AND. & |
---|
| 1980 | tunnel_width_y /= 9999999.9_wp ) THEN |
---|
| 1981 | message_string = 'Inconsistent tunnel parameters:' // & |
---|
| 1982 | 'tunnel can only be oriented' // & |
---|
| 1983 | 'either in x- or in y-direction.' |
---|
[2274] | 1984 | CALL message( 'init_grid', 'PA0281', 1, 2, 0, 6, 0 ) |
---|
[2232] | 1985 | ENDIF |
---|
| 1986 | ! |
---|
| 1987 | !-- Tunnel axis along y |
---|
| 1988 | IF ( tunnel_width_x /= 9999999.9_wp ) THEN |
---|
| 1989 | IF ( tunnel_width_x > ( nx + 1 ) * dx ) THEN |
---|
| 1990 | message_string = 'Tunnel width too large' |
---|
[2274] | 1991 | CALL message( 'init_grid', 'PA0282', 1, 2, 0, 6, 0 ) |
---|
[2232] | 1992 | ENDIF |
---|
| 1993 | |
---|
| 1994 | txs_out = INT( ( nx + 1 ) * 0.5_wp * dx - tunnel_width_x * 0.5_wp ) |
---|
| 1995 | txe_out = INT( ( nx + 1 ) * 0.5_wp * dx + tunnel_width_x * 0.5_wp ) |
---|
| 1996 | txs_in = INT( ( nx + 1 ) * 0.5_wp * dx - & |
---|
| 1997 | ( tunnel_width_x * 0.5_wp - td ) ) |
---|
| 1998 | txe_in = INT( ( nx + 1 ) * 0.5_wp * dx + & |
---|
[2696] | 1999 | ( tunnel_width_x * 0.5_wp - td ) ) |
---|
[2232] | 2000 | |
---|
| 2001 | tys_out = INT( ( ny + 1 ) * 0.5_wp * dy - tunnel_length * 0.5_wp ) |
---|
| 2002 | tye_out = INT( ( ny + 1 ) * 0.5_wp * dy + tunnel_length * 0.5_wp ) |
---|
| 2003 | tys_in = tys_out |
---|
| 2004 | tye_in = tye_out |
---|
| 2005 | ENDIF |
---|
[2696] | 2006 | IF ( tunnel_width_x /= 9999999.9_wp .AND. & |
---|
| 2007 | tunnel_width_x - 2.0_wp * td <= 2.0_wp * dx ) & |
---|
| 2008 | THEN |
---|
[2232] | 2009 | message_string = 'Tunnel width too small' |
---|
[2274] | 2010 | CALL message( 'init_grid', 'PA0175', 1, 2, 0, 6, 0 ) |
---|
[2232] | 2011 | ENDIF |
---|
| 2012 | IF ( tunnel_width_y /= 9999999.9_wp .AND. & |
---|
[2696] | 2013 | tunnel_width_y - 2.0_wp * td <= 2.0_wp * dy ) & |
---|
| 2014 | THEN |
---|
[2232] | 2015 | message_string = 'Tunnel width too small' |
---|
[2274] | 2016 | CALL message( 'init_grid', 'PA0455', 1, 2, 0, 6, 0 ) |
---|
[2232] | 2017 | ENDIF |
---|
| 2018 | ! |
---|
| 2019 | !-- Tunnel axis along x |
---|
| 2020 | IF ( tunnel_width_y /= 9999999.9_wp ) THEN |
---|
| 2021 | IF ( tunnel_width_y > ( ny + 1 ) * dy ) THEN |
---|
| 2022 | message_string = 'Tunnel width too large' |
---|
[2274] | 2023 | CALL message( 'init_grid', 'PA0456', 1, 2, 0, 6, 0 ) |
---|
[2232] | 2024 | ENDIF |
---|
| 2025 | |
---|
| 2026 | txs_out = INT( ( nx + 1 ) * 0.5_wp * dx - tunnel_length * 0.5_wp ) |
---|
| 2027 | txe_out = INT( ( nx + 1 ) * 0.5_wp * dx + tunnel_length * 0.5_wp ) |
---|
| 2028 | txs_in = txs_out |
---|
| 2029 | txe_in = txe_out |
---|
| 2030 | |
---|
| 2031 | tys_out = INT( ( ny + 1 ) * 0.5_wp * dy - tunnel_width_y * 0.5_wp ) |
---|
| 2032 | tye_out = INT( ( ny + 1 ) * 0.5_wp * dy + tunnel_width_y * 0.5_wp ) |
---|
| 2033 | tys_in = INT( ( ny + 1 ) * 0.5_wp * dy - & |
---|
[2696] | 2034 | ( tunnel_width_y * 0.5_wp - td ) ) |
---|
[2232] | 2035 | tye_in = INT( ( ny + 1 ) * 0.5_wp * dy + & |
---|
| 2036 | ( tunnel_width_y * 0.5_wp - td ) ) |
---|
| 2037 | ENDIF |
---|
| 2038 | |
---|
[2696] | 2039 | topo = 0 |
---|
[2232] | 2040 | DO i = nxl, nxr |
---|
| 2041 | DO j = nys, nyn |
---|
| 2042 | ! |
---|
| 2043 | !-- Use heaviside function to model outer tunnel surface |
---|
| 2044 | hv_out = th * 0.5_wp * & |
---|
| 2045 | ( ( SIGN( 1.0_wp, i * dx - txs_out ) + 1.0_wp ) & |
---|
| 2046 | - ( SIGN( 1.0_wp, i * dx - txe_out ) + 1.0_wp ) ) |
---|
| 2047 | |
---|
| 2048 | hv_out = hv_out * 0.5_wp * & |
---|
| 2049 | ( ( SIGN( 1.0_wp, j * dy - tys_out ) + 1.0_wp ) & |
---|
| 2050 | - ( SIGN( 1.0_wp, j * dy - tye_out ) + 1.0_wp ) ) |
---|
[2696] | 2051 | ! |
---|
[2232] | 2052 | !-- Use heaviside function to model inner tunnel surface |
---|
| 2053 | hv_in = ( th - td ) * 0.5_wp * & |
---|
| 2054 | ( ( SIGN( 1.0_wp, i * dx - txs_in ) + 1.0_wp ) & |
---|
| 2055 | - ( SIGN( 1.0_wp, i * dx - txe_in ) + 1.0_wp ) ) |
---|
| 2056 | |
---|
| 2057 | hv_in = hv_in * 0.5_wp * & |
---|
| 2058 | ( ( SIGN( 1.0_wp, j * dy - tys_in ) + 1.0_wp ) & |
---|
| 2059 | - ( SIGN( 1.0_wp, j * dy - tye_in ) + 1.0_wp ) ) |
---|
| 2060 | ! |
---|
| 2061 | !-- Set flags at x-y-positions without any tunnel surface |
---|
| 2062 | IF ( hv_out - hv_in == 0.0_wp ) THEN |
---|
[2696] | 2063 | topo(nzb+1:nzt+1,j,i) = IBSET( topo(nzb+1:nzt+1,j,i), 0 ) |
---|
[2232] | 2064 | ! |
---|
| 2065 | !-- Set flags at x-y-positions with tunnel surfaces |
---|
| 2066 | ELSE |
---|
| 2067 | DO k = nzb + 1, nzt + 1 |
---|
| 2068 | ! |
---|
| 2069 | !-- Inner tunnel |
---|
| 2070 | IF ( hv_out - hv_in == th ) THEN |
---|
| 2071 | IF ( zw(k) <= hv_out ) THEN |
---|
[2696] | 2072 | topo(k,j,i) = IBCLR( topo(k,j,i), 0 ) |
---|
[2232] | 2073 | ELSE |
---|
[2696] | 2074 | topo(k,j,i) = IBSET( topo(k,j,i), 0 ) |
---|
[2232] | 2075 | ENDIF |
---|
| 2076 | ENDIF |
---|
| 2077 | ! |
---|
| 2078 | !-- Lateral tunnel walls |
---|
| 2079 | IF ( hv_out - hv_in == td ) THEN |
---|
| 2080 | IF ( zw(k) <= hv_in ) THEN |
---|
[2696] | 2081 | topo(k,j,i) = IBSET( topo(k,j,i), 0 ) |
---|
[2232] | 2082 | ELSEIF ( zw(k) > hv_in .AND. zw(k) <= hv_out ) THEN |
---|
[2696] | 2083 | topo(k,j,i) = IBCLR( topo(k,j,i), 0 ) |
---|
[2232] | 2084 | ELSEIF ( zw(k) > hv_out ) THEN |
---|
[2696] | 2085 | topo(k,j,i) = IBSET( topo(k,j,i), 0 ) |
---|
[2232] | 2086 | ENDIF |
---|
| 2087 | ENDIF |
---|
| 2088 | ENDDO |
---|
| 2089 | ENDIF |
---|
| 2090 | ENDDO |
---|
| 2091 | ENDDO |
---|
| 2092 | |
---|
[2696] | 2093 | CALL exchange_horiz_int( topo, nys, nyn, nxl, nxr, nzt, nbgp ) |
---|
[2823] | 2094 | ! |
---|
| 2095 | !-- Set boundary conditions also for flags. Can be interpreted as Neumann |
---|
| 2096 | !-- boundary conditions for topography. |
---|
| 2097 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
| 2098 | IF ( nys == 0 ) THEN |
---|
| 2099 | DO i = 1, nbgp |
---|
| 2100 | topo(:,nys-i,:) = topo(:,nys,:) |
---|
| 2101 | ENDDO |
---|
| 2102 | ENDIF |
---|
| 2103 | IF ( nyn == ny ) THEN |
---|
| 2104 | DO i = 1, nbgp |
---|
| 2105 | topo(:,nyn+i,:) = topo(:,nyn,:) |
---|
| 2106 | ENDDO |
---|
| 2107 | ENDIF |
---|
| 2108 | ENDIF |
---|
| 2109 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
| 2110 | IF ( nxl == 0 ) THEN |
---|
| 2111 | DO i = 1, nbgp |
---|
| 2112 | topo(:,:,nxl-i) = topo(:,:,nxl) |
---|
| 2113 | ENDDO |
---|
| 2114 | ENDIF |
---|
| 2115 | IF ( nxr == nx ) THEN |
---|
| 2116 | DO i = 1, nbgp |
---|
| 2117 | topo(:,:,nxr+i) = topo(:,:,nxr) |
---|
| 2118 | ENDDO |
---|
| 2119 | ENDIF |
---|
| 2120 | ENDIF |
---|
[2232] | 2121 | |
---|
[1] | 2122 | CASE ( 'read_from_file' ) |
---|
| 2123 | ! |
---|
[2696] | 2124 | !-- Note, topography information have been already read. |
---|
| 2125 | !-- If required, further process topography, i.e. reference buildings on |
---|
| 2126 | !-- top of orography and set temporary 3D topography array, which is |
---|
| 2127 | !-- used later to set grid flags. Calling of this rouinte is also |
---|
| 2128 | !-- required in case of ASCII input, even though no distinction between |
---|
| 2129 | !-- terrain- and building height is made in this case. |
---|
| 2130 | CALL process_topography( topo ) |
---|
[1968] | 2131 | ! |
---|
[2696] | 2132 | !-- Filter holes resolved by only one grid-point |
---|
| 2133 | CALL filter_topography( topo ) |
---|
[1968] | 2134 | ! |
---|
[2696] | 2135 | !-- Exchange ghost-points, as well as add cyclic or Neumann boundary |
---|
| 2136 | !-- conditions. |
---|
| 2137 | CALL exchange_horiz_int( topo, nys, nyn, nxl, nxr, nzt, nbgp ) |
---|
[2232] | 2138 | ! |
---|
[2696] | 2139 | !-- Set lateral boundary conditions for topography on all ghost layers |
---|
[1968] | 2140 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
[2550] | 2141 | IF ( nys == 0 ) THEN |
---|
[2696] | 2142 | DO i = 1, nbgp |
---|
| 2143 | topo(:,nys-i,:) = topo(:,nys,:) |
---|
| 2144 | ENDDO |
---|
[2550] | 2145 | ENDIF |
---|
[2696] | 2146 | IF ( nyn == ny ) THEN |
---|
| 2147 | DO i = 1, nbgp |
---|
| 2148 | topo(:,nyn+i,:) = topo(:,nyn,:) |
---|
| 2149 | ENDDO |
---|
| 2150 | ENDIF |
---|
[1942] | 2151 | ENDIF |
---|
[1910] | 2152 | |
---|
[1968] | 2153 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
[2550] | 2154 | IF ( nxl == 0 ) THEN |
---|
[2696] | 2155 | DO i = 1, nbgp |
---|
| 2156 | topo(:,:,nxl-i) = topo(:,:,nxl) |
---|
[2232] | 2157 | ENDDO |
---|
[2696] | 2158 | ENDIF |
---|
| 2159 | IF ( nxr == nx ) THEN |
---|
| 2160 | DO i = 1, nbgp |
---|
| 2161 | topo(:,:,nxr+i) = topo(:,:,nxr) |
---|
| 2162 | ENDDO |
---|
| 2163 | ENDIF |
---|
[2232] | 2164 | ENDIF |
---|
| 2165 | |
---|
[667] | 2166 | |
---|
[1] | 2167 | CASE DEFAULT |
---|
[2696] | 2168 | ! |
---|
[1] | 2169 | !-- The DEFAULT case is reached either if the parameter topography |
---|
[217] | 2170 | !-- contains a wrong character string or if the user has defined a special |
---|
[1] | 2171 | !-- case in the user interface. There, the subroutine user_init_grid |
---|
| 2172 | !-- checks which of these two conditions applies. |
---|
[2696] | 2173 | CALL user_init_grid( topo ) |
---|
| 2174 | CALL filter_topography( topo ) |
---|
[1] | 2175 | |
---|
| 2176 | END SELECT |
---|
| 2177 | ! |
---|
| 2178 | !-- Consistency checks and index array initialization are only required for |
---|
[2696] | 2179 | !-- non-flat topography. |
---|
[1] | 2180 | IF ( TRIM( topography ) /= 'flat' ) THEN |
---|
| 2181 | ! |
---|
[2232] | 2182 | !-- In case of non-flat topography, check whether the convention how to |
---|
| 2183 | !-- define the topography grid has been set correctly, or whether the default |
---|
| 2184 | !-- is applicable. If this is not possible, abort. |
---|
| 2185 | IF ( TRIM( topography_grid_convention ) == ' ' ) THEN |
---|
| 2186 | IF ( TRIM( topography ) /= 'single_building' .AND. & |
---|
| 2187 | TRIM( topography ) /= 'single_street_canyon' .AND. & |
---|
| 2188 | TRIM( topography ) /= 'tunnel' .AND. & |
---|
| 2189 | TRIM( topography ) /= 'read_from_file') THEN |
---|
| 2190 | !-- The default value is not applicable here, because it is only valid |
---|
[3045] | 2191 | !-- for the four standard cases 'single_building', |
---|
| 2192 | !-- 'single_street_canyon', 'tunnel' and 'read_from_file' |
---|
[2232] | 2193 | !-- defined in init_grid. |
---|
| 2194 | WRITE( message_string, * ) & |
---|
[2696] | 2195 | 'The value for "topography_grid_convention" ', & |
---|
[3046] | 2196 | 'is not set. Its default value is & only valid for ', & |
---|
[3045] | 2197 | '"topography" = ''single_building'', ''tunnel'' ', & |
---|
[3046] | 2198 | '''single_street_canyon'' & or ''read_from_file''.', & |
---|
| 2199 | '& Choose ''cell_edge'' or ''cell_center''.' |
---|
[2232] | 2200 | CALL message( 'init_grid', 'PA0239', 1, 2, 0, 6, 0 ) |
---|
| 2201 | ELSE |
---|
| 2202 | !-- The default value is applicable here. |
---|
| 2203 | !-- Set convention according to topography. |
---|
| 2204 | IF ( TRIM( topography ) == 'single_building' .OR. & |
---|
| 2205 | TRIM( topography ) == 'single_street_canyon' ) THEN |
---|
| 2206 | topography_grid_convention = 'cell_edge' |
---|
| 2207 | ELSEIF ( TRIM( topography ) == 'read_from_file' .OR. & |
---|
| 2208 | TRIM( topography ) == 'tunnel') THEN |
---|
| 2209 | topography_grid_convention = 'cell_center' |
---|
| 2210 | ENDIF |
---|
| 2211 | ENDIF |
---|
| 2212 | ELSEIF ( TRIM( topography_grid_convention ) /= 'cell_edge' .AND. & |
---|
| 2213 | TRIM( topography_grid_convention ) /= 'cell_center' ) THEN |
---|
| 2214 | WRITE( message_string, * ) & |
---|
[2696] | 2215 | 'The value for "topography_grid_convention" is ', & |
---|
[3046] | 2216 | 'not recognized.& Choose ''cell_edge'' or ''cell_center''.' |
---|
[2232] | 2217 | CALL message( 'init_grid', 'PA0240', 1, 2, 0, 6, 0 ) |
---|
| 2218 | ENDIF |
---|
[1] | 2219 | |
---|
[2169] | 2220 | |
---|
[217] | 2221 | IF ( topography_grid_convention == 'cell_edge' ) THEN |
---|
[134] | 2222 | ! |
---|
[217] | 2223 | !-- The array nzb_local as defined using the 'cell_edge' convention |
---|
| 2224 | !-- describes the actual total size of topography which is defined at the |
---|
| 2225 | !-- cell edges where u=0 on the topography walls in x-direction and v=0 |
---|
| 2226 | !-- on the topography walls in y-direction. However, PALM uses individual |
---|
| 2227 | !-- arrays nzb_u|v|w|s_inner|outer that are based on nzb_s_inner. |
---|
| 2228 | !-- Therefore, the extent of topography in nzb_local is now reduced by |
---|
| 2229 | !-- 1dx at the E topography walls and by 1dy at the N topography walls |
---|
[1968] | 2230 | !-- to form the basis for nzb_s_inner. |
---|
| 2231 | !-- Note, the reverse memory access (i-j instead of j-i) is absolutely |
---|
| 2232 | !-- required at this point. |
---|
| 2233 | DO j = nys+1, nyn+1 |
---|
| 2234 | DO i = nxl-1, nxr |
---|
[2232] | 2235 | DO k = nzb, nzt+1 |
---|
[2696] | 2236 | IF ( BTEST( topo(k,j,i), 0 ) .OR. & |
---|
| 2237 | BTEST( topo(k,j,i+1), 0 ) ) & |
---|
| 2238 | topo(k,j,i) = IBSET( topo(k,j,i), 0 ) |
---|
[2232] | 2239 | ENDDO |
---|
| 2240 | ENDDO |
---|
| 2241 | ENDDO |
---|
[2696] | 2242 | CALL exchange_horiz_int( topo, nys, nyn, nxl, nxr, nzt, nbgp ) |
---|
[2232] | 2243 | |
---|
| 2244 | DO i = nxl, nxr+1 |
---|
| 2245 | DO j = nys-1, nyn |
---|
| 2246 | DO k = nzb, nzt+1 |
---|
[2696] | 2247 | IF ( BTEST( topo(k,j,i), 0 ) .OR. & |
---|
| 2248 | BTEST( topo(k,j+1,i), 0 ) ) & |
---|
| 2249 | topo(k,j,i) = IBSET( topo(k,j,i), 0 ) |
---|
[2232] | 2250 | ENDDO |
---|
| 2251 | ENDDO |
---|
| 2252 | ENDDO |
---|
[2696] | 2253 | CALL exchange_horiz_int( topo, nys, nyn, nxl, nxr, nzt, nbgp ) |
---|
[2232] | 2254 | |
---|
[217] | 2255 | ENDIF |
---|
[2696] | 2256 | ENDIF |
---|
[2232] | 2257 | |
---|
[1] | 2258 | |
---|
[2696] | 2259 | END SUBROUTINE init_topo |
---|
[1] | 2260 | |
---|
[2696] | 2261 | SUBROUTINE set_topo_flags(topo) |
---|
[1] | 2262 | |
---|
[2696] | 2263 | USE control_parameters, & |
---|
| 2264 | ONLY: bc_lr_cyc, bc_ns_cyc, constant_flux_layer, land_surface, & |
---|
[4109] | 2265 | scalar_advec, use_surface_fluxes, use_top_fluxes, urban_surface |
---|
[1] | 2266 | |
---|
[2696] | 2267 | USE indices, & |
---|
[3241] | 2268 | ONLY: nbgp, nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, nzb, & |
---|
[4168] | 2269 | nzt, topo_top_ind, wall_flags_0 |
---|
[1] | 2270 | |
---|
[2696] | 2271 | USE kinds |
---|
[1] | 2272 | |
---|
[2696] | 2273 | IMPLICIT NONE |
---|
[1804] | 2274 | |
---|
[2696] | 2275 | INTEGER(iwp) :: i !< index variable along x |
---|
[4168] | 2276 | INTEGER(iwp) :: ibit !< integer bit position of topgraphy masking array |
---|
[2696] | 2277 | INTEGER(iwp) :: j !< index variable along y |
---|
| 2278 | INTEGER(iwp) :: k !< index variable along z |
---|
[1] | 2279 | |
---|
[2696] | 2280 | INTEGER(iwp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: topo !< input array for 3D topography and dummy array for setting "outer"-flags |
---|
[2232] | 2281 | |
---|
[2696] | 2282 | ALLOCATE( wall_flags_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 2283 | wall_flags_0 = 0 |
---|
[2232] | 2284 | ! |
---|
[2696] | 2285 | !-- Set-up topography flags. First, set flags only for s, u, v and w-grid. |
---|
| 2286 | !-- Further special flags will be set in following loops. |
---|
[2232] | 2287 | DO i = nxl, nxr |
---|
| 2288 | DO j = nys, nyn |
---|
| 2289 | DO k = nzb, nzt+1 |
---|
| 2290 | ! |
---|
| 2291 | !-- scalar grid |
---|
[2696] | 2292 | IF ( BTEST( topo(k,j,i), 0 ) ) & |
---|
[2232] | 2293 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 0 ) |
---|
| 2294 | ! |
---|
[2696] | 2295 | !-- u grid |
---|
| 2296 | IF ( BTEST( topo(k,j,i), 0 ) .AND. & |
---|
| 2297 | BTEST( topo(k,j,i-1), 0 ) ) & |
---|
| 2298 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 1 ) |
---|
| 2299 | ! |
---|
[2232] | 2300 | !-- v grid |
---|
[2696] | 2301 | IF ( BTEST( topo(k,j,i), 0 ) .AND. & |
---|
| 2302 | BTEST( topo(k,j-1,i), 0 ) ) & |
---|
| 2303 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 2 ) |
---|
| 2304 | |
---|
[2232] | 2305 | ENDDO |
---|
[1] | 2306 | |
---|
[2232] | 2307 | DO k = nzb, nzt |
---|
[1] | 2308 | ! |
---|
[2232] | 2309 | !-- w grid |
---|
[2696] | 2310 | IF ( BTEST( topo(k,j,i), 0 ) .AND. & |
---|
| 2311 | BTEST( topo(k+1,j,i), 0 ) ) & |
---|
[2232] | 2312 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 3 ) |
---|
| 2313 | ENDDO |
---|
| 2314 | wall_flags_0(nzt+1,j,i) = IBSET( wall_flags_0(nzt+1,j,i), 3 ) |
---|
| 2315 | |
---|
| 2316 | ENDDO |
---|
| 2317 | ENDDO |
---|
[2696] | 2318 | |
---|
[2867] | 2319 | CALL exchange_horiz_int( wall_flags_0, nys, nyn, nxl, nxr, nzt, nbgp ) |
---|
[1] | 2320 | ! |
---|
[4115] | 2321 | !-- Set outer array for scalars to mask near-surface grid points. Note, on |
---|
| 2322 | !-- basis of flag 24 futher flags will be derived which are used to control |
---|
| 2323 | !-- production of subgrid TKE production near walls. |
---|
[2696] | 2324 | DO i = nxl, nxr |
---|
| 2325 | DO j = nys, nyn |
---|
[2232] | 2326 | DO k = nzb, nzt+1 |
---|
[4115] | 2327 | IF ( BTEST( wall_flags_0(k,j-1,i), 0 ) .AND. & |
---|
| 2328 | BTEST( wall_flags_0(k,j+1,i), 0 ) .AND. & |
---|
| 2329 | BTEST( wall_flags_0(k,j,i-1), 0 ) .AND. & |
---|
| 2330 | BTEST( wall_flags_0(k,j,i+1), 0 ) .AND. & |
---|
| 2331 | BTEST( wall_flags_0(k,j-1,i-1), 0 ) .AND. & |
---|
| 2332 | BTEST( wall_flags_0(k,j+1,i-1), 0 ) .AND. & |
---|
| 2333 | BTEST( wall_flags_0(k,j-1,i+1), 0 ) .AND. & |
---|
| 2334 | BTEST( wall_flags_0(k,j+1,i+1), 0 ) ) & |
---|
[2696] | 2335 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 24 ) |
---|
[2232] | 2336 | ENDDO |
---|
| 2337 | ENDDO |
---|
| 2338 | ENDDO |
---|
[1] | 2339 | ! |
---|
[2232] | 2340 | !-- Set further special flags |
---|
| 2341 | DO i = nxl, nxr |
---|
| 2342 | DO j = nys, nyn |
---|
| 2343 | DO k = nzb, nzt+1 |
---|
[1] | 2344 | ! |
---|
[2232] | 2345 | !-- scalar grid, former nzb_diff_s_inner. |
---|
| 2346 | !-- Note, use this flag also to mask topography in diffusion_u and |
---|
| 2347 | !-- diffusion_v along the vertical direction. In case of |
---|
| 2348 | !-- use_surface_fluxes, fluxes are calculated via MOST, else, simple |
---|
| 2349 | !-- gradient approach is applied. Please note, in case of u- and v- |
---|
| 2350 | !-- diffuison, a small error is made at edges (on the east side for u, |
---|
| 2351 | !-- at the north side for v), since topography on scalar grid point |
---|
| 2352 | !-- is used instead of topography on u/v-grid. As number of topography grid |
---|
| 2353 | !-- points on uv-grid is different than s-grid, different number of |
---|
| 2354 | !-- surface elements would be required. In order to avoid this, |
---|
| 2355 | !-- treat edges (u(k,j,i+1)) simply by a gradient approach, i.e. these |
---|
| 2356 | !-- points are not masked within diffusion_u. Tests had shown that the |
---|
| 2357 | !-- effect on the flow is negligible. |
---|
| 2358 | IF ( constant_flux_layer .OR. use_surface_fluxes ) THEN |
---|
| 2359 | IF ( BTEST( wall_flags_0(k,j,i), 0 ) ) & |
---|
| 2360 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 8 ) |
---|
| 2361 | ELSE |
---|
| 2362 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 8 ) |
---|
| 2363 | ENDIF |
---|
[1] | 2364 | |
---|
[2232] | 2365 | ENDDO |
---|
| 2366 | ! |
---|
| 2367 | !-- Special flag to control vertical diffusion at model top - former |
---|
| 2368 | !-- nzt_diff |
---|
| 2369 | wall_flags_0(:,j,i) = IBSET( wall_flags_0(:,j,i), 9 ) |
---|
| 2370 | IF ( use_top_fluxes ) & |
---|
[2478] | 2371 | wall_flags_0(nzt+1,j,i) = IBCLR( wall_flags_0(nzt+1,j,i), 9 ) |
---|
[1] | 2372 | |
---|
[2696] | 2373 | |
---|
[2232] | 2374 | DO k = nzb+1, nzt |
---|
| 2375 | ! |
---|
| 2376 | !-- Special flag on u grid, former nzb_u_inner + 1, required |
---|
| 2377 | !-- for disturb_field and initialization. Do not disturb directly at |
---|
| 2378 | !-- topography, as well as initialize u with zero one grid point outside |
---|
| 2379 | !-- of topography. |
---|
| 2380 | IF ( BTEST( wall_flags_0(k-1,j,i), 1 ) .AND. & |
---|
| 2381 | BTEST( wall_flags_0(k,j,i), 1 ) .AND. & |
---|
| 2382 | BTEST( wall_flags_0(k+1,j,i), 1 ) ) & |
---|
| 2383 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 20 ) |
---|
| 2384 | ! |
---|
| 2385 | !-- Special flag on v grid, former nzb_v_inner + 1, required |
---|
| 2386 | !-- for disturb_field and initialization. Do not disturb directly at |
---|
| 2387 | !-- topography, as well as initialize v with zero one grid point outside |
---|
| 2388 | !-- of topography. |
---|
| 2389 | IF ( BTEST( wall_flags_0(k-1,j,i), 2 ) .AND. & |
---|
| 2390 | BTEST( wall_flags_0(k,j,i), 2 ) .AND. & |
---|
| 2391 | BTEST( wall_flags_0(k+1,j,i), 2 ) ) & |
---|
| 2392 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 21 ) |
---|
| 2393 | ! |
---|
| 2394 | !-- Special flag on scalar grid, former nzb_s_inner+1. Used for |
---|
| 2395 | !-- lpm_sgs_tke |
---|
| 2396 | IF ( BTEST( wall_flags_0(k,j,i), 0 ) .AND. & |
---|
| 2397 | BTEST( wall_flags_0(k-1,j,i), 0 ) .AND. & |
---|
| 2398 | BTEST( wall_flags_0(k+1,j,i), 0 ) ) & |
---|
| 2399 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 25 ) |
---|
| 2400 | ! |
---|
| 2401 | !-- Special flag on scalar grid, nzb_diff_s_outer - 1, required in |
---|
| 2402 | !-- in production_e |
---|
| 2403 | IF ( constant_flux_layer .OR. use_surface_fluxes ) THEN |
---|
| 2404 | IF ( BTEST( wall_flags_0(k,j,i), 24 ) .AND. & |
---|
| 2405 | BTEST( wall_flags_0(k-1,j,i), 24 ) .AND. & |
---|
| 2406 | BTEST( wall_flags_0(k+1,j,i), 0 ) ) & |
---|
| 2407 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 29 ) |
---|
| 2408 | ELSE |
---|
| 2409 | IF ( BTEST( wall_flags_0(k,j,i), 0 ) ) & |
---|
| 2410 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 29 ) |
---|
[1] | 2411 | ENDIF |
---|
[2232] | 2412 | ! |
---|
| 2413 | !-- Special flag on scalar grid, nzb_diff_s_outer - 1, required in |
---|
| 2414 | !-- in production_e |
---|
| 2415 | IF ( constant_flux_layer .OR. use_surface_fluxes ) THEN |
---|
| 2416 | IF ( BTEST( wall_flags_0(k,j,i), 0 ) .AND. & |
---|
| 2417 | BTEST( wall_flags_0(k-1,j,i), 0 ) .AND. & |
---|
| 2418 | BTEST( wall_flags_0(k+1,j,i), 0 ) ) & |
---|
| 2419 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 30 ) |
---|
| 2420 | ELSE |
---|
| 2421 | IF ( BTEST( wall_flags_0(k,j,i), 0 ) ) & |
---|
| 2422 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 30 ) |
---|
| 2423 | ENDIF |
---|
| 2424 | ENDDO |
---|
| 2425 | ! |
---|
| 2426 | !-- Flags indicating downward facing walls |
---|
| 2427 | DO k = nzb+1, nzt |
---|
| 2428 | ! |
---|
| 2429 | !-- Scalar grid |
---|
| 2430 | IF ( BTEST( wall_flags_0(k-1,j,i), 0 ) .AND. & |
---|
| 2431 | .NOT. BTEST( wall_flags_0(k,j,i), 0 ) ) & |
---|
[2696] | 2432 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 13 ) |
---|
[2232] | 2433 | ! |
---|
| 2434 | !-- Downward facing wall on u grid |
---|
| 2435 | IF ( BTEST( wall_flags_0(k-1,j,i), 1 ) .AND. & |
---|
| 2436 | .NOT. BTEST( wall_flags_0(k,j,i), 1 ) ) & |
---|
| 2437 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 15 ) |
---|
| 2438 | ! |
---|
| 2439 | !-- Downward facing wall on v grid |
---|
| 2440 | IF ( BTEST( wall_flags_0(k-1,j,i), 2 ) .AND. & |
---|
| 2441 | .NOT. BTEST( wall_flags_0(k,j,i), 2 ) ) & |
---|
| 2442 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 17 ) |
---|
| 2443 | ! |
---|
| 2444 | !-- Downward facing wall on w grid |
---|
| 2445 | IF ( BTEST( wall_flags_0(k-1,j,i), 3 ) .AND. & |
---|
| 2446 | .NOT. BTEST( wall_flags_0(k,j,i), 3 ) ) & |
---|
| 2447 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 19 ) |
---|
| 2448 | ENDDO |
---|
| 2449 | ! |
---|
| 2450 | !-- Flags indicating upward facing walls |
---|
| 2451 | DO k = nzb, nzt |
---|
| 2452 | ! |
---|
| 2453 | !-- Upward facing wall on scalar grid |
---|
| 2454 | IF ( .NOT. BTEST( wall_flags_0(k,j,i), 0 ) .AND. & |
---|
| 2455 | BTEST( wall_flags_0(k+1,j,i), 0 ) ) & |
---|
| 2456 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 12 ) |
---|
| 2457 | ! |
---|
| 2458 | !-- Upward facing wall on u grid |
---|
| 2459 | IF ( .NOT. BTEST( wall_flags_0(k,j,i), 1 ) .AND. & |
---|
| 2460 | BTEST( wall_flags_0(k+1,j,i), 1 ) ) & |
---|
| 2461 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 14 ) |
---|
[1] | 2462 | |
---|
[2696] | 2463 | ! |
---|
[2232] | 2464 | !-- Upward facing wall on v grid |
---|
| 2465 | IF ( .NOT. BTEST( wall_flags_0(k,j,i), 2 ) .AND. & |
---|
| 2466 | BTEST( wall_flags_0(k+1,j,i), 2 ) ) & |
---|
| 2467 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 16 ) |
---|
[2696] | 2468 | |
---|
[2232] | 2469 | ! |
---|
| 2470 | !-- Upward facing wall on w grid |
---|
| 2471 | IF ( .NOT. BTEST( wall_flags_0(k,j,i), 3 ) .AND. & |
---|
| 2472 | BTEST( wall_flags_0(k+1,j,i), 3 ) ) & |
---|
| 2473 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 18 ) |
---|
| 2474 | ! |
---|
| 2475 | !-- Special flag on scalar grid, former nzb_s_inner |
---|
| 2476 | IF ( BTEST( wall_flags_0(k,j,i), 0 ) .OR. & |
---|
| 2477 | BTEST( wall_flags_0(k,j,i), 12 ) .OR. & |
---|
| 2478 | BTEST( wall_flags_0(k,j,i), 13 ) ) & |
---|
[2696] | 2479 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 22 ) |
---|
[2232] | 2480 | ! |
---|
| 2481 | !-- Special flag on scalar grid, nzb_diff_s_inner - 1, required for |
---|
| 2482 | !-- flow_statistics |
---|
| 2483 | IF ( constant_flux_layer .OR. use_surface_fluxes ) THEN |
---|
| 2484 | IF ( BTEST( wall_flags_0(k,j,i), 0 ) .AND. & |
---|
| 2485 | BTEST( wall_flags_0(k+1,j,i), 0 ) ) & |
---|
[2696] | 2486 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 23 ) |
---|
[2232] | 2487 | ELSE |
---|
| 2488 | IF ( BTEST( wall_flags_0(k,j,i), 22 ) ) & |
---|
| 2489 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 23 ) |
---|
[1] | 2490 | ENDIF |
---|
[2696] | 2491 | |
---|
[1] | 2492 | |
---|
[2232] | 2493 | ENDDO |
---|
| 2494 | wall_flags_0(nzt+1,j,i) = IBSET( wall_flags_0(nzt+1,j,i), 22 ) |
---|
| 2495 | wall_flags_0(nzt+1,j,i) = IBSET( wall_flags_0(nzt+1,j,i), 23 ) |
---|
[4109] | 2496 | ! |
---|
| 2497 | !-- Set flags indicating that topography is close by in horizontal |
---|
| 2498 | !-- direction, i.e. flags that infold the topography. These will be used |
---|
| 2499 | !-- to set advection flags for passive scalars, where due to large |
---|
| 2500 | !-- gradients near buildings stationary numerical oscillations can produce |
---|
| 2501 | !-- unrealistically high concentrations. This is only necessary if |
---|
| 2502 | !-- WS-scheme is applied for scalar advection. Note, these flags will be |
---|
| 2503 | !-- only used for passive scalars such as chemical species or aerosols. |
---|
| 2504 | IF ( scalar_advec == 'ws-scheme' ) THEN |
---|
| 2505 | DO k = nzb, nzt |
---|
| 2506 | IF ( BTEST( wall_flags_0(k,j,i), 0 ) .AND. ( & |
---|
| 2507 | ANY( .NOT. BTEST( wall_flags_0(k,j-3:j+3,i-1), 0 ) ) .OR.& |
---|
| 2508 | ANY( .NOT. BTEST( wall_flags_0(k,j-3:j+3,i-2), 0 ) ) .OR.& |
---|
| 2509 | ANY( .NOT. BTEST( wall_flags_0(k,j-3:j+3,i-3), 0 ) ) .OR.& |
---|
| 2510 | ANY( .NOT. BTEST( wall_flags_0(k,j-3:j+3,i+1), 0 ) ) .OR.& |
---|
| 2511 | ANY( .NOT. BTEST( wall_flags_0(k,j-3:j+3,i+2), 0 ) ) .OR.& |
---|
| 2512 | ANY( .NOT. BTEST( wall_flags_0(k,j-3:j+3,i+3), 0 ) ) .OR.& |
---|
| 2513 | ANY( .NOT. BTEST( wall_flags_0(k,j-1,i-3:i+3), 0 ) ) .OR.& |
---|
| 2514 | ANY( .NOT. BTEST( wall_flags_0(k,j-2,i-3:i+3), 0 ) ) .OR.& |
---|
| 2515 | ANY( .NOT. BTEST( wall_flags_0(k,j-3,i-3:i+3), 0 ) ) .OR.& |
---|
| 2516 | ANY( .NOT. BTEST( wall_flags_0(k,j+1,i-3:i+3), 0 ) ) .OR.& |
---|
| 2517 | ANY( .NOT. BTEST( wall_flags_0(k,j+2,i-3:i+3), 0 ) ) .OR.& |
---|
| 2518 | ANY( .NOT. BTEST( wall_flags_0(k,j+3,i-3:i+3), 0 ) ) & |
---|
| 2519 | ) ) & |
---|
| 2520 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 31 ) |
---|
| 2521 | |
---|
| 2522 | ENDDO |
---|
| 2523 | ENDIF |
---|
[2232] | 2524 | ENDDO |
---|
| 2525 | ENDDO |
---|
| 2526 | ! |
---|
[2696] | 2527 | !-- Finally, set identification flags indicating natural terrain or buildings. |
---|
| 2528 | !-- Natural terrain grid points. |
---|
| 2529 | IF ( land_surface ) THEN |
---|
| 2530 | DO i = nxl, nxr |
---|
| 2531 | DO j = nys, nyn |
---|
| 2532 | DO k = nzb, nzt+1 |
---|
| 2533 | ! |
---|
| 2534 | !-- Natural terrain grid point |
---|
| 2535 | IF ( BTEST( topo(k,j,i), 1 ) ) & |
---|
| 2536 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 5 ) |
---|
| 2537 | ENDDO |
---|
| 2538 | ENDDO |
---|
| 2539 | ENDDO |
---|
| 2540 | ENDIF |
---|
| 2541 | ! |
---|
| 2542 | !-- Building grid points. |
---|
| 2543 | IF ( urban_surface ) THEN |
---|
| 2544 | DO i = nxl, nxr |
---|
| 2545 | DO j = nys, nyn |
---|
| 2546 | DO k = nzb, nzt+1 |
---|
| 2547 | IF ( BTEST( topo(k,j,i), 2 ) ) & |
---|
| 2548 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 6 ) |
---|
| 2549 | ENDDO |
---|
| 2550 | ENDDO |
---|
| 2551 | ENDDO |
---|
| 2552 | ENDIF |
---|
| 2553 | ! |
---|
[2232] | 2554 | !-- Exchange ghost points for wall flags |
---|
[2696] | 2555 | CALL exchange_horiz_int( wall_flags_0, nys, nyn, nxl, nxr, nzt, nbgp ) |
---|
[2232] | 2556 | ! |
---|
| 2557 | !-- Set boundary conditions also for flags. Can be interpreted as Neumann |
---|
| 2558 | !-- boundary conditions for topography. |
---|
| 2559 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
[2696] | 2560 | IF ( nys == 0 ) THEN |
---|
| 2561 | DO i = 1, nbgp |
---|
| 2562 | wall_flags_0(:,nys-i,:) = wall_flags_0(:,nys,:) |
---|
| 2563 | ENDDO |
---|
| 2564 | ENDIF |
---|
| 2565 | IF ( nyn == ny ) THEN |
---|
| 2566 | DO i = 1, nbgp |
---|
| 2567 | wall_flags_0(:,nyn+i,:) = wall_flags_0(:,nyn,:) |
---|
| 2568 | ENDDO |
---|
| 2569 | ENDIF |
---|
[2232] | 2570 | ENDIF |
---|
| 2571 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
[2696] | 2572 | IF ( nxl == 0 ) THEN |
---|
| 2573 | DO i = 1, nbgp |
---|
| 2574 | wall_flags_0(:,:,nxl-i) = wall_flags_0(:,:,nxl) |
---|
| 2575 | ENDDO |
---|
[2232] | 2576 | ENDIF |
---|
[2696] | 2577 | IF ( nxr == nx ) THEN |
---|
| 2578 | DO i = 1, nbgp |
---|
| 2579 | wall_flags_0(:,:,nxr+i) = wall_flags_0(:,:,nxr) |
---|
[2232] | 2580 | ENDDO |
---|
[2696] | 2581 | ENDIF |
---|
[2232] | 2582 | ENDIF |
---|
[4168] | 2583 | ! |
---|
| 2584 | !-- Pre-calculate topography top indices (former get_topography_top_index |
---|
| 2585 | !-- function) |
---|
| 2586 | ALLOCATE( topo_top_ind(nysg:nyng,nxlg:nxrg,0:4) ) |
---|
| 2587 | ! |
---|
| 2588 | !-- Uppermost topography index on scalar grid |
---|
| 2589 | ibit = 12 |
---|
| 2590 | topo_top_ind(:,:,0) = MAXLOC( & |
---|
| 2591 | MERGE( 1, 0, & |
---|
| 2592 | BTEST( wall_flags_0(:,:,:), ibit ) & |
---|
| 2593 | ), DIM = 1 & |
---|
| 2594 | ) - 1 |
---|
| 2595 | ! |
---|
| 2596 | !-- Uppermost topography index on u grid |
---|
| 2597 | ibit = 14 |
---|
| 2598 | topo_top_ind(:,:,1) = MAXLOC( & |
---|
| 2599 | MERGE( 1, 0, & |
---|
| 2600 | BTEST( wall_flags_0(:,:,:), ibit ) & |
---|
| 2601 | ), DIM = 1 & |
---|
| 2602 | ) - 1 |
---|
| 2603 | ! |
---|
| 2604 | !-- Uppermost topography index on v grid |
---|
| 2605 | ibit = 16 |
---|
| 2606 | topo_top_ind(:,:,2) = MAXLOC( & |
---|
| 2607 | MERGE( 1, 0, & |
---|
| 2608 | BTEST( wall_flags_0(:,:,:), ibit ) & |
---|
| 2609 | ), DIM = 1 & |
---|
| 2610 | ) - 1 |
---|
| 2611 | ! |
---|
| 2612 | !-- Uppermost topography index on w grid |
---|
| 2613 | ibit = 18 |
---|
| 2614 | topo_top_ind(:,:,3) = MAXLOC( & |
---|
| 2615 | MERGE( 1, 0, & |
---|
| 2616 | BTEST( wall_flags_0(:,:,:), ibit ) & |
---|
| 2617 | ), DIM = 1 & |
---|
| 2618 | ) - 1 |
---|
| 2619 | ! |
---|
| 2620 | !-- Uppermost topography index on scalar outer grid |
---|
| 2621 | ibit = 24 |
---|
| 2622 | topo_top_ind(:,:,4) = MAXLOC( & |
---|
| 2623 | MERGE( 1, 0, & |
---|
| 2624 | BTEST( wall_flags_0(:,:,:), ibit ) & |
---|
| 2625 | ), DIM = 1 & |
---|
| 2626 | ) - 1 |
---|
[1] | 2627 | |
---|
[2696] | 2628 | END SUBROUTINE set_topo_flags |
---|
[114] | 2629 | |
---|
| 2630 | |
---|
| 2631 | |
---|