[1] | 1 | SUBROUTINE init_grid |
---|
| 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
| 17 | ! Copyright 1997-2012 Leibniz University Hannover |
---|
| 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[254] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1093] | 22 | ! |
---|
[863] | 23 | ! |
---|
| 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: init_grid.f90 1093 2013-02-02 12:58:49Z gryschka $ |
---|
| 27 | ! |
---|
[1093] | 28 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 29 | ! unused variables removed |
---|
| 30 | ! |
---|
[1070] | 31 | ! 1069 2012-11-28 16:18:43Z maronga |
---|
| 32 | ! bugfix: added coupling_char to TOPOGRAPHY_DATA to allow topography in the ocean |
---|
| 33 | ! model in case of coupled runs |
---|
| 34 | ! |
---|
[1037] | 35 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 36 | ! code put under GPL (PALM 3.9) |
---|
| 37 | ! |
---|
[1017] | 38 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
| 39 | ! lower index for calculating wall_flags_0 set to nzb_w_inner instead of |
---|
| 40 | ! nzb_w_inner+1 |
---|
| 41 | ! |
---|
[997] | 42 | ! 996 2012-09-07 10:41:47Z raasch |
---|
| 43 | ! little reformatting |
---|
| 44 | ! |
---|
[979] | 45 | ! 978 2012-08-09 08:28:32Z fricke |
---|
| 46 | ! Bugfix: nzb_max is set to nzt at non-cyclic lateral boundaries |
---|
| 47 | ! Bugfix: Set wall_flags_0 for inflow boundary |
---|
| 48 | ! |
---|
[928] | 49 | ! 927 2012-06-06 19:15:04Z raasch |
---|
| 50 | ! Wall flags are not set for multigrid method in case of masking method |
---|
| 51 | ! |
---|
[865] | 52 | ! 864 2012-03-27 15:10:33Z gryschka |
---|
[927] | 53 | ! In case of ocean and Dirichlet bottom bc for u and v dzu_mg and ddzu_pres |
---|
| 54 | ! were not correctly defined for k=1. |
---|
[865] | 55 | ! |
---|
[863] | 56 | ! 861 2012-03-26 14:18:34Z suehring |
---|
[861] | 57 | ! Set wall_flags_0. The array is needed for degradation in ws-scheme near walls, |
---|
| 58 | ! inflow and outflow boundaries as well as near the bottom and the top of the |
---|
[863] | 59 | ! model domain.! |
---|
[861] | 60 | ! Initialization of nzb_s_inner and nzb_w_inner. |
---|
| 61 | ! gls has to be at least nbgp to do not exceed the array bounds of nzb_local |
---|
| 62 | ! while setting wall_flags_0 |
---|
| 63 | ! |
---|
[844] | 64 | ! 843 2012-02-29 15:16:21Z gryschka |
---|
| 65 | ! In case of ocean and dirichlet bc for u and v at the bottom |
---|
| 66 | ! the first u-level ist defined at same height as the first w-level |
---|
| 67 | ! |
---|
[819] | 68 | ! 818 2012-02-08 16:11:23Z maronga |
---|
| 69 | ! Bugfix: topo_height is only required if topography is used. It is thus now |
---|
| 70 | ! allocated in the topography branch |
---|
| 71 | ! |
---|
[810] | 72 | ! 809 2012-01-30 13:32:58Z maronga |
---|
| 73 | ! Bugfix: replaced .AND. and .NOT. with && and ! in the preprocessor directives |
---|
| 74 | ! |
---|
[808] | 75 | ! 807 2012-01-25 11:53:51Z maronga |
---|
| 76 | ! New cpp directive "__check" implemented which is used by check_namelist_files |
---|
| 77 | ! |
---|
[760] | 78 | ! 759 2011-09-15 13:58:31Z raasch |
---|
| 79 | ! Splitting of parallel I/O in blocks of PEs |
---|
| 80 | ! |
---|
[723] | 81 | ! 722 2011-04-11 06:21:09Z raasch |
---|
| 82 | ! Bugfix: bc_lr/ns_cyc replaced by bc_lr/ns, because variables are not yet set |
---|
| 83 | ! here |
---|
| 84 | ! |
---|
[710] | 85 | ! 709 2011-03-30 09:31:40Z raasch |
---|
| 86 | ! formatting adjustments |
---|
| 87 | ! |
---|
[708] | 88 | ! 707 2011-03-29 11:39:40Z raasch |
---|
| 89 | ! bc_lr/ns replaced by bc_lr/ns_cyc |
---|
| 90 | ! |
---|
[668] | 91 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
[667] | 92 | ! Definition of new array bounds nxlg, nxrg, nysg, nyng on each PE. |
---|
| 93 | ! Furthermore the allocation of arrays and steering of loops is done with these |
---|
| 94 | ! parameters. Call of exchange_horiz are modified. |
---|
| 95 | ! In case of dirichlet bounday condition at the bottom zu(0)=0.0 |
---|
| 96 | ! dzu_mg has to be set explicitly for a equally spaced grid near bottom. |
---|
| 97 | ! ddzu_pres added to use a equally spaced grid near bottom. |
---|
[139] | 98 | ! |
---|
[556] | 99 | ! 555 2010-09-07 07:32:53Z raasch |
---|
[818] | 100 | ! Bugfix: default setting of nzb_local for flat topography |
---|
[556] | 101 | ! |
---|
[392] | 102 | ! 274 2009-03-26 15:11:21Z heinze |
---|
| 103 | ! Output of messages replaced by message handling routine. |
---|
| 104 | ! new topography case 'single_street_canyon' |
---|
| 105 | ! |
---|
[226] | 106 | ! 217 2008-12-09 18:00:48Z letzel |
---|
| 107 | ! +topography_grid_convention |
---|
| 108 | ! |
---|
[139] | 109 | ! 134 2007-11-21 07:28:38Z letzel |
---|
[134] | 110 | ! Redefine initial nzb_local as the actual total size of topography (later the |
---|
| 111 | ! extent of topography in nzb_local is reduced by 1dx at the E topography walls |
---|
| 112 | ! and by 1dy at the N topography walls to form the basis for nzb_s_inner); |
---|
| 113 | ! for consistency redefine 'single_building' case. |
---|
[114] | 114 | ! Calculation of wall flag arrays |
---|
[1] | 115 | ! |
---|
[98] | 116 | ! 94 2007-06-01 15:25:22Z raasch |
---|
| 117 | ! Grid definition for ocean version |
---|
| 118 | ! |
---|
[77] | 119 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 120 | ! storage of topography height arrays zu_s_inner and zw_s_inner, |
---|
| 121 | ! 2nd+3rd argument removed from exchange horiz |
---|
| 122 | ! |
---|
[39] | 123 | ! 19 2007-02-23 04:53:48Z raasch |
---|
| 124 | ! Setting of nzt_diff |
---|
| 125 | ! |
---|
[3] | 126 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 127 | ! |
---|
[1] | 128 | ! Revision 1.17 2006/08/22 14:00:05 raasch |
---|
| 129 | ! +dz_max to limit vertical stretching, |
---|
| 130 | ! bugfix in index array initialization for line- or point-like topography |
---|
| 131 | ! structures |
---|
| 132 | ! |
---|
| 133 | ! Revision 1.1 1997/08/11 06:17:45 raasch |
---|
| 134 | ! Initial revision (Testversion) |
---|
| 135 | ! |
---|
| 136 | ! |
---|
| 137 | ! Description: |
---|
| 138 | ! ------------ |
---|
| 139 | ! Creating grid depending constants |
---|
| 140 | !------------------------------------------------------------------------------! |
---|
| 141 | |
---|
| 142 | USE arrays_3d |
---|
| 143 | USE control_parameters |
---|
| 144 | USE grid_variables |
---|
| 145 | USE indices |
---|
| 146 | USE pegrid |
---|
| 147 | |
---|
| 148 | IMPLICIT NONE |
---|
| 149 | |
---|
[240] | 150 | INTEGER :: bh, blx, bly, bxl, bxr, byn, bys, ch, cwx, cwy, cxl, cxr, cyn, & |
---|
[1092] | 151 | cys, gls, i, ii, inc, j, k, l, nxl_l, nxr_l, nyn_l, nys_l, & |
---|
| 152 | nzb_si, nzt_l, vi |
---|
[1] | 153 | |
---|
| 154 | INTEGER, DIMENSION(:), ALLOCATABLE :: vertical_influence |
---|
| 155 | |
---|
| 156 | INTEGER, DIMENSION(:,:), ALLOCATABLE :: corner_nl, corner_nr, corner_sl, & |
---|
| 157 | corner_sr, wall_l, wall_n, wall_r,& |
---|
| 158 | wall_s, nzb_local, nzb_tmp |
---|
| 159 | |
---|
[861] | 160 | LOGICAL :: flag_set = .FALSE. |
---|
| 161 | |
---|
[1] | 162 | REAL :: dx_l, dy_l, dz_stretched |
---|
| 163 | |
---|
[818] | 164 | REAL, DIMENSION(:,:), ALLOCATABLE :: topo_height |
---|
[1] | 165 | |
---|
[667] | 166 | |
---|
[1] | 167 | ! |
---|
[709] | 168 | !-- Calculation of horizontal array bounds including ghost layers |
---|
[667] | 169 | nxlg = nxl - nbgp |
---|
| 170 | nxrg = nxr + nbgp |
---|
| 171 | nysg = nys - nbgp |
---|
| 172 | nyng = nyn + nbgp |
---|
[709] | 173 | |
---|
[667] | 174 | ! |
---|
[1] | 175 | !-- Allocate grid arrays |
---|
| 176 | ALLOCATE( ddzu(1:nzt+1), ddzw(1:nzt+1), dd2zu(1:nzt), dzu(1:nzt+1), & |
---|
[667] | 177 | dzw(1:nzt+1), l_grid(1:nzt), zu(nzb:nzt+1), zw(nzb:nzt+1) ) |
---|
[1] | 178 | |
---|
| 179 | ! |
---|
| 180 | !-- Compute height of u-levels from constant grid length and dz stretch factors |
---|
| 181 | IF ( dz == -1.0 ) THEN |
---|
[254] | 182 | message_string = 'missing dz' |
---|
| 183 | CALL message( 'init_grid', 'PA0200', 1, 2, 0, 6, 0 ) |
---|
[1] | 184 | ELSEIF ( dz <= 0.0 ) THEN |
---|
[254] | 185 | WRITE( message_string, * ) 'dz=',dz,' <= 0.0' |
---|
| 186 | CALL message( 'init_grid', 'PA0201', 1, 2, 0, 6, 0 ) |
---|
[1] | 187 | ENDIF |
---|
[94] | 188 | |
---|
[1] | 189 | ! |
---|
[94] | 190 | !-- Define the vertical grid levels |
---|
| 191 | IF ( .NOT. ocean ) THEN |
---|
| 192 | ! |
---|
| 193 | !-- Grid for atmosphere with surface at z=0 (k=0, w-grid). |
---|
[843] | 194 | !-- The second u-level (k=1) corresponds to the top of the |
---|
[94] | 195 | !-- Prandtl-layer. |
---|
[667] | 196 | |
---|
| 197 | IF ( ibc_uv_b == 0 .OR. ibc_uv_b == 2 ) THEN |
---|
| 198 | zu(0) = 0.0 |
---|
| 199 | ! zu(0) = - dz * 0.5 |
---|
| 200 | ELSE |
---|
| 201 | zu(0) = - dz * 0.5 |
---|
| 202 | ENDIF |
---|
[94] | 203 | zu(1) = dz * 0.5 |
---|
[1] | 204 | |
---|
[94] | 205 | dz_stretch_level_index = nzt+1 |
---|
| 206 | dz_stretched = dz |
---|
| 207 | DO k = 2, nzt+1 |
---|
| 208 | IF ( dz_stretch_level <= zu(k-1) .AND. dz_stretched < dz_max ) THEN |
---|
| 209 | dz_stretched = dz_stretched * dz_stretch_factor |
---|
| 210 | dz_stretched = MIN( dz_stretched, dz_max ) |
---|
| 211 | IF ( dz_stretch_level_index == nzt+1 ) dz_stretch_level_index = k-1 |
---|
| 212 | ENDIF |
---|
| 213 | zu(k) = zu(k-1) + dz_stretched |
---|
| 214 | ENDDO |
---|
[1] | 215 | |
---|
| 216 | ! |
---|
[94] | 217 | !-- Compute the w-levels. They are always staggered half-way between the |
---|
[843] | 218 | !-- corresponding u-levels. In case of dirichlet bc for u and v at the |
---|
| 219 | !-- ground the first u- and w-level (k=0) are defined at same height (z=0). |
---|
| 220 | !-- The top w-level is extrapolated linearly. |
---|
[94] | 221 | zw(0) = 0.0 |
---|
| 222 | DO k = 1, nzt |
---|
| 223 | zw(k) = ( zu(k) + zu(k+1) ) * 0.5 |
---|
| 224 | ENDDO |
---|
| 225 | zw(nzt+1) = zw(nzt) + 2.0 * ( zu(nzt+1) - zw(nzt) ) |
---|
[1] | 226 | |
---|
[94] | 227 | ELSE |
---|
[1] | 228 | ! |
---|
[843] | 229 | !-- Grid for ocean with free water surface is at k=nzt (w-grid). |
---|
| 230 | !-- In case of neumann bc at the ground the first first u-level (k=0) lies |
---|
| 231 | !-- below the first w-level (k=0). In case of dirichlet bc the first u- and |
---|
| 232 | !-- w-level are defined at same height, but staggered from the second level. |
---|
| 233 | !-- The second u-level (k=1) corresponds to the top of the Prandtl-layer. |
---|
[94] | 234 | zu(nzt+1) = dz * 0.5 |
---|
| 235 | zu(nzt) = - dz * 0.5 |
---|
| 236 | |
---|
| 237 | dz_stretch_level_index = 0 |
---|
| 238 | dz_stretched = dz |
---|
| 239 | DO k = nzt-1, 0, -1 |
---|
| 240 | IF ( dz_stretch_level <= ABS( zu(k+1) ) .AND. & |
---|
| 241 | dz_stretched < dz_max ) THEN |
---|
| 242 | dz_stretched = dz_stretched * dz_stretch_factor |
---|
| 243 | dz_stretched = MIN( dz_stretched, dz_max ) |
---|
| 244 | IF ( dz_stretch_level_index == 0 ) dz_stretch_level_index = k+1 |
---|
| 245 | ENDIF |
---|
| 246 | zu(k) = zu(k+1) - dz_stretched |
---|
| 247 | ENDDO |
---|
| 248 | |
---|
| 249 | ! |
---|
| 250 | !-- Compute the w-levels. They are always staggered half-way between the |
---|
[843] | 251 | !-- corresponding u-levels, except in case of dirichlet bc for u and v |
---|
| 252 | !-- at the ground. In this case the first u- and w-level are defined at |
---|
| 253 | !-- same height. The top w-level (nzt+1) is not used but set for |
---|
| 254 | !-- consistency, since w and all scalar variables are defined up tp nzt+1. |
---|
[94] | 255 | zw(nzt+1) = dz |
---|
| 256 | zw(nzt) = 0.0 |
---|
| 257 | DO k = 0, nzt |
---|
| 258 | zw(k) = ( zu(k) + zu(k+1) ) * 0.5 |
---|
| 259 | ENDDO |
---|
| 260 | |
---|
[843] | 261 | ! |
---|
| 262 | !-- In case of dirichlet bc for u and v the first u- and w-level are defined |
---|
| 263 | !-- at same height. |
---|
| 264 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 265 | zu(0) = zw(0) |
---|
| 266 | ENDIF |
---|
| 267 | |
---|
[94] | 268 | ENDIF |
---|
| 269 | |
---|
| 270 | ! |
---|
[1] | 271 | !-- Compute grid lengths. |
---|
| 272 | DO k = 1, nzt+1 |
---|
| 273 | dzu(k) = zu(k) - zu(k-1) |
---|
| 274 | ddzu(k) = 1.0 / dzu(k) |
---|
| 275 | dzw(k) = zw(k) - zw(k-1) |
---|
| 276 | ddzw(k) = 1.0 / dzw(k) |
---|
| 277 | ENDDO |
---|
| 278 | |
---|
| 279 | DO k = 1, nzt |
---|
| 280 | dd2zu(k) = 1.0 / ( dzu(k) + dzu(k+1) ) |
---|
| 281 | ENDDO |
---|
[667] | 282 | |
---|
| 283 | ! |
---|
[709] | 284 | !-- The FFT- SOR-pressure solvers assume grid spacings of a staggered grid |
---|
| 285 | !-- everywhere. For the actual grid, the grid spacing at the lowest level |
---|
| 286 | !-- is only dz/2, but should be dz. Therefore, an additional array |
---|
| 287 | !-- containing with appropriate grid information is created for these |
---|
| 288 | !-- solvers. |
---|
| 289 | IF ( psolver /= 'multigrid' ) THEN |
---|
[667] | 290 | ALLOCATE( ddzu_pres(1:nzt+1) ) |
---|
| 291 | ddzu_pres = ddzu |
---|
[864] | 292 | ddzu_pres(1) = ddzu_pres(2) ! change for lowest level |
---|
[667] | 293 | ENDIF |
---|
[1] | 294 | |
---|
| 295 | ! |
---|
| 296 | !-- In case of multigrid method, compute grid lengths and grid factors for the |
---|
| 297 | !-- grid levels |
---|
| 298 | IF ( psolver == 'multigrid' ) THEN |
---|
| 299 | |
---|
| 300 | ALLOCATE( ddx2_mg(maximum_grid_level), ddy2_mg(maximum_grid_level), & |
---|
| 301 | dzu_mg(nzb+1:nzt+1,maximum_grid_level), & |
---|
| 302 | dzw_mg(nzb+1:nzt+1,maximum_grid_level), & |
---|
| 303 | f1_mg(nzb+1:nzt,maximum_grid_level), & |
---|
| 304 | f2_mg(nzb+1:nzt,maximum_grid_level), & |
---|
| 305 | f3_mg(nzb+1:nzt,maximum_grid_level) ) |
---|
| 306 | |
---|
| 307 | dzu_mg(:,maximum_grid_level) = dzu |
---|
[667] | 308 | ! |
---|
[864] | 309 | !-- Next line to ensure an equally spaced grid. |
---|
| 310 | dzu_mg(1,maximum_grid_level) = dzu(2) |
---|
[709] | 311 | |
---|
[1] | 312 | dzw_mg(:,maximum_grid_level) = dzw |
---|
| 313 | nzt_l = nzt |
---|
| 314 | DO l = maximum_grid_level-1, 1, -1 |
---|
| 315 | dzu_mg(nzb+1,l) = 2.0 * dzu_mg(nzb+1,l+1) |
---|
| 316 | dzw_mg(nzb+1,l) = 2.0 * dzw_mg(nzb+1,l+1) |
---|
| 317 | nzt_l = nzt_l / 2 |
---|
| 318 | DO k = 2, nzt_l+1 |
---|
| 319 | dzu_mg(k,l) = dzu_mg(2*k-2,l+1) + dzu_mg(2*k-1,l+1) |
---|
| 320 | dzw_mg(k,l) = dzw_mg(2*k-2,l+1) + dzw_mg(2*k-1,l+1) |
---|
| 321 | ENDDO |
---|
| 322 | ENDDO |
---|
| 323 | |
---|
| 324 | nzt_l = nzt |
---|
| 325 | dx_l = dx |
---|
| 326 | dy_l = dy |
---|
| 327 | DO l = maximum_grid_level, 1, -1 |
---|
| 328 | ddx2_mg(l) = 1.0 / dx_l**2 |
---|
| 329 | ddy2_mg(l) = 1.0 / dy_l**2 |
---|
| 330 | DO k = nzb+1, nzt_l |
---|
| 331 | f2_mg(k,l) = 1.0 / ( dzu_mg(k+1,l) * dzw_mg(k,l) ) |
---|
| 332 | f3_mg(k,l) = 1.0 / ( dzu_mg(k,l) * dzw_mg(k,l) ) |
---|
| 333 | f1_mg(k,l) = 2.0 * ( ddx2_mg(l) + ddy2_mg(l) ) + & |
---|
| 334 | f2_mg(k,l) + f3_mg(k,l) |
---|
| 335 | ENDDO |
---|
| 336 | nzt_l = nzt_l / 2 |
---|
| 337 | dx_l = dx_l * 2.0 |
---|
| 338 | dy_l = dy_l * 2.0 |
---|
| 339 | ENDDO |
---|
| 340 | |
---|
| 341 | ENDIF |
---|
| 342 | |
---|
| 343 | ! |
---|
| 344 | !-- Compute the reciprocal values of the horizontal grid lengths. |
---|
| 345 | ddx = 1.0 / dx |
---|
| 346 | ddy = 1.0 / dy |
---|
| 347 | dx2 = dx * dx |
---|
| 348 | dy2 = dy * dy |
---|
| 349 | ddx2 = 1.0 / dx2 |
---|
| 350 | ddy2 = 1.0 / dy2 |
---|
| 351 | |
---|
| 352 | ! |
---|
| 353 | !-- Compute the grid-dependent mixing length. |
---|
| 354 | DO k = 1, nzt |
---|
| 355 | l_grid(k) = ( dx * dy * dzw(k) )**0.33333333333333 |
---|
| 356 | ENDDO |
---|
| 357 | |
---|
| 358 | ! |
---|
| 359 | !-- Allocate outer and inner index arrays for topography and set |
---|
[114] | 360 | !-- defaults. |
---|
| 361 | !-- nzb_local has to contain additional layers of ghost points for calculating |
---|
| 362 | !-- the flag arrays needed for the multigrid method |
---|
| 363 | gls = 2**( maximum_grid_level ) |
---|
[861] | 364 | IF ( gls < nbgp ) gls = nbgp |
---|
[667] | 365 | |
---|
[114] | 366 | ALLOCATE( corner_nl(nys:nyn,nxl:nxr), corner_nr(nys:nyn,nxl:nxr), & |
---|
| 367 | corner_sl(nys:nyn,nxl:nxr), corner_sr(nys:nyn,nxl:nxr), & |
---|
[667] | 368 | nzb_local(-gls:ny+gls,-gls:nx+gls), & |
---|
| 369 | nzb_tmp(-nbgp:ny+nbgp,-nbgp:nx+nbgp), & |
---|
[114] | 370 | wall_l(nys:nyn,nxl:nxr), wall_n(nys:nyn,nxl:nxr), & |
---|
[1] | 371 | wall_r(nys:nyn,nxl:nxr), wall_s(nys:nyn,nxl:nxr) ) |
---|
[667] | 372 | ALLOCATE( fwxm(nysg:nyng,nxlg:nxrg), fwxp(nysg:nyng,nxlg:nxrg), & |
---|
| 373 | fwym(nysg:nyng,nxlg:nxrg), fwyp(nysg:nyng,nxlg:nxrg), & |
---|
| 374 | fxm(nysg:nyng,nxlg:nxrg), fxp(nysg:nyng,nxlg:nxrg), & |
---|
| 375 | fym(nysg:nyng,nxlg:nxrg), fyp(nysg:nyng,nxlg:nxrg), & |
---|
| 376 | nzb_s_inner(nysg:nyng,nxlg:nxrg), & |
---|
| 377 | nzb_s_outer(nysg:nyng,nxlg:nxrg), & |
---|
| 378 | nzb_u_inner(nysg:nyng,nxlg:nxrg), & |
---|
| 379 | nzb_u_outer(nysg:nyng,nxlg:nxrg), & |
---|
| 380 | nzb_v_inner(nysg:nyng,nxlg:nxrg), & |
---|
| 381 | nzb_v_outer(nysg:nyng,nxlg:nxrg), & |
---|
| 382 | nzb_w_inner(nysg:nyng,nxlg:nxrg), & |
---|
| 383 | nzb_w_outer(nysg:nyng,nxlg:nxrg), & |
---|
| 384 | nzb_diff_s_inner(nysg:nyng,nxlg:nxrg), & |
---|
| 385 | nzb_diff_s_outer(nysg:nyng,nxlg:nxrg), & |
---|
| 386 | nzb_diff_u(nysg:nyng,nxlg:nxrg), & |
---|
| 387 | nzb_diff_v(nysg:nyng,nxlg:nxrg), & |
---|
| 388 | nzb_2d(nysg:nyng,nxlg:nxrg), & |
---|
| 389 | wall_e_x(nysg:nyng,nxlg:nxrg), & |
---|
| 390 | wall_e_y(nysg:nyng,nxlg:nxrg), & |
---|
| 391 | wall_u(nysg:nyng,nxlg:nxrg), & |
---|
| 392 | wall_v(nysg:nyng,nxlg:nxrg), & |
---|
| 393 | wall_w_x(nysg:nyng,nxlg:nxrg), & |
---|
| 394 | wall_w_y(nysg:nyng,nxlg:nxrg) ) |
---|
[1] | 395 | |
---|
| 396 | |
---|
[667] | 397 | |
---|
| 398 | ALLOCATE( l_wall(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 399 | |
---|
[818] | 400 | |
---|
[1] | 401 | nzb_s_inner = nzb; nzb_s_outer = nzb |
---|
| 402 | nzb_u_inner = nzb; nzb_u_outer = nzb |
---|
| 403 | nzb_v_inner = nzb; nzb_v_outer = nzb |
---|
| 404 | nzb_w_inner = nzb; nzb_w_outer = nzb |
---|
| 405 | |
---|
| 406 | ! |
---|
[19] | 407 | !-- Define vertical gridpoint from (or to) which on the usual finite difference |
---|
[1] | 408 | !-- form (which does not use surface fluxes) is applied |
---|
| 409 | IF ( prandtl_layer .OR. use_surface_fluxes ) THEN |
---|
| 410 | nzb_diff = nzb + 2 |
---|
| 411 | ELSE |
---|
| 412 | nzb_diff = nzb + 1 |
---|
| 413 | ENDIF |
---|
[19] | 414 | IF ( use_top_fluxes ) THEN |
---|
| 415 | nzt_diff = nzt - 1 |
---|
| 416 | ELSE |
---|
| 417 | nzt_diff = nzt |
---|
| 418 | ENDIF |
---|
[1] | 419 | |
---|
| 420 | nzb_diff_s_inner = nzb_diff; nzb_diff_s_outer = nzb_diff |
---|
| 421 | nzb_diff_u = nzb_diff; nzb_diff_v = nzb_diff |
---|
| 422 | |
---|
| 423 | wall_e_x = 0.0; wall_e_y = 0.0; wall_u = 0.0; wall_v = 0.0 |
---|
| 424 | wall_w_x = 0.0; wall_w_y = 0.0 |
---|
| 425 | fwxp = 1.0; fwxm = 1.0; fwyp = 1.0; fwym = 1.0 |
---|
| 426 | fxp = 1.0; fxm = 1.0; fyp = 1.0; fym = 1.0 |
---|
| 427 | |
---|
| 428 | ! |
---|
| 429 | !-- Initialize near-wall mixing length l_wall only in the vertical direction |
---|
| 430 | !-- for the moment, |
---|
| 431 | !-- multiplication with wall_adjustment_factor near the end of this routine |
---|
| 432 | l_wall(nzb,:,:) = l_grid(1) |
---|
| 433 | DO k = nzb+1, nzt |
---|
| 434 | l_wall(k,:,:) = l_grid(k) |
---|
| 435 | ENDDO |
---|
| 436 | l_wall(nzt+1,:,:) = l_grid(nzt) |
---|
| 437 | |
---|
| 438 | ALLOCATE ( vertical_influence(nzb:nzt) ) |
---|
| 439 | DO k = 1, nzt |
---|
| 440 | vertical_influence(k) = MIN ( INT( l_grid(k) / & |
---|
| 441 | ( wall_adjustment_factor * dzw(k) ) + 0.5 ), nzt - k ) |
---|
| 442 | ENDDO |
---|
| 443 | |
---|
| 444 | DO k = 1, MAXVAL( nzb_s_inner ) |
---|
| 445 | IF ( l_grid(k) > 1.5 * dx * wall_adjustment_factor .OR. & |
---|
| 446 | l_grid(k) > 1.5 * dy * wall_adjustment_factor ) THEN |
---|
[254] | 447 | WRITE( message_string, * ) 'grid anisotropy exceeds ', & |
---|
| 448 | 'threshold given by only local', & |
---|
| 449 | ' &horizontal reduction of near_wall ', & |
---|
| 450 | 'mixing length l_wall', & |
---|
| 451 | ' &starting from height level k = ', k, '.' |
---|
| 452 | CALL message( 'init_grid', 'PA0202', 0, 1, 0, 6, 0 ) |
---|
[1] | 453 | EXIT |
---|
| 454 | ENDIF |
---|
| 455 | ENDDO |
---|
| 456 | vertical_influence(0) = vertical_influence(1) |
---|
| 457 | |
---|
[667] | 458 | DO i = nxlg, nxrg |
---|
| 459 | DO j = nysg, nyng |
---|
[1] | 460 | DO k = nzb_s_inner(j,i) + 1, & |
---|
| 461 | nzb_s_inner(j,i) + vertical_influence(nzb_s_inner(j,i)) |
---|
| 462 | l_wall(k,j,i) = zu(k) - zw(nzb_s_inner(j,i)) |
---|
| 463 | ENDDO |
---|
| 464 | ENDDO |
---|
| 465 | ENDDO |
---|
| 466 | |
---|
| 467 | ! |
---|
| 468 | !-- Set outer and inner index arrays for non-flat topography. |
---|
| 469 | !-- Here consistency checks concerning domain size and periodicity are |
---|
| 470 | !-- necessary. |
---|
| 471 | !-- Within this SELECT CASE structure only nzb_local is initialized |
---|
| 472 | !-- individually depending on the chosen topography type, all other index |
---|
| 473 | !-- arrays are initialized further below. |
---|
| 474 | SELECT CASE ( TRIM( topography ) ) |
---|
| 475 | |
---|
| 476 | CASE ( 'flat' ) |
---|
| 477 | ! |
---|
[555] | 478 | !-- nzb_local is required for the multigrid solver |
---|
| 479 | nzb_local = 0 |
---|
[1] | 480 | |
---|
| 481 | CASE ( 'single_building' ) |
---|
| 482 | ! |
---|
| 483 | !-- Single rectangular building, by default centered in the middle of the |
---|
| 484 | !-- total domain |
---|
| 485 | blx = NINT( building_length_x / dx ) |
---|
| 486 | bly = NINT( building_length_y / dy ) |
---|
| 487 | bh = NINT( building_height / dz ) |
---|
| 488 | |
---|
| 489 | IF ( building_wall_left == 9999999.9 ) THEN |
---|
| 490 | building_wall_left = ( nx + 1 - blx ) / 2 * dx |
---|
| 491 | ENDIF |
---|
| 492 | bxl = NINT( building_wall_left / dx ) |
---|
| 493 | bxr = bxl + blx |
---|
| 494 | |
---|
| 495 | IF ( building_wall_south == 9999999.9 ) THEN |
---|
| 496 | building_wall_south = ( ny + 1 - bly ) / 2 * dy |
---|
| 497 | ENDIF |
---|
| 498 | bys = NINT( building_wall_south / dy ) |
---|
| 499 | byn = bys + bly |
---|
| 500 | |
---|
| 501 | ! |
---|
| 502 | !-- Building size has to meet some requirements |
---|
| 503 | IF ( ( bxl < 1 ) .OR. ( bxr > nx-1 ) .OR. ( bxr < bxl+3 ) .OR. & |
---|
| 504 | ( bys < 1 ) .OR. ( byn > ny-1 ) .OR. ( byn < bys+3 ) ) THEN |
---|
[274] | 505 | WRITE( message_string, * ) 'inconsistent building parameters:', & |
---|
| 506 | '& bxl=', bxl, 'bxr=', bxr, 'bys=', bys, & |
---|
| 507 | 'byn=', byn, 'nx=', nx, 'ny=', ny |
---|
[254] | 508 | CALL message( 'init_grid', 'PA0203', 1, 2, 0, 6, 0 ) |
---|
[1] | 509 | ENDIF |
---|
| 510 | |
---|
| 511 | ! |
---|
[217] | 512 | !-- Define the building. |
---|
[1] | 513 | nzb_local = 0 |
---|
[134] | 514 | nzb_local(bys:byn,bxl:bxr) = bh |
---|
[1] | 515 | |
---|
[240] | 516 | CASE ( 'single_street_canyon' ) |
---|
| 517 | ! |
---|
| 518 | !-- Single quasi-2D street canyon of infinite length in x or y direction. |
---|
| 519 | !-- The canyon is centered in the other direction by default. |
---|
| 520 | IF ( canyon_width_x /= 9999999.9 ) THEN |
---|
| 521 | ! |
---|
| 522 | !-- Street canyon in y direction |
---|
| 523 | cwx = NINT( canyon_width_x / dx ) |
---|
| 524 | IF ( canyon_wall_left == 9999999.9 ) THEN |
---|
| 525 | canyon_wall_left = ( nx + 1 - cwx ) / 2 * dx |
---|
| 526 | ENDIF |
---|
| 527 | cxl = NINT( canyon_wall_left / dx ) |
---|
| 528 | cxr = cxl + cwx |
---|
| 529 | |
---|
| 530 | ELSEIF ( canyon_width_y /= 9999999.9 ) THEN |
---|
| 531 | ! |
---|
| 532 | !-- Street canyon in x direction |
---|
| 533 | cwy = NINT( canyon_width_y / dy ) |
---|
| 534 | IF ( canyon_wall_south == 9999999.9 ) THEN |
---|
| 535 | canyon_wall_south = ( ny + 1 - cwy ) / 2 * dy |
---|
| 536 | ENDIF |
---|
| 537 | cys = NINT( canyon_wall_south / dy ) |
---|
| 538 | cyn = cys + cwy |
---|
| 539 | |
---|
| 540 | ELSE |
---|
[254] | 541 | |
---|
| 542 | message_string = 'no street canyon width given' |
---|
| 543 | CALL message( 'init_grid', 'PA0204', 1, 2, 0, 6, 0 ) |
---|
| 544 | |
---|
[240] | 545 | ENDIF |
---|
| 546 | |
---|
| 547 | ch = NINT( canyon_height / dz ) |
---|
| 548 | dp_level_ind_b = ch |
---|
| 549 | ! |
---|
| 550 | !-- Street canyon size has to meet some requirements |
---|
| 551 | IF ( canyon_width_x /= 9999999.9 ) THEN |
---|
| 552 | IF ( ( cxl < 1 ) .OR. ( cxr > nx-1 ) .OR. ( cwx < 3 ) .OR. & |
---|
| 553 | ( ch < 3 ) ) THEN |
---|
[254] | 554 | WRITE( message_string, * ) 'inconsistent canyon parameters:', & |
---|
[274] | 555 | '&cxl=', cxl, 'cxr=', cxr, & |
---|
| 556 | 'cwx=', cwx, & |
---|
[254] | 557 | 'ch=', ch, 'nx=', nx, 'ny=', ny |
---|
| 558 | CALL message( 'init_grid', 'PA0205', 1, 2, 0, 6, 0 ) |
---|
[240] | 559 | ENDIF |
---|
| 560 | ELSEIF ( canyon_width_y /= 9999999.9 ) THEN |
---|
| 561 | IF ( ( cys < 1 ) .OR. ( cyn > ny-1 ) .OR. ( cwy < 3 ) .OR. & |
---|
| 562 | ( ch < 3 ) ) THEN |
---|
[254] | 563 | WRITE( message_string, * ) 'inconsistent canyon parameters:', & |
---|
[274] | 564 | '&cys=', cys, 'cyn=', cyn, & |
---|
| 565 | 'cwy=', cwy, & |
---|
[254] | 566 | 'ch=', ch, 'nx=', nx, 'ny=', ny |
---|
| 567 | CALL message( 'init_grid', 'PA0206', 1, 2, 0, 6, 0 ) |
---|
[240] | 568 | ENDIF |
---|
| 569 | ENDIF |
---|
[274] | 570 | IF ( canyon_width_x /= 9999999.9 .AND. canyon_width_y /= 9999999.9 ) & |
---|
[240] | 571 | THEN |
---|
[274] | 572 | message_string = 'inconsistent canyon parameters:' // & |
---|
[254] | 573 | '&street canyon can only be oriented' // & |
---|
| 574 | '&either in x- or in y-direction' |
---|
| 575 | CALL message( 'init_grid', 'PA0207', 1, 2, 0, 6, 0 ) |
---|
[240] | 576 | ENDIF |
---|
| 577 | |
---|
| 578 | nzb_local = ch |
---|
| 579 | IF ( canyon_width_x /= 9999999.9 ) THEN |
---|
| 580 | nzb_local(:,cxl+1:cxr-1) = 0 |
---|
| 581 | ELSEIF ( canyon_width_y /= 9999999.9 ) THEN |
---|
| 582 | nzb_local(cys+1:cyn-1,:) = 0 |
---|
| 583 | ENDIF |
---|
| 584 | |
---|
[1] | 585 | CASE ( 'read_from_file' ) |
---|
[759] | 586 | |
---|
[818] | 587 | ALLOCATE ( topo_height(0:ny,0:nx) ) |
---|
| 588 | |
---|
[759] | 589 | DO ii = 0, io_blocks-1 |
---|
| 590 | IF ( ii == io_group ) THEN |
---|
| 591 | |
---|
[1] | 592 | ! |
---|
[759] | 593 | !-- Arbitrary irregular topography data in PALM format (exactly |
---|
| 594 | !-- matching the grid size and total domain size) |
---|
[1069] | 595 | OPEN( 90, FILE='TOPOGRAPHY_DATA'//coupling_char, STATUS='OLD', & |
---|
[759] | 596 | FORM='FORMATTED', ERR=10 ) |
---|
| 597 | DO j = ny, 0, -1 |
---|
| 598 | READ( 90, *, ERR=11, END=11 ) ( topo_height(j,i), i = 0,nx ) |
---|
| 599 | ENDDO |
---|
| 600 | |
---|
| 601 | GOTO 12 |
---|
| 602 | |
---|
[1069] | 603 | 10 message_string = 'file TOPOGRAPHY'//coupling_char//' does not exist' |
---|
[759] | 604 | CALL message( 'init_grid', 'PA0208', 1, 2, 0, 6, 0 ) |
---|
| 605 | |
---|
[1069] | 606 | 11 message_string = 'errors in file TOPOGRAPHY_DATA'//coupling_char |
---|
[759] | 607 | CALL message( 'init_grid', 'PA0209', 1, 2, 0, 6, 0 ) |
---|
| 608 | |
---|
| 609 | 12 CLOSE( 90 ) |
---|
| 610 | |
---|
| 611 | ENDIF |
---|
[809] | 612 | #if defined( __parallel ) && ! defined ( __check ) |
---|
[759] | 613 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 614 | #endif |
---|
[559] | 615 | ENDDO |
---|
[759] | 616 | |
---|
[1] | 617 | ! |
---|
| 618 | !-- Calculate the index height of the topography |
---|
| 619 | DO i = 0, nx |
---|
| 620 | DO j = 0, ny |
---|
| 621 | nzb_local(j,i) = NINT( topo_height(j,i) / dz ) |
---|
| 622 | ENDDO |
---|
| 623 | ENDDO |
---|
[818] | 624 | |
---|
| 625 | DEALLOCATE ( topo_height ) |
---|
[114] | 626 | ! |
---|
[759] | 627 | !-- Add cyclic boundaries (additional layers are for calculating |
---|
| 628 | !-- flag arrays needed for the multigrid sover) |
---|
[114] | 629 | nzb_local(-gls:-1,0:nx) = nzb_local(ny-gls+1:ny,0:nx) |
---|
| 630 | nzb_local(ny+1:ny+gls,0:nx) = nzb_local(0:gls-1,0:nx) |
---|
| 631 | nzb_local(:,-gls:-1) = nzb_local(:,nx-gls+1:nx) |
---|
| 632 | nzb_local(:,nx+1:nx+gls) = nzb_local(:,0:gls-1) |
---|
[667] | 633 | |
---|
[1] | 634 | CASE DEFAULT |
---|
| 635 | ! |
---|
| 636 | !-- The DEFAULT case is reached either if the parameter topography |
---|
[217] | 637 | !-- contains a wrong character string or if the user has defined a special |
---|
[1] | 638 | !-- case in the user interface. There, the subroutine user_init_grid |
---|
| 639 | !-- checks which of these two conditions applies. |
---|
[114] | 640 | CALL user_init_grid( gls, nzb_local ) |
---|
[1] | 641 | |
---|
| 642 | END SELECT |
---|
| 643 | ! |
---|
[861] | 644 | !-- Determine the maximum level of topography. Furthermore it is used for |
---|
| 645 | !-- steering the degradation of order of the applied advection scheme. |
---|
[978] | 646 | !-- In case of non-cyclic lateral boundaries, the order of the advection |
---|
[996] | 647 | !-- scheme have to be reduced up to nzt (required at the lateral boundaries). |
---|
[861] | 648 | nzb_max = MAXVAL( nzb_local ) |
---|
[978] | 649 | IF ( inflow_l .OR. outflow_l .OR. inflow_r .OR. outflow_r .OR. & |
---|
| 650 | inflow_n .OR. outflow_n .OR. inflow_s .OR. outflow_s ) THEN |
---|
| 651 | nzb_max = nzt |
---|
| 652 | ENDIF |
---|
| 653 | |
---|
[861] | 654 | ! |
---|
[1] | 655 | !-- Consistency checks and index array initialization are only required for |
---|
[217] | 656 | !-- non-flat topography, also the initialization of topography height arrays |
---|
[49] | 657 | !-- zu_s_inner and zw_w_inner |
---|
[1] | 658 | IF ( TRIM( topography ) /= 'flat' ) THEN |
---|
| 659 | |
---|
| 660 | ! |
---|
| 661 | !-- Consistency checks |
---|
| 662 | IF ( MINVAL( nzb_local ) < 0 .OR. MAXVAL( nzb_local ) > nz + 1 ) THEN |
---|
[274] | 663 | WRITE( message_string, * ) 'nzb_local values are outside the', & |
---|
| 664 | 'model domain', & |
---|
| 665 | '&MINVAL( nzb_local ) = ', MINVAL(nzb_local), & |
---|
| 666 | '&MAXVAL( nzb_local ) = ', MAXVAL(nzb_local) |
---|
[254] | 667 | CALL message( 'init_grid', 'PA0210', 1, 2, 0, 6, 0 ) |
---|
[1] | 668 | ENDIF |
---|
| 669 | |
---|
[722] | 670 | IF ( bc_lr == 'cyclic' ) THEN |
---|
[1] | 671 | IF ( ANY( nzb_local(:,-1) /= nzb_local(:,nx) ) .OR. & |
---|
| 672 | ANY( nzb_local(:,0) /= nzb_local(:,nx+1) ) ) THEN |
---|
[254] | 673 | message_string = 'nzb_local does not fulfill cyclic' // & |
---|
| 674 | ' boundary condition in x-direction' |
---|
| 675 | CALL message( 'init_grid', 'PA0211', 1, 2, 0, 6, 0 ) |
---|
[1] | 676 | ENDIF |
---|
| 677 | ENDIF |
---|
[722] | 678 | IF ( bc_ns == 'cyclic' ) THEN |
---|
[1] | 679 | IF ( ANY( nzb_local(-1,:) /= nzb_local(ny,:) ) .OR. & |
---|
| 680 | ANY( nzb_local(0,:) /= nzb_local(ny+1,:) ) ) THEN |
---|
[254] | 681 | message_string = 'nzb_local does not fulfill cyclic' // & |
---|
| 682 | ' boundary condition in y-direction' |
---|
| 683 | CALL message( 'init_grid', 'PA0212', 1, 2, 0, 6, 0 ) |
---|
[1] | 684 | ENDIF |
---|
| 685 | ENDIF |
---|
| 686 | |
---|
[217] | 687 | IF ( topography_grid_convention == 'cell_edge' ) THEN |
---|
[134] | 688 | ! |
---|
[217] | 689 | !-- The array nzb_local as defined using the 'cell_edge' convention |
---|
| 690 | !-- describes the actual total size of topography which is defined at the |
---|
| 691 | !-- cell edges where u=0 on the topography walls in x-direction and v=0 |
---|
| 692 | !-- on the topography walls in y-direction. However, PALM uses individual |
---|
| 693 | !-- arrays nzb_u|v|w|s_inner|outer that are based on nzb_s_inner. |
---|
| 694 | !-- Therefore, the extent of topography in nzb_local is now reduced by |
---|
| 695 | !-- 1dx at the E topography walls and by 1dy at the N topography walls |
---|
| 696 | !-- to form the basis for nzb_s_inner. |
---|
| 697 | DO j = -gls, ny + gls |
---|
| 698 | DO i = -gls, nx |
---|
| 699 | nzb_local(j,i) = MIN( nzb_local(j,i), nzb_local(j,i+1) ) |
---|
| 700 | ENDDO |
---|
[134] | 701 | ENDDO |
---|
[217] | 702 | !-- apply cyclic boundary conditions in x-direction |
---|
| 703 | !(ist das erforderlich? Ursache von Seung Bus Fehler?) |
---|
| 704 | nzb_local(:,nx+1:nx+gls) = nzb_local(:,0:gls-1) |
---|
| 705 | DO i = -gls, nx + gls |
---|
| 706 | DO j = -gls, ny |
---|
| 707 | nzb_local(j,i) = MIN( nzb_local(j,i), nzb_local(j+1,i) ) |
---|
| 708 | ENDDO |
---|
[134] | 709 | ENDDO |
---|
[217] | 710 | !-- apply cyclic boundary conditions in y-direction |
---|
| 711 | !(ist das erforderlich? Ursache von Seung Bus Fehler?) |
---|
| 712 | nzb_local(ny+1:ny+gls,:) = nzb_local(0:gls-1,:) |
---|
| 713 | ENDIF |
---|
[134] | 714 | |
---|
[1] | 715 | ! |
---|
| 716 | !-- Initialize index arrays nzb_s_inner and nzb_w_inner |
---|
[861] | 717 | nzb_s_inner = nzb_local(nysg:nyng,nxlg:nxrg) |
---|
| 718 | nzb_w_inner = nzb_local(nysg:nyng,nxlg:nxrg) |
---|
[1] | 719 | |
---|
| 720 | ! |
---|
| 721 | !-- Initialize remaining index arrays: |
---|
| 722 | !-- first pre-initialize them with nzb_s_inner... |
---|
| 723 | nzb_u_inner = nzb_s_inner |
---|
| 724 | nzb_u_outer = nzb_s_inner |
---|
| 725 | nzb_v_inner = nzb_s_inner |
---|
| 726 | nzb_v_outer = nzb_s_inner |
---|
| 727 | nzb_w_outer = nzb_s_inner |
---|
| 728 | nzb_s_outer = nzb_s_inner |
---|
| 729 | |
---|
| 730 | ! |
---|
| 731 | !-- ...then extend pre-initialized arrays in their according directions |
---|
| 732 | !-- based on nzb_local using nzb_tmp as a temporary global index array |
---|
| 733 | |
---|
| 734 | ! |
---|
| 735 | !-- nzb_s_outer: |
---|
| 736 | !-- extend nzb_local east-/westwards first, then north-/southwards |
---|
[667] | 737 | nzb_tmp = nzb_local(-nbgp:ny+nbgp,-nbgp:nx+nbgp) |
---|
[1] | 738 | DO j = -1, ny + 1 |
---|
| 739 | DO i = 0, nx |
---|
| 740 | nzb_tmp(j,i) = MAX( nzb_local(j,i-1), nzb_local(j,i), & |
---|
| 741 | nzb_local(j,i+1) ) |
---|
| 742 | ENDDO |
---|
| 743 | ENDDO |
---|
| 744 | DO i = nxl, nxr |
---|
| 745 | DO j = nys, nyn |
---|
| 746 | nzb_s_outer(j,i) = MAX( nzb_tmp(j-1,i), nzb_tmp(j,i), & |
---|
| 747 | nzb_tmp(j+1,i) ) |
---|
| 748 | ENDDO |
---|
| 749 | ! |
---|
| 750 | !-- non-cyclic boundary conditions (overwritten by call of |
---|
| 751 | !-- exchange_horiz_2d_int below in case of cyclic boundary conditions) |
---|
| 752 | IF ( nys == 0 ) THEN |
---|
| 753 | j = -1 |
---|
| 754 | nzb_s_outer(j,i) = MAX( nzb_tmp(j+1,i), nzb_tmp(j,i) ) |
---|
| 755 | ENDIF |
---|
| 756 | IF ( nys == ny ) THEN |
---|
| 757 | j = ny + 1 |
---|
| 758 | nzb_s_outer(j,i) = MAX( nzb_tmp(j-1,i), nzb_tmp(j,i) ) |
---|
| 759 | ENDIF |
---|
| 760 | ENDDO |
---|
| 761 | ! |
---|
| 762 | !-- nzb_w_outer: |
---|
| 763 | !-- identical to nzb_s_outer |
---|
| 764 | nzb_w_outer = nzb_s_outer |
---|
| 765 | |
---|
| 766 | ! |
---|
| 767 | !-- nzb_u_inner: |
---|
| 768 | !-- extend nzb_local rightwards only |
---|
[667] | 769 | nzb_tmp = nzb_local(-nbgp:ny+nbgp,-nbgp:nx+nbgp) |
---|
[1] | 770 | DO j = -1, ny + 1 |
---|
| 771 | DO i = 0, nx + 1 |
---|
| 772 | nzb_tmp(j,i) = MAX( nzb_local(j,i-1), nzb_local(j,i) ) |
---|
| 773 | ENDDO |
---|
| 774 | ENDDO |
---|
[667] | 775 | nzb_u_inner = nzb_tmp(nysg:nyng,nxlg:nxrg) |
---|
[1] | 776 | |
---|
| 777 | ! |
---|
| 778 | !-- nzb_u_outer: |
---|
| 779 | !-- extend current nzb_tmp (nzb_u_inner) north-/southwards |
---|
| 780 | DO i = nxl, nxr |
---|
| 781 | DO j = nys, nyn |
---|
| 782 | nzb_u_outer(j,i) = MAX( nzb_tmp(j-1,i), nzb_tmp(j,i), & |
---|
| 783 | nzb_tmp(j+1,i) ) |
---|
| 784 | ENDDO |
---|
| 785 | ! |
---|
| 786 | !-- non-cyclic boundary conditions (overwritten by call of |
---|
| 787 | !-- exchange_horiz_2d_int below in case of cyclic boundary conditions) |
---|
| 788 | IF ( nys == 0 ) THEN |
---|
| 789 | j = -1 |
---|
| 790 | nzb_u_outer(j,i) = MAX( nzb_tmp(j+1,i), nzb_tmp(j,i) ) |
---|
| 791 | ENDIF |
---|
| 792 | IF ( nys == ny ) THEN |
---|
| 793 | j = ny + 1 |
---|
| 794 | nzb_u_outer(j,i) = MAX( nzb_tmp(j-1,i), nzb_tmp(j,i) ) |
---|
| 795 | ENDIF |
---|
| 796 | ENDDO |
---|
| 797 | |
---|
| 798 | ! |
---|
| 799 | !-- nzb_v_inner: |
---|
| 800 | !-- extend nzb_local northwards only |
---|
[667] | 801 | nzb_tmp = nzb_local(-nbgp:ny+nbgp,-nbgp:nx+nbgp) |
---|
[1] | 802 | DO i = -1, nx + 1 |
---|
| 803 | DO j = 0, ny + 1 |
---|
| 804 | nzb_tmp(j,i) = MAX( nzb_local(j-1,i), nzb_local(j,i) ) |
---|
| 805 | ENDDO |
---|
| 806 | ENDDO |
---|
[667] | 807 | nzb_v_inner = nzb_tmp(nys-nbgp:nyn+nbgp,nxl-nbgp:nxr+nbgp) |
---|
[1] | 808 | |
---|
| 809 | ! |
---|
| 810 | !-- nzb_v_outer: |
---|
| 811 | !-- extend current nzb_tmp (nzb_v_inner) right-/leftwards |
---|
| 812 | DO j = nys, nyn |
---|
| 813 | DO i = nxl, nxr |
---|
| 814 | nzb_v_outer(j,i) = MAX( nzb_tmp(j,i-1), nzb_tmp(j,i), & |
---|
| 815 | nzb_tmp(j,i+1) ) |
---|
| 816 | ENDDO |
---|
| 817 | ! |
---|
| 818 | !-- non-cyclic boundary conditions (overwritten by call of |
---|
| 819 | !-- exchange_horiz_2d_int below in case of cyclic boundary conditions) |
---|
| 820 | IF ( nxl == 0 ) THEN |
---|
| 821 | i = -1 |
---|
| 822 | nzb_v_outer(j,i) = MAX( nzb_tmp(j,i+1), nzb_tmp(j,i) ) |
---|
| 823 | ENDIF |
---|
| 824 | IF ( nxr == nx ) THEN |
---|
| 825 | i = nx + 1 |
---|
| 826 | nzb_v_outer(j,i) = MAX( nzb_tmp(j,i-1), nzb_tmp(j,i) ) |
---|
| 827 | ENDIF |
---|
| 828 | ENDDO |
---|
[809] | 829 | #if ! defined ( __check ) |
---|
[1] | 830 | ! |
---|
| 831 | !-- Exchange of lateral boundary values (parallel computers) and cyclic |
---|
| 832 | !-- boundary conditions, if applicable. |
---|
| 833 | !-- Since nzb_s_inner and nzb_w_inner are derived directly from nzb_local |
---|
| 834 | !-- they do not require exchange and are not included here. |
---|
| 835 | CALL exchange_horiz_2d_int( nzb_u_inner ) |
---|
| 836 | CALL exchange_horiz_2d_int( nzb_u_outer ) |
---|
| 837 | CALL exchange_horiz_2d_int( nzb_v_inner ) |
---|
| 838 | CALL exchange_horiz_2d_int( nzb_v_outer ) |
---|
| 839 | CALL exchange_horiz_2d_int( nzb_w_outer ) |
---|
| 840 | CALL exchange_horiz_2d_int( nzb_s_outer ) |
---|
| 841 | |
---|
[49] | 842 | ! |
---|
| 843 | !-- Allocate and set the arrays containing the topography height |
---|
| 844 | IF ( myid == 0 ) THEN |
---|
| 845 | |
---|
| 846 | ALLOCATE( zu_s_inner(0:nx+1,0:ny+1), zw_w_inner(0:nx+1,0:ny+1) ) |
---|
| 847 | |
---|
| 848 | DO i = 0, nx + 1 |
---|
| 849 | DO j = 0, ny + 1 |
---|
| 850 | zu_s_inner(i,j) = zu(nzb_local(j,i)) |
---|
| 851 | zw_w_inner(i,j) = zw(nzb_local(j,i)) |
---|
| 852 | ENDDO |
---|
| 853 | ENDDO |
---|
| 854 | |
---|
| 855 | ENDIF |
---|
[807] | 856 | #endif |
---|
[1] | 857 | ENDIF |
---|
| 858 | |
---|
[809] | 859 | #if ! defined ( __check ) |
---|
[1] | 860 | ! |
---|
| 861 | !-- Preliminary: to be removed after completion of the topography code! |
---|
| 862 | !-- Set the former default k index arrays nzb_2d |
---|
| 863 | nzb_2d = nzb |
---|
| 864 | |
---|
| 865 | ! |
---|
| 866 | !-- Set the individual index arrays which define the k index from which on |
---|
| 867 | !-- the usual finite difference form (which does not use surface fluxes) is |
---|
| 868 | !-- applied |
---|
| 869 | IF ( prandtl_layer .OR. use_surface_fluxes ) THEN |
---|
| 870 | nzb_diff_u = nzb_u_inner + 2 |
---|
| 871 | nzb_diff_v = nzb_v_inner + 2 |
---|
| 872 | nzb_diff_s_inner = nzb_s_inner + 2 |
---|
| 873 | nzb_diff_s_outer = nzb_s_outer + 2 |
---|
| 874 | ELSE |
---|
| 875 | nzb_diff_u = nzb_u_inner + 1 |
---|
| 876 | nzb_diff_v = nzb_v_inner + 1 |
---|
| 877 | nzb_diff_s_inner = nzb_s_inner + 1 |
---|
| 878 | nzb_diff_s_outer = nzb_s_outer + 1 |
---|
| 879 | ENDIF |
---|
| 880 | |
---|
| 881 | ! |
---|
| 882 | !-- Calculation of wall switches and factors required by diffusion_u/v.f90 and |
---|
| 883 | !-- for limitation of near-wall mixing length l_wall further below |
---|
| 884 | corner_nl = 0 |
---|
| 885 | corner_nr = 0 |
---|
| 886 | corner_sl = 0 |
---|
| 887 | corner_sr = 0 |
---|
| 888 | wall_l = 0 |
---|
| 889 | wall_n = 0 |
---|
| 890 | wall_r = 0 |
---|
| 891 | wall_s = 0 |
---|
| 892 | |
---|
| 893 | DO i = nxl, nxr |
---|
| 894 | DO j = nys, nyn |
---|
| 895 | ! |
---|
| 896 | !-- u-component |
---|
| 897 | IF ( nzb_u_outer(j,i) > nzb_u_outer(j+1,i) ) THEN |
---|
| 898 | wall_u(j,i) = 1.0 ! north wall (location of adjacent fluid) |
---|
| 899 | fym(j,i) = 0.0 |
---|
| 900 | fyp(j,i) = 1.0 |
---|
| 901 | ELSEIF ( nzb_u_outer(j,i) > nzb_u_outer(j-1,i) ) THEN |
---|
| 902 | wall_u(j,i) = 1.0 ! south wall (location of adjacent fluid) |
---|
| 903 | fym(j,i) = 1.0 |
---|
| 904 | fyp(j,i) = 0.0 |
---|
| 905 | ENDIF |
---|
| 906 | ! |
---|
| 907 | !-- v-component |
---|
| 908 | IF ( nzb_v_outer(j,i) > nzb_v_outer(j,i+1) ) THEN |
---|
| 909 | wall_v(j,i) = 1.0 ! rigth wall (location of adjacent fluid) |
---|
| 910 | fxm(j,i) = 0.0 |
---|
| 911 | fxp(j,i) = 1.0 |
---|
| 912 | ELSEIF ( nzb_v_outer(j,i) > nzb_v_outer(j,i-1) ) THEN |
---|
| 913 | wall_v(j,i) = 1.0 ! left wall (location of adjacent fluid) |
---|
| 914 | fxm(j,i) = 1.0 |
---|
| 915 | fxp(j,i) = 0.0 |
---|
| 916 | ENDIF |
---|
| 917 | ! |
---|
| 918 | !-- w-component, also used for scalars, separate arrays for shear |
---|
| 919 | !-- production of tke |
---|
| 920 | IF ( nzb_w_outer(j,i) > nzb_w_outer(j+1,i) ) THEN |
---|
| 921 | wall_e_y(j,i) = 1.0 ! north wall (location of adjacent fluid) |
---|
| 922 | wall_w_y(j,i) = 1.0 |
---|
| 923 | fwym(j,i) = 0.0 |
---|
| 924 | fwyp(j,i) = 1.0 |
---|
| 925 | ELSEIF ( nzb_w_outer(j,i) > nzb_w_outer(j-1,i) ) THEN |
---|
| 926 | wall_e_y(j,i) = -1.0 ! south wall (location of adjacent fluid) |
---|
| 927 | wall_w_y(j,i) = 1.0 |
---|
| 928 | fwym(j,i) = 1.0 |
---|
| 929 | fwyp(j,i) = 0.0 |
---|
| 930 | ENDIF |
---|
| 931 | IF ( nzb_w_outer(j,i) > nzb_w_outer(j,i+1) ) THEN |
---|
| 932 | wall_e_x(j,i) = 1.0 ! right wall (location of adjacent fluid) |
---|
| 933 | wall_w_x(j,i) = 1.0 |
---|
| 934 | fwxm(j,i) = 0.0 |
---|
| 935 | fwxp(j,i) = 1.0 |
---|
| 936 | ELSEIF ( nzb_w_outer(j,i) > nzb_w_outer(j,i-1) ) THEN |
---|
| 937 | wall_e_x(j,i) = -1.0 ! left wall (location of adjacent fluid) |
---|
| 938 | wall_w_x(j,i) = 1.0 |
---|
| 939 | fwxm(j,i) = 1.0 |
---|
| 940 | fwxp(j,i) = 0.0 |
---|
| 941 | ENDIF |
---|
| 942 | ! |
---|
| 943 | !-- Wall and corner locations inside buildings for limitation of |
---|
| 944 | !-- near-wall mixing length l_wall |
---|
| 945 | IF ( nzb_s_inner(j,i) > nzb_s_inner(j+1,i) ) THEN |
---|
| 946 | |
---|
| 947 | wall_n(j,i) = nzb_s_inner(j+1,i) + 1 ! North wall |
---|
| 948 | |
---|
| 949 | IF ( nzb_s_inner(j,i) > nzb_s_inner(j,i-1) ) THEN |
---|
| 950 | corner_nl(j,i) = MAX( nzb_s_inner(j+1,i), & ! Northleft corner |
---|
| 951 | nzb_s_inner(j,i-1) ) + 1 |
---|
| 952 | ENDIF |
---|
| 953 | |
---|
| 954 | IF ( nzb_s_inner(j,i) > nzb_s_inner(j,i+1) ) THEN |
---|
| 955 | corner_nr(j,i) = MAX( nzb_s_inner(j+1,i), & ! Northright corner |
---|
| 956 | nzb_s_inner(j,i+1) ) + 1 |
---|
| 957 | ENDIF |
---|
| 958 | |
---|
| 959 | ENDIF |
---|
| 960 | |
---|
| 961 | IF ( nzb_s_inner(j,i) > nzb_s_inner(j-1,i) ) THEN |
---|
| 962 | |
---|
| 963 | wall_s(j,i) = nzb_s_inner(j-1,i) + 1 ! South wall |
---|
| 964 | IF ( nzb_s_inner(j,i) > nzb_s_inner(j,i-1) ) THEN |
---|
| 965 | corner_sl(j,i) = MAX( nzb_s_inner(j-1,i), & ! Southleft corner |
---|
| 966 | nzb_s_inner(j,i-1) ) + 1 |
---|
| 967 | ENDIF |
---|
| 968 | |
---|
| 969 | IF ( nzb_s_inner(j,i) > nzb_s_inner(j,i+1) ) THEN |
---|
| 970 | corner_sr(j,i) = MAX( nzb_s_inner(j-1,i), & ! Southright corner |
---|
| 971 | nzb_s_inner(j,i+1) ) + 1 |
---|
| 972 | ENDIF |
---|
| 973 | |
---|
| 974 | ENDIF |
---|
| 975 | |
---|
| 976 | IF ( nzb_s_inner(j,i) > nzb_s_inner(j,i-1) ) THEN |
---|
| 977 | wall_l(j,i) = nzb_s_inner(j,i-1) + 1 ! Left wall |
---|
| 978 | ENDIF |
---|
| 979 | |
---|
| 980 | IF ( nzb_s_inner(j,i) > nzb_s_inner(j,i+1) ) THEN |
---|
| 981 | wall_r(j,i) = nzb_s_inner(j,i+1) + 1 ! Right wall |
---|
| 982 | ENDIF |
---|
| 983 | |
---|
| 984 | ENDDO |
---|
| 985 | ENDDO |
---|
| 986 | |
---|
| 987 | ! |
---|
[114] | 988 | !-- Calculate wall flag arrays for the multigrid method |
---|
| 989 | IF ( psolver == 'multigrid' ) THEN |
---|
| 990 | ! |
---|
| 991 | !-- Gridpoint increment of the current level |
---|
| 992 | inc = 1 |
---|
| 993 | |
---|
| 994 | DO l = maximum_grid_level, 1 , -1 |
---|
| 995 | |
---|
| 996 | nxl_l = nxl_mg(l) |
---|
| 997 | nxr_l = nxr_mg(l) |
---|
| 998 | nys_l = nys_mg(l) |
---|
| 999 | nyn_l = nyn_mg(l) |
---|
| 1000 | nzt_l = nzt_mg(l) |
---|
| 1001 | |
---|
| 1002 | ! |
---|
| 1003 | !-- Assign the flag level to be calculated |
---|
| 1004 | SELECT CASE ( l ) |
---|
| 1005 | CASE ( 1 ) |
---|
| 1006 | flags => wall_flags_1 |
---|
| 1007 | CASE ( 2 ) |
---|
| 1008 | flags => wall_flags_2 |
---|
| 1009 | CASE ( 3 ) |
---|
| 1010 | flags => wall_flags_3 |
---|
| 1011 | CASE ( 4 ) |
---|
| 1012 | flags => wall_flags_4 |
---|
| 1013 | CASE ( 5 ) |
---|
| 1014 | flags => wall_flags_5 |
---|
| 1015 | CASE ( 6 ) |
---|
| 1016 | flags => wall_flags_6 |
---|
| 1017 | CASE ( 7 ) |
---|
| 1018 | flags => wall_flags_7 |
---|
| 1019 | CASE ( 8 ) |
---|
| 1020 | flags => wall_flags_8 |
---|
| 1021 | CASE ( 9 ) |
---|
| 1022 | flags => wall_flags_9 |
---|
| 1023 | CASE ( 10 ) |
---|
| 1024 | flags => wall_flags_10 |
---|
| 1025 | END SELECT |
---|
| 1026 | |
---|
| 1027 | ! |
---|
| 1028 | !-- Depending on the grid level, set the respective bits in case of |
---|
| 1029 | !-- neighbouring walls |
---|
| 1030 | !-- Bit 0: wall to the bottom |
---|
| 1031 | !-- Bit 1: wall to the top (not realized in remaining PALM code so far) |
---|
| 1032 | !-- Bit 2: wall to the south |
---|
| 1033 | !-- Bit 3: wall to the north |
---|
| 1034 | !-- Bit 4: wall to the left |
---|
| 1035 | !-- Bit 5: wall to the right |
---|
[116] | 1036 | !-- Bit 6: inside building |
---|
[114] | 1037 | |
---|
| 1038 | flags = 0 |
---|
| 1039 | |
---|
[927] | 1040 | ! |
---|
| 1041 | !-- In case of masking method, flags are not set and multigrid method |
---|
| 1042 | !-- works like FFT-solver |
---|
| 1043 | IF ( .NOT. masking_method ) THEN |
---|
| 1044 | |
---|
| 1045 | DO i = nxl_l-1, nxr_l+1 |
---|
| 1046 | DO j = nys_l-1, nyn_l+1 |
---|
| 1047 | DO k = nzb, nzt_l+1 |
---|
[114] | 1048 | |
---|
| 1049 | ! |
---|
[927] | 1050 | !-- Inside/outside building (inside building does not need |
---|
| 1051 | !-- further tests for walls) |
---|
| 1052 | IF ( k*inc <= nzb_local(j*inc,i*inc) ) THEN |
---|
[114] | 1053 | |
---|
[927] | 1054 | flags(k,j,i) = IBSET( flags(k,j,i), 6 ) |
---|
[114] | 1055 | |
---|
[927] | 1056 | ELSE |
---|
[114] | 1057 | ! |
---|
[927] | 1058 | !-- Bottom wall |
---|
| 1059 | IF ( (k-1)*inc <= nzb_local(j*inc,i*inc) ) THEN |
---|
| 1060 | flags(k,j,i) = IBSET( flags(k,j,i), 0 ) |
---|
| 1061 | ENDIF |
---|
[114] | 1062 | ! |
---|
[927] | 1063 | !-- South wall |
---|
| 1064 | IF ( k*inc <= nzb_local((j-1)*inc,i*inc) ) THEN |
---|
| 1065 | flags(k,j,i) = IBSET( flags(k,j,i), 2 ) |
---|
| 1066 | ENDIF |
---|
[114] | 1067 | ! |
---|
[927] | 1068 | !-- North wall |
---|
| 1069 | IF ( k*inc <= nzb_local((j+1)*inc,i*inc) ) THEN |
---|
| 1070 | flags(k,j,i) = IBSET( flags(k,j,i), 3 ) |
---|
| 1071 | ENDIF |
---|
[114] | 1072 | ! |
---|
[927] | 1073 | !-- Left wall |
---|
| 1074 | IF ( k*inc <= nzb_local(j*inc,(i-1)*inc) ) THEN |
---|
| 1075 | flags(k,j,i) = IBSET( flags(k,j,i), 4 ) |
---|
| 1076 | ENDIF |
---|
[114] | 1077 | ! |
---|
[927] | 1078 | !-- Right wall |
---|
| 1079 | IF ( k*inc <= nzb_local(j*inc,(i+1)*inc) ) THEN |
---|
| 1080 | flags(k,j,i) = IBSET( flags(k,j,i), 5 ) |
---|
| 1081 | ENDIF |
---|
| 1082 | |
---|
[114] | 1083 | ENDIF |
---|
| 1084 | |
---|
[927] | 1085 | ENDDO |
---|
[114] | 1086 | ENDDO |
---|
| 1087 | ENDDO |
---|
| 1088 | |
---|
[927] | 1089 | ENDIF |
---|
| 1090 | |
---|
[114] | 1091 | ! |
---|
| 1092 | !-- Test output of flag arrays |
---|
[145] | 1093 | ! i = nxl_l |
---|
| 1094 | ! WRITE (9,*) ' ' |
---|
| 1095 | ! WRITE (9,*) '*** mg level ', l, ' ***', mg_switch_to_pe0_level |
---|
| 1096 | ! WRITE (9,*) ' inc=', inc, ' i =', nxl_l |
---|
| 1097 | ! WRITE (9,*) ' nxl_l',nxl_l,' nxr_l=',nxr_l,' nys_l=',nys_l,' nyn_l=',nyn_l |
---|
| 1098 | ! DO k = nzt_l+1, nzb, -1 |
---|
| 1099 | ! WRITE (9,'(194(1X,I2))') ( flags(k,j,i), j = nys_l-1, nyn_l+1 ) |
---|
| 1100 | ! ENDDO |
---|
[114] | 1101 | |
---|
| 1102 | inc = inc * 2 |
---|
| 1103 | |
---|
| 1104 | ENDDO |
---|
| 1105 | |
---|
| 1106 | ENDIF |
---|
[861] | 1107 | ! |
---|
| 1108 | !-- Allocate flags needed for masking walls. |
---|
| 1109 | ALLOCATE( wall_flags_0(nzb:nzt,nys:nyn,nxl:nxr) ) |
---|
| 1110 | wall_flags_0 = 0 |
---|
[114] | 1111 | |
---|
[861] | 1112 | IF ( scalar_advec == 'ws-scheme' ) THEN |
---|
[114] | 1113 | ! |
---|
[861] | 1114 | !-- Set flags to steer the degradation of the advection scheme in advec_ws |
---|
| 1115 | !-- near topography, inflow- and outflow boundaries as well as bottom and |
---|
| 1116 | !-- top of model domain. wall_flags_0 remains zero for all non-prognostic |
---|
| 1117 | !-- grid points. |
---|
| 1118 | DO i = nxl, nxr |
---|
| 1119 | DO j = nys, nyn |
---|
| 1120 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1121 | ! |
---|
| 1122 | !-- scalar - x-direction |
---|
| 1123 | !-- WS1 (0), WS3 (1), WS5 (2) |
---|
[978] | 1124 | IF ( k <= nzb_s_inner(j,i+1) .OR. ( ( inflow_l .OR. outflow_l )& |
---|
| 1125 | .AND. i == nxl ) .OR. ( ( inflow_r .OR. outflow_r ) & |
---|
| 1126 | .AND. i == nxr ) ) THEN |
---|
[861] | 1127 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 0 ) |
---|
| 1128 | ELSEIF ( k <= nzb_s_inner(j,i+2) .OR. k <= nzb_s_inner(j,i-1) & |
---|
[978] | 1129 | .OR. ( ( inflow_r .OR. outflow_r ) .AND. i == nxr-1 ) & |
---|
| 1130 | .OR. ( ( inflow_l .OR. outflow_l ) .AND. i == nxlu ) & |
---|
| 1131 | ) THEN |
---|
[861] | 1132 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 1 ) |
---|
| 1133 | ELSE |
---|
| 1134 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 2 ) |
---|
| 1135 | ENDIF |
---|
| 1136 | ! |
---|
| 1137 | !-- scalar - y-direction |
---|
| 1138 | !-- WS1 (3), WS3 (4), WS5 (5) |
---|
[978] | 1139 | IF ( k <= nzb_s_inner(j+1,i) .OR. ( ( inflow_s .OR. outflow_s )& |
---|
| 1140 | .AND. j == nys ) .OR. ( ( inflow_n .OR. outflow_n ) & |
---|
| 1141 | .AND. j == nyn ) ) THEN |
---|
[861] | 1142 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 3 ) |
---|
| 1143 | !-- WS3 |
---|
| 1144 | ELSEIF ( k <= nzb_s_inner(j+2,i) .OR. k <= nzb_s_inner(j-1,i) & |
---|
[978] | 1145 | .OR. ( ( inflow_s .OR. outflow_s ) .AND. j == nysv ) & |
---|
| 1146 | .OR. ( ( inflow_n .OR. outflow_n ) .AND. j == nyn-1 ) & |
---|
| 1147 | ) THEN |
---|
[861] | 1148 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 4 ) |
---|
| 1149 | !-- WS5 |
---|
| 1150 | ELSE |
---|
| 1151 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 5 ) |
---|
| 1152 | ENDIF |
---|
| 1153 | ! |
---|
| 1154 | !-- scalar - z-direction |
---|
| 1155 | !-- WS1 (6), WS3 (7), WS5 (8) |
---|
| 1156 | flag_set = .FALSE. |
---|
| 1157 | IF ( k == nzb_s_inner(j,i) + 1 .OR. k == nzt ) THEN |
---|
| 1158 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 6 ) |
---|
| 1159 | flag_set = .TRUE. |
---|
| 1160 | ELSEIF ( k == nzb_s_inner(j,i) + 2 .OR. k == nzt - 1 ) THEN |
---|
| 1161 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 7 ) |
---|
| 1162 | flag_set = .TRUE. |
---|
| 1163 | ELSEIF ( k > nzb_s_inner(j,i) .AND. .NOT. flag_set ) THEN |
---|
| 1164 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 8 ) |
---|
| 1165 | ENDIF |
---|
| 1166 | ENDDO |
---|
| 1167 | ENDDO |
---|
| 1168 | ENDDO |
---|
| 1169 | ENDIF |
---|
| 1170 | |
---|
| 1171 | IF ( momentum_advec == 'ws-scheme' ) THEN |
---|
| 1172 | ! |
---|
| 1173 | !-- Set wall_flags_0 to steer the degradation of the advection scheme in advec_ws |
---|
| 1174 | !-- near topography, inflow- and outflow boundaries as well as bottom and |
---|
| 1175 | !-- top of model domain. wall_flags_0 remains zero for all non-prognostic |
---|
| 1176 | !-- grid points. |
---|
| 1177 | DO i = nxl, nxr |
---|
| 1178 | DO j = nys, nyn |
---|
| 1179 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1180 | ! |
---|
| 1181 | !-- u component - x-direction |
---|
| 1182 | !-- WS1 (9), WS3 (10), WS5 (11) |
---|
| 1183 | IF ( k <= nzb_u_inner(j,i+1) & |
---|
[978] | 1184 | .OR. ( ( inflow_l .OR. outflow_l ) .AND. i == nxlu ) & |
---|
| 1185 | .OR. ( ( inflow_r .OR. outflow_r ) .AND. i == nxr ) & |
---|
| 1186 | ) THEN |
---|
[861] | 1187 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 9 ) |
---|
| 1188 | ELSEIF ( k <= nzb_u_inner(j,i+2) .OR. k <= nzb_u_inner(j,i-1) & |
---|
[978] | 1189 | .OR. ( ( inflow_r .OR. outflow_r ) .AND. i == nxr-1 )& |
---|
| 1190 | .OR. ( ( inflow_l .OR. outflow_l ) .AND. i == nxlu+1)& |
---|
| 1191 | ) THEN |
---|
[861] | 1192 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 10 ) |
---|
| 1193 | ELSE |
---|
| 1194 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 11 ) |
---|
| 1195 | ENDIF |
---|
[978] | 1196 | |
---|
[861] | 1197 | ! |
---|
| 1198 | !-- u component - y-direction |
---|
| 1199 | !-- WS1 (12), WS3 (13), WS5 (14) |
---|
[978] | 1200 | IF ( k <= nzb_u_inner(j+1,i) .OR. ( ( inflow_s .OR. outflow_s )& |
---|
| 1201 | .AND. j == nys ) .OR. ( ( inflow_n .OR. outflow_n ) & |
---|
| 1202 | .AND. j == nyn ) ) THEN |
---|
[861] | 1203 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 12 ) |
---|
| 1204 | ELSEIF ( k <= nzb_u_inner(j+2,i) .OR. k <= nzb_u_inner(j-1,i) & |
---|
[978] | 1205 | .OR. ( ( inflow_s .OR. outflow_s ) .AND. j == nysv ) & |
---|
| 1206 | .OR. ( ( inflow_n .OR. outflow_n ) .AND. j == nyn-1 ) & |
---|
| 1207 | ) THEN |
---|
[861] | 1208 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 13 ) |
---|
| 1209 | ELSE |
---|
| 1210 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 14 ) |
---|
| 1211 | ENDIF |
---|
| 1212 | ! |
---|
| 1213 | !-- u component - z-direction |
---|
| 1214 | !-- WS1 (15), WS3 (16), WS5 (17) |
---|
| 1215 | flag_set = .FALSE. |
---|
| 1216 | IF ( k == nzb_u_inner(j,i) + 1 .OR. k == nzt ) THEN |
---|
| 1217 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 15 ) |
---|
| 1218 | flag_set = .TRUE. |
---|
| 1219 | ELSEIF ( k == nzb_u_inner(j,i) + 2 .OR. k == nzt - 1 ) THEN |
---|
| 1220 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 16 ) |
---|
| 1221 | flag_set = .TRUE. |
---|
| 1222 | ELSEIF ( k > nzb_u_inner(j,i) .AND. .NOT. flag_set ) THEN |
---|
| 1223 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 17 ) |
---|
| 1224 | ENDIF |
---|
| 1225 | |
---|
| 1226 | ENDDO |
---|
| 1227 | ENDDO |
---|
| 1228 | ENDDO |
---|
| 1229 | |
---|
| 1230 | DO i = nxl, nxr |
---|
| 1231 | DO j = nys, nyn |
---|
| 1232 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1233 | ! |
---|
| 1234 | !-- v component - x-direction |
---|
| 1235 | !-- WS1 (18), WS3 (19), WS5 (20) |
---|
[978] | 1236 | IF ( k <= nzb_v_inner(j,i+1) .OR. ( ( inflow_l .OR. outflow_l )& |
---|
| 1237 | .AND. i == nxl ) .OR. (( inflow_r .OR. outflow_r ) & |
---|
| 1238 | .AND. i == nxr ) ) THEN |
---|
[861] | 1239 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 18 ) |
---|
| 1240 | !-- WS3 |
---|
| 1241 | ELSEIF ( k <= nzb_v_inner(j,i+2) .OR. k <= nzb_v_inner(j,i-1) & |
---|
[978] | 1242 | .OR. ( ( inflow_r .OR. outflow_r ) .AND. i == nxr-1 ) & |
---|
| 1243 | .OR. ( ( inflow_l .OR. outflow_l ) .AND. i == nxlu ) & |
---|
| 1244 | ) THEN |
---|
[861] | 1245 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 19 ) |
---|
| 1246 | ELSE |
---|
| 1247 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 20 ) |
---|
| 1248 | ENDIF |
---|
| 1249 | ! |
---|
| 1250 | !-- v component - y-direction |
---|
| 1251 | !-- WS1 (21), WS3 (22), WS5 (23) |
---|
| 1252 | IF ( k <= nzb_v_inner(j+1,i) & |
---|
[978] | 1253 | .OR. ( ( inflow_s .OR. outflow_s ) .AND. i == nysv ) & |
---|
| 1254 | .OR. ( ( inflow_n .OR. outflow_n ) .AND. j == nyn ) & |
---|
| 1255 | ) THEN |
---|
[861] | 1256 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 21 ) |
---|
| 1257 | ELSEIF ( k <= nzb_v_inner(j+2,i) .OR. k <= nzb_v_inner(j-1,i) & |
---|
[978] | 1258 | .OR. ( ( inflow_s .OR. outflow_s ) .AND. j == nysv+1 )& |
---|
| 1259 | .OR. ( ( inflow_n .OR. outflow_n ) .AND. j == nyn-1 )& |
---|
| 1260 | ) THEN |
---|
[861] | 1261 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 22 ) |
---|
| 1262 | ELSE |
---|
| 1263 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 23 ) |
---|
| 1264 | ENDIF |
---|
| 1265 | ! |
---|
| 1266 | !-- v component - z-direction |
---|
| 1267 | !-- WS1 (24), WS3 (25), WS5 (26) |
---|
| 1268 | flag_set = .FALSE. |
---|
| 1269 | IF ( k == nzb_v_inner(j,i) + 1 .OR. k == nzt ) THEN |
---|
| 1270 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 24 ) |
---|
| 1271 | flag_set = .TRUE. |
---|
| 1272 | ELSEIF ( k == nzb_v_inner(j,i) + 2 .OR. k == nzt - 1 ) THEN |
---|
| 1273 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 25 ) |
---|
| 1274 | flag_set = .TRUE. |
---|
| 1275 | ELSEIF ( k > nzb_v_inner(j,i) .AND. .NOT. flag_set ) THEN |
---|
| 1276 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 26 ) |
---|
| 1277 | ENDIF |
---|
| 1278 | |
---|
| 1279 | ENDDO |
---|
| 1280 | ENDDO |
---|
| 1281 | ENDDO |
---|
| 1282 | DO i = nxl, nxr |
---|
| 1283 | DO j = nys, nyn |
---|
[1015] | 1284 | DO k = nzb_w_inner(j,i), nzt |
---|
[861] | 1285 | ! |
---|
| 1286 | !-- w component - x-direction |
---|
| 1287 | !-- WS1 (27), WS3 (28), WS5 (29) |
---|
[978] | 1288 | IF ( k <= nzb_w_inner(j,i+1) .OR. ( ( inflow_l .OR. outflow_l )& |
---|
| 1289 | .AND. i == nxl ) .OR. ( ( inflow_r .OR. outflow_r ) & |
---|
| 1290 | .AND. i == nxr ) ) THEN |
---|
[861] | 1291 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 27 ) |
---|
| 1292 | ELSEIF ( k <= nzb_w_inner(j,i+2) .OR. k <= nzb_w_inner(j,i-1) & |
---|
[978] | 1293 | .OR. ( ( inflow_r .OR. outflow_r ) .AND. i == nxr-1 ) & |
---|
| 1294 | .OR. ( ( inflow_l .OR. outflow_l ) .AND. i == nxlu ) & |
---|
| 1295 | ) THEN |
---|
[861] | 1296 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 28 ) |
---|
| 1297 | ELSE |
---|
| 1298 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i),29 ) |
---|
| 1299 | ENDIF |
---|
| 1300 | ! |
---|
| 1301 | !-- w component - y-direction |
---|
| 1302 | !-- WS1 (30), WS3 (31), WS5 (32) |
---|
[978] | 1303 | IF ( k <= nzb_w_inner(j+1,i) .OR. ( ( inflow_s .OR. outflow_s )& |
---|
| 1304 | .AND. j == nys ) .OR. ( ( inflow_n .OR. outflow_n ) & |
---|
| 1305 | .AND. j == nyn ) ) THEN |
---|
[861] | 1306 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 30 ) |
---|
| 1307 | ELSEIF ( k <= nzb_w_inner(j+2,i) .OR. k <= nzb_w_inner(j-1,i) & |
---|
[978] | 1308 | .OR. ( ( inflow_s .OR. outflow_s ) .AND. j == nysv ) & |
---|
| 1309 | .OR. ( ( inflow_n .OR. outflow_n ) .AND. j == nyn-1 ) & |
---|
| 1310 | ) THEN |
---|
[861] | 1311 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 31 ) |
---|
| 1312 | ELSE |
---|
| 1313 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 32 ) |
---|
| 1314 | ENDIF |
---|
| 1315 | ! |
---|
| 1316 | !-- w component - z-direction |
---|
| 1317 | !-- WS1 (33), WS3 (34), WS5 (35) |
---|
| 1318 | flag_set = .FALSE. |
---|
| 1319 | IF ( k == nzb_w_inner(j,i) .OR. k == nzb_w_inner(j,i) + 1 & |
---|
| 1320 | .OR. k == nzt ) THEN |
---|
| 1321 | ! |
---|
| 1322 | !-- Please note, at k == nzb_w_inner(j,i) a flag is explictely |
---|
| 1323 | !-- set, although this is not a prognostic level. However, |
---|
| 1324 | !-- contrary to the advection of u,v and s this is necessary |
---|
| 1325 | !-- because flux_t(nzb_w_inner(j,i)) is used for the tendency |
---|
| 1326 | !-- at k == nzb_w_inner(j,i)+1. |
---|
| 1327 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 33 ) |
---|
| 1328 | flag_set = .TRUE. |
---|
| 1329 | ELSEIF ( k == nzb_w_inner(j,i) + 2 .OR. k == nzt - 1 ) THEN |
---|
| 1330 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 34 ) |
---|
| 1331 | flag_set = .TRUE. |
---|
| 1332 | ELSEIF ( k > nzb_w_inner(j,i) .AND. .NOT. flag_set ) THEN |
---|
| 1333 | wall_flags_0(k,j,i) = IBSET( wall_flags_0(k,j,i), 35 ) |
---|
| 1334 | ENDIF |
---|
| 1335 | |
---|
| 1336 | ENDDO |
---|
| 1337 | ENDDO |
---|
| 1338 | ENDDO |
---|
| 1339 | |
---|
| 1340 | ENDIF |
---|
| 1341 | |
---|
| 1342 | ! |
---|
[1] | 1343 | !-- In case of topography: limit near-wall mixing length l_wall further: |
---|
| 1344 | !-- Go through all points of the subdomain one by one and look for the closest |
---|
| 1345 | !-- surface |
---|
| 1346 | IF ( TRIM(topography) /= 'flat' ) THEN |
---|
| 1347 | DO i = nxl, nxr |
---|
| 1348 | DO j = nys, nyn |
---|
| 1349 | |
---|
| 1350 | nzb_si = nzb_s_inner(j,i) |
---|
| 1351 | vi = vertical_influence(nzb_si) |
---|
| 1352 | |
---|
| 1353 | IF ( wall_n(j,i) > 0 ) THEN |
---|
| 1354 | ! |
---|
| 1355 | !-- North wall (y distance) |
---|
| 1356 | DO k = wall_n(j,i), nzb_si |
---|
| 1357 | l_wall(k,j+1,i) = MIN( l_wall(k,j+1,i), 0.5 * dy ) |
---|
| 1358 | ENDDO |
---|
| 1359 | ! |
---|
| 1360 | !-- Above North wall (yz distance) |
---|
| 1361 | DO k = nzb_si + 1, nzb_si + vi |
---|
| 1362 | l_wall(k,j+1,i) = MIN( l_wall(k,j+1,i), & |
---|
| 1363 | SQRT( 0.25 * dy**2 + & |
---|
| 1364 | ( zu(k) - zw(nzb_si) )**2 ) ) |
---|
| 1365 | ENDDO |
---|
| 1366 | ! |
---|
| 1367 | !-- Northleft corner (xy distance) |
---|
| 1368 | IF ( corner_nl(j,i) > 0 ) THEN |
---|
| 1369 | DO k = corner_nl(j,i), nzb_si |
---|
| 1370 | l_wall(k,j+1,i-1) = MIN( l_wall(k,j+1,i-1), & |
---|
| 1371 | 0.5 * SQRT( dx**2 + dy**2 ) ) |
---|
| 1372 | ENDDO |
---|
| 1373 | ! |
---|
| 1374 | !-- Above Northleft corner (xyz distance) |
---|
| 1375 | DO k = nzb_si + 1, nzb_si + vi |
---|
| 1376 | l_wall(k,j+1,i-1) = MIN( l_wall(k,j+1,i-1), & |
---|
| 1377 | SQRT( 0.25 * (dx**2 + dy**2) + & |
---|
| 1378 | ( zu(k) - zw(nzb_si) )**2 ) ) |
---|
| 1379 | ENDDO |
---|
| 1380 | ENDIF |
---|
| 1381 | ! |
---|
| 1382 | !-- Northright corner (xy distance) |
---|
| 1383 | IF ( corner_nr(j,i) > 0 ) THEN |
---|
| 1384 | DO k = corner_nr(j,i), nzb_si |
---|
| 1385 | l_wall(k,j+1,i+1) = MIN( l_wall(k,j+1,i+1), & |
---|
| 1386 | 0.5 * SQRT( dx**2 + dy**2 ) ) |
---|
| 1387 | ENDDO |
---|
| 1388 | ! |
---|
| 1389 | !-- Above northright corner (xyz distance) |
---|
| 1390 | DO k = nzb_si + 1, nzb_si + vi |
---|
| 1391 | l_wall(k,j+1,i+1) = MIN( l_wall(k,j+1,i+1), & |
---|
| 1392 | SQRT( 0.25 * (dx**2 + dy**2) + & |
---|
| 1393 | ( zu(k) - zw(nzb_si) )**2 ) ) |
---|
| 1394 | ENDDO |
---|
| 1395 | ENDIF |
---|
| 1396 | ENDIF |
---|
| 1397 | |
---|
| 1398 | IF ( wall_s(j,i) > 0 ) THEN |
---|
| 1399 | ! |
---|
| 1400 | !-- South wall (y distance) |
---|
| 1401 | DO k = wall_s(j,i), nzb_si |
---|
| 1402 | l_wall(k,j-1,i) = MIN( l_wall(k,j-1,i), 0.5 * dy ) |
---|
| 1403 | ENDDO |
---|
| 1404 | ! |
---|
| 1405 | !-- Above south wall (yz distance) |
---|
| 1406 | DO k = nzb_si + 1, & |
---|
| 1407 | nzb_si + vi |
---|
| 1408 | l_wall(k,j-1,i) = MIN( l_wall(k,j-1,i), & |
---|
| 1409 | SQRT( 0.25 * dy**2 + & |
---|
| 1410 | ( zu(k) - zw(nzb_si) )**2 ) ) |
---|
| 1411 | ENDDO |
---|
| 1412 | ! |
---|
| 1413 | !-- Southleft corner (xy distance) |
---|
| 1414 | IF ( corner_sl(j,i) > 0 ) THEN |
---|
| 1415 | DO k = corner_sl(j,i), nzb_si |
---|
| 1416 | l_wall(k,j-1,i-1) = MIN( l_wall(k,j-1,i-1), & |
---|
| 1417 | 0.5 * SQRT( dx**2 + dy**2 ) ) |
---|
| 1418 | ENDDO |
---|
| 1419 | ! |
---|
| 1420 | !-- Above southleft corner (xyz distance) |
---|
| 1421 | DO k = nzb_si + 1, nzb_si + vi |
---|
| 1422 | l_wall(k,j-1,i-1) = MIN( l_wall(k,j-1,i-1), & |
---|
| 1423 | SQRT( 0.25 * (dx**2 + dy**2) + & |
---|
| 1424 | ( zu(k) - zw(nzb_si) )**2 ) ) |
---|
| 1425 | ENDDO |
---|
| 1426 | ENDIF |
---|
| 1427 | ! |
---|
| 1428 | !-- Southright corner (xy distance) |
---|
| 1429 | IF ( corner_sr(j,i) > 0 ) THEN |
---|
| 1430 | DO k = corner_sr(j,i), nzb_si |
---|
| 1431 | l_wall(k,j-1,i+1) = MIN( l_wall(k,j-1,i+1), & |
---|
| 1432 | 0.5 * SQRT( dx**2 + dy**2 ) ) |
---|
| 1433 | ENDDO |
---|
| 1434 | ! |
---|
| 1435 | !-- Above southright corner (xyz distance) |
---|
| 1436 | DO k = nzb_si + 1, nzb_si + vi |
---|
| 1437 | l_wall(k,j-1,i+1) = MIN( l_wall(k,j-1,i+1), & |
---|
| 1438 | SQRT( 0.25 * (dx**2 + dy**2) + & |
---|
| 1439 | ( zu(k) - zw(nzb_si) )**2 ) ) |
---|
| 1440 | ENDDO |
---|
| 1441 | ENDIF |
---|
| 1442 | |
---|
| 1443 | ENDIF |
---|
| 1444 | |
---|
| 1445 | IF ( wall_l(j,i) > 0 ) THEN |
---|
| 1446 | ! |
---|
| 1447 | !-- Left wall (x distance) |
---|
| 1448 | DO k = wall_l(j,i), nzb_si |
---|
| 1449 | l_wall(k,j,i-1) = MIN( l_wall(k,j,i-1), 0.5 * dx ) |
---|
| 1450 | ENDDO |
---|
| 1451 | ! |
---|
| 1452 | !-- Above left wall (xz distance) |
---|
| 1453 | DO k = nzb_si + 1, nzb_si + vi |
---|
| 1454 | l_wall(k,j,i-1) = MIN( l_wall(k,j,i-1), & |
---|
| 1455 | SQRT( 0.25 * dx**2 + & |
---|
| 1456 | ( zu(k) - zw(nzb_si) )**2 ) ) |
---|
| 1457 | ENDDO |
---|
| 1458 | ENDIF |
---|
| 1459 | |
---|
| 1460 | IF ( wall_r(j,i) > 0 ) THEN |
---|
| 1461 | ! |
---|
| 1462 | !-- Right wall (x distance) |
---|
| 1463 | DO k = wall_r(j,i), nzb_si |
---|
| 1464 | l_wall(k,j,i+1) = MIN( l_wall(k,j,i+1), 0.5 * dx ) |
---|
| 1465 | ENDDO |
---|
| 1466 | ! |
---|
| 1467 | !-- Above right wall (xz distance) |
---|
| 1468 | DO k = nzb_si + 1, nzb_si + vi |
---|
| 1469 | l_wall(k,j,i+1) = MIN( l_wall(k,j,i+1), & |
---|
| 1470 | SQRT( 0.25 * dx**2 + & |
---|
| 1471 | ( zu(k) - zw(nzb_si) )**2 ) ) |
---|
| 1472 | ENDDO |
---|
| 1473 | |
---|
| 1474 | ENDIF |
---|
| 1475 | |
---|
| 1476 | ENDDO |
---|
| 1477 | ENDDO |
---|
| 1478 | |
---|
| 1479 | ENDIF |
---|
| 1480 | |
---|
| 1481 | ! |
---|
| 1482 | !-- Multiplication with wall_adjustment_factor |
---|
| 1483 | l_wall = wall_adjustment_factor * l_wall |
---|
| 1484 | |
---|
| 1485 | ! |
---|
[709] | 1486 | !-- Set lateral boundary conditions for l_wall |
---|
[667] | 1487 | CALL exchange_horiz( l_wall, nbgp ) |
---|
| 1488 | |
---|
[1] | 1489 | DEALLOCATE( corner_nl, corner_nr, corner_sl, corner_sr, nzb_local, & |
---|
| 1490 | nzb_tmp, vertical_influence, wall_l, wall_n, wall_r, wall_s ) |
---|
| 1491 | |
---|
[807] | 1492 | #endif |
---|
[1] | 1493 | |
---|
| 1494 | END SUBROUTINE init_grid |
---|