[1] | 1 | #if defined( __ibmy_special ) |
---|
| 2 | @PROCESS NOOPTimize |
---|
| 3 | #endif |
---|
| 4 | SUBROUTINE init_3d_model |
---|
| 5 | |
---|
| 6 | !------------------------------------------------------------------------------! |
---|
[254] | 7 | ! Current revisions: |
---|
[732] | 8 | ! ------------------ |
---|
[768] | 9 | ! |
---|
[708] | 10 | ! |
---|
| 11 | ! Former revisions: |
---|
| 12 | ! ----------------- |
---|
| 13 | ! $Id: init_3d_model.f90 768 2011-10-14 06:57:15Z heinze $ |
---|
| 14 | ! |
---|
[768] | 15 | ! 767 2011-10-14 06:39:12Z raasch |
---|
| 16 | ! adjustments concerning implementation of prescribed u,v-profiles |
---|
| 17 | ! bugfix: dirichlet_0 conditions for ug/vg moved to check_parameters |
---|
| 18 | ! |
---|
[760] | 19 | ! 759 2011-09-15 13:58:31Z raasch |
---|
| 20 | ! Splitting of parallel I/O in blocks of PEs |
---|
| 21 | ! Bugfix: No zero assignments to volume_flow_initial and volume_flow_area in |
---|
| 22 | ! case of normal restart runs. |
---|
| 23 | ! |
---|
[714] | 24 | ! 713 2011-03-30 14:21:21Z suehring |
---|
[732] | 25 | ! weight_substep and weight_pres are given as fractions. |
---|
[714] | 26 | ! |
---|
[710] | 27 | ! 709 2011-03-30 09:31:40Z raasch |
---|
| 28 | ! formatting adjustments |
---|
| 29 | ! |
---|
[708] | 30 | ! 707 2011-03-29 11:39:40Z raasch |
---|
[707] | 31 | ! p_sub renamed p_loc and allocated depending on the chosen pressure solver, |
---|
| 32 | ! initial assignments of zero to array p for iterative solvers only, |
---|
| 33 | ! bc_lr/ns replaced by bc_lr/ns_dirrad/raddir |
---|
[674] | 34 | ! |
---|
[708] | 35 | ! 680 2011-02-04 23:16:06Z gryschka |
---|
[681] | 36 | ! bugfix: volume_flow_control |
---|
[668] | 37 | ! |
---|
[674] | 38 | ! 673 2011-01-18 16:19:48Z suehring |
---|
| 39 | ! weight_substep (moved from advec_ws) and weight_pres added. |
---|
| 40 | ! Allocate p_sub when using Multigrid or SOR solver. |
---|
| 41 | ! Call of ws_init moved behind the if requests. |
---|
| 42 | ! |
---|
[668] | 43 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
[667] | 44 | ! nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng in loops and |
---|
| 45 | ! allocation of arrays. Calls of exchange_horiz are modified. |
---|
[709] | 46 | ! Call ws_init to initialize arrays needed for calculating statisticas and for |
---|
[667] | 47 | ! optimization when ws-scheme is used. |
---|
| 48 | ! Initial volume flow is now calculated by using the variable hom_sum. |
---|
| 49 | ! Therefore the correction of initial volume flow for non-flat topography |
---|
| 50 | ! removed (removed u_nzb_p1_for_vfc and v_nzb_p1_for_vfc) |
---|
| 51 | ! Changed surface boundary conditions for u and v in case of ibc_uv_b == 0 from |
---|
[709] | 52 | ! mirror to Dirichlet boundary conditions (u=v=0), so that k=nzb is |
---|
| 53 | ! representative for the height z0. |
---|
[667] | 54 | ! Bugfix: type conversion of '1' to 64bit for the MAX function (ngp_3d_inner) |
---|
| 55 | ! |
---|
[623] | 56 | ! 622 2010-12-10 08:08:13Z raasch |
---|
| 57 | ! optional barriers included in order to speed up collective operations |
---|
| 58 | ! |
---|
[561] | 59 | ! 560 2010-09-09 10:06:09Z weinreis |
---|
| 60 | ! bugfix: correction of calculating ngp_3d for 64 bit |
---|
| 61 | ! |
---|
[486] | 62 | ! 485 2010-02-05 10:57:51Z raasch |
---|
| 63 | ! calculation of ngp_3d + ngp_3d_inner changed because they have now 64 bit |
---|
| 64 | ! |
---|
[482] | 65 | ! 407 2009-12-01 15:01:15Z maronga |
---|
| 66 | ! var_ts is replaced by dots_max |
---|
| 67 | ! Enabled passive scalar/humidity wall fluxes for non-flat topography |
---|
| 68 | ! |
---|
[392] | 69 | ! 388 2009-09-23 09:40:33Z raasch |
---|
[388] | 70 | ! Initialization of prho added. |
---|
[359] | 71 | ! bugfix: correction of initial volume flow for non-flat topography |
---|
| 72 | ! bugfix: zero initialization of arrays within buildings for 'cyclic_fill' |
---|
[333] | 73 | ! bugfix: avoid that ngp_2dh_s_inner becomes zero |
---|
[328] | 74 | ! initializing_actions='read_data_for_recycling' renamed to 'cyclic_fill', now |
---|
| 75 | ! independent of turbulent_inflow |
---|
[254] | 76 | ! Output of messages replaced by message handling routine. |
---|
[240] | 77 | ! Set the starting level and the vertical smoothing factor used for |
---|
| 78 | ! the external pressure gradient |
---|
[254] | 79 | ! +conserve_volume_flow_mode: 'default', 'initial_profiles', 'inflow_profile' |
---|
[241] | 80 | ! and 'bulk_velocity' |
---|
[292] | 81 | ! If the inversion height calculated by the prerun is zero, |
---|
| 82 | ! inflow_damping_height must be explicitly specified. |
---|
[139] | 83 | ! |
---|
[198] | 84 | ! 181 2008-07-30 07:07:47Z raasch |
---|
| 85 | ! bugfix: zero assignments to tendency arrays in case of restarts, |
---|
| 86 | ! further extensions and modifications in the initialisation of the plant |
---|
| 87 | ! canopy model, |
---|
| 88 | ! allocation of hom_sum moved to parin, initialization of spectrum_x|y directly |
---|
| 89 | ! after allocating theses arrays, |
---|
| 90 | ! read data for recycling added as new initialization option, |
---|
| 91 | ! dummy allocation for diss |
---|
| 92 | ! |
---|
[139] | 93 | ! 138 2007-11-28 10:03:58Z letzel |
---|
[132] | 94 | ! New counter ngp_2dh_s_inner. |
---|
| 95 | ! Allow new case bc_uv_t = 'dirichlet_0' for channel flow. |
---|
| 96 | ! Corrected calculation of initial volume flow for 'set_1d-model_profiles' and |
---|
| 97 | ! 'set_constant_profiles' in case of buildings in the reference cross-sections. |
---|
[77] | 98 | ! |
---|
[110] | 99 | ! 108 2007-08-24 15:10:38Z letzel |
---|
| 100 | ! Flux initialization in case of coupled runs, +momentum fluxes at top boundary, |
---|
| 101 | ! +arrays for phase speed c_u, c_v, c_w, indices for u|v|w_m_l|r changed |
---|
| 102 | ! +qswst_remote in case of atmosphere model with humidity coupled to ocean |
---|
| 103 | ! Rayleigh damping for ocean, optionally calculate km and kh from initial |
---|
| 104 | ! TKE e_init |
---|
| 105 | ! |
---|
[98] | 106 | ! 97 2007-06-21 08:23:15Z raasch |
---|
| 107 | ! Initialization of salinity, call of init_ocean |
---|
| 108 | ! |
---|
[90] | 109 | ! 87 2007-05-22 15:46:47Z raasch |
---|
| 110 | ! var_hom and var_sum renamed pr_palm |
---|
| 111 | ! |
---|
[77] | 112 | ! 75 2007-03-22 09:54:05Z raasch |
---|
[73] | 113 | ! Arrays for radiation boundary conditions are allocated (u_m_l, u_m_r, etc.), |
---|
| 114 | ! bugfix for cases with the outflow damping layer extending over more than one |
---|
[75] | 115 | ! subdomain, moisture renamed humidity, |
---|
| 116 | ! new initializing action "by_user" calls user_init_3d_model, |
---|
[72] | 117 | ! precipitation_amount/rate, ts_value are allocated, +module netcdf_control, |
---|
[51] | 118 | ! initial velocities at nzb+1 are regarded for volume |
---|
| 119 | ! flow control in case they have been set zero before (to avoid small timesteps) |
---|
[75] | 120 | ! -uvmean_outflow, uxrp, vynp eliminated |
---|
[1] | 121 | ! |
---|
[39] | 122 | ! 19 2007-02-23 04:53:48Z raasch |
---|
| 123 | ! +handling of top fluxes |
---|
| 124 | ! |
---|
[3] | 125 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 126 | ! |
---|
[1] | 127 | ! Revision 1.49 2006/08/22 15:59:07 raasch |
---|
| 128 | ! No optimization of this file on the ibmy (Yonsei Univ.) |
---|
| 129 | ! |
---|
| 130 | ! Revision 1.1 1998/03/09 16:22:22 raasch |
---|
| 131 | ! Initial revision |
---|
| 132 | ! |
---|
| 133 | ! |
---|
| 134 | ! Description: |
---|
| 135 | ! ------------ |
---|
| 136 | ! Allocation of arrays and initialization of the 3D model via |
---|
| 137 | ! a) pre-run the 1D model |
---|
| 138 | ! or |
---|
| 139 | ! b) pre-set constant linear profiles |
---|
| 140 | ! or |
---|
| 141 | ! c) read values of a previous run |
---|
| 142 | !------------------------------------------------------------------------------! |
---|
| 143 | |
---|
[667] | 144 | USE advec_ws |
---|
[1] | 145 | USE arrays_3d |
---|
| 146 | USE averaging |
---|
[72] | 147 | USE cloud_parameters |
---|
[1] | 148 | USE constants |
---|
| 149 | USE control_parameters |
---|
| 150 | USE cpulog |
---|
| 151 | USE indices |
---|
| 152 | USE interfaces |
---|
| 153 | USE model_1d |
---|
[51] | 154 | USE netcdf_control |
---|
[1] | 155 | USE particle_attributes |
---|
| 156 | USE pegrid |
---|
| 157 | USE profil_parameter |
---|
| 158 | USE random_function_mod |
---|
| 159 | USE statistics |
---|
| 160 | |
---|
| 161 | IMPLICIT NONE |
---|
| 162 | |
---|
[559] | 163 | INTEGER :: i, ind_array(1), j, k, sr |
---|
[1] | 164 | |
---|
[485] | 165 | INTEGER, DIMENSION(:), ALLOCATABLE :: ngp_2dh_l |
---|
[1] | 166 | |
---|
[132] | 167 | INTEGER, DIMENSION(:,:), ALLOCATABLE :: ngp_2dh_outer_l, & |
---|
| 168 | ngp_2dh_s_inner_l |
---|
[1] | 169 | |
---|
[153] | 170 | REAL :: a, b |
---|
| 171 | |
---|
[1] | 172 | REAL, DIMENSION(1:2) :: volume_flow_area_l, volume_flow_initial_l |
---|
| 173 | |
---|
[485] | 174 | REAL, DIMENSION(:), ALLOCATABLE :: ngp_3d_inner_l, ngp_3d_inner_tmp |
---|
[1] | 175 | |
---|
[485] | 176 | |
---|
[1] | 177 | ! |
---|
| 178 | !-- Allocate arrays |
---|
| 179 | ALLOCATE( ngp_2dh(0:statistic_regions), ngp_2dh_l(0:statistic_regions), & |
---|
| 180 | ngp_3d(0:statistic_regions), & |
---|
| 181 | ngp_3d_inner(0:statistic_regions), & |
---|
| 182 | ngp_3d_inner_l(0:statistic_regions), & |
---|
[485] | 183 | ngp_3d_inner_tmp(0:statistic_regions), & |
---|
[1] | 184 | sums_divnew_l(0:statistic_regions), & |
---|
| 185 | sums_divold_l(0:statistic_regions) ) |
---|
[240] | 186 | ALLOCATE( dp_smooth_factor(nzb:nzt), rdf(nzb+1:nzt) ) |
---|
[143] | 187 | ALLOCATE( ngp_2dh_outer(nzb:nzt+1,0:statistic_regions), & |
---|
[1] | 188 | ngp_2dh_outer_l(nzb:nzt+1,0:statistic_regions), & |
---|
[132] | 189 | ngp_2dh_s_inner(nzb:nzt+1,0:statistic_regions), & |
---|
| 190 | ngp_2dh_s_inner_l(nzb:nzt+1,0:statistic_regions), & |
---|
[667] | 191 | rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions), & |
---|
[87] | 192 | sums(nzb:nzt+1,pr_palm+max_pr_user), & |
---|
| 193 | sums_l(nzb:nzt+1,pr_palm+max_pr_user,0:threads_per_task-1), & |
---|
[1] | 194 | sums_l_l(nzb:nzt+1,0:statistic_regions,0:threads_per_task-1), & |
---|
| 195 | sums_up_fraction_l(10,3,0:statistic_regions), & |
---|
[48] | 196 | sums_wsts_bc_l(nzb:nzt+1,0:statistic_regions), & |
---|
[394] | 197 | ts_value(dots_max,0:statistic_regions) ) |
---|
[667] | 198 | ALLOCATE( km_damp_x(nxlg:nxrg), km_damp_y(nysg:nyng) ) |
---|
[1] | 199 | |
---|
[667] | 200 | ALLOCATE( rif_1(nysg:nyng,nxlg:nxrg), shf_1(nysg:nyng,nxlg:nxrg), & |
---|
| 201 | ts(nysg:nyng,nxlg:nxrg), tswst_1(nysg:nyng,nxlg:nxrg), & |
---|
| 202 | us(nysg:nyng,nxlg:nxrg), usws_1(nysg:nyng,nxlg:nxrg), & |
---|
| 203 | uswst_1(nysg:nyng,nxlg:nxrg), & |
---|
| 204 | vsws_1(nysg:nyng,nxlg:nxrg), & |
---|
| 205 | vswst_1(nysg:nyng,nxlg:nxrg), z0(nysg:nyng,nxlg:nxrg) ) |
---|
[1] | 206 | |
---|
| 207 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 208 | ! |
---|
| 209 | !-- Leapfrog scheme needs two timelevels of diffusion quantities |
---|
[667] | 210 | ALLOCATE( rif_2(nysg:nyng,nxlg:nxrg), & |
---|
| 211 | shf_2(nysg:nyng,nxlg:nxrg), & |
---|
| 212 | tswst_2(nysg:nyng,nxlg:nxrg), & |
---|
| 213 | usws_2(nysg:nyng,nxlg:nxrg), & |
---|
| 214 | uswst_2(nysg:nyng,nxlg:nxrg), & |
---|
| 215 | vswst_2(nysg:nyng,nxlg:nxrg), & |
---|
| 216 | vsws_2(nysg:nyng,nxlg:nxrg) ) |
---|
[1] | 217 | ENDIF |
---|
| 218 | |
---|
[75] | 219 | ALLOCATE( d(nzb+1:nzta,nys:nyna,nxl:nxra), & |
---|
[667] | 220 | e_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 221 | e_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 222 | e_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 223 | kh_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 224 | km_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 225 | p(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 226 | pt_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 227 | pt_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 228 | pt_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 229 | tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 230 | u_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 231 | u_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 232 | u_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 233 | v_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 234 | v_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 235 | v_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 236 | w_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 237 | w_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 238 | w_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[673] | 239 | ! |
---|
[707] | 240 | !-- Following array is required for perturbation pressure within the iterative |
---|
| 241 | !-- pressure solvers. For the multistep schemes (Runge-Kutta), array p holds |
---|
| 242 | !-- the weighted average of the substeps and cannot be used in the Poisson |
---|
| 243 | !-- solver. |
---|
| 244 | IF ( psolver == 'sor' ) THEN |
---|
| 245 | ALLOCATE( p_loc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 246 | ELSEIF ( psolver == 'multigrid' ) THEN |
---|
| 247 | ! |
---|
| 248 | !-- For performance reasons, multigrid is using one ghost layer only |
---|
| 249 | ALLOCATE( p_loc(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
[673] | 250 | ENDIF |
---|
[1] | 251 | |
---|
| 252 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[667] | 253 | ALLOCATE( kh_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 254 | km_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1] | 255 | ENDIF |
---|
| 256 | |
---|
[75] | 257 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 258 | ! |
---|
[75] | 259 | !-- 2D-humidity/scalar arrays |
---|
[667] | 260 | ALLOCATE ( qs(nysg:nyng,nxlg:nxrg), & |
---|
| 261 | qsws_1(nysg:nyng,nxlg:nxrg), & |
---|
| 262 | qswst_1(nysg:nyng,nxlg:nxrg) ) |
---|
[1] | 263 | |
---|
| 264 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[667] | 265 | ALLOCATE( qsws_2(nysg:nyng,nxlg:nxrg), & |
---|
| 266 | qswst_2(nysg:nyng,nxlg:nxrg) ) |
---|
[1] | 267 | ENDIF |
---|
| 268 | ! |
---|
[75] | 269 | !-- 3D-humidity/scalar arrays |
---|
[667] | 270 | ALLOCATE( q_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 271 | q_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 272 | q_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1] | 273 | |
---|
| 274 | ! |
---|
[75] | 275 | !-- 3D-arrays needed for humidity only |
---|
| 276 | IF ( humidity ) THEN |
---|
[667] | 277 | ALLOCATE( vpt_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1] | 278 | |
---|
| 279 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[667] | 280 | ALLOCATE( vpt_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1] | 281 | ENDIF |
---|
| 282 | |
---|
| 283 | IF ( cloud_physics ) THEN |
---|
| 284 | ! |
---|
| 285 | !-- Liquid water content |
---|
[667] | 286 | ALLOCATE ( ql_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[72] | 287 | ! |
---|
| 288 | !-- Precipitation amount and rate (only needed if output is switched) |
---|
[667] | 289 | ALLOCATE( precipitation_amount(nysg:nyng,nxlg:nxrg), & |
---|
| 290 | precipitation_rate(nysg:nyng,nxlg:nxrg) ) |
---|
[1] | 291 | ENDIF |
---|
| 292 | |
---|
| 293 | IF ( cloud_droplets ) THEN |
---|
| 294 | ! |
---|
| 295 | !-- Liquid water content, change in liquid water content, |
---|
| 296 | !-- real volume of particles (with weighting), volume of particles |
---|
[667] | 297 | ALLOCATE ( ql_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 298 | ql_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 299 | ql_v(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 300 | ql_vp(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1] | 301 | ENDIF |
---|
| 302 | |
---|
| 303 | ENDIF |
---|
| 304 | |
---|
| 305 | ENDIF |
---|
| 306 | |
---|
[94] | 307 | IF ( ocean ) THEN |
---|
[667] | 308 | ALLOCATE( saswsb_1(nysg:nyng,nxlg:nxrg), & |
---|
| 309 | saswst_1(nysg:nyng,nxlg:nxrg) ) |
---|
| 310 | ALLOCATE( prho_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 311 | rho_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 312 | sa_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 313 | sa_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 314 | sa_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[388] | 315 | prho => prho_1 |
---|
| 316 | rho => rho_1 ! routines calc_mean_profile and diffusion_e require |
---|
| 317 | ! density to be apointer |
---|
[108] | 318 | IF ( humidity_remote ) THEN |
---|
[667] | 319 | ALLOCATE( qswst_remote(nysg:nyng,nxlg:nxrg)) |
---|
[108] | 320 | qswst_remote = 0.0 |
---|
| 321 | ENDIF |
---|
[94] | 322 | ENDIF |
---|
| 323 | |
---|
[1] | 324 | ! |
---|
| 325 | !-- 3D-array for storing the dissipation, needed for calculating the sgs |
---|
| 326 | !-- particle velocities |
---|
| 327 | IF ( use_sgs_for_particles ) THEN |
---|
[667] | 328 | ALLOCATE ( diss(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[181] | 329 | ELSE |
---|
| 330 | ALLOCATE ( diss(2,2,2) ) ! required because diss is used as a |
---|
| 331 | ! formal parameter |
---|
[1] | 332 | ENDIF |
---|
| 333 | |
---|
| 334 | IF ( dt_dosp /= 9999999.9 ) THEN |
---|
| 335 | ALLOCATE( spectrum_x( 1:nx/2, 1:10, 1:10 ), & |
---|
| 336 | spectrum_y( 1:ny/2, 1:10, 1:10 ) ) |
---|
[146] | 337 | spectrum_x = 0.0 |
---|
| 338 | spectrum_y = 0.0 |
---|
[1] | 339 | ENDIF |
---|
| 340 | |
---|
| 341 | ! |
---|
[138] | 342 | !-- 3D-arrays for the leaf area density and the canopy drag coefficient |
---|
| 343 | IF ( plant_canopy ) THEN |
---|
[667] | 344 | ALLOCATE ( lad_s(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 345 | lad_u(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 346 | lad_v(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 347 | lad_w(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 348 | cdc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[153] | 349 | |
---|
| 350 | IF ( passive_scalar ) THEN |
---|
[667] | 351 | ALLOCATE ( sls(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 352 | sec(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[153] | 353 | ENDIF |
---|
| 354 | |
---|
| 355 | IF ( cthf /= 0.0 ) THEN |
---|
[667] | 356 | ALLOCATE ( lai(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 357 | canopy_heat_flux(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[153] | 358 | ENDIF |
---|
| 359 | |
---|
[138] | 360 | ENDIF |
---|
| 361 | |
---|
| 362 | ! |
---|
[51] | 363 | !-- 4D-array for storing the Rif-values at vertical walls |
---|
| 364 | IF ( topography /= 'flat' ) THEN |
---|
[667] | 365 | ALLOCATE( rif_wall(nzb:nzt+1,nysg:nyng,nxlg:nxrg,1:4) ) |
---|
[51] | 366 | rif_wall = 0.0 |
---|
| 367 | ENDIF |
---|
| 368 | |
---|
| 369 | ! |
---|
[106] | 370 | !-- Arrays to store velocity data from t-dt and the phase speeds which |
---|
| 371 | !-- are needed for radiation boundary conditions |
---|
[73] | 372 | IF ( outflow_l ) THEN |
---|
[667] | 373 | ALLOCATE( u_m_l(nzb:nzt+1,nysg:nyng,1:2), & |
---|
| 374 | v_m_l(nzb:nzt+1,nysg:nyng,0:1), & |
---|
| 375 | w_m_l(nzb:nzt+1,nysg:nyng,0:1) ) |
---|
[73] | 376 | ENDIF |
---|
| 377 | IF ( outflow_r ) THEN |
---|
[667] | 378 | ALLOCATE( u_m_r(nzb:nzt+1,nysg:nyng,nx-1:nx), & |
---|
| 379 | v_m_r(nzb:nzt+1,nysg:nyng,nx-1:nx), & |
---|
| 380 | w_m_r(nzb:nzt+1,nysg:nyng,nx-1:nx) ) |
---|
[73] | 381 | ENDIF |
---|
[106] | 382 | IF ( outflow_l .OR. outflow_r ) THEN |
---|
[667] | 383 | ALLOCATE( c_u(nzb:nzt+1,nysg:nyng), c_v(nzb:nzt+1,nysg:nyng), & |
---|
| 384 | c_w(nzb:nzt+1,nysg:nyng) ) |
---|
[106] | 385 | ENDIF |
---|
[73] | 386 | IF ( outflow_s ) THEN |
---|
[667] | 387 | ALLOCATE( u_m_s(nzb:nzt+1,0:1,nxlg:nxrg), & |
---|
| 388 | v_m_s(nzb:nzt+1,1:2,nxlg:nxrg), & |
---|
| 389 | w_m_s(nzb:nzt+1,0:1,nxlg:nxrg) ) |
---|
[73] | 390 | ENDIF |
---|
| 391 | IF ( outflow_n ) THEN |
---|
[667] | 392 | ALLOCATE( u_m_n(nzb:nzt+1,ny-1:ny,nxlg:nxrg), & |
---|
| 393 | v_m_n(nzb:nzt+1,ny-1:ny,nxlg:nxrg), & |
---|
| 394 | w_m_n(nzb:nzt+1,ny-1:ny,nxlg:nxrg) ) |
---|
[73] | 395 | ENDIF |
---|
[106] | 396 | IF ( outflow_s .OR. outflow_n ) THEN |
---|
[667] | 397 | ALLOCATE( c_u(nzb:nzt+1,nxlg:nxrg), c_v(nzb:nzt+1,nxlg:nxrg), & |
---|
| 398 | c_w(nzb:nzt+1,nxlg:nxrg) ) |
---|
[106] | 399 | ENDIF |
---|
[73] | 400 | |
---|
| 401 | ! |
---|
[1] | 402 | !-- Initial assignment of the pointers |
---|
| 403 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 404 | |
---|
[19] | 405 | rif_m => rif_1; rif => rif_2 |
---|
| 406 | shf_m => shf_1; shf => shf_2 |
---|
| 407 | tswst_m => tswst_1; tswst => tswst_2 |
---|
| 408 | usws_m => usws_1; usws => usws_2 |
---|
[102] | 409 | uswst_m => uswst_1; uswst => uswst_2 |
---|
[19] | 410 | vsws_m => vsws_1; vsws => vsws_2 |
---|
[102] | 411 | vswst_m => vswst_1; vswst => vswst_2 |
---|
[1] | 412 | e_m => e_1; e => e_2; e_p => e_3; te_m => e_3 |
---|
| 413 | kh_m => kh_1; kh => kh_2 |
---|
| 414 | km_m => km_1; km => km_2 |
---|
| 415 | pt_m => pt_1; pt => pt_2; pt_p => pt_3; tpt_m => pt_3 |
---|
| 416 | u_m => u_1; u => u_2; u_p => u_3; tu_m => u_3 |
---|
| 417 | v_m => v_1; v => v_2; v_p => v_3; tv_m => v_3 |
---|
| 418 | w_m => w_1; w => w_2; w_p => w_3; tw_m => w_3 |
---|
| 419 | |
---|
[75] | 420 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[19] | 421 | qsws_m => qsws_1; qsws => qsws_2 |
---|
| 422 | qswst_m => qswst_1; qswst => qswst_2 |
---|
[1] | 423 | q_m => q_1; q => q_2; q_p => q_3; tq_m => q_3 |
---|
[75] | 424 | IF ( humidity ) vpt_m => vpt_1; vpt => vpt_2 |
---|
[1] | 425 | IF ( cloud_physics ) ql => ql_1 |
---|
| 426 | IF ( cloud_droplets ) THEN |
---|
| 427 | ql => ql_1 |
---|
| 428 | ql_c => ql_2 |
---|
| 429 | ENDIF |
---|
| 430 | ENDIF |
---|
| 431 | |
---|
| 432 | ELSE |
---|
| 433 | |
---|
[19] | 434 | rif => rif_1 |
---|
| 435 | shf => shf_1 |
---|
| 436 | tswst => tswst_1 |
---|
| 437 | usws => usws_1 |
---|
[102] | 438 | uswst => uswst_1 |
---|
[19] | 439 | vsws => vsws_1 |
---|
[102] | 440 | vswst => vswst_1 |
---|
[19] | 441 | e => e_1; e_p => e_2; te_m => e_3; e_m => e_3 |
---|
| 442 | kh => kh_1 |
---|
| 443 | km => km_1 |
---|
| 444 | pt => pt_1; pt_p => pt_2; tpt_m => pt_3; pt_m => pt_3 |
---|
| 445 | u => u_1; u_p => u_2; tu_m => u_3; u_m => u_3 |
---|
| 446 | v => v_1; v_p => v_2; tv_m => v_3; v_m => v_3 |
---|
| 447 | w => w_1; w_p => w_2; tw_m => w_3; w_m => w_3 |
---|
[1] | 448 | |
---|
[75] | 449 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 450 | qsws => qsws_1 |
---|
[19] | 451 | qswst => qswst_1 |
---|
[94] | 452 | q => q_1; q_p => q_2; tq_m => q_3; q_m => q_3 |
---|
[75] | 453 | IF ( humidity ) vpt => vpt_1 |
---|
[1] | 454 | IF ( cloud_physics ) ql => ql_1 |
---|
| 455 | IF ( cloud_droplets ) THEN |
---|
| 456 | ql => ql_1 |
---|
| 457 | ql_c => ql_2 |
---|
| 458 | ENDIF |
---|
| 459 | ENDIF |
---|
| 460 | |
---|
[94] | 461 | IF ( ocean ) THEN |
---|
[95] | 462 | saswsb => saswsb_1 |
---|
[94] | 463 | saswst => saswst_1 |
---|
| 464 | sa => sa_1; sa_p => sa_2; tsa_m => sa_3 |
---|
| 465 | ENDIF |
---|
| 466 | |
---|
[1] | 467 | ENDIF |
---|
[673] | 468 | |
---|
[1] | 469 | ! |
---|
[709] | 470 | !-- Allocate arrays containing the RK coefficient for calculation of |
---|
| 471 | !-- perturbation pressure and turbulent fluxes. At this point values are |
---|
| 472 | !-- set for pressure calculation during initialization (where no timestep |
---|
| 473 | !-- is done). Further below the values needed within the timestep scheme |
---|
| 474 | !-- will be set. |
---|
| 475 | ALLOCATE( weight_substep(1:intermediate_timestep_count_max), & |
---|
[673] | 476 | weight_pres(1:intermediate_timestep_count_max) ) |
---|
[709] | 477 | weight_substep = 1.0 |
---|
| 478 | weight_pres = 1.0 |
---|
| 479 | intermediate_timestep_count = 1 ! needed when simulated_time = 0.0 |
---|
[673] | 480 | |
---|
| 481 | ! |
---|
[1] | 482 | !-- Initialize model variables |
---|
[147] | 483 | IF ( TRIM( initializing_actions ) /= 'read_restart_data' .AND. & |
---|
[328] | 484 | TRIM( initializing_actions ) /= 'cyclic_fill' ) THEN |
---|
[1] | 485 | ! |
---|
| 486 | !-- First model run of a possible job queue. |
---|
| 487 | !-- Initial profiles of the variables must be computes. |
---|
| 488 | IF ( INDEX( initializing_actions, 'set_1d-model_profiles' ) /= 0 ) THEN |
---|
| 489 | ! |
---|
| 490 | !-- Use solutions of the 1D model as initial profiles, |
---|
| 491 | !-- start 1D model |
---|
| 492 | CALL init_1d_model |
---|
| 493 | ! |
---|
| 494 | !-- Transfer initial profiles to the arrays of the 3D model |
---|
[667] | 495 | DO i = nxlg, nxrg |
---|
| 496 | DO j = nysg, nyng |
---|
[1] | 497 | e(:,j,i) = e1d |
---|
| 498 | kh(:,j,i) = kh1d |
---|
| 499 | km(:,j,i) = km1d |
---|
| 500 | pt(:,j,i) = pt_init |
---|
| 501 | u(:,j,i) = u1d |
---|
| 502 | v(:,j,i) = v1d |
---|
| 503 | ENDDO |
---|
| 504 | ENDDO |
---|
| 505 | |
---|
[75] | 506 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[667] | 507 | DO i = nxlg, nxrg |
---|
| 508 | DO j = nysg, nyng |
---|
[1] | 509 | q(:,j,i) = q_init |
---|
| 510 | ENDDO |
---|
| 511 | ENDDO |
---|
| 512 | ENDIF |
---|
| 513 | |
---|
| 514 | IF ( .NOT. constant_diffusion ) THEN |
---|
[667] | 515 | DO i = nxlg, nxrg |
---|
| 516 | DO j = nysg, nyng |
---|
[1] | 517 | e(:,j,i) = e1d |
---|
| 518 | ENDDO |
---|
| 519 | ENDDO |
---|
| 520 | ! |
---|
| 521 | !-- Store initial profiles for output purposes etc. |
---|
| 522 | hom(:,1,25,:) = SPREAD( l1d, 2, statistic_regions+1 ) |
---|
| 523 | |
---|
| 524 | IF ( prandtl_layer ) THEN |
---|
| 525 | rif = rif1d(nzb+1) |
---|
| 526 | ts = 0.0 ! could actually be computed more accurately in the |
---|
| 527 | ! 1D model. Update when opportunity arises. |
---|
| 528 | us = us1d |
---|
| 529 | usws = usws1d |
---|
| 530 | vsws = vsws1d |
---|
| 531 | ELSE |
---|
| 532 | ts = 0.0 ! must be set, because used in |
---|
| 533 | rif = 0.0 ! flowste |
---|
| 534 | us = 0.0 |
---|
| 535 | usws = 0.0 |
---|
| 536 | vsws = 0.0 |
---|
| 537 | ENDIF |
---|
| 538 | |
---|
| 539 | ELSE |
---|
| 540 | e = 0.0 ! must be set, because used in |
---|
| 541 | rif = 0.0 ! flowste |
---|
| 542 | ts = 0.0 |
---|
| 543 | us = 0.0 |
---|
| 544 | usws = 0.0 |
---|
| 545 | vsws = 0.0 |
---|
| 546 | ENDIF |
---|
[102] | 547 | uswst = top_momentumflux_u |
---|
| 548 | vswst = top_momentumflux_v |
---|
[1] | 549 | |
---|
| 550 | ! |
---|
| 551 | !-- In every case qs = 0.0 (see also pt) |
---|
| 552 | !-- This could actually be computed more accurately in the 1D model. |
---|
| 553 | !-- Update when opportunity arises! |
---|
[75] | 554 | IF ( humidity .OR. passive_scalar ) qs = 0.0 |
---|
[1] | 555 | |
---|
| 556 | ! |
---|
| 557 | !-- inside buildings set velocities back to zero |
---|
| 558 | IF ( topography /= 'flat' ) THEN |
---|
| 559 | DO i = nxl-1, nxr+1 |
---|
| 560 | DO j = nys-1, nyn+1 |
---|
| 561 | u(nzb:nzb_u_inner(j,i),j,i) = 0.0 |
---|
| 562 | v(nzb:nzb_v_inner(j,i),j,i) = 0.0 |
---|
| 563 | ENDDO |
---|
| 564 | ENDDO |
---|
[667] | 565 | |
---|
[1] | 566 | ! |
---|
| 567 | !-- WARNING: The extra boundary conditions set after running the |
---|
| 568 | !-- ------- 1D model impose an error on the divergence one layer |
---|
| 569 | !-- below the topography; need to correct later |
---|
| 570 | !-- ATTENTION: Provisional correction for Piacsek & Williams |
---|
| 571 | !-- --------- advection scheme: keep u and v zero one layer below |
---|
| 572 | !-- the topography. |
---|
| 573 | ! |
---|
[667] | 574 | !-- Following was removed, because mirror boundary condition are |
---|
| 575 | !-- replaced by dirichlet boundary conditions |
---|
[1] | 576 | ! |
---|
[667] | 577 | ! IF ( ibc_uv_b == 0 ) THEN |
---|
| 578 | !! |
---|
| 579 | !!-- Satisfying the Dirichlet condition with an extra layer below |
---|
| 580 | !!-- the surface where the u and v component change their sign. |
---|
| 581 | ! DO i = nxl-1, nxr+1 |
---|
| 582 | ! DO j = nys-1, nyn+1 |
---|
| 583 | ! IF ( nzb_u_inner(j,i) == 0 ) u(0,j,i) = -u(1,j,i) |
---|
| 584 | ! IF ( nzb_v_inner(j,i) == 0 ) v(0,j,i) = -v(1,j,i) |
---|
| 585 | ! ENDDO |
---|
| 586 | ! ENDDO |
---|
| 587 | ! |
---|
| 588 | ! ELSE |
---|
| 589 | IF ( ibc_uv_b == 1 ) THEN |
---|
| 590 | ! |
---|
[1] | 591 | !-- Neumann condition |
---|
| 592 | DO i = nxl-1, nxr+1 |
---|
| 593 | DO j = nys-1, nyn+1 |
---|
| 594 | IF ( nzb_u_inner(j,i) == 0 ) u(0,j,i) = u(1,j,i) |
---|
| 595 | IF ( nzb_v_inner(j,i) == 0 ) v(0,j,i) = v(1,j,i) |
---|
| 596 | ENDDO |
---|
| 597 | ENDDO |
---|
| 598 | |
---|
| 599 | ENDIF |
---|
| 600 | |
---|
| 601 | ENDIF |
---|
| 602 | |
---|
| 603 | ELSEIF ( INDEX(initializing_actions, 'set_constant_profiles') /= 0 ) & |
---|
| 604 | THEN |
---|
| 605 | ! |
---|
| 606 | !-- Use constructed initial profiles (velocity constant with height, |
---|
| 607 | !-- temperature profile with constant gradient) |
---|
[667] | 608 | DO i = nxlg, nxrg |
---|
| 609 | DO j = nysg, nyng |
---|
[1] | 610 | pt(:,j,i) = pt_init |
---|
| 611 | u(:,j,i) = u_init |
---|
| 612 | v(:,j,i) = v_init |
---|
| 613 | ENDDO |
---|
| 614 | ENDDO |
---|
[75] | 615 | |
---|
[1] | 616 | ! |
---|
[292] | 617 | !-- Set initial horizontal velocities at the lowest computational grid |
---|
| 618 | !-- levels to zero in order to avoid too small time steps caused by the |
---|
| 619 | !-- diffusion limit in the initial phase of a run (at k=1, dz/2 occurs |
---|
| 620 | !-- in the limiting formula!). The original values are stored to be later |
---|
| 621 | !-- used for volume flow control. |
---|
[667] | 622 | DO i = nxlg, nxrg |
---|
| 623 | DO j = nysg, nyng |
---|
[1] | 624 | u(nzb:nzb_u_inner(j,i)+1,j,i) = 0.0 |
---|
| 625 | v(nzb:nzb_v_inner(j,i)+1,j,i) = 0.0 |
---|
| 626 | ENDDO |
---|
| 627 | ENDDO |
---|
| 628 | |
---|
[75] | 629 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[667] | 630 | DO i = nxlg, nxrg |
---|
| 631 | DO j = nysg, nyng |
---|
[1] | 632 | q(:,j,i) = q_init |
---|
| 633 | ENDDO |
---|
| 634 | ENDDO |
---|
| 635 | ENDIF |
---|
| 636 | |
---|
[94] | 637 | IF ( ocean ) THEN |
---|
[667] | 638 | DO i = nxlg, nxrg |
---|
| 639 | DO j = nysg, nyng |
---|
[94] | 640 | sa(:,j,i) = sa_init |
---|
| 641 | ENDDO |
---|
| 642 | ENDDO |
---|
| 643 | ENDIF |
---|
[1] | 644 | |
---|
| 645 | IF ( constant_diffusion ) THEN |
---|
| 646 | km = km_constant |
---|
| 647 | kh = km / prandtl_number |
---|
[108] | 648 | e = 0.0 |
---|
| 649 | ELSEIF ( e_init > 0.0 ) THEN |
---|
| 650 | DO k = nzb+1, nzt |
---|
| 651 | km(k,:,:) = 0.1 * l_grid(k) * SQRT( e_init ) |
---|
| 652 | ENDDO |
---|
| 653 | km(nzb,:,:) = km(nzb+1,:,:) |
---|
| 654 | km(nzt+1,:,:) = km(nzt,:,:) |
---|
| 655 | kh = km / prandtl_number |
---|
| 656 | e = e_init |
---|
[1] | 657 | ELSE |
---|
[108] | 658 | IF ( .NOT. ocean ) THEN |
---|
| 659 | kh = 0.01 ! there must exist an initial diffusion, because |
---|
| 660 | km = 0.01 ! otherwise no TKE would be produced by the |
---|
| 661 | ! production terms, as long as not yet |
---|
| 662 | ! e = (u*/cm)**2 at k=nzb+1 |
---|
| 663 | ELSE |
---|
| 664 | kh = 0.00001 |
---|
| 665 | km = 0.00001 |
---|
| 666 | ENDIF |
---|
| 667 | e = 0.0 |
---|
[1] | 668 | ENDIF |
---|
[102] | 669 | rif = 0.0 |
---|
| 670 | ts = 0.0 |
---|
| 671 | us = 0.0 |
---|
| 672 | usws = 0.0 |
---|
| 673 | uswst = top_momentumflux_u |
---|
| 674 | vsws = 0.0 |
---|
| 675 | vswst = top_momentumflux_v |
---|
[75] | 676 | IF ( humidity .OR. passive_scalar ) qs = 0.0 |
---|
[1] | 677 | |
---|
| 678 | ! |
---|
| 679 | !-- Compute initial temperature field and other constants used in case |
---|
| 680 | !-- of a sloping surface |
---|
| 681 | IF ( sloping_surface ) CALL init_slope |
---|
| 682 | |
---|
[46] | 683 | ELSEIF ( INDEX(initializing_actions, 'by_user') /= 0 ) & |
---|
| 684 | THEN |
---|
| 685 | ! |
---|
| 686 | !-- Initialization will completely be done by the user |
---|
| 687 | CALL user_init_3d_model |
---|
| 688 | |
---|
[1] | 689 | ENDIF |
---|
[667] | 690 | ! |
---|
| 691 | !-- Bottom boundary |
---|
| 692 | IF ( ibc_uv_b == 0 .OR. ibc_uv_b == 2 ) THEN |
---|
| 693 | u(nzb,:,:) = 0.0 |
---|
| 694 | v(nzb,:,:) = 0.0 |
---|
| 695 | ENDIF |
---|
[1] | 696 | |
---|
| 697 | ! |
---|
[151] | 698 | !-- Apply channel flow boundary condition |
---|
[132] | 699 | IF ( TRIM( bc_uv_t ) == 'dirichlet_0' ) THEN |
---|
| 700 | u(nzt+1,:,:) = 0.0 |
---|
| 701 | v(nzt+1,:,:) = 0.0 |
---|
| 702 | ENDIF |
---|
| 703 | |
---|
| 704 | ! |
---|
[1] | 705 | !-- Calculate virtual potential temperature |
---|
[75] | 706 | IF ( humidity ) vpt = pt * ( 1.0 + 0.61 * q ) |
---|
[1] | 707 | |
---|
| 708 | ! |
---|
| 709 | !-- Store initial profiles for output purposes etc. |
---|
| 710 | hom(:,1,5,:) = SPREAD( u(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 711 | hom(:,1,6,:) = SPREAD( v(:,nys,nxl), 2, statistic_regions+1 ) |
---|
[667] | 712 | IF ( ibc_uv_b == 0 .OR. ibc_uv_b == 2) THEN |
---|
| 713 | hom(nzb,1,5,:) = 0.0 |
---|
| 714 | hom(nzb,1,6,:) = 0.0 |
---|
[1] | 715 | ENDIF |
---|
| 716 | hom(:,1,7,:) = SPREAD( pt(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 717 | hom(:,1,23,:) = SPREAD( km(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 718 | hom(:,1,24,:) = SPREAD( kh(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 719 | |
---|
[97] | 720 | IF ( ocean ) THEN |
---|
| 721 | ! |
---|
| 722 | !-- Store initial salinity profile |
---|
| 723 | hom(:,1,26,:) = SPREAD( sa(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 724 | ENDIF |
---|
[1] | 725 | |
---|
[75] | 726 | IF ( humidity ) THEN |
---|
[1] | 727 | ! |
---|
| 728 | !-- Store initial profile of total water content, virtual potential |
---|
| 729 | !-- temperature |
---|
| 730 | hom(:,1,26,:) = SPREAD( q(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 731 | hom(:,1,29,:) = SPREAD( vpt(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 732 | IF ( cloud_physics .OR. cloud_droplets ) THEN |
---|
| 733 | ! |
---|
| 734 | !-- Store initial profile of specific humidity and potential |
---|
| 735 | !-- temperature |
---|
| 736 | hom(:,1,27,:) = SPREAD( q(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 737 | hom(:,1,28,:) = SPREAD( pt(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 738 | ENDIF |
---|
| 739 | ENDIF |
---|
| 740 | |
---|
| 741 | IF ( passive_scalar ) THEN |
---|
| 742 | ! |
---|
| 743 | !-- Store initial scalar profile |
---|
| 744 | hom(:,1,26,:) = SPREAD( q(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 745 | ENDIF |
---|
| 746 | |
---|
| 747 | ! |
---|
[19] | 748 | !-- Initialize fluxes at bottom surface |
---|
[1] | 749 | IF ( use_surface_fluxes ) THEN |
---|
| 750 | |
---|
| 751 | IF ( constant_heatflux ) THEN |
---|
| 752 | ! |
---|
| 753 | !-- Heat flux is prescribed |
---|
| 754 | IF ( random_heatflux ) THEN |
---|
| 755 | CALL disturb_heatflux |
---|
| 756 | ELSE |
---|
| 757 | shf = surface_heatflux |
---|
| 758 | ! |
---|
| 759 | !-- Over topography surface_heatflux is replaced by wall_heatflux(0) |
---|
| 760 | IF ( TRIM( topography ) /= 'flat' ) THEN |
---|
[667] | 761 | DO i = nxlg, nxrg |
---|
| 762 | DO j = nysg, nyng |
---|
[1] | 763 | IF ( nzb_s_inner(j,i) /= 0 ) THEN |
---|
| 764 | shf(j,i) = wall_heatflux(0) |
---|
| 765 | ENDIF |
---|
| 766 | ENDDO |
---|
| 767 | ENDDO |
---|
| 768 | ENDIF |
---|
| 769 | ENDIF |
---|
| 770 | IF ( ASSOCIATED( shf_m ) ) shf_m = shf |
---|
| 771 | ENDIF |
---|
| 772 | |
---|
| 773 | ! |
---|
| 774 | !-- Determine the near-surface water flux |
---|
[75] | 775 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 776 | IF ( constant_waterflux ) THEN |
---|
| 777 | qsws = surface_waterflux |
---|
[407] | 778 | ! |
---|
| 779 | !-- Over topography surface_waterflux is replaced by |
---|
| 780 | !-- wall_humidityflux(0) |
---|
| 781 | IF ( TRIM( topography ) /= 'flat' ) THEN |
---|
| 782 | wall_qflux = wall_humidityflux |
---|
[667] | 783 | DO i = nxlg, nxrg |
---|
| 784 | DO j = nysg, nyng |
---|
[407] | 785 | IF ( nzb_s_inner(j,i) /= 0 ) THEN |
---|
| 786 | qsws(j,i) = wall_qflux(0) |
---|
| 787 | ENDIF |
---|
| 788 | ENDDO |
---|
| 789 | ENDDO |
---|
| 790 | ENDIF |
---|
[1] | 791 | IF ( ASSOCIATED( qsws_m ) ) qsws_m = qsws |
---|
| 792 | ENDIF |
---|
| 793 | ENDIF |
---|
| 794 | |
---|
| 795 | ENDIF |
---|
| 796 | |
---|
| 797 | ! |
---|
[19] | 798 | !-- Initialize fluxes at top surface |
---|
[94] | 799 | !-- Currently, only the heatflux and salinity flux can be prescribed. |
---|
| 800 | !-- The latent flux is zero in this case! |
---|
[19] | 801 | IF ( use_top_fluxes ) THEN |
---|
| 802 | |
---|
| 803 | IF ( constant_top_heatflux ) THEN |
---|
| 804 | ! |
---|
| 805 | !-- Heat flux is prescribed |
---|
| 806 | tswst = top_heatflux |
---|
| 807 | IF ( ASSOCIATED( tswst_m ) ) tswst_m = tswst |
---|
| 808 | |
---|
[75] | 809 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[19] | 810 | qswst = 0.0 |
---|
| 811 | IF ( ASSOCIATED( qswst_m ) ) qswst_m = qswst |
---|
| 812 | ENDIF |
---|
[94] | 813 | |
---|
| 814 | IF ( ocean ) THEN |
---|
[95] | 815 | saswsb = bottom_salinityflux |
---|
[94] | 816 | saswst = top_salinityflux |
---|
| 817 | ENDIF |
---|
[102] | 818 | ENDIF |
---|
[19] | 819 | |
---|
[102] | 820 | ! |
---|
| 821 | !-- Initialization in case of a coupled model run |
---|
| 822 | IF ( coupling_mode == 'ocean_to_atmosphere' ) THEN |
---|
| 823 | tswst = 0.0 |
---|
| 824 | IF ( ASSOCIATED( tswst_m ) ) tswst_m = tswst |
---|
| 825 | ENDIF |
---|
| 826 | |
---|
[19] | 827 | ENDIF |
---|
| 828 | |
---|
| 829 | ! |
---|
[1] | 830 | !-- Initialize Prandtl layer quantities |
---|
| 831 | IF ( prandtl_layer ) THEN |
---|
| 832 | |
---|
| 833 | z0 = roughness_length |
---|
| 834 | |
---|
| 835 | IF ( .NOT. constant_heatflux ) THEN |
---|
| 836 | ! |
---|
| 837 | !-- Surface temperature is prescribed. Here the heat flux cannot be |
---|
| 838 | !-- simply estimated, because therefore rif, u* and theta* would have |
---|
| 839 | !-- to be computed by iteration. This is why the heat flux is assumed |
---|
| 840 | !-- to be zero before the first time step. It approaches its correct |
---|
| 841 | !-- value in the course of the first few time steps. |
---|
| 842 | shf = 0.0 |
---|
| 843 | IF ( ASSOCIATED( shf_m ) ) shf_m = 0.0 |
---|
| 844 | ENDIF |
---|
| 845 | |
---|
[75] | 846 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 847 | IF ( .NOT. constant_waterflux ) THEN |
---|
| 848 | qsws = 0.0 |
---|
| 849 | IF ( ASSOCIATED( qsws_m ) ) qsws_m = 0.0 |
---|
| 850 | ENDIF |
---|
| 851 | ENDIF |
---|
| 852 | |
---|
| 853 | ENDIF |
---|
| 854 | |
---|
[152] | 855 | |
---|
| 856 | ! |
---|
[707] | 857 | !-- For the moment, vertical velocity is zero |
---|
| 858 | w = 0.0 |
---|
[1] | 859 | |
---|
| 860 | ! |
---|
| 861 | !-- Initialize array sums (must be defined in first call of pres) |
---|
| 862 | sums = 0.0 |
---|
| 863 | |
---|
| 864 | ! |
---|
[707] | 865 | !-- In case of iterative solvers, p must get an initial value |
---|
| 866 | IF ( psolver == 'multigrid' .OR. psolver == 'sor' ) p = 0.0 |
---|
| 867 | |
---|
| 868 | ! |
---|
[72] | 869 | !-- Treating cloud physics, liquid water content and precipitation amount |
---|
| 870 | !-- are zero at beginning of the simulation |
---|
| 871 | IF ( cloud_physics ) THEN |
---|
| 872 | ql = 0.0 |
---|
| 873 | IF ( precipitation ) precipitation_amount = 0.0 |
---|
| 874 | ENDIF |
---|
[673] | 875 | |
---|
| 876 | ! |
---|
| 877 | !-- Initialize quantities for special advections schemes |
---|
| 878 | CALL init_advec |
---|
[1] | 879 | |
---|
| 880 | ! |
---|
| 881 | !-- Impose vortex with vertical axis on the initial velocity profile |
---|
| 882 | IF ( INDEX( initializing_actions, 'initialize_vortex' ) /= 0 ) THEN |
---|
| 883 | CALL init_rankine |
---|
| 884 | ENDIF |
---|
| 885 | |
---|
| 886 | ! |
---|
| 887 | !-- Impose temperature anomaly (advection test only) |
---|
| 888 | IF ( INDEX( initializing_actions, 'initialize_ptanom' ) /= 0 ) THEN |
---|
| 889 | CALL init_pt_anomaly |
---|
| 890 | ENDIF |
---|
| 891 | |
---|
| 892 | ! |
---|
| 893 | !-- If required, change the surface temperature at the start of the 3D run |
---|
| 894 | IF ( pt_surface_initial_change /= 0.0 ) THEN |
---|
| 895 | pt(nzb,:,:) = pt(nzb,:,:) + pt_surface_initial_change |
---|
| 896 | ENDIF |
---|
| 897 | |
---|
| 898 | ! |
---|
| 899 | !-- If required, change the surface humidity/scalar at the start of the 3D |
---|
| 900 | !-- run |
---|
[75] | 901 | IF ( ( humidity .OR. passive_scalar ) .AND. & |
---|
[1] | 902 | q_surface_initial_change /= 0.0 ) THEN |
---|
| 903 | q(nzb,:,:) = q(nzb,:,:) + q_surface_initial_change |
---|
| 904 | ENDIF |
---|
| 905 | |
---|
| 906 | ! |
---|
| 907 | !-- Initialize the random number generator (from numerical recipes) |
---|
| 908 | CALL random_function_ini |
---|
| 909 | |
---|
| 910 | ! |
---|
| 911 | !-- Initialize old and new time levels. |
---|
| 912 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 913 | e_m = e; pt_m = pt; u_m = u; v_m = v; w_m = w; kh_m = kh; km_m = km |
---|
| 914 | ELSE |
---|
| 915 | te_m = 0.0; tpt_m = 0.0; tu_m = 0.0; tv_m = 0.0; tw_m = 0.0 |
---|
| 916 | ENDIF |
---|
| 917 | e_p = e; pt_p = pt; u_p = u; v_p = v; w_p = w |
---|
| 918 | |
---|
[75] | 919 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 920 | IF ( ASSOCIATED( q_m ) ) q_m = q |
---|
| 921 | IF ( timestep_scheme(1:5) == 'runge' ) tq_m = 0.0 |
---|
| 922 | q_p = q |
---|
[75] | 923 | IF ( humidity .AND. ASSOCIATED( vpt_m ) ) vpt_m = vpt |
---|
[1] | 924 | ENDIF |
---|
| 925 | |
---|
[94] | 926 | IF ( ocean ) THEN |
---|
| 927 | tsa_m = 0.0 |
---|
| 928 | sa_p = sa |
---|
| 929 | ENDIF |
---|
[667] | 930 | |
---|
[94] | 931 | |
---|
[147] | 932 | ELSEIF ( TRIM( initializing_actions ) == 'read_restart_data' .OR. & |
---|
[667] | 933 | TRIM( initializing_actions ) == 'cyclic_fill' ) & |
---|
[1] | 934 | THEN |
---|
| 935 | ! |
---|
[767] | 936 | !-- When reading data for cyclic fill of 3D prerun data files, read |
---|
| 937 | !-- some of the global variables from the restart file which are required |
---|
| 938 | !-- for initializing the inflow |
---|
[328] | 939 | IF ( TRIM( initializing_actions ) == 'cyclic_fill' ) THEN |
---|
[559] | 940 | |
---|
[759] | 941 | DO i = 0, io_blocks-1 |
---|
| 942 | IF ( i == io_group ) THEN |
---|
| 943 | CALL read_parts_of_var_list |
---|
| 944 | CALL close_file( 13 ) |
---|
| 945 | ENDIF |
---|
| 946 | #if defined( __parallel ) |
---|
| 947 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 948 | #endif |
---|
| 949 | ENDDO |
---|
[328] | 950 | |
---|
[767] | 951 | ENDIF |
---|
| 952 | |
---|
[151] | 953 | ! |
---|
[767] | 954 | !-- Read binary data from restart file |
---|
| 955 | DO i = 0, io_blocks-1 |
---|
| 956 | IF ( i == io_group ) THEN |
---|
| 957 | CALL read_3d_binary |
---|
| 958 | ENDIF |
---|
| 959 | #if defined( __parallel ) |
---|
| 960 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 961 | #endif |
---|
| 962 | ENDDO |
---|
| 963 | |
---|
[328] | 964 | ! |
---|
[767] | 965 | !-- Initialization of the turbulence recycling method |
---|
| 966 | IF ( TRIM( initializing_actions ) == 'cyclic_fill' .AND. & |
---|
| 967 | turbulent_inflow ) THEN |
---|
| 968 | ! |
---|
| 969 | !-- First store the profiles to be used at the inflow. |
---|
| 970 | !-- These profiles are the (temporally) and horizontally averaged vertical |
---|
| 971 | !-- profiles from the prerun. Alternatively, prescribed profiles |
---|
| 972 | !-- for u,v-components can be used. |
---|
| 973 | ALLOCATE( mean_inflow_profiles(nzb:nzt+1,5) ) |
---|
[151] | 974 | |
---|
[767] | 975 | IF ( use_prescribed_profile_data ) THEN |
---|
| 976 | mean_inflow_profiles(:,1) = u_init ! u |
---|
| 977 | mean_inflow_profiles(:,2) = v_init ! v |
---|
| 978 | ELSE |
---|
[328] | 979 | mean_inflow_profiles(:,1) = hom_sum(:,1,0) ! u |
---|
| 980 | mean_inflow_profiles(:,2) = hom_sum(:,2,0) ! v |
---|
[767] | 981 | ENDIF |
---|
| 982 | mean_inflow_profiles(:,4) = hom_sum(:,4,0) ! pt |
---|
| 983 | mean_inflow_profiles(:,5) = hom_sum(:,8,0) ! e |
---|
[151] | 984 | |
---|
| 985 | ! |
---|
[767] | 986 | !-- If necessary, adjust the horizontal flow field to the prescribed |
---|
| 987 | !-- profiles |
---|
| 988 | IF ( use_prescribed_profile_data ) THEN |
---|
| 989 | DO i = nxlg, nxrg |
---|
[667] | 990 | DO j = nysg, nyng |
---|
[328] | 991 | DO k = nzb, nzt+1 |
---|
[767] | 992 | u(k,j,i) = u(k,j,i) - hom_sum(k,1,0) + u_init(k) |
---|
| 993 | v(k,j,i) = v(k,j,i) - hom_sum(k,2,0) + v_init(k) |
---|
[328] | 994 | ENDDO |
---|
[151] | 995 | ENDDO |
---|
[767] | 996 | ENDDO |
---|
| 997 | ENDIF |
---|
[151] | 998 | |
---|
| 999 | ! |
---|
[767] | 1000 | !-- Use these mean profiles at the inflow (provided that Dirichlet |
---|
| 1001 | !-- conditions are used) |
---|
| 1002 | IF ( inflow_l ) THEN |
---|
| 1003 | DO j = nysg, nyng |
---|
| 1004 | DO k = nzb, nzt+1 |
---|
| 1005 | u(k,j,nxlg:-1) = mean_inflow_profiles(k,1) |
---|
| 1006 | v(k,j,nxlg:-1) = mean_inflow_profiles(k,2) |
---|
| 1007 | w(k,j,nxlg:-1) = 0.0 |
---|
| 1008 | pt(k,j,nxlg:-1) = mean_inflow_profiles(k,4) |
---|
| 1009 | e(k,j,nxlg:-1) = mean_inflow_profiles(k,5) |
---|
| 1010 | ENDDO |
---|
| 1011 | ENDDO |
---|
| 1012 | ENDIF |
---|
| 1013 | |
---|
[151] | 1014 | ! |
---|
[767] | 1015 | !-- Calculate the damping factors to be used at the inflow. For a |
---|
| 1016 | !-- turbulent inflow the turbulent fluctuations have to be limited |
---|
| 1017 | !-- vertically because otherwise the turbulent inflow layer will grow |
---|
| 1018 | !-- in time. |
---|
| 1019 | IF ( inflow_damping_height == 9999999.9 ) THEN |
---|
| 1020 | ! |
---|
| 1021 | !-- Default: use the inversion height calculated by the prerun; if |
---|
| 1022 | !-- this is zero, inflow_damping_height must be explicitly |
---|
| 1023 | !-- specified. |
---|
| 1024 | IF ( hom_sum(nzb+6,pr_palm,0) /= 0.0 ) THEN |
---|
| 1025 | inflow_damping_height = hom_sum(nzb+6,pr_palm,0) |
---|
| 1026 | ELSE |
---|
| 1027 | WRITE( message_string, * ) 'inflow_damping_height must be ',& |
---|
| 1028 | 'explicitly specified because&the inversion height ', & |
---|
| 1029 | 'calculated by the prerun is zero.' |
---|
| 1030 | CALL message( 'init_3d_model', 'PA0318', 1, 2, 0, 6, 0 ) |
---|
[292] | 1031 | ENDIF |
---|
[151] | 1032 | |
---|
[767] | 1033 | ENDIF |
---|
| 1034 | |
---|
| 1035 | IF ( inflow_damping_width == 9999999.9 ) THEN |
---|
[151] | 1036 | ! |
---|
[767] | 1037 | !-- Default for the transition range: one tenth of the undamped |
---|
| 1038 | !-- layer |
---|
| 1039 | inflow_damping_width = 0.1 * inflow_damping_height |
---|
[151] | 1040 | |
---|
[767] | 1041 | ENDIF |
---|
[151] | 1042 | |
---|
[767] | 1043 | ALLOCATE( inflow_damping_factor(nzb:nzt+1) ) |
---|
[151] | 1044 | |
---|
[767] | 1045 | DO k = nzb, nzt+1 |
---|
[151] | 1046 | |
---|
[767] | 1047 | IF ( zu(k) <= inflow_damping_height ) THEN |
---|
| 1048 | inflow_damping_factor(k) = 1.0 |
---|
| 1049 | ELSEIF ( zu(k) <= inflow_damping_height + & |
---|
| 1050 | inflow_damping_width ) THEN |
---|
| 1051 | inflow_damping_factor(k) = 1.0 - & |
---|
| 1052 | ( zu(k) - inflow_damping_height ) / & |
---|
| 1053 | inflow_damping_width |
---|
| 1054 | ELSE |
---|
| 1055 | inflow_damping_factor(k) = 0.0 |
---|
| 1056 | ENDIF |
---|
[151] | 1057 | |
---|
[767] | 1058 | ENDDO |
---|
[151] | 1059 | |
---|
[147] | 1060 | ENDIF |
---|
| 1061 | |
---|
[152] | 1062 | ! |
---|
[359] | 1063 | !-- Inside buildings set velocities and TKE back to zero |
---|
| 1064 | IF ( TRIM( initializing_actions ) == 'cyclic_fill' .AND. & |
---|
| 1065 | topography /= 'flat' ) THEN |
---|
| 1066 | ! |
---|
| 1067 | !-- Inside buildings set velocities and TKE back to zero. |
---|
| 1068 | !-- Other scalars (pt, q, s, km, kh, p, sa, ...) are ignored at present, |
---|
| 1069 | !-- maybe revise later. |
---|
| 1070 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[667] | 1071 | DO i = nxlg, nxrg |
---|
| 1072 | DO j = nysg, nyng |
---|
[359] | 1073 | u (nzb:nzb_u_inner(j,i),j,i) = 0.0 |
---|
| 1074 | v (nzb:nzb_v_inner(j,i),j,i) = 0.0 |
---|
| 1075 | w (nzb:nzb_w_inner(j,i),j,i) = 0.0 |
---|
| 1076 | e (nzb:nzb_w_inner(j,i),j,i) = 0.0 |
---|
| 1077 | u_m(nzb:nzb_u_inner(j,i),j,i) = 0.0 |
---|
| 1078 | v_m(nzb:nzb_v_inner(j,i),j,i) = 0.0 |
---|
| 1079 | w_m(nzb:nzb_w_inner(j,i),j,i) = 0.0 |
---|
| 1080 | e_m(nzb:nzb_w_inner(j,i),j,i) = 0.0 |
---|
| 1081 | tu_m(nzb:nzb_u_inner(j,i),j,i) = 0.0 |
---|
| 1082 | tv_m(nzb:nzb_v_inner(j,i),j,i) = 0.0 |
---|
| 1083 | tw_m(nzb:nzb_w_inner(j,i),j,i) = 0.0 |
---|
| 1084 | te_m(nzb:nzb_w_inner(j,i),j,i) = 0.0 |
---|
| 1085 | tpt_m(nzb:nzb_w_inner(j,i),j,i) = 0.0 |
---|
| 1086 | ENDDO |
---|
| 1087 | ENDDO |
---|
| 1088 | ELSE |
---|
[667] | 1089 | DO i = nxlg, nxrg |
---|
| 1090 | DO j = nysg, nyng |
---|
[359] | 1091 | u (nzb:nzb_u_inner(j,i),j,i) = 0.0 |
---|
| 1092 | v (nzb:nzb_v_inner(j,i),j,i) = 0.0 |
---|
| 1093 | w (nzb:nzb_w_inner(j,i),j,i) = 0.0 |
---|
| 1094 | e (nzb:nzb_w_inner(j,i),j,i) = 0.0 |
---|
| 1095 | u_m(nzb:nzb_u_inner(j,i),j,i) = 0.0 |
---|
| 1096 | v_m(nzb:nzb_v_inner(j,i),j,i) = 0.0 |
---|
| 1097 | w_m(nzb:nzb_w_inner(j,i),j,i) = 0.0 |
---|
| 1098 | e_m(nzb:nzb_w_inner(j,i),j,i) = 0.0 |
---|
| 1099 | u_p(nzb:nzb_u_inner(j,i),j,i) = 0.0 |
---|
| 1100 | v_p(nzb:nzb_v_inner(j,i),j,i) = 0.0 |
---|
| 1101 | w_p(nzb:nzb_w_inner(j,i),j,i) = 0.0 |
---|
| 1102 | e_p(nzb:nzb_w_inner(j,i),j,i) = 0.0 |
---|
| 1103 | ENDDO |
---|
| 1104 | ENDDO |
---|
| 1105 | ENDIF |
---|
| 1106 | |
---|
| 1107 | ENDIF |
---|
| 1108 | |
---|
| 1109 | ! |
---|
[1] | 1110 | !-- Calculate initial temperature field and other constants used in case |
---|
| 1111 | !-- of a sloping surface |
---|
| 1112 | IF ( sloping_surface ) CALL init_slope |
---|
| 1113 | |
---|
| 1114 | ! |
---|
| 1115 | !-- Initialize new time levels (only done in order to set boundary values |
---|
| 1116 | !-- including ghost points) |
---|
| 1117 | e_p = e; pt_p = pt; u_p = u; v_p = v; w_p = w |
---|
[75] | 1118 | IF ( humidity .OR. passive_scalar ) q_p = q |
---|
[94] | 1119 | IF ( ocean ) sa_p = sa |
---|
[1] | 1120 | |
---|
[181] | 1121 | ! |
---|
| 1122 | !-- Allthough tendency arrays are set in prognostic_equations, they have |
---|
| 1123 | !-- have to be predefined here because they are used (but multiplied with 0) |
---|
| 1124 | !-- there before they are set. |
---|
| 1125 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1126 | te_m = 0.0; tpt_m = 0.0; tu_m = 0.0; tv_m = 0.0; tw_m = 0.0 |
---|
| 1127 | IF ( humidity .OR. passive_scalar ) tq_m = 0.0 |
---|
| 1128 | IF ( ocean ) tsa_m = 0.0 |
---|
| 1129 | ENDIF |
---|
| 1130 | |
---|
[1] | 1131 | ELSE |
---|
| 1132 | ! |
---|
| 1133 | !-- Actually this part of the programm should not be reached |
---|
[254] | 1134 | message_string = 'unknown initializing problem' |
---|
| 1135 | CALL message( 'init_3d_model', 'PA0193', 1, 2, 0, 6, 0 ) |
---|
[1] | 1136 | ENDIF |
---|
| 1137 | |
---|
[151] | 1138 | |
---|
| 1139 | IF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN |
---|
[1] | 1140 | ! |
---|
[151] | 1141 | !-- Initialize old timelevels needed for radiation boundary conditions |
---|
| 1142 | IF ( outflow_l ) THEN |
---|
| 1143 | u_m_l(:,:,:) = u(:,:,1:2) |
---|
| 1144 | v_m_l(:,:,:) = v(:,:,0:1) |
---|
| 1145 | w_m_l(:,:,:) = w(:,:,0:1) |
---|
| 1146 | ENDIF |
---|
| 1147 | IF ( outflow_r ) THEN |
---|
| 1148 | u_m_r(:,:,:) = u(:,:,nx-1:nx) |
---|
| 1149 | v_m_r(:,:,:) = v(:,:,nx-1:nx) |
---|
| 1150 | w_m_r(:,:,:) = w(:,:,nx-1:nx) |
---|
| 1151 | ENDIF |
---|
| 1152 | IF ( outflow_s ) THEN |
---|
| 1153 | u_m_s(:,:,:) = u(:,0:1,:) |
---|
| 1154 | v_m_s(:,:,:) = v(:,1:2,:) |
---|
| 1155 | w_m_s(:,:,:) = w(:,0:1,:) |
---|
| 1156 | ENDIF |
---|
| 1157 | IF ( outflow_n ) THEN |
---|
| 1158 | u_m_n(:,:,:) = u(:,ny-1:ny,:) |
---|
| 1159 | v_m_n(:,:,:) = v(:,ny-1:ny,:) |
---|
| 1160 | w_m_n(:,:,:) = w(:,ny-1:ny,:) |
---|
| 1161 | ENDIF |
---|
[667] | 1162 | |
---|
[151] | 1163 | ENDIF |
---|
[680] | 1164 | |
---|
[667] | 1165 | ! |
---|
| 1166 | !-- Calculate the initial volume flow at the right and north boundary |
---|
[709] | 1167 | IF ( conserve_volume_flow ) THEN |
---|
[151] | 1168 | |
---|
[767] | 1169 | IF ( use_prescribed_profile_data ) THEN |
---|
[667] | 1170 | |
---|
[732] | 1171 | volume_flow_initial_l = 0.0 |
---|
| 1172 | volume_flow_area_l = 0.0 |
---|
| 1173 | |
---|
[667] | 1174 | IF ( nxr == nx ) THEN |
---|
| 1175 | DO j = nys, nyn |
---|
[709] | 1176 | DO k = nzb_2d(j,nx)+1, nzt |
---|
[667] | 1177 | volume_flow_initial_l(1) = volume_flow_initial_l(1) + & |
---|
[767] | 1178 | u_init(k) * dzw(k) |
---|
| 1179 | volume_flow_area_l(1) = volume_flow_area_l(1) + dzw(k) |
---|
| 1180 | ENDDO |
---|
| 1181 | ENDDO |
---|
| 1182 | ENDIF |
---|
| 1183 | |
---|
| 1184 | IF ( nyn == ny ) THEN |
---|
| 1185 | DO i = nxl, nxr |
---|
| 1186 | DO k = nzb_2d(ny,i)+1, nzt |
---|
| 1187 | volume_flow_initial_l(2) = volume_flow_initial_l(2) + & |
---|
| 1188 | v_init(k) * dzw(k) |
---|
| 1189 | volume_flow_area_l(2) = volume_flow_area_l(2) + dzw(k) |
---|
| 1190 | ENDDO |
---|
| 1191 | ENDDO |
---|
| 1192 | ENDIF |
---|
| 1193 | |
---|
| 1194 | #if defined( __parallel ) |
---|
| 1195 | CALL MPI_ALLREDUCE( volume_flow_initial_l(1), volume_flow_initial(1),& |
---|
| 1196 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 1197 | CALL MPI_ALLREDUCE( volume_flow_area_l(1), volume_flow_area(1), & |
---|
| 1198 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 1199 | |
---|
| 1200 | #else |
---|
| 1201 | volume_flow_initial = volume_flow_initial_l |
---|
| 1202 | volume_flow_area = volume_flow_area_l |
---|
| 1203 | #endif |
---|
| 1204 | |
---|
| 1205 | ELSEIF ( TRIM( initializing_actions ) == 'cyclic_fill' ) THEN |
---|
| 1206 | |
---|
| 1207 | volume_flow_initial_l = 0.0 |
---|
| 1208 | volume_flow_area_l = 0.0 |
---|
| 1209 | |
---|
| 1210 | IF ( nxr == nx ) THEN |
---|
| 1211 | DO j = nys, nyn |
---|
| 1212 | DO k = nzb_2d(j,nx)+1, nzt |
---|
| 1213 | volume_flow_initial_l(1) = volume_flow_initial_l(1) + & |
---|
[667] | 1214 | hom_sum(k,1,0) * dzw(k) |
---|
| 1215 | volume_flow_area_l(1) = volume_flow_area_l(1) + dzw(k) |
---|
| 1216 | ENDDO |
---|
| 1217 | ENDDO |
---|
| 1218 | ENDIF |
---|
| 1219 | |
---|
| 1220 | IF ( nyn == ny ) THEN |
---|
| 1221 | DO i = nxl, nxr |
---|
[709] | 1222 | DO k = nzb_2d(ny,i)+1, nzt |
---|
[667] | 1223 | volume_flow_initial_l(2) = volume_flow_initial_l(2) + & |
---|
[709] | 1224 | hom_sum(k,2,0) * dzw(k) |
---|
[667] | 1225 | volume_flow_area_l(2) = volume_flow_area_l(2) + dzw(k) |
---|
| 1226 | ENDDO |
---|
| 1227 | ENDDO |
---|
| 1228 | ENDIF |
---|
| 1229 | |
---|
[732] | 1230 | #if defined( __parallel ) |
---|
| 1231 | CALL MPI_ALLREDUCE( volume_flow_initial_l(1), volume_flow_initial(1),& |
---|
| 1232 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 1233 | CALL MPI_ALLREDUCE( volume_flow_area_l(1), volume_flow_area(1), & |
---|
| 1234 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 1235 | |
---|
| 1236 | #else |
---|
| 1237 | volume_flow_initial = volume_flow_initial_l |
---|
| 1238 | volume_flow_area = volume_flow_area_l |
---|
| 1239 | #endif |
---|
| 1240 | |
---|
[667] | 1241 | ELSEIF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN |
---|
| 1242 | |
---|
[732] | 1243 | volume_flow_initial_l = 0.0 |
---|
| 1244 | volume_flow_area_l = 0.0 |
---|
| 1245 | |
---|
[667] | 1246 | IF ( nxr == nx ) THEN |
---|
| 1247 | DO j = nys, nyn |
---|
[709] | 1248 | DO k = nzb_2d(j,nx)+1, nzt |
---|
[667] | 1249 | volume_flow_initial_l(1) = volume_flow_initial_l(1) + & |
---|
[709] | 1250 | u(k,j,nx) * dzw(k) |
---|
[667] | 1251 | volume_flow_area_l(1) = volume_flow_area_l(1) + dzw(k) |
---|
| 1252 | ENDDO |
---|
| 1253 | ENDDO |
---|
| 1254 | ENDIF |
---|
| 1255 | |
---|
| 1256 | IF ( nyn == ny ) THEN |
---|
| 1257 | DO i = nxl, nxr |
---|
[709] | 1258 | DO k = nzb_2d(ny,i)+1, nzt |
---|
[667] | 1259 | volume_flow_initial_l(2) = volume_flow_initial_l(2) + & |
---|
| 1260 | v(k,ny,i) * dzw(k) |
---|
| 1261 | volume_flow_area_l(2) = volume_flow_area_l(2) + dzw(k) |
---|
| 1262 | ENDDO |
---|
| 1263 | ENDDO |
---|
| 1264 | ENDIF |
---|
| 1265 | |
---|
| 1266 | #if defined( __parallel ) |
---|
[732] | 1267 | CALL MPI_ALLREDUCE( volume_flow_initial_l(1), volume_flow_initial(1),& |
---|
| 1268 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 1269 | CALL MPI_ALLREDUCE( volume_flow_area_l(1), volume_flow_area(1), & |
---|
| 1270 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
[667] | 1271 | |
---|
| 1272 | #else |
---|
[732] | 1273 | volume_flow_initial = volume_flow_initial_l |
---|
| 1274 | volume_flow_area = volume_flow_area_l |
---|
[667] | 1275 | #endif |
---|
| 1276 | |
---|
[732] | 1277 | ENDIF |
---|
| 1278 | |
---|
[151] | 1279 | ! |
---|
[709] | 1280 | !-- In case of 'bulk_velocity' mode, volume_flow_initial is calculated |
---|
| 1281 | !-- from u|v_bulk instead |
---|
[680] | 1282 | IF ( TRIM( conserve_volume_flow_mode ) == 'bulk_velocity' ) THEN |
---|
| 1283 | volume_flow_initial(1) = u_bulk * volume_flow_area(1) |
---|
| 1284 | volume_flow_initial(2) = v_bulk * volume_flow_area(2) |
---|
| 1285 | ENDIF |
---|
[667] | 1286 | |
---|
[680] | 1287 | ENDIF |
---|
| 1288 | |
---|
| 1289 | |
---|
[667] | 1290 | ! |
---|
[680] | 1291 | !-- Impose random perturbation on the horizontal velocity field and then |
---|
| 1292 | !-- remove the divergences from the velocity field at the initial stage |
---|
| 1293 | IF ( create_disturbances .AND. & |
---|
| 1294 | TRIM( initializing_actions ) /= 'read_restart_data' .AND. & |
---|
| 1295 | TRIM( initializing_actions ) /= 'cyclic_fill' ) THEN |
---|
| 1296 | |
---|
| 1297 | CALL disturb_field( nzb_u_inner, tend, u ) |
---|
| 1298 | CALL disturb_field( nzb_v_inner, tend, v ) |
---|
| 1299 | n_sor = nsor_ini |
---|
| 1300 | CALL pres |
---|
| 1301 | n_sor = nsor |
---|
| 1302 | ENDIF |
---|
| 1303 | |
---|
| 1304 | ! |
---|
[138] | 1305 | !-- Initialization of the leaf area density |
---|
[709] | 1306 | IF ( plant_canopy ) THEN |
---|
[138] | 1307 | |
---|
| 1308 | SELECT CASE ( TRIM( canopy_mode ) ) |
---|
| 1309 | |
---|
| 1310 | CASE( 'block' ) |
---|
| 1311 | |
---|
[667] | 1312 | DO i = nxlg, nxrg |
---|
| 1313 | DO j = nysg, nyng |
---|
[138] | 1314 | lad_s(:,j,i) = lad(:) |
---|
| 1315 | cdc(:,j,i) = drag_coefficient |
---|
[709] | 1316 | IF ( passive_scalar ) THEN |
---|
[153] | 1317 | sls(:,j,i) = leaf_surface_concentration |
---|
| 1318 | sec(:,j,i) = scalar_exchange_coefficient |
---|
| 1319 | ENDIF |
---|
[138] | 1320 | ENDDO |
---|
| 1321 | ENDDO |
---|
| 1322 | |
---|
| 1323 | CASE DEFAULT |
---|
| 1324 | |
---|
| 1325 | ! |
---|
| 1326 | !-- The DEFAULT case is reached either if the parameter |
---|
| 1327 | !-- canopy mode contains a wrong character string or if the |
---|
| 1328 | !-- user has coded a special case in the user interface. |
---|
| 1329 | !-- There, the subroutine user_init_plant_canopy checks |
---|
| 1330 | !-- which of these two conditions applies. |
---|
| 1331 | CALL user_init_plant_canopy |
---|
| 1332 | |
---|
| 1333 | END SELECT |
---|
| 1334 | |
---|
[667] | 1335 | CALL exchange_horiz( lad_s, nbgp ) |
---|
| 1336 | CALL exchange_horiz( cdc, nbgp ) |
---|
[138] | 1337 | |
---|
[709] | 1338 | IF ( passive_scalar ) THEN |
---|
[667] | 1339 | CALL exchange_horiz( sls, nbgp ) |
---|
| 1340 | CALL exchange_horiz( sec, nbgp ) |
---|
[153] | 1341 | ENDIF |
---|
| 1342 | |
---|
| 1343 | ! |
---|
| 1344 | !-- Sharp boundaries of the plant canopy in horizontal directions |
---|
| 1345 | !-- In vertical direction the interpolation is retained, as the leaf |
---|
| 1346 | !-- area density is initialised by prescribing a vertical profile |
---|
| 1347 | !-- consisting of piecewise linear segments. The upper boundary |
---|
| 1348 | !-- of the plant canopy is now defined by lad_w(pch_index,:,:) = 0.0. |
---|
| 1349 | |
---|
[138] | 1350 | DO i = nxl, nxr |
---|
| 1351 | DO j = nys, nyn |
---|
| 1352 | DO k = nzb, nzt+1 |
---|
[709] | 1353 | IF ( lad_s(k,j,i) > 0.0 ) THEN |
---|
[153] | 1354 | lad_u(k,j,i) = lad_s(k,j,i) |
---|
| 1355 | lad_u(k,j,i+1) = lad_s(k,j,i) |
---|
| 1356 | lad_v(k,j,i) = lad_s(k,j,i) |
---|
| 1357 | lad_v(k,j+1,i) = lad_s(k,j,i) |
---|
| 1358 | ENDIF |
---|
[138] | 1359 | ENDDO |
---|
| 1360 | DO k = nzb, nzt |
---|
| 1361 | lad_w(k,j,i) = 0.5 * ( lad_s(k+1,j,i) + lad_s(k,j,i) ) |
---|
| 1362 | ENDDO |
---|
| 1363 | ENDDO |
---|
| 1364 | ENDDO |
---|
| 1365 | |
---|
[153] | 1366 | lad_w(pch_index,:,:) = 0.0 |
---|
| 1367 | lad_w(nzt+1,:,:) = lad_w(nzt,:,:) |
---|
[138] | 1368 | |
---|
[667] | 1369 | CALL exchange_horiz( lad_u, nbgp ) |
---|
| 1370 | CALL exchange_horiz( lad_v, nbgp ) |
---|
| 1371 | CALL exchange_horiz( lad_w, nbgp ) |
---|
[153] | 1372 | |
---|
| 1373 | ! |
---|
| 1374 | !-- Initialisation of the canopy heat source distribution |
---|
[709] | 1375 | IF ( cthf /= 0.0 ) THEN |
---|
[153] | 1376 | ! |
---|
| 1377 | !-- Piecewise evaluation of the leaf area index by |
---|
| 1378 | !-- integration of the leaf area density |
---|
| 1379 | lai(:,:,:) = 0.0 |
---|
[667] | 1380 | DO i = nxlg, nxrg |
---|
| 1381 | DO j = nysg, nyng |
---|
[153] | 1382 | DO k = pch_index-1, 0, -1 |
---|
| 1383 | lai(k,j,i) = lai(k+1,j,i) + & |
---|
| 1384 | ( 0.5 * ( lad_w(k+1,j,i) + & |
---|
| 1385 | lad_s(k+1,j,i) ) * & |
---|
| 1386 | ( zw(k+1) - zu(k+1) ) ) + & |
---|
| 1387 | ( 0.5 * ( lad_w(k,j,i) + & |
---|
| 1388 | lad_s(k+1,j,i) ) * & |
---|
| 1389 | ( zu(k+1) - zw(k) ) ) |
---|
| 1390 | ENDDO |
---|
| 1391 | ENDDO |
---|
| 1392 | ENDDO |
---|
| 1393 | |
---|
| 1394 | ! |
---|
| 1395 | !-- Evaluation of the upward kinematic vertical heat flux within the |
---|
| 1396 | !-- canopy |
---|
[667] | 1397 | DO i = nxlg, nxrg |
---|
| 1398 | DO j = nysg, nyng |
---|
[153] | 1399 | DO k = 0, pch_index |
---|
| 1400 | canopy_heat_flux(k,j,i) = cthf * & |
---|
| 1401 | exp( -0.6 * lai(k,j,i) ) |
---|
| 1402 | ENDDO |
---|
| 1403 | ENDDO |
---|
| 1404 | ENDDO |
---|
| 1405 | |
---|
| 1406 | ! |
---|
| 1407 | !-- The near surface heat flux is derived from the heat flux |
---|
| 1408 | !-- distribution within the canopy |
---|
| 1409 | shf(:,:) = canopy_heat_flux(0,:,:) |
---|
| 1410 | |
---|
[709] | 1411 | IF ( ASSOCIATED( shf_m ) ) shf_m = shf |
---|
[153] | 1412 | |
---|
| 1413 | ENDIF |
---|
| 1414 | |
---|
[138] | 1415 | ENDIF |
---|
| 1416 | |
---|
| 1417 | ! |
---|
[1] | 1418 | !-- If required, initialize dvrp-software |
---|
| 1419 | IF ( dt_dvrp /= 9999999.9 ) CALL init_dvrp |
---|
| 1420 | |
---|
[96] | 1421 | IF ( ocean ) THEN |
---|
[1] | 1422 | ! |
---|
[96] | 1423 | !-- Initialize quantities needed for the ocean model |
---|
| 1424 | CALL init_ocean |
---|
[388] | 1425 | |
---|
[96] | 1426 | ELSE |
---|
| 1427 | ! |
---|
| 1428 | !-- Initialize quantities for handling cloud physics |
---|
| 1429 | !-- This routine must be called before init_particles, because |
---|
| 1430 | !-- otherwise, array pt_d_t, needed in data_output_dvrp (called by |
---|
| 1431 | !-- init_particles) is not defined. |
---|
| 1432 | CALL init_cloud_physics |
---|
| 1433 | ENDIF |
---|
[1] | 1434 | |
---|
| 1435 | ! |
---|
| 1436 | !-- If required, initialize particles |
---|
[63] | 1437 | IF ( particle_advection ) CALL init_particles |
---|
[1] | 1438 | |
---|
| 1439 | ! |
---|
[673] | 1440 | !-- Initialize the ws-scheme. |
---|
| 1441 | IF ( ws_scheme_sca .OR. ws_scheme_mom ) CALL ws_init |
---|
[1] | 1442 | |
---|
| 1443 | ! |
---|
[709] | 1444 | !-- Setting weighting factors for calculation of perturbation pressure |
---|
| 1445 | !-- and turbulent quantities from the RK substeps |
---|
| 1446 | IF ( TRIM(timestep_scheme) == 'runge-kutta-3' ) THEN ! for RK3-method |
---|
| 1447 | |
---|
[713] | 1448 | weight_substep(1) = 1./6. |
---|
| 1449 | weight_substep(2) = 3./10. |
---|
| 1450 | weight_substep(3) = 8./15. |
---|
[709] | 1451 | |
---|
[713] | 1452 | weight_pres(1) = 1./3. |
---|
| 1453 | weight_pres(2) = 5./12. |
---|
| 1454 | weight_pres(3) = 1./4. |
---|
[709] | 1455 | |
---|
| 1456 | ELSEIF ( TRIM(timestep_scheme) == 'runge-kutta-2' ) THEN ! for RK2-method |
---|
| 1457 | |
---|
[713] | 1458 | weight_substep(1) = 1./2. |
---|
| 1459 | weight_substep(2) = 1./2. |
---|
[673] | 1460 | |
---|
[713] | 1461 | weight_pres(1) = 1./2. |
---|
| 1462 | weight_pres(2) = 1./2. |
---|
[709] | 1463 | |
---|
| 1464 | ELSE ! for Euler- and leapfrog-method |
---|
| 1465 | |
---|
[673] | 1466 | weight_substep(1) = 1.0 |
---|
[709] | 1467 | weight_pres(1) = 1.0 |
---|
| 1468 | |
---|
[673] | 1469 | ENDIF |
---|
| 1470 | |
---|
| 1471 | ! |
---|
[1] | 1472 | !-- Initialize Rayleigh damping factors |
---|
| 1473 | rdf = 0.0 |
---|
| 1474 | IF ( rayleigh_damping_factor /= 0.0 ) THEN |
---|
[108] | 1475 | IF ( .NOT. ocean ) THEN |
---|
| 1476 | DO k = nzb+1, nzt |
---|
| 1477 | IF ( zu(k) >= rayleigh_damping_height ) THEN |
---|
| 1478 | rdf(k) = rayleigh_damping_factor * & |
---|
[1] | 1479 | ( SIN( pi * 0.5 * ( zu(k) - rayleigh_damping_height ) & |
---|
| 1480 | / ( zu(nzt) - rayleigh_damping_height ) )& |
---|
| 1481 | )**2 |
---|
[108] | 1482 | ENDIF |
---|
| 1483 | ENDDO |
---|
| 1484 | ELSE |
---|
| 1485 | DO k = nzt, nzb+1, -1 |
---|
| 1486 | IF ( zu(k) <= rayleigh_damping_height ) THEN |
---|
| 1487 | rdf(k) = rayleigh_damping_factor * & |
---|
| 1488 | ( SIN( pi * 0.5 * ( rayleigh_damping_height - zu(k) ) & |
---|
| 1489 | / ( rayleigh_damping_height - zu(nzb+1)))& |
---|
| 1490 | )**2 |
---|
| 1491 | ENDIF |
---|
| 1492 | ENDDO |
---|
| 1493 | ENDIF |
---|
[1] | 1494 | ENDIF |
---|
| 1495 | |
---|
| 1496 | ! |
---|
[240] | 1497 | !-- Initialize the starting level and the vertical smoothing factor used for |
---|
| 1498 | !-- the external pressure gradient |
---|
| 1499 | dp_smooth_factor = 1.0 |
---|
| 1500 | IF ( dp_external ) THEN |
---|
| 1501 | ! |
---|
| 1502 | !-- Set the starting level dp_level_ind_b only if it has not been set before |
---|
| 1503 | !-- (e.g. in init_grid). |
---|
| 1504 | IF ( dp_level_ind_b == 0 ) THEN |
---|
| 1505 | ind_array = MINLOC( ABS( dp_level_b - zu ) ) |
---|
| 1506 | dp_level_ind_b = ind_array(1) - 1 + nzb |
---|
| 1507 | ! MINLOC uses lower array bound 1 |
---|
| 1508 | ENDIF |
---|
| 1509 | IF ( dp_smooth ) THEN |
---|
| 1510 | dp_smooth_factor(:dp_level_ind_b) = 0.0 |
---|
| 1511 | DO k = dp_level_ind_b+1, nzt |
---|
| 1512 | dp_smooth_factor(k) = 0.5 * ( 1.0 + SIN( pi * & |
---|
| 1513 | ( REAL( k - dp_level_ind_b ) / & |
---|
| 1514 | REAL( nzt - dp_level_ind_b ) - 0.5 ) ) ) |
---|
| 1515 | ENDDO |
---|
| 1516 | ENDIF |
---|
| 1517 | ENDIF |
---|
| 1518 | |
---|
| 1519 | ! |
---|
[1] | 1520 | !-- Initialize diffusivities used within the outflow damping layer in case of |
---|
| 1521 | !-- non-cyclic lateral boundaries. A linear increase is assumed over the first |
---|
| 1522 | !-- half of the width of the damping layer |
---|
[707] | 1523 | IF ( bc_lr_dirrad ) THEN |
---|
[1] | 1524 | |
---|
[667] | 1525 | DO i = nxlg, nxrg |
---|
[73] | 1526 | IF ( i >= nx - outflow_damping_width ) THEN |
---|
| 1527 | km_damp_x(i) = km_damp_max * MIN( 1.0, & |
---|
| 1528 | ( i - ( nx - outflow_damping_width ) ) / & |
---|
| 1529 | REAL( outflow_damping_width/2 ) & |
---|
| 1530 | ) |
---|
| 1531 | ELSE |
---|
| 1532 | km_damp_x(i) = 0.0 |
---|
| 1533 | ENDIF |
---|
| 1534 | ENDDO |
---|
[1] | 1535 | |
---|
[707] | 1536 | ELSEIF ( bc_lr_raddir ) THEN |
---|
[1] | 1537 | |
---|
[667] | 1538 | DO i = nxlg, nxrg |
---|
[73] | 1539 | IF ( i <= outflow_damping_width ) THEN |
---|
| 1540 | km_damp_x(i) = km_damp_max * MIN( 1.0, & |
---|
| 1541 | ( outflow_damping_width - i ) / & |
---|
| 1542 | REAL( outflow_damping_width/2 ) & |
---|
| 1543 | ) |
---|
| 1544 | ELSE |
---|
| 1545 | km_damp_x(i) = 0.0 |
---|
| 1546 | ENDIF |
---|
| 1547 | ENDDO |
---|
[1] | 1548 | |
---|
[73] | 1549 | ENDIF |
---|
[1] | 1550 | |
---|
[707] | 1551 | IF ( bc_ns_dirrad ) THEN |
---|
[1] | 1552 | |
---|
[667] | 1553 | DO j = nysg, nyng |
---|
[73] | 1554 | IF ( j >= ny - outflow_damping_width ) THEN |
---|
| 1555 | km_damp_y(j) = km_damp_max * MIN( 1.0, & |
---|
| 1556 | ( j - ( ny - outflow_damping_width ) ) / & |
---|
| 1557 | REAL( outflow_damping_width/2 ) & |
---|
| 1558 | ) |
---|
| 1559 | ELSE |
---|
| 1560 | km_damp_y(j) = 0.0 |
---|
[1] | 1561 | ENDIF |
---|
| 1562 | ENDDO |
---|
| 1563 | |
---|
[707] | 1564 | ELSEIF ( bc_ns_raddir ) THEN |
---|
[1] | 1565 | |
---|
[667] | 1566 | DO j = nysg, nyng |
---|
[73] | 1567 | IF ( j <= outflow_damping_width ) THEN |
---|
| 1568 | km_damp_y(j) = km_damp_max * MIN( 1.0, & |
---|
| 1569 | ( outflow_damping_width - j ) / & |
---|
| 1570 | REAL( outflow_damping_width/2 ) & |
---|
| 1571 | ) |
---|
| 1572 | ELSE |
---|
| 1573 | km_damp_y(j) = 0.0 |
---|
[1] | 1574 | ENDIF |
---|
[73] | 1575 | ENDDO |
---|
[1] | 1576 | |
---|
| 1577 | ENDIF |
---|
| 1578 | |
---|
| 1579 | ! |
---|
[709] | 1580 | !-- Initialize local summation arrays for routine flow_statistics. |
---|
| 1581 | !-- This is necessary because they may not yet have been initialized when they |
---|
| 1582 | !-- are called from flow_statistics (or - depending on the chosen model run - |
---|
| 1583 | !-- are never initialized) |
---|
[1] | 1584 | sums_divnew_l = 0.0 |
---|
| 1585 | sums_divold_l = 0.0 |
---|
| 1586 | sums_l_l = 0.0 |
---|
| 1587 | sums_up_fraction_l = 0.0 |
---|
| 1588 | sums_wsts_bc_l = 0.0 |
---|
| 1589 | |
---|
| 1590 | ! |
---|
| 1591 | !-- Pre-set masks for regional statistics. Default is the total model domain. |
---|
| 1592 | rmask = 1.0 |
---|
| 1593 | |
---|
| 1594 | ! |
---|
[51] | 1595 | !-- User-defined initializing actions. Check afterwards, if maximum number |
---|
[709] | 1596 | !-- of allowed timeseries is exceeded |
---|
[1] | 1597 | CALL user_init |
---|
| 1598 | |
---|
[51] | 1599 | IF ( dots_num > dots_max ) THEN |
---|
[254] | 1600 | WRITE( message_string, * ) 'number of time series quantities exceeds', & |
---|
[274] | 1601 | ' its maximum of dots_max = ', dots_max, & |
---|
[254] | 1602 | ' &Please increase dots_max in modules.f90.' |
---|
| 1603 | CALL message( 'init_3d_model', 'PA0194', 1, 2, 0, 6, 0 ) |
---|
[51] | 1604 | ENDIF |
---|
| 1605 | |
---|
[1] | 1606 | ! |
---|
| 1607 | !-- Input binary data file is not needed anymore. This line must be placed |
---|
| 1608 | !-- after call of user_init! |
---|
| 1609 | CALL close_file( 13 ) |
---|
| 1610 | |
---|
| 1611 | ! |
---|
| 1612 | !-- Compute total sum of active mask grid points |
---|
| 1613 | !-- ngp_2dh: number of grid points of a horizontal cross section through the |
---|
| 1614 | !-- total domain |
---|
| 1615 | !-- ngp_3d: number of grid points of the total domain |
---|
[132] | 1616 | ngp_2dh_outer_l = 0 |
---|
| 1617 | ngp_2dh_outer = 0 |
---|
| 1618 | ngp_2dh_s_inner_l = 0 |
---|
| 1619 | ngp_2dh_s_inner = 0 |
---|
| 1620 | ngp_2dh_l = 0 |
---|
| 1621 | ngp_2dh = 0 |
---|
[485] | 1622 | ngp_3d_inner_l = 0.0 |
---|
[132] | 1623 | ngp_3d_inner = 0 |
---|
| 1624 | ngp_3d = 0 |
---|
| 1625 | ngp_sums = ( nz + 2 ) * ( pr_palm + max_pr_user ) |
---|
[1] | 1626 | |
---|
| 1627 | DO sr = 0, statistic_regions |
---|
| 1628 | DO i = nxl, nxr |
---|
| 1629 | DO j = nys, nyn |
---|
| 1630 | IF ( rmask(j,i,sr) == 1.0 ) THEN |
---|
| 1631 | ! |
---|
| 1632 | !-- All xy-grid points |
---|
| 1633 | ngp_2dh_l(sr) = ngp_2dh_l(sr) + 1 |
---|
| 1634 | ! |
---|
| 1635 | !-- xy-grid points above topography |
---|
| 1636 | DO k = nzb_s_outer(j,i), nz + 1 |
---|
| 1637 | ngp_2dh_outer_l(k,sr) = ngp_2dh_outer_l(k,sr) + 1 |
---|
| 1638 | ENDDO |
---|
[132] | 1639 | DO k = nzb_s_inner(j,i), nz + 1 |
---|
| 1640 | ngp_2dh_s_inner_l(k,sr) = ngp_2dh_s_inner_l(k,sr) + 1 |
---|
| 1641 | ENDDO |
---|
[1] | 1642 | ! |
---|
| 1643 | !-- All grid points of the total domain above topography |
---|
| 1644 | ngp_3d_inner_l(sr) = ngp_3d_inner_l(sr) + & |
---|
| 1645 | ( nz - nzb_s_inner(j,i) + 2 ) |
---|
| 1646 | ENDIF |
---|
| 1647 | ENDDO |
---|
| 1648 | ENDDO |
---|
| 1649 | ENDDO |
---|
| 1650 | |
---|
| 1651 | sr = statistic_regions + 1 |
---|
| 1652 | #if defined( __parallel ) |
---|
[622] | 1653 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[485] | 1654 | CALL MPI_ALLREDUCE( ngp_2dh_l(0), ngp_2dh(0), sr, MPI_INTEGER, MPI_SUM, & |
---|
[1] | 1655 | comm2d, ierr ) |
---|
[622] | 1656 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[485] | 1657 | CALL MPI_ALLREDUCE( ngp_2dh_outer_l(0,0), ngp_2dh_outer(0,0), (nz+2)*sr, & |
---|
[1] | 1658 | MPI_INTEGER, MPI_SUM, comm2d, ierr ) |
---|
[622] | 1659 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[485] | 1660 | CALL MPI_ALLREDUCE( ngp_2dh_s_inner_l(0,0), ngp_2dh_s_inner(0,0), & |
---|
[132] | 1661 | (nz+2)*sr, MPI_INTEGER, MPI_SUM, comm2d, ierr ) |
---|
[622] | 1662 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[485] | 1663 | CALL MPI_ALLREDUCE( ngp_3d_inner_l(0), ngp_3d_inner_tmp(0), sr, MPI_REAL, & |
---|
[1] | 1664 | MPI_SUM, comm2d, ierr ) |
---|
[485] | 1665 | ngp_3d_inner = INT( ngp_3d_inner_tmp, KIND = SELECTED_INT_KIND( 18 ) ) |
---|
[1] | 1666 | #else |
---|
[132] | 1667 | ngp_2dh = ngp_2dh_l |
---|
| 1668 | ngp_2dh_outer = ngp_2dh_outer_l |
---|
| 1669 | ngp_2dh_s_inner = ngp_2dh_s_inner_l |
---|
[485] | 1670 | ngp_3d_inner = INT( ngp_3d_inner_l, KIND = SELECTED_INT_KIND( 18 ) ) |
---|
[1] | 1671 | #endif |
---|
| 1672 | |
---|
[560] | 1673 | ngp_3d = INT ( ngp_2dh, KIND = SELECTED_INT_KIND( 18 ) ) * & |
---|
| 1674 | INT ( (nz + 2 ), KIND = SELECTED_INT_KIND( 18 ) ) |
---|
[1] | 1675 | |
---|
| 1676 | ! |
---|
| 1677 | !-- Set a lower limit of 1 in order to avoid zero divisions in flow_statistics, |
---|
| 1678 | !-- buoyancy, etc. A zero value will occur for cases where all grid points of |
---|
| 1679 | !-- the respective subdomain lie below the surface topography |
---|
[667] | 1680 | ngp_2dh_outer = MAX( 1, ngp_2dh_outer(:,:) ) |
---|
[631] | 1681 | ngp_3d_inner = MAX( INT(1, KIND = SELECTED_INT_KIND( 18 )), & |
---|
| 1682 | ngp_3d_inner(:) ) |
---|
[667] | 1683 | ngp_2dh_s_inner = MAX( 1, ngp_2dh_s_inner(:,:) ) |
---|
[1] | 1684 | |
---|
[485] | 1685 | DEALLOCATE( ngp_2dh_l, ngp_2dh_outer_l, ngp_3d_inner_l, ngp_3d_inner_tmp ) |
---|
[1] | 1686 | |
---|
| 1687 | |
---|
| 1688 | END SUBROUTINE init_3d_model |
---|