[1] | 1 | #if defined( __ibmy_special ) |
---|
| 2 | @PROCESS NOOPTimize |
---|
| 3 | #endif |
---|
| 4 | SUBROUTINE init_3d_model |
---|
| 5 | |
---|
| 6 | !------------------------------------------------------------------------------! |
---|
[254] | 7 | ! Current revisions: |
---|
[1] | 8 | ! ----------------- |
---|
[667] | 9 | ! nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng in loops and |
---|
| 10 | ! allocation of arrays. Calls of exchange_horiz are modified. |
---|
| 11 | ! Call ws_init to initialize arrays needed for statistical evaluation and |
---|
| 12 | ! optimization when ws-scheme is used. |
---|
[392] | 13 | ! |
---|
[667] | 14 | ! |
---|
| 15 | ! Initial volume flow is now calculated by using the variable hom_sum. |
---|
| 16 | ! Therefore the correction of initial volume flow for non-flat topography |
---|
| 17 | ! removed (removed u_nzb_p1_for_vfc and v_nzb_p1_for_vfc) |
---|
| 18 | ! |
---|
| 19 | ! Changed surface boundary conditions for u and v in case of ibc_uv_b == 0 from |
---|
| 20 | ! mirror bc to dirichlet boundary conditions (u=v=0), so that k=nzb is |
---|
| 21 | ! representative for the height z0 |
---|
| 22 | ! |
---|
| 23 | ! Bugfix: type conversion of '1' to 64bit for the MAX function (ngp_3d_inner) |
---|
| 24 | ! |
---|
[392] | 25 | ! Former revisions: |
---|
| 26 | ! ----------------- |
---|
| 27 | ! $Id: init_3d_model.f90 667 2010-12-23 12:06:00Z suehring $ |
---|
| 28 | ! |
---|
[623] | 29 | ! 622 2010-12-10 08:08:13Z raasch |
---|
| 30 | ! optional barriers included in order to speed up collective operations |
---|
| 31 | ! |
---|
[561] | 32 | ! 560 2010-09-09 10:06:09Z weinreis |
---|
| 33 | ! bugfix: correction of calculating ngp_3d for 64 bit |
---|
| 34 | ! |
---|
[486] | 35 | ! 485 2010-02-05 10:57:51Z raasch |
---|
| 36 | ! calculation of ngp_3d + ngp_3d_inner changed because they have now 64 bit |
---|
| 37 | ! |
---|
[482] | 38 | ! 407 2009-12-01 15:01:15Z maronga |
---|
| 39 | ! var_ts is replaced by dots_max |
---|
| 40 | ! Enabled passive scalar/humidity wall fluxes for non-flat topography |
---|
| 41 | ! |
---|
[392] | 42 | ! 388 2009-09-23 09:40:33Z raasch |
---|
[388] | 43 | ! Initialization of prho added. |
---|
[359] | 44 | ! bugfix: correction of initial volume flow for non-flat topography |
---|
| 45 | ! bugfix: zero initialization of arrays within buildings for 'cyclic_fill' |
---|
[333] | 46 | ! bugfix: avoid that ngp_2dh_s_inner becomes zero |
---|
[328] | 47 | ! initializing_actions='read_data_for_recycling' renamed to 'cyclic_fill', now |
---|
| 48 | ! independent of turbulent_inflow |
---|
[254] | 49 | ! Output of messages replaced by message handling routine. |
---|
[240] | 50 | ! Set the starting level and the vertical smoothing factor used for |
---|
| 51 | ! the external pressure gradient |
---|
[254] | 52 | ! +conserve_volume_flow_mode: 'default', 'initial_profiles', 'inflow_profile' |
---|
[241] | 53 | ! and 'bulk_velocity' |
---|
[292] | 54 | ! If the inversion height calculated by the prerun is zero, |
---|
| 55 | ! inflow_damping_height must be explicitly specified. |
---|
[139] | 56 | ! |
---|
[198] | 57 | ! 181 2008-07-30 07:07:47Z raasch |
---|
| 58 | ! bugfix: zero assignments to tendency arrays in case of restarts, |
---|
| 59 | ! further extensions and modifications in the initialisation of the plant |
---|
| 60 | ! canopy model, |
---|
| 61 | ! allocation of hom_sum moved to parin, initialization of spectrum_x|y directly |
---|
| 62 | ! after allocating theses arrays, |
---|
| 63 | ! read data for recycling added as new initialization option, |
---|
| 64 | ! dummy allocation for diss |
---|
| 65 | ! |
---|
[139] | 66 | ! 138 2007-11-28 10:03:58Z letzel |
---|
[132] | 67 | ! New counter ngp_2dh_s_inner. |
---|
| 68 | ! Allow new case bc_uv_t = 'dirichlet_0' for channel flow. |
---|
| 69 | ! Corrected calculation of initial volume flow for 'set_1d-model_profiles' and |
---|
| 70 | ! 'set_constant_profiles' in case of buildings in the reference cross-sections. |
---|
[77] | 71 | ! |
---|
[110] | 72 | ! 108 2007-08-24 15:10:38Z letzel |
---|
| 73 | ! Flux initialization in case of coupled runs, +momentum fluxes at top boundary, |
---|
| 74 | ! +arrays for phase speed c_u, c_v, c_w, indices for u|v|w_m_l|r changed |
---|
| 75 | ! +qswst_remote in case of atmosphere model with humidity coupled to ocean |
---|
| 76 | ! Rayleigh damping for ocean, optionally calculate km and kh from initial |
---|
| 77 | ! TKE e_init |
---|
| 78 | ! |
---|
[98] | 79 | ! 97 2007-06-21 08:23:15Z raasch |
---|
| 80 | ! Initialization of salinity, call of init_ocean |
---|
| 81 | ! |
---|
[90] | 82 | ! 87 2007-05-22 15:46:47Z raasch |
---|
| 83 | ! var_hom and var_sum renamed pr_palm |
---|
| 84 | ! |
---|
[77] | 85 | ! 75 2007-03-22 09:54:05Z raasch |
---|
[73] | 86 | ! Arrays for radiation boundary conditions are allocated (u_m_l, u_m_r, etc.), |
---|
| 87 | ! bugfix for cases with the outflow damping layer extending over more than one |
---|
[75] | 88 | ! subdomain, moisture renamed humidity, |
---|
| 89 | ! new initializing action "by_user" calls user_init_3d_model, |
---|
[72] | 90 | ! precipitation_amount/rate, ts_value are allocated, +module netcdf_control, |
---|
[51] | 91 | ! initial velocities at nzb+1 are regarded for volume |
---|
| 92 | ! flow control in case they have been set zero before (to avoid small timesteps) |
---|
[75] | 93 | ! -uvmean_outflow, uxrp, vynp eliminated |
---|
[1] | 94 | ! |
---|
[39] | 95 | ! 19 2007-02-23 04:53:48Z raasch |
---|
| 96 | ! +handling of top fluxes |
---|
| 97 | ! |
---|
[3] | 98 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 99 | ! |
---|
[1] | 100 | ! Revision 1.49 2006/08/22 15:59:07 raasch |
---|
| 101 | ! No optimization of this file on the ibmy (Yonsei Univ.) |
---|
| 102 | ! |
---|
| 103 | ! Revision 1.1 1998/03/09 16:22:22 raasch |
---|
| 104 | ! Initial revision |
---|
| 105 | ! |
---|
| 106 | ! |
---|
| 107 | ! Description: |
---|
| 108 | ! ------------ |
---|
| 109 | ! Allocation of arrays and initialization of the 3D model via |
---|
| 110 | ! a) pre-run the 1D model |
---|
| 111 | ! or |
---|
| 112 | ! b) pre-set constant linear profiles |
---|
| 113 | ! or |
---|
| 114 | ! c) read values of a previous run |
---|
| 115 | !------------------------------------------------------------------------------! |
---|
| 116 | |
---|
[667] | 117 | USE advec_ws |
---|
[1] | 118 | USE arrays_3d |
---|
| 119 | USE averaging |
---|
[72] | 120 | USE cloud_parameters |
---|
[1] | 121 | USE constants |
---|
| 122 | USE control_parameters |
---|
| 123 | USE cpulog |
---|
| 124 | USE indices |
---|
| 125 | USE interfaces |
---|
| 126 | USE model_1d |
---|
[51] | 127 | USE netcdf_control |
---|
[1] | 128 | USE particle_attributes |
---|
| 129 | USE pegrid |
---|
| 130 | USE profil_parameter |
---|
| 131 | USE random_function_mod |
---|
| 132 | USE statistics |
---|
| 133 | |
---|
| 134 | IMPLICIT NONE |
---|
| 135 | |
---|
[559] | 136 | INTEGER :: i, ind_array(1), j, k, sr |
---|
[1] | 137 | |
---|
[485] | 138 | INTEGER, DIMENSION(:), ALLOCATABLE :: ngp_2dh_l |
---|
[1] | 139 | |
---|
[132] | 140 | INTEGER, DIMENSION(:,:), ALLOCATABLE :: ngp_2dh_outer_l, & |
---|
| 141 | ngp_2dh_s_inner_l |
---|
[1] | 142 | |
---|
[153] | 143 | REAL :: a, b |
---|
| 144 | |
---|
[1] | 145 | REAL, DIMENSION(1:2) :: volume_flow_area_l, volume_flow_initial_l |
---|
| 146 | |
---|
[485] | 147 | REAL, DIMENSION(:), ALLOCATABLE :: ngp_3d_inner_l, ngp_3d_inner_tmp |
---|
[1] | 148 | |
---|
[485] | 149 | |
---|
[1] | 150 | ! |
---|
| 151 | !-- Allocate arrays |
---|
| 152 | ALLOCATE( ngp_2dh(0:statistic_regions), ngp_2dh_l(0:statistic_regions), & |
---|
| 153 | ngp_3d(0:statistic_regions), & |
---|
| 154 | ngp_3d_inner(0:statistic_regions), & |
---|
| 155 | ngp_3d_inner_l(0:statistic_regions), & |
---|
[485] | 156 | ngp_3d_inner_tmp(0:statistic_regions), & |
---|
[1] | 157 | sums_divnew_l(0:statistic_regions), & |
---|
| 158 | sums_divold_l(0:statistic_regions) ) |
---|
[240] | 159 | ALLOCATE( dp_smooth_factor(nzb:nzt), rdf(nzb+1:nzt) ) |
---|
[143] | 160 | ALLOCATE( ngp_2dh_outer(nzb:nzt+1,0:statistic_regions), & |
---|
[1] | 161 | ngp_2dh_outer_l(nzb:nzt+1,0:statistic_regions), & |
---|
[132] | 162 | ngp_2dh_s_inner(nzb:nzt+1,0:statistic_regions), & |
---|
| 163 | ngp_2dh_s_inner_l(nzb:nzt+1,0:statistic_regions), & |
---|
[667] | 164 | rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions), & |
---|
[87] | 165 | sums(nzb:nzt+1,pr_palm+max_pr_user), & |
---|
| 166 | sums_l(nzb:nzt+1,pr_palm+max_pr_user,0:threads_per_task-1), & |
---|
[1] | 167 | sums_l_l(nzb:nzt+1,0:statistic_regions,0:threads_per_task-1), & |
---|
| 168 | sums_up_fraction_l(10,3,0:statistic_regions), & |
---|
[48] | 169 | sums_wsts_bc_l(nzb:nzt+1,0:statistic_regions), & |
---|
[394] | 170 | ts_value(dots_max,0:statistic_regions) ) |
---|
[667] | 171 | ALLOCATE( km_damp_x(nxlg:nxrg), km_damp_y(nysg:nyng) ) |
---|
[1] | 172 | |
---|
[667] | 173 | ALLOCATE( rif_1(nysg:nyng,nxlg:nxrg), shf_1(nysg:nyng,nxlg:nxrg), & |
---|
| 174 | ts(nysg:nyng,nxlg:nxrg), tswst_1(nysg:nyng,nxlg:nxrg), & |
---|
| 175 | us(nysg:nyng,nxlg:nxrg), usws_1(nysg:nyng,nxlg:nxrg), & |
---|
| 176 | uswst_1(nysg:nyng,nxlg:nxrg), & |
---|
| 177 | vsws_1(nysg:nyng,nxlg:nxrg), & |
---|
| 178 | vswst_1(nysg:nyng,nxlg:nxrg), z0(nysg:nyng,nxlg:nxrg) ) |
---|
[1] | 179 | |
---|
| 180 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 181 | ! |
---|
| 182 | !-- Leapfrog scheme needs two timelevels of diffusion quantities |
---|
[667] | 183 | ALLOCATE( rif_2(nysg:nyng,nxlg:nxrg), & |
---|
| 184 | shf_2(nysg:nyng,nxlg:nxrg), & |
---|
| 185 | tswst_2(nysg:nyng,nxlg:nxrg), & |
---|
| 186 | usws_2(nysg:nyng,nxlg:nxrg), & |
---|
| 187 | uswst_2(nysg:nyng,nxlg:nxrg), & |
---|
| 188 | vswst_2(nysg:nyng,nxlg:nxrg), & |
---|
| 189 | vsws_2(nysg:nyng,nxlg:nxrg) ) |
---|
[1] | 190 | ENDIF |
---|
| 191 | |
---|
[75] | 192 | ALLOCATE( d(nzb+1:nzta,nys:nyna,nxl:nxra), & |
---|
[667] | 193 | e_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 194 | e_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 195 | e_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 196 | kh_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 197 | km_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 198 | p(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 199 | pt_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 200 | pt_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 201 | pt_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 202 | tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 203 | u_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 204 | u_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 205 | u_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 206 | v_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 207 | v_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 208 | v_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 209 | w_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 210 | w_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 211 | w_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1] | 212 | |
---|
| 213 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[667] | 214 | ALLOCATE( kh_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 215 | km_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1] | 216 | ENDIF |
---|
| 217 | |
---|
[75] | 218 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 219 | ! |
---|
[75] | 220 | !-- 2D-humidity/scalar arrays |
---|
[667] | 221 | ALLOCATE ( qs(nysg:nyng,nxlg:nxrg), & |
---|
| 222 | qsws_1(nysg:nyng,nxlg:nxrg), & |
---|
| 223 | qswst_1(nysg:nyng,nxlg:nxrg) ) |
---|
[1] | 224 | |
---|
| 225 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[667] | 226 | ALLOCATE( qsws_2(nysg:nyng,nxlg:nxrg), & |
---|
| 227 | qswst_2(nysg:nyng,nxlg:nxrg) ) |
---|
[1] | 228 | ENDIF |
---|
| 229 | ! |
---|
[75] | 230 | !-- 3D-humidity/scalar arrays |
---|
[667] | 231 | ALLOCATE( q_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 232 | q_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 233 | q_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1] | 234 | |
---|
| 235 | ! |
---|
[75] | 236 | !-- 3D-arrays needed for humidity only |
---|
| 237 | IF ( humidity ) THEN |
---|
[667] | 238 | ALLOCATE( vpt_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1] | 239 | |
---|
| 240 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[667] | 241 | ALLOCATE( vpt_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1] | 242 | ENDIF |
---|
| 243 | |
---|
| 244 | IF ( cloud_physics ) THEN |
---|
| 245 | ! |
---|
| 246 | !-- Liquid water content |
---|
[667] | 247 | ALLOCATE ( ql_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[72] | 248 | ! |
---|
| 249 | !-- Precipitation amount and rate (only needed if output is switched) |
---|
[667] | 250 | ALLOCATE( precipitation_amount(nysg:nyng,nxlg:nxrg), & |
---|
| 251 | precipitation_rate(nysg:nyng,nxlg:nxrg) ) |
---|
[1] | 252 | ENDIF |
---|
| 253 | |
---|
| 254 | IF ( cloud_droplets ) THEN |
---|
| 255 | ! |
---|
| 256 | !-- Liquid water content, change in liquid water content, |
---|
| 257 | !-- real volume of particles (with weighting), volume of particles |
---|
[667] | 258 | ALLOCATE ( ql_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 259 | ql_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 260 | ql_v(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 261 | ql_vp(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1] | 262 | ENDIF |
---|
| 263 | |
---|
| 264 | ENDIF |
---|
| 265 | |
---|
| 266 | ENDIF |
---|
| 267 | |
---|
[94] | 268 | IF ( ocean ) THEN |
---|
[667] | 269 | ALLOCATE( saswsb_1(nysg:nyng,nxlg:nxrg), & |
---|
| 270 | saswst_1(nysg:nyng,nxlg:nxrg) ) |
---|
| 271 | ALLOCATE( prho_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 272 | rho_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 273 | sa_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 274 | sa_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 275 | sa_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[388] | 276 | prho => prho_1 |
---|
| 277 | rho => rho_1 ! routines calc_mean_profile and diffusion_e require |
---|
| 278 | ! density to be apointer |
---|
[108] | 279 | IF ( humidity_remote ) THEN |
---|
[667] | 280 | ALLOCATE( qswst_remote(nysg:nyng,nxlg:nxrg)) |
---|
[108] | 281 | qswst_remote = 0.0 |
---|
| 282 | ENDIF |
---|
[94] | 283 | ENDIF |
---|
| 284 | |
---|
[1] | 285 | ! |
---|
| 286 | !-- 3D-array for storing the dissipation, needed for calculating the sgs |
---|
| 287 | !-- particle velocities |
---|
| 288 | IF ( use_sgs_for_particles ) THEN |
---|
[667] | 289 | ALLOCATE ( diss(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[181] | 290 | ELSE |
---|
| 291 | ALLOCATE ( diss(2,2,2) ) ! required because diss is used as a |
---|
| 292 | ! formal parameter |
---|
[1] | 293 | ENDIF |
---|
| 294 | |
---|
| 295 | IF ( dt_dosp /= 9999999.9 ) THEN |
---|
| 296 | ALLOCATE( spectrum_x( 1:nx/2, 1:10, 1:10 ), & |
---|
| 297 | spectrum_y( 1:ny/2, 1:10, 1:10 ) ) |
---|
[146] | 298 | spectrum_x = 0.0 |
---|
| 299 | spectrum_y = 0.0 |
---|
[1] | 300 | ENDIF |
---|
| 301 | |
---|
| 302 | ! |
---|
[138] | 303 | !-- 3D-arrays for the leaf area density and the canopy drag coefficient |
---|
| 304 | IF ( plant_canopy ) THEN |
---|
[667] | 305 | ALLOCATE ( lad_s(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 306 | lad_u(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 307 | lad_v(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 308 | lad_w(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 309 | cdc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[153] | 310 | |
---|
| 311 | IF ( passive_scalar ) THEN |
---|
[667] | 312 | ALLOCATE ( sls(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 313 | sec(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[153] | 314 | ENDIF |
---|
| 315 | |
---|
| 316 | IF ( cthf /= 0.0 ) THEN |
---|
[667] | 317 | ALLOCATE ( lai(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 318 | canopy_heat_flux(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[153] | 319 | ENDIF |
---|
| 320 | |
---|
[138] | 321 | ENDIF |
---|
| 322 | |
---|
| 323 | ! |
---|
[51] | 324 | !-- 4D-array for storing the Rif-values at vertical walls |
---|
| 325 | IF ( topography /= 'flat' ) THEN |
---|
[667] | 326 | ALLOCATE( rif_wall(nzb:nzt+1,nysg:nyng,nxlg:nxrg,1:4) ) |
---|
[51] | 327 | rif_wall = 0.0 |
---|
| 328 | ENDIF |
---|
| 329 | |
---|
| 330 | ! |
---|
[106] | 331 | !-- Arrays to store velocity data from t-dt and the phase speeds which |
---|
| 332 | !-- are needed for radiation boundary conditions |
---|
[73] | 333 | IF ( outflow_l ) THEN |
---|
[667] | 334 | ALLOCATE( u_m_l(nzb:nzt+1,nysg:nyng,1:2), & |
---|
| 335 | v_m_l(nzb:nzt+1,nysg:nyng,0:1), & |
---|
| 336 | w_m_l(nzb:nzt+1,nysg:nyng,0:1) ) |
---|
[73] | 337 | ENDIF |
---|
| 338 | IF ( outflow_r ) THEN |
---|
[667] | 339 | ALLOCATE( u_m_r(nzb:nzt+1,nysg:nyng,nx-1:nx), & |
---|
| 340 | v_m_r(nzb:nzt+1,nysg:nyng,nx-1:nx), & |
---|
| 341 | w_m_r(nzb:nzt+1,nysg:nyng,nx-1:nx) ) |
---|
[73] | 342 | ENDIF |
---|
[106] | 343 | IF ( outflow_l .OR. outflow_r ) THEN |
---|
[667] | 344 | ALLOCATE( c_u(nzb:nzt+1,nysg:nyng), c_v(nzb:nzt+1,nysg:nyng), & |
---|
| 345 | c_w(nzb:nzt+1,nysg:nyng) ) |
---|
[106] | 346 | ENDIF |
---|
[73] | 347 | IF ( outflow_s ) THEN |
---|
[667] | 348 | ALLOCATE( u_m_s(nzb:nzt+1,0:1,nxlg:nxrg), & |
---|
| 349 | v_m_s(nzb:nzt+1,1:2,nxlg:nxrg), & |
---|
| 350 | w_m_s(nzb:nzt+1,0:1,nxlg:nxrg) ) |
---|
[73] | 351 | ENDIF |
---|
| 352 | IF ( outflow_n ) THEN |
---|
[667] | 353 | ALLOCATE( u_m_n(nzb:nzt+1,ny-1:ny,nxlg:nxrg), & |
---|
| 354 | v_m_n(nzb:nzt+1,ny-1:ny,nxlg:nxrg), & |
---|
| 355 | w_m_n(nzb:nzt+1,ny-1:ny,nxlg:nxrg) ) |
---|
[73] | 356 | ENDIF |
---|
[106] | 357 | IF ( outflow_s .OR. outflow_n ) THEN |
---|
[667] | 358 | ALLOCATE( c_u(nzb:nzt+1,nxlg:nxrg), c_v(nzb:nzt+1,nxlg:nxrg), & |
---|
| 359 | c_w(nzb:nzt+1,nxlg:nxrg) ) |
---|
[106] | 360 | ENDIF |
---|
[73] | 361 | |
---|
| 362 | ! |
---|
[1] | 363 | !-- Initial assignment of the pointers |
---|
| 364 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 365 | |
---|
[19] | 366 | rif_m => rif_1; rif => rif_2 |
---|
| 367 | shf_m => shf_1; shf => shf_2 |
---|
| 368 | tswst_m => tswst_1; tswst => tswst_2 |
---|
| 369 | usws_m => usws_1; usws => usws_2 |
---|
[102] | 370 | uswst_m => uswst_1; uswst => uswst_2 |
---|
[19] | 371 | vsws_m => vsws_1; vsws => vsws_2 |
---|
[102] | 372 | vswst_m => vswst_1; vswst => vswst_2 |
---|
[1] | 373 | e_m => e_1; e => e_2; e_p => e_3; te_m => e_3 |
---|
| 374 | kh_m => kh_1; kh => kh_2 |
---|
| 375 | km_m => km_1; km => km_2 |
---|
| 376 | pt_m => pt_1; pt => pt_2; pt_p => pt_3; tpt_m => pt_3 |
---|
| 377 | u_m => u_1; u => u_2; u_p => u_3; tu_m => u_3 |
---|
| 378 | v_m => v_1; v => v_2; v_p => v_3; tv_m => v_3 |
---|
| 379 | w_m => w_1; w => w_2; w_p => w_3; tw_m => w_3 |
---|
| 380 | |
---|
[75] | 381 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[19] | 382 | qsws_m => qsws_1; qsws => qsws_2 |
---|
| 383 | qswst_m => qswst_1; qswst => qswst_2 |
---|
[1] | 384 | q_m => q_1; q => q_2; q_p => q_3; tq_m => q_3 |
---|
[75] | 385 | IF ( humidity ) vpt_m => vpt_1; vpt => vpt_2 |
---|
[1] | 386 | IF ( cloud_physics ) ql => ql_1 |
---|
| 387 | IF ( cloud_droplets ) THEN |
---|
| 388 | ql => ql_1 |
---|
| 389 | ql_c => ql_2 |
---|
| 390 | ENDIF |
---|
| 391 | ENDIF |
---|
| 392 | |
---|
| 393 | ELSE |
---|
| 394 | |
---|
[19] | 395 | rif => rif_1 |
---|
| 396 | shf => shf_1 |
---|
| 397 | tswst => tswst_1 |
---|
| 398 | usws => usws_1 |
---|
[102] | 399 | uswst => uswst_1 |
---|
[19] | 400 | vsws => vsws_1 |
---|
[102] | 401 | vswst => vswst_1 |
---|
[19] | 402 | e => e_1; e_p => e_2; te_m => e_3; e_m => e_3 |
---|
| 403 | kh => kh_1 |
---|
| 404 | km => km_1 |
---|
| 405 | pt => pt_1; pt_p => pt_2; tpt_m => pt_3; pt_m => pt_3 |
---|
| 406 | u => u_1; u_p => u_2; tu_m => u_3; u_m => u_3 |
---|
| 407 | v => v_1; v_p => v_2; tv_m => v_3; v_m => v_3 |
---|
| 408 | w => w_1; w_p => w_2; tw_m => w_3; w_m => w_3 |
---|
[1] | 409 | |
---|
[75] | 410 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 411 | qsws => qsws_1 |
---|
[19] | 412 | qswst => qswst_1 |
---|
[94] | 413 | q => q_1; q_p => q_2; tq_m => q_3; q_m => q_3 |
---|
[75] | 414 | IF ( humidity ) vpt => vpt_1 |
---|
[1] | 415 | IF ( cloud_physics ) ql => ql_1 |
---|
| 416 | IF ( cloud_droplets ) THEN |
---|
| 417 | ql => ql_1 |
---|
| 418 | ql_c => ql_2 |
---|
| 419 | ENDIF |
---|
| 420 | ENDIF |
---|
| 421 | |
---|
[94] | 422 | IF ( ocean ) THEN |
---|
[95] | 423 | saswsb => saswsb_1 |
---|
[94] | 424 | saswst => saswst_1 |
---|
| 425 | sa => sa_1; sa_p => sa_2; tsa_m => sa_3 |
---|
| 426 | ENDIF |
---|
| 427 | |
---|
[1] | 428 | ENDIF |
---|
| 429 | |
---|
| 430 | ! |
---|
| 431 | !-- Initialize model variables |
---|
[147] | 432 | IF ( TRIM( initializing_actions ) /= 'read_restart_data' .AND. & |
---|
[328] | 433 | TRIM( initializing_actions ) /= 'cyclic_fill' ) THEN |
---|
[1] | 434 | ! |
---|
| 435 | !-- First model run of a possible job queue. |
---|
| 436 | !-- Initial profiles of the variables must be computes. |
---|
| 437 | IF ( INDEX( initializing_actions, 'set_1d-model_profiles' ) /= 0 ) THEN |
---|
| 438 | ! |
---|
| 439 | !-- Use solutions of the 1D model as initial profiles, |
---|
| 440 | !-- start 1D model |
---|
| 441 | CALL init_1d_model |
---|
| 442 | ! |
---|
| 443 | !-- Transfer initial profiles to the arrays of the 3D model |
---|
[667] | 444 | DO i = nxlg, nxrg |
---|
| 445 | DO j = nysg, nyng |
---|
[1] | 446 | e(:,j,i) = e1d |
---|
| 447 | kh(:,j,i) = kh1d |
---|
| 448 | km(:,j,i) = km1d |
---|
| 449 | pt(:,j,i) = pt_init |
---|
| 450 | u(:,j,i) = u1d |
---|
| 451 | v(:,j,i) = v1d |
---|
| 452 | ENDDO |
---|
| 453 | ENDDO |
---|
| 454 | |
---|
[75] | 455 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[667] | 456 | DO i = nxlg, nxrg |
---|
| 457 | DO j = nysg, nyng |
---|
[1] | 458 | q(:,j,i) = q_init |
---|
| 459 | ENDDO |
---|
| 460 | ENDDO |
---|
| 461 | ENDIF |
---|
| 462 | |
---|
| 463 | IF ( .NOT. constant_diffusion ) THEN |
---|
[667] | 464 | DO i = nxlg, nxrg |
---|
| 465 | DO j = nysg, nyng |
---|
[1] | 466 | e(:,j,i) = e1d |
---|
| 467 | ENDDO |
---|
| 468 | ENDDO |
---|
| 469 | ! |
---|
| 470 | !-- Store initial profiles for output purposes etc. |
---|
| 471 | hom(:,1,25,:) = SPREAD( l1d, 2, statistic_regions+1 ) |
---|
| 472 | |
---|
| 473 | IF ( prandtl_layer ) THEN |
---|
| 474 | rif = rif1d(nzb+1) |
---|
| 475 | ts = 0.0 ! could actually be computed more accurately in the |
---|
| 476 | ! 1D model. Update when opportunity arises. |
---|
| 477 | us = us1d |
---|
| 478 | usws = usws1d |
---|
| 479 | vsws = vsws1d |
---|
| 480 | ELSE |
---|
| 481 | ts = 0.0 ! must be set, because used in |
---|
| 482 | rif = 0.0 ! flowste |
---|
| 483 | us = 0.0 |
---|
| 484 | usws = 0.0 |
---|
| 485 | vsws = 0.0 |
---|
| 486 | ENDIF |
---|
| 487 | |
---|
| 488 | ELSE |
---|
| 489 | e = 0.0 ! must be set, because used in |
---|
| 490 | rif = 0.0 ! flowste |
---|
| 491 | ts = 0.0 |
---|
| 492 | us = 0.0 |
---|
| 493 | usws = 0.0 |
---|
| 494 | vsws = 0.0 |
---|
| 495 | ENDIF |
---|
[102] | 496 | uswst = top_momentumflux_u |
---|
| 497 | vswst = top_momentumflux_v |
---|
[1] | 498 | |
---|
| 499 | ! |
---|
| 500 | !-- In every case qs = 0.0 (see also pt) |
---|
| 501 | !-- This could actually be computed more accurately in the 1D model. |
---|
| 502 | !-- Update when opportunity arises! |
---|
[75] | 503 | IF ( humidity .OR. passive_scalar ) qs = 0.0 |
---|
[1] | 504 | |
---|
| 505 | ! |
---|
| 506 | !-- inside buildings set velocities back to zero |
---|
| 507 | IF ( topography /= 'flat' ) THEN |
---|
| 508 | DO i = nxl-1, nxr+1 |
---|
| 509 | DO j = nys-1, nyn+1 |
---|
| 510 | u(nzb:nzb_u_inner(j,i),j,i) = 0.0 |
---|
| 511 | v(nzb:nzb_v_inner(j,i),j,i) = 0.0 |
---|
| 512 | ENDDO |
---|
| 513 | ENDDO |
---|
[667] | 514 | |
---|
[1] | 515 | ! |
---|
| 516 | !-- WARNING: The extra boundary conditions set after running the |
---|
| 517 | !-- ------- 1D model impose an error on the divergence one layer |
---|
| 518 | !-- below the topography; need to correct later |
---|
| 519 | !-- ATTENTION: Provisional correction for Piacsek & Williams |
---|
| 520 | !-- --------- advection scheme: keep u and v zero one layer below |
---|
| 521 | !-- the topography. |
---|
| 522 | ! |
---|
[667] | 523 | !-- Following was removed, because mirror boundary condition are |
---|
| 524 | !-- replaced by dirichlet boundary conditions |
---|
[1] | 525 | ! |
---|
[667] | 526 | ! IF ( ibc_uv_b == 0 ) THEN |
---|
| 527 | !! |
---|
| 528 | !!-- Satisfying the Dirichlet condition with an extra layer below |
---|
| 529 | !!-- the surface where the u and v component change their sign. |
---|
| 530 | ! DO i = nxl-1, nxr+1 |
---|
| 531 | ! DO j = nys-1, nyn+1 |
---|
| 532 | ! IF ( nzb_u_inner(j,i) == 0 ) u(0,j,i) = -u(1,j,i) |
---|
| 533 | ! IF ( nzb_v_inner(j,i) == 0 ) v(0,j,i) = -v(1,j,i) |
---|
| 534 | ! ENDDO |
---|
| 535 | ! ENDDO |
---|
| 536 | ! |
---|
| 537 | ! ELSE |
---|
| 538 | IF ( ibc_uv_b == 1 ) THEN |
---|
| 539 | ! |
---|
[1] | 540 | !-- Neumann condition |
---|
| 541 | DO i = nxl-1, nxr+1 |
---|
| 542 | DO j = nys-1, nyn+1 |
---|
| 543 | IF ( nzb_u_inner(j,i) == 0 ) u(0,j,i) = u(1,j,i) |
---|
| 544 | IF ( nzb_v_inner(j,i) == 0 ) v(0,j,i) = v(1,j,i) |
---|
| 545 | ENDDO |
---|
| 546 | ENDDO |
---|
| 547 | |
---|
| 548 | ENDIF |
---|
| 549 | |
---|
| 550 | ENDIF |
---|
| 551 | |
---|
| 552 | ELSEIF ( INDEX(initializing_actions, 'set_constant_profiles') /= 0 ) & |
---|
| 553 | THEN |
---|
| 554 | ! |
---|
| 555 | !-- Use constructed initial profiles (velocity constant with height, |
---|
| 556 | !-- temperature profile with constant gradient) |
---|
[667] | 557 | DO i = nxlg, nxrg |
---|
| 558 | DO j = nysg, nyng |
---|
[1] | 559 | pt(:,j,i) = pt_init |
---|
| 560 | u(:,j,i) = u_init |
---|
| 561 | v(:,j,i) = v_init |
---|
| 562 | ENDDO |
---|
| 563 | ENDDO |
---|
[75] | 564 | |
---|
[1] | 565 | ! |
---|
[292] | 566 | !-- Set initial horizontal velocities at the lowest computational grid |
---|
| 567 | !-- levels to zero in order to avoid too small time steps caused by the |
---|
| 568 | !-- diffusion limit in the initial phase of a run (at k=1, dz/2 occurs |
---|
| 569 | !-- in the limiting formula!). The original values are stored to be later |
---|
| 570 | !-- used for volume flow control. |
---|
[667] | 571 | DO i = nxlg, nxrg |
---|
| 572 | DO j = nysg, nyng |
---|
[1] | 573 | u(nzb:nzb_u_inner(j,i)+1,j,i) = 0.0 |
---|
| 574 | v(nzb:nzb_v_inner(j,i)+1,j,i) = 0.0 |
---|
| 575 | ENDDO |
---|
| 576 | ENDDO |
---|
| 577 | |
---|
[75] | 578 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[667] | 579 | DO i = nxlg, nxrg |
---|
| 580 | DO j = nysg, nyng |
---|
[1] | 581 | q(:,j,i) = q_init |
---|
| 582 | ENDDO |
---|
| 583 | ENDDO |
---|
| 584 | ENDIF |
---|
| 585 | |
---|
[94] | 586 | IF ( ocean ) THEN |
---|
[667] | 587 | DO i = nxlg, nxrg |
---|
| 588 | DO j = nysg, nyng |
---|
[94] | 589 | sa(:,j,i) = sa_init |
---|
| 590 | ENDDO |
---|
| 591 | ENDDO |
---|
| 592 | ENDIF |
---|
[1] | 593 | |
---|
| 594 | IF ( constant_diffusion ) THEN |
---|
| 595 | km = km_constant |
---|
| 596 | kh = km / prandtl_number |
---|
[108] | 597 | e = 0.0 |
---|
| 598 | ELSEIF ( e_init > 0.0 ) THEN |
---|
| 599 | DO k = nzb+1, nzt |
---|
| 600 | km(k,:,:) = 0.1 * l_grid(k) * SQRT( e_init ) |
---|
| 601 | ENDDO |
---|
| 602 | km(nzb,:,:) = km(nzb+1,:,:) |
---|
| 603 | km(nzt+1,:,:) = km(nzt,:,:) |
---|
| 604 | kh = km / prandtl_number |
---|
| 605 | e = e_init |
---|
[1] | 606 | ELSE |
---|
[108] | 607 | IF ( .NOT. ocean ) THEN |
---|
| 608 | kh = 0.01 ! there must exist an initial diffusion, because |
---|
| 609 | km = 0.01 ! otherwise no TKE would be produced by the |
---|
| 610 | ! production terms, as long as not yet |
---|
| 611 | ! e = (u*/cm)**2 at k=nzb+1 |
---|
| 612 | ELSE |
---|
| 613 | kh = 0.00001 |
---|
| 614 | km = 0.00001 |
---|
| 615 | ENDIF |
---|
| 616 | e = 0.0 |
---|
[1] | 617 | ENDIF |
---|
[102] | 618 | rif = 0.0 |
---|
| 619 | ts = 0.0 |
---|
| 620 | us = 0.0 |
---|
| 621 | usws = 0.0 |
---|
| 622 | uswst = top_momentumflux_u |
---|
| 623 | vsws = 0.0 |
---|
| 624 | vswst = top_momentumflux_v |
---|
[75] | 625 | IF ( humidity .OR. passive_scalar ) qs = 0.0 |
---|
[1] | 626 | |
---|
| 627 | ! |
---|
| 628 | !-- Compute initial temperature field and other constants used in case |
---|
| 629 | !-- of a sloping surface |
---|
| 630 | IF ( sloping_surface ) CALL init_slope |
---|
| 631 | |
---|
[46] | 632 | ELSEIF ( INDEX(initializing_actions, 'by_user') /= 0 ) & |
---|
| 633 | THEN |
---|
| 634 | ! |
---|
| 635 | !-- Initialization will completely be done by the user |
---|
| 636 | CALL user_init_3d_model |
---|
| 637 | |
---|
[1] | 638 | ENDIF |
---|
[667] | 639 | ! |
---|
| 640 | !-- Bottom boundary |
---|
| 641 | IF ( ibc_uv_b == 0 .OR. ibc_uv_b == 2 ) THEN |
---|
| 642 | u(nzb,:,:) = 0.0 |
---|
| 643 | v(nzb,:,:) = 0.0 |
---|
| 644 | ENDIF |
---|
[1] | 645 | |
---|
| 646 | ! |
---|
[151] | 647 | !-- Apply channel flow boundary condition |
---|
[132] | 648 | IF ( TRIM( bc_uv_t ) == 'dirichlet_0' ) THEN |
---|
| 649 | |
---|
| 650 | u(nzt+1,:,:) = 0.0 |
---|
| 651 | v(nzt+1,:,:) = 0.0 |
---|
| 652 | |
---|
[151] | 653 | !-- For the Dirichlet condition to be correctly applied at the top, set |
---|
[132] | 654 | !-- ug and vg to zero there |
---|
| 655 | ug(nzt+1) = 0.0 |
---|
| 656 | vg(nzt+1) = 0.0 |
---|
| 657 | |
---|
| 658 | ENDIF |
---|
| 659 | |
---|
| 660 | ! |
---|
[1] | 661 | !-- Calculate virtual potential temperature |
---|
[75] | 662 | IF ( humidity ) vpt = pt * ( 1.0 + 0.61 * q ) |
---|
[1] | 663 | |
---|
| 664 | ! |
---|
| 665 | !-- Store initial profiles for output purposes etc. |
---|
| 666 | hom(:,1,5,:) = SPREAD( u(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 667 | hom(:,1,6,:) = SPREAD( v(:,nys,nxl), 2, statistic_regions+1 ) |
---|
[667] | 668 | IF ( ibc_uv_b == 0 .OR. ibc_uv_b == 2) THEN |
---|
| 669 | hom(nzb,1,5,:) = 0.0 |
---|
| 670 | hom(nzb,1,6,:) = 0.0 |
---|
[1] | 671 | ENDIF |
---|
| 672 | hom(:,1,7,:) = SPREAD( pt(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 673 | hom(:,1,23,:) = SPREAD( km(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 674 | hom(:,1,24,:) = SPREAD( kh(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 675 | |
---|
[97] | 676 | IF ( ocean ) THEN |
---|
| 677 | ! |
---|
| 678 | !-- Store initial salinity profile |
---|
| 679 | hom(:,1,26,:) = SPREAD( sa(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 680 | ENDIF |
---|
[1] | 681 | |
---|
[75] | 682 | IF ( humidity ) THEN |
---|
[1] | 683 | ! |
---|
| 684 | !-- Store initial profile of total water content, virtual potential |
---|
| 685 | !-- temperature |
---|
| 686 | hom(:,1,26,:) = SPREAD( q(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 687 | hom(:,1,29,:) = SPREAD( vpt(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 688 | IF ( cloud_physics .OR. cloud_droplets ) THEN |
---|
| 689 | ! |
---|
| 690 | !-- Store initial profile of specific humidity and potential |
---|
| 691 | !-- temperature |
---|
| 692 | hom(:,1,27,:) = SPREAD( q(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 693 | hom(:,1,28,:) = SPREAD( pt(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 694 | ENDIF |
---|
| 695 | ENDIF |
---|
| 696 | |
---|
| 697 | IF ( passive_scalar ) THEN |
---|
| 698 | ! |
---|
| 699 | !-- Store initial scalar profile |
---|
| 700 | hom(:,1,26,:) = SPREAD( q(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 701 | ENDIF |
---|
| 702 | |
---|
| 703 | ! |
---|
[19] | 704 | !-- Initialize fluxes at bottom surface |
---|
[1] | 705 | IF ( use_surface_fluxes ) THEN |
---|
| 706 | |
---|
| 707 | IF ( constant_heatflux ) THEN |
---|
| 708 | ! |
---|
| 709 | !-- Heat flux is prescribed |
---|
| 710 | IF ( random_heatflux ) THEN |
---|
| 711 | CALL disturb_heatflux |
---|
| 712 | ELSE |
---|
| 713 | shf = surface_heatflux |
---|
| 714 | ! |
---|
| 715 | !-- Over topography surface_heatflux is replaced by wall_heatflux(0) |
---|
| 716 | IF ( TRIM( topography ) /= 'flat' ) THEN |
---|
[667] | 717 | DO i = nxlg, nxrg |
---|
| 718 | DO j = nysg, nyng |
---|
[1] | 719 | IF ( nzb_s_inner(j,i) /= 0 ) THEN |
---|
| 720 | shf(j,i) = wall_heatflux(0) |
---|
| 721 | ENDIF |
---|
| 722 | ENDDO |
---|
| 723 | ENDDO |
---|
| 724 | ENDIF |
---|
| 725 | ENDIF |
---|
| 726 | IF ( ASSOCIATED( shf_m ) ) shf_m = shf |
---|
| 727 | ENDIF |
---|
| 728 | |
---|
| 729 | ! |
---|
| 730 | !-- Determine the near-surface water flux |
---|
[75] | 731 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 732 | IF ( constant_waterflux ) THEN |
---|
| 733 | qsws = surface_waterflux |
---|
[407] | 734 | ! |
---|
| 735 | !-- Over topography surface_waterflux is replaced by |
---|
| 736 | !-- wall_humidityflux(0) |
---|
| 737 | IF ( TRIM( topography ) /= 'flat' ) THEN |
---|
| 738 | wall_qflux = wall_humidityflux |
---|
[667] | 739 | DO i = nxlg, nxrg |
---|
| 740 | DO j = nysg, nyng |
---|
[407] | 741 | IF ( nzb_s_inner(j,i) /= 0 ) THEN |
---|
| 742 | qsws(j,i) = wall_qflux(0) |
---|
| 743 | ENDIF |
---|
| 744 | ENDDO |
---|
| 745 | ENDDO |
---|
| 746 | ENDIF |
---|
[1] | 747 | IF ( ASSOCIATED( qsws_m ) ) qsws_m = qsws |
---|
| 748 | ENDIF |
---|
| 749 | ENDIF |
---|
| 750 | |
---|
| 751 | ENDIF |
---|
| 752 | |
---|
| 753 | ! |
---|
[19] | 754 | !-- Initialize fluxes at top surface |
---|
[94] | 755 | !-- Currently, only the heatflux and salinity flux can be prescribed. |
---|
| 756 | !-- The latent flux is zero in this case! |
---|
[19] | 757 | IF ( use_top_fluxes ) THEN |
---|
| 758 | |
---|
| 759 | IF ( constant_top_heatflux ) THEN |
---|
| 760 | ! |
---|
| 761 | !-- Heat flux is prescribed |
---|
| 762 | tswst = top_heatflux |
---|
| 763 | IF ( ASSOCIATED( tswst_m ) ) tswst_m = tswst |
---|
| 764 | |
---|
[75] | 765 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[19] | 766 | qswst = 0.0 |
---|
| 767 | IF ( ASSOCIATED( qswst_m ) ) qswst_m = qswst |
---|
| 768 | ENDIF |
---|
[94] | 769 | |
---|
| 770 | IF ( ocean ) THEN |
---|
[95] | 771 | saswsb = bottom_salinityflux |
---|
[94] | 772 | saswst = top_salinityflux |
---|
| 773 | ENDIF |
---|
[102] | 774 | ENDIF |
---|
[19] | 775 | |
---|
[102] | 776 | ! |
---|
| 777 | !-- Initialization in case of a coupled model run |
---|
| 778 | IF ( coupling_mode == 'ocean_to_atmosphere' ) THEN |
---|
| 779 | tswst = 0.0 |
---|
| 780 | IF ( ASSOCIATED( tswst_m ) ) tswst_m = tswst |
---|
| 781 | ENDIF |
---|
| 782 | |
---|
[19] | 783 | ENDIF |
---|
| 784 | |
---|
| 785 | ! |
---|
[1] | 786 | !-- Initialize Prandtl layer quantities |
---|
| 787 | IF ( prandtl_layer ) THEN |
---|
| 788 | |
---|
| 789 | z0 = roughness_length |
---|
| 790 | |
---|
| 791 | IF ( .NOT. constant_heatflux ) THEN |
---|
| 792 | ! |
---|
| 793 | !-- Surface temperature is prescribed. Here the heat flux cannot be |
---|
| 794 | !-- simply estimated, because therefore rif, u* and theta* would have |
---|
| 795 | !-- to be computed by iteration. This is why the heat flux is assumed |
---|
| 796 | !-- to be zero before the first time step. It approaches its correct |
---|
| 797 | !-- value in the course of the first few time steps. |
---|
| 798 | shf = 0.0 |
---|
| 799 | IF ( ASSOCIATED( shf_m ) ) shf_m = 0.0 |
---|
| 800 | ENDIF |
---|
| 801 | |
---|
[75] | 802 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 803 | IF ( .NOT. constant_waterflux ) THEN |
---|
| 804 | qsws = 0.0 |
---|
| 805 | IF ( ASSOCIATED( qsws_m ) ) qsws_m = 0.0 |
---|
| 806 | ENDIF |
---|
| 807 | ENDIF |
---|
| 808 | |
---|
| 809 | ENDIF |
---|
| 810 | |
---|
[152] | 811 | |
---|
| 812 | ! |
---|
[1] | 813 | !-- For the moment, perturbation pressure and vertical velocity are zero |
---|
| 814 | p = 0.0; w = 0.0 |
---|
| 815 | |
---|
| 816 | ! |
---|
| 817 | !-- Initialize array sums (must be defined in first call of pres) |
---|
| 818 | sums = 0.0 |
---|
| 819 | |
---|
| 820 | ! |
---|
[72] | 821 | !-- Treating cloud physics, liquid water content and precipitation amount |
---|
| 822 | !-- are zero at beginning of the simulation |
---|
| 823 | IF ( cloud_physics ) THEN |
---|
| 824 | ql = 0.0 |
---|
| 825 | IF ( precipitation ) precipitation_amount = 0.0 |
---|
| 826 | ENDIF |
---|
[1] | 827 | |
---|
| 828 | ! |
---|
| 829 | !-- Impose vortex with vertical axis on the initial velocity profile |
---|
| 830 | IF ( INDEX( initializing_actions, 'initialize_vortex' ) /= 0 ) THEN |
---|
| 831 | CALL init_rankine |
---|
| 832 | ENDIF |
---|
| 833 | |
---|
| 834 | ! |
---|
| 835 | !-- Impose temperature anomaly (advection test only) |
---|
| 836 | IF ( INDEX( initializing_actions, 'initialize_ptanom' ) /= 0 ) THEN |
---|
| 837 | CALL init_pt_anomaly |
---|
| 838 | ENDIF |
---|
| 839 | |
---|
| 840 | ! |
---|
| 841 | !-- If required, change the surface temperature at the start of the 3D run |
---|
| 842 | IF ( pt_surface_initial_change /= 0.0 ) THEN |
---|
| 843 | pt(nzb,:,:) = pt(nzb,:,:) + pt_surface_initial_change |
---|
| 844 | ENDIF |
---|
| 845 | |
---|
| 846 | ! |
---|
| 847 | !-- If required, change the surface humidity/scalar at the start of the 3D |
---|
| 848 | !-- run |
---|
[75] | 849 | IF ( ( humidity .OR. passive_scalar ) .AND. & |
---|
[1] | 850 | q_surface_initial_change /= 0.0 ) THEN |
---|
| 851 | q(nzb,:,:) = q(nzb,:,:) + q_surface_initial_change |
---|
| 852 | ENDIF |
---|
| 853 | |
---|
| 854 | ! |
---|
| 855 | !-- Initialize the random number generator (from numerical recipes) |
---|
| 856 | CALL random_function_ini |
---|
| 857 | |
---|
| 858 | ! |
---|
| 859 | !-- Impose random perturbation on the horizontal velocity field and then |
---|
| 860 | !-- remove the divergences from the velocity field |
---|
| 861 | IF ( create_disturbances ) THEN |
---|
[75] | 862 | CALL disturb_field( nzb_u_inner, tend, u ) |
---|
| 863 | CALL disturb_field( nzb_v_inner, tend, v ) |
---|
[1] | 864 | n_sor = nsor_ini |
---|
| 865 | CALL pres |
---|
| 866 | n_sor = nsor |
---|
| 867 | ENDIF |
---|
| 868 | |
---|
| 869 | ! |
---|
| 870 | !-- Once again set the perturbation pressure explicitly to zero in order to |
---|
| 871 | !-- assure that it does not generate any divergences in the first time step. |
---|
| 872 | !-- At t=0 the velocity field is free of divergence (as constructed above). |
---|
| 873 | !-- Divergences being created during a time step are not yet known and thus |
---|
| 874 | !-- cannot be corrected during the time step yet. |
---|
| 875 | p = 0.0 |
---|
| 876 | |
---|
| 877 | ! |
---|
| 878 | !-- Initialize old and new time levels. |
---|
| 879 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 880 | e_m = e; pt_m = pt; u_m = u; v_m = v; w_m = w; kh_m = kh; km_m = km |
---|
| 881 | ELSE |
---|
| 882 | te_m = 0.0; tpt_m = 0.0; tu_m = 0.0; tv_m = 0.0; tw_m = 0.0 |
---|
| 883 | ENDIF |
---|
| 884 | e_p = e; pt_p = pt; u_p = u; v_p = v; w_p = w |
---|
| 885 | |
---|
[75] | 886 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 887 | IF ( ASSOCIATED( q_m ) ) q_m = q |
---|
| 888 | IF ( timestep_scheme(1:5) == 'runge' ) tq_m = 0.0 |
---|
| 889 | q_p = q |
---|
[75] | 890 | IF ( humidity .AND. ASSOCIATED( vpt_m ) ) vpt_m = vpt |
---|
[1] | 891 | ENDIF |
---|
| 892 | |
---|
[94] | 893 | IF ( ocean ) THEN |
---|
| 894 | tsa_m = 0.0 |
---|
| 895 | sa_p = sa |
---|
| 896 | ENDIF |
---|
[667] | 897 | |
---|
[94] | 898 | |
---|
[147] | 899 | ELSEIF ( TRIM( initializing_actions ) == 'read_restart_data' .OR. & |
---|
[667] | 900 | TRIM( initializing_actions ) == 'cyclic_fill' ) & |
---|
[1] | 901 | THEN |
---|
| 902 | ! |
---|
[328] | 903 | !-- When reading data for cyclic fill of 3D prerun data, first read |
---|
[147] | 904 | !-- some of the global variables from restart file |
---|
[328] | 905 | IF ( TRIM( initializing_actions ) == 'cyclic_fill' ) THEN |
---|
[559] | 906 | |
---|
| 907 | CALL read_parts_of_var_list |
---|
[147] | 908 | CALL close_file( 13 ) |
---|
[328] | 909 | |
---|
[151] | 910 | ! |
---|
[328] | 911 | !-- Initialization of the turbulence recycling method |
---|
| 912 | IF ( turbulent_inflow ) THEN |
---|
| 913 | ! |
---|
| 914 | !-- Store temporally and horizontally averaged vertical profiles to be |
---|
| 915 | !-- used as mean inflow profiles |
---|
| 916 | ALLOCATE( mean_inflow_profiles(nzb:nzt+1,5) ) |
---|
[151] | 917 | |
---|
[328] | 918 | mean_inflow_profiles(:,1) = hom_sum(:,1,0) ! u |
---|
| 919 | mean_inflow_profiles(:,2) = hom_sum(:,2,0) ! v |
---|
| 920 | mean_inflow_profiles(:,4) = hom_sum(:,4,0) ! pt |
---|
| 921 | mean_inflow_profiles(:,5) = hom_sum(:,8,0) ! e |
---|
[151] | 922 | |
---|
| 923 | ! |
---|
[328] | 924 | !-- Use these mean profiles for the inflow (provided that Dirichlet |
---|
| 925 | !-- conditions are used) |
---|
| 926 | IF ( inflow_l ) THEN |
---|
[667] | 927 | DO j = nysg, nyng |
---|
[328] | 928 | DO k = nzb, nzt+1 |
---|
[667] | 929 | u(k,j,nxlg:-1) = mean_inflow_profiles(k,1) |
---|
| 930 | v(k,j,nxlg:-1) = mean_inflow_profiles(k,2) |
---|
| 931 | w(k,j,nxlg:-1) = 0.0 |
---|
| 932 | pt(k,j,nxlg:-1) = mean_inflow_profiles(k,4) |
---|
| 933 | e(k,j,nxlg:-1) = mean_inflow_profiles(k,5) |
---|
[328] | 934 | ENDDO |
---|
[151] | 935 | ENDDO |
---|
[328] | 936 | ENDIF |
---|
[151] | 937 | |
---|
| 938 | ! |
---|
[328] | 939 | !-- Calculate the damping factors to be used at the inflow. For a |
---|
| 940 | !-- turbulent inflow the turbulent fluctuations have to be limited |
---|
| 941 | !-- vertically because otherwise the turbulent inflow layer will grow |
---|
| 942 | !-- in time. |
---|
| 943 | IF ( inflow_damping_height == 9999999.9 ) THEN |
---|
[151] | 944 | ! |
---|
[328] | 945 | !-- Default: use the inversion height calculated by the prerun; if |
---|
| 946 | !-- this is zero, inflow_damping_height must be explicitly |
---|
| 947 | !-- specified. |
---|
| 948 | IF ( hom_sum(nzb+6,pr_palm,0) /= 0.0 ) THEN |
---|
| 949 | inflow_damping_height = hom_sum(nzb+6,pr_palm,0) |
---|
| 950 | ELSE |
---|
| 951 | WRITE( message_string, * ) 'inflow_damping_height must be ',& |
---|
| 952 | 'explicitly specified because&the inversion height ', & |
---|
| 953 | 'calculated by the prerun is zero.' |
---|
| 954 | CALL message( 'init_3d_model', 'PA0318', 1, 2, 0, 6, 0 ) |
---|
| 955 | ENDIF |
---|
| 956 | |
---|
[292] | 957 | ENDIF |
---|
[151] | 958 | |
---|
[328] | 959 | IF ( inflow_damping_width == 9999999.9 ) THEN |
---|
[151] | 960 | ! |
---|
[328] | 961 | !-- Default for the transition range: one tenth of the undamped |
---|
| 962 | !-- layer |
---|
| 963 | inflow_damping_width = 0.1 * inflow_damping_height |
---|
[151] | 964 | |
---|
[328] | 965 | ENDIF |
---|
[151] | 966 | |
---|
[328] | 967 | ALLOCATE( inflow_damping_factor(nzb:nzt+1) ) |
---|
[151] | 968 | |
---|
[328] | 969 | DO k = nzb, nzt+1 |
---|
[151] | 970 | |
---|
[328] | 971 | IF ( zu(k) <= inflow_damping_height ) THEN |
---|
| 972 | inflow_damping_factor(k) = 1.0 |
---|
| 973 | ELSEIF ( zu(k) <= inflow_damping_height + & |
---|
| 974 | inflow_damping_width ) THEN |
---|
| 975 | inflow_damping_factor(k) = 1.0 - & |
---|
[151] | 976 | ( zu(k) - inflow_damping_height ) / & |
---|
| 977 | inflow_damping_width |
---|
[328] | 978 | ELSE |
---|
| 979 | inflow_damping_factor(k) = 0.0 |
---|
| 980 | ENDIF |
---|
[151] | 981 | |
---|
[328] | 982 | ENDDO |
---|
| 983 | ENDIF |
---|
[151] | 984 | |
---|
[147] | 985 | ENDIF |
---|
| 986 | |
---|
[152] | 987 | ! |
---|
[163] | 988 | !-- Read binary data from restart file |
---|
[667] | 989 | |
---|
[559] | 990 | CALL read_3d_binary |
---|
[163] | 991 | |
---|
| 992 | ! |
---|
[359] | 993 | !-- Inside buildings set velocities and TKE back to zero |
---|
| 994 | IF ( TRIM( initializing_actions ) == 'cyclic_fill' .AND. & |
---|
| 995 | topography /= 'flat' ) THEN |
---|
| 996 | ! |
---|
| 997 | !-- Inside buildings set velocities and TKE back to zero. |
---|
| 998 | !-- Other scalars (pt, q, s, km, kh, p, sa, ...) are ignored at present, |
---|
| 999 | !-- maybe revise later. |
---|
| 1000 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[667] | 1001 | DO i = nxlg, nxrg |
---|
| 1002 | DO j = nysg, nyng |
---|
[359] | 1003 | u (nzb:nzb_u_inner(j,i),j,i) = 0.0 |
---|
| 1004 | v (nzb:nzb_v_inner(j,i),j,i) = 0.0 |
---|
| 1005 | w (nzb:nzb_w_inner(j,i),j,i) = 0.0 |
---|
| 1006 | e (nzb:nzb_w_inner(j,i),j,i) = 0.0 |
---|
| 1007 | u_m(nzb:nzb_u_inner(j,i),j,i) = 0.0 |
---|
| 1008 | v_m(nzb:nzb_v_inner(j,i),j,i) = 0.0 |
---|
| 1009 | w_m(nzb:nzb_w_inner(j,i),j,i) = 0.0 |
---|
| 1010 | e_m(nzb:nzb_w_inner(j,i),j,i) = 0.0 |
---|
| 1011 | tu_m(nzb:nzb_u_inner(j,i),j,i) = 0.0 |
---|
| 1012 | tv_m(nzb:nzb_v_inner(j,i),j,i) = 0.0 |
---|
| 1013 | tw_m(nzb:nzb_w_inner(j,i),j,i) = 0.0 |
---|
| 1014 | te_m(nzb:nzb_w_inner(j,i),j,i) = 0.0 |
---|
| 1015 | tpt_m(nzb:nzb_w_inner(j,i),j,i) = 0.0 |
---|
| 1016 | ENDDO |
---|
| 1017 | ENDDO |
---|
| 1018 | ELSE |
---|
[667] | 1019 | DO i = nxlg, nxrg |
---|
| 1020 | DO j = nysg, nyng |
---|
[359] | 1021 | u (nzb:nzb_u_inner(j,i),j,i) = 0.0 |
---|
| 1022 | v (nzb:nzb_v_inner(j,i),j,i) = 0.0 |
---|
| 1023 | w (nzb:nzb_w_inner(j,i),j,i) = 0.0 |
---|
| 1024 | e (nzb:nzb_w_inner(j,i),j,i) = 0.0 |
---|
| 1025 | u_m(nzb:nzb_u_inner(j,i),j,i) = 0.0 |
---|
| 1026 | v_m(nzb:nzb_v_inner(j,i),j,i) = 0.0 |
---|
| 1027 | w_m(nzb:nzb_w_inner(j,i),j,i) = 0.0 |
---|
| 1028 | e_m(nzb:nzb_w_inner(j,i),j,i) = 0.0 |
---|
| 1029 | u_p(nzb:nzb_u_inner(j,i),j,i) = 0.0 |
---|
| 1030 | v_p(nzb:nzb_v_inner(j,i),j,i) = 0.0 |
---|
| 1031 | w_p(nzb:nzb_w_inner(j,i),j,i) = 0.0 |
---|
| 1032 | e_p(nzb:nzb_w_inner(j,i),j,i) = 0.0 |
---|
| 1033 | ENDDO |
---|
| 1034 | ENDDO |
---|
| 1035 | ENDIF |
---|
| 1036 | |
---|
| 1037 | ENDIF |
---|
| 1038 | |
---|
| 1039 | ! |
---|
[1] | 1040 | !-- Calculate initial temperature field and other constants used in case |
---|
| 1041 | !-- of a sloping surface |
---|
| 1042 | IF ( sloping_surface ) CALL init_slope |
---|
| 1043 | |
---|
| 1044 | ! |
---|
| 1045 | !-- Initialize new time levels (only done in order to set boundary values |
---|
| 1046 | !-- including ghost points) |
---|
| 1047 | e_p = e; pt_p = pt; u_p = u; v_p = v; w_p = w |
---|
[75] | 1048 | IF ( humidity .OR. passive_scalar ) q_p = q |
---|
[94] | 1049 | IF ( ocean ) sa_p = sa |
---|
[1] | 1050 | |
---|
[181] | 1051 | ! |
---|
| 1052 | !-- Allthough tendency arrays are set in prognostic_equations, they have |
---|
| 1053 | !-- have to be predefined here because they are used (but multiplied with 0) |
---|
| 1054 | !-- there before they are set. |
---|
| 1055 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1056 | te_m = 0.0; tpt_m = 0.0; tu_m = 0.0; tv_m = 0.0; tw_m = 0.0 |
---|
| 1057 | IF ( humidity .OR. passive_scalar ) tq_m = 0.0 |
---|
| 1058 | IF ( ocean ) tsa_m = 0.0 |
---|
| 1059 | ENDIF |
---|
| 1060 | |
---|
[1] | 1061 | ELSE |
---|
| 1062 | ! |
---|
| 1063 | !-- Actually this part of the programm should not be reached |
---|
[254] | 1064 | message_string = 'unknown initializing problem' |
---|
| 1065 | CALL message( 'init_3d_model', 'PA0193', 1, 2, 0, 6, 0 ) |
---|
[1] | 1066 | ENDIF |
---|
| 1067 | |
---|
[151] | 1068 | |
---|
| 1069 | IF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN |
---|
[1] | 1070 | ! |
---|
[151] | 1071 | !-- Initialize old timelevels needed for radiation boundary conditions |
---|
| 1072 | IF ( outflow_l ) THEN |
---|
| 1073 | u_m_l(:,:,:) = u(:,:,1:2) |
---|
| 1074 | v_m_l(:,:,:) = v(:,:,0:1) |
---|
| 1075 | w_m_l(:,:,:) = w(:,:,0:1) |
---|
| 1076 | ENDIF |
---|
| 1077 | IF ( outflow_r ) THEN |
---|
| 1078 | u_m_r(:,:,:) = u(:,:,nx-1:nx) |
---|
| 1079 | v_m_r(:,:,:) = v(:,:,nx-1:nx) |
---|
| 1080 | w_m_r(:,:,:) = w(:,:,nx-1:nx) |
---|
| 1081 | ENDIF |
---|
| 1082 | IF ( outflow_s ) THEN |
---|
| 1083 | u_m_s(:,:,:) = u(:,0:1,:) |
---|
| 1084 | v_m_s(:,:,:) = v(:,1:2,:) |
---|
| 1085 | w_m_s(:,:,:) = w(:,0:1,:) |
---|
| 1086 | ENDIF |
---|
| 1087 | IF ( outflow_n ) THEN |
---|
| 1088 | u_m_n(:,:,:) = u(:,ny-1:ny,:) |
---|
| 1089 | v_m_n(:,:,:) = v(:,ny-1:ny,:) |
---|
| 1090 | w_m_n(:,:,:) = w(:,ny-1:ny,:) |
---|
| 1091 | ENDIF |
---|
[667] | 1092 | |
---|
[151] | 1093 | ENDIF |
---|
[667] | 1094 | ! |
---|
| 1095 | !-- Calculate the initial volume flow at the right and north boundary |
---|
| 1096 | IF ( conserve_volume_flow ) THEN |
---|
[151] | 1097 | |
---|
[667] | 1098 | volume_flow_initial_l = 0.0 |
---|
| 1099 | volume_flow_area_l = 0.0 |
---|
| 1100 | |
---|
| 1101 | IF ( TRIM( initializing_actions ) == 'cyclic_fill' ) THEN |
---|
| 1102 | |
---|
| 1103 | IF ( nxr == nx ) THEN |
---|
| 1104 | DO j = nys, nyn |
---|
| 1105 | DO k = nzb_2d(j,nx) + 1, nzt |
---|
| 1106 | volume_flow_initial_l(1) = volume_flow_initial_l(1) + & |
---|
| 1107 | hom_sum(k,1,0) * dzw(k) |
---|
| 1108 | volume_flow_area_l(1) = volume_flow_area_l(1) + dzw(k) |
---|
| 1109 | ENDDO |
---|
| 1110 | ENDDO |
---|
| 1111 | ENDIF |
---|
| 1112 | |
---|
| 1113 | IF ( nyn == ny ) THEN |
---|
| 1114 | DO i = nxl, nxr |
---|
| 1115 | DO k = nzb_2d(ny,i) + 1, nzt |
---|
| 1116 | volume_flow_initial_l(2) = volume_flow_initial_l(2) + & |
---|
| 1117 | hom_sum(k,2,0) * dzw(k) |
---|
| 1118 | volume_flow_area_l(2) = volume_flow_area_l(2) + dzw(k) |
---|
| 1119 | ENDDO |
---|
| 1120 | ENDDO |
---|
| 1121 | ENDIF |
---|
| 1122 | |
---|
| 1123 | ELSEIF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN |
---|
| 1124 | |
---|
| 1125 | IF ( nxr == nx ) THEN |
---|
| 1126 | DO j = nys, nyn |
---|
| 1127 | DO k = nzb_2d(j,nx) + 1, nzt |
---|
| 1128 | volume_flow_initial_l(1) = volume_flow_initial_l(1) + & |
---|
| 1129 | u(k,j,nx) * dzw(k) |
---|
| 1130 | volume_flow_area_l(1) = volume_flow_area_l(1) + dzw(k) |
---|
| 1131 | ENDDO |
---|
| 1132 | ENDDO |
---|
| 1133 | ENDIF |
---|
| 1134 | |
---|
| 1135 | IF ( nyn == ny ) THEN |
---|
| 1136 | DO i = nxl, nxr |
---|
| 1137 | DO k = nzb_2d(ny,i) + 1, nzt |
---|
| 1138 | volume_flow_initial_l(2) = volume_flow_initial_l(2) + & |
---|
| 1139 | v(k,ny,i) * dzw(k) |
---|
| 1140 | volume_flow_area_l(2) = volume_flow_area_l(2) + dzw(k) |
---|
| 1141 | ENDDO |
---|
| 1142 | ENDDO |
---|
| 1143 | ENDIF |
---|
| 1144 | |
---|
| 1145 | ENDIF |
---|
| 1146 | |
---|
| 1147 | #if defined( __parallel ) |
---|
| 1148 | CALL MPI_ALLREDUCE( volume_flow_initial_l(1), volume_flow_initial(1),& |
---|
| 1149 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 1150 | CALL MPI_ALLREDUCE( volume_flow_area_l(1), volume_flow_area(1), & |
---|
| 1151 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 1152 | |
---|
| 1153 | CALL MPI_ALLREDUCE( volume_flow_initial_l(2), volume_flow_initial(2),& |
---|
| 1154 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 1155 | CALL MPI_ALLREDUCE( volume_flow_area_l(2), volume_flow_area(2), & |
---|
| 1156 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 1157 | |
---|
| 1158 | #else |
---|
| 1159 | volume_flow_initial = volume_flow_initial_l |
---|
| 1160 | volume_flow_area = volume_flow_area_l |
---|
| 1161 | #endif |
---|
| 1162 | |
---|
[151] | 1163 | ! |
---|
[667] | 1164 | !-- In case of 'bulk_velocity' mode, volume_flow_initial is overridden |
---|
| 1165 | !-- and calculated from u|v_bulk instead. |
---|
| 1166 | IF ( TRIM( conserve_volume_flow_mode ) == 'bulk_velocity' ) THEN |
---|
| 1167 | volume_flow_initial(1) = u_bulk * volume_flow_area(1) |
---|
| 1168 | volume_flow_initial(2) = v_bulk * volume_flow_area(2) |
---|
| 1169 | ENDIF |
---|
| 1170 | |
---|
| 1171 | ENDIF |
---|
| 1172 | ! |
---|
[138] | 1173 | !-- Initialization of the leaf area density |
---|
| 1174 | IF ( plant_canopy ) THEN |
---|
| 1175 | |
---|
| 1176 | SELECT CASE ( TRIM( canopy_mode ) ) |
---|
| 1177 | |
---|
| 1178 | CASE( 'block' ) |
---|
| 1179 | |
---|
[667] | 1180 | DO i = nxlg, nxrg |
---|
| 1181 | DO j = nysg, nyng |
---|
[138] | 1182 | lad_s(:,j,i) = lad(:) |
---|
| 1183 | cdc(:,j,i) = drag_coefficient |
---|
[153] | 1184 | IF ( passive_scalar ) THEN |
---|
| 1185 | sls(:,j,i) = leaf_surface_concentration |
---|
| 1186 | sec(:,j,i) = scalar_exchange_coefficient |
---|
| 1187 | ENDIF |
---|
[138] | 1188 | ENDDO |
---|
| 1189 | ENDDO |
---|
| 1190 | |
---|
| 1191 | CASE DEFAULT |
---|
| 1192 | |
---|
| 1193 | ! |
---|
| 1194 | !-- The DEFAULT case is reached either if the parameter |
---|
| 1195 | !-- canopy mode contains a wrong character string or if the |
---|
| 1196 | !-- user has coded a special case in the user interface. |
---|
| 1197 | !-- There, the subroutine user_init_plant_canopy checks |
---|
| 1198 | !-- which of these two conditions applies. |
---|
| 1199 | CALL user_init_plant_canopy |
---|
| 1200 | |
---|
| 1201 | END SELECT |
---|
| 1202 | |
---|
[667] | 1203 | CALL exchange_horiz( lad_s, nbgp ) |
---|
| 1204 | CALL exchange_horiz( cdc, nbgp ) |
---|
[138] | 1205 | |
---|
[153] | 1206 | IF ( passive_scalar ) THEN |
---|
[667] | 1207 | CALL exchange_horiz( sls, nbgp ) |
---|
| 1208 | CALL exchange_horiz( sec, nbgp ) |
---|
[153] | 1209 | ENDIF |
---|
| 1210 | |
---|
| 1211 | ! |
---|
| 1212 | !-- Sharp boundaries of the plant canopy in horizontal directions |
---|
| 1213 | !-- In vertical direction the interpolation is retained, as the leaf |
---|
| 1214 | !-- area density is initialised by prescribing a vertical profile |
---|
| 1215 | !-- consisting of piecewise linear segments. The upper boundary |
---|
| 1216 | !-- of the plant canopy is now defined by lad_w(pch_index,:,:) = 0.0. |
---|
| 1217 | |
---|
[138] | 1218 | DO i = nxl, nxr |
---|
| 1219 | DO j = nys, nyn |
---|
| 1220 | DO k = nzb, nzt+1 |
---|
[153] | 1221 | IF ( lad_s(k,j,i) > 0.0 ) THEN |
---|
| 1222 | lad_u(k,j,i) = lad_s(k,j,i) |
---|
| 1223 | lad_u(k,j,i+1) = lad_s(k,j,i) |
---|
| 1224 | lad_v(k,j,i) = lad_s(k,j,i) |
---|
| 1225 | lad_v(k,j+1,i) = lad_s(k,j,i) |
---|
| 1226 | ENDIF |
---|
[138] | 1227 | ENDDO |
---|
| 1228 | DO k = nzb, nzt |
---|
| 1229 | lad_w(k,j,i) = 0.5 * ( lad_s(k+1,j,i) + lad_s(k,j,i) ) |
---|
| 1230 | ENDDO |
---|
| 1231 | ENDDO |
---|
| 1232 | ENDDO |
---|
| 1233 | |
---|
[153] | 1234 | lad_w(pch_index,:,:) = 0.0 |
---|
| 1235 | lad_w(nzt+1,:,:) = lad_w(nzt,:,:) |
---|
[138] | 1236 | |
---|
[667] | 1237 | CALL exchange_horiz( lad_u, nbgp ) |
---|
| 1238 | CALL exchange_horiz( lad_v, nbgp ) |
---|
| 1239 | CALL exchange_horiz( lad_w, nbgp ) |
---|
[153] | 1240 | |
---|
| 1241 | ! |
---|
| 1242 | !-- Initialisation of the canopy heat source distribution |
---|
| 1243 | IF ( cthf /= 0.0 ) THEN |
---|
| 1244 | ! |
---|
| 1245 | !-- Piecewise evaluation of the leaf area index by |
---|
| 1246 | !-- integration of the leaf area density |
---|
| 1247 | lai(:,:,:) = 0.0 |
---|
[667] | 1248 | DO i = nxlg, nxrg |
---|
| 1249 | DO j = nysg, nyng |
---|
[153] | 1250 | DO k = pch_index-1, 0, -1 |
---|
| 1251 | lai(k,j,i) = lai(k+1,j,i) + & |
---|
| 1252 | ( 0.5 * ( lad_w(k+1,j,i) + & |
---|
| 1253 | lad_s(k+1,j,i) ) * & |
---|
| 1254 | ( zw(k+1) - zu(k+1) ) ) + & |
---|
| 1255 | ( 0.5 * ( lad_w(k,j,i) + & |
---|
| 1256 | lad_s(k+1,j,i) ) * & |
---|
| 1257 | ( zu(k+1) - zw(k) ) ) |
---|
| 1258 | ENDDO |
---|
| 1259 | ENDDO |
---|
| 1260 | ENDDO |
---|
| 1261 | |
---|
| 1262 | ! |
---|
| 1263 | !-- Evaluation of the upward kinematic vertical heat flux within the |
---|
| 1264 | !-- canopy |
---|
[667] | 1265 | DO i = nxlg, nxrg |
---|
| 1266 | DO j = nysg, nyng |
---|
[153] | 1267 | DO k = 0, pch_index |
---|
| 1268 | canopy_heat_flux(k,j,i) = cthf * & |
---|
| 1269 | exp( -0.6 * lai(k,j,i) ) |
---|
| 1270 | ENDDO |
---|
| 1271 | ENDDO |
---|
| 1272 | ENDDO |
---|
| 1273 | |
---|
| 1274 | ! |
---|
| 1275 | !-- The near surface heat flux is derived from the heat flux |
---|
| 1276 | !-- distribution within the canopy |
---|
| 1277 | shf(:,:) = canopy_heat_flux(0,:,:) |
---|
| 1278 | |
---|
| 1279 | IF ( ASSOCIATED( shf_m ) ) shf_m = shf |
---|
| 1280 | |
---|
| 1281 | ENDIF |
---|
| 1282 | |
---|
[138] | 1283 | ENDIF |
---|
| 1284 | |
---|
| 1285 | ! |
---|
[1] | 1286 | !-- If required, initialize dvrp-software |
---|
| 1287 | IF ( dt_dvrp /= 9999999.9 ) CALL init_dvrp |
---|
| 1288 | |
---|
[96] | 1289 | IF ( ocean ) THEN |
---|
[1] | 1290 | ! |
---|
[96] | 1291 | !-- Initialize quantities needed for the ocean model |
---|
| 1292 | CALL init_ocean |
---|
[388] | 1293 | |
---|
[96] | 1294 | ELSE |
---|
| 1295 | ! |
---|
| 1296 | !-- Initialize quantities for handling cloud physics |
---|
| 1297 | !-- This routine must be called before init_particles, because |
---|
| 1298 | !-- otherwise, array pt_d_t, needed in data_output_dvrp (called by |
---|
| 1299 | !-- init_particles) is not defined. |
---|
| 1300 | CALL init_cloud_physics |
---|
| 1301 | ENDIF |
---|
[1] | 1302 | |
---|
| 1303 | ! |
---|
| 1304 | !-- If required, initialize particles |
---|
[63] | 1305 | IF ( particle_advection ) CALL init_particles |
---|
[1] | 1306 | |
---|
| 1307 | ! |
---|
| 1308 | !-- Initialize quantities for special advections schemes |
---|
| 1309 | CALL init_advec |
---|
[667] | 1310 | IF ( momentum_advec == 'ws-scheme' .OR. & |
---|
| 1311 | scalar_advec == 'ws-scheme' ) CALL ws_init |
---|
[1] | 1312 | |
---|
| 1313 | ! |
---|
| 1314 | !-- Initialize Rayleigh damping factors |
---|
| 1315 | rdf = 0.0 |
---|
| 1316 | IF ( rayleigh_damping_factor /= 0.0 ) THEN |
---|
[108] | 1317 | IF ( .NOT. ocean ) THEN |
---|
| 1318 | DO k = nzb+1, nzt |
---|
| 1319 | IF ( zu(k) >= rayleigh_damping_height ) THEN |
---|
| 1320 | rdf(k) = rayleigh_damping_factor * & |
---|
[1] | 1321 | ( SIN( pi * 0.5 * ( zu(k) - rayleigh_damping_height ) & |
---|
| 1322 | / ( zu(nzt) - rayleigh_damping_height ) )& |
---|
| 1323 | )**2 |
---|
[108] | 1324 | ENDIF |
---|
| 1325 | ENDDO |
---|
| 1326 | ELSE |
---|
| 1327 | DO k = nzt, nzb+1, -1 |
---|
| 1328 | IF ( zu(k) <= rayleigh_damping_height ) THEN |
---|
| 1329 | rdf(k) = rayleigh_damping_factor * & |
---|
| 1330 | ( SIN( pi * 0.5 * ( rayleigh_damping_height - zu(k) ) & |
---|
| 1331 | / ( rayleigh_damping_height - zu(nzb+1)))& |
---|
| 1332 | )**2 |
---|
| 1333 | ENDIF |
---|
| 1334 | ENDDO |
---|
| 1335 | ENDIF |
---|
[1] | 1336 | ENDIF |
---|
| 1337 | |
---|
| 1338 | ! |
---|
[240] | 1339 | !-- Initialize the starting level and the vertical smoothing factor used for |
---|
| 1340 | !-- the external pressure gradient |
---|
| 1341 | dp_smooth_factor = 1.0 |
---|
| 1342 | IF ( dp_external ) THEN |
---|
| 1343 | ! |
---|
| 1344 | !-- Set the starting level dp_level_ind_b only if it has not been set before |
---|
| 1345 | !-- (e.g. in init_grid). |
---|
| 1346 | IF ( dp_level_ind_b == 0 ) THEN |
---|
| 1347 | ind_array = MINLOC( ABS( dp_level_b - zu ) ) |
---|
| 1348 | dp_level_ind_b = ind_array(1) - 1 + nzb |
---|
| 1349 | ! MINLOC uses lower array bound 1 |
---|
| 1350 | ENDIF |
---|
| 1351 | IF ( dp_smooth ) THEN |
---|
| 1352 | dp_smooth_factor(:dp_level_ind_b) = 0.0 |
---|
| 1353 | DO k = dp_level_ind_b+1, nzt |
---|
| 1354 | dp_smooth_factor(k) = 0.5 * ( 1.0 + SIN( pi * & |
---|
| 1355 | ( REAL( k - dp_level_ind_b ) / & |
---|
| 1356 | REAL( nzt - dp_level_ind_b ) - 0.5 ) ) ) |
---|
| 1357 | ENDDO |
---|
| 1358 | ENDIF |
---|
| 1359 | ENDIF |
---|
| 1360 | |
---|
| 1361 | ! |
---|
[1] | 1362 | !-- Initialize diffusivities used within the outflow damping layer in case of |
---|
| 1363 | !-- non-cyclic lateral boundaries. A linear increase is assumed over the first |
---|
| 1364 | !-- half of the width of the damping layer |
---|
[73] | 1365 | IF ( bc_lr == 'dirichlet/radiation' ) THEN |
---|
[1] | 1366 | |
---|
[667] | 1367 | DO i = nxlg, nxrg |
---|
[73] | 1368 | IF ( i >= nx - outflow_damping_width ) THEN |
---|
| 1369 | km_damp_x(i) = km_damp_max * MIN( 1.0, & |
---|
| 1370 | ( i - ( nx - outflow_damping_width ) ) / & |
---|
| 1371 | REAL( outflow_damping_width/2 ) & |
---|
| 1372 | ) |
---|
| 1373 | ELSE |
---|
| 1374 | km_damp_x(i) = 0.0 |
---|
| 1375 | ENDIF |
---|
| 1376 | ENDDO |
---|
[1] | 1377 | |
---|
[73] | 1378 | ELSEIF ( bc_lr == 'radiation/dirichlet' ) THEN |
---|
[1] | 1379 | |
---|
[667] | 1380 | DO i = nxlg, nxrg |
---|
[73] | 1381 | IF ( i <= outflow_damping_width ) THEN |
---|
| 1382 | km_damp_x(i) = km_damp_max * MIN( 1.0, & |
---|
| 1383 | ( outflow_damping_width - i ) / & |
---|
| 1384 | REAL( outflow_damping_width/2 ) & |
---|
| 1385 | ) |
---|
| 1386 | ELSE |
---|
| 1387 | km_damp_x(i) = 0.0 |
---|
| 1388 | ENDIF |
---|
| 1389 | ENDDO |
---|
[1] | 1390 | |
---|
[73] | 1391 | ENDIF |
---|
[1] | 1392 | |
---|
[73] | 1393 | IF ( bc_ns == 'dirichlet/radiation' ) THEN |
---|
[1] | 1394 | |
---|
[667] | 1395 | DO j = nysg, nyng |
---|
[73] | 1396 | IF ( j >= ny - outflow_damping_width ) THEN |
---|
| 1397 | km_damp_y(j) = km_damp_max * MIN( 1.0, & |
---|
| 1398 | ( j - ( ny - outflow_damping_width ) ) / & |
---|
| 1399 | REAL( outflow_damping_width/2 ) & |
---|
| 1400 | ) |
---|
| 1401 | ELSE |
---|
| 1402 | km_damp_y(j) = 0.0 |
---|
[1] | 1403 | ENDIF |
---|
| 1404 | ENDDO |
---|
| 1405 | |
---|
[73] | 1406 | ELSEIF ( bc_ns == 'radiation/dirichlet' ) THEN |
---|
[1] | 1407 | |
---|
[667] | 1408 | DO j = nysg, nyng |
---|
[73] | 1409 | IF ( j <= outflow_damping_width ) THEN |
---|
| 1410 | km_damp_y(j) = km_damp_max * MIN( 1.0, & |
---|
| 1411 | ( outflow_damping_width - j ) / & |
---|
| 1412 | REAL( outflow_damping_width/2 ) & |
---|
| 1413 | ) |
---|
| 1414 | ELSE |
---|
| 1415 | km_damp_y(j) = 0.0 |
---|
[1] | 1416 | ENDIF |
---|
[73] | 1417 | ENDDO |
---|
[1] | 1418 | |
---|
| 1419 | ENDIF |
---|
| 1420 | |
---|
| 1421 | ! |
---|
| 1422 | !-- Initialize local summation arrays for UP flow_statistics. This is necessary |
---|
| 1423 | !-- because they may not yet have been initialized when they are called from |
---|
| 1424 | !-- flow_statistics (or - depending on the chosen model run - are never |
---|
| 1425 | !-- initialized) |
---|
| 1426 | sums_divnew_l = 0.0 |
---|
| 1427 | sums_divold_l = 0.0 |
---|
| 1428 | sums_l_l = 0.0 |
---|
| 1429 | sums_up_fraction_l = 0.0 |
---|
| 1430 | sums_wsts_bc_l = 0.0 |
---|
| 1431 | |
---|
| 1432 | ! |
---|
| 1433 | !-- Pre-set masks for regional statistics. Default is the total model domain. |
---|
| 1434 | rmask = 1.0 |
---|
| 1435 | |
---|
| 1436 | ! |
---|
[51] | 1437 | !-- User-defined initializing actions. Check afterwards, if maximum number |
---|
| 1438 | !-- of allowed timeseries is not exceeded |
---|
[1] | 1439 | CALL user_init |
---|
| 1440 | |
---|
[51] | 1441 | IF ( dots_num > dots_max ) THEN |
---|
[254] | 1442 | WRITE( message_string, * ) 'number of time series quantities exceeds', & |
---|
[274] | 1443 | ' its maximum of dots_max = ', dots_max, & |
---|
[254] | 1444 | ' &Please increase dots_max in modules.f90.' |
---|
| 1445 | CALL message( 'init_3d_model', 'PA0194', 1, 2, 0, 6, 0 ) |
---|
[51] | 1446 | ENDIF |
---|
| 1447 | |
---|
[1] | 1448 | ! |
---|
| 1449 | !-- Input binary data file is not needed anymore. This line must be placed |
---|
| 1450 | !-- after call of user_init! |
---|
| 1451 | CALL close_file( 13 ) |
---|
| 1452 | |
---|
| 1453 | ! |
---|
| 1454 | !-- Compute total sum of active mask grid points |
---|
| 1455 | !-- ngp_2dh: number of grid points of a horizontal cross section through the |
---|
| 1456 | !-- total domain |
---|
| 1457 | !-- ngp_3d: number of grid points of the total domain |
---|
[132] | 1458 | ngp_2dh_outer_l = 0 |
---|
| 1459 | ngp_2dh_outer = 0 |
---|
| 1460 | ngp_2dh_s_inner_l = 0 |
---|
| 1461 | ngp_2dh_s_inner = 0 |
---|
| 1462 | ngp_2dh_l = 0 |
---|
| 1463 | ngp_2dh = 0 |
---|
[485] | 1464 | ngp_3d_inner_l = 0.0 |
---|
[132] | 1465 | ngp_3d_inner = 0 |
---|
| 1466 | ngp_3d = 0 |
---|
| 1467 | ngp_sums = ( nz + 2 ) * ( pr_palm + max_pr_user ) |
---|
[1] | 1468 | |
---|
| 1469 | DO sr = 0, statistic_regions |
---|
| 1470 | DO i = nxl, nxr |
---|
| 1471 | DO j = nys, nyn |
---|
| 1472 | IF ( rmask(j,i,sr) == 1.0 ) THEN |
---|
| 1473 | ! |
---|
| 1474 | !-- All xy-grid points |
---|
| 1475 | ngp_2dh_l(sr) = ngp_2dh_l(sr) + 1 |
---|
| 1476 | ! |
---|
| 1477 | !-- xy-grid points above topography |
---|
| 1478 | DO k = nzb_s_outer(j,i), nz + 1 |
---|
| 1479 | ngp_2dh_outer_l(k,sr) = ngp_2dh_outer_l(k,sr) + 1 |
---|
| 1480 | ENDDO |
---|
[132] | 1481 | DO k = nzb_s_inner(j,i), nz + 1 |
---|
| 1482 | ngp_2dh_s_inner_l(k,sr) = ngp_2dh_s_inner_l(k,sr) + 1 |
---|
| 1483 | ENDDO |
---|
[1] | 1484 | ! |
---|
| 1485 | !-- All grid points of the total domain above topography |
---|
| 1486 | ngp_3d_inner_l(sr) = ngp_3d_inner_l(sr) + & |
---|
| 1487 | ( nz - nzb_s_inner(j,i) + 2 ) |
---|
| 1488 | ENDIF |
---|
| 1489 | ENDDO |
---|
| 1490 | ENDDO |
---|
| 1491 | ENDDO |
---|
| 1492 | |
---|
| 1493 | sr = statistic_regions + 1 |
---|
| 1494 | #if defined( __parallel ) |
---|
[622] | 1495 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[485] | 1496 | CALL MPI_ALLREDUCE( ngp_2dh_l(0), ngp_2dh(0), sr, MPI_INTEGER, MPI_SUM, & |
---|
[1] | 1497 | comm2d, ierr ) |
---|
[622] | 1498 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[485] | 1499 | CALL MPI_ALLREDUCE( ngp_2dh_outer_l(0,0), ngp_2dh_outer(0,0), (nz+2)*sr, & |
---|
[1] | 1500 | MPI_INTEGER, MPI_SUM, comm2d, ierr ) |
---|
[622] | 1501 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[485] | 1502 | CALL MPI_ALLREDUCE( ngp_2dh_s_inner_l(0,0), ngp_2dh_s_inner(0,0), & |
---|
[132] | 1503 | (nz+2)*sr, MPI_INTEGER, MPI_SUM, comm2d, ierr ) |
---|
[622] | 1504 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[485] | 1505 | CALL MPI_ALLREDUCE( ngp_3d_inner_l(0), ngp_3d_inner_tmp(0), sr, MPI_REAL, & |
---|
[1] | 1506 | MPI_SUM, comm2d, ierr ) |
---|
[485] | 1507 | ngp_3d_inner = INT( ngp_3d_inner_tmp, KIND = SELECTED_INT_KIND( 18 ) ) |
---|
[1] | 1508 | #else |
---|
[132] | 1509 | ngp_2dh = ngp_2dh_l |
---|
| 1510 | ngp_2dh_outer = ngp_2dh_outer_l |
---|
| 1511 | ngp_2dh_s_inner = ngp_2dh_s_inner_l |
---|
[485] | 1512 | ngp_3d_inner = INT( ngp_3d_inner_l, KIND = SELECTED_INT_KIND( 18 ) ) |
---|
[1] | 1513 | #endif |
---|
| 1514 | |
---|
[560] | 1515 | ngp_3d = INT ( ngp_2dh, KIND = SELECTED_INT_KIND( 18 ) ) * & |
---|
| 1516 | INT ( (nz + 2 ), KIND = SELECTED_INT_KIND( 18 ) ) |
---|
[1] | 1517 | |
---|
| 1518 | ! |
---|
| 1519 | !-- Set a lower limit of 1 in order to avoid zero divisions in flow_statistics, |
---|
| 1520 | !-- buoyancy, etc. A zero value will occur for cases where all grid points of |
---|
| 1521 | !-- the respective subdomain lie below the surface topography |
---|
[667] | 1522 | ngp_2dh_outer = MAX( 1, ngp_2dh_outer(:,:) ) |
---|
[631] | 1523 | ngp_3d_inner = MAX( INT(1, KIND = SELECTED_INT_KIND( 18 )), & |
---|
| 1524 | ngp_3d_inner(:) ) |
---|
[667] | 1525 | ngp_2dh_s_inner = MAX( 1, ngp_2dh_s_inner(:,:) ) |
---|
[1] | 1526 | |
---|
[485] | 1527 | DEALLOCATE( ngp_2dh_l, ngp_2dh_outer_l, ngp_3d_inner_l, ngp_3d_inner_tmp ) |
---|
[1] | 1528 | |
---|
| 1529 | |
---|
| 1530 | END SUBROUTINE init_3d_model |
---|