[1] | 1 | #if defined( __ibmy_special ) |
---|
| 2 | @PROCESS NOOPTimize |
---|
| 3 | #endif |
---|
| 4 | SUBROUTINE init_3d_model |
---|
| 5 | |
---|
| 6 | !------------------------------------------------------------------------------! |
---|
[254] | 7 | ! Current revisions: |
---|
[1] | 8 | ! ----------------- |
---|
[254] | 9 | ! Output of messages replaced by message handling routine. |
---|
[240] | 10 | ! Set the starting level and the vertical smoothing factor used for |
---|
| 11 | ! the external pressure gradient |
---|
[254] | 12 | ! +conserve_volume_flow_mode: 'default', 'initial_profiles', 'inflow_profile' |
---|
[241] | 13 | ! and 'bulk_velocity' |
---|
[292] | 14 | ! If the inversion height calculated by the prerun is zero, |
---|
| 15 | ! inflow_damping_height must be explicitly specified. |
---|
[139] | 16 | ! |
---|
| 17 | ! Former revisions: |
---|
| 18 | ! ----------------- |
---|
| 19 | ! $Id: init_3d_model.f90 292 2009-04-16 16:10:51Z raasch $ |
---|
| 20 | ! |
---|
[198] | 21 | ! 181 2008-07-30 07:07:47Z raasch |
---|
| 22 | ! bugfix: zero assignments to tendency arrays in case of restarts, |
---|
| 23 | ! further extensions and modifications in the initialisation of the plant |
---|
| 24 | ! canopy model, |
---|
| 25 | ! allocation of hom_sum moved to parin, initialization of spectrum_x|y directly |
---|
| 26 | ! after allocating theses arrays, |
---|
| 27 | ! read data for recycling added as new initialization option, |
---|
| 28 | ! dummy allocation for diss |
---|
| 29 | ! |
---|
[139] | 30 | ! 138 2007-11-28 10:03:58Z letzel |
---|
[132] | 31 | ! New counter ngp_2dh_s_inner. |
---|
| 32 | ! Allow new case bc_uv_t = 'dirichlet_0' for channel flow. |
---|
| 33 | ! Corrected calculation of initial volume flow for 'set_1d-model_profiles' and |
---|
| 34 | ! 'set_constant_profiles' in case of buildings in the reference cross-sections. |
---|
[77] | 35 | ! |
---|
[110] | 36 | ! 108 2007-08-24 15:10:38Z letzel |
---|
| 37 | ! Flux initialization in case of coupled runs, +momentum fluxes at top boundary, |
---|
| 38 | ! +arrays for phase speed c_u, c_v, c_w, indices for u|v|w_m_l|r changed |
---|
| 39 | ! +qswst_remote in case of atmosphere model with humidity coupled to ocean |
---|
| 40 | ! Rayleigh damping for ocean, optionally calculate km and kh from initial |
---|
| 41 | ! TKE e_init |
---|
| 42 | ! |
---|
[98] | 43 | ! 97 2007-06-21 08:23:15Z raasch |
---|
| 44 | ! Initialization of salinity, call of init_ocean |
---|
| 45 | ! |
---|
[90] | 46 | ! 87 2007-05-22 15:46:47Z raasch |
---|
| 47 | ! var_hom and var_sum renamed pr_palm |
---|
| 48 | ! |
---|
[77] | 49 | ! 75 2007-03-22 09:54:05Z raasch |
---|
[73] | 50 | ! Arrays for radiation boundary conditions are allocated (u_m_l, u_m_r, etc.), |
---|
| 51 | ! bugfix for cases with the outflow damping layer extending over more than one |
---|
[75] | 52 | ! subdomain, moisture renamed humidity, |
---|
| 53 | ! new initializing action "by_user" calls user_init_3d_model, |
---|
[72] | 54 | ! precipitation_amount/rate, ts_value are allocated, +module netcdf_control, |
---|
[51] | 55 | ! initial velocities at nzb+1 are regarded for volume |
---|
| 56 | ! flow control in case they have been set zero before (to avoid small timesteps) |
---|
[75] | 57 | ! -uvmean_outflow, uxrp, vynp eliminated |
---|
[1] | 58 | ! |
---|
[39] | 59 | ! 19 2007-02-23 04:53:48Z raasch |
---|
| 60 | ! +handling of top fluxes |
---|
| 61 | ! |
---|
[3] | 62 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 63 | ! |
---|
[1] | 64 | ! Revision 1.49 2006/08/22 15:59:07 raasch |
---|
| 65 | ! No optimization of this file on the ibmy (Yonsei Univ.) |
---|
| 66 | ! |
---|
| 67 | ! Revision 1.1 1998/03/09 16:22:22 raasch |
---|
| 68 | ! Initial revision |
---|
| 69 | ! |
---|
| 70 | ! |
---|
| 71 | ! Description: |
---|
| 72 | ! ------------ |
---|
| 73 | ! Allocation of arrays and initialization of the 3D model via |
---|
| 74 | ! a) pre-run the 1D model |
---|
| 75 | ! or |
---|
| 76 | ! b) pre-set constant linear profiles |
---|
| 77 | ! or |
---|
| 78 | ! c) read values of a previous run |
---|
| 79 | !------------------------------------------------------------------------------! |
---|
| 80 | |
---|
| 81 | USE arrays_3d |
---|
| 82 | USE averaging |
---|
[72] | 83 | USE cloud_parameters |
---|
[1] | 84 | USE constants |
---|
| 85 | USE control_parameters |
---|
| 86 | USE cpulog |
---|
| 87 | USE indices |
---|
| 88 | USE interfaces |
---|
| 89 | USE model_1d |
---|
[51] | 90 | USE netcdf_control |
---|
[1] | 91 | USE particle_attributes |
---|
| 92 | USE pegrid |
---|
| 93 | USE profil_parameter |
---|
| 94 | USE random_function_mod |
---|
| 95 | USE statistics |
---|
| 96 | |
---|
| 97 | IMPLICIT NONE |
---|
| 98 | |
---|
[240] | 99 | INTEGER :: i, ind_array(1), j, k, sr |
---|
[1] | 100 | |
---|
| 101 | INTEGER, DIMENSION(:), ALLOCATABLE :: ngp_2dh_l, ngp_3d_inner_l |
---|
| 102 | |
---|
[132] | 103 | INTEGER, DIMENSION(:,:), ALLOCATABLE :: ngp_2dh_outer_l, & |
---|
| 104 | ngp_2dh_s_inner_l |
---|
[1] | 105 | |
---|
[153] | 106 | REAL :: a, b |
---|
| 107 | |
---|
[1] | 108 | REAL, DIMENSION(1:2) :: volume_flow_area_l, volume_flow_initial_l |
---|
| 109 | |
---|
| 110 | |
---|
| 111 | ! |
---|
| 112 | !-- Allocate arrays |
---|
| 113 | ALLOCATE( ngp_2dh(0:statistic_regions), ngp_2dh_l(0:statistic_regions), & |
---|
| 114 | ngp_3d(0:statistic_regions), & |
---|
| 115 | ngp_3d_inner(0:statistic_regions), & |
---|
| 116 | ngp_3d_inner_l(0:statistic_regions), & |
---|
| 117 | sums_divnew_l(0:statistic_regions), & |
---|
| 118 | sums_divold_l(0:statistic_regions) ) |
---|
[240] | 119 | ALLOCATE( dp_smooth_factor(nzb:nzt), rdf(nzb+1:nzt) ) |
---|
[143] | 120 | ALLOCATE( ngp_2dh_outer(nzb:nzt+1,0:statistic_regions), & |
---|
[1] | 121 | ngp_2dh_outer_l(nzb:nzt+1,0:statistic_regions), & |
---|
[132] | 122 | ngp_2dh_s_inner(nzb:nzt+1,0:statistic_regions), & |
---|
| 123 | ngp_2dh_s_inner_l(nzb:nzt+1,0:statistic_regions), & |
---|
[1] | 124 | rmask(nys-1:nyn+1,nxl-1:nxr+1,0:statistic_regions), & |
---|
[87] | 125 | sums(nzb:nzt+1,pr_palm+max_pr_user), & |
---|
| 126 | sums_l(nzb:nzt+1,pr_palm+max_pr_user,0:threads_per_task-1), & |
---|
[1] | 127 | sums_l_l(nzb:nzt+1,0:statistic_regions,0:threads_per_task-1), & |
---|
| 128 | sums_up_fraction_l(10,3,0:statistic_regions), & |
---|
[48] | 129 | sums_wsts_bc_l(nzb:nzt+1,0:statistic_regions), & |
---|
| 130 | ts_value(var_ts,0:statistic_regions) ) |
---|
[1] | 131 | ALLOCATE( km_damp_x(nxl-1:nxr+1), km_damp_y(nys-1:nyn+1) ) |
---|
| 132 | |
---|
[19] | 133 | ALLOCATE( rif_1(nys-1:nyn+1,nxl-1:nxr+1), shf_1(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 134 | ts(nys-1:nyn+1,nxl-1:nxr+1), tswst_1(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 135 | us(nys-1:nyn+1,nxl-1:nxr+1), usws_1(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
[102] | 136 | uswst_1(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 137 | vsws_1(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 138 | vswst_1(nys-1:nyn+1,nxl-1:nxr+1), z0(nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
[1] | 139 | |
---|
| 140 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 141 | ! |
---|
| 142 | !-- Leapfrog scheme needs two timelevels of diffusion quantities |
---|
[19] | 143 | ALLOCATE( rif_2(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 144 | shf_2(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 145 | tswst_2(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 146 | usws_2(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
[102] | 147 | uswst_2(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 148 | vswst_2(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
[1] | 149 | vsws_2(nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 150 | ENDIF |
---|
| 151 | |
---|
[75] | 152 | ALLOCATE( d(nzb+1:nzta,nys:nyna,nxl:nxra), & |
---|
| 153 | e_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 154 | e_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 155 | e_3(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 156 | kh_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 157 | km_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 158 | p(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 159 | pt_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 160 | pt_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 161 | pt_3(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 162 | tend(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 163 | u_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 164 | u_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 165 | u_3(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 166 | v_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 167 | v_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 168 | v_3(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 169 | w_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 170 | w_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
[1] | 171 | w_3(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 172 | |
---|
| 173 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 174 | ALLOCATE( kh_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 175 | km_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 176 | ENDIF |
---|
| 177 | |
---|
[75] | 178 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 179 | ! |
---|
[75] | 180 | !-- 2D-humidity/scalar arrays |
---|
[1] | 181 | ALLOCATE ( qs(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
[19] | 182 | qsws_1(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 183 | qswst_1(nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
[1] | 184 | |
---|
| 185 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[19] | 186 | ALLOCATE( qsws_2(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 187 | qswst_2(nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
[1] | 188 | ENDIF |
---|
| 189 | ! |
---|
[75] | 190 | !-- 3D-humidity/scalar arrays |
---|
[1] | 191 | ALLOCATE( q_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 192 | q_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 193 | q_3(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 194 | |
---|
| 195 | ! |
---|
[75] | 196 | !-- 3D-arrays needed for humidity only |
---|
| 197 | IF ( humidity ) THEN |
---|
[1] | 198 | ALLOCATE( vpt_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 199 | |
---|
| 200 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 201 | ALLOCATE( vpt_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 202 | ENDIF |
---|
| 203 | |
---|
| 204 | IF ( cloud_physics ) THEN |
---|
| 205 | ! |
---|
| 206 | !-- Liquid water content |
---|
| 207 | ALLOCATE ( ql_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
[72] | 208 | ! |
---|
| 209 | !-- Precipitation amount and rate (only needed if output is switched) |
---|
| 210 | ALLOCATE( precipitation_amount(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 211 | precipitation_rate(nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
[1] | 212 | ENDIF |
---|
| 213 | |
---|
| 214 | IF ( cloud_droplets ) THEN |
---|
| 215 | ! |
---|
| 216 | !-- Liquid water content, change in liquid water content, |
---|
| 217 | !-- real volume of particles (with weighting), volume of particles |
---|
| 218 | ALLOCATE ( ql_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 219 | ql_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 220 | ql_v(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 221 | ql_vp(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 222 | ENDIF |
---|
| 223 | |
---|
| 224 | ENDIF |
---|
| 225 | |
---|
| 226 | ENDIF |
---|
| 227 | |
---|
[94] | 228 | IF ( ocean ) THEN |
---|
[95] | 229 | ALLOCATE( saswsb_1(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 230 | saswst_1(nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
[96] | 231 | ALLOCATE( rho_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 232 | sa_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 233 | sa_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
[94] | 234 | sa_3(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
[96] | 235 | rho => rho_1 ! routine calc_mean_profile requires density to be a |
---|
| 236 | ! pointer |
---|
[108] | 237 | IF ( humidity_remote ) THEN |
---|
| 238 | ALLOCATE( qswst_remote(nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 239 | qswst_remote = 0.0 |
---|
| 240 | ENDIF |
---|
[94] | 241 | ENDIF |
---|
| 242 | |
---|
[1] | 243 | ! |
---|
| 244 | !-- 3D-array for storing the dissipation, needed for calculating the sgs |
---|
| 245 | !-- particle velocities |
---|
| 246 | IF ( use_sgs_for_particles ) THEN |
---|
| 247 | ALLOCATE ( diss(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
[181] | 248 | ELSE |
---|
| 249 | ALLOCATE ( diss(2,2,2) ) ! required because diss is used as a |
---|
| 250 | ! formal parameter |
---|
[1] | 251 | ENDIF |
---|
| 252 | |
---|
| 253 | IF ( dt_dosp /= 9999999.9 ) THEN |
---|
| 254 | ALLOCATE( spectrum_x( 1:nx/2, 1:10, 1:10 ), & |
---|
| 255 | spectrum_y( 1:ny/2, 1:10, 1:10 ) ) |
---|
[146] | 256 | spectrum_x = 0.0 |
---|
| 257 | spectrum_y = 0.0 |
---|
[1] | 258 | ENDIF |
---|
| 259 | |
---|
| 260 | ! |
---|
[138] | 261 | !-- 3D-arrays for the leaf area density and the canopy drag coefficient |
---|
| 262 | IF ( plant_canopy ) THEN |
---|
| 263 | ALLOCATE ( lad_s(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 264 | lad_u(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 265 | lad_v(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 266 | lad_w(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 267 | cdc(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
[153] | 268 | |
---|
| 269 | IF ( passive_scalar ) THEN |
---|
| 270 | ALLOCATE ( sls(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 271 | sec(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 272 | ENDIF |
---|
| 273 | |
---|
| 274 | IF ( cthf /= 0.0 ) THEN |
---|
| 275 | ALLOCATE ( lai(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 276 | canopy_heat_flux(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 277 | ENDIF |
---|
| 278 | |
---|
[138] | 279 | ENDIF |
---|
| 280 | |
---|
| 281 | ! |
---|
[51] | 282 | !-- 4D-array for storing the Rif-values at vertical walls |
---|
| 283 | IF ( topography /= 'flat' ) THEN |
---|
| 284 | ALLOCATE( rif_wall(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1,1:4) ) |
---|
| 285 | rif_wall = 0.0 |
---|
| 286 | ENDIF |
---|
| 287 | |
---|
| 288 | ! |
---|
| 289 | !-- Velocities at nzb+1 needed for volume flow control |
---|
| 290 | IF ( conserve_volume_flow ) THEN |
---|
| 291 | ALLOCATE( u_nzb_p1_for_vfc(nys:nyn), v_nzb_p1_for_vfc(nxl:nxr) ) |
---|
| 292 | u_nzb_p1_for_vfc = 0.0 |
---|
| 293 | v_nzb_p1_for_vfc = 0.0 |
---|
| 294 | ENDIF |
---|
| 295 | |
---|
| 296 | ! |
---|
[106] | 297 | !-- Arrays to store velocity data from t-dt and the phase speeds which |
---|
| 298 | !-- are needed for radiation boundary conditions |
---|
[73] | 299 | IF ( outflow_l ) THEN |
---|
[106] | 300 | ALLOCATE( u_m_l(nzb:nzt+1,nys-1:nyn+1,1:2), & |
---|
| 301 | v_m_l(nzb:nzt+1,nys-1:nyn+1,0:1), & |
---|
| 302 | w_m_l(nzb:nzt+1,nys-1:nyn+1,0:1) ) |
---|
[73] | 303 | ENDIF |
---|
| 304 | IF ( outflow_r ) THEN |
---|
[106] | 305 | ALLOCATE( u_m_r(nzb:nzt+1,nys-1:nyn+1,nx-1:nx), & |
---|
| 306 | v_m_r(nzb:nzt+1,nys-1:nyn+1,nx-1:nx), & |
---|
| 307 | w_m_r(nzb:nzt+1,nys-1:nyn+1,nx-1:nx) ) |
---|
[73] | 308 | ENDIF |
---|
[106] | 309 | IF ( outflow_l .OR. outflow_r ) THEN |
---|
| 310 | ALLOCATE( c_u(nzb:nzt+1,nys-1:nyn+1), c_v(nzb:nzt+1,nys-1:nyn+1), & |
---|
| 311 | c_w(nzb:nzt+1,nys-1:nyn+1) ) |
---|
| 312 | ENDIF |
---|
[73] | 313 | IF ( outflow_s ) THEN |
---|
[106] | 314 | ALLOCATE( u_m_s(nzb:nzt+1,0:1,nxl-1:nxr+1), & |
---|
| 315 | v_m_s(nzb:nzt+1,1:2,nxl-1:nxr+1), & |
---|
| 316 | w_m_s(nzb:nzt+1,0:1,nxl-1:nxr+1) ) |
---|
[73] | 317 | ENDIF |
---|
| 318 | IF ( outflow_n ) THEN |
---|
[106] | 319 | ALLOCATE( u_m_n(nzb:nzt+1,ny-1:ny,nxl-1:nxr+1), & |
---|
| 320 | v_m_n(nzb:nzt+1,ny-1:ny,nxl-1:nxr+1), & |
---|
| 321 | w_m_n(nzb:nzt+1,ny-1:ny,nxl-1:nxr+1) ) |
---|
[73] | 322 | ENDIF |
---|
[106] | 323 | IF ( outflow_s .OR. outflow_n ) THEN |
---|
| 324 | ALLOCATE( c_u(nzb:nzt+1,nxl-1:nxr+1), c_v(nzb:nzt+1,nxl-1:nxr+1), & |
---|
| 325 | c_w(nzb:nzt+1,nxl-1:nxr+1) ) |
---|
| 326 | ENDIF |
---|
[73] | 327 | |
---|
| 328 | ! |
---|
[1] | 329 | !-- Initial assignment of the pointers |
---|
| 330 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 331 | |
---|
[19] | 332 | rif_m => rif_1; rif => rif_2 |
---|
| 333 | shf_m => shf_1; shf => shf_2 |
---|
| 334 | tswst_m => tswst_1; tswst => tswst_2 |
---|
| 335 | usws_m => usws_1; usws => usws_2 |
---|
[102] | 336 | uswst_m => uswst_1; uswst => uswst_2 |
---|
[19] | 337 | vsws_m => vsws_1; vsws => vsws_2 |
---|
[102] | 338 | vswst_m => vswst_1; vswst => vswst_2 |
---|
[1] | 339 | e_m => e_1; e => e_2; e_p => e_3; te_m => e_3 |
---|
| 340 | kh_m => kh_1; kh => kh_2 |
---|
| 341 | km_m => km_1; km => km_2 |
---|
| 342 | pt_m => pt_1; pt => pt_2; pt_p => pt_3; tpt_m => pt_3 |
---|
| 343 | u_m => u_1; u => u_2; u_p => u_3; tu_m => u_3 |
---|
| 344 | v_m => v_1; v => v_2; v_p => v_3; tv_m => v_3 |
---|
| 345 | w_m => w_1; w => w_2; w_p => w_3; tw_m => w_3 |
---|
| 346 | |
---|
[75] | 347 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[19] | 348 | qsws_m => qsws_1; qsws => qsws_2 |
---|
| 349 | qswst_m => qswst_1; qswst => qswst_2 |
---|
[1] | 350 | q_m => q_1; q => q_2; q_p => q_3; tq_m => q_3 |
---|
[75] | 351 | IF ( humidity ) vpt_m => vpt_1; vpt => vpt_2 |
---|
[1] | 352 | IF ( cloud_physics ) ql => ql_1 |
---|
| 353 | IF ( cloud_droplets ) THEN |
---|
| 354 | ql => ql_1 |
---|
| 355 | ql_c => ql_2 |
---|
| 356 | ENDIF |
---|
| 357 | ENDIF |
---|
| 358 | |
---|
| 359 | ELSE |
---|
| 360 | |
---|
[19] | 361 | rif => rif_1 |
---|
| 362 | shf => shf_1 |
---|
| 363 | tswst => tswst_1 |
---|
| 364 | usws => usws_1 |
---|
[102] | 365 | uswst => uswst_1 |
---|
[19] | 366 | vsws => vsws_1 |
---|
[102] | 367 | vswst => vswst_1 |
---|
[19] | 368 | e => e_1; e_p => e_2; te_m => e_3; e_m => e_3 |
---|
| 369 | kh => kh_1 |
---|
| 370 | km => km_1 |
---|
| 371 | pt => pt_1; pt_p => pt_2; tpt_m => pt_3; pt_m => pt_3 |
---|
| 372 | u => u_1; u_p => u_2; tu_m => u_3; u_m => u_3 |
---|
| 373 | v => v_1; v_p => v_2; tv_m => v_3; v_m => v_3 |
---|
| 374 | w => w_1; w_p => w_2; tw_m => w_3; w_m => w_3 |
---|
[1] | 375 | |
---|
[75] | 376 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 377 | qsws => qsws_1 |
---|
[19] | 378 | qswst => qswst_1 |
---|
[94] | 379 | q => q_1; q_p => q_2; tq_m => q_3; q_m => q_3 |
---|
[75] | 380 | IF ( humidity ) vpt => vpt_1 |
---|
[1] | 381 | IF ( cloud_physics ) ql => ql_1 |
---|
| 382 | IF ( cloud_droplets ) THEN |
---|
| 383 | ql => ql_1 |
---|
| 384 | ql_c => ql_2 |
---|
| 385 | ENDIF |
---|
| 386 | ENDIF |
---|
| 387 | |
---|
[94] | 388 | IF ( ocean ) THEN |
---|
[95] | 389 | saswsb => saswsb_1 |
---|
[94] | 390 | saswst => saswst_1 |
---|
| 391 | sa => sa_1; sa_p => sa_2; tsa_m => sa_3 |
---|
| 392 | ENDIF |
---|
| 393 | |
---|
[1] | 394 | ENDIF |
---|
| 395 | |
---|
| 396 | ! |
---|
| 397 | !-- Initialize model variables |
---|
[147] | 398 | IF ( TRIM( initializing_actions ) /= 'read_restart_data' .AND. & |
---|
| 399 | TRIM( initializing_actions ) /= 'read_data_for_recycling' ) THEN |
---|
[1] | 400 | ! |
---|
| 401 | !-- First model run of a possible job queue. |
---|
| 402 | !-- Initial profiles of the variables must be computes. |
---|
| 403 | IF ( INDEX( initializing_actions, 'set_1d-model_profiles' ) /= 0 ) THEN |
---|
| 404 | ! |
---|
| 405 | !-- Use solutions of the 1D model as initial profiles, |
---|
| 406 | !-- start 1D model |
---|
| 407 | CALL init_1d_model |
---|
| 408 | ! |
---|
| 409 | !-- Transfer initial profiles to the arrays of the 3D model |
---|
| 410 | DO i = nxl-1, nxr+1 |
---|
| 411 | DO j = nys-1, nyn+1 |
---|
| 412 | e(:,j,i) = e1d |
---|
| 413 | kh(:,j,i) = kh1d |
---|
| 414 | km(:,j,i) = km1d |
---|
| 415 | pt(:,j,i) = pt_init |
---|
| 416 | u(:,j,i) = u1d |
---|
| 417 | v(:,j,i) = v1d |
---|
| 418 | ENDDO |
---|
| 419 | ENDDO |
---|
| 420 | |
---|
[75] | 421 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 422 | DO i = nxl-1, nxr+1 |
---|
| 423 | DO j = nys-1, nyn+1 |
---|
| 424 | q(:,j,i) = q_init |
---|
| 425 | ENDDO |
---|
| 426 | ENDDO |
---|
| 427 | ENDIF |
---|
| 428 | |
---|
| 429 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 430 | DO i = nxl-1, nxr+1 |
---|
| 431 | DO j = nys-1, nyn+1 |
---|
| 432 | e(:,j,i) = e1d |
---|
| 433 | ENDDO |
---|
| 434 | ENDDO |
---|
| 435 | ! |
---|
| 436 | !-- Store initial profiles for output purposes etc. |
---|
| 437 | hom(:,1,25,:) = SPREAD( l1d, 2, statistic_regions+1 ) |
---|
| 438 | |
---|
| 439 | IF ( prandtl_layer ) THEN |
---|
| 440 | rif = rif1d(nzb+1) |
---|
| 441 | ts = 0.0 ! could actually be computed more accurately in the |
---|
| 442 | ! 1D model. Update when opportunity arises. |
---|
| 443 | us = us1d |
---|
| 444 | usws = usws1d |
---|
| 445 | vsws = vsws1d |
---|
| 446 | ELSE |
---|
| 447 | ts = 0.0 ! must be set, because used in |
---|
| 448 | rif = 0.0 ! flowste |
---|
| 449 | us = 0.0 |
---|
| 450 | usws = 0.0 |
---|
| 451 | vsws = 0.0 |
---|
| 452 | ENDIF |
---|
| 453 | |
---|
| 454 | ELSE |
---|
| 455 | e = 0.0 ! must be set, because used in |
---|
| 456 | rif = 0.0 ! flowste |
---|
| 457 | ts = 0.0 |
---|
| 458 | us = 0.0 |
---|
| 459 | usws = 0.0 |
---|
| 460 | vsws = 0.0 |
---|
| 461 | ENDIF |
---|
[102] | 462 | uswst = top_momentumflux_u |
---|
| 463 | vswst = top_momentumflux_v |
---|
[1] | 464 | |
---|
| 465 | ! |
---|
| 466 | !-- In every case qs = 0.0 (see also pt) |
---|
| 467 | !-- This could actually be computed more accurately in the 1D model. |
---|
| 468 | !-- Update when opportunity arises! |
---|
[75] | 469 | IF ( humidity .OR. passive_scalar ) qs = 0.0 |
---|
[1] | 470 | |
---|
| 471 | ! |
---|
| 472 | !-- inside buildings set velocities back to zero |
---|
| 473 | IF ( topography /= 'flat' ) THEN |
---|
| 474 | DO i = nxl-1, nxr+1 |
---|
| 475 | DO j = nys-1, nyn+1 |
---|
| 476 | u(nzb:nzb_u_inner(j,i),j,i) = 0.0 |
---|
| 477 | v(nzb:nzb_v_inner(j,i),j,i) = 0.0 |
---|
| 478 | ENDDO |
---|
| 479 | ENDDO |
---|
[132] | 480 | IF ( conserve_volume_flow ) THEN |
---|
| 481 | IF ( nxr == nx ) THEN |
---|
| 482 | DO j = nys, nyn |
---|
| 483 | DO k = nzb + 1, nzb_u_inner(j,nx) |
---|
| 484 | u_nzb_p1_for_vfc(j) = u1d(k) * dzu(k) |
---|
| 485 | ENDDO |
---|
| 486 | ENDDO |
---|
| 487 | ENDIF |
---|
| 488 | IF ( nyn == ny ) THEN |
---|
| 489 | DO i = nxl, nxr |
---|
| 490 | DO k = nzb + 1, nzb_v_inner(ny,i) |
---|
| 491 | v_nzb_p1_for_vfc(i) = v1d(k) * dzu(k) |
---|
| 492 | ENDDO |
---|
| 493 | ENDDO |
---|
| 494 | ENDIF |
---|
| 495 | ENDIF |
---|
[1] | 496 | ! |
---|
| 497 | !-- WARNING: The extra boundary conditions set after running the |
---|
| 498 | !-- ------- 1D model impose an error on the divergence one layer |
---|
| 499 | !-- below the topography; need to correct later |
---|
| 500 | !-- ATTENTION: Provisional correction for Piacsek & Williams |
---|
| 501 | !-- --------- advection scheme: keep u and v zero one layer below |
---|
| 502 | !-- the topography. |
---|
| 503 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 504 | ! |
---|
| 505 | !-- Satisfying the Dirichlet condition with an extra layer below |
---|
| 506 | !-- the surface where the u and v component change their sign. |
---|
| 507 | DO i = nxl-1, nxr+1 |
---|
| 508 | DO j = nys-1, nyn+1 |
---|
| 509 | IF ( nzb_u_inner(j,i) == 0 ) u(0,j,i) = -u(1,j,i) |
---|
| 510 | IF ( nzb_v_inner(j,i) == 0 ) v(0,j,i) = -v(1,j,i) |
---|
| 511 | ENDDO |
---|
| 512 | ENDDO |
---|
| 513 | |
---|
| 514 | ELSE |
---|
| 515 | ! |
---|
| 516 | !-- Neumann condition |
---|
| 517 | DO i = nxl-1, nxr+1 |
---|
| 518 | DO j = nys-1, nyn+1 |
---|
| 519 | IF ( nzb_u_inner(j,i) == 0 ) u(0,j,i) = u(1,j,i) |
---|
| 520 | IF ( nzb_v_inner(j,i) == 0 ) v(0,j,i) = v(1,j,i) |
---|
| 521 | ENDDO |
---|
| 522 | ENDDO |
---|
| 523 | |
---|
| 524 | ENDIF |
---|
| 525 | |
---|
| 526 | ENDIF |
---|
| 527 | |
---|
| 528 | ELSEIF ( INDEX(initializing_actions, 'set_constant_profiles') /= 0 ) & |
---|
| 529 | THEN |
---|
| 530 | ! |
---|
| 531 | !-- Use constructed initial profiles (velocity constant with height, |
---|
| 532 | !-- temperature profile with constant gradient) |
---|
| 533 | DO i = nxl-1, nxr+1 |
---|
| 534 | DO j = nys-1, nyn+1 |
---|
| 535 | pt(:,j,i) = pt_init |
---|
| 536 | u(:,j,i) = u_init |
---|
| 537 | v(:,j,i) = v_init |
---|
| 538 | ENDDO |
---|
| 539 | ENDDO |
---|
[75] | 540 | |
---|
[1] | 541 | ! |
---|
[292] | 542 | !-- Set initial horizontal velocities at the lowest computational grid |
---|
| 543 | !-- levels to zero in order to avoid too small time steps caused by the |
---|
| 544 | !-- diffusion limit in the initial phase of a run (at k=1, dz/2 occurs |
---|
| 545 | !-- in the limiting formula!). The original values are stored to be later |
---|
| 546 | !-- used for volume flow control. |
---|
[1] | 547 | DO i = nxl-1, nxr+1 |
---|
| 548 | DO j = nys-1, nyn+1 |
---|
| 549 | u(nzb:nzb_u_inner(j,i)+1,j,i) = 0.0 |
---|
| 550 | v(nzb:nzb_v_inner(j,i)+1,j,i) = 0.0 |
---|
| 551 | ENDDO |
---|
| 552 | ENDDO |
---|
[51] | 553 | IF ( conserve_volume_flow ) THEN |
---|
| 554 | IF ( nxr == nx ) THEN |
---|
| 555 | DO j = nys, nyn |
---|
[132] | 556 | DO k = nzb + 1, nzb_u_inner(j,nx) + 1 |
---|
| 557 | u_nzb_p1_for_vfc(j) = u_init(k) * dzu(k) |
---|
| 558 | ENDDO |
---|
[51] | 559 | ENDDO |
---|
| 560 | ENDIF |
---|
| 561 | IF ( nyn == ny ) THEN |
---|
| 562 | DO i = nxl, nxr |
---|
[132] | 563 | DO k = nzb + 1, nzb_v_inner(ny,i) + 1 |
---|
| 564 | v_nzb_p1_for_vfc(i) = v_init(k) * dzu(k) |
---|
| 565 | ENDDO |
---|
[51] | 566 | ENDDO |
---|
| 567 | ENDIF |
---|
| 568 | ENDIF |
---|
[1] | 569 | |
---|
[75] | 570 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 571 | DO i = nxl-1, nxr+1 |
---|
| 572 | DO j = nys-1, nyn+1 |
---|
| 573 | q(:,j,i) = q_init |
---|
| 574 | ENDDO |
---|
| 575 | ENDDO |
---|
| 576 | ENDIF |
---|
| 577 | |
---|
[94] | 578 | IF ( ocean ) THEN |
---|
| 579 | DO i = nxl-1, nxr+1 |
---|
| 580 | DO j = nys-1, nyn+1 |
---|
| 581 | sa(:,j,i) = sa_init |
---|
| 582 | ENDDO |
---|
| 583 | ENDDO |
---|
| 584 | ENDIF |
---|
[1] | 585 | |
---|
| 586 | IF ( constant_diffusion ) THEN |
---|
| 587 | km = km_constant |
---|
| 588 | kh = km / prandtl_number |
---|
[108] | 589 | e = 0.0 |
---|
| 590 | ELSEIF ( e_init > 0.0 ) THEN |
---|
| 591 | DO k = nzb+1, nzt |
---|
| 592 | km(k,:,:) = 0.1 * l_grid(k) * SQRT( e_init ) |
---|
| 593 | ENDDO |
---|
| 594 | km(nzb,:,:) = km(nzb+1,:,:) |
---|
| 595 | km(nzt+1,:,:) = km(nzt,:,:) |
---|
| 596 | kh = km / prandtl_number |
---|
| 597 | e = e_init |
---|
[1] | 598 | ELSE |
---|
[108] | 599 | IF ( .NOT. ocean ) THEN |
---|
| 600 | kh = 0.01 ! there must exist an initial diffusion, because |
---|
| 601 | km = 0.01 ! otherwise no TKE would be produced by the |
---|
| 602 | ! production terms, as long as not yet |
---|
| 603 | ! e = (u*/cm)**2 at k=nzb+1 |
---|
| 604 | ELSE |
---|
| 605 | kh = 0.00001 |
---|
| 606 | km = 0.00001 |
---|
| 607 | ENDIF |
---|
| 608 | e = 0.0 |
---|
[1] | 609 | ENDIF |
---|
[102] | 610 | rif = 0.0 |
---|
| 611 | ts = 0.0 |
---|
| 612 | us = 0.0 |
---|
| 613 | usws = 0.0 |
---|
| 614 | uswst = top_momentumflux_u |
---|
| 615 | vsws = 0.0 |
---|
| 616 | vswst = top_momentumflux_v |
---|
[75] | 617 | IF ( humidity .OR. passive_scalar ) qs = 0.0 |
---|
[1] | 618 | |
---|
| 619 | ! |
---|
| 620 | !-- Compute initial temperature field and other constants used in case |
---|
| 621 | !-- of a sloping surface |
---|
| 622 | IF ( sloping_surface ) CALL init_slope |
---|
| 623 | |
---|
[46] | 624 | ELSEIF ( INDEX(initializing_actions, 'by_user') /= 0 ) & |
---|
| 625 | THEN |
---|
| 626 | ! |
---|
| 627 | !-- Initialization will completely be done by the user |
---|
| 628 | CALL user_init_3d_model |
---|
| 629 | |
---|
[1] | 630 | ENDIF |
---|
| 631 | |
---|
| 632 | ! |
---|
[151] | 633 | !-- Apply channel flow boundary condition |
---|
[132] | 634 | IF ( TRIM( bc_uv_t ) == 'dirichlet_0' ) THEN |
---|
| 635 | |
---|
| 636 | u(nzt+1,:,:) = 0.0 |
---|
| 637 | v(nzt+1,:,:) = 0.0 |
---|
| 638 | |
---|
[151] | 639 | !-- For the Dirichlet condition to be correctly applied at the top, set |
---|
[132] | 640 | !-- ug and vg to zero there |
---|
| 641 | ug(nzt+1) = 0.0 |
---|
| 642 | vg(nzt+1) = 0.0 |
---|
| 643 | |
---|
| 644 | ENDIF |
---|
| 645 | |
---|
| 646 | ! |
---|
[1] | 647 | !-- Calculate virtual potential temperature |
---|
[75] | 648 | IF ( humidity ) vpt = pt * ( 1.0 + 0.61 * q ) |
---|
[1] | 649 | |
---|
| 650 | ! |
---|
| 651 | !-- Store initial profiles for output purposes etc. |
---|
| 652 | hom(:,1,5,:) = SPREAD( u(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 653 | hom(:,1,6,:) = SPREAD( v(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 654 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 655 | hom(nzb,1,5,:) = -hom(nzb+1,1,5,:) ! due to satisfying the Dirichlet |
---|
| 656 | hom(nzb,1,6,:) = -hom(nzb+1,1,6,:) ! condition with an extra layer |
---|
| 657 | ! below the surface where the u and v component change their sign |
---|
| 658 | ENDIF |
---|
| 659 | hom(:,1,7,:) = SPREAD( pt(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 660 | hom(:,1,23,:) = SPREAD( km(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 661 | hom(:,1,24,:) = SPREAD( kh(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 662 | |
---|
[97] | 663 | IF ( ocean ) THEN |
---|
| 664 | ! |
---|
| 665 | !-- Store initial salinity profile |
---|
| 666 | hom(:,1,26,:) = SPREAD( sa(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 667 | ENDIF |
---|
[1] | 668 | |
---|
[75] | 669 | IF ( humidity ) THEN |
---|
[1] | 670 | ! |
---|
| 671 | !-- Store initial profile of total water content, virtual potential |
---|
| 672 | !-- temperature |
---|
| 673 | hom(:,1,26,:) = SPREAD( q(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 674 | hom(:,1,29,:) = SPREAD( vpt(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 675 | IF ( cloud_physics .OR. cloud_droplets ) THEN |
---|
| 676 | ! |
---|
| 677 | !-- Store initial profile of specific humidity and potential |
---|
| 678 | !-- temperature |
---|
| 679 | hom(:,1,27,:) = SPREAD( q(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 680 | hom(:,1,28,:) = SPREAD( pt(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 681 | ENDIF |
---|
| 682 | ENDIF |
---|
| 683 | |
---|
| 684 | IF ( passive_scalar ) THEN |
---|
| 685 | ! |
---|
| 686 | !-- Store initial scalar profile |
---|
| 687 | hom(:,1,26,:) = SPREAD( q(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 688 | ENDIF |
---|
| 689 | |
---|
| 690 | ! |
---|
[19] | 691 | !-- Initialize fluxes at bottom surface |
---|
[1] | 692 | IF ( use_surface_fluxes ) THEN |
---|
| 693 | |
---|
| 694 | IF ( constant_heatflux ) THEN |
---|
| 695 | ! |
---|
| 696 | !-- Heat flux is prescribed |
---|
| 697 | IF ( random_heatflux ) THEN |
---|
| 698 | CALL disturb_heatflux |
---|
| 699 | ELSE |
---|
| 700 | shf = surface_heatflux |
---|
| 701 | ! |
---|
| 702 | !-- Over topography surface_heatflux is replaced by wall_heatflux(0) |
---|
| 703 | IF ( TRIM( topography ) /= 'flat' ) THEN |
---|
| 704 | DO i = nxl-1, nxr+1 |
---|
| 705 | DO j = nys-1, nyn+1 |
---|
| 706 | IF ( nzb_s_inner(j,i) /= 0 ) THEN |
---|
| 707 | shf(j,i) = wall_heatflux(0) |
---|
| 708 | ENDIF |
---|
| 709 | ENDDO |
---|
| 710 | ENDDO |
---|
| 711 | ENDIF |
---|
| 712 | ENDIF |
---|
| 713 | IF ( ASSOCIATED( shf_m ) ) shf_m = shf |
---|
| 714 | ENDIF |
---|
| 715 | |
---|
| 716 | ! |
---|
| 717 | !-- Determine the near-surface water flux |
---|
[75] | 718 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 719 | IF ( constant_waterflux ) THEN |
---|
| 720 | qsws = surface_waterflux |
---|
| 721 | IF ( ASSOCIATED( qsws_m ) ) qsws_m = qsws |
---|
| 722 | ENDIF |
---|
| 723 | ENDIF |
---|
| 724 | |
---|
| 725 | ENDIF |
---|
| 726 | |
---|
| 727 | ! |
---|
[19] | 728 | !-- Initialize fluxes at top surface |
---|
[94] | 729 | !-- Currently, only the heatflux and salinity flux can be prescribed. |
---|
| 730 | !-- The latent flux is zero in this case! |
---|
[19] | 731 | IF ( use_top_fluxes ) THEN |
---|
| 732 | |
---|
| 733 | IF ( constant_top_heatflux ) THEN |
---|
| 734 | ! |
---|
| 735 | !-- Heat flux is prescribed |
---|
| 736 | tswst = top_heatflux |
---|
| 737 | IF ( ASSOCIATED( tswst_m ) ) tswst_m = tswst |
---|
| 738 | |
---|
[75] | 739 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[19] | 740 | qswst = 0.0 |
---|
| 741 | IF ( ASSOCIATED( qswst_m ) ) qswst_m = qswst |
---|
| 742 | ENDIF |
---|
[94] | 743 | |
---|
| 744 | IF ( ocean ) THEN |
---|
[95] | 745 | saswsb = bottom_salinityflux |
---|
[94] | 746 | saswst = top_salinityflux |
---|
| 747 | ENDIF |
---|
[102] | 748 | ENDIF |
---|
[19] | 749 | |
---|
[102] | 750 | ! |
---|
| 751 | !-- Initialization in case of a coupled model run |
---|
| 752 | IF ( coupling_mode == 'ocean_to_atmosphere' ) THEN |
---|
| 753 | tswst = 0.0 |
---|
| 754 | IF ( ASSOCIATED( tswst_m ) ) tswst_m = tswst |
---|
| 755 | ENDIF |
---|
| 756 | |
---|
[19] | 757 | ENDIF |
---|
| 758 | |
---|
| 759 | ! |
---|
[1] | 760 | !-- Initialize Prandtl layer quantities |
---|
| 761 | IF ( prandtl_layer ) THEN |
---|
| 762 | |
---|
| 763 | z0 = roughness_length |
---|
| 764 | |
---|
| 765 | IF ( .NOT. constant_heatflux ) THEN |
---|
| 766 | ! |
---|
| 767 | !-- Surface temperature is prescribed. Here the heat flux cannot be |
---|
| 768 | !-- simply estimated, because therefore rif, u* and theta* would have |
---|
| 769 | !-- to be computed by iteration. This is why the heat flux is assumed |
---|
| 770 | !-- to be zero before the first time step. It approaches its correct |
---|
| 771 | !-- value in the course of the first few time steps. |
---|
| 772 | shf = 0.0 |
---|
| 773 | IF ( ASSOCIATED( shf_m ) ) shf_m = 0.0 |
---|
| 774 | ENDIF |
---|
| 775 | |
---|
[75] | 776 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 777 | IF ( .NOT. constant_waterflux ) THEN |
---|
| 778 | qsws = 0.0 |
---|
| 779 | IF ( ASSOCIATED( qsws_m ) ) qsws_m = 0.0 |
---|
| 780 | ENDIF |
---|
| 781 | ENDIF |
---|
| 782 | |
---|
| 783 | ENDIF |
---|
| 784 | |
---|
| 785 | ! |
---|
[152] | 786 | !-- Calculate the initial volume flow at the right and north boundary |
---|
| 787 | IF ( conserve_volume_flow ) THEN |
---|
| 788 | |
---|
| 789 | volume_flow_initial_l = 0.0 |
---|
| 790 | volume_flow_area_l = 0.0 |
---|
| 791 | |
---|
| 792 | IF ( nxr == nx ) THEN |
---|
| 793 | DO j = nys, nyn |
---|
| 794 | DO k = nzb_2d(j,nx) + 1, nzt |
---|
| 795 | volume_flow_initial_l(1) = volume_flow_initial_l(1) + & |
---|
| 796 | u(k,j,nx) * dzu(k) |
---|
| 797 | volume_flow_area_l(1) = volume_flow_area_l(1) + dzu(k) |
---|
| 798 | ENDDO |
---|
| 799 | ! |
---|
| 800 | !-- Correction if velocity at nzb+1 has been set zero further above |
---|
| 801 | volume_flow_initial_l(1) = volume_flow_initial_l(1) + & |
---|
| 802 | u_nzb_p1_for_vfc(j) |
---|
| 803 | ENDDO |
---|
| 804 | ENDIF |
---|
| 805 | |
---|
| 806 | IF ( nyn == ny ) THEN |
---|
| 807 | DO i = nxl, nxr |
---|
| 808 | DO k = nzb_2d(ny,i) + 1, nzt |
---|
| 809 | volume_flow_initial_l(2) = volume_flow_initial_l(2) + & |
---|
| 810 | v(k,ny,i) * dzu(k) |
---|
| 811 | volume_flow_area_l(2) = volume_flow_area_l(2) + dzu(k) |
---|
| 812 | ENDDO |
---|
| 813 | ! |
---|
| 814 | !-- Correction if velocity at nzb+1 has been set zero further above |
---|
| 815 | volume_flow_initial_l(2) = volume_flow_initial_l(2) + & |
---|
| 816 | v_nzb_p1_for_vfc(i) |
---|
| 817 | ENDDO |
---|
| 818 | ENDIF |
---|
| 819 | |
---|
| 820 | #if defined( __parallel ) |
---|
| 821 | CALL MPI_ALLREDUCE( volume_flow_initial_l(1), volume_flow_initial(1),& |
---|
| 822 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 823 | CALL MPI_ALLREDUCE( volume_flow_area_l(1), volume_flow_area(1), & |
---|
| 824 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 825 | #else |
---|
| 826 | volume_flow_initial = volume_flow_initial_l |
---|
| 827 | volume_flow_area = volume_flow_area_l |
---|
[241] | 828 | #endif |
---|
| 829 | ! |
---|
| 830 | !-- In case of 'bulk_velocity' mode, volume_flow_initial is overridden |
---|
| 831 | !-- and calculated from u|v_bulk instead. |
---|
| 832 | IF ( TRIM( conserve_volume_flow_mode ) == 'bulk_velocity' ) THEN |
---|
| 833 | volume_flow_initial(1) = u_bulk * volume_flow_area(1) |
---|
| 834 | volume_flow_initial(2) = v_bulk * volume_flow_area(2) |
---|
| 835 | ENDIF |
---|
| 836 | |
---|
[152] | 837 | ENDIF |
---|
| 838 | |
---|
| 839 | ! |
---|
[1] | 840 | !-- For the moment, perturbation pressure and vertical velocity are zero |
---|
| 841 | p = 0.0; w = 0.0 |
---|
| 842 | |
---|
| 843 | ! |
---|
| 844 | !-- Initialize array sums (must be defined in first call of pres) |
---|
| 845 | sums = 0.0 |
---|
| 846 | |
---|
| 847 | ! |
---|
[72] | 848 | !-- Treating cloud physics, liquid water content and precipitation amount |
---|
| 849 | !-- are zero at beginning of the simulation |
---|
| 850 | IF ( cloud_physics ) THEN |
---|
| 851 | ql = 0.0 |
---|
| 852 | IF ( precipitation ) precipitation_amount = 0.0 |
---|
| 853 | ENDIF |
---|
[1] | 854 | |
---|
| 855 | ! |
---|
| 856 | !-- Impose vortex with vertical axis on the initial velocity profile |
---|
| 857 | IF ( INDEX( initializing_actions, 'initialize_vortex' ) /= 0 ) THEN |
---|
| 858 | CALL init_rankine |
---|
| 859 | ENDIF |
---|
| 860 | |
---|
| 861 | ! |
---|
| 862 | !-- Impose temperature anomaly (advection test only) |
---|
| 863 | IF ( INDEX( initializing_actions, 'initialize_ptanom' ) /= 0 ) THEN |
---|
| 864 | CALL init_pt_anomaly |
---|
| 865 | ENDIF |
---|
| 866 | |
---|
| 867 | ! |
---|
| 868 | !-- If required, change the surface temperature at the start of the 3D run |
---|
| 869 | IF ( pt_surface_initial_change /= 0.0 ) THEN |
---|
| 870 | pt(nzb,:,:) = pt(nzb,:,:) + pt_surface_initial_change |
---|
| 871 | ENDIF |
---|
| 872 | |
---|
| 873 | ! |
---|
| 874 | !-- If required, change the surface humidity/scalar at the start of the 3D |
---|
| 875 | !-- run |
---|
[75] | 876 | IF ( ( humidity .OR. passive_scalar ) .AND. & |
---|
[1] | 877 | q_surface_initial_change /= 0.0 ) THEN |
---|
| 878 | q(nzb,:,:) = q(nzb,:,:) + q_surface_initial_change |
---|
| 879 | ENDIF |
---|
| 880 | |
---|
| 881 | ! |
---|
| 882 | !-- Initialize the random number generator (from numerical recipes) |
---|
| 883 | CALL random_function_ini |
---|
| 884 | |
---|
| 885 | ! |
---|
| 886 | !-- Impose random perturbation on the horizontal velocity field and then |
---|
| 887 | !-- remove the divergences from the velocity field |
---|
| 888 | IF ( create_disturbances ) THEN |
---|
[75] | 889 | CALL disturb_field( nzb_u_inner, tend, u ) |
---|
| 890 | CALL disturb_field( nzb_v_inner, tend, v ) |
---|
[1] | 891 | n_sor = nsor_ini |
---|
| 892 | CALL pres |
---|
| 893 | n_sor = nsor |
---|
| 894 | ENDIF |
---|
| 895 | |
---|
| 896 | ! |
---|
| 897 | !-- Once again set the perturbation pressure explicitly to zero in order to |
---|
| 898 | !-- assure that it does not generate any divergences in the first time step. |
---|
| 899 | !-- At t=0 the velocity field is free of divergence (as constructed above). |
---|
| 900 | !-- Divergences being created during a time step are not yet known and thus |
---|
| 901 | !-- cannot be corrected during the time step yet. |
---|
| 902 | p = 0.0 |
---|
| 903 | |
---|
| 904 | ! |
---|
| 905 | !-- Initialize old and new time levels. |
---|
| 906 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 907 | e_m = e; pt_m = pt; u_m = u; v_m = v; w_m = w; kh_m = kh; km_m = km |
---|
| 908 | ELSE |
---|
| 909 | te_m = 0.0; tpt_m = 0.0; tu_m = 0.0; tv_m = 0.0; tw_m = 0.0 |
---|
| 910 | ENDIF |
---|
| 911 | e_p = e; pt_p = pt; u_p = u; v_p = v; w_p = w |
---|
| 912 | |
---|
[75] | 913 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 914 | IF ( ASSOCIATED( q_m ) ) q_m = q |
---|
| 915 | IF ( timestep_scheme(1:5) == 'runge' ) tq_m = 0.0 |
---|
| 916 | q_p = q |
---|
[75] | 917 | IF ( humidity .AND. ASSOCIATED( vpt_m ) ) vpt_m = vpt |
---|
[1] | 918 | ENDIF |
---|
| 919 | |
---|
[94] | 920 | IF ( ocean ) THEN |
---|
| 921 | tsa_m = 0.0 |
---|
| 922 | sa_p = sa |
---|
| 923 | ENDIF |
---|
| 924 | |
---|
[73] | 925 | |
---|
[147] | 926 | ELSEIF ( TRIM( initializing_actions ) == 'read_restart_data' .OR. & |
---|
| 927 | TRIM( initializing_actions ) == 'read_data_for_recycling' ) & |
---|
[1] | 928 | THEN |
---|
| 929 | ! |
---|
[147] | 930 | !-- When reading data for initializing the recycling method, first read |
---|
| 931 | !-- some of the global variables from restart file |
---|
| 932 | IF ( TRIM( initializing_actions ) == 'read_data_for_recycling' ) THEN |
---|
[151] | 933 | |
---|
[147] | 934 | WRITE (9,*) 'before read_parts_of_var_list' |
---|
| 935 | CALL local_flush( 9 ) |
---|
| 936 | CALL read_parts_of_var_list |
---|
| 937 | WRITE (9,*) 'after read_parts_of_var_list' |
---|
| 938 | CALL local_flush( 9 ) |
---|
| 939 | CALL close_file( 13 ) |
---|
[151] | 940 | ! |
---|
| 941 | !-- Store temporally and horizontally averaged vertical profiles to be |
---|
| 942 | !-- used as mean inflow profiles |
---|
| 943 | ALLOCATE( mean_inflow_profiles(nzb:nzt+1,5) ) |
---|
| 944 | |
---|
| 945 | mean_inflow_profiles(:,1) = hom_sum(:,1,0) ! u |
---|
| 946 | mean_inflow_profiles(:,2) = hom_sum(:,2,0) ! v |
---|
| 947 | mean_inflow_profiles(:,4) = hom_sum(:,4,0) ! pt |
---|
| 948 | mean_inflow_profiles(:,5) = hom_sum(:,8,0) ! e |
---|
| 949 | |
---|
| 950 | ! |
---|
| 951 | !-- Use these mean profiles for the inflow (provided that Dirichlet |
---|
| 952 | !-- conditions are used) |
---|
| 953 | IF ( inflow_l ) THEN |
---|
| 954 | DO j = nys-1, nyn+1 |
---|
| 955 | DO k = nzb, nzt+1 |
---|
| 956 | u(k,j,-1) = mean_inflow_profiles(k,1) |
---|
| 957 | v(k,j,-1) = mean_inflow_profiles(k,2) |
---|
| 958 | w(k,j,-1) = 0.0 |
---|
| 959 | pt(k,j,-1) = mean_inflow_profiles(k,4) |
---|
| 960 | e(k,j,-1) = mean_inflow_profiles(k,5) |
---|
| 961 | ENDDO |
---|
| 962 | ENDDO |
---|
| 963 | ENDIF |
---|
| 964 | |
---|
| 965 | ! |
---|
| 966 | !-- Calculate the damping factors to be used at the inflow. For a |
---|
| 967 | !-- turbulent inflow the turbulent fluctuations have to be limited |
---|
| 968 | !-- vertically because otherwise the turbulent inflow layer will grow |
---|
| 969 | !-- in time. |
---|
| 970 | IF ( inflow_damping_height == 9999999.9 ) THEN |
---|
| 971 | ! |
---|
[292] | 972 | !-- Default: use the inversion height calculated by the prerun; if |
---|
| 973 | !-- this is zero, inflow_damping_height must be explicitly specified. |
---|
| 974 | IF ( hom_sum(nzb+6,pr_palm,0) /= 0.0 ) THEN |
---|
| 975 | inflow_damping_height = hom_sum(nzb+6,pr_palm,0) |
---|
| 976 | ELSE |
---|
| 977 | WRITE( message_string, * ) 'inflow_damping_height must be ', & |
---|
| 978 | 'explicitly specified because&the inversion height ', & |
---|
| 979 | 'calculated by the prerun is zero.' |
---|
| 980 | CALL message( 'init_3d_model', 'PA0318', 1, 2, 0, 6, 0 ) |
---|
| 981 | ENDIF |
---|
[151] | 982 | |
---|
| 983 | ENDIF |
---|
| 984 | |
---|
| 985 | IF ( inflow_damping_width == 9999999.9 ) THEN |
---|
| 986 | ! |
---|
| 987 | !-- Default for the transition range: one tenth of the undamped layer |
---|
| 988 | inflow_damping_width = 0.1 * inflow_damping_height |
---|
| 989 | |
---|
| 990 | ENDIF |
---|
| 991 | |
---|
| 992 | ALLOCATE( inflow_damping_factor(nzb:nzt+1) ) |
---|
| 993 | |
---|
| 994 | DO k = nzb, nzt+1 |
---|
| 995 | |
---|
| 996 | IF ( zu(k) <= inflow_damping_height ) THEN |
---|
| 997 | inflow_damping_factor(k) = 1.0 |
---|
| 998 | ELSEIF ( zu(k) <= inflow_damping_height + inflow_damping_width ) & |
---|
| 999 | THEN |
---|
| 1000 | inflow_damping_factor(k) = 1.0 - & |
---|
| 1001 | ( zu(k) - inflow_damping_height ) / & |
---|
| 1002 | inflow_damping_width |
---|
| 1003 | ELSE |
---|
| 1004 | inflow_damping_factor(k) = 0.0 |
---|
| 1005 | ENDIF |
---|
| 1006 | |
---|
| 1007 | ENDDO |
---|
| 1008 | |
---|
[147] | 1009 | ENDIF |
---|
| 1010 | |
---|
[152] | 1011 | ! |
---|
[163] | 1012 | !-- Read binary data from restart file |
---|
| 1013 | WRITE (9,*) 'before read_3d_binary' |
---|
| 1014 | CALL local_flush( 9 ) |
---|
| 1015 | CALL read_3d_binary |
---|
| 1016 | WRITE (9,*) 'after read_3d_binary' |
---|
| 1017 | CALL local_flush( 9 ) |
---|
| 1018 | |
---|
| 1019 | ! |
---|
[152] | 1020 | !-- Calculate the initial volume flow at the right and north boundary |
---|
[163] | 1021 | IF ( conserve_volume_flow .AND. & |
---|
| 1022 | TRIM( initializing_actions ) == 'read_data_for_recycling' ) THEN |
---|
[151] | 1023 | |
---|
[152] | 1024 | volume_flow_initial_l = 0.0 |
---|
| 1025 | volume_flow_area_l = 0.0 |
---|
| 1026 | |
---|
| 1027 | IF ( nxr == nx ) THEN |
---|
| 1028 | DO j = nys, nyn |
---|
| 1029 | DO k = nzb_2d(j,nx) + 1, nzt |
---|
| 1030 | volume_flow_initial_l(1) = volume_flow_initial_l(1) + & |
---|
| 1031 | u(k,j,nx) * dzu(k) |
---|
| 1032 | volume_flow_area_l(1) = volume_flow_area_l(1) + dzu(k) |
---|
| 1033 | ENDDO |
---|
[147] | 1034 | ! |
---|
[152] | 1035 | !-- Correction if velocity at nzb+1 has been set zero further above |
---|
| 1036 | volume_flow_initial_l(1) = volume_flow_initial_l(1) + & |
---|
| 1037 | u_nzb_p1_for_vfc(j) |
---|
| 1038 | ENDDO |
---|
| 1039 | ENDIF |
---|
| 1040 | |
---|
| 1041 | IF ( nyn == ny ) THEN |
---|
| 1042 | DO i = nxl, nxr |
---|
| 1043 | DO k = nzb_2d(ny,i) + 1, nzt |
---|
| 1044 | volume_flow_initial_l(2) = volume_flow_initial_l(2) + & |
---|
| 1045 | v(k,ny,i) * dzu(k) |
---|
| 1046 | volume_flow_area_l(2) = volume_flow_area_l(2) + dzu(k) |
---|
| 1047 | ENDDO |
---|
| 1048 | ! |
---|
| 1049 | !-- Correction if velocity at nzb+1 has been set zero further above |
---|
| 1050 | volume_flow_initial_l(2) = volume_flow_initial_l(2) + & |
---|
| 1051 | v_nzb_p1_for_vfc(i) |
---|
| 1052 | ENDDO |
---|
| 1053 | ENDIF |
---|
| 1054 | |
---|
| 1055 | #if defined( __parallel ) |
---|
| 1056 | CALL MPI_ALLREDUCE( volume_flow_initial_l(1), volume_flow_initial(1),& |
---|
| 1057 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 1058 | CALL MPI_ALLREDUCE( volume_flow_area_l(1), volume_flow_area(1), & |
---|
| 1059 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 1060 | #else |
---|
| 1061 | volume_flow_initial = volume_flow_initial_l |
---|
| 1062 | volume_flow_area = volume_flow_area_l |
---|
| 1063 | #endif |
---|
| 1064 | ENDIF |
---|
| 1065 | |
---|
| 1066 | |
---|
| 1067 | ! |
---|
[1] | 1068 | !-- Calculate initial temperature field and other constants used in case |
---|
| 1069 | !-- of a sloping surface |
---|
| 1070 | IF ( sloping_surface ) CALL init_slope |
---|
| 1071 | |
---|
| 1072 | ! |
---|
| 1073 | !-- Initialize new time levels (only done in order to set boundary values |
---|
| 1074 | !-- including ghost points) |
---|
| 1075 | e_p = e; pt_p = pt; u_p = u; v_p = v; w_p = w |
---|
[75] | 1076 | IF ( humidity .OR. passive_scalar ) q_p = q |
---|
[94] | 1077 | IF ( ocean ) sa_p = sa |
---|
[1] | 1078 | |
---|
[181] | 1079 | ! |
---|
| 1080 | !-- Allthough tendency arrays are set in prognostic_equations, they have |
---|
| 1081 | !-- have to be predefined here because they are used (but multiplied with 0) |
---|
| 1082 | !-- there before they are set. |
---|
| 1083 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1084 | te_m = 0.0; tpt_m = 0.0; tu_m = 0.0; tv_m = 0.0; tw_m = 0.0 |
---|
| 1085 | IF ( humidity .OR. passive_scalar ) tq_m = 0.0 |
---|
| 1086 | IF ( ocean ) tsa_m = 0.0 |
---|
| 1087 | ENDIF |
---|
| 1088 | |
---|
[1] | 1089 | ELSE |
---|
| 1090 | ! |
---|
| 1091 | !-- Actually this part of the programm should not be reached |
---|
[254] | 1092 | message_string = 'unknown initializing problem' |
---|
| 1093 | CALL message( 'init_3d_model', 'PA0193', 1, 2, 0, 6, 0 ) |
---|
[1] | 1094 | ENDIF |
---|
| 1095 | |
---|
[151] | 1096 | |
---|
| 1097 | IF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN |
---|
[1] | 1098 | ! |
---|
[151] | 1099 | !-- Initialize old timelevels needed for radiation boundary conditions |
---|
| 1100 | IF ( outflow_l ) THEN |
---|
| 1101 | u_m_l(:,:,:) = u(:,:,1:2) |
---|
| 1102 | v_m_l(:,:,:) = v(:,:,0:1) |
---|
| 1103 | w_m_l(:,:,:) = w(:,:,0:1) |
---|
| 1104 | ENDIF |
---|
| 1105 | IF ( outflow_r ) THEN |
---|
| 1106 | u_m_r(:,:,:) = u(:,:,nx-1:nx) |
---|
| 1107 | v_m_r(:,:,:) = v(:,:,nx-1:nx) |
---|
| 1108 | w_m_r(:,:,:) = w(:,:,nx-1:nx) |
---|
| 1109 | ENDIF |
---|
| 1110 | IF ( outflow_s ) THEN |
---|
| 1111 | u_m_s(:,:,:) = u(:,0:1,:) |
---|
| 1112 | v_m_s(:,:,:) = v(:,1:2,:) |
---|
| 1113 | w_m_s(:,:,:) = w(:,0:1,:) |
---|
| 1114 | ENDIF |
---|
| 1115 | IF ( outflow_n ) THEN |
---|
| 1116 | u_m_n(:,:,:) = u(:,ny-1:ny,:) |
---|
| 1117 | v_m_n(:,:,:) = v(:,ny-1:ny,:) |
---|
| 1118 | w_m_n(:,:,:) = w(:,ny-1:ny,:) |
---|
| 1119 | ENDIF |
---|
| 1120 | |
---|
| 1121 | ENDIF |
---|
| 1122 | |
---|
| 1123 | ! |
---|
[138] | 1124 | !-- Initialization of the leaf area density |
---|
| 1125 | IF ( plant_canopy ) THEN |
---|
| 1126 | |
---|
| 1127 | SELECT CASE ( TRIM( canopy_mode ) ) |
---|
| 1128 | |
---|
| 1129 | CASE( 'block' ) |
---|
| 1130 | |
---|
| 1131 | DO i = nxl-1, nxr+1 |
---|
| 1132 | DO j = nys-1, nyn+1 |
---|
| 1133 | lad_s(:,j,i) = lad(:) |
---|
| 1134 | cdc(:,j,i) = drag_coefficient |
---|
[153] | 1135 | IF ( passive_scalar ) THEN |
---|
| 1136 | sls(:,j,i) = leaf_surface_concentration |
---|
| 1137 | sec(:,j,i) = scalar_exchange_coefficient |
---|
| 1138 | ENDIF |
---|
[138] | 1139 | ENDDO |
---|
| 1140 | ENDDO |
---|
| 1141 | |
---|
| 1142 | CASE DEFAULT |
---|
| 1143 | |
---|
| 1144 | ! |
---|
| 1145 | !-- The DEFAULT case is reached either if the parameter |
---|
| 1146 | !-- canopy mode contains a wrong character string or if the |
---|
| 1147 | !-- user has coded a special case in the user interface. |
---|
| 1148 | !-- There, the subroutine user_init_plant_canopy checks |
---|
| 1149 | !-- which of these two conditions applies. |
---|
| 1150 | CALL user_init_plant_canopy |
---|
| 1151 | |
---|
| 1152 | END SELECT |
---|
| 1153 | |
---|
| 1154 | CALL exchange_horiz( lad_s ) |
---|
| 1155 | CALL exchange_horiz( cdc ) |
---|
| 1156 | |
---|
[153] | 1157 | IF ( passive_scalar ) THEN |
---|
| 1158 | CALL exchange_horiz( sls ) |
---|
| 1159 | CALL exchange_horiz( sec ) |
---|
| 1160 | ENDIF |
---|
| 1161 | |
---|
| 1162 | ! |
---|
| 1163 | !-- Sharp boundaries of the plant canopy in horizontal directions |
---|
| 1164 | !-- In vertical direction the interpolation is retained, as the leaf |
---|
| 1165 | !-- area density is initialised by prescribing a vertical profile |
---|
| 1166 | !-- consisting of piecewise linear segments. The upper boundary |
---|
| 1167 | !-- of the plant canopy is now defined by lad_w(pch_index,:,:) = 0.0. |
---|
| 1168 | |
---|
[138] | 1169 | DO i = nxl, nxr |
---|
| 1170 | DO j = nys, nyn |
---|
| 1171 | DO k = nzb, nzt+1 |
---|
[153] | 1172 | IF ( lad_s(k,j,i) > 0.0 ) THEN |
---|
| 1173 | lad_u(k,j,i) = lad_s(k,j,i) |
---|
| 1174 | lad_u(k,j,i+1) = lad_s(k,j,i) |
---|
| 1175 | lad_v(k,j,i) = lad_s(k,j,i) |
---|
| 1176 | lad_v(k,j+1,i) = lad_s(k,j,i) |
---|
| 1177 | ENDIF |
---|
[138] | 1178 | ENDDO |
---|
| 1179 | DO k = nzb, nzt |
---|
| 1180 | lad_w(k,j,i) = 0.5 * ( lad_s(k+1,j,i) + lad_s(k,j,i) ) |
---|
| 1181 | ENDDO |
---|
| 1182 | ENDDO |
---|
| 1183 | ENDDO |
---|
| 1184 | |
---|
[153] | 1185 | lad_w(pch_index,:,:) = 0.0 |
---|
| 1186 | lad_w(nzt+1,:,:) = lad_w(nzt,:,:) |
---|
[138] | 1187 | |
---|
| 1188 | CALL exchange_horiz( lad_u ) |
---|
| 1189 | CALL exchange_horiz( lad_v ) |
---|
| 1190 | CALL exchange_horiz( lad_w ) |
---|
[153] | 1191 | |
---|
| 1192 | ! |
---|
| 1193 | !-- Initialisation of the canopy heat source distribution |
---|
| 1194 | IF ( cthf /= 0.0 ) THEN |
---|
| 1195 | ! |
---|
| 1196 | !-- Piecewise evaluation of the leaf area index by |
---|
| 1197 | !-- integration of the leaf area density |
---|
| 1198 | lai(:,:,:) = 0.0 |
---|
| 1199 | DO i = nxl-1, nxr+1 |
---|
| 1200 | DO j = nys-1, nyn+1 |
---|
| 1201 | DO k = pch_index-1, 0, -1 |
---|
| 1202 | lai(k,j,i) = lai(k+1,j,i) + & |
---|
| 1203 | ( 0.5 * ( lad_w(k+1,j,i) + & |
---|
| 1204 | lad_s(k+1,j,i) ) * & |
---|
| 1205 | ( zw(k+1) - zu(k+1) ) ) + & |
---|
| 1206 | ( 0.5 * ( lad_w(k,j,i) + & |
---|
| 1207 | lad_s(k+1,j,i) ) * & |
---|
| 1208 | ( zu(k+1) - zw(k) ) ) |
---|
| 1209 | ENDDO |
---|
| 1210 | ENDDO |
---|
| 1211 | ENDDO |
---|
| 1212 | |
---|
| 1213 | ! |
---|
| 1214 | !-- Evaluation of the upward kinematic vertical heat flux within the |
---|
| 1215 | !-- canopy |
---|
| 1216 | DO i = nxl-1, nxr+1 |
---|
| 1217 | DO j = nys-1, nyn+1 |
---|
| 1218 | DO k = 0, pch_index |
---|
| 1219 | canopy_heat_flux(k,j,i) = cthf * & |
---|
| 1220 | exp( -0.6 * lai(k,j,i) ) |
---|
| 1221 | ENDDO |
---|
| 1222 | ENDDO |
---|
| 1223 | ENDDO |
---|
| 1224 | |
---|
| 1225 | ! |
---|
| 1226 | !-- The near surface heat flux is derived from the heat flux |
---|
| 1227 | !-- distribution within the canopy |
---|
| 1228 | shf(:,:) = canopy_heat_flux(0,:,:) |
---|
| 1229 | |
---|
| 1230 | IF ( ASSOCIATED( shf_m ) ) shf_m = shf |
---|
| 1231 | |
---|
| 1232 | ENDIF |
---|
| 1233 | |
---|
[138] | 1234 | ENDIF |
---|
| 1235 | |
---|
| 1236 | ! |
---|
[1] | 1237 | !-- If required, initialize dvrp-software |
---|
| 1238 | IF ( dt_dvrp /= 9999999.9 ) CALL init_dvrp |
---|
| 1239 | |
---|
[96] | 1240 | IF ( ocean ) THEN |
---|
[1] | 1241 | ! |
---|
[96] | 1242 | !-- Initialize quantities needed for the ocean model |
---|
| 1243 | CALL init_ocean |
---|
| 1244 | ELSE |
---|
| 1245 | ! |
---|
| 1246 | !-- Initialize quantities for handling cloud physics |
---|
| 1247 | !-- This routine must be called before init_particles, because |
---|
| 1248 | !-- otherwise, array pt_d_t, needed in data_output_dvrp (called by |
---|
| 1249 | !-- init_particles) is not defined. |
---|
| 1250 | CALL init_cloud_physics |
---|
| 1251 | ENDIF |
---|
[1] | 1252 | |
---|
| 1253 | ! |
---|
| 1254 | !-- If required, initialize particles |
---|
[63] | 1255 | IF ( particle_advection ) CALL init_particles |
---|
[1] | 1256 | |
---|
| 1257 | ! |
---|
| 1258 | !-- Initialize quantities for special advections schemes |
---|
| 1259 | CALL init_advec |
---|
| 1260 | |
---|
| 1261 | ! |
---|
| 1262 | !-- Initialize Rayleigh damping factors |
---|
| 1263 | rdf = 0.0 |
---|
| 1264 | IF ( rayleigh_damping_factor /= 0.0 ) THEN |
---|
[108] | 1265 | IF ( .NOT. ocean ) THEN |
---|
| 1266 | DO k = nzb+1, nzt |
---|
| 1267 | IF ( zu(k) >= rayleigh_damping_height ) THEN |
---|
| 1268 | rdf(k) = rayleigh_damping_factor * & |
---|
[1] | 1269 | ( SIN( pi * 0.5 * ( zu(k) - rayleigh_damping_height ) & |
---|
| 1270 | / ( zu(nzt) - rayleigh_damping_height ) )& |
---|
| 1271 | )**2 |
---|
[108] | 1272 | ENDIF |
---|
| 1273 | ENDDO |
---|
| 1274 | ELSE |
---|
| 1275 | DO k = nzt, nzb+1, -1 |
---|
| 1276 | IF ( zu(k) <= rayleigh_damping_height ) THEN |
---|
| 1277 | rdf(k) = rayleigh_damping_factor * & |
---|
| 1278 | ( SIN( pi * 0.5 * ( rayleigh_damping_height - zu(k) ) & |
---|
| 1279 | / ( rayleigh_damping_height - zu(nzb+1)))& |
---|
| 1280 | )**2 |
---|
| 1281 | ENDIF |
---|
| 1282 | ENDDO |
---|
| 1283 | ENDIF |
---|
[1] | 1284 | ENDIF |
---|
| 1285 | |
---|
| 1286 | ! |
---|
[240] | 1287 | !-- Initialize the starting level and the vertical smoothing factor used for |
---|
| 1288 | !-- the external pressure gradient |
---|
| 1289 | dp_smooth_factor = 1.0 |
---|
| 1290 | IF ( dp_external ) THEN |
---|
| 1291 | ! |
---|
| 1292 | !-- Set the starting level dp_level_ind_b only if it has not been set before |
---|
| 1293 | !-- (e.g. in init_grid). |
---|
| 1294 | IF ( dp_level_ind_b == 0 ) THEN |
---|
| 1295 | ind_array = MINLOC( ABS( dp_level_b - zu ) ) |
---|
| 1296 | dp_level_ind_b = ind_array(1) - 1 + nzb |
---|
| 1297 | ! MINLOC uses lower array bound 1 |
---|
| 1298 | ENDIF |
---|
| 1299 | IF ( dp_smooth ) THEN |
---|
| 1300 | dp_smooth_factor(:dp_level_ind_b) = 0.0 |
---|
| 1301 | DO k = dp_level_ind_b+1, nzt |
---|
| 1302 | dp_smooth_factor(k) = 0.5 * ( 1.0 + SIN( pi * & |
---|
| 1303 | ( REAL( k - dp_level_ind_b ) / & |
---|
| 1304 | REAL( nzt - dp_level_ind_b ) - 0.5 ) ) ) |
---|
| 1305 | ENDDO |
---|
| 1306 | ENDIF |
---|
| 1307 | ENDIF |
---|
| 1308 | |
---|
| 1309 | ! |
---|
[1] | 1310 | !-- Initialize diffusivities used within the outflow damping layer in case of |
---|
| 1311 | !-- non-cyclic lateral boundaries. A linear increase is assumed over the first |
---|
| 1312 | !-- half of the width of the damping layer |
---|
[73] | 1313 | IF ( bc_lr == 'dirichlet/radiation' ) THEN |
---|
[1] | 1314 | |
---|
| 1315 | DO i = nxl-1, nxr+1 |
---|
[73] | 1316 | IF ( i >= nx - outflow_damping_width ) THEN |
---|
| 1317 | km_damp_x(i) = km_damp_max * MIN( 1.0, & |
---|
| 1318 | ( i - ( nx - outflow_damping_width ) ) / & |
---|
| 1319 | REAL( outflow_damping_width/2 ) & |
---|
| 1320 | ) |
---|
| 1321 | ELSE |
---|
| 1322 | km_damp_x(i) = 0.0 |
---|
| 1323 | ENDIF |
---|
| 1324 | ENDDO |
---|
[1] | 1325 | |
---|
[73] | 1326 | ELSEIF ( bc_lr == 'radiation/dirichlet' ) THEN |
---|
[1] | 1327 | |
---|
[73] | 1328 | DO i = nxl-1, nxr+1 |
---|
| 1329 | IF ( i <= outflow_damping_width ) THEN |
---|
| 1330 | km_damp_x(i) = km_damp_max * MIN( 1.0, & |
---|
| 1331 | ( outflow_damping_width - i ) / & |
---|
| 1332 | REAL( outflow_damping_width/2 ) & |
---|
| 1333 | ) |
---|
| 1334 | ELSE |
---|
| 1335 | km_damp_x(i) = 0.0 |
---|
| 1336 | ENDIF |
---|
| 1337 | ENDDO |
---|
[1] | 1338 | |
---|
[73] | 1339 | ENDIF |
---|
[1] | 1340 | |
---|
[73] | 1341 | IF ( bc_ns == 'dirichlet/radiation' ) THEN |
---|
[1] | 1342 | |
---|
[73] | 1343 | DO j = nys-1, nyn+1 |
---|
| 1344 | IF ( j >= ny - outflow_damping_width ) THEN |
---|
| 1345 | km_damp_y(j) = km_damp_max * MIN( 1.0, & |
---|
| 1346 | ( j - ( ny - outflow_damping_width ) ) / & |
---|
| 1347 | REAL( outflow_damping_width/2 ) & |
---|
| 1348 | ) |
---|
| 1349 | ELSE |
---|
| 1350 | km_damp_y(j) = 0.0 |
---|
[1] | 1351 | ENDIF |
---|
| 1352 | ENDDO |
---|
| 1353 | |
---|
[73] | 1354 | ELSEIF ( bc_ns == 'radiation/dirichlet' ) THEN |
---|
[1] | 1355 | |
---|
| 1356 | DO j = nys-1, nyn+1 |
---|
[73] | 1357 | IF ( j <= outflow_damping_width ) THEN |
---|
| 1358 | km_damp_y(j) = km_damp_max * MIN( 1.0, & |
---|
| 1359 | ( outflow_damping_width - j ) / & |
---|
| 1360 | REAL( outflow_damping_width/2 ) & |
---|
| 1361 | ) |
---|
| 1362 | ELSE |
---|
| 1363 | km_damp_y(j) = 0.0 |
---|
[1] | 1364 | ENDIF |
---|
[73] | 1365 | ENDDO |
---|
[1] | 1366 | |
---|
| 1367 | ENDIF |
---|
| 1368 | |
---|
| 1369 | ! |
---|
| 1370 | !-- Initialize local summation arrays for UP flow_statistics. This is necessary |
---|
| 1371 | !-- because they may not yet have been initialized when they are called from |
---|
| 1372 | !-- flow_statistics (or - depending on the chosen model run - are never |
---|
| 1373 | !-- initialized) |
---|
| 1374 | sums_divnew_l = 0.0 |
---|
| 1375 | sums_divold_l = 0.0 |
---|
| 1376 | sums_l_l = 0.0 |
---|
| 1377 | sums_up_fraction_l = 0.0 |
---|
| 1378 | sums_wsts_bc_l = 0.0 |
---|
| 1379 | |
---|
| 1380 | ! |
---|
| 1381 | !-- Pre-set masks for regional statistics. Default is the total model domain. |
---|
| 1382 | rmask = 1.0 |
---|
| 1383 | |
---|
| 1384 | ! |
---|
[51] | 1385 | !-- User-defined initializing actions. Check afterwards, if maximum number |
---|
| 1386 | !-- of allowed timeseries is not exceeded |
---|
[1] | 1387 | CALL user_init |
---|
| 1388 | |
---|
[51] | 1389 | IF ( dots_num > dots_max ) THEN |
---|
[254] | 1390 | WRITE( message_string, * ) 'number of time series quantities exceeds', & |
---|
[274] | 1391 | ' its maximum of dots_max = ', dots_max, & |
---|
[254] | 1392 | ' &Please increase dots_max in modules.f90.' |
---|
| 1393 | CALL message( 'init_3d_model', 'PA0194', 1, 2, 0, 6, 0 ) |
---|
[51] | 1394 | ENDIF |
---|
| 1395 | |
---|
[1] | 1396 | ! |
---|
| 1397 | !-- Input binary data file is not needed anymore. This line must be placed |
---|
| 1398 | !-- after call of user_init! |
---|
| 1399 | CALL close_file( 13 ) |
---|
| 1400 | |
---|
| 1401 | ! |
---|
| 1402 | !-- Compute total sum of active mask grid points |
---|
| 1403 | !-- ngp_2dh: number of grid points of a horizontal cross section through the |
---|
| 1404 | !-- total domain |
---|
| 1405 | !-- ngp_3d: number of grid points of the total domain |
---|
[132] | 1406 | ngp_2dh_outer_l = 0 |
---|
| 1407 | ngp_2dh_outer = 0 |
---|
| 1408 | ngp_2dh_s_inner_l = 0 |
---|
| 1409 | ngp_2dh_s_inner = 0 |
---|
| 1410 | ngp_2dh_l = 0 |
---|
| 1411 | ngp_2dh = 0 |
---|
| 1412 | ngp_3d_inner_l = 0 |
---|
| 1413 | ngp_3d_inner = 0 |
---|
| 1414 | ngp_3d = 0 |
---|
| 1415 | ngp_sums = ( nz + 2 ) * ( pr_palm + max_pr_user ) |
---|
[1] | 1416 | |
---|
| 1417 | DO sr = 0, statistic_regions |
---|
| 1418 | DO i = nxl, nxr |
---|
| 1419 | DO j = nys, nyn |
---|
| 1420 | IF ( rmask(j,i,sr) == 1.0 ) THEN |
---|
| 1421 | ! |
---|
| 1422 | !-- All xy-grid points |
---|
| 1423 | ngp_2dh_l(sr) = ngp_2dh_l(sr) + 1 |
---|
| 1424 | ! |
---|
| 1425 | !-- xy-grid points above topography |
---|
| 1426 | DO k = nzb_s_outer(j,i), nz + 1 |
---|
| 1427 | ngp_2dh_outer_l(k,sr) = ngp_2dh_outer_l(k,sr) + 1 |
---|
| 1428 | ENDDO |
---|
[132] | 1429 | DO k = nzb_s_inner(j,i), nz + 1 |
---|
| 1430 | ngp_2dh_s_inner_l(k,sr) = ngp_2dh_s_inner_l(k,sr) + 1 |
---|
| 1431 | ENDDO |
---|
[1] | 1432 | ! |
---|
| 1433 | !-- All grid points of the total domain above topography |
---|
| 1434 | ngp_3d_inner_l(sr) = ngp_3d_inner_l(sr) + & |
---|
| 1435 | ( nz - nzb_s_inner(j,i) + 2 ) |
---|
| 1436 | ENDIF |
---|
| 1437 | ENDDO |
---|
| 1438 | ENDDO |
---|
| 1439 | ENDDO |
---|
| 1440 | |
---|
| 1441 | sr = statistic_regions + 1 |
---|
| 1442 | #if defined( __parallel ) |
---|
| 1443 | CALL MPI_ALLREDUCE( ngp_2dh_l(0), ngp_2dh(0), sr, MPI_INTEGER, MPI_SUM, & |
---|
| 1444 | comm2d, ierr ) |
---|
| 1445 | CALL MPI_ALLREDUCE( ngp_2dh_outer_l(0,0), ngp_2dh_outer(0,0), (nz+2)*sr, & |
---|
| 1446 | MPI_INTEGER, MPI_SUM, comm2d, ierr ) |
---|
[132] | 1447 | CALL MPI_ALLREDUCE( ngp_2dh_s_inner_l(0,0), ngp_2dh_s_inner(0,0), & |
---|
| 1448 | (nz+2)*sr, MPI_INTEGER, MPI_SUM, comm2d, ierr ) |
---|
[1] | 1449 | CALL MPI_ALLREDUCE( ngp_3d_inner_l(0), ngp_3d_inner(0), sr, MPI_INTEGER, & |
---|
| 1450 | MPI_SUM, comm2d, ierr ) |
---|
| 1451 | #else |
---|
[132] | 1452 | ngp_2dh = ngp_2dh_l |
---|
| 1453 | ngp_2dh_outer = ngp_2dh_outer_l |
---|
| 1454 | ngp_2dh_s_inner = ngp_2dh_s_inner_l |
---|
| 1455 | ngp_3d_inner = ngp_3d_inner_l |
---|
[1] | 1456 | #endif |
---|
| 1457 | |
---|
| 1458 | ngp_3d = ngp_2dh * ( nz + 2 ) |
---|
| 1459 | |
---|
| 1460 | ! |
---|
| 1461 | !-- Set a lower limit of 1 in order to avoid zero divisions in flow_statistics, |
---|
| 1462 | !-- buoyancy, etc. A zero value will occur for cases where all grid points of |
---|
| 1463 | !-- the respective subdomain lie below the surface topography |
---|
| 1464 | ngp_2dh_outer = MAX( 1, ngp_2dh_outer(:,:) ) |
---|
| 1465 | ngp_3d_inner = MAX( 1, ngp_3d_inner(:) ) |
---|
| 1466 | |
---|
| 1467 | DEALLOCATE( ngp_2dh_l, ngp_2dh_outer_l, ngp_3d_inner_l ) |
---|
| 1468 | |
---|
| 1469 | |
---|
| 1470 | END SUBROUTINE init_3d_model |
---|