[1] | 1 | #if defined( __ibmy_special ) |
---|
| 2 | @PROCESS NOOPTimize |
---|
| 3 | #endif |
---|
| 4 | SUBROUTINE init_3d_model |
---|
| 5 | |
---|
| 6 | !------------------------------------------------------------------------------! |
---|
| 7 | ! Actual revisions: |
---|
| 8 | ! ----------------- |
---|
[132] | 9 | ! New counter ngp_2dh_s_inner. |
---|
| 10 | ! Allow new case bc_uv_t = 'dirichlet_0' for channel flow. |
---|
| 11 | ! Corrected calculation of initial volume flow for 'set_1d-model_profiles' and |
---|
| 12 | ! 'set_constant_profiles' in case of buildings in the reference cross-sections. |
---|
[77] | 13 | ! |
---|
| 14 | ! Former revisions: |
---|
| 15 | ! ----------------- |
---|
| 16 | ! $Id: init_3d_model.f90 132 2007-11-20 09:46:11Z letzel $ |
---|
| 17 | ! |
---|
[110] | 18 | ! 108 2007-08-24 15:10:38Z letzel |
---|
| 19 | ! Flux initialization in case of coupled runs, +momentum fluxes at top boundary, |
---|
| 20 | ! +arrays for phase speed c_u, c_v, c_w, indices for u|v|w_m_l|r changed |
---|
| 21 | ! +qswst_remote in case of atmosphere model with humidity coupled to ocean |
---|
| 22 | ! Rayleigh damping for ocean, optionally calculate km and kh from initial |
---|
| 23 | ! TKE e_init |
---|
| 24 | ! |
---|
[98] | 25 | ! 97 2007-06-21 08:23:15Z raasch |
---|
| 26 | ! Initialization of salinity, call of init_ocean |
---|
| 27 | ! |
---|
[90] | 28 | ! 87 2007-05-22 15:46:47Z raasch |
---|
| 29 | ! var_hom and var_sum renamed pr_palm |
---|
| 30 | ! |
---|
[77] | 31 | ! 75 2007-03-22 09:54:05Z raasch |
---|
[73] | 32 | ! Arrays for radiation boundary conditions are allocated (u_m_l, u_m_r, etc.), |
---|
| 33 | ! bugfix for cases with the outflow damping layer extending over more than one |
---|
[75] | 34 | ! subdomain, moisture renamed humidity, |
---|
| 35 | ! new initializing action "by_user" calls user_init_3d_model, |
---|
[72] | 36 | ! precipitation_amount/rate, ts_value are allocated, +module netcdf_control, |
---|
[51] | 37 | ! initial velocities at nzb+1 are regarded for volume |
---|
| 38 | ! flow control in case they have been set zero before (to avoid small timesteps) |
---|
[75] | 39 | ! -uvmean_outflow, uxrp, vynp eliminated |
---|
[1] | 40 | ! |
---|
[39] | 41 | ! 19 2007-02-23 04:53:48Z raasch |
---|
| 42 | ! +handling of top fluxes |
---|
| 43 | ! |
---|
[3] | 44 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 45 | ! |
---|
[1] | 46 | ! Revision 1.49 2006/08/22 15:59:07 raasch |
---|
| 47 | ! No optimization of this file on the ibmy (Yonsei Univ.) |
---|
| 48 | ! |
---|
| 49 | ! Revision 1.1 1998/03/09 16:22:22 raasch |
---|
| 50 | ! Initial revision |
---|
| 51 | ! |
---|
| 52 | ! |
---|
| 53 | ! Description: |
---|
| 54 | ! ------------ |
---|
| 55 | ! Allocation of arrays and initialization of the 3D model via |
---|
| 56 | ! a) pre-run the 1D model |
---|
| 57 | ! or |
---|
| 58 | ! b) pre-set constant linear profiles |
---|
| 59 | ! or |
---|
| 60 | ! c) read values of a previous run |
---|
| 61 | !------------------------------------------------------------------------------! |
---|
| 62 | |
---|
| 63 | USE arrays_3d |
---|
| 64 | USE averaging |
---|
[72] | 65 | USE cloud_parameters |
---|
[1] | 66 | USE constants |
---|
| 67 | USE control_parameters |
---|
| 68 | USE cpulog |
---|
| 69 | USE indices |
---|
| 70 | USE interfaces |
---|
| 71 | USE model_1d |
---|
[51] | 72 | USE netcdf_control |
---|
[1] | 73 | USE particle_attributes |
---|
| 74 | USE pegrid |
---|
| 75 | USE profil_parameter |
---|
| 76 | USE random_function_mod |
---|
| 77 | USE statistics |
---|
| 78 | |
---|
| 79 | IMPLICIT NONE |
---|
| 80 | |
---|
| 81 | INTEGER :: i, j, k, sr |
---|
| 82 | |
---|
| 83 | INTEGER, DIMENSION(:), ALLOCATABLE :: ngp_2dh_l, ngp_3d_inner_l |
---|
| 84 | |
---|
[132] | 85 | INTEGER, DIMENSION(:,:), ALLOCATABLE :: ngp_2dh_outer_l, & |
---|
| 86 | ngp_2dh_s_inner_l |
---|
[1] | 87 | |
---|
| 88 | REAL, DIMENSION(1:2) :: volume_flow_area_l, volume_flow_initial_l |
---|
| 89 | |
---|
| 90 | |
---|
| 91 | ! |
---|
| 92 | !-- Allocate arrays |
---|
| 93 | ALLOCATE( ngp_2dh(0:statistic_regions), ngp_2dh_l(0:statistic_regions), & |
---|
| 94 | ngp_3d(0:statistic_regions), & |
---|
| 95 | ngp_3d_inner(0:statistic_regions), & |
---|
| 96 | ngp_3d_inner_l(0:statistic_regions), & |
---|
| 97 | sums_divnew_l(0:statistic_regions), & |
---|
| 98 | sums_divold_l(0:statistic_regions) ) |
---|
[75] | 99 | ALLOCATE( rdf(nzb+1:nzt) ) |
---|
[87] | 100 | ALLOCATE( hom_sum(nzb:nzt+1,pr_palm+max_pr_user,0:statistic_regions), & |
---|
[1] | 101 | ngp_2dh_outer(nzb:nzt+1,0:statistic_regions), & |
---|
| 102 | ngp_2dh_outer_l(nzb:nzt+1,0:statistic_regions), & |
---|
[132] | 103 | ngp_2dh_s_inner(nzb:nzt+1,0:statistic_regions), & |
---|
| 104 | ngp_2dh_s_inner_l(nzb:nzt+1,0:statistic_regions), & |
---|
[1] | 105 | rmask(nys-1:nyn+1,nxl-1:nxr+1,0:statistic_regions), & |
---|
[87] | 106 | sums(nzb:nzt+1,pr_palm+max_pr_user), & |
---|
| 107 | sums_l(nzb:nzt+1,pr_palm+max_pr_user,0:threads_per_task-1), & |
---|
[1] | 108 | sums_l_l(nzb:nzt+1,0:statistic_regions,0:threads_per_task-1), & |
---|
| 109 | sums_up_fraction_l(10,3,0:statistic_regions), & |
---|
[48] | 110 | sums_wsts_bc_l(nzb:nzt+1,0:statistic_regions), & |
---|
| 111 | ts_value(var_ts,0:statistic_regions) ) |
---|
[1] | 112 | ALLOCATE( km_damp_x(nxl-1:nxr+1), km_damp_y(nys-1:nyn+1) ) |
---|
| 113 | |
---|
[19] | 114 | ALLOCATE( rif_1(nys-1:nyn+1,nxl-1:nxr+1), shf_1(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 115 | ts(nys-1:nyn+1,nxl-1:nxr+1), tswst_1(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 116 | us(nys-1:nyn+1,nxl-1:nxr+1), usws_1(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
[102] | 117 | uswst_1(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 118 | vsws_1(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 119 | vswst_1(nys-1:nyn+1,nxl-1:nxr+1), z0(nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
[1] | 120 | |
---|
| 121 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 122 | ! |
---|
| 123 | !-- Leapfrog scheme needs two timelevels of diffusion quantities |
---|
[19] | 124 | ALLOCATE( rif_2(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 125 | shf_2(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 126 | tswst_2(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 127 | usws_2(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
[102] | 128 | uswst_2(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 129 | vswst_2(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
[1] | 130 | vsws_2(nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 131 | ENDIF |
---|
| 132 | |
---|
[75] | 133 | ALLOCATE( d(nzb+1:nzta,nys:nyna,nxl:nxra), & |
---|
| 134 | e_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 135 | e_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 136 | e_3(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 137 | kh_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 138 | km_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 139 | p(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 140 | pt_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 141 | pt_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 142 | pt_3(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 143 | tend(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 144 | u_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 145 | u_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 146 | u_3(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 147 | v_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 148 | v_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 149 | v_3(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 150 | w_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 151 | w_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
[1] | 152 | w_3(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 153 | |
---|
| 154 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 155 | ALLOCATE( kh_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 156 | km_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 157 | ENDIF |
---|
| 158 | |
---|
[75] | 159 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 160 | ! |
---|
[75] | 161 | !-- 2D-humidity/scalar arrays |
---|
[1] | 162 | ALLOCATE ( qs(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
[19] | 163 | qsws_1(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 164 | qswst_1(nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
[1] | 165 | |
---|
| 166 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[19] | 167 | ALLOCATE( qsws_2(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 168 | qswst_2(nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
[1] | 169 | ENDIF |
---|
| 170 | ! |
---|
[75] | 171 | !-- 3D-humidity/scalar arrays |
---|
[1] | 172 | ALLOCATE( q_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 173 | q_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 174 | q_3(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 175 | |
---|
| 176 | ! |
---|
[75] | 177 | !-- 3D-arrays needed for humidity only |
---|
| 178 | IF ( humidity ) THEN |
---|
[1] | 179 | ALLOCATE( vpt_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 180 | |
---|
| 181 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 182 | ALLOCATE( vpt_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 183 | ENDIF |
---|
| 184 | |
---|
| 185 | IF ( cloud_physics ) THEN |
---|
| 186 | ! |
---|
| 187 | !-- Liquid water content |
---|
| 188 | ALLOCATE ( ql_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
[72] | 189 | ! |
---|
| 190 | !-- Precipitation amount and rate (only needed if output is switched) |
---|
| 191 | ALLOCATE( precipitation_amount(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 192 | precipitation_rate(nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
[1] | 193 | ENDIF |
---|
| 194 | |
---|
| 195 | IF ( cloud_droplets ) THEN |
---|
| 196 | ! |
---|
| 197 | !-- Liquid water content, change in liquid water content, |
---|
| 198 | !-- real volume of particles (with weighting), volume of particles |
---|
| 199 | ALLOCATE ( ql_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 200 | ql_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 201 | ql_v(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 202 | ql_vp(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 203 | ENDIF |
---|
| 204 | |
---|
| 205 | ENDIF |
---|
| 206 | |
---|
| 207 | ENDIF |
---|
| 208 | |
---|
[94] | 209 | IF ( ocean ) THEN |
---|
[95] | 210 | ALLOCATE( saswsb_1(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 211 | saswst_1(nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
[96] | 212 | ALLOCATE( rho_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 213 | sa_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 214 | sa_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
[94] | 215 | sa_3(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
[96] | 216 | rho => rho_1 ! routine calc_mean_profile requires density to be a |
---|
| 217 | ! pointer |
---|
[108] | 218 | IF ( humidity_remote ) THEN |
---|
| 219 | ALLOCATE( qswst_remote(nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 220 | qswst_remote = 0.0 |
---|
| 221 | ENDIF |
---|
[94] | 222 | ENDIF |
---|
| 223 | |
---|
[1] | 224 | ! |
---|
| 225 | !-- 3D-array for storing the dissipation, needed for calculating the sgs |
---|
| 226 | !-- particle velocities |
---|
| 227 | IF ( use_sgs_for_particles ) THEN |
---|
| 228 | ALLOCATE ( diss(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 229 | ENDIF |
---|
| 230 | |
---|
| 231 | IF ( dt_dosp /= 9999999.9 ) THEN |
---|
| 232 | ALLOCATE( spectrum_x( 1:nx/2, 1:10, 1:10 ), & |
---|
| 233 | spectrum_y( 1:ny/2, 1:10, 1:10 ) ) |
---|
| 234 | ENDIF |
---|
| 235 | |
---|
| 236 | ! |
---|
[51] | 237 | !-- 4D-array for storing the Rif-values at vertical walls |
---|
| 238 | IF ( topography /= 'flat' ) THEN |
---|
| 239 | ALLOCATE( rif_wall(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1,1:4) ) |
---|
| 240 | rif_wall = 0.0 |
---|
| 241 | ENDIF |
---|
| 242 | |
---|
| 243 | ! |
---|
| 244 | !-- Velocities at nzb+1 needed for volume flow control |
---|
| 245 | IF ( conserve_volume_flow ) THEN |
---|
| 246 | ALLOCATE( u_nzb_p1_for_vfc(nys:nyn), v_nzb_p1_for_vfc(nxl:nxr) ) |
---|
| 247 | u_nzb_p1_for_vfc = 0.0 |
---|
| 248 | v_nzb_p1_for_vfc = 0.0 |
---|
| 249 | ENDIF |
---|
| 250 | |
---|
| 251 | ! |
---|
[106] | 252 | !-- Arrays to store velocity data from t-dt and the phase speeds which |
---|
| 253 | !-- are needed for radiation boundary conditions |
---|
[73] | 254 | IF ( outflow_l ) THEN |
---|
[106] | 255 | ALLOCATE( u_m_l(nzb:nzt+1,nys-1:nyn+1,1:2), & |
---|
| 256 | v_m_l(nzb:nzt+1,nys-1:nyn+1,0:1), & |
---|
| 257 | w_m_l(nzb:nzt+1,nys-1:nyn+1,0:1) ) |
---|
[73] | 258 | ENDIF |
---|
| 259 | IF ( outflow_r ) THEN |
---|
[106] | 260 | ALLOCATE( u_m_r(nzb:nzt+1,nys-1:nyn+1,nx-1:nx), & |
---|
| 261 | v_m_r(nzb:nzt+1,nys-1:nyn+1,nx-1:nx), & |
---|
| 262 | w_m_r(nzb:nzt+1,nys-1:nyn+1,nx-1:nx) ) |
---|
[73] | 263 | ENDIF |
---|
[106] | 264 | IF ( outflow_l .OR. outflow_r ) THEN |
---|
| 265 | ALLOCATE( c_u(nzb:nzt+1,nys-1:nyn+1), c_v(nzb:nzt+1,nys-1:nyn+1), & |
---|
| 266 | c_w(nzb:nzt+1,nys-1:nyn+1) ) |
---|
| 267 | ENDIF |
---|
[73] | 268 | IF ( outflow_s ) THEN |
---|
[106] | 269 | ALLOCATE( u_m_s(nzb:nzt+1,0:1,nxl-1:nxr+1), & |
---|
| 270 | v_m_s(nzb:nzt+1,1:2,nxl-1:nxr+1), & |
---|
| 271 | w_m_s(nzb:nzt+1,0:1,nxl-1:nxr+1) ) |
---|
[73] | 272 | ENDIF |
---|
| 273 | IF ( outflow_n ) THEN |
---|
[106] | 274 | ALLOCATE( u_m_n(nzb:nzt+1,ny-1:ny,nxl-1:nxr+1), & |
---|
| 275 | v_m_n(nzb:nzt+1,ny-1:ny,nxl-1:nxr+1), & |
---|
| 276 | w_m_n(nzb:nzt+1,ny-1:ny,nxl-1:nxr+1) ) |
---|
[73] | 277 | ENDIF |
---|
[106] | 278 | IF ( outflow_s .OR. outflow_n ) THEN |
---|
| 279 | ALLOCATE( c_u(nzb:nzt+1,nxl-1:nxr+1), c_v(nzb:nzt+1,nxl-1:nxr+1), & |
---|
| 280 | c_w(nzb:nzt+1,nxl-1:nxr+1) ) |
---|
| 281 | ENDIF |
---|
[73] | 282 | |
---|
| 283 | ! |
---|
[1] | 284 | !-- Initial assignment of the pointers |
---|
| 285 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 286 | |
---|
[19] | 287 | rif_m => rif_1; rif => rif_2 |
---|
| 288 | shf_m => shf_1; shf => shf_2 |
---|
| 289 | tswst_m => tswst_1; tswst => tswst_2 |
---|
| 290 | usws_m => usws_1; usws => usws_2 |
---|
[102] | 291 | uswst_m => uswst_1; uswst => uswst_2 |
---|
[19] | 292 | vsws_m => vsws_1; vsws => vsws_2 |
---|
[102] | 293 | vswst_m => vswst_1; vswst => vswst_2 |
---|
[1] | 294 | e_m => e_1; e => e_2; e_p => e_3; te_m => e_3 |
---|
| 295 | kh_m => kh_1; kh => kh_2 |
---|
| 296 | km_m => km_1; km => km_2 |
---|
| 297 | pt_m => pt_1; pt => pt_2; pt_p => pt_3; tpt_m => pt_3 |
---|
| 298 | u_m => u_1; u => u_2; u_p => u_3; tu_m => u_3 |
---|
| 299 | v_m => v_1; v => v_2; v_p => v_3; tv_m => v_3 |
---|
| 300 | w_m => w_1; w => w_2; w_p => w_3; tw_m => w_3 |
---|
| 301 | |
---|
[75] | 302 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[19] | 303 | qsws_m => qsws_1; qsws => qsws_2 |
---|
| 304 | qswst_m => qswst_1; qswst => qswst_2 |
---|
[1] | 305 | q_m => q_1; q => q_2; q_p => q_3; tq_m => q_3 |
---|
[75] | 306 | IF ( humidity ) vpt_m => vpt_1; vpt => vpt_2 |
---|
[1] | 307 | IF ( cloud_physics ) ql => ql_1 |
---|
| 308 | IF ( cloud_droplets ) THEN |
---|
| 309 | ql => ql_1 |
---|
| 310 | ql_c => ql_2 |
---|
| 311 | ENDIF |
---|
| 312 | ENDIF |
---|
| 313 | |
---|
| 314 | ELSE |
---|
| 315 | |
---|
[19] | 316 | rif => rif_1 |
---|
| 317 | shf => shf_1 |
---|
| 318 | tswst => tswst_1 |
---|
| 319 | usws => usws_1 |
---|
[102] | 320 | uswst => uswst_1 |
---|
[19] | 321 | vsws => vsws_1 |
---|
[102] | 322 | vswst => vswst_1 |
---|
[19] | 323 | e => e_1; e_p => e_2; te_m => e_3; e_m => e_3 |
---|
| 324 | kh => kh_1 |
---|
| 325 | km => km_1 |
---|
| 326 | pt => pt_1; pt_p => pt_2; tpt_m => pt_3; pt_m => pt_3 |
---|
| 327 | u => u_1; u_p => u_2; tu_m => u_3; u_m => u_3 |
---|
| 328 | v => v_1; v_p => v_2; tv_m => v_3; v_m => v_3 |
---|
| 329 | w => w_1; w_p => w_2; tw_m => w_3; w_m => w_3 |
---|
[1] | 330 | |
---|
[75] | 331 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 332 | qsws => qsws_1 |
---|
[19] | 333 | qswst => qswst_1 |
---|
[94] | 334 | q => q_1; q_p => q_2; tq_m => q_3; q_m => q_3 |
---|
[75] | 335 | IF ( humidity ) vpt => vpt_1 |
---|
[1] | 336 | IF ( cloud_physics ) ql => ql_1 |
---|
| 337 | IF ( cloud_droplets ) THEN |
---|
| 338 | ql => ql_1 |
---|
| 339 | ql_c => ql_2 |
---|
| 340 | ENDIF |
---|
| 341 | ENDIF |
---|
| 342 | |
---|
[94] | 343 | IF ( ocean ) THEN |
---|
[95] | 344 | saswsb => saswsb_1 |
---|
[94] | 345 | saswst => saswst_1 |
---|
| 346 | sa => sa_1; sa_p => sa_2; tsa_m => sa_3 |
---|
| 347 | ENDIF |
---|
| 348 | |
---|
[1] | 349 | ENDIF |
---|
| 350 | |
---|
| 351 | ! |
---|
| 352 | !-- Initialize model variables |
---|
| 353 | IF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN |
---|
| 354 | ! |
---|
| 355 | !-- First model run of a possible job queue. |
---|
| 356 | !-- Initial profiles of the variables must be computes. |
---|
| 357 | IF ( INDEX( initializing_actions, 'set_1d-model_profiles' ) /= 0 ) THEN |
---|
| 358 | ! |
---|
| 359 | !-- Use solutions of the 1D model as initial profiles, |
---|
| 360 | !-- start 1D model |
---|
| 361 | CALL init_1d_model |
---|
| 362 | ! |
---|
| 363 | !-- Transfer initial profiles to the arrays of the 3D model |
---|
| 364 | DO i = nxl-1, nxr+1 |
---|
| 365 | DO j = nys-1, nyn+1 |
---|
| 366 | e(:,j,i) = e1d |
---|
| 367 | kh(:,j,i) = kh1d |
---|
| 368 | km(:,j,i) = km1d |
---|
| 369 | pt(:,j,i) = pt_init |
---|
| 370 | u(:,j,i) = u1d |
---|
| 371 | v(:,j,i) = v1d |
---|
| 372 | ENDDO |
---|
| 373 | ENDDO |
---|
| 374 | |
---|
[75] | 375 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 376 | DO i = nxl-1, nxr+1 |
---|
| 377 | DO j = nys-1, nyn+1 |
---|
| 378 | q(:,j,i) = q_init |
---|
| 379 | ENDDO |
---|
| 380 | ENDDO |
---|
| 381 | ENDIF |
---|
| 382 | |
---|
| 383 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 384 | DO i = nxl-1, nxr+1 |
---|
| 385 | DO j = nys-1, nyn+1 |
---|
| 386 | e(:,j,i) = e1d |
---|
| 387 | ENDDO |
---|
| 388 | ENDDO |
---|
| 389 | ! |
---|
| 390 | !-- Store initial profiles for output purposes etc. |
---|
| 391 | hom(:,1,25,:) = SPREAD( l1d, 2, statistic_regions+1 ) |
---|
| 392 | |
---|
| 393 | IF ( prandtl_layer ) THEN |
---|
| 394 | rif = rif1d(nzb+1) |
---|
| 395 | ts = 0.0 ! could actually be computed more accurately in the |
---|
| 396 | ! 1D model. Update when opportunity arises. |
---|
| 397 | us = us1d |
---|
| 398 | usws = usws1d |
---|
| 399 | vsws = vsws1d |
---|
| 400 | ELSE |
---|
| 401 | ts = 0.0 ! must be set, because used in |
---|
| 402 | rif = 0.0 ! flowste |
---|
| 403 | us = 0.0 |
---|
| 404 | usws = 0.0 |
---|
| 405 | vsws = 0.0 |
---|
| 406 | ENDIF |
---|
| 407 | |
---|
| 408 | ELSE |
---|
| 409 | e = 0.0 ! must be set, because used in |
---|
| 410 | rif = 0.0 ! flowste |
---|
| 411 | ts = 0.0 |
---|
| 412 | us = 0.0 |
---|
| 413 | usws = 0.0 |
---|
| 414 | vsws = 0.0 |
---|
| 415 | ENDIF |
---|
[102] | 416 | uswst = top_momentumflux_u |
---|
| 417 | vswst = top_momentumflux_v |
---|
[1] | 418 | |
---|
| 419 | ! |
---|
| 420 | !-- In every case qs = 0.0 (see also pt) |
---|
| 421 | !-- This could actually be computed more accurately in the 1D model. |
---|
| 422 | !-- Update when opportunity arises! |
---|
[75] | 423 | IF ( humidity .OR. passive_scalar ) qs = 0.0 |
---|
[1] | 424 | |
---|
| 425 | ! |
---|
| 426 | !-- inside buildings set velocities back to zero |
---|
| 427 | IF ( topography /= 'flat' ) THEN |
---|
| 428 | DO i = nxl-1, nxr+1 |
---|
| 429 | DO j = nys-1, nyn+1 |
---|
| 430 | u(nzb:nzb_u_inner(j,i),j,i) = 0.0 |
---|
| 431 | v(nzb:nzb_v_inner(j,i),j,i) = 0.0 |
---|
| 432 | ENDDO |
---|
| 433 | ENDDO |
---|
[132] | 434 | IF ( conserve_volume_flow ) THEN |
---|
| 435 | IF ( nxr == nx ) THEN |
---|
| 436 | DO j = nys, nyn |
---|
| 437 | DO k = nzb + 1, nzb_u_inner(j,nx) |
---|
| 438 | u_nzb_p1_for_vfc(j) = u1d(k) * dzu(k) |
---|
| 439 | ENDDO |
---|
| 440 | ENDDO |
---|
| 441 | ENDIF |
---|
| 442 | IF ( nyn == ny ) THEN |
---|
| 443 | DO i = nxl, nxr |
---|
| 444 | DO k = nzb + 1, nzb_v_inner(ny,i) |
---|
| 445 | v_nzb_p1_for_vfc(i) = v1d(k) * dzu(k) |
---|
| 446 | ENDDO |
---|
| 447 | ENDDO |
---|
| 448 | ENDIF |
---|
| 449 | ENDIF |
---|
[1] | 450 | ! |
---|
| 451 | !-- WARNING: The extra boundary conditions set after running the |
---|
| 452 | !-- ------- 1D model impose an error on the divergence one layer |
---|
| 453 | !-- below the topography; need to correct later |
---|
| 454 | !-- ATTENTION: Provisional correction for Piacsek & Williams |
---|
| 455 | !-- --------- advection scheme: keep u and v zero one layer below |
---|
| 456 | !-- the topography. |
---|
| 457 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 458 | ! |
---|
| 459 | !-- Satisfying the Dirichlet condition with an extra layer below |
---|
| 460 | !-- the surface where the u and v component change their sign. |
---|
| 461 | DO i = nxl-1, nxr+1 |
---|
| 462 | DO j = nys-1, nyn+1 |
---|
| 463 | IF ( nzb_u_inner(j,i) == 0 ) u(0,j,i) = -u(1,j,i) |
---|
| 464 | IF ( nzb_v_inner(j,i) == 0 ) v(0,j,i) = -v(1,j,i) |
---|
| 465 | ENDDO |
---|
| 466 | ENDDO |
---|
| 467 | |
---|
| 468 | ELSE |
---|
| 469 | ! |
---|
| 470 | !-- Neumann condition |
---|
| 471 | DO i = nxl-1, nxr+1 |
---|
| 472 | DO j = nys-1, nyn+1 |
---|
| 473 | IF ( nzb_u_inner(j,i) == 0 ) u(0,j,i) = u(1,j,i) |
---|
| 474 | IF ( nzb_v_inner(j,i) == 0 ) v(0,j,i) = v(1,j,i) |
---|
| 475 | ENDDO |
---|
| 476 | ENDDO |
---|
| 477 | |
---|
| 478 | ENDIF |
---|
| 479 | |
---|
| 480 | ENDIF |
---|
| 481 | |
---|
| 482 | ELSEIF ( INDEX(initializing_actions, 'set_constant_profiles') /= 0 ) & |
---|
| 483 | THEN |
---|
| 484 | ! |
---|
| 485 | !-- Use constructed initial profiles (velocity constant with height, |
---|
| 486 | !-- temperature profile with constant gradient) |
---|
| 487 | DO i = nxl-1, nxr+1 |
---|
| 488 | DO j = nys-1, nyn+1 |
---|
| 489 | pt(:,j,i) = pt_init |
---|
| 490 | u(:,j,i) = u_init |
---|
| 491 | v(:,j,i) = v_init |
---|
| 492 | ENDDO |
---|
| 493 | ENDDO |
---|
[75] | 494 | |
---|
[1] | 495 | ! |
---|
[51] | 496 | !-- Set initial horizontal velocities at the lowest computational grid levels |
---|
| 497 | !-- to zero in order to avoid too small time steps caused by the diffusion |
---|
[1] | 498 | !-- limit in the initial phase of a run (at k=1, dz/2 occurs in the |
---|
[51] | 499 | !-- limiting formula!). The original values are stored to be later used for |
---|
| 500 | !-- volume flow control. |
---|
[1] | 501 | DO i = nxl-1, nxr+1 |
---|
| 502 | DO j = nys-1, nyn+1 |
---|
| 503 | u(nzb:nzb_u_inner(j,i)+1,j,i) = 0.0 |
---|
| 504 | v(nzb:nzb_v_inner(j,i)+1,j,i) = 0.0 |
---|
| 505 | ENDDO |
---|
| 506 | ENDDO |
---|
[51] | 507 | IF ( conserve_volume_flow ) THEN |
---|
| 508 | IF ( nxr == nx ) THEN |
---|
| 509 | DO j = nys, nyn |
---|
[132] | 510 | DO k = nzb + 1, nzb_u_inner(j,nx) + 1 |
---|
| 511 | u_nzb_p1_for_vfc(j) = u_init(k) * dzu(k) |
---|
| 512 | ENDDO |
---|
[51] | 513 | ENDDO |
---|
| 514 | ENDIF |
---|
| 515 | IF ( nyn == ny ) THEN |
---|
| 516 | DO i = nxl, nxr |
---|
[132] | 517 | DO k = nzb + 1, nzb_v_inner(ny,i) + 1 |
---|
| 518 | v_nzb_p1_for_vfc(i) = v_init(k) * dzu(k) |
---|
| 519 | ENDDO |
---|
[51] | 520 | ENDDO |
---|
| 521 | ENDIF |
---|
| 522 | ENDIF |
---|
[1] | 523 | |
---|
[75] | 524 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 525 | DO i = nxl-1, nxr+1 |
---|
| 526 | DO j = nys-1, nyn+1 |
---|
| 527 | q(:,j,i) = q_init |
---|
| 528 | ENDDO |
---|
| 529 | ENDDO |
---|
| 530 | ENDIF |
---|
| 531 | |
---|
[94] | 532 | IF ( ocean ) THEN |
---|
| 533 | DO i = nxl-1, nxr+1 |
---|
| 534 | DO j = nys-1, nyn+1 |
---|
| 535 | sa(:,j,i) = sa_init |
---|
| 536 | ENDDO |
---|
| 537 | ENDDO |
---|
| 538 | ENDIF |
---|
[1] | 539 | |
---|
| 540 | IF ( constant_diffusion ) THEN |
---|
| 541 | km = km_constant |
---|
| 542 | kh = km / prandtl_number |
---|
[108] | 543 | e = 0.0 |
---|
| 544 | ELSEIF ( e_init > 0.0 ) THEN |
---|
| 545 | DO k = nzb+1, nzt |
---|
| 546 | km(k,:,:) = 0.1 * l_grid(k) * SQRT( e_init ) |
---|
| 547 | ENDDO |
---|
| 548 | km(nzb,:,:) = km(nzb+1,:,:) |
---|
| 549 | km(nzt+1,:,:) = km(nzt,:,:) |
---|
| 550 | kh = km / prandtl_number |
---|
| 551 | e = e_init |
---|
[1] | 552 | ELSE |
---|
[108] | 553 | IF ( .NOT. ocean ) THEN |
---|
| 554 | kh = 0.01 ! there must exist an initial diffusion, because |
---|
| 555 | km = 0.01 ! otherwise no TKE would be produced by the |
---|
| 556 | ! production terms, as long as not yet |
---|
| 557 | ! e = (u*/cm)**2 at k=nzb+1 |
---|
| 558 | ELSE |
---|
| 559 | kh = 0.00001 |
---|
| 560 | km = 0.00001 |
---|
| 561 | ENDIF |
---|
| 562 | e = 0.0 |
---|
[1] | 563 | ENDIF |
---|
[102] | 564 | rif = 0.0 |
---|
| 565 | ts = 0.0 |
---|
| 566 | us = 0.0 |
---|
| 567 | usws = 0.0 |
---|
| 568 | uswst = top_momentumflux_u |
---|
| 569 | vsws = 0.0 |
---|
| 570 | vswst = top_momentumflux_v |
---|
[75] | 571 | IF ( humidity .OR. passive_scalar ) qs = 0.0 |
---|
[1] | 572 | |
---|
| 573 | ! |
---|
| 574 | !-- Compute initial temperature field and other constants used in case |
---|
| 575 | !-- of a sloping surface |
---|
| 576 | IF ( sloping_surface ) CALL init_slope |
---|
| 577 | |
---|
[46] | 578 | ELSEIF ( INDEX(initializing_actions, 'by_user') /= 0 ) & |
---|
| 579 | THEN |
---|
| 580 | ! |
---|
| 581 | !-- Initialization will completely be done by the user |
---|
| 582 | CALL user_init_3d_model |
---|
| 583 | |
---|
[1] | 584 | ENDIF |
---|
| 585 | |
---|
| 586 | ! |
---|
[132] | 587 | !-- apply channel flow boundary condition |
---|
| 588 | IF ( TRIM( bc_uv_t ) == 'dirichlet_0' ) THEN |
---|
| 589 | |
---|
| 590 | u(nzt+1,:,:) = 0.0 |
---|
| 591 | v(nzt+1,:,:) = 0.0 |
---|
| 592 | |
---|
| 593 | !-- for the Dirichlet condition to be correctly applied at the top, set |
---|
| 594 | !-- ug and vg to zero there |
---|
| 595 | ug(nzt+1) = 0.0 |
---|
| 596 | vg(nzt+1) = 0.0 |
---|
| 597 | |
---|
| 598 | ENDIF |
---|
| 599 | |
---|
| 600 | ! |
---|
[1] | 601 | !-- Calculate virtual potential temperature |
---|
[75] | 602 | IF ( humidity ) vpt = pt * ( 1.0 + 0.61 * q ) |
---|
[1] | 603 | |
---|
| 604 | ! |
---|
| 605 | !-- Store initial profiles for output purposes etc. |
---|
| 606 | hom(:,1,5,:) = SPREAD( u(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 607 | hom(:,1,6,:) = SPREAD( v(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 608 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 609 | hom(nzb,1,5,:) = -hom(nzb+1,1,5,:) ! due to satisfying the Dirichlet |
---|
| 610 | hom(nzb,1,6,:) = -hom(nzb+1,1,6,:) ! condition with an extra layer |
---|
| 611 | ! below the surface where the u and v component change their sign |
---|
| 612 | ENDIF |
---|
| 613 | hom(:,1,7,:) = SPREAD( pt(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 614 | hom(:,1,23,:) = SPREAD( km(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 615 | hom(:,1,24,:) = SPREAD( kh(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 616 | |
---|
[97] | 617 | IF ( ocean ) THEN |
---|
| 618 | ! |
---|
| 619 | !-- Store initial salinity profile |
---|
| 620 | hom(:,1,26,:) = SPREAD( sa(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 621 | ENDIF |
---|
[1] | 622 | |
---|
[75] | 623 | IF ( humidity ) THEN |
---|
[1] | 624 | ! |
---|
| 625 | !-- Store initial profile of total water content, virtual potential |
---|
| 626 | !-- temperature |
---|
| 627 | hom(:,1,26,:) = SPREAD( q(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 628 | hom(:,1,29,:) = SPREAD( vpt(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 629 | IF ( cloud_physics .OR. cloud_droplets ) THEN |
---|
| 630 | ! |
---|
| 631 | !-- Store initial profile of specific humidity and potential |
---|
| 632 | !-- temperature |
---|
| 633 | hom(:,1,27,:) = SPREAD( q(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 634 | hom(:,1,28,:) = SPREAD( pt(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 635 | ENDIF |
---|
| 636 | ENDIF |
---|
| 637 | |
---|
| 638 | IF ( passive_scalar ) THEN |
---|
| 639 | ! |
---|
| 640 | !-- Store initial scalar profile |
---|
| 641 | hom(:,1,26,:) = SPREAD( q(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 642 | ENDIF |
---|
| 643 | |
---|
| 644 | ! |
---|
[19] | 645 | !-- Initialize fluxes at bottom surface |
---|
[1] | 646 | IF ( use_surface_fluxes ) THEN |
---|
| 647 | |
---|
| 648 | IF ( constant_heatflux ) THEN |
---|
| 649 | ! |
---|
| 650 | !-- Heat flux is prescribed |
---|
| 651 | IF ( random_heatflux ) THEN |
---|
| 652 | CALL disturb_heatflux |
---|
| 653 | ELSE |
---|
| 654 | shf = surface_heatflux |
---|
| 655 | ! |
---|
| 656 | !-- Over topography surface_heatflux is replaced by wall_heatflux(0) |
---|
| 657 | IF ( TRIM( topography ) /= 'flat' ) THEN |
---|
| 658 | DO i = nxl-1, nxr+1 |
---|
| 659 | DO j = nys-1, nyn+1 |
---|
| 660 | IF ( nzb_s_inner(j,i) /= 0 ) THEN |
---|
| 661 | shf(j,i) = wall_heatflux(0) |
---|
| 662 | ENDIF |
---|
| 663 | ENDDO |
---|
| 664 | ENDDO |
---|
| 665 | ENDIF |
---|
| 666 | ENDIF |
---|
| 667 | IF ( ASSOCIATED( shf_m ) ) shf_m = shf |
---|
| 668 | ENDIF |
---|
| 669 | |
---|
| 670 | ! |
---|
| 671 | !-- Determine the near-surface water flux |
---|
[75] | 672 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 673 | IF ( constant_waterflux ) THEN |
---|
| 674 | qsws = surface_waterflux |
---|
| 675 | IF ( ASSOCIATED( qsws_m ) ) qsws_m = qsws |
---|
| 676 | ENDIF |
---|
| 677 | ENDIF |
---|
| 678 | |
---|
| 679 | ENDIF |
---|
| 680 | |
---|
| 681 | ! |
---|
[19] | 682 | !-- Initialize fluxes at top surface |
---|
[94] | 683 | !-- Currently, only the heatflux and salinity flux can be prescribed. |
---|
| 684 | !-- The latent flux is zero in this case! |
---|
[19] | 685 | IF ( use_top_fluxes ) THEN |
---|
| 686 | |
---|
| 687 | IF ( constant_top_heatflux ) THEN |
---|
| 688 | ! |
---|
| 689 | !-- Heat flux is prescribed |
---|
| 690 | tswst = top_heatflux |
---|
| 691 | IF ( ASSOCIATED( tswst_m ) ) tswst_m = tswst |
---|
| 692 | |
---|
[75] | 693 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[19] | 694 | qswst = 0.0 |
---|
| 695 | IF ( ASSOCIATED( qswst_m ) ) qswst_m = qswst |
---|
| 696 | ENDIF |
---|
[94] | 697 | |
---|
| 698 | IF ( ocean ) THEN |
---|
[95] | 699 | saswsb = bottom_salinityflux |
---|
[94] | 700 | saswst = top_salinityflux |
---|
| 701 | ENDIF |
---|
[102] | 702 | ENDIF |
---|
[19] | 703 | |
---|
[102] | 704 | ! |
---|
| 705 | !-- Initialization in case of a coupled model run |
---|
| 706 | IF ( coupling_mode == 'ocean_to_atmosphere' ) THEN |
---|
| 707 | tswst = 0.0 |
---|
| 708 | IF ( ASSOCIATED( tswst_m ) ) tswst_m = tswst |
---|
| 709 | ENDIF |
---|
| 710 | |
---|
[19] | 711 | ENDIF |
---|
| 712 | |
---|
| 713 | ! |
---|
[1] | 714 | !-- Initialize Prandtl layer quantities |
---|
| 715 | IF ( prandtl_layer ) THEN |
---|
| 716 | |
---|
| 717 | z0 = roughness_length |
---|
| 718 | |
---|
| 719 | IF ( .NOT. constant_heatflux ) THEN |
---|
| 720 | ! |
---|
| 721 | !-- Surface temperature is prescribed. Here the heat flux cannot be |
---|
| 722 | !-- simply estimated, because therefore rif, u* and theta* would have |
---|
| 723 | !-- to be computed by iteration. This is why the heat flux is assumed |
---|
| 724 | !-- to be zero before the first time step. It approaches its correct |
---|
| 725 | !-- value in the course of the first few time steps. |
---|
| 726 | shf = 0.0 |
---|
| 727 | IF ( ASSOCIATED( shf_m ) ) shf_m = 0.0 |
---|
| 728 | ENDIF |
---|
| 729 | |
---|
[75] | 730 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 731 | IF ( .NOT. constant_waterflux ) THEN |
---|
| 732 | qsws = 0.0 |
---|
| 733 | IF ( ASSOCIATED( qsws_m ) ) qsws_m = 0.0 |
---|
| 734 | ENDIF |
---|
| 735 | ENDIF |
---|
| 736 | |
---|
| 737 | ENDIF |
---|
| 738 | |
---|
| 739 | ! |
---|
| 740 | !-- Calculate the initial volume flow at the right and north boundary |
---|
| 741 | IF ( conserve_volume_flow ) THEN |
---|
| 742 | |
---|
| 743 | volume_flow_initial_l = 0.0 |
---|
| 744 | volume_flow_area_l = 0.0 |
---|
| 745 | |
---|
| 746 | IF ( nxr == nx ) THEN |
---|
| 747 | DO j = nys, nyn |
---|
| 748 | DO k = nzb_2d(j,nx) + 1, nzt |
---|
| 749 | volume_flow_initial_l(1) = volume_flow_initial_l(1) + & |
---|
| 750 | u(k,j,nx) * dzu(k) |
---|
| 751 | volume_flow_area_l(1) = volume_flow_area_l(1) + dzu(k) |
---|
| 752 | ENDDO |
---|
[51] | 753 | ! |
---|
| 754 | !-- Correction if velocity at nzb+1 has been set zero further above |
---|
| 755 | volume_flow_initial_l(1) = volume_flow_initial_l(1) + & |
---|
| 756 | u_nzb_p1_for_vfc(j) |
---|
[1] | 757 | ENDDO |
---|
| 758 | ENDIF |
---|
| 759 | |
---|
| 760 | IF ( nyn == ny ) THEN |
---|
| 761 | DO i = nxl, nxr |
---|
| 762 | DO k = nzb_2d(ny,i) + 1, nzt |
---|
| 763 | volume_flow_initial_l(2) = volume_flow_initial_l(2) + & |
---|
| 764 | v(k,ny,i) * dzu(k) |
---|
| 765 | volume_flow_area_l(2) = volume_flow_area_l(2) + dzu(k) |
---|
| 766 | ENDDO |
---|
[51] | 767 | ! |
---|
| 768 | !-- Correction if velocity at nzb+1 has been set zero further above |
---|
| 769 | volume_flow_initial_l(2) = volume_flow_initial_l(2) + & |
---|
| 770 | v_nzb_p1_for_vfc(i) |
---|
[1] | 771 | ENDDO |
---|
| 772 | ENDIF |
---|
| 773 | |
---|
| 774 | #if defined( __parallel ) |
---|
| 775 | CALL MPI_ALLREDUCE( volume_flow_initial_l(1), volume_flow_initial(1),& |
---|
| 776 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 777 | CALL MPI_ALLREDUCE( volume_flow_area_l(1), volume_flow_area(1), & |
---|
| 778 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 779 | #else |
---|
| 780 | volume_flow_initial = volume_flow_initial_l |
---|
| 781 | volume_flow_area = volume_flow_area_l |
---|
| 782 | #endif |
---|
| 783 | ENDIF |
---|
| 784 | |
---|
| 785 | ! |
---|
| 786 | !-- For the moment, perturbation pressure and vertical velocity are zero |
---|
| 787 | p = 0.0; w = 0.0 |
---|
| 788 | |
---|
| 789 | ! |
---|
| 790 | !-- Initialize array sums (must be defined in first call of pres) |
---|
| 791 | sums = 0.0 |
---|
| 792 | |
---|
| 793 | ! |
---|
[72] | 794 | !-- Treating cloud physics, liquid water content and precipitation amount |
---|
| 795 | !-- are zero at beginning of the simulation |
---|
| 796 | IF ( cloud_physics ) THEN |
---|
| 797 | ql = 0.0 |
---|
| 798 | IF ( precipitation ) precipitation_amount = 0.0 |
---|
| 799 | ENDIF |
---|
[1] | 800 | |
---|
| 801 | ! |
---|
| 802 | !-- Initialize spectra |
---|
| 803 | IF ( dt_dosp /= 9999999.9 ) THEN |
---|
| 804 | spectrum_x = 0.0 |
---|
| 805 | spectrum_y = 0.0 |
---|
| 806 | ENDIF |
---|
| 807 | |
---|
| 808 | ! |
---|
| 809 | !-- Impose vortex with vertical axis on the initial velocity profile |
---|
| 810 | IF ( INDEX( initializing_actions, 'initialize_vortex' ) /= 0 ) THEN |
---|
| 811 | CALL init_rankine |
---|
| 812 | ENDIF |
---|
| 813 | |
---|
| 814 | ! |
---|
| 815 | !-- Impose temperature anomaly (advection test only) |
---|
| 816 | IF ( INDEX( initializing_actions, 'initialize_ptanom' ) /= 0 ) THEN |
---|
| 817 | CALL init_pt_anomaly |
---|
| 818 | ENDIF |
---|
| 819 | |
---|
| 820 | ! |
---|
| 821 | !-- If required, change the surface temperature at the start of the 3D run |
---|
| 822 | IF ( pt_surface_initial_change /= 0.0 ) THEN |
---|
| 823 | pt(nzb,:,:) = pt(nzb,:,:) + pt_surface_initial_change |
---|
| 824 | ENDIF |
---|
| 825 | |
---|
| 826 | ! |
---|
| 827 | !-- If required, change the surface humidity/scalar at the start of the 3D |
---|
| 828 | !-- run |
---|
[75] | 829 | IF ( ( humidity .OR. passive_scalar ) .AND. & |
---|
[1] | 830 | q_surface_initial_change /= 0.0 ) THEN |
---|
| 831 | q(nzb,:,:) = q(nzb,:,:) + q_surface_initial_change |
---|
| 832 | ENDIF |
---|
| 833 | |
---|
| 834 | ! |
---|
| 835 | !-- Initialize the random number generator (from numerical recipes) |
---|
| 836 | CALL random_function_ini |
---|
| 837 | |
---|
| 838 | ! |
---|
| 839 | !-- Impose random perturbation on the horizontal velocity field and then |
---|
| 840 | !-- remove the divergences from the velocity field |
---|
| 841 | IF ( create_disturbances ) THEN |
---|
[75] | 842 | CALL disturb_field( nzb_u_inner, tend, u ) |
---|
| 843 | CALL disturb_field( nzb_v_inner, tend, v ) |
---|
[1] | 844 | n_sor = nsor_ini |
---|
| 845 | CALL pres |
---|
| 846 | n_sor = nsor |
---|
| 847 | ENDIF |
---|
| 848 | |
---|
| 849 | ! |
---|
| 850 | !-- Once again set the perturbation pressure explicitly to zero in order to |
---|
| 851 | !-- assure that it does not generate any divergences in the first time step. |
---|
| 852 | !-- At t=0 the velocity field is free of divergence (as constructed above). |
---|
| 853 | !-- Divergences being created during a time step are not yet known and thus |
---|
| 854 | !-- cannot be corrected during the time step yet. |
---|
| 855 | p = 0.0 |
---|
| 856 | |
---|
| 857 | ! |
---|
| 858 | !-- Initialize old and new time levels. |
---|
| 859 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 860 | e_m = e; pt_m = pt; u_m = u; v_m = v; w_m = w; kh_m = kh; km_m = km |
---|
| 861 | ELSE |
---|
| 862 | te_m = 0.0; tpt_m = 0.0; tu_m = 0.0; tv_m = 0.0; tw_m = 0.0 |
---|
| 863 | ENDIF |
---|
| 864 | e_p = e; pt_p = pt; u_p = u; v_p = v; w_p = w |
---|
| 865 | |
---|
[75] | 866 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 867 | IF ( ASSOCIATED( q_m ) ) q_m = q |
---|
| 868 | IF ( timestep_scheme(1:5) == 'runge' ) tq_m = 0.0 |
---|
| 869 | q_p = q |
---|
[75] | 870 | IF ( humidity .AND. ASSOCIATED( vpt_m ) ) vpt_m = vpt |
---|
[1] | 871 | ENDIF |
---|
| 872 | |
---|
[94] | 873 | IF ( ocean ) THEN |
---|
| 874 | tsa_m = 0.0 |
---|
| 875 | sa_p = sa |
---|
| 876 | ENDIF |
---|
| 877 | |
---|
[73] | 878 | ! |
---|
| 879 | !-- Initialize old timelevels needed for radiation boundary conditions |
---|
| 880 | IF ( outflow_l ) THEN |
---|
[106] | 881 | u_m_l(:,:,:) = u(:,:,1:2) |
---|
| 882 | v_m_l(:,:,:) = v(:,:,0:1) |
---|
| 883 | w_m_l(:,:,:) = w(:,:,0:1) |
---|
[73] | 884 | ENDIF |
---|
| 885 | IF ( outflow_r ) THEN |
---|
[106] | 886 | u_m_r(:,:,:) = u(:,:,nx-1:nx) |
---|
| 887 | v_m_r(:,:,:) = v(:,:,nx-1:nx) |
---|
| 888 | w_m_r(:,:,:) = w(:,:,nx-1:nx) |
---|
[73] | 889 | ENDIF |
---|
| 890 | IF ( outflow_s ) THEN |
---|
[106] | 891 | u_m_s(:,:,:) = u(:,0:1,:) |
---|
| 892 | v_m_s(:,:,:) = v(:,1:2,:) |
---|
| 893 | w_m_s(:,:,:) = w(:,0:1,:) |
---|
[73] | 894 | ENDIF |
---|
| 895 | IF ( outflow_n ) THEN |
---|
[106] | 896 | u_m_n(:,:,:) = u(:,ny-1:ny,:) |
---|
| 897 | v_m_n(:,:,:) = v(:,ny-1:ny,:) |
---|
| 898 | w_m_n(:,:,:) = w(:,ny-1:ny,:) |
---|
[73] | 899 | ENDIF |
---|
| 900 | |
---|
[1] | 901 | ELSEIF ( TRIM( initializing_actions ) == 'read_restart_data' ) & |
---|
| 902 | THEN |
---|
| 903 | ! |
---|
| 904 | !-- Read binary data from restart file |
---|
| 905 | CALL read_3d_binary |
---|
| 906 | |
---|
| 907 | ! |
---|
| 908 | !-- Calculate initial temperature field and other constants used in case |
---|
| 909 | !-- of a sloping surface |
---|
| 910 | IF ( sloping_surface ) CALL init_slope |
---|
| 911 | |
---|
| 912 | ! |
---|
| 913 | !-- Initialize new time levels (only done in order to set boundary values |
---|
| 914 | !-- including ghost points) |
---|
| 915 | e_p = e; pt_p = pt; u_p = u; v_p = v; w_p = w |
---|
[75] | 916 | IF ( humidity .OR. passive_scalar ) q_p = q |
---|
[94] | 917 | IF ( ocean ) sa_p = sa |
---|
[1] | 918 | |
---|
| 919 | ELSE |
---|
| 920 | ! |
---|
| 921 | !-- Actually this part of the programm should not be reached |
---|
| 922 | IF ( myid == 0 ) PRINT*,'+++ init_3d_model: unknown initializing ', & |
---|
| 923 | 'problem' |
---|
| 924 | CALL local_stop |
---|
| 925 | ENDIF |
---|
| 926 | |
---|
| 927 | ! |
---|
| 928 | !-- If required, initialize dvrp-software |
---|
| 929 | IF ( dt_dvrp /= 9999999.9 ) CALL init_dvrp |
---|
| 930 | |
---|
[96] | 931 | IF ( ocean ) THEN |
---|
[1] | 932 | ! |
---|
[96] | 933 | !-- Initialize quantities needed for the ocean model |
---|
| 934 | CALL init_ocean |
---|
| 935 | ELSE |
---|
| 936 | ! |
---|
| 937 | !-- Initialize quantities for handling cloud physics |
---|
| 938 | !-- This routine must be called before init_particles, because |
---|
| 939 | !-- otherwise, array pt_d_t, needed in data_output_dvrp (called by |
---|
| 940 | !-- init_particles) is not defined. |
---|
| 941 | CALL init_cloud_physics |
---|
| 942 | ENDIF |
---|
[1] | 943 | |
---|
| 944 | ! |
---|
| 945 | !-- If required, initialize particles |
---|
[63] | 946 | IF ( particle_advection ) CALL init_particles |
---|
[1] | 947 | |
---|
| 948 | ! |
---|
| 949 | !-- Initialize quantities for special advections schemes |
---|
| 950 | CALL init_advec |
---|
| 951 | |
---|
| 952 | ! |
---|
| 953 | !-- Initialize Rayleigh damping factors |
---|
| 954 | rdf = 0.0 |
---|
| 955 | IF ( rayleigh_damping_factor /= 0.0 ) THEN |
---|
[108] | 956 | IF ( .NOT. ocean ) THEN |
---|
| 957 | DO k = nzb+1, nzt |
---|
| 958 | IF ( zu(k) >= rayleigh_damping_height ) THEN |
---|
| 959 | rdf(k) = rayleigh_damping_factor * & |
---|
[1] | 960 | ( SIN( pi * 0.5 * ( zu(k) - rayleigh_damping_height ) & |
---|
| 961 | / ( zu(nzt) - rayleigh_damping_height ) )& |
---|
| 962 | )**2 |
---|
[108] | 963 | ENDIF |
---|
| 964 | ENDDO |
---|
| 965 | ELSE |
---|
| 966 | DO k = nzt, nzb+1, -1 |
---|
| 967 | IF ( zu(k) <= rayleigh_damping_height ) THEN |
---|
| 968 | rdf(k) = rayleigh_damping_factor * & |
---|
| 969 | ( SIN( pi * 0.5 * ( rayleigh_damping_height - zu(k) ) & |
---|
| 970 | / ( rayleigh_damping_height - zu(nzb+1)))& |
---|
| 971 | )**2 |
---|
| 972 | ENDIF |
---|
| 973 | ENDDO |
---|
| 974 | ENDIF |
---|
[1] | 975 | ENDIF |
---|
| 976 | |
---|
| 977 | ! |
---|
| 978 | !-- Initialize diffusivities used within the outflow damping layer in case of |
---|
| 979 | !-- non-cyclic lateral boundaries. A linear increase is assumed over the first |
---|
| 980 | !-- half of the width of the damping layer |
---|
[73] | 981 | IF ( bc_lr == 'dirichlet/radiation' ) THEN |
---|
[1] | 982 | |
---|
| 983 | DO i = nxl-1, nxr+1 |
---|
[73] | 984 | IF ( i >= nx - outflow_damping_width ) THEN |
---|
| 985 | km_damp_x(i) = km_damp_max * MIN( 1.0, & |
---|
| 986 | ( i - ( nx - outflow_damping_width ) ) / & |
---|
| 987 | REAL( outflow_damping_width/2 ) & |
---|
| 988 | ) |
---|
| 989 | ELSE |
---|
| 990 | km_damp_x(i) = 0.0 |
---|
| 991 | ENDIF |
---|
| 992 | ENDDO |
---|
[1] | 993 | |
---|
[73] | 994 | ELSEIF ( bc_lr == 'radiation/dirichlet' ) THEN |
---|
[1] | 995 | |
---|
[73] | 996 | DO i = nxl-1, nxr+1 |
---|
| 997 | IF ( i <= outflow_damping_width ) THEN |
---|
| 998 | km_damp_x(i) = km_damp_max * MIN( 1.0, & |
---|
| 999 | ( outflow_damping_width - i ) / & |
---|
| 1000 | REAL( outflow_damping_width/2 ) & |
---|
| 1001 | ) |
---|
| 1002 | ELSE |
---|
| 1003 | km_damp_x(i) = 0.0 |
---|
| 1004 | ENDIF |
---|
| 1005 | ENDDO |
---|
[1] | 1006 | |
---|
[73] | 1007 | ENDIF |
---|
[1] | 1008 | |
---|
[73] | 1009 | IF ( bc_ns == 'dirichlet/radiation' ) THEN |
---|
[1] | 1010 | |
---|
[73] | 1011 | DO j = nys-1, nyn+1 |
---|
| 1012 | IF ( j >= ny - outflow_damping_width ) THEN |
---|
| 1013 | km_damp_y(j) = km_damp_max * MIN( 1.0, & |
---|
| 1014 | ( j - ( ny - outflow_damping_width ) ) / & |
---|
| 1015 | REAL( outflow_damping_width/2 ) & |
---|
| 1016 | ) |
---|
| 1017 | ELSE |
---|
| 1018 | km_damp_y(j) = 0.0 |
---|
[1] | 1019 | ENDIF |
---|
| 1020 | ENDDO |
---|
| 1021 | |
---|
[73] | 1022 | ELSEIF ( bc_ns == 'radiation/dirichlet' ) THEN |
---|
[1] | 1023 | |
---|
| 1024 | DO j = nys-1, nyn+1 |
---|
[73] | 1025 | IF ( j <= outflow_damping_width ) THEN |
---|
| 1026 | km_damp_y(j) = km_damp_max * MIN( 1.0, & |
---|
| 1027 | ( outflow_damping_width - j ) / & |
---|
| 1028 | REAL( outflow_damping_width/2 ) & |
---|
| 1029 | ) |
---|
| 1030 | ELSE |
---|
| 1031 | km_damp_y(j) = 0.0 |
---|
[1] | 1032 | ENDIF |
---|
[73] | 1033 | ENDDO |
---|
[1] | 1034 | |
---|
| 1035 | ENDIF |
---|
| 1036 | |
---|
| 1037 | ! |
---|
| 1038 | !-- Initialize local summation arrays for UP flow_statistics. This is necessary |
---|
| 1039 | !-- because they may not yet have been initialized when they are called from |
---|
| 1040 | !-- flow_statistics (or - depending on the chosen model run - are never |
---|
| 1041 | !-- initialized) |
---|
| 1042 | sums_divnew_l = 0.0 |
---|
| 1043 | sums_divold_l = 0.0 |
---|
| 1044 | sums_l_l = 0.0 |
---|
| 1045 | sums_up_fraction_l = 0.0 |
---|
| 1046 | sums_wsts_bc_l = 0.0 |
---|
| 1047 | |
---|
| 1048 | ! |
---|
| 1049 | !-- Pre-set masks for regional statistics. Default is the total model domain. |
---|
| 1050 | rmask = 1.0 |
---|
| 1051 | |
---|
| 1052 | ! |
---|
[51] | 1053 | !-- User-defined initializing actions. Check afterwards, if maximum number |
---|
| 1054 | !-- of allowed timeseries is not exceeded |
---|
[1] | 1055 | CALL user_init |
---|
| 1056 | |
---|
[51] | 1057 | IF ( dots_num > dots_max ) THEN |
---|
| 1058 | IF ( myid == 0 ) THEN |
---|
| 1059 | PRINT*, '+++ user_init: number of time series quantities exceeds', & |
---|
| 1060 | ' its maximum of dots_max = ', dots_max |
---|
| 1061 | PRINT*, ' Please increase dots_max in modules.f90.' |
---|
| 1062 | ENDIF |
---|
| 1063 | CALL local_stop |
---|
| 1064 | ENDIF |
---|
| 1065 | |
---|
[1] | 1066 | ! |
---|
| 1067 | !-- Input binary data file is not needed anymore. This line must be placed |
---|
| 1068 | !-- after call of user_init! |
---|
| 1069 | CALL close_file( 13 ) |
---|
| 1070 | |
---|
| 1071 | ! |
---|
| 1072 | !-- Compute total sum of active mask grid points |
---|
| 1073 | !-- ngp_2dh: number of grid points of a horizontal cross section through the |
---|
| 1074 | !-- total domain |
---|
| 1075 | !-- ngp_3d: number of grid points of the total domain |
---|
[132] | 1076 | ngp_2dh_outer_l = 0 |
---|
| 1077 | ngp_2dh_outer = 0 |
---|
| 1078 | ngp_2dh_s_inner_l = 0 |
---|
| 1079 | ngp_2dh_s_inner = 0 |
---|
| 1080 | ngp_2dh_l = 0 |
---|
| 1081 | ngp_2dh = 0 |
---|
| 1082 | ngp_3d_inner_l = 0 |
---|
| 1083 | ngp_3d_inner = 0 |
---|
| 1084 | ngp_3d = 0 |
---|
| 1085 | ngp_sums = ( nz + 2 ) * ( pr_palm + max_pr_user ) |
---|
[1] | 1086 | |
---|
| 1087 | DO sr = 0, statistic_regions |
---|
| 1088 | DO i = nxl, nxr |
---|
| 1089 | DO j = nys, nyn |
---|
| 1090 | IF ( rmask(j,i,sr) == 1.0 ) THEN |
---|
| 1091 | ! |
---|
| 1092 | !-- All xy-grid points |
---|
| 1093 | ngp_2dh_l(sr) = ngp_2dh_l(sr) + 1 |
---|
| 1094 | ! |
---|
| 1095 | !-- xy-grid points above topography |
---|
| 1096 | DO k = nzb_s_outer(j,i), nz + 1 |
---|
| 1097 | ngp_2dh_outer_l(k,sr) = ngp_2dh_outer_l(k,sr) + 1 |
---|
| 1098 | ENDDO |
---|
[132] | 1099 | DO k = nzb_s_inner(j,i), nz + 1 |
---|
| 1100 | ngp_2dh_s_inner_l(k,sr) = ngp_2dh_s_inner_l(k,sr) + 1 |
---|
| 1101 | ENDDO |
---|
[1] | 1102 | ! |
---|
| 1103 | !-- All grid points of the total domain above topography |
---|
| 1104 | ngp_3d_inner_l(sr) = ngp_3d_inner_l(sr) + & |
---|
| 1105 | ( nz - nzb_s_inner(j,i) + 2 ) |
---|
| 1106 | ENDIF |
---|
| 1107 | ENDDO |
---|
| 1108 | ENDDO |
---|
| 1109 | ENDDO |
---|
| 1110 | |
---|
| 1111 | sr = statistic_regions + 1 |
---|
| 1112 | #if defined( __parallel ) |
---|
| 1113 | CALL MPI_ALLREDUCE( ngp_2dh_l(0), ngp_2dh(0), sr, MPI_INTEGER, MPI_SUM, & |
---|
| 1114 | comm2d, ierr ) |
---|
| 1115 | CALL MPI_ALLREDUCE( ngp_2dh_outer_l(0,0), ngp_2dh_outer(0,0), (nz+2)*sr, & |
---|
| 1116 | MPI_INTEGER, MPI_SUM, comm2d, ierr ) |
---|
[132] | 1117 | CALL MPI_ALLREDUCE( ngp_2dh_s_inner_l(0,0), ngp_2dh_s_inner(0,0), & |
---|
| 1118 | (nz+2)*sr, MPI_INTEGER, MPI_SUM, comm2d, ierr ) |
---|
[1] | 1119 | CALL MPI_ALLREDUCE( ngp_3d_inner_l(0), ngp_3d_inner(0), sr, MPI_INTEGER, & |
---|
| 1120 | MPI_SUM, comm2d, ierr ) |
---|
| 1121 | #else |
---|
[132] | 1122 | ngp_2dh = ngp_2dh_l |
---|
| 1123 | ngp_2dh_outer = ngp_2dh_outer_l |
---|
| 1124 | ngp_2dh_s_inner = ngp_2dh_s_inner_l |
---|
| 1125 | ngp_3d_inner = ngp_3d_inner_l |
---|
[1] | 1126 | #endif |
---|
| 1127 | |
---|
| 1128 | ngp_3d = ngp_2dh * ( nz + 2 ) |
---|
| 1129 | |
---|
| 1130 | ! |
---|
| 1131 | !-- Set a lower limit of 1 in order to avoid zero divisions in flow_statistics, |
---|
| 1132 | !-- buoyancy, etc. A zero value will occur for cases where all grid points of |
---|
| 1133 | !-- the respective subdomain lie below the surface topography |
---|
| 1134 | ngp_2dh_outer = MAX( 1, ngp_2dh_outer(:,:) ) |
---|
| 1135 | ngp_3d_inner = MAX( 1, ngp_3d_inner(:) ) |
---|
| 1136 | |
---|
| 1137 | DEALLOCATE( ngp_2dh_l, ngp_2dh_outer_l, ngp_3d_inner_l ) |
---|
| 1138 | |
---|
| 1139 | |
---|
| 1140 | END SUBROUTINE init_3d_model |
---|