[1] | 1 | #if defined( __ibmy_special ) |
---|
| 2 | @PROCESS NOOPTimize |
---|
| 3 | #endif |
---|
| 4 | SUBROUTINE init_3d_model |
---|
| 5 | |
---|
| 6 | !------------------------------------------------------------------------------! |
---|
| 7 | ! Actual revisions: |
---|
| 8 | ! ----------------- |
---|
[110] | 9 | ! |
---|
[77] | 10 | ! |
---|
| 11 | ! Former revisions: |
---|
| 12 | ! ----------------- |
---|
| 13 | ! $Id: init_3d_model.f90 110 2007-10-05 05:13:14Z letzel $ |
---|
| 14 | ! |
---|
[110] | 15 | ! 108 2007-08-24 15:10:38Z letzel |
---|
| 16 | ! Flux initialization in case of coupled runs, +momentum fluxes at top boundary, |
---|
| 17 | ! +arrays for phase speed c_u, c_v, c_w, indices for u|v|w_m_l|r changed |
---|
| 18 | ! +qswst_remote in case of atmosphere model with humidity coupled to ocean |
---|
| 19 | ! Rayleigh damping for ocean, optionally calculate km and kh from initial |
---|
| 20 | ! TKE e_init |
---|
| 21 | ! |
---|
[98] | 22 | ! 97 2007-06-21 08:23:15Z raasch |
---|
| 23 | ! Initialization of salinity, call of init_ocean |
---|
| 24 | ! |
---|
[90] | 25 | ! 87 2007-05-22 15:46:47Z raasch |
---|
| 26 | ! var_hom and var_sum renamed pr_palm |
---|
| 27 | ! |
---|
[77] | 28 | ! 75 2007-03-22 09:54:05Z raasch |
---|
[73] | 29 | ! Arrays for radiation boundary conditions are allocated (u_m_l, u_m_r, etc.), |
---|
| 30 | ! bugfix for cases with the outflow damping layer extending over more than one |
---|
[75] | 31 | ! subdomain, moisture renamed humidity, |
---|
| 32 | ! new initializing action "by_user" calls user_init_3d_model, |
---|
[72] | 33 | ! precipitation_amount/rate, ts_value are allocated, +module netcdf_control, |
---|
[51] | 34 | ! initial velocities at nzb+1 are regarded for volume |
---|
| 35 | ! flow control in case they have been set zero before (to avoid small timesteps) |
---|
[75] | 36 | ! -uvmean_outflow, uxrp, vynp eliminated |
---|
[1] | 37 | ! |
---|
[39] | 38 | ! 19 2007-02-23 04:53:48Z raasch |
---|
| 39 | ! +handling of top fluxes |
---|
| 40 | ! |
---|
[3] | 41 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 42 | ! |
---|
[1] | 43 | ! Revision 1.49 2006/08/22 15:59:07 raasch |
---|
| 44 | ! No optimization of this file on the ibmy (Yonsei Univ.) |
---|
| 45 | ! |
---|
| 46 | ! Revision 1.1 1998/03/09 16:22:22 raasch |
---|
| 47 | ! Initial revision |
---|
| 48 | ! |
---|
| 49 | ! |
---|
| 50 | ! Description: |
---|
| 51 | ! ------------ |
---|
| 52 | ! Allocation of arrays and initialization of the 3D model via |
---|
| 53 | ! a) pre-run the 1D model |
---|
| 54 | ! or |
---|
| 55 | ! b) pre-set constant linear profiles |
---|
| 56 | ! or |
---|
| 57 | ! c) read values of a previous run |
---|
| 58 | !------------------------------------------------------------------------------! |
---|
| 59 | |
---|
| 60 | USE arrays_3d |
---|
| 61 | USE averaging |
---|
[72] | 62 | USE cloud_parameters |
---|
[1] | 63 | USE constants |
---|
| 64 | USE control_parameters |
---|
| 65 | USE cpulog |
---|
| 66 | USE indices |
---|
| 67 | USE interfaces |
---|
| 68 | USE model_1d |
---|
[51] | 69 | USE netcdf_control |
---|
[1] | 70 | USE particle_attributes |
---|
| 71 | USE pegrid |
---|
| 72 | USE profil_parameter |
---|
| 73 | USE random_function_mod |
---|
| 74 | USE statistics |
---|
| 75 | |
---|
| 76 | IMPLICIT NONE |
---|
| 77 | |
---|
| 78 | INTEGER :: i, j, k, sr |
---|
| 79 | |
---|
| 80 | INTEGER, DIMENSION(:), ALLOCATABLE :: ngp_2dh_l, ngp_3d_inner_l |
---|
| 81 | |
---|
| 82 | INTEGER, DIMENSION(:,:), ALLOCATABLE :: ngp_2dh_outer_l |
---|
| 83 | |
---|
| 84 | REAL, DIMENSION(1:2) :: volume_flow_area_l, volume_flow_initial_l |
---|
| 85 | |
---|
| 86 | |
---|
| 87 | ! |
---|
| 88 | !-- Allocate arrays |
---|
| 89 | ALLOCATE( ngp_2dh(0:statistic_regions), ngp_2dh_l(0:statistic_regions), & |
---|
| 90 | ngp_3d(0:statistic_regions), & |
---|
| 91 | ngp_3d_inner(0:statistic_regions), & |
---|
| 92 | ngp_3d_inner_l(0:statistic_regions), & |
---|
| 93 | sums_divnew_l(0:statistic_regions), & |
---|
| 94 | sums_divold_l(0:statistic_regions) ) |
---|
[75] | 95 | ALLOCATE( rdf(nzb+1:nzt) ) |
---|
[87] | 96 | ALLOCATE( hom_sum(nzb:nzt+1,pr_palm+max_pr_user,0:statistic_regions), & |
---|
[1] | 97 | ngp_2dh_outer(nzb:nzt+1,0:statistic_regions), & |
---|
| 98 | ngp_2dh_outer_l(nzb:nzt+1,0:statistic_regions), & |
---|
| 99 | rmask(nys-1:nyn+1,nxl-1:nxr+1,0:statistic_regions), & |
---|
[87] | 100 | sums(nzb:nzt+1,pr_palm+max_pr_user), & |
---|
| 101 | sums_l(nzb:nzt+1,pr_palm+max_pr_user,0:threads_per_task-1), & |
---|
[1] | 102 | sums_l_l(nzb:nzt+1,0:statistic_regions,0:threads_per_task-1), & |
---|
| 103 | sums_up_fraction_l(10,3,0:statistic_regions), & |
---|
[48] | 104 | sums_wsts_bc_l(nzb:nzt+1,0:statistic_regions), & |
---|
| 105 | ts_value(var_ts,0:statistic_regions) ) |
---|
[1] | 106 | ALLOCATE( km_damp_x(nxl-1:nxr+1), km_damp_y(nys-1:nyn+1) ) |
---|
| 107 | |
---|
[19] | 108 | ALLOCATE( rif_1(nys-1:nyn+1,nxl-1:nxr+1), shf_1(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 109 | ts(nys-1:nyn+1,nxl-1:nxr+1), tswst_1(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 110 | us(nys-1:nyn+1,nxl-1:nxr+1), usws_1(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
[102] | 111 | uswst_1(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 112 | vsws_1(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 113 | vswst_1(nys-1:nyn+1,nxl-1:nxr+1), z0(nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
[1] | 114 | |
---|
| 115 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 116 | ! |
---|
| 117 | !-- Leapfrog scheme needs two timelevels of diffusion quantities |
---|
[19] | 118 | ALLOCATE( rif_2(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 119 | shf_2(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 120 | tswst_2(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 121 | usws_2(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
[102] | 122 | uswst_2(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 123 | vswst_2(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
[1] | 124 | vsws_2(nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 125 | ENDIF |
---|
| 126 | |
---|
[75] | 127 | ALLOCATE( d(nzb+1:nzta,nys:nyna,nxl:nxra), & |
---|
| 128 | e_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 129 | e_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 130 | e_3(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 131 | kh_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 132 | km_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 133 | p(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 134 | pt_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 135 | pt_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 136 | pt_3(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 137 | tend(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 138 | u_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 139 | u_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 140 | u_3(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 141 | v_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 142 | v_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 143 | v_3(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 144 | w_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 145 | w_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
[1] | 146 | w_3(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 147 | |
---|
| 148 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 149 | ALLOCATE( kh_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 150 | km_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 151 | ENDIF |
---|
| 152 | |
---|
[75] | 153 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 154 | ! |
---|
[75] | 155 | !-- 2D-humidity/scalar arrays |
---|
[1] | 156 | ALLOCATE ( qs(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
[19] | 157 | qsws_1(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 158 | qswst_1(nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
[1] | 159 | |
---|
| 160 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[19] | 161 | ALLOCATE( qsws_2(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 162 | qswst_2(nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
[1] | 163 | ENDIF |
---|
| 164 | ! |
---|
[75] | 165 | !-- 3D-humidity/scalar arrays |
---|
[1] | 166 | ALLOCATE( q_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 167 | q_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 168 | q_3(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 169 | |
---|
| 170 | ! |
---|
[75] | 171 | !-- 3D-arrays needed for humidity only |
---|
| 172 | IF ( humidity ) THEN |
---|
[1] | 173 | ALLOCATE( vpt_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 174 | |
---|
| 175 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 176 | ALLOCATE( vpt_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 177 | ENDIF |
---|
| 178 | |
---|
| 179 | IF ( cloud_physics ) THEN |
---|
| 180 | ! |
---|
| 181 | !-- Liquid water content |
---|
| 182 | ALLOCATE ( ql_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
[72] | 183 | ! |
---|
| 184 | !-- Precipitation amount and rate (only needed if output is switched) |
---|
| 185 | ALLOCATE( precipitation_amount(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 186 | precipitation_rate(nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
[1] | 187 | ENDIF |
---|
| 188 | |
---|
| 189 | IF ( cloud_droplets ) THEN |
---|
| 190 | ! |
---|
| 191 | !-- Liquid water content, change in liquid water content, |
---|
| 192 | !-- real volume of particles (with weighting), volume of particles |
---|
| 193 | ALLOCATE ( ql_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 194 | ql_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 195 | ql_v(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 196 | ql_vp(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 197 | ENDIF |
---|
| 198 | |
---|
| 199 | ENDIF |
---|
| 200 | |
---|
| 201 | ENDIF |
---|
| 202 | |
---|
[94] | 203 | IF ( ocean ) THEN |
---|
[95] | 204 | ALLOCATE( saswsb_1(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 205 | saswst_1(nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
[96] | 206 | ALLOCATE( rho_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 207 | sa_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 208 | sa_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
[94] | 209 | sa_3(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
[96] | 210 | rho => rho_1 ! routine calc_mean_profile requires density to be a |
---|
| 211 | ! pointer |
---|
[108] | 212 | IF ( humidity_remote ) THEN |
---|
| 213 | ALLOCATE( qswst_remote(nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 214 | qswst_remote = 0.0 |
---|
| 215 | ENDIF |
---|
[94] | 216 | ENDIF |
---|
| 217 | |
---|
[1] | 218 | ! |
---|
| 219 | !-- 3D-array for storing the dissipation, needed for calculating the sgs |
---|
| 220 | !-- particle velocities |
---|
| 221 | IF ( use_sgs_for_particles ) THEN |
---|
| 222 | ALLOCATE ( diss(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 223 | ENDIF |
---|
| 224 | |
---|
| 225 | IF ( dt_dosp /= 9999999.9 ) THEN |
---|
| 226 | ALLOCATE( spectrum_x( 1:nx/2, 1:10, 1:10 ), & |
---|
| 227 | spectrum_y( 1:ny/2, 1:10, 1:10 ) ) |
---|
| 228 | ENDIF |
---|
| 229 | |
---|
| 230 | ! |
---|
[51] | 231 | !-- 4D-array for storing the Rif-values at vertical walls |
---|
| 232 | IF ( topography /= 'flat' ) THEN |
---|
| 233 | ALLOCATE( rif_wall(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1,1:4) ) |
---|
| 234 | rif_wall = 0.0 |
---|
| 235 | ENDIF |
---|
| 236 | |
---|
| 237 | ! |
---|
| 238 | !-- Velocities at nzb+1 needed for volume flow control |
---|
| 239 | IF ( conserve_volume_flow ) THEN |
---|
| 240 | ALLOCATE( u_nzb_p1_for_vfc(nys:nyn), v_nzb_p1_for_vfc(nxl:nxr) ) |
---|
| 241 | u_nzb_p1_for_vfc = 0.0 |
---|
| 242 | v_nzb_p1_for_vfc = 0.0 |
---|
| 243 | ENDIF |
---|
| 244 | |
---|
| 245 | ! |
---|
[106] | 246 | !-- Arrays to store velocity data from t-dt and the phase speeds which |
---|
| 247 | !-- are needed for radiation boundary conditions |
---|
[73] | 248 | IF ( outflow_l ) THEN |
---|
[106] | 249 | ALLOCATE( u_m_l(nzb:nzt+1,nys-1:nyn+1,1:2), & |
---|
| 250 | v_m_l(nzb:nzt+1,nys-1:nyn+1,0:1), & |
---|
| 251 | w_m_l(nzb:nzt+1,nys-1:nyn+1,0:1) ) |
---|
[73] | 252 | ENDIF |
---|
| 253 | IF ( outflow_r ) THEN |
---|
[106] | 254 | ALLOCATE( u_m_r(nzb:nzt+1,nys-1:nyn+1,nx-1:nx), & |
---|
| 255 | v_m_r(nzb:nzt+1,nys-1:nyn+1,nx-1:nx), & |
---|
| 256 | w_m_r(nzb:nzt+1,nys-1:nyn+1,nx-1:nx) ) |
---|
[73] | 257 | ENDIF |
---|
[106] | 258 | IF ( outflow_l .OR. outflow_r ) THEN |
---|
| 259 | ALLOCATE( c_u(nzb:nzt+1,nys-1:nyn+1), c_v(nzb:nzt+1,nys-1:nyn+1), & |
---|
| 260 | c_w(nzb:nzt+1,nys-1:nyn+1) ) |
---|
| 261 | ENDIF |
---|
[73] | 262 | IF ( outflow_s ) THEN |
---|
[106] | 263 | ALLOCATE( u_m_s(nzb:nzt+1,0:1,nxl-1:nxr+1), & |
---|
| 264 | v_m_s(nzb:nzt+1,1:2,nxl-1:nxr+1), & |
---|
| 265 | w_m_s(nzb:nzt+1,0:1,nxl-1:nxr+1) ) |
---|
[73] | 266 | ENDIF |
---|
| 267 | IF ( outflow_n ) THEN |
---|
[106] | 268 | ALLOCATE( u_m_n(nzb:nzt+1,ny-1:ny,nxl-1:nxr+1), & |
---|
| 269 | v_m_n(nzb:nzt+1,ny-1:ny,nxl-1:nxr+1), & |
---|
| 270 | w_m_n(nzb:nzt+1,ny-1:ny,nxl-1:nxr+1) ) |
---|
[73] | 271 | ENDIF |
---|
[106] | 272 | IF ( outflow_s .OR. outflow_n ) THEN |
---|
| 273 | ALLOCATE( c_u(nzb:nzt+1,nxl-1:nxr+1), c_v(nzb:nzt+1,nxl-1:nxr+1), & |
---|
| 274 | c_w(nzb:nzt+1,nxl-1:nxr+1) ) |
---|
| 275 | ENDIF |
---|
[73] | 276 | |
---|
| 277 | ! |
---|
[1] | 278 | !-- Initial assignment of the pointers |
---|
| 279 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 280 | |
---|
[19] | 281 | rif_m => rif_1; rif => rif_2 |
---|
| 282 | shf_m => shf_1; shf => shf_2 |
---|
| 283 | tswst_m => tswst_1; tswst => tswst_2 |
---|
| 284 | usws_m => usws_1; usws => usws_2 |
---|
[102] | 285 | uswst_m => uswst_1; uswst => uswst_2 |
---|
[19] | 286 | vsws_m => vsws_1; vsws => vsws_2 |
---|
[102] | 287 | vswst_m => vswst_1; vswst => vswst_2 |
---|
[1] | 288 | e_m => e_1; e => e_2; e_p => e_3; te_m => e_3 |
---|
| 289 | kh_m => kh_1; kh => kh_2 |
---|
| 290 | km_m => km_1; km => km_2 |
---|
| 291 | pt_m => pt_1; pt => pt_2; pt_p => pt_3; tpt_m => pt_3 |
---|
| 292 | u_m => u_1; u => u_2; u_p => u_3; tu_m => u_3 |
---|
| 293 | v_m => v_1; v => v_2; v_p => v_3; tv_m => v_3 |
---|
| 294 | w_m => w_1; w => w_2; w_p => w_3; tw_m => w_3 |
---|
| 295 | |
---|
[75] | 296 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[19] | 297 | qsws_m => qsws_1; qsws => qsws_2 |
---|
| 298 | qswst_m => qswst_1; qswst => qswst_2 |
---|
[1] | 299 | q_m => q_1; q => q_2; q_p => q_3; tq_m => q_3 |
---|
[75] | 300 | IF ( humidity ) vpt_m => vpt_1; vpt => vpt_2 |
---|
[1] | 301 | IF ( cloud_physics ) ql => ql_1 |
---|
| 302 | IF ( cloud_droplets ) THEN |
---|
| 303 | ql => ql_1 |
---|
| 304 | ql_c => ql_2 |
---|
| 305 | ENDIF |
---|
| 306 | ENDIF |
---|
| 307 | |
---|
| 308 | ELSE |
---|
| 309 | |
---|
[19] | 310 | rif => rif_1 |
---|
| 311 | shf => shf_1 |
---|
| 312 | tswst => tswst_1 |
---|
| 313 | usws => usws_1 |
---|
[102] | 314 | uswst => uswst_1 |
---|
[19] | 315 | vsws => vsws_1 |
---|
[102] | 316 | vswst => vswst_1 |
---|
[19] | 317 | e => e_1; e_p => e_2; te_m => e_3; e_m => e_3 |
---|
| 318 | kh => kh_1 |
---|
| 319 | km => km_1 |
---|
| 320 | pt => pt_1; pt_p => pt_2; tpt_m => pt_3; pt_m => pt_3 |
---|
| 321 | u => u_1; u_p => u_2; tu_m => u_3; u_m => u_3 |
---|
| 322 | v => v_1; v_p => v_2; tv_m => v_3; v_m => v_3 |
---|
| 323 | w => w_1; w_p => w_2; tw_m => w_3; w_m => w_3 |
---|
[1] | 324 | |
---|
[75] | 325 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 326 | qsws => qsws_1 |
---|
[19] | 327 | qswst => qswst_1 |
---|
[94] | 328 | q => q_1; q_p => q_2; tq_m => q_3; q_m => q_3 |
---|
[75] | 329 | IF ( humidity ) vpt => vpt_1 |
---|
[1] | 330 | IF ( cloud_physics ) ql => ql_1 |
---|
| 331 | IF ( cloud_droplets ) THEN |
---|
| 332 | ql => ql_1 |
---|
| 333 | ql_c => ql_2 |
---|
| 334 | ENDIF |
---|
| 335 | ENDIF |
---|
| 336 | |
---|
[94] | 337 | IF ( ocean ) THEN |
---|
[95] | 338 | saswsb => saswsb_1 |
---|
[94] | 339 | saswst => saswst_1 |
---|
| 340 | sa => sa_1; sa_p => sa_2; tsa_m => sa_3 |
---|
| 341 | ENDIF |
---|
| 342 | |
---|
[1] | 343 | ENDIF |
---|
| 344 | |
---|
| 345 | ! |
---|
| 346 | !-- Initialize model variables |
---|
| 347 | IF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN |
---|
| 348 | ! |
---|
| 349 | !-- First model run of a possible job queue. |
---|
| 350 | !-- Initial profiles of the variables must be computes. |
---|
| 351 | IF ( INDEX( initializing_actions, 'set_1d-model_profiles' ) /= 0 ) THEN |
---|
| 352 | ! |
---|
| 353 | !-- Use solutions of the 1D model as initial profiles, |
---|
| 354 | !-- start 1D model |
---|
| 355 | CALL init_1d_model |
---|
| 356 | ! |
---|
| 357 | !-- Transfer initial profiles to the arrays of the 3D model |
---|
| 358 | DO i = nxl-1, nxr+1 |
---|
| 359 | DO j = nys-1, nyn+1 |
---|
| 360 | e(:,j,i) = e1d |
---|
| 361 | kh(:,j,i) = kh1d |
---|
| 362 | km(:,j,i) = km1d |
---|
| 363 | pt(:,j,i) = pt_init |
---|
| 364 | u(:,j,i) = u1d |
---|
| 365 | v(:,j,i) = v1d |
---|
| 366 | ENDDO |
---|
| 367 | ENDDO |
---|
| 368 | |
---|
[75] | 369 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 370 | DO i = nxl-1, nxr+1 |
---|
| 371 | DO j = nys-1, nyn+1 |
---|
| 372 | q(:,j,i) = q_init |
---|
| 373 | ENDDO |
---|
| 374 | ENDDO |
---|
| 375 | ENDIF |
---|
| 376 | |
---|
| 377 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 378 | DO i = nxl-1, nxr+1 |
---|
| 379 | DO j = nys-1, nyn+1 |
---|
| 380 | e(:,j,i) = e1d |
---|
| 381 | ENDDO |
---|
| 382 | ENDDO |
---|
| 383 | ! |
---|
| 384 | !-- Store initial profiles for output purposes etc. |
---|
| 385 | hom(:,1,25,:) = SPREAD( l1d, 2, statistic_regions+1 ) |
---|
| 386 | |
---|
| 387 | IF ( prandtl_layer ) THEN |
---|
| 388 | rif = rif1d(nzb+1) |
---|
| 389 | ts = 0.0 ! could actually be computed more accurately in the |
---|
| 390 | ! 1D model. Update when opportunity arises. |
---|
| 391 | us = us1d |
---|
| 392 | usws = usws1d |
---|
| 393 | vsws = vsws1d |
---|
| 394 | ELSE |
---|
| 395 | ts = 0.0 ! must be set, because used in |
---|
| 396 | rif = 0.0 ! flowste |
---|
| 397 | us = 0.0 |
---|
| 398 | usws = 0.0 |
---|
| 399 | vsws = 0.0 |
---|
| 400 | ENDIF |
---|
| 401 | |
---|
| 402 | ELSE |
---|
| 403 | e = 0.0 ! must be set, because used in |
---|
| 404 | rif = 0.0 ! flowste |
---|
| 405 | ts = 0.0 |
---|
| 406 | us = 0.0 |
---|
| 407 | usws = 0.0 |
---|
| 408 | vsws = 0.0 |
---|
| 409 | ENDIF |
---|
[102] | 410 | uswst = top_momentumflux_u |
---|
| 411 | vswst = top_momentumflux_v |
---|
[1] | 412 | |
---|
| 413 | ! |
---|
| 414 | !-- In every case qs = 0.0 (see also pt) |
---|
| 415 | !-- This could actually be computed more accurately in the 1D model. |
---|
| 416 | !-- Update when opportunity arises! |
---|
[75] | 417 | IF ( humidity .OR. passive_scalar ) qs = 0.0 |
---|
[1] | 418 | |
---|
| 419 | ! |
---|
| 420 | !-- inside buildings set velocities back to zero |
---|
| 421 | IF ( topography /= 'flat' ) THEN |
---|
| 422 | DO i = nxl-1, nxr+1 |
---|
| 423 | DO j = nys-1, nyn+1 |
---|
| 424 | u(nzb:nzb_u_inner(j,i),j,i) = 0.0 |
---|
| 425 | v(nzb:nzb_v_inner(j,i),j,i) = 0.0 |
---|
| 426 | ENDDO |
---|
| 427 | ENDDO |
---|
| 428 | ! |
---|
| 429 | !-- WARNING: The extra boundary conditions set after running the |
---|
| 430 | !-- ------- 1D model impose an error on the divergence one layer |
---|
| 431 | !-- below the topography; need to correct later |
---|
| 432 | !-- ATTENTION: Provisional correction for Piacsek & Williams |
---|
| 433 | !-- --------- advection scheme: keep u and v zero one layer below |
---|
| 434 | !-- the topography. |
---|
| 435 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 436 | ! |
---|
| 437 | !-- Satisfying the Dirichlet condition with an extra layer below |
---|
| 438 | !-- the surface where the u and v component change their sign. |
---|
| 439 | DO i = nxl-1, nxr+1 |
---|
| 440 | DO j = nys-1, nyn+1 |
---|
| 441 | IF ( nzb_u_inner(j,i) == 0 ) u(0,j,i) = -u(1,j,i) |
---|
| 442 | IF ( nzb_v_inner(j,i) == 0 ) v(0,j,i) = -v(1,j,i) |
---|
| 443 | ENDDO |
---|
| 444 | ENDDO |
---|
| 445 | |
---|
| 446 | ELSE |
---|
| 447 | ! |
---|
| 448 | !-- Neumann condition |
---|
| 449 | DO i = nxl-1, nxr+1 |
---|
| 450 | DO j = nys-1, nyn+1 |
---|
| 451 | IF ( nzb_u_inner(j,i) == 0 ) u(0,j,i) = u(1,j,i) |
---|
| 452 | IF ( nzb_v_inner(j,i) == 0 ) v(0,j,i) = v(1,j,i) |
---|
| 453 | ENDDO |
---|
| 454 | ENDDO |
---|
| 455 | |
---|
| 456 | ENDIF |
---|
| 457 | |
---|
| 458 | ENDIF |
---|
| 459 | |
---|
| 460 | ELSEIF ( INDEX(initializing_actions, 'set_constant_profiles') /= 0 ) & |
---|
| 461 | THEN |
---|
| 462 | ! |
---|
| 463 | !-- Use constructed initial profiles (velocity constant with height, |
---|
| 464 | !-- temperature profile with constant gradient) |
---|
| 465 | DO i = nxl-1, nxr+1 |
---|
| 466 | DO j = nys-1, nyn+1 |
---|
| 467 | pt(:,j,i) = pt_init |
---|
| 468 | u(:,j,i) = u_init |
---|
| 469 | v(:,j,i) = v_init |
---|
| 470 | ENDDO |
---|
| 471 | ENDDO |
---|
[75] | 472 | |
---|
[1] | 473 | ! |
---|
[51] | 474 | !-- Set initial horizontal velocities at the lowest computational grid levels |
---|
| 475 | !-- to zero in order to avoid too small time steps caused by the diffusion |
---|
[1] | 476 | !-- limit in the initial phase of a run (at k=1, dz/2 occurs in the |
---|
[51] | 477 | !-- limiting formula!). The original values are stored to be later used for |
---|
| 478 | !-- volume flow control. |
---|
[1] | 479 | DO i = nxl-1, nxr+1 |
---|
| 480 | DO j = nys-1, nyn+1 |
---|
| 481 | u(nzb:nzb_u_inner(j,i)+1,j,i) = 0.0 |
---|
| 482 | v(nzb:nzb_v_inner(j,i)+1,j,i) = 0.0 |
---|
| 483 | ENDDO |
---|
| 484 | ENDDO |
---|
[51] | 485 | IF ( conserve_volume_flow ) THEN |
---|
| 486 | IF ( nxr == nx ) THEN |
---|
| 487 | DO j = nys, nyn |
---|
| 488 | k = nzb_u_inner(j,nx) + 1 |
---|
| 489 | u_nzb_p1_for_vfc(j) = u_init(k) * dzu(k) |
---|
| 490 | ENDDO |
---|
| 491 | ENDIF |
---|
| 492 | IF ( nyn == ny ) THEN |
---|
| 493 | DO i = nxl, nxr |
---|
| 494 | k = nzb_v_inner(ny,i) + 1 |
---|
| 495 | v_nzb_p1_for_vfc(i) = v_init(k) * dzu(k) |
---|
| 496 | ENDDO |
---|
| 497 | ENDIF |
---|
| 498 | ENDIF |
---|
[1] | 499 | |
---|
[75] | 500 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 501 | DO i = nxl-1, nxr+1 |
---|
| 502 | DO j = nys-1, nyn+1 |
---|
| 503 | q(:,j,i) = q_init |
---|
| 504 | ENDDO |
---|
| 505 | ENDDO |
---|
| 506 | ENDIF |
---|
| 507 | |
---|
[94] | 508 | IF ( ocean ) THEN |
---|
| 509 | DO i = nxl-1, nxr+1 |
---|
| 510 | DO j = nys-1, nyn+1 |
---|
| 511 | sa(:,j,i) = sa_init |
---|
| 512 | ENDDO |
---|
| 513 | ENDDO |
---|
| 514 | ENDIF |
---|
[1] | 515 | |
---|
| 516 | IF ( constant_diffusion ) THEN |
---|
| 517 | km = km_constant |
---|
| 518 | kh = km / prandtl_number |
---|
[108] | 519 | e = 0.0 |
---|
| 520 | ELSEIF ( e_init > 0.0 ) THEN |
---|
| 521 | DO k = nzb+1, nzt |
---|
| 522 | km(k,:,:) = 0.1 * l_grid(k) * SQRT( e_init ) |
---|
| 523 | ENDDO |
---|
| 524 | km(nzb,:,:) = km(nzb+1,:,:) |
---|
| 525 | km(nzt+1,:,:) = km(nzt,:,:) |
---|
| 526 | kh = km / prandtl_number |
---|
| 527 | e = e_init |
---|
[1] | 528 | ELSE |
---|
[108] | 529 | IF ( .NOT. ocean ) THEN |
---|
| 530 | kh = 0.01 ! there must exist an initial diffusion, because |
---|
| 531 | km = 0.01 ! otherwise no TKE would be produced by the |
---|
| 532 | ! production terms, as long as not yet |
---|
| 533 | ! e = (u*/cm)**2 at k=nzb+1 |
---|
| 534 | ELSE |
---|
| 535 | kh = 0.00001 |
---|
| 536 | km = 0.00001 |
---|
| 537 | ENDIF |
---|
| 538 | e = 0.0 |
---|
[1] | 539 | ENDIF |
---|
[102] | 540 | rif = 0.0 |
---|
| 541 | ts = 0.0 |
---|
| 542 | us = 0.0 |
---|
| 543 | usws = 0.0 |
---|
| 544 | uswst = top_momentumflux_u |
---|
| 545 | vsws = 0.0 |
---|
| 546 | vswst = top_momentumflux_v |
---|
[75] | 547 | IF ( humidity .OR. passive_scalar ) qs = 0.0 |
---|
[1] | 548 | |
---|
| 549 | ! |
---|
| 550 | !-- Compute initial temperature field and other constants used in case |
---|
| 551 | !-- of a sloping surface |
---|
| 552 | IF ( sloping_surface ) CALL init_slope |
---|
| 553 | |
---|
[46] | 554 | ELSEIF ( INDEX(initializing_actions, 'by_user') /= 0 ) & |
---|
| 555 | THEN |
---|
| 556 | ! |
---|
| 557 | !-- Initialization will completely be done by the user |
---|
| 558 | CALL user_init_3d_model |
---|
| 559 | |
---|
[1] | 560 | ENDIF |
---|
| 561 | |
---|
| 562 | ! |
---|
| 563 | !-- Calculate virtual potential temperature |
---|
[75] | 564 | IF ( humidity ) vpt = pt * ( 1.0 + 0.61 * q ) |
---|
[1] | 565 | |
---|
| 566 | ! |
---|
| 567 | !-- Store initial profiles for output purposes etc. |
---|
| 568 | hom(:,1,5,:) = SPREAD( u(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 569 | hom(:,1,6,:) = SPREAD( v(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 570 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 571 | hom(nzb,1,5,:) = -hom(nzb+1,1,5,:) ! due to satisfying the Dirichlet |
---|
| 572 | hom(nzb,1,6,:) = -hom(nzb+1,1,6,:) ! condition with an extra layer |
---|
| 573 | ! below the surface where the u and v component change their sign |
---|
| 574 | ENDIF |
---|
| 575 | hom(:,1,7,:) = SPREAD( pt(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 576 | hom(:,1,23,:) = SPREAD( km(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 577 | hom(:,1,24,:) = SPREAD( kh(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 578 | |
---|
[97] | 579 | IF ( ocean ) THEN |
---|
| 580 | ! |
---|
| 581 | !-- Store initial salinity profile |
---|
| 582 | hom(:,1,26,:) = SPREAD( sa(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 583 | ENDIF |
---|
[1] | 584 | |
---|
[75] | 585 | IF ( humidity ) THEN |
---|
[1] | 586 | ! |
---|
| 587 | !-- Store initial profile of total water content, virtual potential |
---|
| 588 | !-- temperature |
---|
| 589 | hom(:,1,26,:) = SPREAD( q(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 590 | hom(:,1,29,:) = SPREAD( vpt(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 591 | IF ( cloud_physics .OR. cloud_droplets ) THEN |
---|
| 592 | ! |
---|
| 593 | !-- Store initial profile of specific humidity and potential |
---|
| 594 | !-- temperature |
---|
| 595 | hom(:,1,27,:) = SPREAD( q(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 596 | hom(:,1,28,:) = SPREAD( pt(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 597 | ENDIF |
---|
| 598 | ENDIF |
---|
| 599 | |
---|
| 600 | IF ( passive_scalar ) THEN |
---|
| 601 | ! |
---|
| 602 | !-- Store initial scalar profile |
---|
| 603 | hom(:,1,26,:) = SPREAD( q(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 604 | ENDIF |
---|
| 605 | |
---|
| 606 | ! |
---|
[19] | 607 | !-- Initialize fluxes at bottom surface |
---|
[1] | 608 | IF ( use_surface_fluxes ) THEN |
---|
| 609 | |
---|
| 610 | IF ( constant_heatflux ) THEN |
---|
| 611 | ! |
---|
| 612 | !-- Heat flux is prescribed |
---|
| 613 | IF ( random_heatflux ) THEN |
---|
| 614 | CALL disturb_heatflux |
---|
| 615 | ELSE |
---|
| 616 | shf = surface_heatflux |
---|
| 617 | ! |
---|
| 618 | !-- Over topography surface_heatflux is replaced by wall_heatflux(0) |
---|
| 619 | IF ( TRIM( topography ) /= 'flat' ) THEN |
---|
| 620 | DO i = nxl-1, nxr+1 |
---|
| 621 | DO j = nys-1, nyn+1 |
---|
| 622 | IF ( nzb_s_inner(j,i) /= 0 ) THEN |
---|
| 623 | shf(j,i) = wall_heatflux(0) |
---|
| 624 | ENDIF |
---|
| 625 | ENDDO |
---|
| 626 | ENDDO |
---|
| 627 | ENDIF |
---|
| 628 | ENDIF |
---|
| 629 | IF ( ASSOCIATED( shf_m ) ) shf_m = shf |
---|
| 630 | ENDIF |
---|
| 631 | |
---|
| 632 | ! |
---|
| 633 | !-- Determine the near-surface water flux |
---|
[75] | 634 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 635 | IF ( constant_waterflux ) THEN |
---|
| 636 | qsws = surface_waterflux |
---|
| 637 | IF ( ASSOCIATED( qsws_m ) ) qsws_m = qsws |
---|
| 638 | ENDIF |
---|
| 639 | ENDIF |
---|
| 640 | |
---|
| 641 | ENDIF |
---|
| 642 | |
---|
| 643 | ! |
---|
[19] | 644 | !-- Initialize fluxes at top surface |
---|
[94] | 645 | !-- Currently, only the heatflux and salinity flux can be prescribed. |
---|
| 646 | !-- The latent flux is zero in this case! |
---|
[19] | 647 | IF ( use_top_fluxes ) THEN |
---|
| 648 | |
---|
| 649 | IF ( constant_top_heatflux ) THEN |
---|
| 650 | ! |
---|
| 651 | !-- Heat flux is prescribed |
---|
| 652 | tswst = top_heatflux |
---|
| 653 | IF ( ASSOCIATED( tswst_m ) ) tswst_m = tswst |
---|
| 654 | |
---|
[75] | 655 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[19] | 656 | qswst = 0.0 |
---|
| 657 | IF ( ASSOCIATED( qswst_m ) ) qswst_m = qswst |
---|
| 658 | ENDIF |
---|
[94] | 659 | |
---|
| 660 | IF ( ocean ) THEN |
---|
[95] | 661 | saswsb = bottom_salinityflux |
---|
[94] | 662 | saswst = top_salinityflux |
---|
| 663 | ENDIF |
---|
[102] | 664 | ENDIF |
---|
[19] | 665 | |
---|
[102] | 666 | ! |
---|
| 667 | !-- Initialization in case of a coupled model run |
---|
| 668 | IF ( coupling_mode == 'ocean_to_atmosphere' ) THEN |
---|
| 669 | tswst = 0.0 |
---|
| 670 | IF ( ASSOCIATED( tswst_m ) ) tswst_m = tswst |
---|
| 671 | ENDIF |
---|
| 672 | |
---|
[19] | 673 | ENDIF |
---|
| 674 | |
---|
| 675 | ! |
---|
[1] | 676 | !-- Initialize Prandtl layer quantities |
---|
| 677 | IF ( prandtl_layer ) THEN |
---|
| 678 | |
---|
| 679 | z0 = roughness_length |
---|
| 680 | |
---|
| 681 | IF ( .NOT. constant_heatflux ) THEN |
---|
| 682 | ! |
---|
| 683 | !-- Surface temperature is prescribed. Here the heat flux cannot be |
---|
| 684 | !-- simply estimated, because therefore rif, u* and theta* would have |
---|
| 685 | !-- to be computed by iteration. This is why the heat flux is assumed |
---|
| 686 | !-- to be zero before the first time step. It approaches its correct |
---|
| 687 | !-- value in the course of the first few time steps. |
---|
| 688 | shf = 0.0 |
---|
| 689 | IF ( ASSOCIATED( shf_m ) ) shf_m = 0.0 |
---|
| 690 | ENDIF |
---|
| 691 | |
---|
[75] | 692 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 693 | IF ( .NOT. constant_waterflux ) THEN |
---|
| 694 | qsws = 0.0 |
---|
| 695 | IF ( ASSOCIATED( qsws_m ) ) qsws_m = 0.0 |
---|
| 696 | ENDIF |
---|
| 697 | ENDIF |
---|
| 698 | |
---|
| 699 | ENDIF |
---|
| 700 | |
---|
| 701 | ! |
---|
| 702 | !-- Calculate the initial volume flow at the right and north boundary |
---|
| 703 | IF ( conserve_volume_flow ) THEN |
---|
| 704 | |
---|
| 705 | volume_flow_initial_l = 0.0 |
---|
| 706 | volume_flow_area_l = 0.0 |
---|
| 707 | |
---|
| 708 | IF ( nxr == nx ) THEN |
---|
| 709 | DO j = nys, nyn |
---|
| 710 | DO k = nzb_2d(j,nx) + 1, nzt |
---|
| 711 | volume_flow_initial_l(1) = volume_flow_initial_l(1) + & |
---|
| 712 | u(k,j,nx) * dzu(k) |
---|
| 713 | volume_flow_area_l(1) = volume_flow_area_l(1) + dzu(k) |
---|
| 714 | ENDDO |
---|
[51] | 715 | ! |
---|
| 716 | !-- Correction if velocity at nzb+1 has been set zero further above |
---|
| 717 | volume_flow_initial_l(1) = volume_flow_initial_l(1) + & |
---|
| 718 | u_nzb_p1_for_vfc(j) |
---|
[1] | 719 | ENDDO |
---|
| 720 | ENDIF |
---|
| 721 | |
---|
| 722 | IF ( nyn == ny ) THEN |
---|
| 723 | DO i = nxl, nxr |
---|
| 724 | DO k = nzb_2d(ny,i) + 1, nzt |
---|
| 725 | volume_flow_initial_l(2) = volume_flow_initial_l(2) + & |
---|
| 726 | v(k,ny,i) * dzu(k) |
---|
| 727 | volume_flow_area_l(2) = volume_flow_area_l(2) + dzu(k) |
---|
| 728 | ENDDO |
---|
[51] | 729 | ! |
---|
| 730 | !-- Correction if velocity at nzb+1 has been set zero further above |
---|
| 731 | volume_flow_initial_l(2) = volume_flow_initial_l(2) + & |
---|
| 732 | v_nzb_p1_for_vfc(i) |
---|
[1] | 733 | ENDDO |
---|
| 734 | ENDIF |
---|
| 735 | |
---|
| 736 | #if defined( __parallel ) |
---|
| 737 | CALL MPI_ALLREDUCE( volume_flow_initial_l(1), volume_flow_initial(1),& |
---|
| 738 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 739 | CALL MPI_ALLREDUCE( volume_flow_area_l(1), volume_flow_area(1), & |
---|
| 740 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 741 | #else |
---|
| 742 | volume_flow_initial = volume_flow_initial_l |
---|
| 743 | volume_flow_area = volume_flow_area_l |
---|
| 744 | #endif |
---|
| 745 | ENDIF |
---|
| 746 | |
---|
| 747 | ! |
---|
| 748 | !-- For the moment, perturbation pressure and vertical velocity are zero |
---|
| 749 | p = 0.0; w = 0.0 |
---|
| 750 | |
---|
| 751 | ! |
---|
| 752 | !-- Initialize array sums (must be defined in first call of pres) |
---|
| 753 | sums = 0.0 |
---|
| 754 | |
---|
| 755 | ! |
---|
[72] | 756 | !-- Treating cloud physics, liquid water content and precipitation amount |
---|
| 757 | !-- are zero at beginning of the simulation |
---|
| 758 | IF ( cloud_physics ) THEN |
---|
| 759 | ql = 0.0 |
---|
| 760 | IF ( precipitation ) precipitation_amount = 0.0 |
---|
| 761 | ENDIF |
---|
[1] | 762 | |
---|
| 763 | ! |
---|
| 764 | !-- Initialize spectra |
---|
| 765 | IF ( dt_dosp /= 9999999.9 ) THEN |
---|
| 766 | spectrum_x = 0.0 |
---|
| 767 | spectrum_y = 0.0 |
---|
| 768 | ENDIF |
---|
| 769 | |
---|
| 770 | ! |
---|
| 771 | !-- Impose vortex with vertical axis on the initial velocity profile |
---|
| 772 | IF ( INDEX( initializing_actions, 'initialize_vortex' ) /= 0 ) THEN |
---|
| 773 | CALL init_rankine |
---|
| 774 | ENDIF |
---|
| 775 | |
---|
| 776 | ! |
---|
| 777 | !-- Impose temperature anomaly (advection test only) |
---|
| 778 | IF ( INDEX( initializing_actions, 'initialize_ptanom' ) /= 0 ) THEN |
---|
| 779 | CALL init_pt_anomaly |
---|
| 780 | ENDIF |
---|
| 781 | |
---|
| 782 | ! |
---|
| 783 | !-- If required, change the surface temperature at the start of the 3D run |
---|
| 784 | IF ( pt_surface_initial_change /= 0.0 ) THEN |
---|
| 785 | pt(nzb,:,:) = pt(nzb,:,:) + pt_surface_initial_change |
---|
| 786 | ENDIF |
---|
| 787 | |
---|
| 788 | ! |
---|
| 789 | !-- If required, change the surface humidity/scalar at the start of the 3D |
---|
| 790 | !-- run |
---|
[75] | 791 | IF ( ( humidity .OR. passive_scalar ) .AND. & |
---|
[1] | 792 | q_surface_initial_change /= 0.0 ) THEN |
---|
| 793 | q(nzb,:,:) = q(nzb,:,:) + q_surface_initial_change |
---|
| 794 | ENDIF |
---|
| 795 | |
---|
| 796 | ! |
---|
| 797 | !-- Initialize the random number generator (from numerical recipes) |
---|
| 798 | CALL random_function_ini |
---|
| 799 | |
---|
| 800 | ! |
---|
| 801 | !-- Impose random perturbation on the horizontal velocity field and then |
---|
| 802 | !-- remove the divergences from the velocity field |
---|
| 803 | IF ( create_disturbances ) THEN |
---|
[75] | 804 | CALL disturb_field( nzb_u_inner, tend, u ) |
---|
| 805 | CALL disturb_field( nzb_v_inner, tend, v ) |
---|
[1] | 806 | n_sor = nsor_ini |
---|
| 807 | CALL pres |
---|
| 808 | n_sor = nsor |
---|
| 809 | ENDIF |
---|
| 810 | |
---|
| 811 | ! |
---|
| 812 | !-- Once again set the perturbation pressure explicitly to zero in order to |
---|
| 813 | !-- assure that it does not generate any divergences in the first time step. |
---|
| 814 | !-- At t=0 the velocity field is free of divergence (as constructed above). |
---|
| 815 | !-- Divergences being created during a time step are not yet known and thus |
---|
| 816 | !-- cannot be corrected during the time step yet. |
---|
| 817 | p = 0.0 |
---|
| 818 | |
---|
| 819 | ! |
---|
| 820 | !-- Initialize old and new time levels. |
---|
| 821 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 822 | e_m = e; pt_m = pt; u_m = u; v_m = v; w_m = w; kh_m = kh; km_m = km |
---|
| 823 | ELSE |
---|
| 824 | te_m = 0.0; tpt_m = 0.0; tu_m = 0.0; tv_m = 0.0; tw_m = 0.0 |
---|
| 825 | ENDIF |
---|
| 826 | e_p = e; pt_p = pt; u_p = u; v_p = v; w_p = w |
---|
| 827 | |
---|
[75] | 828 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 829 | IF ( ASSOCIATED( q_m ) ) q_m = q |
---|
| 830 | IF ( timestep_scheme(1:5) == 'runge' ) tq_m = 0.0 |
---|
| 831 | q_p = q |
---|
[75] | 832 | IF ( humidity .AND. ASSOCIATED( vpt_m ) ) vpt_m = vpt |
---|
[1] | 833 | ENDIF |
---|
| 834 | |
---|
[94] | 835 | IF ( ocean ) THEN |
---|
| 836 | tsa_m = 0.0 |
---|
| 837 | sa_p = sa |
---|
| 838 | ENDIF |
---|
| 839 | |
---|
[73] | 840 | ! |
---|
| 841 | !-- Initialize old timelevels needed for radiation boundary conditions |
---|
| 842 | IF ( outflow_l ) THEN |
---|
[106] | 843 | u_m_l(:,:,:) = u(:,:,1:2) |
---|
| 844 | v_m_l(:,:,:) = v(:,:,0:1) |
---|
| 845 | w_m_l(:,:,:) = w(:,:,0:1) |
---|
[73] | 846 | ENDIF |
---|
| 847 | IF ( outflow_r ) THEN |
---|
[106] | 848 | u_m_r(:,:,:) = u(:,:,nx-1:nx) |
---|
| 849 | v_m_r(:,:,:) = v(:,:,nx-1:nx) |
---|
| 850 | w_m_r(:,:,:) = w(:,:,nx-1:nx) |
---|
[73] | 851 | ENDIF |
---|
| 852 | IF ( outflow_s ) THEN |
---|
[106] | 853 | u_m_s(:,:,:) = u(:,0:1,:) |
---|
| 854 | v_m_s(:,:,:) = v(:,1:2,:) |
---|
| 855 | w_m_s(:,:,:) = w(:,0:1,:) |
---|
[73] | 856 | ENDIF |
---|
| 857 | IF ( outflow_n ) THEN |
---|
[106] | 858 | u_m_n(:,:,:) = u(:,ny-1:ny,:) |
---|
| 859 | v_m_n(:,:,:) = v(:,ny-1:ny,:) |
---|
| 860 | w_m_n(:,:,:) = w(:,ny-1:ny,:) |
---|
[73] | 861 | ENDIF |
---|
| 862 | |
---|
[1] | 863 | ELSEIF ( TRIM( initializing_actions ) == 'read_restart_data' ) & |
---|
| 864 | THEN |
---|
| 865 | ! |
---|
| 866 | !-- Read binary data from restart file |
---|
| 867 | CALL read_3d_binary |
---|
| 868 | |
---|
| 869 | ! |
---|
| 870 | !-- Calculate initial temperature field and other constants used in case |
---|
| 871 | !-- of a sloping surface |
---|
| 872 | IF ( sloping_surface ) CALL init_slope |
---|
| 873 | |
---|
| 874 | ! |
---|
| 875 | !-- Initialize new time levels (only done in order to set boundary values |
---|
| 876 | !-- including ghost points) |
---|
| 877 | e_p = e; pt_p = pt; u_p = u; v_p = v; w_p = w |
---|
[75] | 878 | IF ( humidity .OR. passive_scalar ) q_p = q |
---|
[94] | 879 | IF ( ocean ) sa_p = sa |
---|
[1] | 880 | |
---|
| 881 | ELSE |
---|
| 882 | ! |
---|
| 883 | !-- Actually this part of the programm should not be reached |
---|
| 884 | IF ( myid == 0 ) PRINT*,'+++ init_3d_model: unknown initializing ', & |
---|
| 885 | 'problem' |
---|
| 886 | CALL local_stop |
---|
| 887 | ENDIF |
---|
| 888 | |
---|
| 889 | ! |
---|
| 890 | !-- If required, initialize dvrp-software |
---|
| 891 | IF ( dt_dvrp /= 9999999.9 ) CALL init_dvrp |
---|
| 892 | |
---|
[96] | 893 | IF ( ocean ) THEN |
---|
[1] | 894 | ! |
---|
[96] | 895 | !-- Initialize quantities needed for the ocean model |
---|
| 896 | CALL init_ocean |
---|
| 897 | ELSE |
---|
| 898 | ! |
---|
| 899 | !-- Initialize quantities for handling cloud physics |
---|
| 900 | !-- This routine must be called before init_particles, because |
---|
| 901 | !-- otherwise, array pt_d_t, needed in data_output_dvrp (called by |
---|
| 902 | !-- init_particles) is not defined. |
---|
| 903 | CALL init_cloud_physics |
---|
| 904 | ENDIF |
---|
[1] | 905 | |
---|
| 906 | ! |
---|
| 907 | !-- If required, initialize particles |
---|
[63] | 908 | IF ( particle_advection ) CALL init_particles |
---|
[1] | 909 | |
---|
| 910 | ! |
---|
| 911 | !-- Initialize quantities for special advections schemes |
---|
| 912 | CALL init_advec |
---|
| 913 | |
---|
| 914 | ! |
---|
| 915 | !-- Initialize Rayleigh damping factors |
---|
| 916 | rdf = 0.0 |
---|
| 917 | IF ( rayleigh_damping_factor /= 0.0 ) THEN |
---|
[108] | 918 | IF ( .NOT. ocean ) THEN |
---|
| 919 | DO k = nzb+1, nzt |
---|
| 920 | IF ( zu(k) >= rayleigh_damping_height ) THEN |
---|
| 921 | rdf(k) = rayleigh_damping_factor * & |
---|
[1] | 922 | ( SIN( pi * 0.5 * ( zu(k) - rayleigh_damping_height ) & |
---|
| 923 | / ( zu(nzt) - rayleigh_damping_height ) )& |
---|
| 924 | )**2 |
---|
[108] | 925 | ENDIF |
---|
| 926 | ENDDO |
---|
| 927 | ELSE |
---|
| 928 | DO k = nzt, nzb+1, -1 |
---|
| 929 | IF ( zu(k) <= rayleigh_damping_height ) THEN |
---|
| 930 | rdf(k) = rayleigh_damping_factor * & |
---|
| 931 | ( SIN( pi * 0.5 * ( rayleigh_damping_height - zu(k) ) & |
---|
| 932 | / ( rayleigh_damping_height - zu(nzb+1)))& |
---|
| 933 | )**2 |
---|
| 934 | ENDIF |
---|
| 935 | ENDDO |
---|
| 936 | ENDIF |
---|
[1] | 937 | ENDIF |
---|
| 938 | |
---|
| 939 | ! |
---|
| 940 | !-- Initialize diffusivities used within the outflow damping layer in case of |
---|
| 941 | !-- non-cyclic lateral boundaries. A linear increase is assumed over the first |
---|
| 942 | !-- half of the width of the damping layer |
---|
[73] | 943 | IF ( bc_lr == 'dirichlet/radiation' ) THEN |
---|
[1] | 944 | |
---|
| 945 | DO i = nxl-1, nxr+1 |
---|
[73] | 946 | IF ( i >= nx - outflow_damping_width ) THEN |
---|
| 947 | km_damp_x(i) = km_damp_max * MIN( 1.0, & |
---|
| 948 | ( i - ( nx - outflow_damping_width ) ) / & |
---|
| 949 | REAL( outflow_damping_width/2 ) & |
---|
| 950 | ) |
---|
| 951 | ELSE |
---|
| 952 | km_damp_x(i) = 0.0 |
---|
| 953 | ENDIF |
---|
| 954 | ENDDO |
---|
[1] | 955 | |
---|
[73] | 956 | ELSEIF ( bc_lr == 'radiation/dirichlet' ) THEN |
---|
[1] | 957 | |
---|
[73] | 958 | DO i = nxl-1, nxr+1 |
---|
| 959 | IF ( i <= outflow_damping_width ) THEN |
---|
| 960 | km_damp_x(i) = km_damp_max * MIN( 1.0, & |
---|
| 961 | ( outflow_damping_width - i ) / & |
---|
| 962 | REAL( outflow_damping_width/2 ) & |
---|
| 963 | ) |
---|
| 964 | ELSE |
---|
| 965 | km_damp_x(i) = 0.0 |
---|
| 966 | ENDIF |
---|
| 967 | ENDDO |
---|
[1] | 968 | |
---|
[73] | 969 | ENDIF |
---|
[1] | 970 | |
---|
[73] | 971 | IF ( bc_ns == 'dirichlet/radiation' ) THEN |
---|
[1] | 972 | |
---|
[73] | 973 | DO j = nys-1, nyn+1 |
---|
| 974 | IF ( j >= ny - outflow_damping_width ) THEN |
---|
| 975 | km_damp_y(j) = km_damp_max * MIN( 1.0, & |
---|
| 976 | ( j - ( ny - outflow_damping_width ) ) / & |
---|
| 977 | REAL( outflow_damping_width/2 ) & |
---|
| 978 | ) |
---|
| 979 | ELSE |
---|
| 980 | km_damp_y(j) = 0.0 |
---|
[1] | 981 | ENDIF |
---|
| 982 | ENDDO |
---|
| 983 | |
---|
[73] | 984 | ELSEIF ( bc_ns == 'radiation/dirichlet' ) THEN |
---|
[1] | 985 | |
---|
| 986 | DO j = nys-1, nyn+1 |
---|
[73] | 987 | IF ( j <= outflow_damping_width ) THEN |
---|
| 988 | km_damp_y(j) = km_damp_max * MIN( 1.0, & |
---|
| 989 | ( outflow_damping_width - j ) / & |
---|
| 990 | REAL( outflow_damping_width/2 ) & |
---|
| 991 | ) |
---|
| 992 | ELSE |
---|
| 993 | km_damp_y(j) = 0.0 |
---|
[1] | 994 | ENDIF |
---|
[73] | 995 | ENDDO |
---|
[1] | 996 | |
---|
| 997 | ENDIF |
---|
| 998 | |
---|
| 999 | ! |
---|
| 1000 | !-- Initialize local summation arrays for UP flow_statistics. This is necessary |
---|
| 1001 | !-- because they may not yet have been initialized when they are called from |
---|
| 1002 | !-- flow_statistics (or - depending on the chosen model run - are never |
---|
| 1003 | !-- initialized) |
---|
| 1004 | sums_divnew_l = 0.0 |
---|
| 1005 | sums_divold_l = 0.0 |
---|
| 1006 | sums_l_l = 0.0 |
---|
| 1007 | sums_up_fraction_l = 0.0 |
---|
| 1008 | sums_wsts_bc_l = 0.0 |
---|
| 1009 | |
---|
| 1010 | ! |
---|
| 1011 | !-- Pre-set masks for regional statistics. Default is the total model domain. |
---|
| 1012 | rmask = 1.0 |
---|
| 1013 | |
---|
| 1014 | ! |
---|
[51] | 1015 | !-- User-defined initializing actions. Check afterwards, if maximum number |
---|
| 1016 | !-- of allowed timeseries is not exceeded |
---|
[1] | 1017 | CALL user_init |
---|
| 1018 | |
---|
[51] | 1019 | IF ( dots_num > dots_max ) THEN |
---|
| 1020 | IF ( myid == 0 ) THEN |
---|
| 1021 | PRINT*, '+++ user_init: number of time series quantities exceeds', & |
---|
| 1022 | ' its maximum of dots_max = ', dots_max |
---|
| 1023 | PRINT*, ' Please increase dots_max in modules.f90.' |
---|
| 1024 | ENDIF |
---|
| 1025 | CALL local_stop |
---|
| 1026 | ENDIF |
---|
| 1027 | |
---|
[1] | 1028 | ! |
---|
| 1029 | !-- Input binary data file is not needed anymore. This line must be placed |
---|
| 1030 | !-- after call of user_init! |
---|
| 1031 | CALL close_file( 13 ) |
---|
| 1032 | |
---|
| 1033 | ! |
---|
| 1034 | !-- Compute total sum of active mask grid points |
---|
| 1035 | !-- ngp_2dh: number of grid points of a horizontal cross section through the |
---|
| 1036 | !-- total domain |
---|
| 1037 | !-- ngp_3d: number of grid points of the total domain |
---|
| 1038 | !-- Note: The lower vertical index nzb_s_outer imposes a small error on the 2D |
---|
| 1039 | !-- ---- averages of staggered variables such as u and v due to the topography |
---|
| 1040 | !-- arrangement on the staggered grid. Maybe revise later. |
---|
| 1041 | ngp_2dh_outer_l = 0 |
---|
| 1042 | ngp_2dh_outer = 0 |
---|
| 1043 | ngp_2dh_l = 0 |
---|
| 1044 | ngp_2dh = 0 |
---|
| 1045 | ngp_3d_inner_l = 0 |
---|
| 1046 | ngp_3d_inner = 0 |
---|
| 1047 | ngp_3d = 0 |
---|
[87] | 1048 | ngp_sums = ( nz + 2 ) * ( pr_palm + max_pr_user ) |
---|
[1] | 1049 | |
---|
| 1050 | DO sr = 0, statistic_regions |
---|
| 1051 | DO i = nxl, nxr |
---|
| 1052 | DO j = nys, nyn |
---|
| 1053 | IF ( rmask(j,i,sr) == 1.0 ) THEN |
---|
| 1054 | ! |
---|
| 1055 | !-- All xy-grid points |
---|
| 1056 | ngp_2dh_l(sr) = ngp_2dh_l(sr) + 1 |
---|
| 1057 | ! |
---|
| 1058 | !-- xy-grid points above topography |
---|
| 1059 | DO k = nzb_s_outer(j,i), nz + 1 |
---|
| 1060 | ngp_2dh_outer_l(k,sr) = ngp_2dh_outer_l(k,sr) + 1 |
---|
| 1061 | ENDDO |
---|
| 1062 | ! |
---|
| 1063 | !-- All grid points of the total domain above topography |
---|
| 1064 | ngp_3d_inner_l(sr) = ngp_3d_inner_l(sr) + & |
---|
| 1065 | ( nz - nzb_s_inner(j,i) + 2 ) |
---|
| 1066 | ENDIF |
---|
| 1067 | ENDDO |
---|
| 1068 | ENDDO |
---|
| 1069 | ENDDO |
---|
| 1070 | |
---|
| 1071 | sr = statistic_regions + 1 |
---|
| 1072 | #if defined( __parallel ) |
---|
| 1073 | CALL MPI_ALLREDUCE( ngp_2dh_l(0), ngp_2dh(0), sr, MPI_INTEGER, MPI_SUM, & |
---|
| 1074 | comm2d, ierr ) |
---|
| 1075 | CALL MPI_ALLREDUCE( ngp_2dh_outer_l(0,0), ngp_2dh_outer(0,0), (nz+2)*sr, & |
---|
| 1076 | MPI_INTEGER, MPI_SUM, comm2d, ierr ) |
---|
| 1077 | CALL MPI_ALLREDUCE( ngp_3d_inner_l(0), ngp_3d_inner(0), sr, MPI_INTEGER, & |
---|
| 1078 | MPI_SUM, comm2d, ierr ) |
---|
| 1079 | #else |
---|
| 1080 | ngp_2dh = ngp_2dh_l |
---|
| 1081 | ngp_2dh_outer = ngp_2dh_outer_l |
---|
| 1082 | ngp_3d_inner = ngp_3d_inner_l |
---|
| 1083 | #endif |
---|
| 1084 | |
---|
| 1085 | ngp_3d = ngp_2dh * ( nz + 2 ) |
---|
| 1086 | |
---|
| 1087 | ! |
---|
| 1088 | !-- Set a lower limit of 1 in order to avoid zero divisions in flow_statistics, |
---|
| 1089 | !-- buoyancy, etc. A zero value will occur for cases where all grid points of |
---|
| 1090 | !-- the respective subdomain lie below the surface topography |
---|
| 1091 | ngp_2dh_outer = MAX( 1, ngp_2dh_outer(:,:) ) |
---|
| 1092 | ngp_3d_inner = MAX( 1, ngp_3d_inner(:) ) |
---|
| 1093 | |
---|
| 1094 | DEALLOCATE( ngp_2dh_l, ngp_2dh_outer_l, ngp_3d_inner_l ) |
---|
| 1095 | |
---|
| 1096 | |
---|
| 1097 | END SUBROUTINE init_3d_model |
---|